1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCleanup.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CodeGenModule.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtVisitor.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/ADT/Optional.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/Module.h" 37 #include <cstdarg> 38 39 using namespace clang; 40 using namespace CodeGen; 41 using llvm::Value; 42 43 //===----------------------------------------------------------------------===// 44 // Scalar Expression Emitter 45 //===----------------------------------------------------------------------===// 46 47 namespace { 48 49 /// Determine whether the given binary operation may overflow. 50 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 51 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 52 /// the returned overflow check is precise. The returned value is 'true' for 53 /// all other opcodes, to be conservative. 54 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 55 BinaryOperator::Opcode Opcode, bool Signed, 56 llvm::APInt &Result) { 57 // Assume overflow is possible, unless we can prove otherwise. 58 bool Overflow = true; 59 const auto &LHSAP = LHS->getValue(); 60 const auto &RHSAP = RHS->getValue(); 61 if (Opcode == BO_Add) { 62 if (Signed) 63 Result = LHSAP.sadd_ov(RHSAP, Overflow); 64 else 65 Result = LHSAP.uadd_ov(RHSAP, Overflow); 66 } else if (Opcode == BO_Sub) { 67 if (Signed) 68 Result = LHSAP.ssub_ov(RHSAP, Overflow); 69 else 70 Result = LHSAP.usub_ov(RHSAP, Overflow); 71 } else if (Opcode == BO_Mul) { 72 if (Signed) 73 Result = LHSAP.smul_ov(RHSAP, Overflow); 74 else 75 Result = LHSAP.umul_ov(RHSAP, Overflow); 76 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 77 if (Signed && !RHS->isZero()) 78 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 79 else 80 return false; 81 } 82 return Overflow; 83 } 84 85 struct BinOpInfo { 86 Value *LHS; 87 Value *RHS; 88 QualType Ty; // Computation Type. 89 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 90 FPOptions FPFeatures; 91 const Expr *E; // Entire expr, for error unsupported. May not be binop. 92 93 /// Check if the binop can result in integer overflow. 94 bool mayHaveIntegerOverflow() const { 95 // Without constant input, we can't rule out overflow. 96 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 97 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 98 if (!LHSCI || !RHSCI) 99 return true; 100 101 llvm::APInt Result; 102 return ::mayHaveIntegerOverflow( 103 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 104 } 105 106 /// Check if the binop computes a division or a remainder. 107 bool isDivremOp() const { 108 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 109 Opcode == BO_RemAssign; 110 } 111 112 /// Check if the binop can result in an integer division by zero. 113 bool mayHaveIntegerDivisionByZero() const { 114 if (isDivremOp()) 115 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 116 return CI->isZero(); 117 return true; 118 } 119 120 /// Check if the binop can result in a float division by zero. 121 bool mayHaveFloatDivisionByZero() const { 122 if (isDivremOp()) 123 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 124 return CFP->isZero(); 125 return true; 126 } 127 }; 128 129 static bool MustVisitNullValue(const Expr *E) { 130 // If a null pointer expression's type is the C++0x nullptr_t, then 131 // it's not necessarily a simple constant and it must be evaluated 132 // for its potential side effects. 133 return E->getType()->isNullPtrType(); 134 } 135 136 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 137 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 138 const Expr *E) { 139 const Expr *Base = E->IgnoreImpCasts(); 140 if (E == Base) 141 return llvm::None; 142 143 QualType BaseTy = Base->getType(); 144 if (!BaseTy->isPromotableIntegerType() || 145 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 146 return llvm::None; 147 148 return BaseTy; 149 } 150 151 /// Check if \p E is a widened promoted integer. 152 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 153 return getUnwidenedIntegerType(Ctx, E).hasValue(); 154 } 155 156 /// Check if we can skip the overflow check for \p Op. 157 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 158 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 159 "Expected a unary or binary operator"); 160 161 // If the binop has constant inputs and we can prove there is no overflow, 162 // we can elide the overflow check. 163 if (!Op.mayHaveIntegerOverflow()) 164 return true; 165 166 // If a unary op has a widened operand, the op cannot overflow. 167 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 168 return !UO->canOverflow(); 169 170 // We usually don't need overflow checks for binops with widened operands. 171 // Multiplication with promoted unsigned operands is a special case. 172 const auto *BO = cast<BinaryOperator>(Op.E); 173 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 174 if (!OptionalLHSTy) 175 return false; 176 177 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 178 if (!OptionalRHSTy) 179 return false; 180 181 QualType LHSTy = *OptionalLHSTy; 182 QualType RHSTy = *OptionalRHSTy; 183 184 // This is the simple case: binops without unsigned multiplication, and with 185 // widened operands. No overflow check is needed here. 186 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 187 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 188 return true; 189 190 // For unsigned multiplication the overflow check can be elided if either one 191 // of the unpromoted types are less than half the size of the promoted type. 192 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 193 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 194 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 195 } 196 197 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions. 198 static void updateFastMathFlags(llvm::FastMathFlags &FMF, 199 FPOptions FPFeatures) { 200 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 201 } 202 203 /// Propagate fast-math flags from \p Op to the instruction in \p V. 204 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) { 205 if (auto *I = dyn_cast<llvm::Instruction>(V)) { 206 llvm::FastMathFlags FMF = I->getFastMathFlags(); 207 updateFastMathFlags(FMF, Op.FPFeatures); 208 I->setFastMathFlags(FMF); 209 } 210 return V; 211 } 212 213 class ScalarExprEmitter 214 : public StmtVisitor<ScalarExprEmitter, Value*> { 215 CodeGenFunction &CGF; 216 CGBuilderTy &Builder; 217 bool IgnoreResultAssign; 218 llvm::LLVMContext &VMContext; 219 public: 220 221 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 222 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 223 VMContext(cgf.getLLVMContext()) { 224 } 225 226 //===--------------------------------------------------------------------===// 227 // Utilities 228 //===--------------------------------------------------------------------===// 229 230 bool TestAndClearIgnoreResultAssign() { 231 bool I = IgnoreResultAssign; 232 IgnoreResultAssign = false; 233 return I; 234 } 235 236 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 237 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 238 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 239 return CGF.EmitCheckedLValue(E, TCK); 240 } 241 242 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 243 const BinOpInfo &Info); 244 245 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 246 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 247 } 248 249 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 250 const AlignValueAttr *AVAttr = nullptr; 251 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 252 const ValueDecl *VD = DRE->getDecl(); 253 254 if (VD->getType()->isReferenceType()) { 255 if (const auto *TTy = 256 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 257 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 258 } else { 259 // Assumptions for function parameters are emitted at the start of the 260 // function, so there is no need to repeat that here. 261 if (isa<ParmVarDecl>(VD)) 262 return; 263 264 AVAttr = VD->getAttr<AlignValueAttr>(); 265 } 266 } 267 268 if (!AVAttr) 269 if (const auto *TTy = 270 dyn_cast<TypedefType>(E->getType())) 271 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 272 273 if (!AVAttr) 274 return; 275 276 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 277 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 278 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); 279 } 280 281 /// EmitLoadOfLValue - Given an expression with complex type that represents a 282 /// value l-value, this method emits the address of the l-value, then loads 283 /// and returns the result. 284 Value *EmitLoadOfLValue(const Expr *E) { 285 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 286 E->getExprLoc()); 287 288 EmitLValueAlignmentAssumption(E, V); 289 return V; 290 } 291 292 /// EmitConversionToBool - Convert the specified expression value to a 293 /// boolean (i1) truth value. This is equivalent to "Val != 0". 294 Value *EmitConversionToBool(Value *Src, QualType DstTy); 295 296 /// Emit a check that a conversion to or from a floating-point type does not 297 /// overflow. 298 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 299 Value *Src, QualType SrcType, QualType DstType, 300 llvm::Type *DstTy, SourceLocation Loc); 301 302 /// Emit a conversion from the specified type to the specified destination 303 /// type, both of which are LLVM scalar types. 304 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 305 SourceLocation Loc); 306 307 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 308 SourceLocation Loc, bool TreatBooleanAsSigned); 309 310 /// Emit a conversion from the specified complex type to the specified 311 /// destination type, where the destination type is an LLVM scalar type. 312 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 313 QualType SrcTy, QualType DstTy, 314 SourceLocation Loc); 315 316 /// EmitNullValue - Emit a value that corresponds to null for the given type. 317 Value *EmitNullValue(QualType Ty); 318 319 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 320 Value *EmitFloatToBoolConversion(Value *V) { 321 // Compare against 0.0 for fp scalars. 322 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 323 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 324 } 325 326 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 327 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 328 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 329 330 return Builder.CreateICmpNE(V, Zero, "tobool"); 331 } 332 333 Value *EmitIntToBoolConversion(Value *V) { 334 // Because of the type rules of C, we often end up computing a 335 // logical value, then zero extending it to int, then wanting it 336 // as a logical value again. Optimize this common case. 337 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 338 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 339 Value *Result = ZI->getOperand(0); 340 // If there aren't any more uses, zap the instruction to save space. 341 // Note that there can be more uses, for example if this 342 // is the result of an assignment. 343 if (ZI->use_empty()) 344 ZI->eraseFromParent(); 345 return Result; 346 } 347 } 348 349 return Builder.CreateIsNotNull(V, "tobool"); 350 } 351 352 //===--------------------------------------------------------------------===// 353 // Visitor Methods 354 //===--------------------------------------------------------------------===// 355 356 Value *Visit(Expr *E) { 357 ApplyDebugLocation DL(CGF, E); 358 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 359 } 360 361 Value *VisitStmt(Stmt *S) { 362 S->dump(CGF.getContext().getSourceManager()); 363 llvm_unreachable("Stmt can't have complex result type!"); 364 } 365 Value *VisitExpr(Expr *S); 366 367 Value *VisitParenExpr(ParenExpr *PE) { 368 return Visit(PE->getSubExpr()); 369 } 370 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 371 return Visit(E->getReplacement()); 372 } 373 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 374 return Visit(GE->getResultExpr()); 375 } 376 Value *VisitCoawaitExpr(CoawaitExpr *S) { 377 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 378 } 379 Value *VisitCoyieldExpr(CoyieldExpr *S) { 380 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 381 } 382 Value *VisitUnaryCoawait(const UnaryOperator *E) { 383 return Visit(E->getSubExpr()); 384 } 385 386 // Leaves. 387 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 388 return Builder.getInt(E->getValue()); 389 } 390 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 391 return llvm::ConstantFP::get(VMContext, E->getValue()); 392 } 393 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 394 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 395 } 396 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 397 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 398 } 399 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 400 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 401 } 402 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 403 return EmitNullValue(E->getType()); 404 } 405 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 406 return EmitNullValue(E->getType()); 407 } 408 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 409 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 410 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 411 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 412 return Builder.CreateBitCast(V, ConvertType(E->getType())); 413 } 414 415 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 416 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 417 } 418 419 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 420 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 421 } 422 423 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 424 if (E->isGLValue()) 425 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 426 E->getExprLoc()); 427 428 // Otherwise, assume the mapping is the scalar directly. 429 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 430 } 431 432 Value *emitConstant(const CodeGenFunction::ConstantEmission &Constant, 433 Expr *E) { 434 assert(Constant && "not a constant"); 435 if (Constant.isReference()) 436 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), 437 E->getExprLoc()); 438 return Constant.getValue(); 439 } 440 441 // l-values. 442 Value *VisitDeclRefExpr(DeclRefExpr *E) { 443 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 444 return emitConstant(Constant, E); 445 return EmitLoadOfLValue(E); 446 } 447 448 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 449 return CGF.EmitObjCSelectorExpr(E); 450 } 451 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 452 return CGF.EmitObjCProtocolExpr(E); 453 } 454 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 455 return EmitLoadOfLValue(E); 456 } 457 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 458 if (E->getMethodDecl() && 459 E->getMethodDecl()->getReturnType()->isReferenceType()) 460 return EmitLoadOfLValue(E); 461 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 462 } 463 464 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 465 LValue LV = CGF.EmitObjCIsaExpr(E); 466 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 467 return V; 468 } 469 470 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 471 VersionTuple Version = E->getVersion(); 472 473 // If we're checking for a platform older than our minimum deployment 474 // target, we can fold the check away. 475 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 476 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 477 478 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 479 llvm::Value *Args[] = { 480 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), 481 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), 482 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), 483 }; 484 485 return CGF.EmitBuiltinAvailable(Args); 486 } 487 488 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 489 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 490 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 491 Value *VisitMemberExpr(MemberExpr *E); 492 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 493 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 494 return EmitLoadOfLValue(E); 495 } 496 497 Value *VisitInitListExpr(InitListExpr *E); 498 499 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 500 assert(CGF.getArrayInitIndex() && 501 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 502 return CGF.getArrayInitIndex(); 503 } 504 505 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 506 return EmitNullValue(E->getType()); 507 } 508 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 509 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 510 return VisitCastExpr(E); 511 } 512 Value *VisitCastExpr(CastExpr *E); 513 514 Value *VisitCallExpr(const CallExpr *E) { 515 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 516 return EmitLoadOfLValue(E); 517 518 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 519 520 EmitLValueAlignmentAssumption(E, V); 521 return V; 522 } 523 524 Value *VisitStmtExpr(const StmtExpr *E); 525 526 // Unary Operators. 527 Value *VisitUnaryPostDec(const UnaryOperator *E) { 528 LValue LV = EmitLValue(E->getSubExpr()); 529 return EmitScalarPrePostIncDec(E, LV, false, false); 530 } 531 Value *VisitUnaryPostInc(const UnaryOperator *E) { 532 LValue LV = EmitLValue(E->getSubExpr()); 533 return EmitScalarPrePostIncDec(E, LV, true, false); 534 } 535 Value *VisitUnaryPreDec(const UnaryOperator *E) { 536 LValue LV = EmitLValue(E->getSubExpr()); 537 return EmitScalarPrePostIncDec(E, LV, false, true); 538 } 539 Value *VisitUnaryPreInc(const UnaryOperator *E) { 540 LValue LV = EmitLValue(E->getSubExpr()); 541 return EmitScalarPrePostIncDec(E, LV, true, true); 542 } 543 544 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 545 llvm::Value *InVal, 546 bool IsInc); 547 548 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 549 bool isInc, bool isPre); 550 551 552 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 553 if (isa<MemberPointerType>(E->getType())) // never sugared 554 return CGF.CGM.getMemberPointerConstant(E); 555 556 return EmitLValue(E->getSubExpr()).getPointer(); 557 } 558 Value *VisitUnaryDeref(const UnaryOperator *E) { 559 if (E->getType()->isVoidType()) 560 return Visit(E->getSubExpr()); // the actual value should be unused 561 return EmitLoadOfLValue(E); 562 } 563 Value *VisitUnaryPlus(const UnaryOperator *E) { 564 // This differs from gcc, though, most likely due to a bug in gcc. 565 TestAndClearIgnoreResultAssign(); 566 return Visit(E->getSubExpr()); 567 } 568 Value *VisitUnaryMinus (const UnaryOperator *E); 569 Value *VisitUnaryNot (const UnaryOperator *E); 570 Value *VisitUnaryLNot (const UnaryOperator *E); 571 Value *VisitUnaryReal (const UnaryOperator *E); 572 Value *VisitUnaryImag (const UnaryOperator *E); 573 Value *VisitUnaryExtension(const UnaryOperator *E) { 574 return Visit(E->getSubExpr()); 575 } 576 577 // C++ 578 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 579 return EmitLoadOfLValue(E); 580 } 581 582 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 583 return Visit(DAE->getExpr()); 584 } 585 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 586 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 587 return Visit(DIE->getExpr()); 588 } 589 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 590 return CGF.LoadCXXThis(); 591 } 592 593 Value *VisitExprWithCleanups(ExprWithCleanups *E); 594 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 595 return CGF.EmitCXXNewExpr(E); 596 } 597 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 598 CGF.EmitCXXDeleteExpr(E); 599 return nullptr; 600 } 601 602 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 603 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 604 } 605 606 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 607 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 608 } 609 610 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 611 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 612 } 613 614 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 615 // C++ [expr.pseudo]p1: 616 // The result shall only be used as the operand for the function call 617 // operator (), and the result of such a call has type void. The only 618 // effect is the evaluation of the postfix-expression before the dot or 619 // arrow. 620 CGF.EmitScalarExpr(E->getBase()); 621 return nullptr; 622 } 623 624 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 625 return EmitNullValue(E->getType()); 626 } 627 628 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 629 CGF.EmitCXXThrowExpr(E); 630 return nullptr; 631 } 632 633 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 634 return Builder.getInt1(E->getValue()); 635 } 636 637 // Binary Operators. 638 Value *EmitMul(const BinOpInfo &Ops) { 639 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 640 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 641 case LangOptions::SOB_Defined: 642 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 643 case LangOptions::SOB_Undefined: 644 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 645 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 646 // Fall through. 647 case LangOptions::SOB_Trapping: 648 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 649 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 650 return EmitOverflowCheckedBinOp(Ops); 651 } 652 } 653 654 if (Ops.Ty->isUnsignedIntegerType() && 655 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 656 !CanElideOverflowCheck(CGF.getContext(), Ops)) 657 return EmitOverflowCheckedBinOp(Ops); 658 659 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 660 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 661 return propagateFMFlags(V, Ops); 662 } 663 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 664 } 665 /// Create a binary op that checks for overflow. 666 /// Currently only supports +, - and *. 667 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 668 669 // Check for undefined division and modulus behaviors. 670 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 671 llvm::Value *Zero,bool isDiv); 672 // Common helper for getting how wide LHS of shift is. 673 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 674 Value *EmitDiv(const BinOpInfo &Ops); 675 Value *EmitRem(const BinOpInfo &Ops); 676 Value *EmitAdd(const BinOpInfo &Ops); 677 Value *EmitSub(const BinOpInfo &Ops); 678 Value *EmitShl(const BinOpInfo &Ops); 679 Value *EmitShr(const BinOpInfo &Ops); 680 Value *EmitAnd(const BinOpInfo &Ops) { 681 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 682 } 683 Value *EmitXor(const BinOpInfo &Ops) { 684 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 685 } 686 Value *EmitOr (const BinOpInfo &Ops) { 687 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 688 } 689 690 BinOpInfo EmitBinOps(const BinaryOperator *E); 691 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 692 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 693 Value *&Result); 694 695 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 696 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 697 698 // Binary operators and binary compound assignment operators. 699 #define HANDLEBINOP(OP) \ 700 Value *VisitBin ## OP(const BinaryOperator *E) { \ 701 return Emit ## OP(EmitBinOps(E)); \ 702 } \ 703 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 704 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 705 } 706 HANDLEBINOP(Mul) 707 HANDLEBINOP(Div) 708 HANDLEBINOP(Rem) 709 HANDLEBINOP(Add) 710 HANDLEBINOP(Sub) 711 HANDLEBINOP(Shl) 712 HANDLEBINOP(Shr) 713 HANDLEBINOP(And) 714 HANDLEBINOP(Xor) 715 HANDLEBINOP(Or) 716 #undef HANDLEBINOP 717 718 // Comparisons. 719 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 720 llvm::CmpInst::Predicate SICmpOpc, 721 llvm::CmpInst::Predicate FCmpOpc); 722 #define VISITCOMP(CODE, UI, SI, FP) \ 723 Value *VisitBin##CODE(const BinaryOperator *E) { \ 724 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 725 llvm::FCmpInst::FP); } 726 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 727 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 728 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 729 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 730 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 731 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 732 #undef VISITCOMP 733 734 Value *VisitBinAssign (const BinaryOperator *E); 735 736 Value *VisitBinLAnd (const BinaryOperator *E); 737 Value *VisitBinLOr (const BinaryOperator *E); 738 Value *VisitBinComma (const BinaryOperator *E); 739 740 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 741 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 742 743 // Other Operators. 744 Value *VisitBlockExpr(const BlockExpr *BE); 745 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 746 Value *VisitChooseExpr(ChooseExpr *CE); 747 Value *VisitVAArgExpr(VAArgExpr *VE); 748 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 749 return CGF.EmitObjCStringLiteral(E); 750 } 751 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 752 return CGF.EmitObjCBoxedExpr(E); 753 } 754 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 755 return CGF.EmitObjCArrayLiteral(E); 756 } 757 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 758 return CGF.EmitObjCDictionaryLiteral(E); 759 } 760 Value *VisitAsTypeExpr(AsTypeExpr *CE); 761 Value *VisitAtomicExpr(AtomicExpr *AE); 762 }; 763 } // end anonymous namespace. 764 765 //===----------------------------------------------------------------------===// 766 // Utilities 767 //===----------------------------------------------------------------------===// 768 769 /// EmitConversionToBool - Convert the specified expression value to a 770 /// boolean (i1) truth value. This is equivalent to "Val != 0". 771 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 772 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 773 774 if (SrcType->isRealFloatingType()) 775 return EmitFloatToBoolConversion(Src); 776 777 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 778 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 779 780 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 781 "Unknown scalar type to convert"); 782 783 if (isa<llvm::IntegerType>(Src->getType())) 784 return EmitIntToBoolConversion(Src); 785 786 assert(isa<llvm::PointerType>(Src->getType())); 787 return EmitPointerToBoolConversion(Src, SrcType); 788 } 789 790 void ScalarExprEmitter::EmitFloatConversionCheck( 791 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 792 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 793 CodeGenFunction::SanitizerScope SanScope(&CGF); 794 using llvm::APFloat; 795 using llvm::APSInt; 796 797 llvm::Type *SrcTy = Src->getType(); 798 799 llvm::Value *Check = nullptr; 800 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 801 // Integer to floating-point. This can fail for unsigned short -> __half 802 // or unsigned __int128 -> float. 803 assert(DstType->isFloatingType()); 804 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 805 806 APFloat LargestFloat = 807 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 808 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 809 810 bool IsExact; 811 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 812 &IsExact) != APFloat::opOK) 813 // The range of representable values of this floating point type includes 814 // all values of this integer type. Don't need an overflow check. 815 return; 816 817 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 818 if (SrcIsUnsigned) 819 Check = Builder.CreateICmpULE(Src, Max); 820 else { 821 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 822 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 823 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 824 Check = Builder.CreateAnd(GE, LE); 825 } 826 } else { 827 const llvm::fltSemantics &SrcSema = 828 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 829 if (isa<llvm::IntegerType>(DstTy)) { 830 // Floating-point to integer. This has undefined behavior if the source is 831 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 832 // to an integer). 833 unsigned Width = CGF.getContext().getIntWidth(DstType); 834 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 835 836 APSInt Min = APSInt::getMinValue(Width, Unsigned); 837 APFloat MinSrc(SrcSema, APFloat::uninitialized); 838 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 839 APFloat::opOverflow) 840 // Don't need an overflow check for lower bound. Just check for 841 // -Inf/NaN. 842 MinSrc = APFloat::getInf(SrcSema, true); 843 else 844 // Find the largest value which is too small to represent (before 845 // truncation toward zero). 846 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 847 848 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 849 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 850 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 851 APFloat::opOverflow) 852 // Don't need an overflow check for upper bound. Just check for 853 // +Inf/NaN. 854 MaxSrc = APFloat::getInf(SrcSema, false); 855 else 856 // Find the smallest value which is too large to represent (before 857 // truncation toward zero). 858 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 859 860 // If we're converting from __half, convert the range to float to match 861 // the type of src. 862 if (OrigSrcType->isHalfType()) { 863 const llvm::fltSemantics &Sema = 864 CGF.getContext().getFloatTypeSemantics(SrcType); 865 bool IsInexact; 866 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 867 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 868 } 869 870 llvm::Value *GE = 871 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 872 llvm::Value *LE = 873 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 874 Check = Builder.CreateAnd(GE, LE); 875 } else { 876 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 877 // 878 // Floating-point to floating-point. This has undefined behavior if the 879 // source is not in the range of representable values of the destination 880 // type. The C and C++ standards are spectacularly unclear here. We 881 // diagnose finite out-of-range conversions, but allow infinities and NaNs 882 // to convert to the corresponding value in the smaller type. 883 // 884 // C11 Annex F gives all such conversions defined behavior for IEC 60559 885 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 886 // does not. 887 888 // Converting from a lower rank to a higher rank can never have 889 // undefined behavior, since higher-rank types must have a superset 890 // of values of lower-rank types. 891 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 892 return; 893 894 assert(!OrigSrcType->isHalfType() && 895 "should not check conversion from __half, it has the lowest rank"); 896 897 const llvm::fltSemantics &DstSema = 898 CGF.getContext().getFloatTypeSemantics(DstType); 899 APFloat MinBad = APFloat::getLargest(DstSema, false); 900 APFloat MaxBad = APFloat::getInf(DstSema, false); 901 902 bool IsInexact; 903 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 904 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 905 906 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 907 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 908 llvm::Value *GE = 909 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 910 llvm::Value *LE = 911 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 912 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 913 } 914 } 915 916 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 917 CGF.EmitCheckTypeDescriptor(OrigSrcType), 918 CGF.EmitCheckTypeDescriptor(DstType)}; 919 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 920 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 921 } 922 923 /// Emit a conversion from the specified type to the specified destination type, 924 /// both of which are LLVM scalar types. 925 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 926 QualType DstType, 927 SourceLocation Loc) { 928 return EmitScalarConversion(Src, SrcType, DstType, Loc, false); 929 } 930 931 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 932 QualType DstType, 933 SourceLocation Loc, 934 bool TreatBooleanAsSigned) { 935 SrcType = CGF.getContext().getCanonicalType(SrcType); 936 DstType = CGF.getContext().getCanonicalType(DstType); 937 if (SrcType == DstType) return Src; 938 939 if (DstType->isVoidType()) return nullptr; 940 941 llvm::Value *OrigSrc = Src; 942 QualType OrigSrcType = SrcType; 943 llvm::Type *SrcTy = Src->getType(); 944 945 // Handle conversions to bool first, they are special: comparisons against 0. 946 if (DstType->isBooleanType()) 947 return EmitConversionToBool(Src, SrcType); 948 949 llvm::Type *DstTy = ConvertType(DstType); 950 951 // Cast from half through float if half isn't a native type. 952 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 953 // Cast to FP using the intrinsic if the half type itself isn't supported. 954 if (DstTy->isFloatingPointTy()) { 955 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 956 return Builder.CreateCall( 957 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 958 Src); 959 } else { 960 // Cast to other types through float, using either the intrinsic or FPExt, 961 // depending on whether the half type itself is supported 962 // (as opposed to operations on half, available with NativeHalfType). 963 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 964 Src = Builder.CreateCall( 965 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 966 CGF.CGM.FloatTy), 967 Src); 968 } else { 969 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 970 } 971 SrcType = CGF.getContext().FloatTy; 972 SrcTy = CGF.FloatTy; 973 } 974 } 975 976 // Ignore conversions like int -> uint. 977 if (SrcTy == DstTy) 978 return Src; 979 980 // Handle pointer conversions next: pointers can only be converted to/from 981 // other pointers and integers. Check for pointer types in terms of LLVM, as 982 // some native types (like Obj-C id) may map to a pointer type. 983 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 984 // The source value may be an integer, or a pointer. 985 if (isa<llvm::PointerType>(SrcTy)) 986 return Builder.CreateBitCast(Src, DstTy, "conv"); 987 988 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 989 // First, convert to the correct width so that we control the kind of 990 // extension. 991 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 992 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 993 llvm::Value* IntResult = 994 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 995 // Then, cast to pointer. 996 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 997 } 998 999 if (isa<llvm::PointerType>(SrcTy)) { 1000 // Must be an ptr to int cast. 1001 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1002 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1003 } 1004 1005 // A scalar can be splatted to an extended vector of the same element type 1006 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1007 // Sema should add casts to make sure that the source expression's type is 1008 // the same as the vector's element type (sans qualifiers) 1009 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1010 SrcType.getTypePtr() && 1011 "Splatted expr doesn't match with vector element type?"); 1012 1013 // Splat the element across to all elements 1014 unsigned NumElements = DstTy->getVectorNumElements(); 1015 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1016 } 1017 1018 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1019 // Allow bitcast from vector to integer/fp of the same size. 1020 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1021 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1022 if (SrcSize == DstSize) 1023 return Builder.CreateBitCast(Src, DstTy, "conv"); 1024 1025 // Conversions between vectors of different sizes are not allowed except 1026 // when vectors of half are involved. Operations on storage-only half 1027 // vectors require promoting half vector operands to float vectors and 1028 // truncating the result, which is either an int or float vector, to a 1029 // short or half vector. 1030 1031 // Source and destination are both expected to be vectors. 1032 llvm::Type *SrcElementTy = SrcTy->getVectorElementType(); 1033 llvm::Type *DstElementTy = DstTy->getVectorElementType(); 1034 (void)DstElementTy; 1035 1036 assert(((SrcElementTy->isIntegerTy() && 1037 DstElementTy->isIntegerTy()) || 1038 (SrcElementTy->isFloatingPointTy() && 1039 DstElementTy->isFloatingPointTy())) && 1040 "unexpected conversion between a floating-point vector and an " 1041 "integer vector"); 1042 1043 // Truncate an i32 vector to an i16 vector. 1044 if (SrcElementTy->isIntegerTy()) 1045 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1046 1047 // Truncate a float vector to a half vector. 1048 if (SrcSize > DstSize) 1049 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1050 1051 // Promote a half vector to a float vector. 1052 return Builder.CreateFPExt(Src, DstTy, "conv"); 1053 } 1054 1055 // Finally, we have the arithmetic types: real int/float. 1056 Value *Res = nullptr; 1057 llvm::Type *ResTy = DstTy; 1058 1059 // An overflowing conversion has undefined behavior if either the source type 1060 // or the destination type is a floating-point type. 1061 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1062 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 1063 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1064 Loc); 1065 1066 // Cast to half through float if half isn't a native type. 1067 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1068 // Make sure we cast in a single step if from another FP type. 1069 if (SrcTy->isFloatingPointTy()) { 1070 // Use the intrinsic if the half type itself isn't supported 1071 // (as opposed to operations on half, available with NativeHalfType). 1072 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1073 return Builder.CreateCall( 1074 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1075 // If the half type is supported, just use an fptrunc. 1076 return Builder.CreateFPTrunc(Src, DstTy); 1077 } 1078 DstTy = CGF.FloatTy; 1079 } 1080 1081 if (isa<llvm::IntegerType>(SrcTy)) { 1082 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1083 if (SrcType->isBooleanType() && TreatBooleanAsSigned) { 1084 InputSigned = true; 1085 } 1086 if (isa<llvm::IntegerType>(DstTy)) 1087 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1088 else if (InputSigned) 1089 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1090 else 1091 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1092 } else if (isa<llvm::IntegerType>(DstTy)) { 1093 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1094 if (DstType->isSignedIntegerOrEnumerationType()) 1095 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1096 else 1097 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1098 } else { 1099 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1100 "Unknown real conversion"); 1101 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1102 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1103 else 1104 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1105 } 1106 1107 if (DstTy != ResTy) { 1108 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1109 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1110 Res = Builder.CreateCall( 1111 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1112 Res); 1113 } else { 1114 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1115 } 1116 } 1117 1118 return Res; 1119 } 1120 1121 /// Emit a conversion from the specified complex type to the specified 1122 /// destination type, where the destination type is an LLVM scalar type. 1123 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1124 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1125 SourceLocation Loc) { 1126 // Get the source element type. 1127 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1128 1129 // Handle conversions to bool first, they are special: comparisons against 0. 1130 if (DstTy->isBooleanType()) { 1131 // Complex != 0 -> (Real != 0) | (Imag != 0) 1132 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1133 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1134 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1135 } 1136 1137 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1138 // the imaginary part of the complex value is discarded and the value of the 1139 // real part is converted according to the conversion rules for the 1140 // corresponding real type. 1141 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1142 } 1143 1144 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1145 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1146 } 1147 1148 /// Emit a sanitization check for the given "binary" operation (which 1149 /// might actually be a unary increment which has been lowered to a binary 1150 /// operation). The check passes if all values in \p Checks (which are \c i1), 1151 /// are \c true. 1152 void ScalarExprEmitter::EmitBinOpCheck( 1153 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1154 assert(CGF.IsSanitizerScope); 1155 SanitizerHandler Check; 1156 SmallVector<llvm::Constant *, 4> StaticData; 1157 SmallVector<llvm::Value *, 2> DynamicData; 1158 1159 BinaryOperatorKind Opcode = Info.Opcode; 1160 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1161 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1162 1163 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1164 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1165 if (UO && UO->getOpcode() == UO_Minus) { 1166 Check = SanitizerHandler::NegateOverflow; 1167 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1168 DynamicData.push_back(Info.RHS); 1169 } else { 1170 if (BinaryOperator::isShiftOp(Opcode)) { 1171 // Shift LHS negative or too large, or RHS out of bounds. 1172 Check = SanitizerHandler::ShiftOutOfBounds; 1173 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1174 StaticData.push_back( 1175 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1176 StaticData.push_back( 1177 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1178 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1179 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1180 Check = SanitizerHandler::DivremOverflow; 1181 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1182 } else { 1183 // Arithmetic overflow (+, -, *). 1184 switch (Opcode) { 1185 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1186 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1187 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1188 default: llvm_unreachable("unexpected opcode for bin op check"); 1189 } 1190 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1191 } 1192 DynamicData.push_back(Info.LHS); 1193 DynamicData.push_back(Info.RHS); 1194 } 1195 1196 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1197 } 1198 1199 //===----------------------------------------------------------------------===// 1200 // Visitor Methods 1201 //===----------------------------------------------------------------------===// 1202 1203 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1204 CGF.ErrorUnsupported(E, "scalar expression"); 1205 if (E->getType()->isVoidType()) 1206 return nullptr; 1207 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1208 } 1209 1210 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1211 // Vector Mask Case 1212 if (E->getNumSubExprs() == 2) { 1213 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1214 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1215 Value *Mask; 1216 1217 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 1218 unsigned LHSElts = LTy->getNumElements(); 1219 1220 Mask = RHS; 1221 1222 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1223 1224 // Mask off the high bits of each shuffle index. 1225 Value *MaskBits = 1226 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1227 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1228 1229 // newv = undef 1230 // mask = mask & maskbits 1231 // for each elt 1232 // n = extract mask i 1233 // x = extract val n 1234 // newv = insert newv, x, i 1235 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1236 MTy->getNumElements()); 1237 Value* NewV = llvm::UndefValue::get(RTy); 1238 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1239 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1240 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1241 1242 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1243 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1244 } 1245 return NewV; 1246 } 1247 1248 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1249 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1250 1251 SmallVector<llvm::Constant*, 32> indices; 1252 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1253 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1254 // Check for -1 and output it as undef in the IR. 1255 if (Idx.isSigned() && Idx.isAllOnesValue()) 1256 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1257 else 1258 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1259 } 1260 1261 Value *SV = llvm::ConstantVector::get(indices); 1262 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1263 } 1264 1265 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1266 QualType SrcType = E->getSrcExpr()->getType(), 1267 DstType = E->getType(); 1268 1269 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1270 1271 SrcType = CGF.getContext().getCanonicalType(SrcType); 1272 DstType = CGF.getContext().getCanonicalType(DstType); 1273 if (SrcType == DstType) return Src; 1274 1275 assert(SrcType->isVectorType() && 1276 "ConvertVector source type must be a vector"); 1277 assert(DstType->isVectorType() && 1278 "ConvertVector destination type must be a vector"); 1279 1280 llvm::Type *SrcTy = Src->getType(); 1281 llvm::Type *DstTy = ConvertType(DstType); 1282 1283 // Ignore conversions like int -> uint. 1284 if (SrcTy == DstTy) 1285 return Src; 1286 1287 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1288 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1289 1290 assert(SrcTy->isVectorTy() && 1291 "ConvertVector source IR type must be a vector"); 1292 assert(DstTy->isVectorTy() && 1293 "ConvertVector destination IR type must be a vector"); 1294 1295 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1296 *DstEltTy = DstTy->getVectorElementType(); 1297 1298 if (DstEltType->isBooleanType()) { 1299 assert((SrcEltTy->isFloatingPointTy() || 1300 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1301 1302 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1303 if (SrcEltTy->isFloatingPointTy()) { 1304 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1305 } else { 1306 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1307 } 1308 } 1309 1310 // We have the arithmetic types: real int/float. 1311 Value *Res = nullptr; 1312 1313 if (isa<llvm::IntegerType>(SrcEltTy)) { 1314 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1315 if (isa<llvm::IntegerType>(DstEltTy)) 1316 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1317 else if (InputSigned) 1318 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1319 else 1320 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1321 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1322 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1323 if (DstEltType->isSignedIntegerOrEnumerationType()) 1324 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1325 else 1326 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1327 } else { 1328 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1329 "Unknown real conversion"); 1330 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1331 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1332 else 1333 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1334 } 1335 1336 return Res; 1337 } 1338 1339 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1340 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1341 CGF.EmitIgnoredExpr(E->getBase()); 1342 return emitConstant(Constant, E); 1343 } else { 1344 llvm::APSInt Value; 1345 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1346 CGF.EmitIgnoredExpr(E->getBase()); 1347 return Builder.getInt(Value); 1348 } 1349 } 1350 1351 return EmitLoadOfLValue(E); 1352 } 1353 1354 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1355 TestAndClearIgnoreResultAssign(); 1356 1357 // Emit subscript expressions in rvalue context's. For most cases, this just 1358 // loads the lvalue formed by the subscript expr. However, we have to be 1359 // careful, because the base of a vector subscript is occasionally an rvalue, 1360 // so we can't get it as an lvalue. 1361 if (!E->getBase()->getType()->isVectorType()) 1362 return EmitLoadOfLValue(E); 1363 1364 // Handle the vector case. The base must be a vector, the index must be an 1365 // integer value. 1366 Value *Base = Visit(E->getBase()); 1367 Value *Idx = Visit(E->getIdx()); 1368 QualType IdxTy = E->getIdx()->getType(); 1369 1370 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1371 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1372 1373 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1374 } 1375 1376 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1377 unsigned Off, llvm::Type *I32Ty) { 1378 int MV = SVI->getMaskValue(Idx); 1379 if (MV == -1) 1380 return llvm::UndefValue::get(I32Ty); 1381 return llvm::ConstantInt::get(I32Ty, Off+MV); 1382 } 1383 1384 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1385 if (C->getBitWidth() != 32) { 1386 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1387 C->getZExtValue()) && 1388 "Index operand too large for shufflevector mask!"); 1389 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1390 } 1391 return C; 1392 } 1393 1394 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1395 bool Ignore = TestAndClearIgnoreResultAssign(); 1396 (void)Ignore; 1397 assert (Ignore == false && "init list ignored"); 1398 unsigned NumInitElements = E->getNumInits(); 1399 1400 if (E->hadArrayRangeDesignator()) 1401 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1402 1403 llvm::VectorType *VType = 1404 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1405 1406 if (!VType) { 1407 if (NumInitElements == 0) { 1408 // C++11 value-initialization for the scalar. 1409 return EmitNullValue(E->getType()); 1410 } 1411 // We have a scalar in braces. Just use the first element. 1412 return Visit(E->getInit(0)); 1413 } 1414 1415 unsigned ResElts = VType->getNumElements(); 1416 1417 // Loop over initializers collecting the Value for each, and remembering 1418 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1419 // us to fold the shuffle for the swizzle into the shuffle for the vector 1420 // initializer, since LLVM optimizers generally do not want to touch 1421 // shuffles. 1422 unsigned CurIdx = 0; 1423 bool VIsUndefShuffle = false; 1424 llvm::Value *V = llvm::UndefValue::get(VType); 1425 for (unsigned i = 0; i != NumInitElements; ++i) { 1426 Expr *IE = E->getInit(i); 1427 Value *Init = Visit(IE); 1428 SmallVector<llvm::Constant*, 16> Args; 1429 1430 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1431 1432 // Handle scalar elements. If the scalar initializer is actually one 1433 // element of a different vector of the same width, use shuffle instead of 1434 // extract+insert. 1435 if (!VVT) { 1436 if (isa<ExtVectorElementExpr>(IE)) { 1437 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1438 1439 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1440 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1441 Value *LHS = nullptr, *RHS = nullptr; 1442 if (CurIdx == 0) { 1443 // insert into undef -> shuffle (src, undef) 1444 // shufflemask must use an i32 1445 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1446 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1447 1448 LHS = EI->getVectorOperand(); 1449 RHS = V; 1450 VIsUndefShuffle = true; 1451 } else if (VIsUndefShuffle) { 1452 // insert into undefshuffle && size match -> shuffle (v, src) 1453 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1454 for (unsigned j = 0; j != CurIdx; ++j) 1455 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1456 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1457 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1458 1459 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1460 RHS = EI->getVectorOperand(); 1461 VIsUndefShuffle = false; 1462 } 1463 if (!Args.empty()) { 1464 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1465 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1466 ++CurIdx; 1467 continue; 1468 } 1469 } 1470 } 1471 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1472 "vecinit"); 1473 VIsUndefShuffle = false; 1474 ++CurIdx; 1475 continue; 1476 } 1477 1478 unsigned InitElts = VVT->getNumElements(); 1479 1480 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1481 // input is the same width as the vector being constructed, generate an 1482 // optimized shuffle of the swizzle input into the result. 1483 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1484 if (isa<ExtVectorElementExpr>(IE)) { 1485 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1486 Value *SVOp = SVI->getOperand(0); 1487 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1488 1489 if (OpTy->getNumElements() == ResElts) { 1490 for (unsigned j = 0; j != CurIdx; ++j) { 1491 // If the current vector initializer is a shuffle with undef, merge 1492 // this shuffle directly into it. 1493 if (VIsUndefShuffle) { 1494 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1495 CGF.Int32Ty)); 1496 } else { 1497 Args.push_back(Builder.getInt32(j)); 1498 } 1499 } 1500 for (unsigned j = 0, je = InitElts; j != je; ++j) 1501 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1502 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1503 1504 if (VIsUndefShuffle) 1505 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1506 1507 Init = SVOp; 1508 } 1509 } 1510 1511 // Extend init to result vector length, and then shuffle its contribution 1512 // to the vector initializer into V. 1513 if (Args.empty()) { 1514 for (unsigned j = 0; j != InitElts; ++j) 1515 Args.push_back(Builder.getInt32(j)); 1516 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1517 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1518 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1519 Mask, "vext"); 1520 1521 Args.clear(); 1522 for (unsigned j = 0; j != CurIdx; ++j) 1523 Args.push_back(Builder.getInt32(j)); 1524 for (unsigned j = 0; j != InitElts; ++j) 1525 Args.push_back(Builder.getInt32(j+Offset)); 1526 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1527 } 1528 1529 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1530 // merging subsequent shuffles into this one. 1531 if (CurIdx == 0) 1532 std::swap(V, Init); 1533 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1534 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1535 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1536 CurIdx += InitElts; 1537 } 1538 1539 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1540 // Emit remaining default initializers. 1541 llvm::Type *EltTy = VType->getElementType(); 1542 1543 // Emit remaining default initializers 1544 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1545 Value *Idx = Builder.getInt32(CurIdx); 1546 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1547 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1548 } 1549 return V; 1550 } 1551 1552 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1553 const Expr *E = CE->getSubExpr(); 1554 1555 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1556 return false; 1557 1558 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1559 // We always assume that 'this' is never null. 1560 return false; 1561 } 1562 1563 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1564 // And that glvalue casts are never null. 1565 if (ICE->getValueKind() != VK_RValue) 1566 return false; 1567 } 1568 1569 return true; 1570 } 1571 1572 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1573 // have to handle a more broad range of conversions than explicit casts, as they 1574 // handle things like function to ptr-to-function decay etc. 1575 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1576 Expr *E = CE->getSubExpr(); 1577 QualType DestTy = CE->getType(); 1578 CastKind Kind = CE->getCastKind(); 1579 1580 // These cases are generally not written to ignore the result of 1581 // evaluating their sub-expressions, so we clear this now. 1582 bool Ignored = TestAndClearIgnoreResultAssign(); 1583 1584 // Since almost all cast kinds apply to scalars, this switch doesn't have 1585 // a default case, so the compiler will warn on a missing case. The cases 1586 // are in the same order as in the CastKind enum. 1587 switch (Kind) { 1588 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1589 case CK_BuiltinFnToFnPtr: 1590 llvm_unreachable("builtin functions are handled elsewhere"); 1591 1592 case CK_LValueBitCast: 1593 case CK_ObjCObjectLValueCast: { 1594 Address Addr = EmitLValue(E).getAddress(); 1595 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1596 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1597 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1598 } 1599 1600 case CK_CPointerToObjCPointerCast: 1601 case CK_BlockPointerToObjCPointerCast: 1602 case CK_AnyPointerToBlockPointerCast: 1603 case CK_BitCast: { 1604 Value *Src = Visit(const_cast<Expr*>(E)); 1605 llvm::Type *SrcTy = Src->getType(); 1606 llvm::Type *DstTy = ConvertType(DestTy); 1607 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1608 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1609 llvm_unreachable("wrong cast for pointers in different address spaces" 1610 "(must be an address space cast)!"); 1611 } 1612 1613 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1614 if (auto PT = DestTy->getAs<PointerType>()) 1615 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1616 /*MayBeNull=*/true, 1617 CodeGenFunction::CFITCK_UnrelatedCast, 1618 CE->getLocStart()); 1619 } 1620 1621 return Builder.CreateBitCast(Src, DstTy); 1622 } 1623 case CK_AddressSpaceConversion: { 1624 Expr::EvalResult Result; 1625 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 1626 Result.Val.isNullPointer()) { 1627 // If E has side effect, it is emitted even if its final result is a 1628 // null pointer. In that case, a DCE pass should be able to 1629 // eliminate the useless instructions emitted during translating E. 1630 if (Result.HasSideEffects) 1631 Visit(E); 1632 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 1633 ConvertType(DestTy)), DestTy); 1634 } 1635 // Since target may map different address spaces in AST to the same address 1636 // space, an address space conversion may end up as a bitcast. 1637 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 1638 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 1639 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 1640 } 1641 case CK_AtomicToNonAtomic: 1642 case CK_NonAtomicToAtomic: 1643 case CK_NoOp: 1644 case CK_UserDefinedConversion: 1645 return Visit(const_cast<Expr*>(E)); 1646 1647 case CK_BaseToDerived: { 1648 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1649 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1650 1651 Address Base = CGF.EmitPointerWithAlignment(E); 1652 Address Derived = 1653 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 1654 CE->path_begin(), CE->path_end(), 1655 CGF.ShouldNullCheckClassCastValue(CE)); 1656 1657 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1658 // performed and the object is not of the derived type. 1659 if (CGF.sanitizePerformTypeCheck()) 1660 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1661 Derived.getPointer(), DestTy->getPointeeType()); 1662 1663 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 1664 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), 1665 Derived.getPointer(), 1666 /*MayBeNull=*/true, 1667 CodeGenFunction::CFITCK_DerivedCast, 1668 CE->getLocStart()); 1669 1670 return Derived.getPointer(); 1671 } 1672 case CK_UncheckedDerivedToBase: 1673 case CK_DerivedToBase: { 1674 // The EmitPointerWithAlignment path does this fine; just discard 1675 // the alignment. 1676 return CGF.EmitPointerWithAlignment(CE).getPointer(); 1677 } 1678 1679 case CK_Dynamic: { 1680 Address V = CGF.EmitPointerWithAlignment(E); 1681 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1682 return CGF.EmitDynamicCast(V, DCE); 1683 } 1684 1685 case CK_ArrayToPointerDecay: 1686 return CGF.EmitArrayToPointerDecay(E).getPointer(); 1687 case CK_FunctionToPointerDecay: 1688 return EmitLValue(E).getPointer(); 1689 1690 case CK_NullToPointer: 1691 if (MustVisitNullValue(E)) 1692 (void) Visit(E); 1693 1694 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 1695 DestTy); 1696 1697 case CK_NullToMemberPointer: { 1698 if (MustVisitNullValue(E)) 1699 (void) Visit(E); 1700 1701 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1702 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1703 } 1704 1705 case CK_ReinterpretMemberPointer: 1706 case CK_BaseToDerivedMemberPointer: 1707 case CK_DerivedToBaseMemberPointer: { 1708 Value *Src = Visit(E); 1709 1710 // Note that the AST doesn't distinguish between checked and 1711 // unchecked member pointer conversions, so we always have to 1712 // implement checked conversions here. This is inefficient when 1713 // actual control flow may be required in order to perform the 1714 // check, which it is for data member pointers (but not member 1715 // function pointers on Itanium and ARM). 1716 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1717 } 1718 1719 case CK_ARCProduceObject: 1720 return CGF.EmitARCRetainScalarExpr(E); 1721 case CK_ARCConsumeObject: 1722 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1723 case CK_ARCReclaimReturnedObject: 1724 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 1725 case CK_ARCExtendBlockObject: 1726 return CGF.EmitARCExtendBlockObject(E); 1727 1728 case CK_CopyAndAutoreleaseBlockObject: 1729 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1730 1731 case CK_FloatingRealToComplex: 1732 case CK_FloatingComplexCast: 1733 case CK_IntegralRealToComplex: 1734 case CK_IntegralComplexCast: 1735 case CK_IntegralComplexToFloatingComplex: 1736 case CK_FloatingComplexToIntegralComplex: 1737 case CK_ConstructorConversion: 1738 case CK_ToUnion: 1739 llvm_unreachable("scalar cast to non-scalar value"); 1740 1741 case CK_LValueToRValue: 1742 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1743 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1744 return Visit(const_cast<Expr*>(E)); 1745 1746 case CK_IntegralToPointer: { 1747 Value *Src = Visit(const_cast<Expr*>(E)); 1748 1749 // First, convert to the correct width so that we control the kind of 1750 // extension. 1751 auto DestLLVMTy = ConvertType(DestTy); 1752 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 1753 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1754 llvm::Value* IntResult = 1755 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1756 1757 return Builder.CreateIntToPtr(IntResult, DestLLVMTy); 1758 } 1759 case CK_PointerToIntegral: 1760 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1761 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1762 1763 case CK_ToVoid: { 1764 CGF.EmitIgnoredExpr(E); 1765 return nullptr; 1766 } 1767 case CK_VectorSplat: { 1768 llvm::Type *DstTy = ConvertType(DestTy); 1769 Value *Elt = Visit(const_cast<Expr*>(E)); 1770 // Splat the element across to all elements 1771 unsigned NumElements = DstTy->getVectorNumElements(); 1772 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 1773 } 1774 1775 case CK_IntegralCast: 1776 case CK_IntegralToFloating: 1777 case CK_FloatingToIntegral: 1778 case CK_FloatingCast: 1779 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1780 CE->getExprLoc()); 1781 case CK_BooleanToSignedIntegral: 1782 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1783 CE->getExprLoc(), 1784 /*TreatBooleanAsSigned=*/true); 1785 case CK_IntegralToBoolean: 1786 return EmitIntToBoolConversion(Visit(E)); 1787 case CK_PointerToBoolean: 1788 return EmitPointerToBoolConversion(Visit(E), E->getType()); 1789 case CK_FloatingToBoolean: 1790 return EmitFloatToBoolConversion(Visit(E)); 1791 case CK_MemberPointerToBoolean: { 1792 llvm::Value *MemPtr = Visit(E); 1793 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1794 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1795 } 1796 1797 case CK_FloatingComplexToReal: 1798 case CK_IntegralComplexToReal: 1799 return CGF.EmitComplexExpr(E, false, true).first; 1800 1801 case CK_FloatingComplexToBoolean: 1802 case CK_IntegralComplexToBoolean: { 1803 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1804 1805 // TODO: kill this function off, inline appropriate case here 1806 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 1807 CE->getExprLoc()); 1808 } 1809 1810 case CK_ZeroToOCLEvent: { 1811 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); 1812 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1813 } 1814 1815 case CK_ZeroToOCLQueue: { 1816 assert(DestTy->isQueueT() && "CK_ZeroToOCLQueue cast on non queue_t type"); 1817 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1818 } 1819 1820 case CK_IntToOCLSampler: 1821 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 1822 1823 } // end of switch 1824 1825 llvm_unreachable("unknown scalar cast"); 1826 } 1827 1828 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1829 CodeGenFunction::StmtExprEvaluation eval(CGF); 1830 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1831 !E->getType()->isVoidType()); 1832 if (!RetAlloca.isValid()) 1833 return nullptr; 1834 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 1835 E->getExprLoc()); 1836 } 1837 1838 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1839 CGF.enterFullExpression(E); 1840 CodeGenFunction::RunCleanupsScope Scope(CGF); 1841 Value *V = Visit(E->getSubExpr()); 1842 // Defend against dominance problems caused by jumps out of expression 1843 // evaluation through the shared cleanup block. 1844 Scope.ForceCleanup({&V}); 1845 return V; 1846 } 1847 1848 //===----------------------------------------------------------------------===// 1849 // Unary Operators 1850 //===----------------------------------------------------------------------===// 1851 1852 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 1853 llvm::Value *InVal, bool IsInc) { 1854 BinOpInfo BinOp; 1855 BinOp.LHS = InVal; 1856 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 1857 BinOp.Ty = E->getType(); 1858 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 1859 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 1860 BinOp.E = E; 1861 return BinOp; 1862 } 1863 1864 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 1865 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 1866 llvm::Value *Amount = 1867 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 1868 StringRef Name = IsInc ? "inc" : "dec"; 1869 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1870 case LangOptions::SOB_Defined: 1871 return Builder.CreateAdd(InVal, Amount, Name); 1872 case LangOptions::SOB_Undefined: 1873 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 1874 return Builder.CreateNSWAdd(InVal, Amount, Name); 1875 // Fall through. 1876 case LangOptions::SOB_Trapping: 1877 if (!E->canOverflow()) 1878 return Builder.CreateNSWAdd(InVal, Amount, Name); 1879 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 1880 } 1881 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1882 } 1883 1884 llvm::Value * 1885 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1886 bool isInc, bool isPre) { 1887 1888 QualType type = E->getSubExpr()->getType(); 1889 llvm::PHINode *atomicPHI = nullptr; 1890 llvm::Value *value; 1891 llvm::Value *input; 1892 1893 int amount = (isInc ? 1 : -1); 1894 bool isSubtraction = !isInc; 1895 1896 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1897 type = atomicTy->getValueType(); 1898 if (isInc && type->isBooleanType()) { 1899 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1900 if (isPre) { 1901 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 1902 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 1903 return Builder.getTrue(); 1904 } 1905 // For atomic bool increment, we just store true and return it for 1906 // preincrement, do an atomic swap with true for postincrement 1907 return Builder.CreateAtomicRMW( 1908 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, 1909 llvm::AtomicOrdering::SequentiallyConsistent); 1910 } 1911 // Special case for atomic increment / decrement on integers, emit 1912 // atomicrmw instructions. We skip this if we want to be doing overflow 1913 // checking, and fall into the slow path with the atomic cmpxchg loop. 1914 if (!type->isBooleanType() && type->isIntegerType() && 1915 !(type->isUnsignedIntegerType() && 1916 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 1917 CGF.getLangOpts().getSignedOverflowBehavior() != 1918 LangOptions::SOB_Trapping) { 1919 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1920 llvm::AtomicRMWInst::Sub; 1921 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1922 llvm::Instruction::Sub; 1923 llvm::Value *amt = CGF.EmitToMemory( 1924 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1925 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1926 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); 1927 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1928 } 1929 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1930 input = value; 1931 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1932 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1933 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1934 value = CGF.EmitToMemory(value, type); 1935 Builder.CreateBr(opBB); 1936 Builder.SetInsertPoint(opBB); 1937 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1938 atomicPHI->addIncoming(value, startBB); 1939 value = atomicPHI; 1940 } else { 1941 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1942 input = value; 1943 } 1944 1945 // Special case of integer increment that we have to check first: bool++. 1946 // Due to promotion rules, we get: 1947 // bool++ -> bool = bool + 1 1948 // -> bool = (int)bool + 1 1949 // -> bool = ((int)bool + 1 != 0) 1950 // An interesting aspect of this is that increment is always true. 1951 // Decrement does not have this property. 1952 if (isInc && type->isBooleanType()) { 1953 value = Builder.getTrue(); 1954 1955 // Most common case by far: integer increment. 1956 } else if (type->isIntegerType()) { 1957 // Note that signed integer inc/dec with width less than int can't 1958 // overflow because of promotion rules; we're just eliding a few steps here. 1959 if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 1960 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 1961 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 1962 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 1963 value = 1964 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 1965 } else { 1966 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1967 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1968 } 1969 1970 // Next most common: pointer increment. 1971 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1972 QualType type = ptr->getPointeeType(); 1973 1974 // VLA types don't have constant size. 1975 if (const VariableArrayType *vla 1976 = CGF.getContext().getAsVariableArrayType(type)) { 1977 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 1978 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1979 if (CGF.getLangOpts().isSignedOverflowDefined()) 1980 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1981 else 1982 value = CGF.EmitCheckedInBoundsGEP( 1983 value, numElts, /*SignedIndices=*/false, isSubtraction, 1984 E->getExprLoc(), "vla.inc"); 1985 1986 // Arithmetic on function pointers (!) is just +-1. 1987 } else if (type->isFunctionType()) { 1988 llvm::Value *amt = Builder.getInt32(amount); 1989 1990 value = CGF.EmitCastToVoidPtr(value); 1991 if (CGF.getLangOpts().isSignedOverflowDefined()) 1992 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1993 else 1994 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 1995 isSubtraction, E->getExprLoc(), 1996 "incdec.funcptr"); 1997 value = Builder.CreateBitCast(value, input->getType()); 1998 1999 // For everything else, we can just do a simple increment. 2000 } else { 2001 llvm::Value *amt = Builder.getInt32(amount); 2002 if (CGF.getLangOpts().isSignedOverflowDefined()) 2003 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 2004 else 2005 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2006 isSubtraction, E->getExprLoc(), 2007 "incdec.ptr"); 2008 } 2009 2010 // Vector increment/decrement. 2011 } else if (type->isVectorType()) { 2012 if (type->hasIntegerRepresentation()) { 2013 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2014 2015 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2016 } else { 2017 value = Builder.CreateFAdd( 2018 value, 2019 llvm::ConstantFP::get(value->getType(), amount), 2020 isInc ? "inc" : "dec"); 2021 } 2022 2023 // Floating point. 2024 } else if (type->isRealFloatingType()) { 2025 // Add the inc/dec to the real part. 2026 llvm::Value *amt; 2027 2028 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2029 // Another special case: half FP increment should be done via float 2030 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2031 value = Builder.CreateCall( 2032 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2033 CGF.CGM.FloatTy), 2034 input, "incdec.conv"); 2035 } else { 2036 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2037 } 2038 } 2039 2040 if (value->getType()->isFloatTy()) 2041 amt = llvm::ConstantFP::get(VMContext, 2042 llvm::APFloat(static_cast<float>(amount))); 2043 else if (value->getType()->isDoubleTy()) 2044 amt = llvm::ConstantFP::get(VMContext, 2045 llvm::APFloat(static_cast<double>(amount))); 2046 else { 2047 // Remaining types are Half, LongDouble or __float128. Convert from float. 2048 llvm::APFloat F(static_cast<float>(amount)); 2049 bool ignored; 2050 const llvm::fltSemantics *FS; 2051 // Don't use getFloatTypeSemantics because Half isn't 2052 // necessarily represented using the "half" LLVM type. 2053 if (value->getType()->isFP128Ty()) 2054 FS = &CGF.getTarget().getFloat128Format(); 2055 else if (value->getType()->isHalfTy()) 2056 FS = &CGF.getTarget().getHalfFormat(); 2057 else 2058 FS = &CGF.getTarget().getLongDoubleFormat(); 2059 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2060 amt = llvm::ConstantFP::get(VMContext, F); 2061 } 2062 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2063 2064 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2065 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2066 value = Builder.CreateCall( 2067 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2068 CGF.CGM.FloatTy), 2069 value, "incdec.conv"); 2070 } else { 2071 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2072 } 2073 } 2074 2075 // Objective-C pointer types. 2076 } else { 2077 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2078 value = CGF.EmitCastToVoidPtr(value); 2079 2080 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2081 if (!isInc) size = -size; 2082 llvm::Value *sizeValue = 2083 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2084 2085 if (CGF.getLangOpts().isSignedOverflowDefined()) 2086 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2087 else 2088 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2089 /*SignedIndices=*/false, isSubtraction, 2090 E->getExprLoc(), "incdec.objptr"); 2091 value = Builder.CreateBitCast(value, input->getType()); 2092 } 2093 2094 if (atomicPHI) { 2095 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2096 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2097 auto Pair = CGF.EmitAtomicCompareExchange( 2098 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2099 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2100 llvm::Value *success = Pair.second; 2101 atomicPHI->addIncoming(old, opBB); 2102 Builder.CreateCondBr(success, contBB, opBB); 2103 Builder.SetInsertPoint(contBB); 2104 return isPre ? value : input; 2105 } 2106 2107 // Store the updated result through the lvalue. 2108 if (LV.isBitField()) 2109 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2110 else 2111 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2112 2113 // If this is a postinc, return the value read from memory, otherwise use the 2114 // updated value. 2115 return isPre ? value : input; 2116 } 2117 2118 2119 2120 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2121 TestAndClearIgnoreResultAssign(); 2122 // Emit unary minus with EmitSub so we handle overflow cases etc. 2123 BinOpInfo BinOp; 2124 BinOp.RHS = Visit(E->getSubExpr()); 2125 2126 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 2127 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 2128 else 2129 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2130 BinOp.Ty = E->getType(); 2131 BinOp.Opcode = BO_Sub; 2132 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2133 BinOp.E = E; 2134 return EmitSub(BinOp); 2135 } 2136 2137 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2138 TestAndClearIgnoreResultAssign(); 2139 Value *Op = Visit(E->getSubExpr()); 2140 return Builder.CreateNot(Op, "neg"); 2141 } 2142 2143 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2144 // Perform vector logical not on comparison with zero vector. 2145 if (E->getType()->isExtVectorType()) { 2146 Value *Oper = Visit(E->getSubExpr()); 2147 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2148 Value *Result; 2149 if (Oper->getType()->isFPOrFPVectorTy()) 2150 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2151 else 2152 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2153 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2154 } 2155 2156 // Compare operand to zero. 2157 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2158 2159 // Invert value. 2160 // TODO: Could dynamically modify easy computations here. For example, if 2161 // the operand is an icmp ne, turn into icmp eq. 2162 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2163 2164 // ZExt result to the expr type. 2165 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2166 } 2167 2168 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2169 // Try folding the offsetof to a constant. 2170 llvm::APSInt Value; 2171 if (E->EvaluateAsInt(Value, CGF.getContext())) 2172 return Builder.getInt(Value); 2173 2174 // Loop over the components of the offsetof to compute the value. 2175 unsigned n = E->getNumComponents(); 2176 llvm::Type* ResultType = ConvertType(E->getType()); 2177 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2178 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2179 for (unsigned i = 0; i != n; ++i) { 2180 OffsetOfNode ON = E->getComponent(i); 2181 llvm::Value *Offset = nullptr; 2182 switch (ON.getKind()) { 2183 case OffsetOfNode::Array: { 2184 // Compute the index 2185 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2186 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2187 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2188 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2189 2190 // Save the element type 2191 CurrentType = 2192 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2193 2194 // Compute the element size 2195 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2196 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2197 2198 // Multiply out to compute the result 2199 Offset = Builder.CreateMul(Idx, ElemSize); 2200 break; 2201 } 2202 2203 case OffsetOfNode::Field: { 2204 FieldDecl *MemberDecl = ON.getField(); 2205 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2206 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2207 2208 // Compute the index of the field in its parent. 2209 unsigned i = 0; 2210 // FIXME: It would be nice if we didn't have to loop here! 2211 for (RecordDecl::field_iterator Field = RD->field_begin(), 2212 FieldEnd = RD->field_end(); 2213 Field != FieldEnd; ++Field, ++i) { 2214 if (*Field == MemberDecl) 2215 break; 2216 } 2217 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2218 2219 // Compute the offset to the field 2220 int64_t OffsetInt = RL.getFieldOffset(i) / 2221 CGF.getContext().getCharWidth(); 2222 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2223 2224 // Save the element type. 2225 CurrentType = MemberDecl->getType(); 2226 break; 2227 } 2228 2229 case OffsetOfNode::Identifier: 2230 llvm_unreachable("dependent __builtin_offsetof"); 2231 2232 case OffsetOfNode::Base: { 2233 if (ON.getBase()->isVirtual()) { 2234 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2235 continue; 2236 } 2237 2238 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2239 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2240 2241 // Save the element type. 2242 CurrentType = ON.getBase()->getType(); 2243 2244 // Compute the offset to the base. 2245 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2246 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2247 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2248 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2249 break; 2250 } 2251 } 2252 Result = Builder.CreateAdd(Result, Offset); 2253 } 2254 return Result; 2255 } 2256 2257 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2258 /// argument of the sizeof expression as an integer. 2259 Value * 2260 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2261 const UnaryExprOrTypeTraitExpr *E) { 2262 QualType TypeToSize = E->getTypeOfArgument(); 2263 if (E->getKind() == UETT_SizeOf) { 2264 if (const VariableArrayType *VAT = 2265 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2266 if (E->isArgumentType()) { 2267 // sizeof(type) - make sure to emit the VLA size. 2268 CGF.EmitVariablyModifiedType(TypeToSize); 2269 } else { 2270 // C99 6.5.3.4p2: If the argument is an expression of type 2271 // VLA, it is evaluated. 2272 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2273 } 2274 2275 auto VlaSize = CGF.getVLASize(VAT); 2276 llvm::Value *size = VlaSize.NumElts; 2277 2278 // Scale the number of non-VLA elements by the non-VLA element size. 2279 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2280 if (!eltSize.isOne()) 2281 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2282 2283 return size; 2284 } 2285 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2286 auto Alignment = 2287 CGF.getContext() 2288 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2289 E->getTypeOfArgument()->getPointeeType())) 2290 .getQuantity(); 2291 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2292 } 2293 2294 // If this isn't sizeof(vla), the result must be constant; use the constant 2295 // folding logic so we don't have to duplicate it here. 2296 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2297 } 2298 2299 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2300 Expr *Op = E->getSubExpr(); 2301 if (Op->getType()->isAnyComplexType()) { 2302 // If it's an l-value, load through the appropriate subobject l-value. 2303 // Note that we have to ask E because Op might be an l-value that 2304 // this won't work for, e.g. an Obj-C property. 2305 if (E->isGLValue()) 2306 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2307 E->getExprLoc()).getScalarVal(); 2308 2309 // Otherwise, calculate and project. 2310 return CGF.EmitComplexExpr(Op, false, true).first; 2311 } 2312 2313 return Visit(Op); 2314 } 2315 2316 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2317 Expr *Op = E->getSubExpr(); 2318 if (Op->getType()->isAnyComplexType()) { 2319 // If it's an l-value, load through the appropriate subobject l-value. 2320 // Note that we have to ask E because Op might be an l-value that 2321 // this won't work for, e.g. an Obj-C property. 2322 if (Op->isGLValue()) 2323 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2324 E->getExprLoc()).getScalarVal(); 2325 2326 // Otherwise, calculate and project. 2327 return CGF.EmitComplexExpr(Op, true, false).second; 2328 } 2329 2330 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2331 // effects are evaluated, but not the actual value. 2332 if (Op->isGLValue()) 2333 CGF.EmitLValue(Op); 2334 else 2335 CGF.EmitScalarExpr(Op, true); 2336 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2337 } 2338 2339 //===----------------------------------------------------------------------===// 2340 // Binary Operators 2341 //===----------------------------------------------------------------------===// 2342 2343 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2344 TestAndClearIgnoreResultAssign(); 2345 BinOpInfo Result; 2346 Result.LHS = Visit(E->getLHS()); 2347 Result.RHS = Visit(E->getRHS()); 2348 Result.Ty = E->getType(); 2349 Result.Opcode = E->getOpcode(); 2350 Result.FPFeatures = E->getFPFeatures(); 2351 Result.E = E; 2352 return Result; 2353 } 2354 2355 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2356 const CompoundAssignOperator *E, 2357 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2358 Value *&Result) { 2359 QualType LHSTy = E->getLHS()->getType(); 2360 BinOpInfo OpInfo; 2361 2362 if (E->getComputationResultType()->isAnyComplexType()) 2363 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2364 2365 // Emit the RHS first. __block variables need to have the rhs evaluated 2366 // first, plus this should improve codegen a little. 2367 OpInfo.RHS = Visit(E->getRHS()); 2368 OpInfo.Ty = E->getComputationResultType(); 2369 OpInfo.Opcode = E->getOpcode(); 2370 OpInfo.FPFeatures = E->getFPFeatures(); 2371 OpInfo.E = E; 2372 // Load/convert the LHS. 2373 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2374 2375 llvm::PHINode *atomicPHI = nullptr; 2376 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2377 QualType type = atomicTy->getValueType(); 2378 if (!type->isBooleanType() && type->isIntegerType() && 2379 !(type->isUnsignedIntegerType() && 2380 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2381 CGF.getLangOpts().getSignedOverflowBehavior() != 2382 LangOptions::SOB_Trapping) { 2383 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2384 switch (OpInfo.Opcode) { 2385 // We don't have atomicrmw operands for *, %, /, <<, >> 2386 case BO_MulAssign: case BO_DivAssign: 2387 case BO_RemAssign: 2388 case BO_ShlAssign: 2389 case BO_ShrAssign: 2390 break; 2391 case BO_AddAssign: 2392 aop = llvm::AtomicRMWInst::Add; 2393 break; 2394 case BO_SubAssign: 2395 aop = llvm::AtomicRMWInst::Sub; 2396 break; 2397 case BO_AndAssign: 2398 aop = llvm::AtomicRMWInst::And; 2399 break; 2400 case BO_XorAssign: 2401 aop = llvm::AtomicRMWInst::Xor; 2402 break; 2403 case BO_OrAssign: 2404 aop = llvm::AtomicRMWInst::Or; 2405 break; 2406 default: 2407 llvm_unreachable("Invalid compound assignment type"); 2408 } 2409 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2410 llvm::Value *amt = CGF.EmitToMemory( 2411 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2412 E->getExprLoc()), 2413 LHSTy); 2414 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2415 llvm::AtomicOrdering::SequentiallyConsistent); 2416 return LHSLV; 2417 } 2418 } 2419 // FIXME: For floating point types, we should be saving and restoring the 2420 // floating point environment in the loop. 2421 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2422 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2423 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2424 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2425 Builder.CreateBr(opBB); 2426 Builder.SetInsertPoint(opBB); 2427 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2428 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2429 OpInfo.LHS = atomicPHI; 2430 } 2431 else 2432 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2433 2434 SourceLocation Loc = E->getExprLoc(); 2435 OpInfo.LHS = 2436 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2437 2438 // Expand the binary operator. 2439 Result = (this->*Func)(OpInfo); 2440 2441 // Convert the result back to the LHS type. 2442 Result = 2443 EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc); 2444 2445 if (atomicPHI) { 2446 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2447 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2448 auto Pair = CGF.EmitAtomicCompareExchange( 2449 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2450 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2451 llvm::Value *success = Pair.second; 2452 atomicPHI->addIncoming(old, opBB); 2453 Builder.CreateCondBr(success, contBB, opBB); 2454 Builder.SetInsertPoint(contBB); 2455 return LHSLV; 2456 } 2457 2458 // Store the result value into the LHS lvalue. Bit-fields are handled 2459 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2460 // 'An assignment expression has the value of the left operand after the 2461 // assignment...'. 2462 if (LHSLV.isBitField()) 2463 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2464 else 2465 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2466 2467 return LHSLV; 2468 } 2469 2470 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2471 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2472 bool Ignore = TestAndClearIgnoreResultAssign(); 2473 Value *RHS; 2474 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2475 2476 // If the result is clearly ignored, return now. 2477 if (Ignore) 2478 return nullptr; 2479 2480 // The result of an assignment in C is the assigned r-value. 2481 if (!CGF.getLangOpts().CPlusPlus) 2482 return RHS; 2483 2484 // If the lvalue is non-volatile, return the computed value of the assignment. 2485 if (!LHS.isVolatileQualified()) 2486 return RHS; 2487 2488 // Otherwise, reload the value. 2489 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2490 } 2491 2492 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2493 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2494 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2495 2496 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2497 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2498 SanitizerKind::IntegerDivideByZero)); 2499 } 2500 2501 const auto *BO = cast<BinaryOperator>(Ops.E); 2502 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2503 Ops.Ty->hasSignedIntegerRepresentation() && 2504 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 2505 Ops.mayHaveIntegerOverflow()) { 2506 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2507 2508 llvm::Value *IntMin = 2509 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2510 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2511 2512 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2513 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2514 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2515 Checks.push_back( 2516 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2517 } 2518 2519 if (Checks.size() > 0) 2520 EmitBinOpCheck(Checks, Ops); 2521 } 2522 2523 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2524 { 2525 CodeGenFunction::SanitizerScope SanScope(&CGF); 2526 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2527 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2528 Ops.Ty->isIntegerType() && 2529 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 2530 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2531 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2532 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2533 Ops.Ty->isRealFloatingType() && 2534 Ops.mayHaveFloatDivisionByZero()) { 2535 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2536 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2537 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2538 Ops); 2539 } 2540 } 2541 2542 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2543 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2544 if (CGF.getLangOpts().OpenCL && 2545 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 2546 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 2547 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 2548 // build option allows an application to specify that single precision 2549 // floating-point divide (x/y and 1/x) and sqrt used in the program 2550 // source are correctly rounded. 2551 llvm::Type *ValTy = Val->getType(); 2552 if (ValTy->isFloatTy() || 2553 (isa<llvm::VectorType>(ValTy) && 2554 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2555 CGF.SetFPAccuracy(Val, 2.5); 2556 } 2557 return Val; 2558 } 2559 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2560 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2561 else 2562 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2563 } 2564 2565 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2566 // Rem in C can't be a floating point type: C99 6.5.5p2. 2567 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2568 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2569 Ops.Ty->isIntegerType() && 2570 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 2571 CodeGenFunction::SanitizerScope SanScope(&CGF); 2572 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2573 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2574 } 2575 2576 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2577 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2578 else 2579 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2580 } 2581 2582 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2583 unsigned IID; 2584 unsigned OpID = 0; 2585 2586 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2587 switch (Ops.Opcode) { 2588 case BO_Add: 2589 case BO_AddAssign: 2590 OpID = 1; 2591 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2592 llvm::Intrinsic::uadd_with_overflow; 2593 break; 2594 case BO_Sub: 2595 case BO_SubAssign: 2596 OpID = 2; 2597 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2598 llvm::Intrinsic::usub_with_overflow; 2599 break; 2600 case BO_Mul: 2601 case BO_MulAssign: 2602 OpID = 3; 2603 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2604 llvm::Intrinsic::umul_with_overflow; 2605 break; 2606 default: 2607 llvm_unreachable("Unsupported operation for overflow detection"); 2608 } 2609 OpID <<= 1; 2610 if (isSigned) 2611 OpID |= 1; 2612 2613 CodeGenFunction::SanitizerScope SanScope(&CGF); 2614 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2615 2616 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2617 2618 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 2619 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2620 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2621 2622 // Handle overflow with llvm.trap if no custom handler has been specified. 2623 const std::string *handlerName = 2624 &CGF.getLangOpts().OverflowHandler; 2625 if (handlerName->empty()) { 2626 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2627 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2628 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 2629 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 2630 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 2631 : SanitizerKind::UnsignedIntegerOverflow; 2632 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 2633 } else 2634 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2635 return result; 2636 } 2637 2638 // Branch in case of overflow. 2639 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2640 llvm::BasicBlock *continueBB = 2641 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 2642 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2643 2644 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2645 2646 // If an overflow handler is set, then we want to call it and then use its 2647 // result, if it returns. 2648 Builder.SetInsertPoint(overflowBB); 2649 2650 // Get the overflow handler. 2651 llvm::Type *Int8Ty = CGF.Int8Ty; 2652 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2653 llvm::FunctionType *handlerTy = 2654 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2655 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2656 2657 // Sign extend the args to 64-bit, so that we can use the same handler for 2658 // all types of overflow. 2659 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2660 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2661 2662 // Call the handler with the two arguments, the operation, and the size of 2663 // the result. 2664 llvm::Value *handlerArgs[] = { 2665 lhs, 2666 rhs, 2667 Builder.getInt8(OpID), 2668 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2669 }; 2670 llvm::Value *handlerResult = 2671 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2672 2673 // Truncate the result back to the desired size. 2674 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2675 Builder.CreateBr(continueBB); 2676 2677 Builder.SetInsertPoint(continueBB); 2678 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2679 phi->addIncoming(result, initialBB); 2680 phi->addIncoming(handlerResult, overflowBB); 2681 2682 return phi; 2683 } 2684 2685 /// Emit pointer + index arithmetic. 2686 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2687 const BinOpInfo &op, 2688 bool isSubtraction) { 2689 // Must have binary (not unary) expr here. Unary pointer 2690 // increment/decrement doesn't use this path. 2691 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2692 2693 Value *pointer = op.LHS; 2694 Expr *pointerOperand = expr->getLHS(); 2695 Value *index = op.RHS; 2696 Expr *indexOperand = expr->getRHS(); 2697 2698 // In a subtraction, the LHS is always the pointer. 2699 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2700 std::swap(pointer, index); 2701 std::swap(pointerOperand, indexOperand); 2702 } 2703 2704 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2705 2706 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2707 auto &DL = CGF.CGM.getDataLayout(); 2708 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 2709 2710 // Some versions of glibc and gcc use idioms (particularly in their malloc 2711 // routines) that add a pointer-sized integer (known to be a pointer value) 2712 // to a null pointer in order to cast the value back to an integer or as 2713 // part of a pointer alignment algorithm. This is undefined behavior, but 2714 // we'd like to be able to compile programs that use it. 2715 // 2716 // Normally, we'd generate a GEP with a null-pointer base here in response 2717 // to that code, but it's also UB to dereference a pointer created that 2718 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 2719 // generate a direct cast of the integer value to a pointer. 2720 // 2721 // The idiom (p = nullptr + N) is not met if any of the following are true: 2722 // 2723 // The operation is subtraction. 2724 // The index is not pointer-sized. 2725 // The pointer type is not byte-sized. 2726 // 2727 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 2728 op.Opcode, 2729 expr->getLHS(), 2730 expr->getRHS())) 2731 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 2732 2733 if (width != DL.getTypeSizeInBits(PtrTy)) { 2734 // Zero-extend or sign-extend the pointer value according to 2735 // whether the index is signed or not. 2736 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned, 2737 "idx.ext"); 2738 } 2739 2740 // If this is subtraction, negate the index. 2741 if (isSubtraction) 2742 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2743 2744 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 2745 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2746 /*Accessed*/ false); 2747 2748 const PointerType *pointerType 2749 = pointerOperand->getType()->getAs<PointerType>(); 2750 if (!pointerType) { 2751 QualType objectType = pointerOperand->getType() 2752 ->castAs<ObjCObjectPointerType>() 2753 ->getPointeeType(); 2754 llvm::Value *objectSize 2755 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2756 2757 index = CGF.Builder.CreateMul(index, objectSize); 2758 2759 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2760 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2761 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2762 } 2763 2764 QualType elementType = pointerType->getPointeeType(); 2765 if (const VariableArrayType *vla 2766 = CGF.getContext().getAsVariableArrayType(elementType)) { 2767 // The element count here is the total number of non-VLA elements. 2768 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 2769 2770 // Effectively, the multiply by the VLA size is part of the GEP. 2771 // GEP indexes are signed, and scaling an index isn't permitted to 2772 // signed-overflow, so we use the same semantics for our explicit 2773 // multiply. We suppress this if overflow is not undefined behavior. 2774 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2775 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2776 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2777 } else { 2778 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2779 pointer = 2780 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 2781 op.E->getExprLoc(), "add.ptr"); 2782 } 2783 return pointer; 2784 } 2785 2786 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2787 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2788 // future proof. 2789 if (elementType->isVoidType() || elementType->isFunctionType()) { 2790 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2791 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2792 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2793 } 2794 2795 if (CGF.getLangOpts().isSignedOverflowDefined()) 2796 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2797 2798 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 2799 op.E->getExprLoc(), "add.ptr"); 2800 } 2801 2802 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2803 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2804 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2805 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2806 // efficient operations. 2807 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2808 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2809 bool negMul, bool negAdd) { 2810 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2811 2812 Value *MulOp0 = MulOp->getOperand(0); 2813 Value *MulOp1 = MulOp->getOperand(1); 2814 if (negMul) { 2815 MulOp0 = 2816 Builder.CreateFSub( 2817 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2818 "neg"); 2819 } else if (negAdd) { 2820 Addend = 2821 Builder.CreateFSub( 2822 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2823 "neg"); 2824 } 2825 2826 Value *FMulAdd = Builder.CreateCall( 2827 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2828 {MulOp0, MulOp1, Addend}); 2829 MulOp->eraseFromParent(); 2830 2831 return FMulAdd; 2832 } 2833 2834 // Check whether it would be legal to emit an fmuladd intrinsic call to 2835 // represent op and if so, build the fmuladd. 2836 // 2837 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2838 // Does NOT check the type of the operation - it's assumed that this function 2839 // will be called from contexts where it's known that the type is contractable. 2840 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2841 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2842 bool isSub=false) { 2843 2844 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2845 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2846 "Only fadd/fsub can be the root of an fmuladd."); 2847 2848 // Check whether this op is marked as fusable. 2849 if (!op.FPFeatures.allowFPContractWithinStatement()) 2850 return nullptr; 2851 2852 // We have a potentially fusable op. Look for a mul on one of the operands. 2853 // Also, make sure that the mul result isn't used directly. In that case, 2854 // there's no point creating a muladd operation. 2855 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2856 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 2857 LHSBinOp->use_empty()) 2858 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2859 } 2860 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2861 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 2862 RHSBinOp->use_empty()) 2863 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2864 } 2865 2866 return nullptr; 2867 } 2868 2869 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2870 if (op.LHS->getType()->isPointerTy() || 2871 op.RHS->getType()->isPointerTy()) 2872 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 2873 2874 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2875 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2876 case LangOptions::SOB_Defined: 2877 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2878 case LangOptions::SOB_Undefined: 2879 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2880 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2881 // Fall through. 2882 case LangOptions::SOB_Trapping: 2883 if (CanElideOverflowCheck(CGF.getContext(), op)) 2884 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2885 return EmitOverflowCheckedBinOp(op); 2886 } 2887 } 2888 2889 if (op.Ty->isUnsignedIntegerType() && 2890 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 2891 !CanElideOverflowCheck(CGF.getContext(), op)) 2892 return EmitOverflowCheckedBinOp(op); 2893 2894 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2895 // Try to form an fmuladd. 2896 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2897 return FMulAdd; 2898 2899 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2900 return propagateFMFlags(V, op); 2901 } 2902 2903 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2904 } 2905 2906 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2907 // The LHS is always a pointer if either side is. 2908 if (!op.LHS->getType()->isPointerTy()) { 2909 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2910 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2911 case LangOptions::SOB_Defined: 2912 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2913 case LangOptions::SOB_Undefined: 2914 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2915 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2916 // Fall through. 2917 case LangOptions::SOB_Trapping: 2918 if (CanElideOverflowCheck(CGF.getContext(), op)) 2919 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2920 return EmitOverflowCheckedBinOp(op); 2921 } 2922 } 2923 2924 if (op.Ty->isUnsignedIntegerType() && 2925 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 2926 !CanElideOverflowCheck(CGF.getContext(), op)) 2927 return EmitOverflowCheckedBinOp(op); 2928 2929 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2930 // Try to form an fmuladd. 2931 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2932 return FMulAdd; 2933 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2934 return propagateFMFlags(V, op); 2935 } 2936 2937 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2938 } 2939 2940 // If the RHS is not a pointer, then we have normal pointer 2941 // arithmetic. 2942 if (!op.RHS->getType()->isPointerTy()) 2943 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 2944 2945 // Otherwise, this is a pointer subtraction. 2946 2947 // Do the raw subtraction part. 2948 llvm::Value *LHS 2949 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2950 llvm::Value *RHS 2951 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2952 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2953 2954 // Okay, figure out the element size. 2955 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2956 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2957 2958 llvm::Value *divisor = nullptr; 2959 2960 // For a variable-length array, this is going to be non-constant. 2961 if (const VariableArrayType *vla 2962 = CGF.getContext().getAsVariableArrayType(elementType)) { 2963 auto VlaSize = CGF.getVLASize(vla); 2964 elementType = VlaSize.Type; 2965 divisor = VlaSize.NumElts; 2966 2967 // Scale the number of non-VLA elements by the non-VLA element size. 2968 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2969 if (!eltSize.isOne()) 2970 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2971 2972 // For everything elese, we can just compute it, safe in the 2973 // assumption that Sema won't let anything through that we can't 2974 // safely compute the size of. 2975 } else { 2976 CharUnits elementSize; 2977 // Handle GCC extension for pointer arithmetic on void* and 2978 // function pointer types. 2979 if (elementType->isVoidType() || elementType->isFunctionType()) 2980 elementSize = CharUnits::One(); 2981 else 2982 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2983 2984 // Don't even emit the divide for element size of 1. 2985 if (elementSize.isOne()) 2986 return diffInChars; 2987 2988 divisor = CGF.CGM.getSize(elementSize); 2989 } 2990 2991 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2992 // pointer difference in C is only defined in the case where both operands 2993 // are pointing to elements of an array. 2994 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2995 } 2996 2997 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2998 llvm::IntegerType *Ty; 2999 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3000 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3001 else 3002 Ty = cast<llvm::IntegerType>(LHS->getType()); 3003 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3004 } 3005 3006 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3007 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3008 // RHS to the same size as the LHS. 3009 Value *RHS = Ops.RHS; 3010 if (Ops.LHS->getType() != RHS->getType()) 3011 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3012 3013 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3014 Ops.Ty->hasSignedIntegerRepresentation() && 3015 !CGF.getLangOpts().isSignedOverflowDefined(); 3016 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3017 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3018 if (CGF.getLangOpts().OpenCL) 3019 RHS = 3020 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 3021 else if ((SanitizeBase || SanitizeExponent) && 3022 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3023 CodeGenFunction::SanitizerScope SanScope(&CGF); 3024 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3025 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3026 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3027 3028 if (SanitizeExponent) { 3029 Checks.push_back( 3030 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3031 } 3032 3033 if (SanitizeBase) { 3034 // Check whether we are shifting any non-zero bits off the top of the 3035 // integer. We only emit this check if exponent is valid - otherwise 3036 // instructions below will have undefined behavior themselves. 3037 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3038 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3039 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3040 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3041 llvm::Value *PromotedWidthMinusOne = 3042 (RHS == Ops.RHS) ? WidthMinusOne 3043 : GetWidthMinusOneValue(Ops.LHS, RHS); 3044 CGF.EmitBlock(CheckShiftBase); 3045 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3046 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3047 /*NUW*/ true, /*NSW*/ true), 3048 "shl.check"); 3049 if (CGF.getLangOpts().CPlusPlus) { 3050 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3051 // Under C++11's rules, shifting a 1 bit into the sign bit is 3052 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3053 // define signed left shifts, so we use the C99 and C++11 rules there). 3054 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3055 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3056 } 3057 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3058 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3059 CGF.EmitBlock(Cont); 3060 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3061 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3062 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3063 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 3064 } 3065 3066 assert(!Checks.empty()); 3067 EmitBinOpCheck(Checks, Ops); 3068 } 3069 3070 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3071 } 3072 3073 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3074 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3075 // RHS to the same size as the LHS. 3076 Value *RHS = Ops.RHS; 3077 if (Ops.LHS->getType() != RHS->getType()) 3078 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3079 3080 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3081 if (CGF.getLangOpts().OpenCL) 3082 RHS = 3083 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 3084 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3085 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3086 CodeGenFunction::SanitizerScope SanScope(&CGF); 3087 llvm::Value *Valid = 3088 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3089 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3090 } 3091 3092 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3093 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3094 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3095 } 3096 3097 enum IntrinsicType { VCMPEQ, VCMPGT }; 3098 // return corresponding comparison intrinsic for given vector type 3099 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3100 BuiltinType::Kind ElemKind) { 3101 switch (ElemKind) { 3102 default: llvm_unreachable("unexpected element type"); 3103 case BuiltinType::Char_U: 3104 case BuiltinType::UChar: 3105 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3106 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3107 case BuiltinType::Char_S: 3108 case BuiltinType::SChar: 3109 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3110 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3111 case BuiltinType::UShort: 3112 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3113 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3114 case BuiltinType::Short: 3115 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3116 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3117 case BuiltinType::UInt: 3118 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3119 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3120 case BuiltinType::Int: 3121 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3122 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3123 case BuiltinType::ULong: 3124 case BuiltinType::ULongLong: 3125 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3126 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 3127 case BuiltinType::Long: 3128 case BuiltinType::LongLong: 3129 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3130 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 3131 case BuiltinType::Float: 3132 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3133 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3134 case BuiltinType::Double: 3135 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 3136 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 3137 } 3138 } 3139 3140 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3141 llvm::CmpInst::Predicate UICmpOpc, 3142 llvm::CmpInst::Predicate SICmpOpc, 3143 llvm::CmpInst::Predicate FCmpOpc) { 3144 TestAndClearIgnoreResultAssign(); 3145 Value *Result; 3146 QualType LHSTy = E->getLHS()->getType(); 3147 QualType RHSTy = E->getRHS()->getType(); 3148 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3149 assert(E->getOpcode() == BO_EQ || 3150 E->getOpcode() == BO_NE); 3151 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3152 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3153 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3154 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3155 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3156 Value *LHS = Visit(E->getLHS()); 3157 Value *RHS = Visit(E->getRHS()); 3158 3159 // If AltiVec, the comparison results in a numeric type, so we use 3160 // intrinsics comparing vectors and giving 0 or 1 as a result 3161 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3162 // constants for mapping CR6 register bits to predicate result 3163 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3164 3165 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3166 3167 // in several cases vector arguments order will be reversed 3168 Value *FirstVecArg = LHS, 3169 *SecondVecArg = RHS; 3170 3171 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 3172 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 3173 BuiltinType::Kind ElementKind = BTy->getKind(); 3174 3175 switch(E->getOpcode()) { 3176 default: llvm_unreachable("is not a comparison operation"); 3177 case BO_EQ: 3178 CR6 = CR6_LT; 3179 ID = GetIntrinsic(VCMPEQ, ElementKind); 3180 break; 3181 case BO_NE: 3182 CR6 = CR6_EQ; 3183 ID = GetIntrinsic(VCMPEQ, ElementKind); 3184 break; 3185 case BO_LT: 3186 CR6 = CR6_LT; 3187 ID = GetIntrinsic(VCMPGT, ElementKind); 3188 std::swap(FirstVecArg, SecondVecArg); 3189 break; 3190 case BO_GT: 3191 CR6 = CR6_LT; 3192 ID = GetIntrinsic(VCMPGT, ElementKind); 3193 break; 3194 case BO_LE: 3195 if (ElementKind == BuiltinType::Float) { 3196 CR6 = CR6_LT; 3197 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3198 std::swap(FirstVecArg, SecondVecArg); 3199 } 3200 else { 3201 CR6 = CR6_EQ; 3202 ID = GetIntrinsic(VCMPGT, ElementKind); 3203 } 3204 break; 3205 case BO_GE: 3206 if (ElementKind == BuiltinType::Float) { 3207 CR6 = CR6_LT; 3208 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3209 } 3210 else { 3211 CR6 = CR6_EQ; 3212 ID = GetIntrinsic(VCMPGT, ElementKind); 3213 std::swap(FirstVecArg, SecondVecArg); 3214 } 3215 break; 3216 } 3217 3218 Value *CR6Param = Builder.getInt32(CR6); 3219 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 3220 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 3221 3222 // The result type of intrinsic may not be same as E->getType(). 3223 // If E->getType() is not BoolTy, EmitScalarConversion will do the 3224 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 3225 // do nothing, if ResultTy is not i1 at the same time, it will cause 3226 // crash later. 3227 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 3228 if (ResultTy->getBitWidth() > 1 && 3229 E->getType() == CGF.getContext().BoolTy) 3230 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 3231 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3232 E->getExprLoc()); 3233 } 3234 3235 if (LHS->getType()->isFPOrFPVectorTy()) { 3236 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 3237 } else if (LHSTy->hasSignedIntegerRepresentation()) { 3238 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 3239 } else { 3240 // Unsigned integers and pointers. 3241 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 3242 } 3243 3244 // If this is a vector comparison, sign extend the result to the appropriate 3245 // vector integer type and return it (don't convert to bool). 3246 if (LHSTy->isVectorType()) 3247 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 3248 3249 } else { 3250 // Complex Comparison: can only be an equality comparison. 3251 CodeGenFunction::ComplexPairTy LHS, RHS; 3252 QualType CETy; 3253 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 3254 LHS = CGF.EmitComplexExpr(E->getLHS()); 3255 CETy = CTy->getElementType(); 3256 } else { 3257 LHS.first = Visit(E->getLHS()); 3258 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 3259 CETy = LHSTy; 3260 } 3261 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 3262 RHS = CGF.EmitComplexExpr(E->getRHS()); 3263 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 3264 CTy->getElementType()) && 3265 "The element types must always match."); 3266 (void)CTy; 3267 } else { 3268 RHS.first = Visit(E->getRHS()); 3269 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 3270 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 3271 "The element types must always match."); 3272 } 3273 3274 Value *ResultR, *ResultI; 3275 if (CETy->isRealFloatingType()) { 3276 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 3277 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 3278 } else { 3279 // Complex comparisons can only be equality comparisons. As such, signed 3280 // and unsigned opcodes are the same. 3281 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 3282 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 3283 } 3284 3285 if (E->getOpcode() == BO_EQ) { 3286 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 3287 } else { 3288 assert(E->getOpcode() == BO_NE && 3289 "Complex comparison other than == or != ?"); 3290 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 3291 } 3292 } 3293 3294 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3295 E->getExprLoc()); 3296 } 3297 3298 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 3299 bool Ignore = TestAndClearIgnoreResultAssign(); 3300 3301 Value *RHS; 3302 LValue LHS; 3303 3304 switch (E->getLHS()->getType().getObjCLifetime()) { 3305 case Qualifiers::OCL_Strong: 3306 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 3307 break; 3308 3309 case Qualifiers::OCL_Autoreleasing: 3310 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3311 break; 3312 3313 case Qualifiers::OCL_ExplicitNone: 3314 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 3315 break; 3316 3317 case Qualifiers::OCL_Weak: 3318 RHS = Visit(E->getRHS()); 3319 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3320 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3321 break; 3322 3323 case Qualifiers::OCL_None: 3324 // __block variables need to have the rhs evaluated first, plus 3325 // this should improve codegen just a little. 3326 RHS = Visit(E->getRHS()); 3327 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3328 3329 // Store the value into the LHS. Bit-fields are handled specially 3330 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3331 // 'An assignment expression has the value of the left operand after 3332 // the assignment...'. 3333 if (LHS.isBitField()) { 3334 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3335 } else { 3336 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 3337 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3338 } 3339 } 3340 3341 // If the result is clearly ignored, return now. 3342 if (Ignore) 3343 return nullptr; 3344 3345 // The result of an assignment in C is the assigned r-value. 3346 if (!CGF.getLangOpts().CPlusPlus) 3347 return RHS; 3348 3349 // If the lvalue is non-volatile, return the computed value of the assignment. 3350 if (!LHS.isVolatileQualified()) 3351 return RHS; 3352 3353 // Otherwise, reload the value. 3354 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3355 } 3356 3357 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3358 // Perform vector logical and on comparisons with zero vectors. 3359 if (E->getType()->isVectorType()) { 3360 CGF.incrementProfileCounter(E); 3361 3362 Value *LHS = Visit(E->getLHS()); 3363 Value *RHS = Visit(E->getRHS()); 3364 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3365 if (LHS->getType()->isFPOrFPVectorTy()) { 3366 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3367 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3368 } else { 3369 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3370 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3371 } 3372 Value *And = Builder.CreateAnd(LHS, RHS); 3373 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3374 } 3375 3376 llvm::Type *ResTy = ConvertType(E->getType()); 3377 3378 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3379 // If we have 1 && X, just emit X without inserting the control flow. 3380 bool LHSCondVal; 3381 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3382 if (LHSCondVal) { // If we have 1 && X, just emit X. 3383 CGF.incrementProfileCounter(E); 3384 3385 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3386 // ZExt result to int or bool. 3387 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3388 } 3389 3390 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3391 if (!CGF.ContainsLabel(E->getRHS())) 3392 return llvm::Constant::getNullValue(ResTy); 3393 } 3394 3395 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3396 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3397 3398 CodeGenFunction::ConditionalEvaluation eval(CGF); 3399 3400 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3401 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 3402 CGF.getProfileCount(E->getRHS())); 3403 3404 // Any edges into the ContBlock are now from an (indeterminate number of) 3405 // edges from this first condition. All of these values will be false. Start 3406 // setting up the PHI node in the Cont Block for this. 3407 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3408 "", ContBlock); 3409 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3410 PI != PE; ++PI) 3411 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3412 3413 eval.begin(CGF); 3414 CGF.EmitBlock(RHSBlock); 3415 CGF.incrementProfileCounter(E); 3416 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3417 eval.end(CGF); 3418 3419 // Reaquire the RHS block, as there may be subblocks inserted. 3420 RHSBlock = Builder.GetInsertBlock(); 3421 3422 // Emit an unconditional branch from this block to ContBlock. 3423 { 3424 // There is no need to emit line number for unconditional branch. 3425 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3426 CGF.EmitBlock(ContBlock); 3427 } 3428 // Insert an entry into the phi node for the edge with the value of RHSCond. 3429 PN->addIncoming(RHSCond, RHSBlock); 3430 3431 // ZExt result to int. 3432 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3433 } 3434 3435 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3436 // Perform vector logical or on comparisons with zero vectors. 3437 if (E->getType()->isVectorType()) { 3438 CGF.incrementProfileCounter(E); 3439 3440 Value *LHS = Visit(E->getLHS()); 3441 Value *RHS = Visit(E->getRHS()); 3442 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3443 if (LHS->getType()->isFPOrFPVectorTy()) { 3444 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3445 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3446 } else { 3447 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3448 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3449 } 3450 Value *Or = Builder.CreateOr(LHS, RHS); 3451 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3452 } 3453 3454 llvm::Type *ResTy = ConvertType(E->getType()); 3455 3456 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3457 // If we have 0 || X, just emit X without inserting the control flow. 3458 bool LHSCondVal; 3459 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3460 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3461 CGF.incrementProfileCounter(E); 3462 3463 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3464 // ZExt result to int or bool. 3465 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3466 } 3467 3468 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3469 if (!CGF.ContainsLabel(E->getRHS())) 3470 return llvm::ConstantInt::get(ResTy, 1); 3471 } 3472 3473 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3474 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3475 3476 CodeGenFunction::ConditionalEvaluation eval(CGF); 3477 3478 // Branch on the LHS first. If it is true, go to the success (cont) block. 3479 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3480 CGF.getCurrentProfileCount() - 3481 CGF.getProfileCount(E->getRHS())); 3482 3483 // Any edges into the ContBlock are now from an (indeterminate number of) 3484 // edges from this first condition. All of these values will be true. Start 3485 // setting up the PHI node in the Cont Block for this. 3486 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3487 "", ContBlock); 3488 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3489 PI != PE; ++PI) 3490 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3491 3492 eval.begin(CGF); 3493 3494 // Emit the RHS condition as a bool value. 3495 CGF.EmitBlock(RHSBlock); 3496 CGF.incrementProfileCounter(E); 3497 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3498 3499 eval.end(CGF); 3500 3501 // Reaquire the RHS block, as there may be subblocks inserted. 3502 RHSBlock = Builder.GetInsertBlock(); 3503 3504 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3505 // into the phi node for the edge with the value of RHSCond. 3506 CGF.EmitBlock(ContBlock); 3507 PN->addIncoming(RHSCond, RHSBlock); 3508 3509 // ZExt result to int. 3510 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3511 } 3512 3513 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3514 CGF.EmitIgnoredExpr(E->getLHS()); 3515 CGF.EnsureInsertPoint(); 3516 return Visit(E->getRHS()); 3517 } 3518 3519 //===----------------------------------------------------------------------===// 3520 // Other Operators 3521 //===----------------------------------------------------------------------===// 3522 3523 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3524 /// expression is cheap enough and side-effect-free enough to evaluate 3525 /// unconditionally instead of conditionally. This is used to convert control 3526 /// flow into selects in some cases. 3527 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3528 CodeGenFunction &CGF) { 3529 // Anything that is an integer or floating point constant is fine. 3530 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3531 3532 // Even non-volatile automatic variables can't be evaluated unconditionally. 3533 // Referencing a thread_local may cause non-trivial initialization work to 3534 // occur. If we're inside a lambda and one of the variables is from the scope 3535 // outside the lambda, that function may have returned already. Reading its 3536 // locals is a bad idea. Also, these reads may introduce races there didn't 3537 // exist in the source-level program. 3538 } 3539 3540 3541 Value *ScalarExprEmitter:: 3542 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3543 TestAndClearIgnoreResultAssign(); 3544 3545 // Bind the common expression if necessary. 3546 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3547 3548 Expr *condExpr = E->getCond(); 3549 Expr *lhsExpr = E->getTrueExpr(); 3550 Expr *rhsExpr = E->getFalseExpr(); 3551 3552 // If the condition constant folds and can be elided, try to avoid emitting 3553 // the condition and the dead arm. 3554 bool CondExprBool; 3555 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3556 Expr *live = lhsExpr, *dead = rhsExpr; 3557 if (!CondExprBool) std::swap(live, dead); 3558 3559 // If the dead side doesn't have labels we need, just emit the Live part. 3560 if (!CGF.ContainsLabel(dead)) { 3561 if (CondExprBool) 3562 CGF.incrementProfileCounter(E); 3563 Value *Result = Visit(live); 3564 3565 // If the live part is a throw expression, it acts like it has a void 3566 // type, so evaluating it returns a null Value*. However, a conditional 3567 // with non-void type must return a non-null Value*. 3568 if (!Result && !E->getType()->isVoidType()) 3569 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3570 3571 return Result; 3572 } 3573 } 3574 3575 // OpenCL: If the condition is a vector, we can treat this condition like 3576 // the select function. 3577 if (CGF.getLangOpts().OpenCL 3578 && condExpr->getType()->isVectorType()) { 3579 CGF.incrementProfileCounter(E); 3580 3581 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3582 llvm::Value *LHS = Visit(lhsExpr); 3583 llvm::Value *RHS = Visit(rhsExpr); 3584 3585 llvm::Type *condType = ConvertType(condExpr->getType()); 3586 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3587 3588 unsigned numElem = vecTy->getNumElements(); 3589 llvm::Type *elemType = vecTy->getElementType(); 3590 3591 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3592 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3593 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3594 llvm::VectorType::get(elemType, 3595 numElem), 3596 "sext"); 3597 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3598 3599 // Cast float to int to perform ANDs if necessary. 3600 llvm::Value *RHSTmp = RHS; 3601 llvm::Value *LHSTmp = LHS; 3602 bool wasCast = false; 3603 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3604 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3605 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3606 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3607 wasCast = true; 3608 } 3609 3610 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3611 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3612 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3613 if (wasCast) 3614 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3615 3616 return tmp5; 3617 } 3618 3619 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3620 // select instead of as control flow. We can only do this if it is cheap and 3621 // safe to evaluate the LHS and RHS unconditionally. 3622 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3623 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3624 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3625 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 3626 3627 CGF.incrementProfileCounter(E, StepV); 3628 3629 llvm::Value *LHS = Visit(lhsExpr); 3630 llvm::Value *RHS = Visit(rhsExpr); 3631 if (!LHS) { 3632 // If the conditional has void type, make sure we return a null Value*. 3633 assert(!RHS && "LHS and RHS types must match"); 3634 return nullptr; 3635 } 3636 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3637 } 3638 3639 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3640 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3641 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3642 3643 CodeGenFunction::ConditionalEvaluation eval(CGF); 3644 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 3645 CGF.getProfileCount(lhsExpr)); 3646 3647 CGF.EmitBlock(LHSBlock); 3648 CGF.incrementProfileCounter(E); 3649 eval.begin(CGF); 3650 Value *LHS = Visit(lhsExpr); 3651 eval.end(CGF); 3652 3653 LHSBlock = Builder.GetInsertBlock(); 3654 Builder.CreateBr(ContBlock); 3655 3656 CGF.EmitBlock(RHSBlock); 3657 eval.begin(CGF); 3658 Value *RHS = Visit(rhsExpr); 3659 eval.end(CGF); 3660 3661 RHSBlock = Builder.GetInsertBlock(); 3662 CGF.EmitBlock(ContBlock); 3663 3664 // If the LHS or RHS is a throw expression, it will be legitimately null. 3665 if (!LHS) 3666 return RHS; 3667 if (!RHS) 3668 return LHS; 3669 3670 // Create a PHI node for the real part. 3671 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3672 PN->addIncoming(LHS, LHSBlock); 3673 PN->addIncoming(RHS, RHSBlock); 3674 return PN; 3675 } 3676 3677 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3678 return Visit(E->getChosenSubExpr()); 3679 } 3680 3681 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3682 QualType Ty = VE->getType(); 3683 3684 if (Ty->isVariablyModifiedType()) 3685 CGF.EmitVariablyModifiedType(Ty); 3686 3687 Address ArgValue = Address::invalid(); 3688 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 3689 3690 llvm::Type *ArgTy = ConvertType(VE->getType()); 3691 3692 // If EmitVAArg fails, emit an error. 3693 if (!ArgPtr.isValid()) { 3694 CGF.ErrorUnsupported(VE, "va_arg expression"); 3695 return llvm::UndefValue::get(ArgTy); 3696 } 3697 3698 // FIXME Volatility. 3699 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 3700 3701 // If EmitVAArg promoted the type, we must truncate it. 3702 if (ArgTy != Val->getType()) { 3703 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 3704 Val = Builder.CreateIntToPtr(Val, ArgTy); 3705 else 3706 Val = Builder.CreateTrunc(Val, ArgTy); 3707 } 3708 3709 return Val; 3710 } 3711 3712 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3713 return CGF.EmitBlockLiteral(block); 3714 } 3715 3716 // Convert a vec3 to vec4, or vice versa. 3717 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 3718 Value *Src, unsigned NumElementsDst) { 3719 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3720 SmallVector<llvm::Constant*, 4> Args; 3721 Args.push_back(Builder.getInt32(0)); 3722 Args.push_back(Builder.getInt32(1)); 3723 Args.push_back(Builder.getInt32(2)); 3724 if (NumElementsDst == 4) 3725 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3726 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3727 return Builder.CreateShuffleVector(Src, UnV, Mask); 3728 } 3729 3730 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 3731 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 3732 // but could be scalar or vectors of different lengths, and either can be 3733 // pointer. 3734 // There are 4 cases: 3735 // 1. non-pointer -> non-pointer : needs 1 bitcast 3736 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 3737 // 3. pointer -> non-pointer 3738 // a) pointer -> intptr_t : needs 1 ptrtoint 3739 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 3740 // 4. non-pointer -> pointer 3741 // a) intptr_t -> pointer : needs 1 inttoptr 3742 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 3743 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 3744 // allow casting directly between pointer types and non-integer non-pointer 3745 // types. 3746 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 3747 const llvm::DataLayout &DL, 3748 Value *Src, llvm::Type *DstTy, 3749 StringRef Name = "") { 3750 auto SrcTy = Src->getType(); 3751 3752 // Case 1. 3753 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 3754 return Builder.CreateBitCast(Src, DstTy, Name); 3755 3756 // Case 2. 3757 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 3758 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 3759 3760 // Case 3. 3761 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 3762 // Case 3b. 3763 if (!DstTy->isIntegerTy()) 3764 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 3765 // Cases 3a and 3b. 3766 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 3767 } 3768 3769 // Case 4b. 3770 if (!SrcTy->isIntegerTy()) 3771 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 3772 // Cases 4a and 4b. 3773 return Builder.CreateIntToPtr(Src, DstTy, Name); 3774 } 3775 3776 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3777 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3778 llvm::Type *DstTy = ConvertType(E->getType()); 3779 3780 llvm::Type *SrcTy = Src->getType(); 3781 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 3782 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 3783 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 3784 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 3785 3786 // Going from vec3 to non-vec3 is a special case and requires a shuffle 3787 // vector to get a vec4, then a bitcast if the target type is different. 3788 if (NumElementsSrc == 3 && NumElementsDst != 3) { 3789 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 3790 3791 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 3792 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 3793 DstTy); 3794 } 3795 3796 Src->setName("astype"); 3797 return Src; 3798 } 3799 3800 // Going from non-vec3 to vec3 is a special case and requires a bitcast 3801 // to vec4 if the original type is not vec4, then a shuffle vector to 3802 // get a vec3. 3803 if (NumElementsSrc != 3 && NumElementsDst == 3) { 3804 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 3805 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 3806 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 3807 Vec4Ty); 3808 } 3809 3810 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 3811 Src->setName("astype"); 3812 return Src; 3813 } 3814 3815 return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 3816 Src, DstTy, "astype"); 3817 } 3818 3819 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3820 return CGF.EmitAtomicExpr(E).getScalarVal(); 3821 } 3822 3823 //===----------------------------------------------------------------------===// 3824 // Entry Point into this File 3825 //===----------------------------------------------------------------------===// 3826 3827 /// Emit the computation of the specified expression of scalar type, ignoring 3828 /// the result. 3829 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3830 assert(E && hasScalarEvaluationKind(E->getType()) && 3831 "Invalid scalar expression to emit"); 3832 3833 return ScalarExprEmitter(*this, IgnoreResultAssign) 3834 .Visit(const_cast<Expr *>(E)); 3835 } 3836 3837 /// Emit a conversion from the specified type to the specified destination type, 3838 /// both of which are LLVM scalar types. 3839 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3840 QualType DstTy, 3841 SourceLocation Loc) { 3842 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3843 "Invalid scalar expression to emit"); 3844 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 3845 } 3846 3847 /// Emit a conversion from the specified complex type to the specified 3848 /// destination type, where the destination type is an LLVM scalar type. 3849 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3850 QualType SrcTy, 3851 QualType DstTy, 3852 SourceLocation Loc) { 3853 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3854 "Invalid complex -> scalar conversion"); 3855 return ScalarExprEmitter(*this) 3856 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 3857 } 3858 3859 3860 llvm::Value *CodeGenFunction:: 3861 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3862 bool isInc, bool isPre) { 3863 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3864 } 3865 3866 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3867 // object->isa or (*object).isa 3868 // Generate code as for: *(Class*)object 3869 3870 Expr *BaseExpr = E->getBase(); 3871 Address Addr = Address::invalid(); 3872 if (BaseExpr->isRValue()) { 3873 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 3874 } else { 3875 Addr = EmitLValue(BaseExpr).getAddress(); 3876 } 3877 3878 // Cast the address to Class*. 3879 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 3880 return MakeAddrLValue(Addr, E->getType()); 3881 } 3882 3883 3884 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3885 const CompoundAssignOperator *E) { 3886 ScalarExprEmitter Scalar(*this); 3887 Value *Result = nullptr; 3888 switch (E->getOpcode()) { 3889 #define COMPOUND_OP(Op) \ 3890 case BO_##Op##Assign: \ 3891 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3892 Result) 3893 COMPOUND_OP(Mul); 3894 COMPOUND_OP(Div); 3895 COMPOUND_OP(Rem); 3896 COMPOUND_OP(Add); 3897 COMPOUND_OP(Sub); 3898 COMPOUND_OP(Shl); 3899 COMPOUND_OP(Shr); 3900 COMPOUND_OP(And); 3901 COMPOUND_OP(Xor); 3902 COMPOUND_OP(Or); 3903 #undef COMPOUND_OP 3904 3905 case BO_PtrMemD: 3906 case BO_PtrMemI: 3907 case BO_Mul: 3908 case BO_Div: 3909 case BO_Rem: 3910 case BO_Add: 3911 case BO_Sub: 3912 case BO_Shl: 3913 case BO_Shr: 3914 case BO_LT: 3915 case BO_GT: 3916 case BO_LE: 3917 case BO_GE: 3918 case BO_EQ: 3919 case BO_NE: 3920 case BO_Cmp: 3921 case BO_And: 3922 case BO_Xor: 3923 case BO_Or: 3924 case BO_LAnd: 3925 case BO_LOr: 3926 case BO_Assign: 3927 case BO_Comma: 3928 llvm_unreachable("Not valid compound assignment operators"); 3929 } 3930 3931 llvm_unreachable("Unhandled compound assignment operator"); 3932 } 3933 3934 Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, 3935 ArrayRef<Value *> IdxList, 3936 bool SignedIndices, 3937 bool IsSubtraction, 3938 SourceLocation Loc, 3939 const Twine &Name) { 3940 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 3941 3942 // If the pointer overflow sanitizer isn't enabled, do nothing. 3943 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 3944 return GEPVal; 3945 3946 // If the GEP has already been reduced to a constant, leave it be. 3947 if (isa<llvm::Constant>(GEPVal)) 3948 return GEPVal; 3949 3950 // Only check for overflows in the default address space. 3951 if (GEPVal->getType()->getPointerAddressSpace()) 3952 return GEPVal; 3953 3954 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 3955 assert(GEP->isInBounds() && "Expected inbounds GEP"); 3956 3957 SanitizerScope SanScope(this); 3958 auto &VMContext = getLLVMContext(); 3959 const auto &DL = CGM.getDataLayout(); 3960 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 3961 3962 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 3963 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 3964 auto *SAddIntrinsic = 3965 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 3966 auto *SMulIntrinsic = 3967 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 3968 3969 // The total (signed) byte offset for the GEP. 3970 llvm::Value *TotalOffset = nullptr; 3971 // The offset overflow flag - true if the total offset overflows. 3972 llvm::Value *OffsetOverflows = Builder.getFalse(); 3973 3974 /// Return the result of the given binary operation. 3975 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 3976 llvm::Value *RHS) -> llvm::Value * { 3977 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 3978 3979 // If the operands are constants, return a constant result. 3980 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 3981 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 3982 llvm::APInt N; 3983 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 3984 /*Signed=*/true, N); 3985 if (HasOverflow) 3986 OffsetOverflows = Builder.getTrue(); 3987 return llvm::ConstantInt::get(VMContext, N); 3988 } 3989 } 3990 3991 // Otherwise, compute the result with checked arithmetic. 3992 auto *ResultAndOverflow = Builder.CreateCall( 3993 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 3994 OffsetOverflows = Builder.CreateOr( 3995 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 3996 return Builder.CreateExtractValue(ResultAndOverflow, 0); 3997 }; 3998 3999 // Determine the total byte offset by looking at each GEP operand. 4000 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 4001 GTI != GTE; ++GTI) { 4002 llvm::Value *LocalOffset; 4003 auto *Index = GTI.getOperand(); 4004 // Compute the local offset contributed by this indexing step: 4005 if (auto *STy = GTI.getStructTypeOrNull()) { 4006 // For struct indexing, the local offset is the byte position of the 4007 // specified field. 4008 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 4009 LocalOffset = llvm::ConstantInt::get( 4010 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 4011 } else { 4012 // Otherwise this is array-like indexing. The local offset is the index 4013 // multiplied by the element size. 4014 auto *ElementSize = llvm::ConstantInt::get( 4015 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 4016 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 4017 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 4018 } 4019 4020 // If this is the first offset, set it as the total offset. Otherwise, add 4021 // the local offset into the running total. 4022 if (!TotalOffset || TotalOffset == Zero) 4023 TotalOffset = LocalOffset; 4024 else 4025 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 4026 } 4027 4028 // Common case: if the total offset is zero, don't emit a check. 4029 if (TotalOffset == Zero) 4030 return GEPVal; 4031 4032 // Now that we've computed the total offset, add it to the base pointer (with 4033 // wrapping semantics). 4034 auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy); 4035 auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset); 4036 4037 // The GEP is valid if: 4038 // 1) The total offset doesn't overflow, and 4039 // 2) The sign of the difference between the computed address and the base 4040 // pointer matches the sign of the total offset. 4041 llvm::Value *ValidGEP; 4042 auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows); 4043 if (SignedIndices) { 4044 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4045 auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero); 4046 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 4047 ValidGEP = Builder.CreateAnd( 4048 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid), 4049 NoOffsetOverflow); 4050 } else if (!SignedIndices && !IsSubtraction) { 4051 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4052 ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow); 4053 } else { 4054 auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr); 4055 ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow); 4056 } 4057 4058 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 4059 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 4060 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 4061 EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow), 4062 SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 4063 4064 return GEPVal; 4065 } 4066