1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCleanup.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Frontend/CodeGenOptions.h"
28 #include "llvm/ADT/Optional.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/Module.h"
37 #include <cstdarg>
38 
39 using namespace clang;
40 using namespace CodeGen;
41 using llvm::Value;
42 
43 //===----------------------------------------------------------------------===//
44 //                         Scalar Expression Emitter
45 //===----------------------------------------------------------------------===//
46 
47 namespace {
48 
49 /// Determine whether the given binary operation may overflow.
50 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
51 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
52 /// the returned overflow check is precise. The returned value is 'true' for
53 /// all other opcodes, to be conservative.
54 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
55                              BinaryOperator::Opcode Opcode, bool Signed,
56                              llvm::APInt &Result) {
57   // Assume overflow is possible, unless we can prove otherwise.
58   bool Overflow = true;
59   const auto &LHSAP = LHS->getValue();
60   const auto &RHSAP = RHS->getValue();
61   if (Opcode == BO_Add) {
62     if (Signed)
63       Result = LHSAP.sadd_ov(RHSAP, Overflow);
64     else
65       Result = LHSAP.uadd_ov(RHSAP, Overflow);
66   } else if (Opcode == BO_Sub) {
67     if (Signed)
68       Result = LHSAP.ssub_ov(RHSAP, Overflow);
69     else
70       Result = LHSAP.usub_ov(RHSAP, Overflow);
71   } else if (Opcode == BO_Mul) {
72     if (Signed)
73       Result = LHSAP.smul_ov(RHSAP, Overflow);
74     else
75       Result = LHSAP.umul_ov(RHSAP, Overflow);
76   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
77     if (Signed && !RHS->isZero())
78       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
79     else
80       return false;
81   }
82   return Overflow;
83 }
84 
85 struct BinOpInfo {
86   Value *LHS;
87   Value *RHS;
88   QualType Ty;  // Computation Type.
89   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
90   FPOptions FPFeatures;
91   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
92 
93   /// Check if the binop can result in integer overflow.
94   bool mayHaveIntegerOverflow() const {
95     // Without constant input, we can't rule out overflow.
96     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
97     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
98     if (!LHSCI || !RHSCI)
99       return true;
100 
101     llvm::APInt Result;
102     return ::mayHaveIntegerOverflow(
103         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
104   }
105 
106   /// Check if the binop computes a division or a remainder.
107   bool isDivremOp() const {
108     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
109            Opcode == BO_RemAssign;
110   }
111 
112   /// Check if the binop can result in an integer division by zero.
113   bool mayHaveIntegerDivisionByZero() const {
114     if (isDivremOp())
115       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
116         return CI->isZero();
117     return true;
118   }
119 
120   /// Check if the binop can result in a float division by zero.
121   bool mayHaveFloatDivisionByZero() const {
122     if (isDivremOp())
123       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
124         return CFP->isZero();
125     return true;
126   }
127 };
128 
129 static bool MustVisitNullValue(const Expr *E) {
130   // If a null pointer expression's type is the C++0x nullptr_t, then
131   // it's not necessarily a simple constant and it must be evaluated
132   // for its potential side effects.
133   return E->getType()->isNullPtrType();
134 }
135 
136 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
137 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
138                                                         const Expr *E) {
139   const Expr *Base = E->IgnoreImpCasts();
140   if (E == Base)
141     return llvm::None;
142 
143   QualType BaseTy = Base->getType();
144   if (!BaseTy->isPromotableIntegerType() ||
145       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
146     return llvm::None;
147 
148   return BaseTy;
149 }
150 
151 /// Check if \p E is a widened promoted integer.
152 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
153   return getUnwidenedIntegerType(Ctx, E).hasValue();
154 }
155 
156 /// Check if we can skip the overflow check for \p Op.
157 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
158   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
159          "Expected a unary or binary operator");
160 
161   // If the binop has constant inputs and we can prove there is no overflow,
162   // we can elide the overflow check.
163   if (!Op.mayHaveIntegerOverflow())
164     return true;
165 
166   // If a unary op has a widened operand, the op cannot overflow.
167   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
168     return !UO->canOverflow();
169 
170   // We usually don't need overflow checks for binops with widened operands.
171   // Multiplication with promoted unsigned operands is a special case.
172   const auto *BO = cast<BinaryOperator>(Op.E);
173   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
174   if (!OptionalLHSTy)
175     return false;
176 
177   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
178   if (!OptionalRHSTy)
179     return false;
180 
181   QualType LHSTy = *OptionalLHSTy;
182   QualType RHSTy = *OptionalRHSTy;
183 
184   // This is the simple case: binops without unsigned multiplication, and with
185   // widened operands. No overflow check is needed here.
186   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
187       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
188     return true;
189 
190   // For unsigned multiplication the overflow check can be elided if either one
191   // of the unpromoted types are less than half the size of the promoted type.
192   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
193   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
194          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
195 }
196 
197 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
198 static void updateFastMathFlags(llvm::FastMathFlags &FMF,
199                                 FPOptions FPFeatures) {
200   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
201 }
202 
203 /// Propagate fast-math flags from \p Op to the instruction in \p V.
204 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
205   if (auto *I = dyn_cast<llvm::Instruction>(V)) {
206     llvm::FastMathFlags FMF = I->getFastMathFlags();
207     updateFastMathFlags(FMF, Op.FPFeatures);
208     I->setFastMathFlags(FMF);
209   }
210   return V;
211 }
212 
213 class ScalarExprEmitter
214   : public StmtVisitor<ScalarExprEmitter, Value*> {
215   CodeGenFunction &CGF;
216   CGBuilderTy &Builder;
217   bool IgnoreResultAssign;
218   llvm::LLVMContext &VMContext;
219 public:
220 
221   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
222     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
223       VMContext(cgf.getLLVMContext()) {
224   }
225 
226   //===--------------------------------------------------------------------===//
227   //                               Utilities
228   //===--------------------------------------------------------------------===//
229 
230   bool TestAndClearIgnoreResultAssign() {
231     bool I = IgnoreResultAssign;
232     IgnoreResultAssign = false;
233     return I;
234   }
235 
236   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
237   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
238   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
239     return CGF.EmitCheckedLValue(E, TCK);
240   }
241 
242   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
243                       const BinOpInfo &Info);
244 
245   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
246     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
247   }
248 
249   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
250     const AlignValueAttr *AVAttr = nullptr;
251     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
252       const ValueDecl *VD = DRE->getDecl();
253 
254       if (VD->getType()->isReferenceType()) {
255         if (const auto *TTy =
256             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
257           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
258       } else {
259         // Assumptions for function parameters are emitted at the start of the
260         // function, so there is no need to repeat that here.
261         if (isa<ParmVarDecl>(VD))
262           return;
263 
264         AVAttr = VD->getAttr<AlignValueAttr>();
265       }
266     }
267 
268     if (!AVAttr)
269       if (const auto *TTy =
270           dyn_cast<TypedefType>(E->getType()))
271         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
272 
273     if (!AVAttr)
274       return;
275 
276     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
277     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
278     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
279   }
280 
281   /// EmitLoadOfLValue - Given an expression with complex type that represents a
282   /// value l-value, this method emits the address of the l-value, then loads
283   /// and returns the result.
284   Value *EmitLoadOfLValue(const Expr *E) {
285     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
286                                 E->getExprLoc());
287 
288     EmitLValueAlignmentAssumption(E, V);
289     return V;
290   }
291 
292   /// EmitConversionToBool - Convert the specified expression value to a
293   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
294   Value *EmitConversionToBool(Value *Src, QualType DstTy);
295 
296   /// Emit a check that a conversion to or from a floating-point type does not
297   /// overflow.
298   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
299                                 Value *Src, QualType SrcType, QualType DstType,
300                                 llvm::Type *DstTy, SourceLocation Loc);
301 
302   /// Emit a conversion from the specified type to the specified destination
303   /// type, both of which are LLVM scalar types.
304   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
305                               SourceLocation Loc);
306 
307   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
308                               SourceLocation Loc, bool TreatBooleanAsSigned);
309 
310   /// Emit a conversion from the specified complex type to the specified
311   /// destination type, where the destination type is an LLVM scalar type.
312   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
313                                        QualType SrcTy, QualType DstTy,
314                                        SourceLocation Loc);
315 
316   /// EmitNullValue - Emit a value that corresponds to null for the given type.
317   Value *EmitNullValue(QualType Ty);
318 
319   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
320   Value *EmitFloatToBoolConversion(Value *V) {
321     // Compare against 0.0 for fp scalars.
322     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
323     return Builder.CreateFCmpUNE(V, Zero, "tobool");
324   }
325 
326   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
327   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
328     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
329 
330     return Builder.CreateICmpNE(V, Zero, "tobool");
331   }
332 
333   Value *EmitIntToBoolConversion(Value *V) {
334     // Because of the type rules of C, we often end up computing a
335     // logical value, then zero extending it to int, then wanting it
336     // as a logical value again.  Optimize this common case.
337     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
338       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
339         Value *Result = ZI->getOperand(0);
340         // If there aren't any more uses, zap the instruction to save space.
341         // Note that there can be more uses, for example if this
342         // is the result of an assignment.
343         if (ZI->use_empty())
344           ZI->eraseFromParent();
345         return Result;
346       }
347     }
348 
349     return Builder.CreateIsNotNull(V, "tobool");
350   }
351 
352   //===--------------------------------------------------------------------===//
353   //                            Visitor Methods
354   //===--------------------------------------------------------------------===//
355 
356   Value *Visit(Expr *E) {
357     ApplyDebugLocation DL(CGF, E);
358     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
359   }
360 
361   Value *VisitStmt(Stmt *S) {
362     S->dump(CGF.getContext().getSourceManager());
363     llvm_unreachable("Stmt can't have complex result type!");
364   }
365   Value *VisitExpr(Expr *S);
366 
367   Value *VisitParenExpr(ParenExpr *PE) {
368     return Visit(PE->getSubExpr());
369   }
370   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
371     return Visit(E->getReplacement());
372   }
373   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
374     return Visit(GE->getResultExpr());
375   }
376   Value *VisitCoawaitExpr(CoawaitExpr *S) {
377     return CGF.EmitCoawaitExpr(*S).getScalarVal();
378   }
379   Value *VisitCoyieldExpr(CoyieldExpr *S) {
380     return CGF.EmitCoyieldExpr(*S).getScalarVal();
381   }
382   Value *VisitUnaryCoawait(const UnaryOperator *E) {
383     return Visit(E->getSubExpr());
384   }
385 
386   // Leaves.
387   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
388     return Builder.getInt(E->getValue());
389   }
390   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
391     return llvm::ConstantFP::get(VMContext, E->getValue());
392   }
393   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
394     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
395   }
396   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
397     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
398   }
399   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
400     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
401   }
402   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
403     return EmitNullValue(E->getType());
404   }
405   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
406     return EmitNullValue(E->getType());
407   }
408   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
409   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
410   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
411     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
412     return Builder.CreateBitCast(V, ConvertType(E->getType()));
413   }
414 
415   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
416     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
417   }
418 
419   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
420     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
421   }
422 
423   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
424     if (E->isGLValue())
425       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
426                               E->getExprLoc());
427 
428     // Otherwise, assume the mapping is the scalar directly.
429     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
430   }
431 
432   Value *emitConstant(const CodeGenFunction::ConstantEmission &Constant,
433                       Expr *E) {
434     assert(Constant && "not a constant");
435     if (Constant.isReference())
436       return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E),
437                               E->getExprLoc());
438     return Constant.getValue();
439   }
440 
441   // l-values.
442   Value *VisitDeclRefExpr(DeclRefExpr *E) {
443     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
444       return emitConstant(Constant, E);
445     return EmitLoadOfLValue(E);
446   }
447 
448   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
449     return CGF.EmitObjCSelectorExpr(E);
450   }
451   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
452     return CGF.EmitObjCProtocolExpr(E);
453   }
454   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
455     return EmitLoadOfLValue(E);
456   }
457   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
458     if (E->getMethodDecl() &&
459         E->getMethodDecl()->getReturnType()->isReferenceType())
460       return EmitLoadOfLValue(E);
461     return CGF.EmitObjCMessageExpr(E).getScalarVal();
462   }
463 
464   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
465     LValue LV = CGF.EmitObjCIsaExpr(E);
466     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
467     return V;
468   }
469 
470   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
471     VersionTuple Version = E->getVersion();
472 
473     // If we're checking for a platform older than our minimum deployment
474     // target, we can fold the check away.
475     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
476       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
477 
478     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
479     llvm::Value *Args[] = {
480         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
481         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
482         llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
483     };
484 
485     return CGF.EmitBuiltinAvailable(Args);
486   }
487 
488   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
489   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
490   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
491   Value *VisitMemberExpr(MemberExpr *E);
492   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
493   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
494     return EmitLoadOfLValue(E);
495   }
496 
497   Value *VisitInitListExpr(InitListExpr *E);
498 
499   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
500     assert(CGF.getArrayInitIndex() &&
501            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
502     return CGF.getArrayInitIndex();
503   }
504 
505   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
506     return EmitNullValue(E->getType());
507   }
508   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
509     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
510     return VisitCastExpr(E);
511   }
512   Value *VisitCastExpr(CastExpr *E);
513 
514   Value *VisitCallExpr(const CallExpr *E) {
515     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
516       return EmitLoadOfLValue(E);
517 
518     Value *V = CGF.EmitCallExpr(E).getScalarVal();
519 
520     EmitLValueAlignmentAssumption(E, V);
521     return V;
522   }
523 
524   Value *VisitStmtExpr(const StmtExpr *E);
525 
526   // Unary Operators.
527   Value *VisitUnaryPostDec(const UnaryOperator *E) {
528     LValue LV = EmitLValue(E->getSubExpr());
529     return EmitScalarPrePostIncDec(E, LV, false, false);
530   }
531   Value *VisitUnaryPostInc(const UnaryOperator *E) {
532     LValue LV = EmitLValue(E->getSubExpr());
533     return EmitScalarPrePostIncDec(E, LV, true, false);
534   }
535   Value *VisitUnaryPreDec(const UnaryOperator *E) {
536     LValue LV = EmitLValue(E->getSubExpr());
537     return EmitScalarPrePostIncDec(E, LV, false, true);
538   }
539   Value *VisitUnaryPreInc(const UnaryOperator *E) {
540     LValue LV = EmitLValue(E->getSubExpr());
541     return EmitScalarPrePostIncDec(E, LV, true, true);
542   }
543 
544   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
545                                                   llvm::Value *InVal,
546                                                   bool IsInc);
547 
548   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
549                                        bool isInc, bool isPre);
550 
551 
552   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
553     if (isa<MemberPointerType>(E->getType())) // never sugared
554       return CGF.CGM.getMemberPointerConstant(E);
555 
556     return EmitLValue(E->getSubExpr()).getPointer();
557   }
558   Value *VisitUnaryDeref(const UnaryOperator *E) {
559     if (E->getType()->isVoidType())
560       return Visit(E->getSubExpr()); // the actual value should be unused
561     return EmitLoadOfLValue(E);
562   }
563   Value *VisitUnaryPlus(const UnaryOperator *E) {
564     // This differs from gcc, though, most likely due to a bug in gcc.
565     TestAndClearIgnoreResultAssign();
566     return Visit(E->getSubExpr());
567   }
568   Value *VisitUnaryMinus    (const UnaryOperator *E);
569   Value *VisitUnaryNot      (const UnaryOperator *E);
570   Value *VisitUnaryLNot     (const UnaryOperator *E);
571   Value *VisitUnaryReal     (const UnaryOperator *E);
572   Value *VisitUnaryImag     (const UnaryOperator *E);
573   Value *VisitUnaryExtension(const UnaryOperator *E) {
574     return Visit(E->getSubExpr());
575   }
576 
577   // C++
578   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
579     return EmitLoadOfLValue(E);
580   }
581 
582   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
583     return Visit(DAE->getExpr());
584   }
585   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
586     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
587     return Visit(DIE->getExpr());
588   }
589   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
590     return CGF.LoadCXXThis();
591   }
592 
593   Value *VisitExprWithCleanups(ExprWithCleanups *E);
594   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
595     return CGF.EmitCXXNewExpr(E);
596   }
597   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
598     CGF.EmitCXXDeleteExpr(E);
599     return nullptr;
600   }
601 
602   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
603     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
604   }
605 
606   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
607     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
608   }
609 
610   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
611     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
612   }
613 
614   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
615     // C++ [expr.pseudo]p1:
616     //   The result shall only be used as the operand for the function call
617     //   operator (), and the result of such a call has type void. The only
618     //   effect is the evaluation of the postfix-expression before the dot or
619     //   arrow.
620     CGF.EmitScalarExpr(E->getBase());
621     return nullptr;
622   }
623 
624   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
625     return EmitNullValue(E->getType());
626   }
627 
628   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
629     CGF.EmitCXXThrowExpr(E);
630     return nullptr;
631   }
632 
633   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
634     return Builder.getInt1(E->getValue());
635   }
636 
637   // Binary Operators.
638   Value *EmitMul(const BinOpInfo &Ops) {
639     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
640       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
641       case LangOptions::SOB_Defined:
642         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
643       case LangOptions::SOB_Undefined:
644         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
645           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
646         // Fall through.
647       case LangOptions::SOB_Trapping:
648         if (CanElideOverflowCheck(CGF.getContext(), Ops))
649           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
650         return EmitOverflowCheckedBinOp(Ops);
651       }
652     }
653 
654     if (Ops.Ty->isUnsignedIntegerType() &&
655         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
656         !CanElideOverflowCheck(CGF.getContext(), Ops))
657       return EmitOverflowCheckedBinOp(Ops);
658 
659     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
660       Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
661       return propagateFMFlags(V, Ops);
662     }
663     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
664   }
665   /// Create a binary op that checks for overflow.
666   /// Currently only supports +, - and *.
667   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
668 
669   // Check for undefined division and modulus behaviors.
670   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
671                                                   llvm::Value *Zero,bool isDiv);
672   // Common helper for getting how wide LHS of shift is.
673   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
674   Value *EmitDiv(const BinOpInfo &Ops);
675   Value *EmitRem(const BinOpInfo &Ops);
676   Value *EmitAdd(const BinOpInfo &Ops);
677   Value *EmitSub(const BinOpInfo &Ops);
678   Value *EmitShl(const BinOpInfo &Ops);
679   Value *EmitShr(const BinOpInfo &Ops);
680   Value *EmitAnd(const BinOpInfo &Ops) {
681     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
682   }
683   Value *EmitXor(const BinOpInfo &Ops) {
684     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
685   }
686   Value *EmitOr (const BinOpInfo &Ops) {
687     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
688   }
689 
690   BinOpInfo EmitBinOps(const BinaryOperator *E);
691   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
692                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
693                                   Value *&Result);
694 
695   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
696                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
697 
698   // Binary operators and binary compound assignment operators.
699 #define HANDLEBINOP(OP) \
700   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
701     return Emit ## OP(EmitBinOps(E));                                      \
702   }                                                                        \
703   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
704     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
705   }
706   HANDLEBINOP(Mul)
707   HANDLEBINOP(Div)
708   HANDLEBINOP(Rem)
709   HANDLEBINOP(Add)
710   HANDLEBINOP(Sub)
711   HANDLEBINOP(Shl)
712   HANDLEBINOP(Shr)
713   HANDLEBINOP(And)
714   HANDLEBINOP(Xor)
715   HANDLEBINOP(Or)
716 #undef HANDLEBINOP
717 
718   // Comparisons.
719   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
720                      llvm::CmpInst::Predicate SICmpOpc,
721                      llvm::CmpInst::Predicate FCmpOpc);
722 #define VISITCOMP(CODE, UI, SI, FP) \
723     Value *VisitBin##CODE(const BinaryOperator *E) { \
724       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
725                          llvm::FCmpInst::FP); }
726   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
727   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
728   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
729   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
730   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
731   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
732 #undef VISITCOMP
733 
734   Value *VisitBinAssign     (const BinaryOperator *E);
735 
736   Value *VisitBinLAnd       (const BinaryOperator *E);
737   Value *VisitBinLOr        (const BinaryOperator *E);
738   Value *VisitBinComma      (const BinaryOperator *E);
739 
740   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
741   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
742 
743   // Other Operators.
744   Value *VisitBlockExpr(const BlockExpr *BE);
745   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
746   Value *VisitChooseExpr(ChooseExpr *CE);
747   Value *VisitVAArgExpr(VAArgExpr *VE);
748   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
749     return CGF.EmitObjCStringLiteral(E);
750   }
751   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
752     return CGF.EmitObjCBoxedExpr(E);
753   }
754   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
755     return CGF.EmitObjCArrayLiteral(E);
756   }
757   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
758     return CGF.EmitObjCDictionaryLiteral(E);
759   }
760   Value *VisitAsTypeExpr(AsTypeExpr *CE);
761   Value *VisitAtomicExpr(AtomicExpr *AE);
762 };
763 }  // end anonymous namespace.
764 
765 //===----------------------------------------------------------------------===//
766 //                                Utilities
767 //===----------------------------------------------------------------------===//
768 
769 /// EmitConversionToBool - Convert the specified expression value to a
770 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
771 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
772   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
773 
774   if (SrcType->isRealFloatingType())
775     return EmitFloatToBoolConversion(Src);
776 
777   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
778     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
779 
780   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
781          "Unknown scalar type to convert");
782 
783   if (isa<llvm::IntegerType>(Src->getType()))
784     return EmitIntToBoolConversion(Src);
785 
786   assert(isa<llvm::PointerType>(Src->getType()));
787   return EmitPointerToBoolConversion(Src, SrcType);
788 }
789 
790 void ScalarExprEmitter::EmitFloatConversionCheck(
791     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
792     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
793   CodeGenFunction::SanitizerScope SanScope(&CGF);
794   using llvm::APFloat;
795   using llvm::APSInt;
796 
797   llvm::Type *SrcTy = Src->getType();
798 
799   llvm::Value *Check = nullptr;
800   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
801     // Integer to floating-point. This can fail for unsigned short -> __half
802     // or unsigned __int128 -> float.
803     assert(DstType->isFloatingType());
804     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
805 
806     APFloat LargestFloat =
807       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
808     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
809 
810     bool IsExact;
811     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
812                                       &IsExact) != APFloat::opOK)
813       // The range of representable values of this floating point type includes
814       // all values of this integer type. Don't need an overflow check.
815       return;
816 
817     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
818     if (SrcIsUnsigned)
819       Check = Builder.CreateICmpULE(Src, Max);
820     else {
821       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
822       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
823       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
824       Check = Builder.CreateAnd(GE, LE);
825     }
826   } else {
827     const llvm::fltSemantics &SrcSema =
828       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
829     if (isa<llvm::IntegerType>(DstTy)) {
830       // Floating-point to integer. This has undefined behavior if the source is
831       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
832       // to an integer).
833       unsigned Width = CGF.getContext().getIntWidth(DstType);
834       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
835 
836       APSInt Min = APSInt::getMinValue(Width, Unsigned);
837       APFloat MinSrc(SrcSema, APFloat::uninitialized);
838       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
839           APFloat::opOverflow)
840         // Don't need an overflow check for lower bound. Just check for
841         // -Inf/NaN.
842         MinSrc = APFloat::getInf(SrcSema, true);
843       else
844         // Find the largest value which is too small to represent (before
845         // truncation toward zero).
846         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
847 
848       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
849       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
850       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
851           APFloat::opOverflow)
852         // Don't need an overflow check for upper bound. Just check for
853         // +Inf/NaN.
854         MaxSrc = APFloat::getInf(SrcSema, false);
855       else
856         // Find the smallest value which is too large to represent (before
857         // truncation toward zero).
858         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
859 
860       // If we're converting from __half, convert the range to float to match
861       // the type of src.
862       if (OrigSrcType->isHalfType()) {
863         const llvm::fltSemantics &Sema =
864           CGF.getContext().getFloatTypeSemantics(SrcType);
865         bool IsInexact;
866         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
867         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
868       }
869 
870       llvm::Value *GE =
871         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
872       llvm::Value *LE =
873         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
874       Check = Builder.CreateAnd(GE, LE);
875     } else {
876       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
877       //
878       // Floating-point to floating-point. This has undefined behavior if the
879       // source is not in the range of representable values of the destination
880       // type. The C and C++ standards are spectacularly unclear here. We
881       // diagnose finite out-of-range conversions, but allow infinities and NaNs
882       // to convert to the corresponding value in the smaller type.
883       //
884       // C11 Annex F gives all such conversions defined behavior for IEC 60559
885       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
886       // does not.
887 
888       // Converting from a lower rank to a higher rank can never have
889       // undefined behavior, since higher-rank types must have a superset
890       // of values of lower-rank types.
891       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
892         return;
893 
894       assert(!OrigSrcType->isHalfType() &&
895              "should not check conversion from __half, it has the lowest rank");
896 
897       const llvm::fltSemantics &DstSema =
898         CGF.getContext().getFloatTypeSemantics(DstType);
899       APFloat MinBad = APFloat::getLargest(DstSema, false);
900       APFloat MaxBad = APFloat::getInf(DstSema, false);
901 
902       bool IsInexact;
903       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
904       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
905 
906       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
907         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
908       llvm::Value *GE =
909         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
910       llvm::Value *LE =
911         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
912       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
913     }
914   }
915 
916   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
917                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
918                                   CGF.EmitCheckTypeDescriptor(DstType)};
919   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
920                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
921 }
922 
923 /// Emit a conversion from the specified type to the specified destination type,
924 /// both of which are LLVM scalar types.
925 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
926                                                QualType DstType,
927                                                SourceLocation Loc) {
928   return EmitScalarConversion(Src, SrcType, DstType, Loc, false);
929 }
930 
931 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
932                                                QualType DstType,
933                                                SourceLocation Loc,
934                                                bool TreatBooleanAsSigned) {
935   SrcType = CGF.getContext().getCanonicalType(SrcType);
936   DstType = CGF.getContext().getCanonicalType(DstType);
937   if (SrcType == DstType) return Src;
938 
939   if (DstType->isVoidType()) return nullptr;
940 
941   llvm::Value *OrigSrc = Src;
942   QualType OrigSrcType = SrcType;
943   llvm::Type *SrcTy = Src->getType();
944 
945   // Handle conversions to bool first, they are special: comparisons against 0.
946   if (DstType->isBooleanType())
947     return EmitConversionToBool(Src, SrcType);
948 
949   llvm::Type *DstTy = ConvertType(DstType);
950 
951   // Cast from half through float if half isn't a native type.
952   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
953     // Cast to FP using the intrinsic if the half type itself isn't supported.
954     if (DstTy->isFloatingPointTy()) {
955       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
956         return Builder.CreateCall(
957             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
958             Src);
959     } else {
960       // Cast to other types through float, using either the intrinsic or FPExt,
961       // depending on whether the half type itself is supported
962       // (as opposed to operations on half, available with NativeHalfType).
963       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
964         Src = Builder.CreateCall(
965             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
966                                  CGF.CGM.FloatTy),
967             Src);
968       } else {
969         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
970       }
971       SrcType = CGF.getContext().FloatTy;
972       SrcTy = CGF.FloatTy;
973     }
974   }
975 
976   // Ignore conversions like int -> uint.
977   if (SrcTy == DstTy)
978     return Src;
979 
980   // Handle pointer conversions next: pointers can only be converted to/from
981   // other pointers and integers. Check for pointer types in terms of LLVM, as
982   // some native types (like Obj-C id) may map to a pointer type.
983   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
984     // The source value may be an integer, or a pointer.
985     if (isa<llvm::PointerType>(SrcTy))
986       return Builder.CreateBitCast(Src, DstTy, "conv");
987 
988     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
989     // First, convert to the correct width so that we control the kind of
990     // extension.
991     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
992     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
993     llvm::Value* IntResult =
994         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
995     // Then, cast to pointer.
996     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
997   }
998 
999   if (isa<llvm::PointerType>(SrcTy)) {
1000     // Must be an ptr to int cast.
1001     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1002     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1003   }
1004 
1005   // A scalar can be splatted to an extended vector of the same element type
1006   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1007     // Sema should add casts to make sure that the source expression's type is
1008     // the same as the vector's element type (sans qualifiers)
1009     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1010                SrcType.getTypePtr() &&
1011            "Splatted expr doesn't match with vector element type?");
1012 
1013     // Splat the element across to all elements
1014     unsigned NumElements = DstTy->getVectorNumElements();
1015     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1016   }
1017 
1018   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1019     // Allow bitcast from vector to integer/fp of the same size.
1020     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1021     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1022     if (SrcSize == DstSize)
1023       return Builder.CreateBitCast(Src, DstTy, "conv");
1024 
1025     // Conversions between vectors of different sizes are not allowed except
1026     // when vectors of half are involved. Operations on storage-only half
1027     // vectors require promoting half vector operands to float vectors and
1028     // truncating the result, which is either an int or float vector, to a
1029     // short or half vector.
1030 
1031     // Source and destination are both expected to be vectors.
1032     llvm::Type *SrcElementTy = SrcTy->getVectorElementType();
1033     llvm::Type *DstElementTy = DstTy->getVectorElementType();
1034     (void)DstElementTy;
1035 
1036     assert(((SrcElementTy->isIntegerTy() &&
1037              DstElementTy->isIntegerTy()) ||
1038             (SrcElementTy->isFloatingPointTy() &&
1039              DstElementTy->isFloatingPointTy())) &&
1040            "unexpected conversion between a floating-point vector and an "
1041            "integer vector");
1042 
1043     // Truncate an i32 vector to an i16 vector.
1044     if (SrcElementTy->isIntegerTy())
1045       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1046 
1047     // Truncate a float vector to a half vector.
1048     if (SrcSize > DstSize)
1049       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1050 
1051     // Promote a half vector to a float vector.
1052     return Builder.CreateFPExt(Src, DstTy, "conv");
1053   }
1054 
1055   // Finally, we have the arithmetic types: real int/float.
1056   Value *Res = nullptr;
1057   llvm::Type *ResTy = DstTy;
1058 
1059   // An overflowing conversion has undefined behavior if either the source type
1060   // or the destination type is a floating-point type.
1061   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1062       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
1063     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1064                              Loc);
1065 
1066   // Cast to half through float if half isn't a native type.
1067   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1068     // Make sure we cast in a single step if from another FP type.
1069     if (SrcTy->isFloatingPointTy()) {
1070       // Use the intrinsic if the half type itself isn't supported
1071       // (as opposed to operations on half, available with NativeHalfType).
1072       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1073         return Builder.CreateCall(
1074             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1075       // If the half type is supported, just use an fptrunc.
1076       return Builder.CreateFPTrunc(Src, DstTy);
1077     }
1078     DstTy = CGF.FloatTy;
1079   }
1080 
1081   if (isa<llvm::IntegerType>(SrcTy)) {
1082     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1083     if (SrcType->isBooleanType() && TreatBooleanAsSigned) {
1084       InputSigned = true;
1085     }
1086     if (isa<llvm::IntegerType>(DstTy))
1087       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1088     else if (InputSigned)
1089       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1090     else
1091       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1092   } else if (isa<llvm::IntegerType>(DstTy)) {
1093     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1094     if (DstType->isSignedIntegerOrEnumerationType())
1095       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1096     else
1097       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1098   } else {
1099     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1100            "Unknown real conversion");
1101     if (DstTy->getTypeID() < SrcTy->getTypeID())
1102       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1103     else
1104       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1105   }
1106 
1107   if (DstTy != ResTy) {
1108     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1109       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1110       Res = Builder.CreateCall(
1111         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1112         Res);
1113     } else {
1114       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1115     }
1116   }
1117 
1118   return Res;
1119 }
1120 
1121 /// Emit a conversion from the specified complex type to the specified
1122 /// destination type, where the destination type is an LLVM scalar type.
1123 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1124     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1125     SourceLocation Loc) {
1126   // Get the source element type.
1127   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1128 
1129   // Handle conversions to bool first, they are special: comparisons against 0.
1130   if (DstTy->isBooleanType()) {
1131     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1132     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1133     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1134     return Builder.CreateOr(Src.first, Src.second, "tobool");
1135   }
1136 
1137   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1138   // the imaginary part of the complex value is discarded and the value of the
1139   // real part is converted according to the conversion rules for the
1140   // corresponding real type.
1141   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1142 }
1143 
1144 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1145   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1146 }
1147 
1148 /// Emit a sanitization check for the given "binary" operation (which
1149 /// might actually be a unary increment which has been lowered to a binary
1150 /// operation). The check passes if all values in \p Checks (which are \c i1),
1151 /// are \c true.
1152 void ScalarExprEmitter::EmitBinOpCheck(
1153     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1154   assert(CGF.IsSanitizerScope);
1155   SanitizerHandler Check;
1156   SmallVector<llvm::Constant *, 4> StaticData;
1157   SmallVector<llvm::Value *, 2> DynamicData;
1158 
1159   BinaryOperatorKind Opcode = Info.Opcode;
1160   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1161     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1162 
1163   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1164   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1165   if (UO && UO->getOpcode() == UO_Minus) {
1166     Check = SanitizerHandler::NegateOverflow;
1167     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1168     DynamicData.push_back(Info.RHS);
1169   } else {
1170     if (BinaryOperator::isShiftOp(Opcode)) {
1171       // Shift LHS negative or too large, or RHS out of bounds.
1172       Check = SanitizerHandler::ShiftOutOfBounds;
1173       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1174       StaticData.push_back(
1175         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1176       StaticData.push_back(
1177         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1178     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1179       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1180       Check = SanitizerHandler::DivremOverflow;
1181       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1182     } else {
1183       // Arithmetic overflow (+, -, *).
1184       switch (Opcode) {
1185       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1186       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1187       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1188       default: llvm_unreachable("unexpected opcode for bin op check");
1189       }
1190       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1191     }
1192     DynamicData.push_back(Info.LHS);
1193     DynamicData.push_back(Info.RHS);
1194   }
1195 
1196   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1197 }
1198 
1199 //===----------------------------------------------------------------------===//
1200 //                            Visitor Methods
1201 //===----------------------------------------------------------------------===//
1202 
1203 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1204   CGF.ErrorUnsupported(E, "scalar expression");
1205   if (E->getType()->isVoidType())
1206     return nullptr;
1207   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1208 }
1209 
1210 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1211   // Vector Mask Case
1212   if (E->getNumSubExprs() == 2) {
1213     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1214     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1215     Value *Mask;
1216 
1217     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1218     unsigned LHSElts = LTy->getNumElements();
1219 
1220     Mask = RHS;
1221 
1222     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1223 
1224     // Mask off the high bits of each shuffle index.
1225     Value *MaskBits =
1226         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1227     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1228 
1229     // newv = undef
1230     // mask = mask & maskbits
1231     // for each elt
1232     //   n = extract mask i
1233     //   x = extract val n
1234     //   newv = insert newv, x, i
1235     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1236                                                   MTy->getNumElements());
1237     Value* NewV = llvm::UndefValue::get(RTy);
1238     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1239       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1240       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1241 
1242       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1243       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1244     }
1245     return NewV;
1246   }
1247 
1248   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1249   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1250 
1251   SmallVector<llvm::Constant*, 32> indices;
1252   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1253     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1254     // Check for -1 and output it as undef in the IR.
1255     if (Idx.isSigned() && Idx.isAllOnesValue())
1256       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1257     else
1258       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1259   }
1260 
1261   Value *SV = llvm::ConstantVector::get(indices);
1262   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1263 }
1264 
1265 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1266   QualType SrcType = E->getSrcExpr()->getType(),
1267            DstType = E->getType();
1268 
1269   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1270 
1271   SrcType = CGF.getContext().getCanonicalType(SrcType);
1272   DstType = CGF.getContext().getCanonicalType(DstType);
1273   if (SrcType == DstType) return Src;
1274 
1275   assert(SrcType->isVectorType() &&
1276          "ConvertVector source type must be a vector");
1277   assert(DstType->isVectorType() &&
1278          "ConvertVector destination type must be a vector");
1279 
1280   llvm::Type *SrcTy = Src->getType();
1281   llvm::Type *DstTy = ConvertType(DstType);
1282 
1283   // Ignore conversions like int -> uint.
1284   if (SrcTy == DstTy)
1285     return Src;
1286 
1287   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1288            DstEltType = DstType->getAs<VectorType>()->getElementType();
1289 
1290   assert(SrcTy->isVectorTy() &&
1291          "ConvertVector source IR type must be a vector");
1292   assert(DstTy->isVectorTy() &&
1293          "ConvertVector destination IR type must be a vector");
1294 
1295   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1296              *DstEltTy = DstTy->getVectorElementType();
1297 
1298   if (DstEltType->isBooleanType()) {
1299     assert((SrcEltTy->isFloatingPointTy() ||
1300             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1301 
1302     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1303     if (SrcEltTy->isFloatingPointTy()) {
1304       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1305     } else {
1306       return Builder.CreateICmpNE(Src, Zero, "tobool");
1307     }
1308   }
1309 
1310   // We have the arithmetic types: real int/float.
1311   Value *Res = nullptr;
1312 
1313   if (isa<llvm::IntegerType>(SrcEltTy)) {
1314     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1315     if (isa<llvm::IntegerType>(DstEltTy))
1316       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1317     else if (InputSigned)
1318       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1319     else
1320       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1321   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1322     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1323     if (DstEltType->isSignedIntegerOrEnumerationType())
1324       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1325     else
1326       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1327   } else {
1328     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1329            "Unknown real conversion");
1330     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1331       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1332     else
1333       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1334   }
1335 
1336   return Res;
1337 }
1338 
1339 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1340   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1341     CGF.EmitIgnoredExpr(E->getBase());
1342     return emitConstant(Constant, E);
1343   } else {
1344     llvm::APSInt Value;
1345     if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1346       CGF.EmitIgnoredExpr(E->getBase());
1347       return Builder.getInt(Value);
1348     }
1349   }
1350 
1351   return EmitLoadOfLValue(E);
1352 }
1353 
1354 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1355   TestAndClearIgnoreResultAssign();
1356 
1357   // Emit subscript expressions in rvalue context's.  For most cases, this just
1358   // loads the lvalue formed by the subscript expr.  However, we have to be
1359   // careful, because the base of a vector subscript is occasionally an rvalue,
1360   // so we can't get it as an lvalue.
1361   if (!E->getBase()->getType()->isVectorType())
1362     return EmitLoadOfLValue(E);
1363 
1364   // Handle the vector case.  The base must be a vector, the index must be an
1365   // integer value.
1366   Value *Base = Visit(E->getBase());
1367   Value *Idx  = Visit(E->getIdx());
1368   QualType IdxTy = E->getIdx()->getType();
1369 
1370   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1371     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1372 
1373   return Builder.CreateExtractElement(Base, Idx, "vecext");
1374 }
1375 
1376 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1377                                   unsigned Off, llvm::Type *I32Ty) {
1378   int MV = SVI->getMaskValue(Idx);
1379   if (MV == -1)
1380     return llvm::UndefValue::get(I32Ty);
1381   return llvm::ConstantInt::get(I32Ty, Off+MV);
1382 }
1383 
1384 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1385   if (C->getBitWidth() != 32) {
1386       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1387                                                     C->getZExtValue()) &&
1388              "Index operand too large for shufflevector mask!");
1389       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1390   }
1391   return C;
1392 }
1393 
1394 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1395   bool Ignore = TestAndClearIgnoreResultAssign();
1396   (void)Ignore;
1397   assert (Ignore == false && "init list ignored");
1398   unsigned NumInitElements = E->getNumInits();
1399 
1400   if (E->hadArrayRangeDesignator())
1401     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1402 
1403   llvm::VectorType *VType =
1404     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1405 
1406   if (!VType) {
1407     if (NumInitElements == 0) {
1408       // C++11 value-initialization for the scalar.
1409       return EmitNullValue(E->getType());
1410     }
1411     // We have a scalar in braces. Just use the first element.
1412     return Visit(E->getInit(0));
1413   }
1414 
1415   unsigned ResElts = VType->getNumElements();
1416 
1417   // Loop over initializers collecting the Value for each, and remembering
1418   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1419   // us to fold the shuffle for the swizzle into the shuffle for the vector
1420   // initializer, since LLVM optimizers generally do not want to touch
1421   // shuffles.
1422   unsigned CurIdx = 0;
1423   bool VIsUndefShuffle = false;
1424   llvm::Value *V = llvm::UndefValue::get(VType);
1425   for (unsigned i = 0; i != NumInitElements; ++i) {
1426     Expr *IE = E->getInit(i);
1427     Value *Init = Visit(IE);
1428     SmallVector<llvm::Constant*, 16> Args;
1429 
1430     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1431 
1432     // Handle scalar elements.  If the scalar initializer is actually one
1433     // element of a different vector of the same width, use shuffle instead of
1434     // extract+insert.
1435     if (!VVT) {
1436       if (isa<ExtVectorElementExpr>(IE)) {
1437         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1438 
1439         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1440           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1441           Value *LHS = nullptr, *RHS = nullptr;
1442           if (CurIdx == 0) {
1443             // insert into undef -> shuffle (src, undef)
1444             // shufflemask must use an i32
1445             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1446             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1447 
1448             LHS = EI->getVectorOperand();
1449             RHS = V;
1450             VIsUndefShuffle = true;
1451           } else if (VIsUndefShuffle) {
1452             // insert into undefshuffle && size match -> shuffle (v, src)
1453             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1454             for (unsigned j = 0; j != CurIdx; ++j)
1455               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1456             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1457             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1458 
1459             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1460             RHS = EI->getVectorOperand();
1461             VIsUndefShuffle = false;
1462           }
1463           if (!Args.empty()) {
1464             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1465             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1466             ++CurIdx;
1467             continue;
1468           }
1469         }
1470       }
1471       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1472                                       "vecinit");
1473       VIsUndefShuffle = false;
1474       ++CurIdx;
1475       continue;
1476     }
1477 
1478     unsigned InitElts = VVT->getNumElements();
1479 
1480     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1481     // input is the same width as the vector being constructed, generate an
1482     // optimized shuffle of the swizzle input into the result.
1483     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1484     if (isa<ExtVectorElementExpr>(IE)) {
1485       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1486       Value *SVOp = SVI->getOperand(0);
1487       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1488 
1489       if (OpTy->getNumElements() == ResElts) {
1490         for (unsigned j = 0; j != CurIdx; ++j) {
1491           // If the current vector initializer is a shuffle with undef, merge
1492           // this shuffle directly into it.
1493           if (VIsUndefShuffle) {
1494             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1495                                       CGF.Int32Ty));
1496           } else {
1497             Args.push_back(Builder.getInt32(j));
1498           }
1499         }
1500         for (unsigned j = 0, je = InitElts; j != je; ++j)
1501           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1502         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1503 
1504         if (VIsUndefShuffle)
1505           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1506 
1507         Init = SVOp;
1508       }
1509     }
1510 
1511     // Extend init to result vector length, and then shuffle its contribution
1512     // to the vector initializer into V.
1513     if (Args.empty()) {
1514       for (unsigned j = 0; j != InitElts; ++j)
1515         Args.push_back(Builder.getInt32(j));
1516       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1517       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1518       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1519                                          Mask, "vext");
1520 
1521       Args.clear();
1522       for (unsigned j = 0; j != CurIdx; ++j)
1523         Args.push_back(Builder.getInt32(j));
1524       for (unsigned j = 0; j != InitElts; ++j)
1525         Args.push_back(Builder.getInt32(j+Offset));
1526       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1527     }
1528 
1529     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1530     // merging subsequent shuffles into this one.
1531     if (CurIdx == 0)
1532       std::swap(V, Init);
1533     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1534     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1535     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1536     CurIdx += InitElts;
1537   }
1538 
1539   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1540   // Emit remaining default initializers.
1541   llvm::Type *EltTy = VType->getElementType();
1542 
1543   // Emit remaining default initializers
1544   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1545     Value *Idx = Builder.getInt32(CurIdx);
1546     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1547     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1548   }
1549   return V;
1550 }
1551 
1552 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1553   const Expr *E = CE->getSubExpr();
1554 
1555   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1556     return false;
1557 
1558   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1559     // We always assume that 'this' is never null.
1560     return false;
1561   }
1562 
1563   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1564     // And that glvalue casts are never null.
1565     if (ICE->getValueKind() != VK_RValue)
1566       return false;
1567   }
1568 
1569   return true;
1570 }
1571 
1572 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1573 // have to handle a more broad range of conversions than explicit casts, as they
1574 // handle things like function to ptr-to-function decay etc.
1575 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1576   Expr *E = CE->getSubExpr();
1577   QualType DestTy = CE->getType();
1578   CastKind Kind = CE->getCastKind();
1579 
1580   // These cases are generally not written to ignore the result of
1581   // evaluating their sub-expressions, so we clear this now.
1582   bool Ignored = TestAndClearIgnoreResultAssign();
1583 
1584   // Since almost all cast kinds apply to scalars, this switch doesn't have
1585   // a default case, so the compiler will warn on a missing case.  The cases
1586   // are in the same order as in the CastKind enum.
1587   switch (Kind) {
1588   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1589   case CK_BuiltinFnToFnPtr:
1590     llvm_unreachable("builtin functions are handled elsewhere");
1591 
1592   case CK_LValueBitCast:
1593   case CK_ObjCObjectLValueCast: {
1594     Address Addr = EmitLValue(E).getAddress();
1595     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1596     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1597     return EmitLoadOfLValue(LV, CE->getExprLoc());
1598   }
1599 
1600   case CK_CPointerToObjCPointerCast:
1601   case CK_BlockPointerToObjCPointerCast:
1602   case CK_AnyPointerToBlockPointerCast:
1603   case CK_BitCast: {
1604     Value *Src = Visit(const_cast<Expr*>(E));
1605     llvm::Type *SrcTy = Src->getType();
1606     llvm::Type *DstTy = ConvertType(DestTy);
1607     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1608         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1609       llvm_unreachable("wrong cast for pointers in different address spaces"
1610                        "(must be an address space cast)!");
1611     }
1612 
1613     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1614       if (auto PT = DestTy->getAs<PointerType>())
1615         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1616                                       /*MayBeNull=*/true,
1617                                       CodeGenFunction::CFITCK_UnrelatedCast,
1618                                       CE->getLocStart());
1619     }
1620 
1621     return Builder.CreateBitCast(Src, DstTy);
1622   }
1623   case CK_AddressSpaceConversion: {
1624     Expr::EvalResult Result;
1625     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
1626         Result.Val.isNullPointer()) {
1627       // If E has side effect, it is emitted even if its final result is a
1628       // null pointer. In that case, a DCE pass should be able to
1629       // eliminate the useless instructions emitted during translating E.
1630       if (Result.HasSideEffects)
1631         Visit(E);
1632       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
1633           ConvertType(DestTy)), DestTy);
1634     }
1635     // Since target may map different address spaces in AST to the same address
1636     // space, an address space conversion may end up as a bitcast.
1637     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
1638         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
1639         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
1640   }
1641   case CK_AtomicToNonAtomic:
1642   case CK_NonAtomicToAtomic:
1643   case CK_NoOp:
1644   case CK_UserDefinedConversion:
1645     return Visit(const_cast<Expr*>(E));
1646 
1647   case CK_BaseToDerived: {
1648     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1649     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1650 
1651     Address Base = CGF.EmitPointerWithAlignment(E);
1652     Address Derived =
1653       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
1654                                    CE->path_begin(), CE->path_end(),
1655                                    CGF.ShouldNullCheckClassCastValue(CE));
1656 
1657     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1658     // performed and the object is not of the derived type.
1659     if (CGF.sanitizePerformTypeCheck())
1660       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1661                         Derived.getPointer(), DestTy->getPointeeType());
1662 
1663     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1664       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
1665                                     Derived.getPointer(),
1666                                     /*MayBeNull=*/true,
1667                                     CodeGenFunction::CFITCK_DerivedCast,
1668                                     CE->getLocStart());
1669 
1670     return Derived.getPointer();
1671   }
1672   case CK_UncheckedDerivedToBase:
1673   case CK_DerivedToBase: {
1674     // The EmitPointerWithAlignment path does this fine; just discard
1675     // the alignment.
1676     return CGF.EmitPointerWithAlignment(CE).getPointer();
1677   }
1678 
1679   case CK_Dynamic: {
1680     Address V = CGF.EmitPointerWithAlignment(E);
1681     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1682     return CGF.EmitDynamicCast(V, DCE);
1683   }
1684 
1685   case CK_ArrayToPointerDecay:
1686     return CGF.EmitArrayToPointerDecay(E).getPointer();
1687   case CK_FunctionToPointerDecay:
1688     return EmitLValue(E).getPointer();
1689 
1690   case CK_NullToPointer:
1691     if (MustVisitNullValue(E))
1692       (void) Visit(E);
1693 
1694     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
1695                               DestTy);
1696 
1697   case CK_NullToMemberPointer: {
1698     if (MustVisitNullValue(E))
1699       (void) Visit(E);
1700 
1701     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1702     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1703   }
1704 
1705   case CK_ReinterpretMemberPointer:
1706   case CK_BaseToDerivedMemberPointer:
1707   case CK_DerivedToBaseMemberPointer: {
1708     Value *Src = Visit(E);
1709 
1710     // Note that the AST doesn't distinguish between checked and
1711     // unchecked member pointer conversions, so we always have to
1712     // implement checked conversions here.  This is inefficient when
1713     // actual control flow may be required in order to perform the
1714     // check, which it is for data member pointers (but not member
1715     // function pointers on Itanium and ARM).
1716     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1717   }
1718 
1719   case CK_ARCProduceObject:
1720     return CGF.EmitARCRetainScalarExpr(E);
1721   case CK_ARCConsumeObject:
1722     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1723   case CK_ARCReclaimReturnedObject:
1724     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
1725   case CK_ARCExtendBlockObject:
1726     return CGF.EmitARCExtendBlockObject(E);
1727 
1728   case CK_CopyAndAutoreleaseBlockObject:
1729     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1730 
1731   case CK_FloatingRealToComplex:
1732   case CK_FloatingComplexCast:
1733   case CK_IntegralRealToComplex:
1734   case CK_IntegralComplexCast:
1735   case CK_IntegralComplexToFloatingComplex:
1736   case CK_FloatingComplexToIntegralComplex:
1737   case CK_ConstructorConversion:
1738   case CK_ToUnion:
1739     llvm_unreachable("scalar cast to non-scalar value");
1740 
1741   case CK_LValueToRValue:
1742     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1743     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1744     return Visit(const_cast<Expr*>(E));
1745 
1746   case CK_IntegralToPointer: {
1747     Value *Src = Visit(const_cast<Expr*>(E));
1748 
1749     // First, convert to the correct width so that we control the kind of
1750     // extension.
1751     auto DestLLVMTy = ConvertType(DestTy);
1752     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
1753     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1754     llvm::Value* IntResult =
1755       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1756 
1757     return Builder.CreateIntToPtr(IntResult, DestLLVMTy);
1758   }
1759   case CK_PointerToIntegral:
1760     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1761     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1762 
1763   case CK_ToVoid: {
1764     CGF.EmitIgnoredExpr(E);
1765     return nullptr;
1766   }
1767   case CK_VectorSplat: {
1768     llvm::Type *DstTy = ConvertType(DestTy);
1769     Value *Elt = Visit(const_cast<Expr*>(E));
1770     // Splat the element across to all elements
1771     unsigned NumElements = DstTy->getVectorNumElements();
1772     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1773   }
1774 
1775   case CK_IntegralCast:
1776   case CK_IntegralToFloating:
1777   case CK_FloatingToIntegral:
1778   case CK_FloatingCast:
1779     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1780                                 CE->getExprLoc());
1781   case CK_BooleanToSignedIntegral:
1782     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1783                                 CE->getExprLoc(),
1784                                 /*TreatBooleanAsSigned=*/true);
1785   case CK_IntegralToBoolean:
1786     return EmitIntToBoolConversion(Visit(E));
1787   case CK_PointerToBoolean:
1788     return EmitPointerToBoolConversion(Visit(E), E->getType());
1789   case CK_FloatingToBoolean:
1790     return EmitFloatToBoolConversion(Visit(E));
1791   case CK_MemberPointerToBoolean: {
1792     llvm::Value *MemPtr = Visit(E);
1793     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1794     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1795   }
1796 
1797   case CK_FloatingComplexToReal:
1798   case CK_IntegralComplexToReal:
1799     return CGF.EmitComplexExpr(E, false, true).first;
1800 
1801   case CK_FloatingComplexToBoolean:
1802   case CK_IntegralComplexToBoolean: {
1803     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1804 
1805     // TODO: kill this function off, inline appropriate case here
1806     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
1807                                          CE->getExprLoc());
1808   }
1809 
1810   case CK_ZeroToOCLEvent: {
1811     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1812     return llvm::Constant::getNullValue(ConvertType(DestTy));
1813   }
1814 
1815   case CK_ZeroToOCLQueue: {
1816     assert(DestTy->isQueueT() && "CK_ZeroToOCLQueue cast on non queue_t type");
1817     return llvm::Constant::getNullValue(ConvertType(DestTy));
1818   }
1819 
1820   case CK_IntToOCLSampler:
1821     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
1822 
1823   } // end of switch
1824 
1825   llvm_unreachable("unknown scalar cast");
1826 }
1827 
1828 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1829   CodeGenFunction::StmtExprEvaluation eval(CGF);
1830   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1831                                            !E->getType()->isVoidType());
1832   if (!RetAlloca.isValid())
1833     return nullptr;
1834   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1835                               E->getExprLoc());
1836 }
1837 
1838 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1839   CGF.enterFullExpression(E);
1840   CodeGenFunction::RunCleanupsScope Scope(CGF);
1841   Value *V = Visit(E->getSubExpr());
1842   // Defend against dominance problems caused by jumps out of expression
1843   // evaluation through the shared cleanup block.
1844   Scope.ForceCleanup({&V});
1845   return V;
1846 }
1847 
1848 //===----------------------------------------------------------------------===//
1849 //                             Unary Operators
1850 //===----------------------------------------------------------------------===//
1851 
1852 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1853                                            llvm::Value *InVal, bool IsInc) {
1854   BinOpInfo BinOp;
1855   BinOp.LHS = InVal;
1856   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1857   BinOp.Ty = E->getType();
1858   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1859   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
1860   BinOp.E = E;
1861   return BinOp;
1862 }
1863 
1864 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1865     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1866   llvm::Value *Amount =
1867       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1868   StringRef Name = IsInc ? "inc" : "dec";
1869   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1870   case LangOptions::SOB_Defined:
1871     return Builder.CreateAdd(InVal, Amount, Name);
1872   case LangOptions::SOB_Undefined:
1873     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1874       return Builder.CreateNSWAdd(InVal, Amount, Name);
1875     // Fall through.
1876   case LangOptions::SOB_Trapping:
1877     if (!E->canOverflow())
1878       return Builder.CreateNSWAdd(InVal, Amount, Name);
1879     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1880   }
1881   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1882 }
1883 
1884 llvm::Value *
1885 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1886                                            bool isInc, bool isPre) {
1887 
1888   QualType type = E->getSubExpr()->getType();
1889   llvm::PHINode *atomicPHI = nullptr;
1890   llvm::Value *value;
1891   llvm::Value *input;
1892 
1893   int amount = (isInc ? 1 : -1);
1894   bool isSubtraction = !isInc;
1895 
1896   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1897     type = atomicTy->getValueType();
1898     if (isInc && type->isBooleanType()) {
1899       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1900       if (isPre) {
1901         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
1902           ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
1903         return Builder.getTrue();
1904       }
1905       // For atomic bool increment, we just store true and return it for
1906       // preincrement, do an atomic swap with true for postincrement
1907       return Builder.CreateAtomicRMW(
1908           llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
1909           llvm::AtomicOrdering::SequentiallyConsistent);
1910     }
1911     // Special case for atomic increment / decrement on integers, emit
1912     // atomicrmw instructions.  We skip this if we want to be doing overflow
1913     // checking, and fall into the slow path with the atomic cmpxchg loop.
1914     if (!type->isBooleanType() && type->isIntegerType() &&
1915         !(type->isUnsignedIntegerType() &&
1916           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1917         CGF.getLangOpts().getSignedOverflowBehavior() !=
1918             LangOptions::SOB_Trapping) {
1919       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1920         llvm::AtomicRMWInst::Sub;
1921       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1922         llvm::Instruction::Sub;
1923       llvm::Value *amt = CGF.EmitToMemory(
1924           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1925       llvm::Value *old = Builder.CreateAtomicRMW(aop,
1926           LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
1927       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1928     }
1929     value = EmitLoadOfLValue(LV, E->getExprLoc());
1930     input = value;
1931     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1932     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1933     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1934     value = CGF.EmitToMemory(value, type);
1935     Builder.CreateBr(opBB);
1936     Builder.SetInsertPoint(opBB);
1937     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1938     atomicPHI->addIncoming(value, startBB);
1939     value = atomicPHI;
1940   } else {
1941     value = EmitLoadOfLValue(LV, E->getExprLoc());
1942     input = value;
1943   }
1944 
1945   // Special case of integer increment that we have to check first: bool++.
1946   // Due to promotion rules, we get:
1947   //   bool++ -> bool = bool + 1
1948   //          -> bool = (int)bool + 1
1949   //          -> bool = ((int)bool + 1 != 0)
1950   // An interesting aspect of this is that increment is always true.
1951   // Decrement does not have this property.
1952   if (isInc && type->isBooleanType()) {
1953     value = Builder.getTrue();
1954 
1955   // Most common case by far: integer increment.
1956   } else if (type->isIntegerType()) {
1957     // Note that signed integer inc/dec with width less than int can't
1958     // overflow because of promotion rules; we're just eliding a few steps here.
1959     if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
1960       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1961     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
1962                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1963       value =
1964           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1965     } else {
1966       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1967       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1968     }
1969 
1970   // Next most common: pointer increment.
1971   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1972     QualType type = ptr->getPointeeType();
1973 
1974     // VLA types don't have constant size.
1975     if (const VariableArrayType *vla
1976           = CGF.getContext().getAsVariableArrayType(type)) {
1977       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
1978       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1979       if (CGF.getLangOpts().isSignedOverflowDefined())
1980         value = Builder.CreateGEP(value, numElts, "vla.inc");
1981       else
1982         value = CGF.EmitCheckedInBoundsGEP(
1983             value, numElts, /*SignedIndices=*/false, isSubtraction,
1984             E->getExprLoc(), "vla.inc");
1985 
1986     // Arithmetic on function pointers (!) is just +-1.
1987     } else if (type->isFunctionType()) {
1988       llvm::Value *amt = Builder.getInt32(amount);
1989 
1990       value = CGF.EmitCastToVoidPtr(value);
1991       if (CGF.getLangOpts().isSignedOverflowDefined())
1992         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1993       else
1994         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
1995                                            isSubtraction, E->getExprLoc(),
1996                                            "incdec.funcptr");
1997       value = Builder.CreateBitCast(value, input->getType());
1998 
1999     // For everything else, we can just do a simple increment.
2000     } else {
2001       llvm::Value *amt = Builder.getInt32(amount);
2002       if (CGF.getLangOpts().isSignedOverflowDefined())
2003         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2004       else
2005         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2006                                            isSubtraction, E->getExprLoc(),
2007                                            "incdec.ptr");
2008     }
2009 
2010   // Vector increment/decrement.
2011   } else if (type->isVectorType()) {
2012     if (type->hasIntegerRepresentation()) {
2013       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2014 
2015       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2016     } else {
2017       value = Builder.CreateFAdd(
2018                   value,
2019                   llvm::ConstantFP::get(value->getType(), amount),
2020                   isInc ? "inc" : "dec");
2021     }
2022 
2023   // Floating point.
2024   } else if (type->isRealFloatingType()) {
2025     // Add the inc/dec to the real part.
2026     llvm::Value *amt;
2027 
2028     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2029       // Another special case: half FP increment should be done via float
2030       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2031         value = Builder.CreateCall(
2032             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2033                                  CGF.CGM.FloatTy),
2034             input, "incdec.conv");
2035       } else {
2036         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2037       }
2038     }
2039 
2040     if (value->getType()->isFloatTy())
2041       amt = llvm::ConstantFP::get(VMContext,
2042                                   llvm::APFloat(static_cast<float>(amount)));
2043     else if (value->getType()->isDoubleTy())
2044       amt = llvm::ConstantFP::get(VMContext,
2045                                   llvm::APFloat(static_cast<double>(amount)));
2046     else {
2047       // Remaining types are Half, LongDouble or __float128. Convert from float.
2048       llvm::APFloat F(static_cast<float>(amount));
2049       bool ignored;
2050       const llvm::fltSemantics *FS;
2051       // Don't use getFloatTypeSemantics because Half isn't
2052       // necessarily represented using the "half" LLVM type.
2053       if (value->getType()->isFP128Ty())
2054         FS = &CGF.getTarget().getFloat128Format();
2055       else if (value->getType()->isHalfTy())
2056         FS = &CGF.getTarget().getHalfFormat();
2057       else
2058         FS = &CGF.getTarget().getLongDoubleFormat();
2059       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2060       amt = llvm::ConstantFP::get(VMContext, F);
2061     }
2062     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2063 
2064     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2065       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2066         value = Builder.CreateCall(
2067             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2068                                  CGF.CGM.FloatTy),
2069             value, "incdec.conv");
2070       } else {
2071         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2072       }
2073     }
2074 
2075   // Objective-C pointer types.
2076   } else {
2077     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2078     value = CGF.EmitCastToVoidPtr(value);
2079 
2080     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2081     if (!isInc) size = -size;
2082     llvm::Value *sizeValue =
2083       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2084 
2085     if (CGF.getLangOpts().isSignedOverflowDefined())
2086       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2087     else
2088       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2089                                          /*SignedIndices=*/false, isSubtraction,
2090                                          E->getExprLoc(), "incdec.objptr");
2091     value = Builder.CreateBitCast(value, input->getType());
2092   }
2093 
2094   if (atomicPHI) {
2095     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2096     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2097     auto Pair = CGF.EmitAtomicCompareExchange(
2098         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2099     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2100     llvm::Value *success = Pair.second;
2101     atomicPHI->addIncoming(old, opBB);
2102     Builder.CreateCondBr(success, contBB, opBB);
2103     Builder.SetInsertPoint(contBB);
2104     return isPre ? value : input;
2105   }
2106 
2107   // Store the updated result through the lvalue.
2108   if (LV.isBitField())
2109     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2110   else
2111     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2112 
2113   // If this is a postinc, return the value read from memory, otherwise use the
2114   // updated value.
2115   return isPre ? value : input;
2116 }
2117 
2118 
2119 
2120 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2121   TestAndClearIgnoreResultAssign();
2122   // Emit unary minus with EmitSub so we handle overflow cases etc.
2123   BinOpInfo BinOp;
2124   BinOp.RHS = Visit(E->getSubExpr());
2125 
2126   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
2127     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
2128   else
2129     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2130   BinOp.Ty = E->getType();
2131   BinOp.Opcode = BO_Sub;
2132   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2133   BinOp.E = E;
2134   return EmitSub(BinOp);
2135 }
2136 
2137 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2138   TestAndClearIgnoreResultAssign();
2139   Value *Op = Visit(E->getSubExpr());
2140   return Builder.CreateNot(Op, "neg");
2141 }
2142 
2143 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2144   // Perform vector logical not on comparison with zero vector.
2145   if (E->getType()->isExtVectorType()) {
2146     Value *Oper = Visit(E->getSubExpr());
2147     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2148     Value *Result;
2149     if (Oper->getType()->isFPOrFPVectorTy())
2150       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2151     else
2152       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2153     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2154   }
2155 
2156   // Compare operand to zero.
2157   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2158 
2159   // Invert value.
2160   // TODO: Could dynamically modify easy computations here.  For example, if
2161   // the operand is an icmp ne, turn into icmp eq.
2162   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2163 
2164   // ZExt result to the expr type.
2165   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2166 }
2167 
2168 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2169   // Try folding the offsetof to a constant.
2170   llvm::APSInt Value;
2171   if (E->EvaluateAsInt(Value, CGF.getContext()))
2172     return Builder.getInt(Value);
2173 
2174   // Loop over the components of the offsetof to compute the value.
2175   unsigned n = E->getNumComponents();
2176   llvm::Type* ResultType = ConvertType(E->getType());
2177   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2178   QualType CurrentType = E->getTypeSourceInfo()->getType();
2179   for (unsigned i = 0; i != n; ++i) {
2180     OffsetOfNode ON = E->getComponent(i);
2181     llvm::Value *Offset = nullptr;
2182     switch (ON.getKind()) {
2183     case OffsetOfNode::Array: {
2184       // Compute the index
2185       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2186       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2187       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2188       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2189 
2190       // Save the element type
2191       CurrentType =
2192           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2193 
2194       // Compute the element size
2195       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2196           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2197 
2198       // Multiply out to compute the result
2199       Offset = Builder.CreateMul(Idx, ElemSize);
2200       break;
2201     }
2202 
2203     case OffsetOfNode::Field: {
2204       FieldDecl *MemberDecl = ON.getField();
2205       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2206       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2207 
2208       // Compute the index of the field in its parent.
2209       unsigned i = 0;
2210       // FIXME: It would be nice if we didn't have to loop here!
2211       for (RecordDecl::field_iterator Field = RD->field_begin(),
2212                                       FieldEnd = RD->field_end();
2213            Field != FieldEnd; ++Field, ++i) {
2214         if (*Field == MemberDecl)
2215           break;
2216       }
2217       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2218 
2219       // Compute the offset to the field
2220       int64_t OffsetInt = RL.getFieldOffset(i) /
2221                           CGF.getContext().getCharWidth();
2222       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2223 
2224       // Save the element type.
2225       CurrentType = MemberDecl->getType();
2226       break;
2227     }
2228 
2229     case OffsetOfNode::Identifier:
2230       llvm_unreachable("dependent __builtin_offsetof");
2231 
2232     case OffsetOfNode::Base: {
2233       if (ON.getBase()->isVirtual()) {
2234         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2235         continue;
2236       }
2237 
2238       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2239       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2240 
2241       // Save the element type.
2242       CurrentType = ON.getBase()->getType();
2243 
2244       // Compute the offset to the base.
2245       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2246       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2247       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2248       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2249       break;
2250     }
2251     }
2252     Result = Builder.CreateAdd(Result, Offset);
2253   }
2254   return Result;
2255 }
2256 
2257 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2258 /// argument of the sizeof expression as an integer.
2259 Value *
2260 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2261                               const UnaryExprOrTypeTraitExpr *E) {
2262   QualType TypeToSize = E->getTypeOfArgument();
2263   if (E->getKind() == UETT_SizeOf) {
2264     if (const VariableArrayType *VAT =
2265           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2266       if (E->isArgumentType()) {
2267         // sizeof(type) - make sure to emit the VLA size.
2268         CGF.EmitVariablyModifiedType(TypeToSize);
2269       } else {
2270         // C99 6.5.3.4p2: If the argument is an expression of type
2271         // VLA, it is evaluated.
2272         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2273       }
2274 
2275       auto VlaSize = CGF.getVLASize(VAT);
2276       llvm::Value *size = VlaSize.NumElts;
2277 
2278       // Scale the number of non-VLA elements by the non-VLA element size.
2279       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2280       if (!eltSize.isOne())
2281         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2282 
2283       return size;
2284     }
2285   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2286     auto Alignment =
2287         CGF.getContext()
2288             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2289                 E->getTypeOfArgument()->getPointeeType()))
2290             .getQuantity();
2291     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2292   }
2293 
2294   // If this isn't sizeof(vla), the result must be constant; use the constant
2295   // folding logic so we don't have to duplicate it here.
2296   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2297 }
2298 
2299 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2300   Expr *Op = E->getSubExpr();
2301   if (Op->getType()->isAnyComplexType()) {
2302     // If it's an l-value, load through the appropriate subobject l-value.
2303     // Note that we have to ask E because Op might be an l-value that
2304     // this won't work for, e.g. an Obj-C property.
2305     if (E->isGLValue())
2306       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2307                                   E->getExprLoc()).getScalarVal();
2308 
2309     // Otherwise, calculate and project.
2310     return CGF.EmitComplexExpr(Op, false, true).first;
2311   }
2312 
2313   return Visit(Op);
2314 }
2315 
2316 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2317   Expr *Op = E->getSubExpr();
2318   if (Op->getType()->isAnyComplexType()) {
2319     // If it's an l-value, load through the appropriate subobject l-value.
2320     // Note that we have to ask E because Op might be an l-value that
2321     // this won't work for, e.g. an Obj-C property.
2322     if (Op->isGLValue())
2323       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2324                                   E->getExprLoc()).getScalarVal();
2325 
2326     // Otherwise, calculate and project.
2327     return CGF.EmitComplexExpr(Op, true, false).second;
2328   }
2329 
2330   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2331   // effects are evaluated, but not the actual value.
2332   if (Op->isGLValue())
2333     CGF.EmitLValue(Op);
2334   else
2335     CGF.EmitScalarExpr(Op, true);
2336   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2337 }
2338 
2339 //===----------------------------------------------------------------------===//
2340 //                           Binary Operators
2341 //===----------------------------------------------------------------------===//
2342 
2343 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2344   TestAndClearIgnoreResultAssign();
2345   BinOpInfo Result;
2346   Result.LHS = Visit(E->getLHS());
2347   Result.RHS = Visit(E->getRHS());
2348   Result.Ty  = E->getType();
2349   Result.Opcode = E->getOpcode();
2350   Result.FPFeatures = E->getFPFeatures();
2351   Result.E = E;
2352   return Result;
2353 }
2354 
2355 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2356                                               const CompoundAssignOperator *E,
2357                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2358                                                    Value *&Result) {
2359   QualType LHSTy = E->getLHS()->getType();
2360   BinOpInfo OpInfo;
2361 
2362   if (E->getComputationResultType()->isAnyComplexType())
2363     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2364 
2365   // Emit the RHS first.  __block variables need to have the rhs evaluated
2366   // first, plus this should improve codegen a little.
2367   OpInfo.RHS = Visit(E->getRHS());
2368   OpInfo.Ty = E->getComputationResultType();
2369   OpInfo.Opcode = E->getOpcode();
2370   OpInfo.FPFeatures = E->getFPFeatures();
2371   OpInfo.E = E;
2372   // Load/convert the LHS.
2373   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2374 
2375   llvm::PHINode *atomicPHI = nullptr;
2376   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2377     QualType type = atomicTy->getValueType();
2378     if (!type->isBooleanType() && type->isIntegerType() &&
2379         !(type->isUnsignedIntegerType() &&
2380           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2381         CGF.getLangOpts().getSignedOverflowBehavior() !=
2382             LangOptions::SOB_Trapping) {
2383       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2384       switch (OpInfo.Opcode) {
2385         // We don't have atomicrmw operands for *, %, /, <<, >>
2386         case BO_MulAssign: case BO_DivAssign:
2387         case BO_RemAssign:
2388         case BO_ShlAssign:
2389         case BO_ShrAssign:
2390           break;
2391         case BO_AddAssign:
2392           aop = llvm::AtomicRMWInst::Add;
2393           break;
2394         case BO_SubAssign:
2395           aop = llvm::AtomicRMWInst::Sub;
2396           break;
2397         case BO_AndAssign:
2398           aop = llvm::AtomicRMWInst::And;
2399           break;
2400         case BO_XorAssign:
2401           aop = llvm::AtomicRMWInst::Xor;
2402           break;
2403         case BO_OrAssign:
2404           aop = llvm::AtomicRMWInst::Or;
2405           break;
2406         default:
2407           llvm_unreachable("Invalid compound assignment type");
2408       }
2409       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2410         llvm::Value *amt = CGF.EmitToMemory(
2411             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2412                                  E->getExprLoc()),
2413             LHSTy);
2414         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2415             llvm::AtomicOrdering::SequentiallyConsistent);
2416         return LHSLV;
2417       }
2418     }
2419     // FIXME: For floating point types, we should be saving and restoring the
2420     // floating point environment in the loop.
2421     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2422     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2423     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2424     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2425     Builder.CreateBr(opBB);
2426     Builder.SetInsertPoint(opBB);
2427     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2428     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2429     OpInfo.LHS = atomicPHI;
2430   }
2431   else
2432     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2433 
2434   SourceLocation Loc = E->getExprLoc();
2435   OpInfo.LHS =
2436       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2437 
2438   // Expand the binary operator.
2439   Result = (this->*Func)(OpInfo);
2440 
2441   // Convert the result back to the LHS type.
2442   Result =
2443       EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2444 
2445   if (atomicPHI) {
2446     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2447     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2448     auto Pair = CGF.EmitAtomicCompareExchange(
2449         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2450     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2451     llvm::Value *success = Pair.second;
2452     atomicPHI->addIncoming(old, opBB);
2453     Builder.CreateCondBr(success, contBB, opBB);
2454     Builder.SetInsertPoint(contBB);
2455     return LHSLV;
2456   }
2457 
2458   // Store the result value into the LHS lvalue. Bit-fields are handled
2459   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2460   // 'An assignment expression has the value of the left operand after the
2461   // assignment...'.
2462   if (LHSLV.isBitField())
2463     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2464   else
2465     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2466 
2467   return LHSLV;
2468 }
2469 
2470 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2471                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2472   bool Ignore = TestAndClearIgnoreResultAssign();
2473   Value *RHS;
2474   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2475 
2476   // If the result is clearly ignored, return now.
2477   if (Ignore)
2478     return nullptr;
2479 
2480   // The result of an assignment in C is the assigned r-value.
2481   if (!CGF.getLangOpts().CPlusPlus)
2482     return RHS;
2483 
2484   // If the lvalue is non-volatile, return the computed value of the assignment.
2485   if (!LHS.isVolatileQualified())
2486     return RHS;
2487 
2488   // Otherwise, reload the value.
2489   return EmitLoadOfLValue(LHS, E->getExprLoc());
2490 }
2491 
2492 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2493     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2494   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2495 
2496   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2497     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2498                                     SanitizerKind::IntegerDivideByZero));
2499   }
2500 
2501   const auto *BO = cast<BinaryOperator>(Ops.E);
2502   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2503       Ops.Ty->hasSignedIntegerRepresentation() &&
2504       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
2505       Ops.mayHaveIntegerOverflow()) {
2506     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2507 
2508     llvm::Value *IntMin =
2509       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2510     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2511 
2512     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2513     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2514     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2515     Checks.push_back(
2516         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2517   }
2518 
2519   if (Checks.size() > 0)
2520     EmitBinOpCheck(Checks, Ops);
2521 }
2522 
2523 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2524   {
2525     CodeGenFunction::SanitizerScope SanScope(&CGF);
2526     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2527          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2528         Ops.Ty->isIntegerType() &&
2529         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
2530       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2531       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2532     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2533                Ops.Ty->isRealFloatingType() &&
2534                Ops.mayHaveFloatDivisionByZero()) {
2535       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2536       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2537       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2538                      Ops);
2539     }
2540   }
2541 
2542   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2543     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2544     if (CGF.getLangOpts().OpenCL &&
2545         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
2546       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
2547       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
2548       // build option allows an application to specify that single precision
2549       // floating-point divide (x/y and 1/x) and sqrt used in the program
2550       // source are correctly rounded.
2551       llvm::Type *ValTy = Val->getType();
2552       if (ValTy->isFloatTy() ||
2553           (isa<llvm::VectorType>(ValTy) &&
2554            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2555         CGF.SetFPAccuracy(Val, 2.5);
2556     }
2557     return Val;
2558   }
2559   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2560     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2561   else
2562     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2563 }
2564 
2565 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2566   // Rem in C can't be a floating point type: C99 6.5.5p2.
2567   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2568        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2569       Ops.Ty->isIntegerType() &&
2570       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
2571     CodeGenFunction::SanitizerScope SanScope(&CGF);
2572     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2573     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2574   }
2575 
2576   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2577     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2578   else
2579     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2580 }
2581 
2582 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2583   unsigned IID;
2584   unsigned OpID = 0;
2585 
2586   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2587   switch (Ops.Opcode) {
2588   case BO_Add:
2589   case BO_AddAssign:
2590     OpID = 1;
2591     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2592                      llvm::Intrinsic::uadd_with_overflow;
2593     break;
2594   case BO_Sub:
2595   case BO_SubAssign:
2596     OpID = 2;
2597     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2598                      llvm::Intrinsic::usub_with_overflow;
2599     break;
2600   case BO_Mul:
2601   case BO_MulAssign:
2602     OpID = 3;
2603     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2604                      llvm::Intrinsic::umul_with_overflow;
2605     break;
2606   default:
2607     llvm_unreachable("Unsupported operation for overflow detection");
2608   }
2609   OpID <<= 1;
2610   if (isSigned)
2611     OpID |= 1;
2612 
2613   CodeGenFunction::SanitizerScope SanScope(&CGF);
2614   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2615 
2616   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2617 
2618   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2619   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2620   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2621 
2622   // Handle overflow with llvm.trap if no custom handler has been specified.
2623   const std::string *handlerName =
2624     &CGF.getLangOpts().OverflowHandler;
2625   if (handlerName->empty()) {
2626     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2627     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2628     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2629       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2630       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2631                               : SanitizerKind::UnsignedIntegerOverflow;
2632       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2633     } else
2634       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2635     return result;
2636   }
2637 
2638   // Branch in case of overflow.
2639   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2640   llvm::BasicBlock *continueBB =
2641       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
2642   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2643 
2644   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2645 
2646   // If an overflow handler is set, then we want to call it and then use its
2647   // result, if it returns.
2648   Builder.SetInsertPoint(overflowBB);
2649 
2650   // Get the overflow handler.
2651   llvm::Type *Int8Ty = CGF.Int8Ty;
2652   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2653   llvm::FunctionType *handlerTy =
2654       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2655   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2656 
2657   // Sign extend the args to 64-bit, so that we can use the same handler for
2658   // all types of overflow.
2659   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2660   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2661 
2662   // Call the handler with the two arguments, the operation, and the size of
2663   // the result.
2664   llvm::Value *handlerArgs[] = {
2665     lhs,
2666     rhs,
2667     Builder.getInt8(OpID),
2668     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2669   };
2670   llvm::Value *handlerResult =
2671     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2672 
2673   // Truncate the result back to the desired size.
2674   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2675   Builder.CreateBr(continueBB);
2676 
2677   Builder.SetInsertPoint(continueBB);
2678   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2679   phi->addIncoming(result, initialBB);
2680   phi->addIncoming(handlerResult, overflowBB);
2681 
2682   return phi;
2683 }
2684 
2685 /// Emit pointer + index arithmetic.
2686 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2687                                     const BinOpInfo &op,
2688                                     bool isSubtraction) {
2689   // Must have binary (not unary) expr here.  Unary pointer
2690   // increment/decrement doesn't use this path.
2691   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2692 
2693   Value *pointer = op.LHS;
2694   Expr *pointerOperand = expr->getLHS();
2695   Value *index = op.RHS;
2696   Expr *indexOperand = expr->getRHS();
2697 
2698   // In a subtraction, the LHS is always the pointer.
2699   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2700     std::swap(pointer, index);
2701     std::swap(pointerOperand, indexOperand);
2702   }
2703 
2704   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2705 
2706   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2707   auto &DL = CGF.CGM.getDataLayout();
2708   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
2709 
2710   // Some versions of glibc and gcc use idioms (particularly in their malloc
2711   // routines) that add a pointer-sized integer (known to be a pointer value)
2712   // to a null pointer in order to cast the value back to an integer or as
2713   // part of a pointer alignment algorithm.  This is undefined behavior, but
2714   // we'd like to be able to compile programs that use it.
2715   //
2716   // Normally, we'd generate a GEP with a null-pointer base here in response
2717   // to that code, but it's also UB to dereference a pointer created that
2718   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
2719   // generate a direct cast of the integer value to a pointer.
2720   //
2721   // The idiom (p = nullptr + N) is not met if any of the following are true:
2722   //
2723   //   The operation is subtraction.
2724   //   The index is not pointer-sized.
2725   //   The pointer type is not byte-sized.
2726   //
2727   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
2728                                                        op.Opcode,
2729                                                        expr->getLHS(),
2730                                                        expr->getRHS()))
2731     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
2732 
2733   if (width != DL.getTypeSizeInBits(PtrTy)) {
2734     // Zero-extend or sign-extend the pointer value according to
2735     // whether the index is signed or not.
2736     index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
2737                                       "idx.ext");
2738   }
2739 
2740   // If this is subtraction, negate the index.
2741   if (isSubtraction)
2742     index = CGF.Builder.CreateNeg(index, "idx.neg");
2743 
2744   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2745     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2746                         /*Accessed*/ false);
2747 
2748   const PointerType *pointerType
2749     = pointerOperand->getType()->getAs<PointerType>();
2750   if (!pointerType) {
2751     QualType objectType = pointerOperand->getType()
2752                                         ->castAs<ObjCObjectPointerType>()
2753                                         ->getPointeeType();
2754     llvm::Value *objectSize
2755       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2756 
2757     index = CGF.Builder.CreateMul(index, objectSize);
2758 
2759     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2760     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2761     return CGF.Builder.CreateBitCast(result, pointer->getType());
2762   }
2763 
2764   QualType elementType = pointerType->getPointeeType();
2765   if (const VariableArrayType *vla
2766         = CGF.getContext().getAsVariableArrayType(elementType)) {
2767     // The element count here is the total number of non-VLA elements.
2768     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
2769 
2770     // Effectively, the multiply by the VLA size is part of the GEP.
2771     // GEP indexes are signed, and scaling an index isn't permitted to
2772     // signed-overflow, so we use the same semantics for our explicit
2773     // multiply.  We suppress this if overflow is not undefined behavior.
2774     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2775       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2776       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2777     } else {
2778       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2779       pointer =
2780           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
2781                                      op.E->getExprLoc(), "add.ptr");
2782     }
2783     return pointer;
2784   }
2785 
2786   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2787   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2788   // future proof.
2789   if (elementType->isVoidType() || elementType->isFunctionType()) {
2790     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2791     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2792     return CGF.Builder.CreateBitCast(result, pointer->getType());
2793   }
2794 
2795   if (CGF.getLangOpts().isSignedOverflowDefined())
2796     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2797 
2798   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
2799                                     op.E->getExprLoc(), "add.ptr");
2800 }
2801 
2802 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2803 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2804 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2805 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2806 // efficient operations.
2807 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2808                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2809                            bool negMul, bool negAdd) {
2810   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2811 
2812   Value *MulOp0 = MulOp->getOperand(0);
2813   Value *MulOp1 = MulOp->getOperand(1);
2814   if (negMul) {
2815     MulOp0 =
2816       Builder.CreateFSub(
2817         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2818         "neg");
2819   } else if (negAdd) {
2820     Addend =
2821       Builder.CreateFSub(
2822         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2823         "neg");
2824   }
2825 
2826   Value *FMulAdd = Builder.CreateCall(
2827       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2828       {MulOp0, MulOp1, Addend});
2829    MulOp->eraseFromParent();
2830 
2831    return FMulAdd;
2832 }
2833 
2834 // Check whether it would be legal to emit an fmuladd intrinsic call to
2835 // represent op and if so, build the fmuladd.
2836 //
2837 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2838 // Does NOT check the type of the operation - it's assumed that this function
2839 // will be called from contexts where it's known that the type is contractable.
2840 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2841                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2842                          bool isSub=false) {
2843 
2844   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2845           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2846          "Only fadd/fsub can be the root of an fmuladd.");
2847 
2848   // Check whether this op is marked as fusable.
2849   if (!op.FPFeatures.allowFPContractWithinStatement())
2850     return nullptr;
2851 
2852   // We have a potentially fusable op. Look for a mul on one of the operands.
2853   // Also, make sure that the mul result isn't used directly. In that case,
2854   // there's no point creating a muladd operation.
2855   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2856     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2857         LHSBinOp->use_empty())
2858       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2859   }
2860   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2861     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2862         RHSBinOp->use_empty())
2863       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2864   }
2865 
2866   return nullptr;
2867 }
2868 
2869 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2870   if (op.LHS->getType()->isPointerTy() ||
2871       op.RHS->getType()->isPointerTy())
2872     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
2873 
2874   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2875     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2876     case LangOptions::SOB_Defined:
2877       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2878     case LangOptions::SOB_Undefined:
2879       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2880         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2881       // Fall through.
2882     case LangOptions::SOB_Trapping:
2883       if (CanElideOverflowCheck(CGF.getContext(), op))
2884         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2885       return EmitOverflowCheckedBinOp(op);
2886     }
2887   }
2888 
2889   if (op.Ty->isUnsignedIntegerType() &&
2890       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
2891       !CanElideOverflowCheck(CGF.getContext(), op))
2892     return EmitOverflowCheckedBinOp(op);
2893 
2894   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2895     // Try to form an fmuladd.
2896     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2897       return FMulAdd;
2898 
2899     Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
2900     return propagateFMFlags(V, op);
2901   }
2902 
2903   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2904 }
2905 
2906 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2907   // The LHS is always a pointer if either side is.
2908   if (!op.LHS->getType()->isPointerTy()) {
2909     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2910       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2911       case LangOptions::SOB_Defined:
2912         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2913       case LangOptions::SOB_Undefined:
2914         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2915           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2916         // Fall through.
2917       case LangOptions::SOB_Trapping:
2918         if (CanElideOverflowCheck(CGF.getContext(), op))
2919           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2920         return EmitOverflowCheckedBinOp(op);
2921       }
2922     }
2923 
2924     if (op.Ty->isUnsignedIntegerType() &&
2925         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
2926         !CanElideOverflowCheck(CGF.getContext(), op))
2927       return EmitOverflowCheckedBinOp(op);
2928 
2929     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2930       // Try to form an fmuladd.
2931       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2932         return FMulAdd;
2933       Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
2934       return propagateFMFlags(V, op);
2935     }
2936 
2937     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2938   }
2939 
2940   // If the RHS is not a pointer, then we have normal pointer
2941   // arithmetic.
2942   if (!op.RHS->getType()->isPointerTy())
2943     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
2944 
2945   // Otherwise, this is a pointer subtraction.
2946 
2947   // Do the raw subtraction part.
2948   llvm::Value *LHS
2949     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2950   llvm::Value *RHS
2951     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2952   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2953 
2954   // Okay, figure out the element size.
2955   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2956   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2957 
2958   llvm::Value *divisor = nullptr;
2959 
2960   // For a variable-length array, this is going to be non-constant.
2961   if (const VariableArrayType *vla
2962         = CGF.getContext().getAsVariableArrayType(elementType)) {
2963     auto VlaSize = CGF.getVLASize(vla);
2964     elementType = VlaSize.Type;
2965     divisor = VlaSize.NumElts;
2966 
2967     // Scale the number of non-VLA elements by the non-VLA element size.
2968     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2969     if (!eltSize.isOne())
2970       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2971 
2972   // For everything elese, we can just compute it, safe in the
2973   // assumption that Sema won't let anything through that we can't
2974   // safely compute the size of.
2975   } else {
2976     CharUnits elementSize;
2977     // Handle GCC extension for pointer arithmetic on void* and
2978     // function pointer types.
2979     if (elementType->isVoidType() || elementType->isFunctionType())
2980       elementSize = CharUnits::One();
2981     else
2982       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2983 
2984     // Don't even emit the divide for element size of 1.
2985     if (elementSize.isOne())
2986       return diffInChars;
2987 
2988     divisor = CGF.CGM.getSize(elementSize);
2989   }
2990 
2991   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2992   // pointer difference in C is only defined in the case where both operands
2993   // are pointing to elements of an array.
2994   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2995 }
2996 
2997 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2998   llvm::IntegerType *Ty;
2999   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3000     Ty = cast<llvm::IntegerType>(VT->getElementType());
3001   else
3002     Ty = cast<llvm::IntegerType>(LHS->getType());
3003   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3004 }
3005 
3006 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3007   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3008   // RHS to the same size as the LHS.
3009   Value *RHS = Ops.RHS;
3010   if (Ops.LHS->getType() != RHS->getType())
3011     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3012 
3013   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3014                       Ops.Ty->hasSignedIntegerRepresentation() &&
3015                       !CGF.getLangOpts().isSignedOverflowDefined();
3016   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3017   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3018   if (CGF.getLangOpts().OpenCL)
3019     RHS =
3020         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
3021   else if ((SanitizeBase || SanitizeExponent) &&
3022            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3023     CodeGenFunction::SanitizerScope SanScope(&CGF);
3024     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3025     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3026     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3027 
3028     if (SanitizeExponent) {
3029       Checks.push_back(
3030           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3031     }
3032 
3033     if (SanitizeBase) {
3034       // Check whether we are shifting any non-zero bits off the top of the
3035       // integer. We only emit this check if exponent is valid - otherwise
3036       // instructions below will have undefined behavior themselves.
3037       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3038       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3039       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3040       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3041       llvm::Value *PromotedWidthMinusOne =
3042           (RHS == Ops.RHS) ? WidthMinusOne
3043                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3044       CGF.EmitBlock(CheckShiftBase);
3045       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3046           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3047                                      /*NUW*/ true, /*NSW*/ true),
3048           "shl.check");
3049       if (CGF.getLangOpts().CPlusPlus) {
3050         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3051         // Under C++11's rules, shifting a 1 bit into the sign bit is
3052         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3053         // define signed left shifts, so we use the C99 and C++11 rules there).
3054         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3055         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3056       }
3057       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3058       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3059       CGF.EmitBlock(Cont);
3060       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3061       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3062       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3063       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3064     }
3065 
3066     assert(!Checks.empty());
3067     EmitBinOpCheck(Checks, Ops);
3068   }
3069 
3070   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3071 }
3072 
3073 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3074   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3075   // RHS to the same size as the LHS.
3076   Value *RHS = Ops.RHS;
3077   if (Ops.LHS->getType() != RHS->getType())
3078     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3079 
3080   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3081   if (CGF.getLangOpts().OpenCL)
3082     RHS =
3083         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
3084   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3085            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3086     CodeGenFunction::SanitizerScope SanScope(&CGF);
3087     llvm::Value *Valid =
3088         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3089     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3090   }
3091 
3092   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3093     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3094   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3095 }
3096 
3097 enum IntrinsicType { VCMPEQ, VCMPGT };
3098 // return corresponding comparison intrinsic for given vector type
3099 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3100                                         BuiltinType::Kind ElemKind) {
3101   switch (ElemKind) {
3102   default: llvm_unreachable("unexpected element type");
3103   case BuiltinType::Char_U:
3104   case BuiltinType::UChar:
3105     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3106                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3107   case BuiltinType::Char_S:
3108   case BuiltinType::SChar:
3109     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3110                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3111   case BuiltinType::UShort:
3112     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3113                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3114   case BuiltinType::Short:
3115     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3116                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3117   case BuiltinType::UInt:
3118     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3119                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3120   case BuiltinType::Int:
3121     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3122                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3123   case BuiltinType::ULong:
3124   case BuiltinType::ULongLong:
3125     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3126                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3127   case BuiltinType::Long:
3128   case BuiltinType::LongLong:
3129     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3130                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3131   case BuiltinType::Float:
3132     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3133                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3134   case BuiltinType::Double:
3135     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3136                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3137   }
3138 }
3139 
3140 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3141                                       llvm::CmpInst::Predicate UICmpOpc,
3142                                       llvm::CmpInst::Predicate SICmpOpc,
3143                                       llvm::CmpInst::Predicate FCmpOpc) {
3144   TestAndClearIgnoreResultAssign();
3145   Value *Result;
3146   QualType LHSTy = E->getLHS()->getType();
3147   QualType RHSTy = E->getRHS()->getType();
3148   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3149     assert(E->getOpcode() == BO_EQ ||
3150            E->getOpcode() == BO_NE);
3151     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3152     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3153     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3154                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3155   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3156     Value *LHS = Visit(E->getLHS());
3157     Value *RHS = Visit(E->getRHS());
3158 
3159     // If AltiVec, the comparison results in a numeric type, so we use
3160     // intrinsics comparing vectors and giving 0 or 1 as a result
3161     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3162       // constants for mapping CR6 register bits to predicate result
3163       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3164 
3165       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3166 
3167       // in several cases vector arguments order will be reversed
3168       Value *FirstVecArg = LHS,
3169             *SecondVecArg = RHS;
3170 
3171       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
3172       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
3173       BuiltinType::Kind ElementKind = BTy->getKind();
3174 
3175       switch(E->getOpcode()) {
3176       default: llvm_unreachable("is not a comparison operation");
3177       case BO_EQ:
3178         CR6 = CR6_LT;
3179         ID = GetIntrinsic(VCMPEQ, ElementKind);
3180         break;
3181       case BO_NE:
3182         CR6 = CR6_EQ;
3183         ID = GetIntrinsic(VCMPEQ, ElementKind);
3184         break;
3185       case BO_LT:
3186         CR6 = CR6_LT;
3187         ID = GetIntrinsic(VCMPGT, ElementKind);
3188         std::swap(FirstVecArg, SecondVecArg);
3189         break;
3190       case BO_GT:
3191         CR6 = CR6_LT;
3192         ID = GetIntrinsic(VCMPGT, ElementKind);
3193         break;
3194       case BO_LE:
3195         if (ElementKind == BuiltinType::Float) {
3196           CR6 = CR6_LT;
3197           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3198           std::swap(FirstVecArg, SecondVecArg);
3199         }
3200         else {
3201           CR6 = CR6_EQ;
3202           ID = GetIntrinsic(VCMPGT, ElementKind);
3203         }
3204         break;
3205       case BO_GE:
3206         if (ElementKind == BuiltinType::Float) {
3207           CR6 = CR6_LT;
3208           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3209         }
3210         else {
3211           CR6 = CR6_EQ;
3212           ID = GetIntrinsic(VCMPGT, ElementKind);
3213           std::swap(FirstVecArg, SecondVecArg);
3214         }
3215         break;
3216       }
3217 
3218       Value *CR6Param = Builder.getInt32(CR6);
3219       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3220       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3221 
3222       // The result type of intrinsic may not be same as E->getType().
3223       // If E->getType() is not BoolTy, EmitScalarConversion will do the
3224       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3225       // do nothing, if ResultTy is not i1 at the same time, it will cause
3226       // crash later.
3227       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3228       if (ResultTy->getBitWidth() > 1 &&
3229           E->getType() == CGF.getContext().BoolTy)
3230         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3231       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3232                                   E->getExprLoc());
3233     }
3234 
3235     if (LHS->getType()->isFPOrFPVectorTy()) {
3236       Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3237     } else if (LHSTy->hasSignedIntegerRepresentation()) {
3238       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3239     } else {
3240       // Unsigned integers and pointers.
3241       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3242     }
3243 
3244     // If this is a vector comparison, sign extend the result to the appropriate
3245     // vector integer type and return it (don't convert to bool).
3246     if (LHSTy->isVectorType())
3247       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3248 
3249   } else {
3250     // Complex Comparison: can only be an equality comparison.
3251     CodeGenFunction::ComplexPairTy LHS, RHS;
3252     QualType CETy;
3253     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3254       LHS = CGF.EmitComplexExpr(E->getLHS());
3255       CETy = CTy->getElementType();
3256     } else {
3257       LHS.first = Visit(E->getLHS());
3258       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3259       CETy = LHSTy;
3260     }
3261     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3262       RHS = CGF.EmitComplexExpr(E->getRHS());
3263       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
3264                                                      CTy->getElementType()) &&
3265              "The element types must always match.");
3266       (void)CTy;
3267     } else {
3268       RHS.first = Visit(E->getRHS());
3269       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
3270       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
3271              "The element types must always match.");
3272     }
3273 
3274     Value *ResultR, *ResultI;
3275     if (CETy->isRealFloatingType()) {
3276       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
3277       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
3278     } else {
3279       // Complex comparisons can only be equality comparisons.  As such, signed
3280       // and unsigned opcodes are the same.
3281       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
3282       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
3283     }
3284 
3285     if (E->getOpcode() == BO_EQ) {
3286       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
3287     } else {
3288       assert(E->getOpcode() == BO_NE &&
3289              "Complex comparison other than == or != ?");
3290       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
3291     }
3292   }
3293 
3294   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3295                               E->getExprLoc());
3296 }
3297 
3298 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3299   bool Ignore = TestAndClearIgnoreResultAssign();
3300 
3301   Value *RHS;
3302   LValue LHS;
3303 
3304   switch (E->getLHS()->getType().getObjCLifetime()) {
3305   case Qualifiers::OCL_Strong:
3306     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3307     break;
3308 
3309   case Qualifiers::OCL_Autoreleasing:
3310     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3311     break;
3312 
3313   case Qualifiers::OCL_ExplicitNone:
3314     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3315     break;
3316 
3317   case Qualifiers::OCL_Weak:
3318     RHS = Visit(E->getRHS());
3319     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3320     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3321     break;
3322 
3323   case Qualifiers::OCL_None:
3324     // __block variables need to have the rhs evaluated first, plus
3325     // this should improve codegen just a little.
3326     RHS = Visit(E->getRHS());
3327     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3328 
3329     // Store the value into the LHS.  Bit-fields are handled specially
3330     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3331     // 'An assignment expression has the value of the left operand after
3332     // the assignment...'.
3333     if (LHS.isBitField()) {
3334       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3335     } else {
3336       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
3337       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3338     }
3339   }
3340 
3341   // If the result is clearly ignored, return now.
3342   if (Ignore)
3343     return nullptr;
3344 
3345   // The result of an assignment in C is the assigned r-value.
3346   if (!CGF.getLangOpts().CPlusPlus)
3347     return RHS;
3348 
3349   // If the lvalue is non-volatile, return the computed value of the assignment.
3350   if (!LHS.isVolatileQualified())
3351     return RHS;
3352 
3353   // Otherwise, reload the value.
3354   return EmitLoadOfLValue(LHS, E->getExprLoc());
3355 }
3356 
3357 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3358   // Perform vector logical and on comparisons with zero vectors.
3359   if (E->getType()->isVectorType()) {
3360     CGF.incrementProfileCounter(E);
3361 
3362     Value *LHS = Visit(E->getLHS());
3363     Value *RHS = Visit(E->getRHS());
3364     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3365     if (LHS->getType()->isFPOrFPVectorTy()) {
3366       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3367       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3368     } else {
3369       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3370       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3371     }
3372     Value *And = Builder.CreateAnd(LHS, RHS);
3373     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3374   }
3375 
3376   llvm::Type *ResTy = ConvertType(E->getType());
3377 
3378   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3379   // If we have 1 && X, just emit X without inserting the control flow.
3380   bool LHSCondVal;
3381   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3382     if (LHSCondVal) { // If we have 1 && X, just emit X.
3383       CGF.incrementProfileCounter(E);
3384 
3385       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3386       // ZExt result to int or bool.
3387       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3388     }
3389 
3390     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3391     if (!CGF.ContainsLabel(E->getRHS()))
3392       return llvm::Constant::getNullValue(ResTy);
3393   }
3394 
3395   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3396   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3397 
3398   CodeGenFunction::ConditionalEvaluation eval(CGF);
3399 
3400   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3401   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3402                            CGF.getProfileCount(E->getRHS()));
3403 
3404   // Any edges into the ContBlock are now from an (indeterminate number of)
3405   // edges from this first condition.  All of these values will be false.  Start
3406   // setting up the PHI node in the Cont Block for this.
3407   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3408                                             "", ContBlock);
3409   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3410        PI != PE; ++PI)
3411     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3412 
3413   eval.begin(CGF);
3414   CGF.EmitBlock(RHSBlock);
3415   CGF.incrementProfileCounter(E);
3416   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3417   eval.end(CGF);
3418 
3419   // Reaquire the RHS block, as there may be subblocks inserted.
3420   RHSBlock = Builder.GetInsertBlock();
3421 
3422   // Emit an unconditional branch from this block to ContBlock.
3423   {
3424     // There is no need to emit line number for unconditional branch.
3425     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3426     CGF.EmitBlock(ContBlock);
3427   }
3428   // Insert an entry into the phi node for the edge with the value of RHSCond.
3429   PN->addIncoming(RHSCond, RHSBlock);
3430 
3431   // ZExt result to int.
3432   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3433 }
3434 
3435 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3436   // Perform vector logical or on comparisons with zero vectors.
3437   if (E->getType()->isVectorType()) {
3438     CGF.incrementProfileCounter(E);
3439 
3440     Value *LHS = Visit(E->getLHS());
3441     Value *RHS = Visit(E->getRHS());
3442     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3443     if (LHS->getType()->isFPOrFPVectorTy()) {
3444       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3445       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3446     } else {
3447       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3448       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3449     }
3450     Value *Or = Builder.CreateOr(LHS, RHS);
3451     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3452   }
3453 
3454   llvm::Type *ResTy = ConvertType(E->getType());
3455 
3456   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3457   // If we have 0 || X, just emit X without inserting the control flow.
3458   bool LHSCondVal;
3459   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3460     if (!LHSCondVal) { // If we have 0 || X, just emit X.
3461       CGF.incrementProfileCounter(E);
3462 
3463       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3464       // ZExt result to int or bool.
3465       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3466     }
3467 
3468     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3469     if (!CGF.ContainsLabel(E->getRHS()))
3470       return llvm::ConstantInt::get(ResTy, 1);
3471   }
3472 
3473   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3474   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3475 
3476   CodeGenFunction::ConditionalEvaluation eval(CGF);
3477 
3478   // Branch on the LHS first.  If it is true, go to the success (cont) block.
3479   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3480                            CGF.getCurrentProfileCount() -
3481                                CGF.getProfileCount(E->getRHS()));
3482 
3483   // Any edges into the ContBlock are now from an (indeterminate number of)
3484   // edges from this first condition.  All of these values will be true.  Start
3485   // setting up the PHI node in the Cont Block for this.
3486   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3487                                             "", ContBlock);
3488   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3489        PI != PE; ++PI)
3490     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3491 
3492   eval.begin(CGF);
3493 
3494   // Emit the RHS condition as a bool value.
3495   CGF.EmitBlock(RHSBlock);
3496   CGF.incrementProfileCounter(E);
3497   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3498 
3499   eval.end(CGF);
3500 
3501   // Reaquire the RHS block, as there may be subblocks inserted.
3502   RHSBlock = Builder.GetInsertBlock();
3503 
3504   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3505   // into the phi node for the edge with the value of RHSCond.
3506   CGF.EmitBlock(ContBlock);
3507   PN->addIncoming(RHSCond, RHSBlock);
3508 
3509   // ZExt result to int.
3510   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3511 }
3512 
3513 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3514   CGF.EmitIgnoredExpr(E->getLHS());
3515   CGF.EnsureInsertPoint();
3516   return Visit(E->getRHS());
3517 }
3518 
3519 //===----------------------------------------------------------------------===//
3520 //                             Other Operators
3521 //===----------------------------------------------------------------------===//
3522 
3523 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3524 /// expression is cheap enough and side-effect-free enough to evaluate
3525 /// unconditionally instead of conditionally.  This is used to convert control
3526 /// flow into selects in some cases.
3527 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3528                                                    CodeGenFunction &CGF) {
3529   // Anything that is an integer or floating point constant is fine.
3530   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3531 
3532   // Even non-volatile automatic variables can't be evaluated unconditionally.
3533   // Referencing a thread_local may cause non-trivial initialization work to
3534   // occur. If we're inside a lambda and one of the variables is from the scope
3535   // outside the lambda, that function may have returned already. Reading its
3536   // locals is a bad idea. Also, these reads may introduce races there didn't
3537   // exist in the source-level program.
3538 }
3539 
3540 
3541 Value *ScalarExprEmitter::
3542 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3543   TestAndClearIgnoreResultAssign();
3544 
3545   // Bind the common expression if necessary.
3546   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3547 
3548   Expr *condExpr = E->getCond();
3549   Expr *lhsExpr = E->getTrueExpr();
3550   Expr *rhsExpr = E->getFalseExpr();
3551 
3552   // If the condition constant folds and can be elided, try to avoid emitting
3553   // the condition and the dead arm.
3554   bool CondExprBool;
3555   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3556     Expr *live = lhsExpr, *dead = rhsExpr;
3557     if (!CondExprBool) std::swap(live, dead);
3558 
3559     // If the dead side doesn't have labels we need, just emit the Live part.
3560     if (!CGF.ContainsLabel(dead)) {
3561       if (CondExprBool)
3562         CGF.incrementProfileCounter(E);
3563       Value *Result = Visit(live);
3564 
3565       // If the live part is a throw expression, it acts like it has a void
3566       // type, so evaluating it returns a null Value*.  However, a conditional
3567       // with non-void type must return a non-null Value*.
3568       if (!Result && !E->getType()->isVoidType())
3569         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3570 
3571       return Result;
3572     }
3573   }
3574 
3575   // OpenCL: If the condition is a vector, we can treat this condition like
3576   // the select function.
3577   if (CGF.getLangOpts().OpenCL
3578       && condExpr->getType()->isVectorType()) {
3579     CGF.incrementProfileCounter(E);
3580 
3581     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3582     llvm::Value *LHS = Visit(lhsExpr);
3583     llvm::Value *RHS = Visit(rhsExpr);
3584 
3585     llvm::Type *condType = ConvertType(condExpr->getType());
3586     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3587 
3588     unsigned numElem = vecTy->getNumElements();
3589     llvm::Type *elemType = vecTy->getElementType();
3590 
3591     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3592     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3593     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3594                                           llvm::VectorType::get(elemType,
3595                                                                 numElem),
3596                                           "sext");
3597     llvm::Value *tmp2 = Builder.CreateNot(tmp);
3598 
3599     // Cast float to int to perform ANDs if necessary.
3600     llvm::Value *RHSTmp = RHS;
3601     llvm::Value *LHSTmp = LHS;
3602     bool wasCast = false;
3603     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3604     if (rhsVTy->getElementType()->isFloatingPointTy()) {
3605       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3606       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3607       wasCast = true;
3608     }
3609 
3610     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3611     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3612     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3613     if (wasCast)
3614       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3615 
3616     return tmp5;
3617   }
3618 
3619   // If this is a really simple expression (like x ? 4 : 5), emit this as a
3620   // select instead of as control flow.  We can only do this if it is cheap and
3621   // safe to evaluate the LHS and RHS unconditionally.
3622   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3623       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3624     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3625     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
3626 
3627     CGF.incrementProfileCounter(E, StepV);
3628 
3629     llvm::Value *LHS = Visit(lhsExpr);
3630     llvm::Value *RHS = Visit(rhsExpr);
3631     if (!LHS) {
3632       // If the conditional has void type, make sure we return a null Value*.
3633       assert(!RHS && "LHS and RHS types must match");
3634       return nullptr;
3635     }
3636     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3637   }
3638 
3639   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3640   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3641   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3642 
3643   CodeGenFunction::ConditionalEvaluation eval(CGF);
3644   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3645                            CGF.getProfileCount(lhsExpr));
3646 
3647   CGF.EmitBlock(LHSBlock);
3648   CGF.incrementProfileCounter(E);
3649   eval.begin(CGF);
3650   Value *LHS = Visit(lhsExpr);
3651   eval.end(CGF);
3652 
3653   LHSBlock = Builder.GetInsertBlock();
3654   Builder.CreateBr(ContBlock);
3655 
3656   CGF.EmitBlock(RHSBlock);
3657   eval.begin(CGF);
3658   Value *RHS = Visit(rhsExpr);
3659   eval.end(CGF);
3660 
3661   RHSBlock = Builder.GetInsertBlock();
3662   CGF.EmitBlock(ContBlock);
3663 
3664   // If the LHS or RHS is a throw expression, it will be legitimately null.
3665   if (!LHS)
3666     return RHS;
3667   if (!RHS)
3668     return LHS;
3669 
3670   // Create a PHI node for the real part.
3671   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3672   PN->addIncoming(LHS, LHSBlock);
3673   PN->addIncoming(RHS, RHSBlock);
3674   return PN;
3675 }
3676 
3677 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3678   return Visit(E->getChosenSubExpr());
3679 }
3680 
3681 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3682   QualType Ty = VE->getType();
3683 
3684   if (Ty->isVariablyModifiedType())
3685     CGF.EmitVariablyModifiedType(Ty);
3686 
3687   Address ArgValue = Address::invalid();
3688   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
3689 
3690   llvm::Type *ArgTy = ConvertType(VE->getType());
3691 
3692   // If EmitVAArg fails, emit an error.
3693   if (!ArgPtr.isValid()) {
3694     CGF.ErrorUnsupported(VE, "va_arg expression");
3695     return llvm::UndefValue::get(ArgTy);
3696   }
3697 
3698   // FIXME Volatility.
3699   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3700 
3701   // If EmitVAArg promoted the type, we must truncate it.
3702   if (ArgTy != Val->getType()) {
3703     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3704       Val = Builder.CreateIntToPtr(Val, ArgTy);
3705     else
3706       Val = Builder.CreateTrunc(Val, ArgTy);
3707   }
3708 
3709   return Val;
3710 }
3711 
3712 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3713   return CGF.EmitBlockLiteral(block);
3714 }
3715 
3716 // Convert a vec3 to vec4, or vice versa.
3717 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
3718                                  Value *Src, unsigned NumElementsDst) {
3719   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3720   SmallVector<llvm::Constant*, 4> Args;
3721   Args.push_back(Builder.getInt32(0));
3722   Args.push_back(Builder.getInt32(1));
3723   Args.push_back(Builder.getInt32(2));
3724   if (NumElementsDst == 4)
3725     Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3726   llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3727   return Builder.CreateShuffleVector(Src, UnV, Mask);
3728 }
3729 
3730 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
3731 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
3732 // but could be scalar or vectors of different lengths, and either can be
3733 // pointer.
3734 // There are 4 cases:
3735 // 1. non-pointer -> non-pointer  : needs 1 bitcast
3736 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
3737 // 3. pointer -> non-pointer
3738 //   a) pointer -> intptr_t       : needs 1 ptrtoint
3739 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
3740 // 4. non-pointer -> pointer
3741 //   a) intptr_t -> pointer       : needs 1 inttoptr
3742 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
3743 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
3744 // allow casting directly between pointer types and non-integer non-pointer
3745 // types.
3746 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
3747                                            const llvm::DataLayout &DL,
3748                                            Value *Src, llvm::Type *DstTy,
3749                                            StringRef Name = "") {
3750   auto SrcTy = Src->getType();
3751 
3752   // Case 1.
3753   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
3754     return Builder.CreateBitCast(Src, DstTy, Name);
3755 
3756   // Case 2.
3757   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
3758     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
3759 
3760   // Case 3.
3761   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
3762     // Case 3b.
3763     if (!DstTy->isIntegerTy())
3764       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
3765     // Cases 3a and 3b.
3766     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
3767   }
3768 
3769   // Case 4b.
3770   if (!SrcTy->isIntegerTy())
3771     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
3772   // Cases 4a and 4b.
3773   return Builder.CreateIntToPtr(Src, DstTy, Name);
3774 }
3775 
3776 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3777   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3778   llvm::Type *DstTy = ConvertType(E->getType());
3779 
3780   llvm::Type *SrcTy = Src->getType();
3781   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
3782     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
3783   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
3784     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
3785 
3786   // Going from vec3 to non-vec3 is a special case and requires a shuffle
3787   // vector to get a vec4, then a bitcast if the target type is different.
3788   if (NumElementsSrc == 3 && NumElementsDst != 3) {
3789     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
3790 
3791     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
3792       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3793                                          DstTy);
3794     }
3795 
3796     Src->setName("astype");
3797     return Src;
3798   }
3799 
3800   // Going from non-vec3 to vec3 is a special case and requires a bitcast
3801   // to vec4 if the original type is not vec4, then a shuffle vector to
3802   // get a vec3.
3803   if (NumElementsSrc != 3 && NumElementsDst == 3) {
3804     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
3805       auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
3806       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3807                                          Vec4Ty);
3808     }
3809 
3810     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
3811     Src->setName("astype");
3812     return Src;
3813   }
3814 
3815   return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
3816                                             Src, DstTy, "astype");
3817 }
3818 
3819 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3820   return CGF.EmitAtomicExpr(E).getScalarVal();
3821 }
3822 
3823 //===----------------------------------------------------------------------===//
3824 //                         Entry Point into this File
3825 //===----------------------------------------------------------------------===//
3826 
3827 /// Emit the computation of the specified expression of scalar type, ignoring
3828 /// the result.
3829 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3830   assert(E && hasScalarEvaluationKind(E->getType()) &&
3831          "Invalid scalar expression to emit");
3832 
3833   return ScalarExprEmitter(*this, IgnoreResultAssign)
3834       .Visit(const_cast<Expr *>(E));
3835 }
3836 
3837 /// Emit a conversion from the specified type to the specified destination type,
3838 /// both of which are LLVM scalar types.
3839 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3840                                              QualType DstTy,
3841                                              SourceLocation Loc) {
3842   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3843          "Invalid scalar expression to emit");
3844   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
3845 }
3846 
3847 /// Emit a conversion from the specified complex type to the specified
3848 /// destination type, where the destination type is an LLVM scalar type.
3849 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3850                                                       QualType SrcTy,
3851                                                       QualType DstTy,
3852                                                       SourceLocation Loc) {
3853   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3854          "Invalid complex -> scalar conversion");
3855   return ScalarExprEmitter(*this)
3856       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
3857 }
3858 
3859 
3860 llvm::Value *CodeGenFunction::
3861 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3862                         bool isInc, bool isPre) {
3863   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3864 }
3865 
3866 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3867   // object->isa or (*object).isa
3868   // Generate code as for: *(Class*)object
3869 
3870   Expr *BaseExpr = E->getBase();
3871   Address Addr = Address::invalid();
3872   if (BaseExpr->isRValue()) {
3873     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
3874   } else {
3875     Addr = EmitLValue(BaseExpr).getAddress();
3876   }
3877 
3878   // Cast the address to Class*.
3879   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
3880   return MakeAddrLValue(Addr, E->getType());
3881 }
3882 
3883 
3884 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3885                                             const CompoundAssignOperator *E) {
3886   ScalarExprEmitter Scalar(*this);
3887   Value *Result = nullptr;
3888   switch (E->getOpcode()) {
3889 #define COMPOUND_OP(Op)                                                       \
3890     case BO_##Op##Assign:                                                     \
3891       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3892                                              Result)
3893   COMPOUND_OP(Mul);
3894   COMPOUND_OP(Div);
3895   COMPOUND_OP(Rem);
3896   COMPOUND_OP(Add);
3897   COMPOUND_OP(Sub);
3898   COMPOUND_OP(Shl);
3899   COMPOUND_OP(Shr);
3900   COMPOUND_OP(And);
3901   COMPOUND_OP(Xor);
3902   COMPOUND_OP(Or);
3903 #undef COMPOUND_OP
3904 
3905   case BO_PtrMemD:
3906   case BO_PtrMemI:
3907   case BO_Mul:
3908   case BO_Div:
3909   case BO_Rem:
3910   case BO_Add:
3911   case BO_Sub:
3912   case BO_Shl:
3913   case BO_Shr:
3914   case BO_LT:
3915   case BO_GT:
3916   case BO_LE:
3917   case BO_GE:
3918   case BO_EQ:
3919   case BO_NE:
3920   case BO_Cmp:
3921   case BO_And:
3922   case BO_Xor:
3923   case BO_Or:
3924   case BO_LAnd:
3925   case BO_LOr:
3926   case BO_Assign:
3927   case BO_Comma:
3928     llvm_unreachable("Not valid compound assignment operators");
3929   }
3930 
3931   llvm_unreachable("Unhandled compound assignment operator");
3932 }
3933 
3934 Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr,
3935                                                ArrayRef<Value *> IdxList,
3936                                                bool SignedIndices,
3937                                                bool IsSubtraction,
3938                                                SourceLocation Loc,
3939                                                const Twine &Name) {
3940   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
3941 
3942   // If the pointer overflow sanitizer isn't enabled, do nothing.
3943   if (!SanOpts.has(SanitizerKind::PointerOverflow))
3944     return GEPVal;
3945 
3946   // If the GEP has already been reduced to a constant, leave it be.
3947   if (isa<llvm::Constant>(GEPVal))
3948     return GEPVal;
3949 
3950   // Only check for overflows in the default address space.
3951   if (GEPVal->getType()->getPointerAddressSpace())
3952     return GEPVal;
3953 
3954   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
3955   assert(GEP->isInBounds() && "Expected inbounds GEP");
3956 
3957   SanitizerScope SanScope(this);
3958   auto &VMContext = getLLVMContext();
3959   const auto &DL = CGM.getDataLayout();
3960   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
3961 
3962   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
3963   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
3964   auto *SAddIntrinsic =
3965       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
3966   auto *SMulIntrinsic =
3967       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
3968 
3969   // The total (signed) byte offset for the GEP.
3970   llvm::Value *TotalOffset = nullptr;
3971   // The offset overflow flag - true if the total offset overflows.
3972   llvm::Value *OffsetOverflows = Builder.getFalse();
3973 
3974   /// Return the result of the given binary operation.
3975   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
3976                   llvm::Value *RHS) -> llvm::Value * {
3977     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
3978 
3979     // If the operands are constants, return a constant result.
3980     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
3981       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
3982         llvm::APInt N;
3983         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
3984                                                   /*Signed=*/true, N);
3985         if (HasOverflow)
3986           OffsetOverflows = Builder.getTrue();
3987         return llvm::ConstantInt::get(VMContext, N);
3988       }
3989     }
3990 
3991     // Otherwise, compute the result with checked arithmetic.
3992     auto *ResultAndOverflow = Builder.CreateCall(
3993         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
3994     OffsetOverflows = Builder.CreateOr(
3995         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
3996     return Builder.CreateExtractValue(ResultAndOverflow, 0);
3997   };
3998 
3999   // Determine the total byte offset by looking at each GEP operand.
4000   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4001        GTI != GTE; ++GTI) {
4002     llvm::Value *LocalOffset;
4003     auto *Index = GTI.getOperand();
4004     // Compute the local offset contributed by this indexing step:
4005     if (auto *STy = GTI.getStructTypeOrNull()) {
4006       // For struct indexing, the local offset is the byte position of the
4007       // specified field.
4008       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4009       LocalOffset = llvm::ConstantInt::get(
4010           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4011     } else {
4012       // Otherwise this is array-like indexing. The local offset is the index
4013       // multiplied by the element size.
4014       auto *ElementSize = llvm::ConstantInt::get(
4015           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4016       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4017       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4018     }
4019 
4020     // If this is the first offset, set it as the total offset. Otherwise, add
4021     // the local offset into the running total.
4022     if (!TotalOffset || TotalOffset == Zero)
4023       TotalOffset = LocalOffset;
4024     else
4025       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4026   }
4027 
4028   // Common case: if the total offset is zero, don't emit a check.
4029   if (TotalOffset == Zero)
4030     return GEPVal;
4031 
4032   // Now that we've computed the total offset, add it to the base pointer (with
4033   // wrapping semantics).
4034   auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy);
4035   auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset);
4036 
4037   // The GEP is valid if:
4038   // 1) The total offset doesn't overflow, and
4039   // 2) The sign of the difference between the computed address and the base
4040   // pointer matches the sign of the total offset.
4041   llvm::Value *ValidGEP;
4042   auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows);
4043   if (SignedIndices) {
4044     auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4045     auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero);
4046     llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4047     ValidGEP = Builder.CreateAnd(
4048         Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid),
4049         NoOffsetOverflow);
4050   } else if (!SignedIndices && !IsSubtraction) {
4051     auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4052     ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow);
4053   } else {
4054     auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4055     ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow);
4056   }
4057 
4058   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4059   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4060   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4061   EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow),
4062             SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4063 
4064   return GEPVal;
4065 }
4066