1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCleanup.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CodeGenFunction.h" 18 #include "CodeGenModule.h" 19 #include "ConstantEmitter.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtVisitor.h" 26 #include "clang/Basic/CodeGenOptions.h" 27 #include "clang/Basic/FixedPoint.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "llvm/ADT/Optional.h" 30 #include "llvm/IR/CFG.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/Module.h" 38 #include <cstdarg> 39 40 using namespace clang; 41 using namespace CodeGen; 42 using llvm::Value; 43 44 //===----------------------------------------------------------------------===// 45 // Scalar Expression Emitter 46 //===----------------------------------------------------------------------===// 47 48 namespace { 49 50 /// Determine whether the given binary operation may overflow. 51 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 52 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 53 /// the returned overflow check is precise. The returned value is 'true' for 54 /// all other opcodes, to be conservative. 55 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 56 BinaryOperator::Opcode Opcode, bool Signed, 57 llvm::APInt &Result) { 58 // Assume overflow is possible, unless we can prove otherwise. 59 bool Overflow = true; 60 const auto &LHSAP = LHS->getValue(); 61 const auto &RHSAP = RHS->getValue(); 62 if (Opcode == BO_Add) { 63 if (Signed) 64 Result = LHSAP.sadd_ov(RHSAP, Overflow); 65 else 66 Result = LHSAP.uadd_ov(RHSAP, Overflow); 67 } else if (Opcode == BO_Sub) { 68 if (Signed) 69 Result = LHSAP.ssub_ov(RHSAP, Overflow); 70 else 71 Result = LHSAP.usub_ov(RHSAP, Overflow); 72 } else if (Opcode == BO_Mul) { 73 if (Signed) 74 Result = LHSAP.smul_ov(RHSAP, Overflow); 75 else 76 Result = LHSAP.umul_ov(RHSAP, Overflow); 77 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 78 if (Signed && !RHS->isZero()) 79 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 80 else 81 return false; 82 } 83 return Overflow; 84 } 85 86 struct BinOpInfo { 87 Value *LHS; 88 Value *RHS; 89 QualType Ty; // Computation Type. 90 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 91 FPOptions FPFeatures; 92 const Expr *E; // Entire expr, for error unsupported. May not be binop. 93 94 /// Check if the binop can result in integer overflow. 95 bool mayHaveIntegerOverflow() const { 96 // Without constant input, we can't rule out overflow. 97 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 98 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 99 if (!LHSCI || !RHSCI) 100 return true; 101 102 llvm::APInt Result; 103 return ::mayHaveIntegerOverflow( 104 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 105 } 106 107 /// Check if the binop computes a division or a remainder. 108 bool isDivremOp() const { 109 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 110 Opcode == BO_RemAssign; 111 } 112 113 /// Check if the binop can result in an integer division by zero. 114 bool mayHaveIntegerDivisionByZero() const { 115 if (isDivremOp()) 116 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 117 return CI->isZero(); 118 return true; 119 } 120 121 /// Check if the binop can result in a float division by zero. 122 bool mayHaveFloatDivisionByZero() const { 123 if (isDivremOp()) 124 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 125 return CFP->isZero(); 126 return true; 127 } 128 129 /// Check if either operand is a fixed point type or integer type, with at 130 /// least one being a fixed point type. In any case, this 131 /// operation did not follow usual arithmetic conversion and both operands may 132 /// not be the same. 133 bool isFixedPointBinOp() const { 134 // We cannot simply check the result type since comparison operations return 135 // an int. 136 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { 137 QualType LHSType = BinOp->getLHS()->getType(); 138 QualType RHSType = BinOp->getRHS()->getType(); 139 return LHSType->isFixedPointType() || RHSType->isFixedPointType(); 140 } 141 return false; 142 } 143 }; 144 145 static bool MustVisitNullValue(const Expr *E) { 146 // If a null pointer expression's type is the C++0x nullptr_t, then 147 // it's not necessarily a simple constant and it must be evaluated 148 // for its potential side effects. 149 return E->getType()->isNullPtrType(); 150 } 151 152 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 153 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 154 const Expr *E) { 155 const Expr *Base = E->IgnoreImpCasts(); 156 if (E == Base) 157 return llvm::None; 158 159 QualType BaseTy = Base->getType(); 160 if (!BaseTy->isPromotableIntegerType() || 161 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 162 return llvm::None; 163 164 return BaseTy; 165 } 166 167 /// Check if \p E is a widened promoted integer. 168 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 169 return getUnwidenedIntegerType(Ctx, E).hasValue(); 170 } 171 172 /// Check if we can skip the overflow check for \p Op. 173 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 174 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 175 "Expected a unary or binary operator"); 176 177 // If the binop has constant inputs and we can prove there is no overflow, 178 // we can elide the overflow check. 179 if (!Op.mayHaveIntegerOverflow()) 180 return true; 181 182 // If a unary op has a widened operand, the op cannot overflow. 183 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 184 return !UO->canOverflow(); 185 186 // We usually don't need overflow checks for binops with widened operands. 187 // Multiplication with promoted unsigned operands is a special case. 188 const auto *BO = cast<BinaryOperator>(Op.E); 189 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 190 if (!OptionalLHSTy) 191 return false; 192 193 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 194 if (!OptionalRHSTy) 195 return false; 196 197 QualType LHSTy = *OptionalLHSTy; 198 QualType RHSTy = *OptionalRHSTy; 199 200 // This is the simple case: binops without unsigned multiplication, and with 201 // widened operands. No overflow check is needed here. 202 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 203 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 204 return true; 205 206 // For unsigned multiplication the overflow check can be elided if either one 207 // of the unpromoted types are less than half the size of the promoted type. 208 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 209 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 210 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 211 } 212 213 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions. 214 static void updateFastMathFlags(llvm::FastMathFlags &FMF, 215 FPOptions FPFeatures) { 216 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 217 } 218 219 /// Propagate fast-math flags from \p Op to the instruction in \p V. 220 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) { 221 if (auto *I = dyn_cast<llvm::Instruction>(V)) { 222 llvm::FastMathFlags FMF = I->getFastMathFlags(); 223 updateFastMathFlags(FMF, Op.FPFeatures); 224 I->setFastMathFlags(FMF); 225 } 226 return V; 227 } 228 229 class ScalarExprEmitter 230 : public StmtVisitor<ScalarExprEmitter, Value*> { 231 CodeGenFunction &CGF; 232 CGBuilderTy &Builder; 233 bool IgnoreResultAssign; 234 llvm::LLVMContext &VMContext; 235 public: 236 237 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 238 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 239 VMContext(cgf.getLLVMContext()) { 240 } 241 242 //===--------------------------------------------------------------------===// 243 // Utilities 244 //===--------------------------------------------------------------------===// 245 246 bool TestAndClearIgnoreResultAssign() { 247 bool I = IgnoreResultAssign; 248 IgnoreResultAssign = false; 249 return I; 250 } 251 252 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 253 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 254 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 255 return CGF.EmitCheckedLValue(E, TCK); 256 } 257 258 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 259 const BinOpInfo &Info); 260 261 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 262 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 263 } 264 265 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 266 const AlignValueAttr *AVAttr = nullptr; 267 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 268 const ValueDecl *VD = DRE->getDecl(); 269 270 if (VD->getType()->isReferenceType()) { 271 if (const auto *TTy = 272 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 273 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 274 } else { 275 // Assumptions for function parameters are emitted at the start of the 276 // function, so there is no need to repeat that here, 277 // unless the alignment-assumption sanitizer is enabled, 278 // then we prefer the assumption over alignment attribute 279 // on IR function param. 280 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) 281 return; 282 283 AVAttr = VD->getAttr<AlignValueAttr>(); 284 } 285 } 286 287 if (!AVAttr) 288 if (const auto *TTy = 289 dyn_cast<TypedefType>(E->getType())) 290 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 291 292 if (!AVAttr) 293 return; 294 295 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 296 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 297 CGF.EmitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI); 298 } 299 300 /// EmitLoadOfLValue - Given an expression with complex type that represents a 301 /// value l-value, this method emits the address of the l-value, then loads 302 /// and returns the result. 303 Value *EmitLoadOfLValue(const Expr *E) { 304 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 305 E->getExprLoc()); 306 307 EmitLValueAlignmentAssumption(E, V); 308 return V; 309 } 310 311 /// EmitConversionToBool - Convert the specified expression value to a 312 /// boolean (i1) truth value. This is equivalent to "Val != 0". 313 Value *EmitConversionToBool(Value *Src, QualType DstTy); 314 315 /// Emit a check that a conversion from a floating-point type does not 316 /// overflow. 317 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 318 Value *Src, QualType SrcType, QualType DstType, 319 llvm::Type *DstTy, SourceLocation Loc); 320 321 /// Known implicit conversion check kinds. 322 /// Keep in sync with the enum of the same name in ubsan_handlers.h 323 enum ImplicitConversionCheckKind : unsigned char { 324 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 325 ICCK_UnsignedIntegerTruncation = 1, 326 ICCK_SignedIntegerTruncation = 2, 327 ICCK_IntegerSignChange = 3, 328 ICCK_SignedIntegerTruncationOrSignChange = 4, 329 }; 330 331 /// Emit a check that an [implicit] truncation of an integer does not 332 /// discard any bits. It is not UB, so we use the value after truncation. 333 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 334 QualType DstType, SourceLocation Loc); 335 336 /// Emit a check that an [implicit] conversion of an integer does not change 337 /// the sign of the value. It is not UB, so we use the value after conversion. 338 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 339 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 340 QualType DstType, SourceLocation Loc); 341 342 /// Emit a conversion from the specified type to the specified destination 343 /// type, both of which are LLVM scalar types. 344 struct ScalarConversionOpts { 345 bool TreatBooleanAsSigned; 346 bool EmitImplicitIntegerTruncationChecks; 347 bool EmitImplicitIntegerSignChangeChecks; 348 349 ScalarConversionOpts() 350 : TreatBooleanAsSigned(false), 351 EmitImplicitIntegerTruncationChecks(false), 352 EmitImplicitIntegerSignChangeChecks(false) {} 353 354 ScalarConversionOpts(clang::SanitizerSet SanOpts) 355 : TreatBooleanAsSigned(false), 356 EmitImplicitIntegerTruncationChecks( 357 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 358 EmitImplicitIntegerSignChangeChecks( 359 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 360 }; 361 Value * 362 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 363 SourceLocation Loc, 364 ScalarConversionOpts Opts = ScalarConversionOpts()); 365 366 /// Convert between either a fixed point and other fixed point or fixed point 367 /// and an integer. 368 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 369 SourceLocation Loc); 370 Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema, 371 FixedPointSemantics &DstFixedSema, 372 SourceLocation Loc, 373 bool DstIsInteger = false); 374 375 /// Emit a conversion from the specified complex type to the specified 376 /// destination type, where the destination type is an LLVM scalar type. 377 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 378 QualType SrcTy, QualType DstTy, 379 SourceLocation Loc); 380 381 /// EmitNullValue - Emit a value that corresponds to null for the given type. 382 Value *EmitNullValue(QualType Ty); 383 384 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 385 Value *EmitFloatToBoolConversion(Value *V) { 386 // Compare against 0.0 for fp scalars. 387 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 388 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 389 } 390 391 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 392 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 393 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 394 395 return Builder.CreateICmpNE(V, Zero, "tobool"); 396 } 397 398 Value *EmitIntToBoolConversion(Value *V) { 399 // Because of the type rules of C, we often end up computing a 400 // logical value, then zero extending it to int, then wanting it 401 // as a logical value again. Optimize this common case. 402 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 403 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 404 Value *Result = ZI->getOperand(0); 405 // If there aren't any more uses, zap the instruction to save space. 406 // Note that there can be more uses, for example if this 407 // is the result of an assignment. 408 if (ZI->use_empty()) 409 ZI->eraseFromParent(); 410 return Result; 411 } 412 } 413 414 return Builder.CreateIsNotNull(V, "tobool"); 415 } 416 417 //===--------------------------------------------------------------------===// 418 // Visitor Methods 419 //===--------------------------------------------------------------------===// 420 421 Value *Visit(Expr *E) { 422 ApplyDebugLocation DL(CGF, E); 423 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 424 } 425 426 Value *VisitStmt(Stmt *S) { 427 S->dump(CGF.getContext().getSourceManager()); 428 llvm_unreachable("Stmt can't have complex result type!"); 429 } 430 Value *VisitExpr(Expr *S); 431 432 Value *VisitConstantExpr(ConstantExpr *E) { 433 return Visit(E->getSubExpr()); 434 } 435 Value *VisitParenExpr(ParenExpr *PE) { 436 return Visit(PE->getSubExpr()); 437 } 438 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 439 return Visit(E->getReplacement()); 440 } 441 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 442 return Visit(GE->getResultExpr()); 443 } 444 Value *VisitCoawaitExpr(CoawaitExpr *S) { 445 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 446 } 447 Value *VisitCoyieldExpr(CoyieldExpr *S) { 448 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 449 } 450 Value *VisitUnaryCoawait(const UnaryOperator *E) { 451 return Visit(E->getSubExpr()); 452 } 453 454 // Leaves. 455 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 456 return Builder.getInt(E->getValue()); 457 } 458 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 459 return Builder.getInt(E->getValue()); 460 } 461 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 462 return llvm::ConstantFP::get(VMContext, E->getValue()); 463 } 464 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 465 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 466 } 467 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 468 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 469 } 470 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 471 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 472 } 473 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 474 return EmitNullValue(E->getType()); 475 } 476 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 477 return EmitNullValue(E->getType()); 478 } 479 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 480 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 481 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 482 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 483 return Builder.CreateBitCast(V, ConvertType(E->getType())); 484 } 485 486 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 487 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 488 } 489 490 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 491 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 492 } 493 494 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 495 if (E->isGLValue()) 496 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 497 E->getExprLoc()); 498 499 // Otherwise, assume the mapping is the scalar directly. 500 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 501 } 502 503 // l-values. 504 Value *VisitDeclRefExpr(DeclRefExpr *E) { 505 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 506 return CGF.emitScalarConstant(Constant, E); 507 return EmitLoadOfLValue(E); 508 } 509 510 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 511 return CGF.EmitObjCSelectorExpr(E); 512 } 513 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 514 return CGF.EmitObjCProtocolExpr(E); 515 } 516 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 517 return EmitLoadOfLValue(E); 518 } 519 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 520 if (E->getMethodDecl() && 521 E->getMethodDecl()->getReturnType()->isReferenceType()) 522 return EmitLoadOfLValue(E); 523 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 524 } 525 526 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 527 LValue LV = CGF.EmitObjCIsaExpr(E); 528 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 529 return V; 530 } 531 532 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 533 VersionTuple Version = E->getVersion(); 534 535 // If we're checking for a platform older than our minimum deployment 536 // target, we can fold the check away. 537 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 538 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 539 540 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 541 llvm::Value *Args[] = { 542 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), 543 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), 544 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), 545 }; 546 547 return CGF.EmitBuiltinAvailable(Args); 548 } 549 550 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 551 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 552 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 553 Value *VisitMemberExpr(MemberExpr *E); 554 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 555 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 556 return EmitLoadOfLValue(E); 557 } 558 559 Value *VisitInitListExpr(InitListExpr *E); 560 561 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 562 assert(CGF.getArrayInitIndex() && 563 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 564 return CGF.getArrayInitIndex(); 565 } 566 567 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 568 return EmitNullValue(E->getType()); 569 } 570 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 571 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 572 return VisitCastExpr(E); 573 } 574 Value *VisitCastExpr(CastExpr *E); 575 576 Value *VisitCallExpr(const CallExpr *E) { 577 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 578 return EmitLoadOfLValue(E); 579 580 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 581 582 EmitLValueAlignmentAssumption(E, V); 583 return V; 584 } 585 586 Value *VisitStmtExpr(const StmtExpr *E); 587 588 // Unary Operators. 589 Value *VisitUnaryPostDec(const UnaryOperator *E) { 590 LValue LV = EmitLValue(E->getSubExpr()); 591 return EmitScalarPrePostIncDec(E, LV, false, false); 592 } 593 Value *VisitUnaryPostInc(const UnaryOperator *E) { 594 LValue LV = EmitLValue(E->getSubExpr()); 595 return EmitScalarPrePostIncDec(E, LV, true, false); 596 } 597 Value *VisitUnaryPreDec(const UnaryOperator *E) { 598 LValue LV = EmitLValue(E->getSubExpr()); 599 return EmitScalarPrePostIncDec(E, LV, false, true); 600 } 601 Value *VisitUnaryPreInc(const UnaryOperator *E) { 602 LValue LV = EmitLValue(E->getSubExpr()); 603 return EmitScalarPrePostIncDec(E, LV, true, true); 604 } 605 606 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 607 llvm::Value *InVal, 608 bool IsInc); 609 610 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 611 bool isInc, bool isPre); 612 613 614 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 615 if (isa<MemberPointerType>(E->getType())) // never sugared 616 return CGF.CGM.getMemberPointerConstant(E); 617 618 return EmitLValue(E->getSubExpr()).getPointer(); 619 } 620 Value *VisitUnaryDeref(const UnaryOperator *E) { 621 if (E->getType()->isVoidType()) 622 return Visit(E->getSubExpr()); // the actual value should be unused 623 return EmitLoadOfLValue(E); 624 } 625 Value *VisitUnaryPlus(const UnaryOperator *E) { 626 // This differs from gcc, though, most likely due to a bug in gcc. 627 TestAndClearIgnoreResultAssign(); 628 return Visit(E->getSubExpr()); 629 } 630 Value *VisitUnaryMinus (const UnaryOperator *E); 631 Value *VisitUnaryNot (const UnaryOperator *E); 632 Value *VisitUnaryLNot (const UnaryOperator *E); 633 Value *VisitUnaryReal (const UnaryOperator *E); 634 Value *VisitUnaryImag (const UnaryOperator *E); 635 Value *VisitUnaryExtension(const UnaryOperator *E) { 636 return Visit(E->getSubExpr()); 637 } 638 639 // C++ 640 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 641 return EmitLoadOfLValue(E); 642 } 643 Value *VisitSourceLocExpr(SourceLocExpr *SLE) { 644 auto &Ctx = CGF.getContext(); 645 APValue Evaluated = 646 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr()); 647 return ConstantEmitter(CGF.CGM, &CGF) 648 .emitAbstract(SLE->getLocation(), Evaluated, SLE->getType()); 649 } 650 651 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 652 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 653 return Visit(DAE->getExpr()); 654 } 655 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 656 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 657 return Visit(DIE->getExpr()); 658 } 659 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 660 return CGF.LoadCXXThis(); 661 } 662 663 Value *VisitExprWithCleanups(ExprWithCleanups *E); 664 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 665 return CGF.EmitCXXNewExpr(E); 666 } 667 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 668 CGF.EmitCXXDeleteExpr(E); 669 return nullptr; 670 } 671 672 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 673 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 674 } 675 676 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 677 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 678 } 679 680 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 681 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 682 } 683 684 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 685 // C++ [expr.pseudo]p1: 686 // The result shall only be used as the operand for the function call 687 // operator (), and the result of such a call has type void. The only 688 // effect is the evaluation of the postfix-expression before the dot or 689 // arrow. 690 CGF.EmitScalarExpr(E->getBase()); 691 return nullptr; 692 } 693 694 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 695 return EmitNullValue(E->getType()); 696 } 697 698 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 699 CGF.EmitCXXThrowExpr(E); 700 return nullptr; 701 } 702 703 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 704 return Builder.getInt1(E->getValue()); 705 } 706 707 // Binary Operators. 708 Value *EmitMul(const BinOpInfo &Ops) { 709 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 710 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 711 case LangOptions::SOB_Defined: 712 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 713 case LangOptions::SOB_Undefined: 714 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 715 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 716 LLVM_FALLTHROUGH; 717 case LangOptions::SOB_Trapping: 718 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 719 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 720 return EmitOverflowCheckedBinOp(Ops); 721 } 722 } 723 724 if (Ops.Ty->isUnsignedIntegerType() && 725 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 726 !CanElideOverflowCheck(CGF.getContext(), Ops)) 727 return EmitOverflowCheckedBinOp(Ops); 728 729 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 730 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 731 return propagateFMFlags(V, Ops); 732 } 733 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 734 } 735 /// Create a binary op that checks for overflow. 736 /// Currently only supports +, - and *. 737 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 738 739 // Check for undefined division and modulus behaviors. 740 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 741 llvm::Value *Zero,bool isDiv); 742 // Common helper for getting how wide LHS of shift is. 743 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 744 Value *EmitDiv(const BinOpInfo &Ops); 745 Value *EmitRem(const BinOpInfo &Ops); 746 Value *EmitAdd(const BinOpInfo &Ops); 747 Value *EmitSub(const BinOpInfo &Ops); 748 Value *EmitShl(const BinOpInfo &Ops); 749 Value *EmitShr(const BinOpInfo &Ops); 750 Value *EmitAnd(const BinOpInfo &Ops) { 751 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 752 } 753 Value *EmitXor(const BinOpInfo &Ops) { 754 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 755 } 756 Value *EmitOr (const BinOpInfo &Ops) { 757 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 758 } 759 760 // Helper functions for fixed point binary operations. 761 Value *EmitFixedPointBinOp(const BinOpInfo &Ops); 762 763 BinOpInfo EmitBinOps(const BinaryOperator *E); 764 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 765 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 766 Value *&Result); 767 768 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 769 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 770 771 // Binary operators and binary compound assignment operators. 772 #define HANDLEBINOP(OP) \ 773 Value *VisitBin ## OP(const BinaryOperator *E) { \ 774 return Emit ## OP(EmitBinOps(E)); \ 775 } \ 776 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 777 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 778 } 779 HANDLEBINOP(Mul) 780 HANDLEBINOP(Div) 781 HANDLEBINOP(Rem) 782 HANDLEBINOP(Add) 783 HANDLEBINOP(Sub) 784 HANDLEBINOP(Shl) 785 HANDLEBINOP(Shr) 786 HANDLEBINOP(And) 787 HANDLEBINOP(Xor) 788 HANDLEBINOP(Or) 789 #undef HANDLEBINOP 790 791 // Comparisons. 792 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 793 llvm::CmpInst::Predicate SICmpOpc, 794 llvm::CmpInst::Predicate FCmpOpc); 795 #define VISITCOMP(CODE, UI, SI, FP) \ 796 Value *VisitBin##CODE(const BinaryOperator *E) { \ 797 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 798 llvm::FCmpInst::FP); } 799 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 800 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 801 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 802 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 803 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 804 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 805 #undef VISITCOMP 806 807 Value *VisitBinAssign (const BinaryOperator *E); 808 809 Value *VisitBinLAnd (const BinaryOperator *E); 810 Value *VisitBinLOr (const BinaryOperator *E); 811 Value *VisitBinComma (const BinaryOperator *E); 812 813 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 814 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 815 816 // Other Operators. 817 Value *VisitBlockExpr(const BlockExpr *BE); 818 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 819 Value *VisitChooseExpr(ChooseExpr *CE); 820 Value *VisitVAArgExpr(VAArgExpr *VE); 821 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 822 return CGF.EmitObjCStringLiteral(E); 823 } 824 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 825 return CGF.EmitObjCBoxedExpr(E); 826 } 827 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 828 return CGF.EmitObjCArrayLiteral(E); 829 } 830 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 831 return CGF.EmitObjCDictionaryLiteral(E); 832 } 833 Value *VisitAsTypeExpr(AsTypeExpr *CE); 834 Value *VisitAtomicExpr(AtomicExpr *AE); 835 }; 836 } // end anonymous namespace. 837 838 //===----------------------------------------------------------------------===// 839 // Utilities 840 //===----------------------------------------------------------------------===// 841 842 /// EmitConversionToBool - Convert the specified expression value to a 843 /// boolean (i1) truth value. This is equivalent to "Val != 0". 844 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 845 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 846 847 if (SrcType->isRealFloatingType()) 848 return EmitFloatToBoolConversion(Src); 849 850 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 851 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 852 853 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 854 "Unknown scalar type to convert"); 855 856 if (isa<llvm::IntegerType>(Src->getType())) 857 return EmitIntToBoolConversion(Src); 858 859 assert(isa<llvm::PointerType>(Src->getType())); 860 return EmitPointerToBoolConversion(Src, SrcType); 861 } 862 863 void ScalarExprEmitter::EmitFloatConversionCheck( 864 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 865 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 866 assert(SrcType->isFloatingType() && "not a conversion from floating point"); 867 if (!isa<llvm::IntegerType>(DstTy)) 868 return; 869 870 CodeGenFunction::SanitizerScope SanScope(&CGF); 871 using llvm::APFloat; 872 using llvm::APSInt; 873 874 llvm::Value *Check = nullptr; 875 const llvm::fltSemantics &SrcSema = 876 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 877 878 // Floating-point to integer. This has undefined behavior if the source is 879 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 880 // to an integer). 881 unsigned Width = CGF.getContext().getIntWidth(DstType); 882 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 883 884 APSInt Min = APSInt::getMinValue(Width, Unsigned); 885 APFloat MinSrc(SrcSema, APFloat::uninitialized); 886 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 887 APFloat::opOverflow) 888 // Don't need an overflow check for lower bound. Just check for 889 // -Inf/NaN. 890 MinSrc = APFloat::getInf(SrcSema, true); 891 else 892 // Find the largest value which is too small to represent (before 893 // truncation toward zero). 894 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 895 896 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 897 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 898 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 899 APFloat::opOverflow) 900 // Don't need an overflow check for upper bound. Just check for 901 // +Inf/NaN. 902 MaxSrc = APFloat::getInf(SrcSema, false); 903 else 904 // Find the smallest value which is too large to represent (before 905 // truncation toward zero). 906 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 907 908 // If we're converting from __half, convert the range to float to match 909 // the type of src. 910 if (OrigSrcType->isHalfType()) { 911 const llvm::fltSemantics &Sema = 912 CGF.getContext().getFloatTypeSemantics(SrcType); 913 bool IsInexact; 914 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 915 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 916 } 917 918 llvm::Value *GE = 919 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 920 llvm::Value *LE = 921 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 922 Check = Builder.CreateAnd(GE, LE); 923 924 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 925 CGF.EmitCheckTypeDescriptor(OrigSrcType), 926 CGF.EmitCheckTypeDescriptor(DstType)}; 927 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 928 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 929 } 930 931 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 932 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 933 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 934 std::pair<llvm::Value *, SanitizerMask>> 935 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 936 QualType DstType, CGBuilderTy &Builder) { 937 llvm::Type *SrcTy = Src->getType(); 938 llvm::Type *DstTy = Dst->getType(); 939 (void)DstTy; // Only used in assert() 940 941 // This should be truncation of integral types. 942 assert(Src != Dst); 943 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 944 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 945 "non-integer llvm type"); 946 947 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 948 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 949 950 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 951 // Else, it is a signed truncation. 952 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 953 SanitizerMask Mask; 954 if (!SrcSigned && !DstSigned) { 955 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 956 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 957 } else { 958 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 959 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 960 } 961 962 llvm::Value *Check = nullptr; 963 // 1. Extend the truncated value back to the same width as the Src. 964 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 965 // 2. Equality-compare with the original source value 966 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 967 // If the comparison result is 'i1 false', then the truncation was lossy. 968 return std::make_pair(Kind, std::make_pair(Check, Mask)); 969 } 970 971 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 972 Value *Dst, QualType DstType, 973 SourceLocation Loc) { 974 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 975 return; 976 977 // We only care about int->int conversions here. 978 // We ignore conversions to/from pointer and/or bool. 979 if (!(SrcType->isIntegerType() && DstType->isIntegerType())) 980 return; 981 982 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 983 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 984 // This must be truncation. Else we do not care. 985 if (SrcBits <= DstBits) 986 return; 987 988 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 989 990 // If the integer sign change sanitizer is enabled, 991 // and we are truncating from larger unsigned type to smaller signed type, 992 // let that next sanitizer deal with it. 993 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 994 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 995 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 996 (!SrcSigned && DstSigned)) 997 return; 998 999 CodeGenFunction::SanitizerScope SanScope(&CGF); 1000 1001 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1002 std::pair<llvm::Value *, SanitizerMask>> 1003 Check = 1004 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1005 // If the comparison result is 'i1 false', then the truncation was lossy. 1006 1007 // Do we care about this type of truncation? 1008 if (!CGF.SanOpts.has(Check.second.second)) 1009 return; 1010 1011 llvm::Constant *StaticArgs[] = { 1012 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1013 CGF.EmitCheckTypeDescriptor(DstType), 1014 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1015 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1016 {Src, Dst}); 1017 } 1018 1019 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1020 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1021 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1022 std::pair<llvm::Value *, SanitizerMask>> 1023 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1024 QualType DstType, CGBuilderTy &Builder) { 1025 llvm::Type *SrcTy = Src->getType(); 1026 llvm::Type *DstTy = Dst->getType(); 1027 1028 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1029 "non-integer llvm type"); 1030 1031 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1032 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1033 (void)SrcSigned; // Only used in assert() 1034 (void)DstSigned; // Only used in assert() 1035 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1036 unsigned DstBits = DstTy->getScalarSizeInBits(); 1037 (void)SrcBits; // Only used in assert() 1038 (void)DstBits; // Only used in assert() 1039 1040 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1041 "either the widths should be different, or the signednesses."); 1042 1043 // NOTE: zero value is considered to be non-negative. 1044 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1045 const char *Name) -> Value * { 1046 // Is this value a signed type? 1047 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1048 llvm::Type *VTy = V->getType(); 1049 if (!VSigned) { 1050 // If the value is unsigned, then it is never negative. 1051 // FIXME: can we encounter non-scalar VTy here? 1052 return llvm::ConstantInt::getFalse(VTy->getContext()); 1053 } 1054 // Get the zero of the same type with which we will be comparing. 1055 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1056 // %V.isnegative = icmp slt %V, 0 1057 // I.e is %V *strictly* less than zero, does it have negative value? 1058 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1059 llvm::Twine(Name) + "." + V->getName() + 1060 ".negativitycheck"); 1061 }; 1062 1063 // 1. Was the old Value negative? 1064 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1065 // 2. Is the new Value negative? 1066 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1067 // 3. Now, was the 'negativity status' preserved during the conversion? 1068 // NOTE: conversion from negative to zero is considered to change the sign. 1069 // (We want to get 'false' when the conversion changed the sign) 1070 // So we should just equality-compare the negativity statuses. 1071 llvm::Value *Check = nullptr; 1072 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1073 // If the comparison result is 'false', then the conversion changed the sign. 1074 return std::make_pair( 1075 ScalarExprEmitter::ICCK_IntegerSignChange, 1076 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1077 } 1078 1079 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1080 Value *Dst, QualType DstType, 1081 SourceLocation Loc) { 1082 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1083 return; 1084 1085 llvm::Type *SrcTy = Src->getType(); 1086 llvm::Type *DstTy = Dst->getType(); 1087 1088 // We only care about int->int conversions here. 1089 // We ignore conversions to/from pointer and/or bool. 1090 if (!(SrcType->isIntegerType() && DstType->isIntegerType())) 1091 return; 1092 1093 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1094 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1095 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1096 unsigned DstBits = DstTy->getScalarSizeInBits(); 1097 1098 // Now, we do not need to emit the check in *all* of the cases. 1099 // We can avoid emitting it in some obvious cases where it would have been 1100 // dropped by the opt passes (instcombine) always anyways. 1101 // If it's a cast between effectively the same type, no check. 1102 // NOTE: this is *not* equivalent to checking the canonical types. 1103 if (SrcSigned == DstSigned && SrcBits == DstBits) 1104 return; 1105 // At least one of the values needs to have signed type. 1106 // If both are unsigned, then obviously, neither of them can be negative. 1107 if (!SrcSigned && !DstSigned) 1108 return; 1109 // If the conversion is to *larger* *signed* type, then no check is needed. 1110 // Because either sign-extension happens (so the sign will remain), 1111 // or zero-extension will happen (the sign bit will be zero.) 1112 if ((DstBits > SrcBits) && DstSigned) 1113 return; 1114 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1115 (SrcBits > DstBits) && SrcSigned) { 1116 // If the signed integer truncation sanitizer is enabled, 1117 // and this is a truncation from signed type, then no check is needed. 1118 // Because here sign change check is interchangeable with truncation check. 1119 return; 1120 } 1121 // That's it. We can't rule out any more cases with the data we have. 1122 1123 CodeGenFunction::SanitizerScope SanScope(&CGF); 1124 1125 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1126 std::pair<llvm::Value *, SanitizerMask>> 1127 Check; 1128 1129 // Each of these checks needs to return 'false' when an issue was detected. 1130 ImplicitConversionCheckKind CheckKind; 1131 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1132 // So we can 'and' all the checks together, and still get 'false', 1133 // if at least one of the checks detected an issue. 1134 1135 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1136 CheckKind = Check.first; 1137 Checks.emplace_back(Check.second); 1138 1139 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1140 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1141 // If the signed integer truncation sanitizer was enabled, 1142 // and we are truncating from larger unsigned type to smaller signed type, 1143 // let's handle the case we skipped in that check. 1144 Check = 1145 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1146 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1147 Checks.emplace_back(Check.second); 1148 // If the comparison result is 'i1 false', then the truncation was lossy. 1149 } 1150 1151 llvm::Constant *StaticArgs[] = { 1152 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1153 CGF.EmitCheckTypeDescriptor(DstType), 1154 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1155 // EmitCheck() will 'and' all the checks together. 1156 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1157 {Src, Dst}); 1158 } 1159 1160 /// Emit a conversion from the specified type to the specified destination type, 1161 /// both of which are LLVM scalar types. 1162 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1163 QualType DstType, 1164 SourceLocation Loc, 1165 ScalarConversionOpts Opts) { 1166 // All conversions involving fixed point types should be handled by the 1167 // EmitFixedPoint family functions. This is done to prevent bloating up this 1168 // function more, and although fixed point numbers are represented by 1169 // integers, we do not want to follow any logic that assumes they should be 1170 // treated as integers. 1171 // TODO(leonardchan): When necessary, add another if statement checking for 1172 // conversions to fixed point types from other types. 1173 if (SrcType->isFixedPointType()) { 1174 if (DstType->isBooleanType()) 1175 // It is important that we check this before checking if the dest type is 1176 // an integer because booleans are technically integer types. 1177 // We do not need to check the padding bit on unsigned types if unsigned 1178 // padding is enabled because overflow into this bit is undefined 1179 // behavior. 1180 return Builder.CreateIsNotNull(Src, "tobool"); 1181 if (DstType->isFixedPointType() || DstType->isIntegerType()) 1182 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1183 1184 llvm_unreachable( 1185 "Unhandled scalar conversion from a fixed point type to another type."); 1186 } else if (DstType->isFixedPointType()) { 1187 if (SrcType->isIntegerType()) 1188 // This also includes converting booleans and enums to fixed point types. 1189 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1190 1191 llvm_unreachable( 1192 "Unhandled scalar conversion to a fixed point type from another type."); 1193 } 1194 1195 QualType NoncanonicalSrcType = SrcType; 1196 QualType NoncanonicalDstType = DstType; 1197 1198 SrcType = CGF.getContext().getCanonicalType(SrcType); 1199 DstType = CGF.getContext().getCanonicalType(DstType); 1200 if (SrcType == DstType) return Src; 1201 1202 if (DstType->isVoidType()) return nullptr; 1203 1204 llvm::Value *OrigSrc = Src; 1205 QualType OrigSrcType = SrcType; 1206 llvm::Type *SrcTy = Src->getType(); 1207 1208 // Handle conversions to bool first, they are special: comparisons against 0. 1209 if (DstType->isBooleanType()) 1210 return EmitConversionToBool(Src, SrcType); 1211 1212 llvm::Type *DstTy = ConvertType(DstType); 1213 1214 // Cast from half through float if half isn't a native type. 1215 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1216 // Cast to FP using the intrinsic if the half type itself isn't supported. 1217 if (DstTy->isFloatingPointTy()) { 1218 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1219 return Builder.CreateCall( 1220 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1221 Src); 1222 } else { 1223 // Cast to other types through float, using either the intrinsic or FPExt, 1224 // depending on whether the half type itself is supported 1225 // (as opposed to operations on half, available with NativeHalfType). 1226 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1227 Src = Builder.CreateCall( 1228 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1229 CGF.CGM.FloatTy), 1230 Src); 1231 } else { 1232 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1233 } 1234 SrcType = CGF.getContext().FloatTy; 1235 SrcTy = CGF.FloatTy; 1236 } 1237 } 1238 1239 // Ignore conversions like int -> uint. 1240 if (SrcTy == DstTy) { 1241 if (Opts.EmitImplicitIntegerSignChangeChecks) 1242 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1243 NoncanonicalDstType, Loc); 1244 1245 return Src; 1246 } 1247 1248 // Handle pointer conversions next: pointers can only be converted to/from 1249 // other pointers and integers. Check for pointer types in terms of LLVM, as 1250 // some native types (like Obj-C id) may map to a pointer type. 1251 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1252 // The source value may be an integer, or a pointer. 1253 if (isa<llvm::PointerType>(SrcTy)) 1254 return Builder.CreateBitCast(Src, DstTy, "conv"); 1255 1256 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1257 // First, convert to the correct width so that we control the kind of 1258 // extension. 1259 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1260 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1261 llvm::Value* IntResult = 1262 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1263 // Then, cast to pointer. 1264 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1265 } 1266 1267 if (isa<llvm::PointerType>(SrcTy)) { 1268 // Must be an ptr to int cast. 1269 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1270 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1271 } 1272 1273 // A scalar can be splatted to an extended vector of the same element type 1274 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1275 // Sema should add casts to make sure that the source expression's type is 1276 // the same as the vector's element type (sans qualifiers) 1277 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1278 SrcType.getTypePtr() && 1279 "Splatted expr doesn't match with vector element type?"); 1280 1281 // Splat the element across to all elements 1282 unsigned NumElements = DstTy->getVectorNumElements(); 1283 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1284 } 1285 1286 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1287 // Allow bitcast from vector to integer/fp of the same size. 1288 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1289 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1290 if (SrcSize == DstSize) 1291 return Builder.CreateBitCast(Src, DstTy, "conv"); 1292 1293 // Conversions between vectors of different sizes are not allowed except 1294 // when vectors of half are involved. Operations on storage-only half 1295 // vectors require promoting half vector operands to float vectors and 1296 // truncating the result, which is either an int or float vector, to a 1297 // short or half vector. 1298 1299 // Source and destination are both expected to be vectors. 1300 llvm::Type *SrcElementTy = SrcTy->getVectorElementType(); 1301 llvm::Type *DstElementTy = DstTy->getVectorElementType(); 1302 (void)DstElementTy; 1303 1304 assert(((SrcElementTy->isIntegerTy() && 1305 DstElementTy->isIntegerTy()) || 1306 (SrcElementTy->isFloatingPointTy() && 1307 DstElementTy->isFloatingPointTy())) && 1308 "unexpected conversion between a floating-point vector and an " 1309 "integer vector"); 1310 1311 // Truncate an i32 vector to an i16 vector. 1312 if (SrcElementTy->isIntegerTy()) 1313 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1314 1315 // Truncate a float vector to a half vector. 1316 if (SrcSize > DstSize) 1317 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1318 1319 // Promote a half vector to a float vector. 1320 return Builder.CreateFPExt(Src, DstTy, "conv"); 1321 } 1322 1323 // Finally, we have the arithmetic types: real int/float. 1324 Value *Res = nullptr; 1325 llvm::Type *ResTy = DstTy; 1326 1327 // An overflowing conversion has undefined behavior if either the source type 1328 // or the destination type is a floating-point type. However, we consider the 1329 // range of representable values for all floating-point types to be 1330 // [-inf,+inf], so no overflow can ever happen when the destination type is a 1331 // floating-point type. 1332 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1333 OrigSrcType->isFloatingType()) 1334 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1335 Loc); 1336 1337 // Cast to half through float if half isn't a native type. 1338 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1339 // Make sure we cast in a single step if from another FP type. 1340 if (SrcTy->isFloatingPointTy()) { 1341 // Use the intrinsic if the half type itself isn't supported 1342 // (as opposed to operations on half, available with NativeHalfType). 1343 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1344 return Builder.CreateCall( 1345 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1346 // If the half type is supported, just use an fptrunc. 1347 return Builder.CreateFPTrunc(Src, DstTy); 1348 } 1349 DstTy = CGF.FloatTy; 1350 } 1351 1352 if (isa<llvm::IntegerType>(SrcTy)) { 1353 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1354 if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1355 InputSigned = true; 1356 } 1357 if (isa<llvm::IntegerType>(DstTy)) 1358 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1359 else if (InputSigned) 1360 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1361 else 1362 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1363 } else if (isa<llvm::IntegerType>(DstTy)) { 1364 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1365 if (DstType->isSignedIntegerOrEnumerationType()) 1366 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1367 else 1368 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1369 } else { 1370 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1371 "Unknown real conversion"); 1372 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1373 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1374 else 1375 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1376 } 1377 1378 if (DstTy != ResTy) { 1379 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1380 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1381 Res = Builder.CreateCall( 1382 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1383 Res); 1384 } else { 1385 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1386 } 1387 } 1388 1389 if (Opts.EmitImplicitIntegerTruncationChecks) 1390 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1391 NoncanonicalDstType, Loc); 1392 1393 if (Opts.EmitImplicitIntegerSignChangeChecks) 1394 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1395 NoncanonicalDstType, Loc); 1396 1397 return Res; 1398 } 1399 1400 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1401 QualType DstTy, 1402 SourceLocation Loc) { 1403 FixedPointSemantics SrcFPSema = 1404 CGF.getContext().getFixedPointSemantics(SrcTy); 1405 FixedPointSemantics DstFPSema = 1406 CGF.getContext().getFixedPointSemantics(DstTy); 1407 return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc, 1408 DstTy->isIntegerType()); 1409 } 1410 1411 Value *ScalarExprEmitter::EmitFixedPointConversion( 1412 Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema, 1413 SourceLocation Loc, bool DstIsInteger) { 1414 using llvm::APInt; 1415 using llvm::ConstantInt; 1416 using llvm::Value; 1417 1418 unsigned SrcWidth = SrcFPSema.getWidth(); 1419 unsigned DstWidth = DstFPSema.getWidth(); 1420 unsigned SrcScale = SrcFPSema.getScale(); 1421 unsigned DstScale = DstFPSema.getScale(); 1422 bool SrcIsSigned = SrcFPSema.isSigned(); 1423 bool DstIsSigned = DstFPSema.isSigned(); 1424 1425 llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth); 1426 1427 Value *Result = Src; 1428 unsigned ResultWidth = SrcWidth; 1429 1430 // Downscale. 1431 if (DstScale < SrcScale) { 1432 // When converting to integers, we round towards zero. For negative numbers, 1433 // right shifting rounds towards negative infinity. In this case, we can 1434 // just round up before shifting. 1435 if (DstIsInteger && SrcIsSigned) { 1436 Value *Zero = llvm::Constant::getNullValue(Result->getType()); 1437 Value *IsNegative = Builder.CreateICmpSLT(Result, Zero); 1438 Value *LowBits = ConstantInt::get( 1439 CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale)); 1440 Value *Rounded = Builder.CreateAdd(Result, LowBits); 1441 Result = Builder.CreateSelect(IsNegative, Rounded, Result); 1442 } 1443 1444 Result = SrcIsSigned 1445 ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") 1446 : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale"); 1447 } 1448 1449 if (!DstFPSema.isSaturated()) { 1450 // Resize. 1451 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1452 1453 // Upscale. 1454 if (DstScale > SrcScale) 1455 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1456 } else { 1457 // Adjust the number of fractional bits. 1458 if (DstScale > SrcScale) { 1459 // Compare to DstWidth to prevent resizing twice. 1460 ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth); 1461 llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth); 1462 Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize"); 1463 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1464 } 1465 1466 // Handle saturation. 1467 bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits(); 1468 if (LessIntBits) { 1469 Value *Max = ConstantInt::get( 1470 CGF.getLLVMContext(), 1471 APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1472 Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max) 1473 : Builder.CreateICmpUGT(Result, Max); 1474 Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax"); 1475 } 1476 // Cannot overflow min to dest type if src is unsigned since all fixed 1477 // point types can cover the unsigned min of 0. 1478 if (SrcIsSigned && (LessIntBits || !DstIsSigned)) { 1479 Value *Min = ConstantInt::get( 1480 CGF.getLLVMContext(), 1481 APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1482 Value *TooLow = Builder.CreateICmpSLT(Result, Min); 1483 Result = Builder.CreateSelect(TooLow, Min, Result, "satmin"); 1484 } 1485 1486 // Resize the integer part to get the final destination size. 1487 if (ResultWidth != DstWidth) 1488 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1489 } 1490 return Result; 1491 } 1492 1493 /// Emit a conversion from the specified complex type to the specified 1494 /// destination type, where the destination type is an LLVM scalar type. 1495 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1496 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1497 SourceLocation Loc) { 1498 // Get the source element type. 1499 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1500 1501 // Handle conversions to bool first, they are special: comparisons against 0. 1502 if (DstTy->isBooleanType()) { 1503 // Complex != 0 -> (Real != 0) | (Imag != 0) 1504 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1505 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1506 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1507 } 1508 1509 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1510 // the imaginary part of the complex value is discarded and the value of the 1511 // real part is converted according to the conversion rules for the 1512 // corresponding real type. 1513 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1514 } 1515 1516 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1517 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1518 } 1519 1520 /// Emit a sanitization check for the given "binary" operation (which 1521 /// might actually be a unary increment which has been lowered to a binary 1522 /// operation). The check passes if all values in \p Checks (which are \c i1), 1523 /// are \c true. 1524 void ScalarExprEmitter::EmitBinOpCheck( 1525 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1526 assert(CGF.IsSanitizerScope); 1527 SanitizerHandler Check; 1528 SmallVector<llvm::Constant *, 4> StaticData; 1529 SmallVector<llvm::Value *, 2> DynamicData; 1530 1531 BinaryOperatorKind Opcode = Info.Opcode; 1532 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1533 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1534 1535 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1536 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1537 if (UO && UO->getOpcode() == UO_Minus) { 1538 Check = SanitizerHandler::NegateOverflow; 1539 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1540 DynamicData.push_back(Info.RHS); 1541 } else { 1542 if (BinaryOperator::isShiftOp(Opcode)) { 1543 // Shift LHS negative or too large, or RHS out of bounds. 1544 Check = SanitizerHandler::ShiftOutOfBounds; 1545 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1546 StaticData.push_back( 1547 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1548 StaticData.push_back( 1549 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1550 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1551 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1552 Check = SanitizerHandler::DivremOverflow; 1553 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1554 } else { 1555 // Arithmetic overflow (+, -, *). 1556 switch (Opcode) { 1557 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1558 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1559 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1560 default: llvm_unreachable("unexpected opcode for bin op check"); 1561 } 1562 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1563 } 1564 DynamicData.push_back(Info.LHS); 1565 DynamicData.push_back(Info.RHS); 1566 } 1567 1568 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1569 } 1570 1571 //===----------------------------------------------------------------------===// 1572 // Visitor Methods 1573 //===----------------------------------------------------------------------===// 1574 1575 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1576 CGF.ErrorUnsupported(E, "scalar expression"); 1577 if (E->getType()->isVoidType()) 1578 return nullptr; 1579 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1580 } 1581 1582 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1583 // Vector Mask Case 1584 if (E->getNumSubExprs() == 2) { 1585 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1586 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1587 Value *Mask; 1588 1589 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 1590 unsigned LHSElts = LTy->getNumElements(); 1591 1592 Mask = RHS; 1593 1594 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1595 1596 // Mask off the high bits of each shuffle index. 1597 Value *MaskBits = 1598 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1599 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1600 1601 // newv = undef 1602 // mask = mask & maskbits 1603 // for each elt 1604 // n = extract mask i 1605 // x = extract val n 1606 // newv = insert newv, x, i 1607 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1608 MTy->getNumElements()); 1609 Value* NewV = llvm::UndefValue::get(RTy); 1610 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1611 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1612 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1613 1614 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1615 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1616 } 1617 return NewV; 1618 } 1619 1620 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1621 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1622 1623 SmallVector<llvm::Constant*, 32> indices; 1624 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1625 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1626 // Check for -1 and output it as undef in the IR. 1627 if (Idx.isSigned() && Idx.isAllOnesValue()) 1628 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1629 else 1630 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1631 } 1632 1633 Value *SV = llvm::ConstantVector::get(indices); 1634 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1635 } 1636 1637 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1638 QualType SrcType = E->getSrcExpr()->getType(), 1639 DstType = E->getType(); 1640 1641 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1642 1643 SrcType = CGF.getContext().getCanonicalType(SrcType); 1644 DstType = CGF.getContext().getCanonicalType(DstType); 1645 if (SrcType == DstType) return Src; 1646 1647 assert(SrcType->isVectorType() && 1648 "ConvertVector source type must be a vector"); 1649 assert(DstType->isVectorType() && 1650 "ConvertVector destination type must be a vector"); 1651 1652 llvm::Type *SrcTy = Src->getType(); 1653 llvm::Type *DstTy = ConvertType(DstType); 1654 1655 // Ignore conversions like int -> uint. 1656 if (SrcTy == DstTy) 1657 return Src; 1658 1659 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(), 1660 DstEltType = DstType->castAs<VectorType>()->getElementType(); 1661 1662 assert(SrcTy->isVectorTy() && 1663 "ConvertVector source IR type must be a vector"); 1664 assert(DstTy->isVectorTy() && 1665 "ConvertVector destination IR type must be a vector"); 1666 1667 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1668 *DstEltTy = DstTy->getVectorElementType(); 1669 1670 if (DstEltType->isBooleanType()) { 1671 assert((SrcEltTy->isFloatingPointTy() || 1672 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1673 1674 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1675 if (SrcEltTy->isFloatingPointTy()) { 1676 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1677 } else { 1678 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1679 } 1680 } 1681 1682 // We have the arithmetic types: real int/float. 1683 Value *Res = nullptr; 1684 1685 if (isa<llvm::IntegerType>(SrcEltTy)) { 1686 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1687 if (isa<llvm::IntegerType>(DstEltTy)) 1688 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1689 else if (InputSigned) 1690 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1691 else 1692 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1693 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1694 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1695 if (DstEltType->isSignedIntegerOrEnumerationType()) 1696 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1697 else 1698 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1699 } else { 1700 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1701 "Unknown real conversion"); 1702 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1703 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1704 else 1705 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1706 } 1707 1708 return Res; 1709 } 1710 1711 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1712 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1713 CGF.EmitIgnoredExpr(E->getBase()); 1714 return CGF.emitScalarConstant(Constant, E); 1715 } else { 1716 Expr::EvalResult Result; 1717 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1718 llvm::APSInt Value = Result.Val.getInt(); 1719 CGF.EmitIgnoredExpr(E->getBase()); 1720 return Builder.getInt(Value); 1721 } 1722 } 1723 1724 return EmitLoadOfLValue(E); 1725 } 1726 1727 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1728 TestAndClearIgnoreResultAssign(); 1729 1730 // Emit subscript expressions in rvalue context's. For most cases, this just 1731 // loads the lvalue formed by the subscript expr. However, we have to be 1732 // careful, because the base of a vector subscript is occasionally an rvalue, 1733 // so we can't get it as an lvalue. 1734 if (!E->getBase()->getType()->isVectorType()) 1735 return EmitLoadOfLValue(E); 1736 1737 // Handle the vector case. The base must be a vector, the index must be an 1738 // integer value. 1739 Value *Base = Visit(E->getBase()); 1740 Value *Idx = Visit(E->getIdx()); 1741 QualType IdxTy = E->getIdx()->getType(); 1742 1743 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1744 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1745 1746 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1747 } 1748 1749 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1750 unsigned Off, llvm::Type *I32Ty) { 1751 int MV = SVI->getMaskValue(Idx); 1752 if (MV == -1) 1753 return llvm::UndefValue::get(I32Ty); 1754 return llvm::ConstantInt::get(I32Ty, Off+MV); 1755 } 1756 1757 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1758 if (C->getBitWidth() != 32) { 1759 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1760 C->getZExtValue()) && 1761 "Index operand too large for shufflevector mask!"); 1762 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1763 } 1764 return C; 1765 } 1766 1767 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1768 bool Ignore = TestAndClearIgnoreResultAssign(); 1769 (void)Ignore; 1770 assert (Ignore == false && "init list ignored"); 1771 unsigned NumInitElements = E->getNumInits(); 1772 1773 if (E->hadArrayRangeDesignator()) 1774 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1775 1776 llvm::VectorType *VType = 1777 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1778 1779 if (!VType) { 1780 if (NumInitElements == 0) { 1781 // C++11 value-initialization for the scalar. 1782 return EmitNullValue(E->getType()); 1783 } 1784 // We have a scalar in braces. Just use the first element. 1785 return Visit(E->getInit(0)); 1786 } 1787 1788 unsigned ResElts = VType->getNumElements(); 1789 1790 // Loop over initializers collecting the Value for each, and remembering 1791 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1792 // us to fold the shuffle for the swizzle into the shuffle for the vector 1793 // initializer, since LLVM optimizers generally do not want to touch 1794 // shuffles. 1795 unsigned CurIdx = 0; 1796 bool VIsUndefShuffle = false; 1797 llvm::Value *V = llvm::UndefValue::get(VType); 1798 for (unsigned i = 0; i != NumInitElements; ++i) { 1799 Expr *IE = E->getInit(i); 1800 Value *Init = Visit(IE); 1801 SmallVector<llvm::Constant*, 16> Args; 1802 1803 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1804 1805 // Handle scalar elements. If the scalar initializer is actually one 1806 // element of a different vector of the same width, use shuffle instead of 1807 // extract+insert. 1808 if (!VVT) { 1809 if (isa<ExtVectorElementExpr>(IE)) { 1810 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1811 1812 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1813 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1814 Value *LHS = nullptr, *RHS = nullptr; 1815 if (CurIdx == 0) { 1816 // insert into undef -> shuffle (src, undef) 1817 // shufflemask must use an i32 1818 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1819 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1820 1821 LHS = EI->getVectorOperand(); 1822 RHS = V; 1823 VIsUndefShuffle = true; 1824 } else if (VIsUndefShuffle) { 1825 // insert into undefshuffle && size match -> shuffle (v, src) 1826 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1827 for (unsigned j = 0; j != CurIdx; ++j) 1828 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1829 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1830 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1831 1832 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1833 RHS = EI->getVectorOperand(); 1834 VIsUndefShuffle = false; 1835 } 1836 if (!Args.empty()) { 1837 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1838 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1839 ++CurIdx; 1840 continue; 1841 } 1842 } 1843 } 1844 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1845 "vecinit"); 1846 VIsUndefShuffle = false; 1847 ++CurIdx; 1848 continue; 1849 } 1850 1851 unsigned InitElts = VVT->getNumElements(); 1852 1853 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1854 // input is the same width as the vector being constructed, generate an 1855 // optimized shuffle of the swizzle input into the result. 1856 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1857 if (isa<ExtVectorElementExpr>(IE)) { 1858 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1859 Value *SVOp = SVI->getOperand(0); 1860 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1861 1862 if (OpTy->getNumElements() == ResElts) { 1863 for (unsigned j = 0; j != CurIdx; ++j) { 1864 // If the current vector initializer is a shuffle with undef, merge 1865 // this shuffle directly into it. 1866 if (VIsUndefShuffle) { 1867 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1868 CGF.Int32Ty)); 1869 } else { 1870 Args.push_back(Builder.getInt32(j)); 1871 } 1872 } 1873 for (unsigned j = 0, je = InitElts; j != je; ++j) 1874 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1875 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1876 1877 if (VIsUndefShuffle) 1878 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1879 1880 Init = SVOp; 1881 } 1882 } 1883 1884 // Extend init to result vector length, and then shuffle its contribution 1885 // to the vector initializer into V. 1886 if (Args.empty()) { 1887 for (unsigned j = 0; j != InitElts; ++j) 1888 Args.push_back(Builder.getInt32(j)); 1889 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1890 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1891 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1892 Mask, "vext"); 1893 1894 Args.clear(); 1895 for (unsigned j = 0; j != CurIdx; ++j) 1896 Args.push_back(Builder.getInt32(j)); 1897 for (unsigned j = 0; j != InitElts; ++j) 1898 Args.push_back(Builder.getInt32(j+Offset)); 1899 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1900 } 1901 1902 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1903 // merging subsequent shuffles into this one. 1904 if (CurIdx == 0) 1905 std::swap(V, Init); 1906 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1907 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1908 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1909 CurIdx += InitElts; 1910 } 1911 1912 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1913 // Emit remaining default initializers. 1914 llvm::Type *EltTy = VType->getElementType(); 1915 1916 // Emit remaining default initializers 1917 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1918 Value *Idx = Builder.getInt32(CurIdx); 1919 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1920 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1921 } 1922 return V; 1923 } 1924 1925 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1926 const Expr *E = CE->getSubExpr(); 1927 1928 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1929 return false; 1930 1931 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1932 // We always assume that 'this' is never null. 1933 return false; 1934 } 1935 1936 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1937 // And that glvalue casts are never null. 1938 if (ICE->getValueKind() != VK_RValue) 1939 return false; 1940 } 1941 1942 return true; 1943 } 1944 1945 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1946 // have to handle a more broad range of conversions than explicit casts, as they 1947 // handle things like function to ptr-to-function decay etc. 1948 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1949 Expr *E = CE->getSubExpr(); 1950 QualType DestTy = CE->getType(); 1951 CastKind Kind = CE->getCastKind(); 1952 1953 // These cases are generally not written to ignore the result of 1954 // evaluating their sub-expressions, so we clear this now. 1955 bool Ignored = TestAndClearIgnoreResultAssign(); 1956 1957 // Since almost all cast kinds apply to scalars, this switch doesn't have 1958 // a default case, so the compiler will warn on a missing case. The cases 1959 // are in the same order as in the CastKind enum. 1960 switch (Kind) { 1961 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1962 case CK_BuiltinFnToFnPtr: 1963 llvm_unreachable("builtin functions are handled elsewhere"); 1964 1965 case CK_LValueBitCast: 1966 case CK_ObjCObjectLValueCast: { 1967 Address Addr = EmitLValue(E).getAddress(); 1968 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1969 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1970 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1971 } 1972 1973 case CK_LValueToRValueBitCast: { 1974 LValue SourceLVal = CGF.EmitLValue(E); 1975 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(), 1976 CGF.ConvertTypeForMem(DestTy)); 1977 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 1978 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 1979 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 1980 } 1981 1982 case CK_CPointerToObjCPointerCast: 1983 case CK_BlockPointerToObjCPointerCast: 1984 case CK_AnyPointerToBlockPointerCast: 1985 case CK_BitCast: { 1986 Value *Src = Visit(const_cast<Expr*>(E)); 1987 llvm::Type *SrcTy = Src->getType(); 1988 llvm::Type *DstTy = ConvertType(DestTy); 1989 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1990 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1991 llvm_unreachable("wrong cast for pointers in different address spaces" 1992 "(must be an address space cast)!"); 1993 } 1994 1995 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1996 if (auto PT = DestTy->getAs<PointerType>()) 1997 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1998 /*MayBeNull=*/true, 1999 CodeGenFunction::CFITCK_UnrelatedCast, 2000 CE->getBeginLoc()); 2001 } 2002 2003 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2004 const QualType SrcType = E->getType(); 2005 2006 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 2007 // Casting to pointer that could carry dynamic information (provided by 2008 // invariant.group) requires launder. 2009 Src = Builder.CreateLaunderInvariantGroup(Src); 2010 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 2011 // Casting to pointer that does not carry dynamic information (provided 2012 // by invariant.group) requires stripping it. Note that we don't do it 2013 // if the source could not be dynamic type and destination could be 2014 // dynamic because dynamic information is already laundered. It is 2015 // because launder(strip(src)) == launder(src), so there is no need to 2016 // add extra strip before launder. 2017 Src = Builder.CreateStripInvariantGroup(Src); 2018 } 2019 } 2020 2021 // Update heapallocsite metadata when there is an explicit cast. 2022 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src)) 2023 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) 2024 CGF.getDebugInfo()-> 2025 addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc()); 2026 2027 return Builder.CreateBitCast(Src, DstTy); 2028 } 2029 case CK_AddressSpaceConversion: { 2030 Expr::EvalResult Result; 2031 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2032 Result.Val.isNullPointer()) { 2033 // If E has side effect, it is emitted even if its final result is a 2034 // null pointer. In that case, a DCE pass should be able to 2035 // eliminate the useless instructions emitted during translating E. 2036 if (Result.HasSideEffects) 2037 Visit(E); 2038 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2039 ConvertType(DestTy)), DestTy); 2040 } 2041 // Since target may map different address spaces in AST to the same address 2042 // space, an address space conversion may end up as a bitcast. 2043 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2044 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2045 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2046 } 2047 case CK_AtomicToNonAtomic: 2048 case CK_NonAtomicToAtomic: 2049 case CK_NoOp: 2050 case CK_UserDefinedConversion: 2051 return Visit(const_cast<Expr*>(E)); 2052 2053 case CK_BaseToDerived: { 2054 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2055 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2056 2057 Address Base = CGF.EmitPointerWithAlignment(E); 2058 Address Derived = 2059 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2060 CE->path_begin(), CE->path_end(), 2061 CGF.ShouldNullCheckClassCastValue(CE)); 2062 2063 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2064 // performed and the object is not of the derived type. 2065 if (CGF.sanitizePerformTypeCheck()) 2066 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2067 Derived.getPointer(), DestTy->getPointeeType()); 2068 2069 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2070 CGF.EmitVTablePtrCheckForCast( 2071 DestTy->getPointeeType(), Derived.getPointer(), 2072 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 2073 CE->getBeginLoc()); 2074 2075 return Derived.getPointer(); 2076 } 2077 case CK_UncheckedDerivedToBase: 2078 case CK_DerivedToBase: { 2079 // The EmitPointerWithAlignment path does this fine; just discard 2080 // the alignment. 2081 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2082 } 2083 2084 case CK_Dynamic: { 2085 Address V = CGF.EmitPointerWithAlignment(E); 2086 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2087 return CGF.EmitDynamicCast(V, DCE); 2088 } 2089 2090 case CK_ArrayToPointerDecay: 2091 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2092 case CK_FunctionToPointerDecay: 2093 return EmitLValue(E).getPointer(); 2094 2095 case CK_NullToPointer: 2096 if (MustVisitNullValue(E)) 2097 CGF.EmitIgnoredExpr(E); 2098 2099 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2100 DestTy); 2101 2102 case CK_NullToMemberPointer: { 2103 if (MustVisitNullValue(E)) 2104 CGF.EmitIgnoredExpr(E); 2105 2106 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2107 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2108 } 2109 2110 case CK_ReinterpretMemberPointer: 2111 case CK_BaseToDerivedMemberPointer: 2112 case CK_DerivedToBaseMemberPointer: { 2113 Value *Src = Visit(E); 2114 2115 // Note that the AST doesn't distinguish between checked and 2116 // unchecked member pointer conversions, so we always have to 2117 // implement checked conversions here. This is inefficient when 2118 // actual control flow may be required in order to perform the 2119 // check, which it is for data member pointers (but not member 2120 // function pointers on Itanium and ARM). 2121 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2122 } 2123 2124 case CK_ARCProduceObject: 2125 return CGF.EmitARCRetainScalarExpr(E); 2126 case CK_ARCConsumeObject: 2127 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2128 case CK_ARCReclaimReturnedObject: 2129 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2130 case CK_ARCExtendBlockObject: 2131 return CGF.EmitARCExtendBlockObject(E); 2132 2133 case CK_CopyAndAutoreleaseBlockObject: 2134 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2135 2136 case CK_FloatingRealToComplex: 2137 case CK_FloatingComplexCast: 2138 case CK_IntegralRealToComplex: 2139 case CK_IntegralComplexCast: 2140 case CK_IntegralComplexToFloatingComplex: 2141 case CK_FloatingComplexToIntegralComplex: 2142 case CK_ConstructorConversion: 2143 case CK_ToUnion: 2144 llvm_unreachable("scalar cast to non-scalar value"); 2145 2146 case CK_LValueToRValue: 2147 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2148 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2149 return Visit(const_cast<Expr*>(E)); 2150 2151 case CK_IntegralToPointer: { 2152 Value *Src = Visit(const_cast<Expr*>(E)); 2153 2154 // First, convert to the correct width so that we control the kind of 2155 // extension. 2156 auto DestLLVMTy = ConvertType(DestTy); 2157 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2158 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2159 llvm::Value* IntResult = 2160 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2161 2162 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2163 2164 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2165 // Going from integer to pointer that could be dynamic requires reloading 2166 // dynamic information from invariant.group. 2167 if (DestTy.mayBeDynamicClass()) 2168 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2169 } 2170 return IntToPtr; 2171 } 2172 case CK_PointerToIntegral: { 2173 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2174 auto *PtrExpr = Visit(E); 2175 2176 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2177 const QualType SrcType = E->getType(); 2178 2179 // Casting to integer requires stripping dynamic information as it does 2180 // not carries it. 2181 if (SrcType.mayBeDynamicClass()) 2182 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2183 } 2184 2185 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2186 } 2187 case CK_ToVoid: { 2188 CGF.EmitIgnoredExpr(E); 2189 return nullptr; 2190 } 2191 case CK_VectorSplat: { 2192 llvm::Type *DstTy = ConvertType(DestTy); 2193 Value *Elt = Visit(const_cast<Expr*>(E)); 2194 // Splat the element across to all elements 2195 unsigned NumElements = DstTy->getVectorNumElements(); 2196 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2197 } 2198 2199 case CK_FixedPointCast: 2200 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2201 CE->getExprLoc()); 2202 2203 case CK_FixedPointToBoolean: 2204 assert(E->getType()->isFixedPointType() && 2205 "Expected src type to be fixed point type"); 2206 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2207 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2208 CE->getExprLoc()); 2209 2210 case CK_FixedPointToIntegral: 2211 assert(E->getType()->isFixedPointType() && 2212 "Expected src type to be fixed point type"); 2213 assert(DestTy->isIntegerType() && "Expected dest type to be an integer"); 2214 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2215 CE->getExprLoc()); 2216 2217 case CK_IntegralToFixedPoint: 2218 assert(E->getType()->isIntegerType() && 2219 "Expected src type to be an integer"); 2220 assert(DestTy->isFixedPointType() && 2221 "Expected dest type to be fixed point type"); 2222 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2223 CE->getExprLoc()); 2224 2225 case CK_IntegralCast: { 2226 ScalarConversionOpts Opts; 2227 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2228 if (!ICE->isPartOfExplicitCast()) 2229 Opts = ScalarConversionOpts(CGF.SanOpts); 2230 } 2231 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2232 CE->getExprLoc(), Opts); 2233 } 2234 case CK_IntegralToFloating: 2235 case CK_FloatingToIntegral: 2236 case CK_FloatingCast: 2237 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2238 CE->getExprLoc()); 2239 case CK_BooleanToSignedIntegral: { 2240 ScalarConversionOpts Opts; 2241 Opts.TreatBooleanAsSigned = true; 2242 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2243 CE->getExprLoc(), Opts); 2244 } 2245 case CK_IntegralToBoolean: 2246 return EmitIntToBoolConversion(Visit(E)); 2247 case CK_PointerToBoolean: 2248 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2249 case CK_FloatingToBoolean: 2250 return EmitFloatToBoolConversion(Visit(E)); 2251 case CK_MemberPointerToBoolean: { 2252 llvm::Value *MemPtr = Visit(E); 2253 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2254 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2255 } 2256 2257 case CK_FloatingComplexToReal: 2258 case CK_IntegralComplexToReal: 2259 return CGF.EmitComplexExpr(E, false, true).first; 2260 2261 case CK_FloatingComplexToBoolean: 2262 case CK_IntegralComplexToBoolean: { 2263 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2264 2265 // TODO: kill this function off, inline appropriate case here 2266 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2267 CE->getExprLoc()); 2268 } 2269 2270 case CK_ZeroToOCLOpaqueType: { 2271 assert((DestTy->isEventT() || DestTy->isQueueT() || 2272 DestTy->isOCLIntelSubgroupAVCType()) && 2273 "CK_ZeroToOCLEvent cast on non-event type"); 2274 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2275 } 2276 2277 case CK_IntToOCLSampler: 2278 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2279 2280 } // end of switch 2281 2282 llvm_unreachable("unknown scalar cast"); 2283 } 2284 2285 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2286 CodeGenFunction::StmtExprEvaluation eval(CGF); 2287 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2288 !E->getType()->isVoidType()); 2289 if (!RetAlloca.isValid()) 2290 return nullptr; 2291 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2292 E->getExprLoc()); 2293 } 2294 2295 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2296 CGF.enterFullExpression(E); 2297 CodeGenFunction::RunCleanupsScope Scope(CGF); 2298 Value *V = Visit(E->getSubExpr()); 2299 // Defend against dominance problems caused by jumps out of expression 2300 // evaluation through the shared cleanup block. 2301 Scope.ForceCleanup({&V}); 2302 return V; 2303 } 2304 2305 //===----------------------------------------------------------------------===// 2306 // Unary Operators 2307 //===----------------------------------------------------------------------===// 2308 2309 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2310 llvm::Value *InVal, bool IsInc) { 2311 BinOpInfo BinOp; 2312 BinOp.LHS = InVal; 2313 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2314 BinOp.Ty = E->getType(); 2315 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2316 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2317 BinOp.E = E; 2318 return BinOp; 2319 } 2320 2321 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2322 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2323 llvm::Value *Amount = 2324 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2325 StringRef Name = IsInc ? "inc" : "dec"; 2326 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2327 case LangOptions::SOB_Defined: 2328 return Builder.CreateAdd(InVal, Amount, Name); 2329 case LangOptions::SOB_Undefined: 2330 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2331 return Builder.CreateNSWAdd(InVal, Amount, Name); 2332 LLVM_FALLTHROUGH; 2333 case LangOptions::SOB_Trapping: 2334 if (!E->canOverflow()) 2335 return Builder.CreateNSWAdd(InVal, Amount, Name); 2336 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 2337 } 2338 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2339 } 2340 2341 llvm::Value * 2342 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2343 bool isInc, bool isPre) { 2344 2345 QualType type = E->getSubExpr()->getType(); 2346 llvm::PHINode *atomicPHI = nullptr; 2347 llvm::Value *value; 2348 llvm::Value *input; 2349 2350 int amount = (isInc ? 1 : -1); 2351 bool isSubtraction = !isInc; 2352 2353 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2354 type = atomicTy->getValueType(); 2355 if (isInc && type->isBooleanType()) { 2356 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2357 if (isPre) { 2358 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 2359 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2360 return Builder.getTrue(); 2361 } 2362 // For atomic bool increment, we just store true and return it for 2363 // preincrement, do an atomic swap with true for postincrement 2364 return Builder.CreateAtomicRMW( 2365 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, 2366 llvm::AtomicOrdering::SequentiallyConsistent); 2367 } 2368 // Special case for atomic increment / decrement on integers, emit 2369 // atomicrmw instructions. We skip this if we want to be doing overflow 2370 // checking, and fall into the slow path with the atomic cmpxchg loop. 2371 if (!type->isBooleanType() && type->isIntegerType() && 2372 !(type->isUnsignedIntegerType() && 2373 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2374 CGF.getLangOpts().getSignedOverflowBehavior() != 2375 LangOptions::SOB_Trapping) { 2376 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2377 llvm::AtomicRMWInst::Sub; 2378 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2379 llvm::Instruction::Sub; 2380 llvm::Value *amt = CGF.EmitToMemory( 2381 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2382 llvm::Value *old = Builder.CreateAtomicRMW(aop, 2383 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); 2384 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2385 } 2386 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2387 input = value; 2388 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2389 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2390 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2391 value = CGF.EmitToMemory(value, type); 2392 Builder.CreateBr(opBB); 2393 Builder.SetInsertPoint(opBB); 2394 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2395 atomicPHI->addIncoming(value, startBB); 2396 value = atomicPHI; 2397 } else { 2398 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2399 input = value; 2400 } 2401 2402 // Special case of integer increment that we have to check first: bool++. 2403 // Due to promotion rules, we get: 2404 // bool++ -> bool = bool + 1 2405 // -> bool = (int)bool + 1 2406 // -> bool = ((int)bool + 1 != 0) 2407 // An interesting aspect of this is that increment is always true. 2408 // Decrement does not have this property. 2409 if (isInc && type->isBooleanType()) { 2410 value = Builder.getTrue(); 2411 2412 // Most common case by far: integer increment. 2413 } else if (type->isIntegerType()) { 2414 // Note that signed integer inc/dec with width less than int can't 2415 // overflow because of promotion rules; we're just eliding a few steps here. 2416 if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2417 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2418 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2419 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2420 value = 2421 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 2422 } else { 2423 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2424 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2425 } 2426 2427 // Next most common: pointer increment. 2428 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2429 QualType type = ptr->getPointeeType(); 2430 2431 // VLA types don't have constant size. 2432 if (const VariableArrayType *vla 2433 = CGF.getContext().getAsVariableArrayType(type)) { 2434 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2435 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2436 if (CGF.getLangOpts().isSignedOverflowDefined()) 2437 value = Builder.CreateGEP(value, numElts, "vla.inc"); 2438 else 2439 value = CGF.EmitCheckedInBoundsGEP( 2440 value, numElts, /*SignedIndices=*/false, isSubtraction, 2441 E->getExprLoc(), "vla.inc"); 2442 2443 // Arithmetic on function pointers (!) is just +-1. 2444 } else if (type->isFunctionType()) { 2445 llvm::Value *amt = Builder.getInt32(amount); 2446 2447 value = CGF.EmitCastToVoidPtr(value); 2448 if (CGF.getLangOpts().isSignedOverflowDefined()) 2449 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 2450 else 2451 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2452 isSubtraction, E->getExprLoc(), 2453 "incdec.funcptr"); 2454 value = Builder.CreateBitCast(value, input->getType()); 2455 2456 // For everything else, we can just do a simple increment. 2457 } else { 2458 llvm::Value *amt = Builder.getInt32(amount); 2459 if (CGF.getLangOpts().isSignedOverflowDefined()) 2460 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 2461 else 2462 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2463 isSubtraction, E->getExprLoc(), 2464 "incdec.ptr"); 2465 } 2466 2467 // Vector increment/decrement. 2468 } else if (type->isVectorType()) { 2469 if (type->hasIntegerRepresentation()) { 2470 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2471 2472 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2473 } else { 2474 value = Builder.CreateFAdd( 2475 value, 2476 llvm::ConstantFP::get(value->getType(), amount), 2477 isInc ? "inc" : "dec"); 2478 } 2479 2480 // Floating point. 2481 } else if (type->isRealFloatingType()) { 2482 // Add the inc/dec to the real part. 2483 llvm::Value *amt; 2484 2485 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2486 // Another special case: half FP increment should be done via float 2487 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2488 value = Builder.CreateCall( 2489 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2490 CGF.CGM.FloatTy), 2491 input, "incdec.conv"); 2492 } else { 2493 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2494 } 2495 } 2496 2497 if (value->getType()->isFloatTy()) 2498 amt = llvm::ConstantFP::get(VMContext, 2499 llvm::APFloat(static_cast<float>(amount))); 2500 else if (value->getType()->isDoubleTy()) 2501 amt = llvm::ConstantFP::get(VMContext, 2502 llvm::APFloat(static_cast<double>(amount))); 2503 else { 2504 // Remaining types are Half, LongDouble or __float128. Convert from float. 2505 llvm::APFloat F(static_cast<float>(amount)); 2506 bool ignored; 2507 const llvm::fltSemantics *FS; 2508 // Don't use getFloatTypeSemantics because Half isn't 2509 // necessarily represented using the "half" LLVM type. 2510 if (value->getType()->isFP128Ty()) 2511 FS = &CGF.getTarget().getFloat128Format(); 2512 else if (value->getType()->isHalfTy()) 2513 FS = &CGF.getTarget().getHalfFormat(); 2514 else 2515 FS = &CGF.getTarget().getLongDoubleFormat(); 2516 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2517 amt = llvm::ConstantFP::get(VMContext, F); 2518 } 2519 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2520 2521 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2522 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2523 value = Builder.CreateCall( 2524 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2525 CGF.CGM.FloatTy), 2526 value, "incdec.conv"); 2527 } else { 2528 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2529 } 2530 } 2531 2532 // Objective-C pointer types. 2533 } else { 2534 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2535 value = CGF.EmitCastToVoidPtr(value); 2536 2537 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2538 if (!isInc) size = -size; 2539 llvm::Value *sizeValue = 2540 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2541 2542 if (CGF.getLangOpts().isSignedOverflowDefined()) 2543 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2544 else 2545 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2546 /*SignedIndices=*/false, isSubtraction, 2547 E->getExprLoc(), "incdec.objptr"); 2548 value = Builder.CreateBitCast(value, input->getType()); 2549 } 2550 2551 if (atomicPHI) { 2552 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2553 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2554 auto Pair = CGF.EmitAtomicCompareExchange( 2555 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2556 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2557 llvm::Value *success = Pair.second; 2558 atomicPHI->addIncoming(old, curBlock); 2559 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2560 Builder.SetInsertPoint(contBB); 2561 return isPre ? value : input; 2562 } 2563 2564 // Store the updated result through the lvalue. 2565 if (LV.isBitField()) 2566 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2567 else 2568 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2569 2570 // If this is a postinc, return the value read from memory, otherwise use the 2571 // updated value. 2572 return isPre ? value : input; 2573 } 2574 2575 2576 2577 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2578 TestAndClearIgnoreResultAssign(); 2579 Value *Op = Visit(E->getSubExpr()); 2580 2581 // Generate a unary FNeg for FP ops. 2582 if (Op->getType()->isFPOrFPVectorTy()) 2583 return Builder.CreateFNeg(Op, "fneg"); 2584 2585 // Emit unary minus with EmitSub so we handle overflow cases etc. 2586 BinOpInfo BinOp; 2587 BinOp.RHS = Op; 2588 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2589 BinOp.Ty = E->getType(); 2590 BinOp.Opcode = BO_Sub; 2591 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2592 BinOp.E = E; 2593 return EmitSub(BinOp); 2594 } 2595 2596 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2597 TestAndClearIgnoreResultAssign(); 2598 Value *Op = Visit(E->getSubExpr()); 2599 return Builder.CreateNot(Op, "neg"); 2600 } 2601 2602 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2603 // Perform vector logical not on comparison with zero vector. 2604 if (E->getType()->isExtVectorType()) { 2605 Value *Oper = Visit(E->getSubExpr()); 2606 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2607 Value *Result; 2608 if (Oper->getType()->isFPOrFPVectorTy()) 2609 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2610 else 2611 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2612 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2613 } 2614 2615 // Compare operand to zero. 2616 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2617 2618 // Invert value. 2619 // TODO: Could dynamically modify easy computations here. For example, if 2620 // the operand is an icmp ne, turn into icmp eq. 2621 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2622 2623 // ZExt result to the expr type. 2624 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2625 } 2626 2627 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2628 // Try folding the offsetof to a constant. 2629 Expr::EvalResult EVResult; 2630 if (E->EvaluateAsInt(EVResult, CGF.getContext())) { 2631 llvm::APSInt Value = EVResult.Val.getInt(); 2632 return Builder.getInt(Value); 2633 } 2634 2635 // Loop over the components of the offsetof to compute the value. 2636 unsigned n = E->getNumComponents(); 2637 llvm::Type* ResultType = ConvertType(E->getType()); 2638 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2639 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2640 for (unsigned i = 0; i != n; ++i) { 2641 OffsetOfNode ON = E->getComponent(i); 2642 llvm::Value *Offset = nullptr; 2643 switch (ON.getKind()) { 2644 case OffsetOfNode::Array: { 2645 // Compute the index 2646 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2647 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2648 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2649 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2650 2651 // Save the element type 2652 CurrentType = 2653 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2654 2655 // Compute the element size 2656 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2657 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2658 2659 // Multiply out to compute the result 2660 Offset = Builder.CreateMul(Idx, ElemSize); 2661 break; 2662 } 2663 2664 case OffsetOfNode::Field: { 2665 FieldDecl *MemberDecl = ON.getField(); 2666 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2667 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2668 2669 // Compute the index of the field in its parent. 2670 unsigned i = 0; 2671 // FIXME: It would be nice if we didn't have to loop here! 2672 for (RecordDecl::field_iterator Field = RD->field_begin(), 2673 FieldEnd = RD->field_end(); 2674 Field != FieldEnd; ++Field, ++i) { 2675 if (*Field == MemberDecl) 2676 break; 2677 } 2678 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2679 2680 // Compute the offset to the field 2681 int64_t OffsetInt = RL.getFieldOffset(i) / 2682 CGF.getContext().getCharWidth(); 2683 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2684 2685 // Save the element type. 2686 CurrentType = MemberDecl->getType(); 2687 break; 2688 } 2689 2690 case OffsetOfNode::Identifier: 2691 llvm_unreachable("dependent __builtin_offsetof"); 2692 2693 case OffsetOfNode::Base: { 2694 if (ON.getBase()->isVirtual()) { 2695 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2696 continue; 2697 } 2698 2699 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2700 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2701 2702 // Save the element type. 2703 CurrentType = ON.getBase()->getType(); 2704 2705 // Compute the offset to the base. 2706 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2707 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2708 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2709 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2710 break; 2711 } 2712 } 2713 Result = Builder.CreateAdd(Result, Offset); 2714 } 2715 return Result; 2716 } 2717 2718 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2719 /// argument of the sizeof expression as an integer. 2720 Value * 2721 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2722 const UnaryExprOrTypeTraitExpr *E) { 2723 QualType TypeToSize = E->getTypeOfArgument(); 2724 if (E->getKind() == UETT_SizeOf) { 2725 if (const VariableArrayType *VAT = 2726 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2727 if (E->isArgumentType()) { 2728 // sizeof(type) - make sure to emit the VLA size. 2729 CGF.EmitVariablyModifiedType(TypeToSize); 2730 } else { 2731 // C99 6.5.3.4p2: If the argument is an expression of type 2732 // VLA, it is evaluated. 2733 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2734 } 2735 2736 auto VlaSize = CGF.getVLASize(VAT); 2737 llvm::Value *size = VlaSize.NumElts; 2738 2739 // Scale the number of non-VLA elements by the non-VLA element size. 2740 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2741 if (!eltSize.isOne()) 2742 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2743 2744 return size; 2745 } 2746 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2747 auto Alignment = 2748 CGF.getContext() 2749 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2750 E->getTypeOfArgument()->getPointeeType())) 2751 .getQuantity(); 2752 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2753 } 2754 2755 // If this isn't sizeof(vla), the result must be constant; use the constant 2756 // folding logic so we don't have to duplicate it here. 2757 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2758 } 2759 2760 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2761 Expr *Op = E->getSubExpr(); 2762 if (Op->getType()->isAnyComplexType()) { 2763 // If it's an l-value, load through the appropriate subobject l-value. 2764 // Note that we have to ask E because Op might be an l-value that 2765 // this won't work for, e.g. an Obj-C property. 2766 if (E->isGLValue()) 2767 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2768 E->getExprLoc()).getScalarVal(); 2769 2770 // Otherwise, calculate and project. 2771 return CGF.EmitComplexExpr(Op, false, true).first; 2772 } 2773 2774 return Visit(Op); 2775 } 2776 2777 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2778 Expr *Op = E->getSubExpr(); 2779 if (Op->getType()->isAnyComplexType()) { 2780 // If it's an l-value, load through the appropriate subobject l-value. 2781 // Note that we have to ask E because Op might be an l-value that 2782 // this won't work for, e.g. an Obj-C property. 2783 if (Op->isGLValue()) 2784 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2785 E->getExprLoc()).getScalarVal(); 2786 2787 // Otherwise, calculate and project. 2788 return CGF.EmitComplexExpr(Op, true, false).second; 2789 } 2790 2791 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2792 // effects are evaluated, but not the actual value. 2793 if (Op->isGLValue()) 2794 CGF.EmitLValue(Op); 2795 else 2796 CGF.EmitScalarExpr(Op, true); 2797 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2798 } 2799 2800 //===----------------------------------------------------------------------===// 2801 // Binary Operators 2802 //===----------------------------------------------------------------------===// 2803 2804 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2805 TestAndClearIgnoreResultAssign(); 2806 BinOpInfo Result; 2807 Result.LHS = Visit(E->getLHS()); 2808 Result.RHS = Visit(E->getRHS()); 2809 Result.Ty = E->getType(); 2810 Result.Opcode = E->getOpcode(); 2811 Result.FPFeatures = E->getFPFeatures(); 2812 Result.E = E; 2813 return Result; 2814 } 2815 2816 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2817 const CompoundAssignOperator *E, 2818 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2819 Value *&Result) { 2820 QualType LHSTy = E->getLHS()->getType(); 2821 BinOpInfo OpInfo; 2822 2823 if (E->getComputationResultType()->isAnyComplexType()) 2824 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2825 2826 // Emit the RHS first. __block variables need to have the rhs evaluated 2827 // first, plus this should improve codegen a little. 2828 OpInfo.RHS = Visit(E->getRHS()); 2829 OpInfo.Ty = E->getComputationResultType(); 2830 OpInfo.Opcode = E->getOpcode(); 2831 OpInfo.FPFeatures = E->getFPFeatures(); 2832 OpInfo.E = E; 2833 // Load/convert the LHS. 2834 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2835 2836 llvm::PHINode *atomicPHI = nullptr; 2837 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2838 QualType type = atomicTy->getValueType(); 2839 if (!type->isBooleanType() && type->isIntegerType() && 2840 !(type->isUnsignedIntegerType() && 2841 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2842 CGF.getLangOpts().getSignedOverflowBehavior() != 2843 LangOptions::SOB_Trapping) { 2844 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2845 switch (OpInfo.Opcode) { 2846 // We don't have atomicrmw operands for *, %, /, <<, >> 2847 case BO_MulAssign: case BO_DivAssign: 2848 case BO_RemAssign: 2849 case BO_ShlAssign: 2850 case BO_ShrAssign: 2851 break; 2852 case BO_AddAssign: 2853 aop = llvm::AtomicRMWInst::Add; 2854 break; 2855 case BO_SubAssign: 2856 aop = llvm::AtomicRMWInst::Sub; 2857 break; 2858 case BO_AndAssign: 2859 aop = llvm::AtomicRMWInst::And; 2860 break; 2861 case BO_XorAssign: 2862 aop = llvm::AtomicRMWInst::Xor; 2863 break; 2864 case BO_OrAssign: 2865 aop = llvm::AtomicRMWInst::Or; 2866 break; 2867 default: 2868 llvm_unreachable("Invalid compound assignment type"); 2869 } 2870 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2871 llvm::Value *amt = CGF.EmitToMemory( 2872 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2873 E->getExprLoc()), 2874 LHSTy); 2875 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2876 llvm::AtomicOrdering::SequentiallyConsistent); 2877 return LHSLV; 2878 } 2879 } 2880 // FIXME: For floating point types, we should be saving and restoring the 2881 // floating point environment in the loop. 2882 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2883 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2884 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2885 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2886 Builder.CreateBr(opBB); 2887 Builder.SetInsertPoint(opBB); 2888 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2889 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2890 OpInfo.LHS = atomicPHI; 2891 } 2892 else 2893 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2894 2895 SourceLocation Loc = E->getExprLoc(); 2896 OpInfo.LHS = 2897 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2898 2899 // Expand the binary operator. 2900 Result = (this->*Func)(OpInfo); 2901 2902 // Convert the result back to the LHS type, 2903 // potentially with Implicit Conversion sanitizer check. 2904 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, 2905 Loc, ScalarConversionOpts(CGF.SanOpts)); 2906 2907 if (atomicPHI) { 2908 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2909 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2910 auto Pair = CGF.EmitAtomicCompareExchange( 2911 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2912 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2913 llvm::Value *success = Pair.second; 2914 atomicPHI->addIncoming(old, curBlock); 2915 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2916 Builder.SetInsertPoint(contBB); 2917 return LHSLV; 2918 } 2919 2920 // Store the result value into the LHS lvalue. Bit-fields are handled 2921 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2922 // 'An assignment expression has the value of the left operand after the 2923 // assignment...'. 2924 if (LHSLV.isBitField()) 2925 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2926 else 2927 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2928 2929 return LHSLV; 2930 } 2931 2932 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2933 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2934 bool Ignore = TestAndClearIgnoreResultAssign(); 2935 Value *RHS = nullptr; 2936 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2937 2938 // If the result is clearly ignored, return now. 2939 if (Ignore) 2940 return nullptr; 2941 2942 // The result of an assignment in C is the assigned r-value. 2943 if (!CGF.getLangOpts().CPlusPlus) 2944 return RHS; 2945 2946 // If the lvalue is non-volatile, return the computed value of the assignment. 2947 if (!LHS.isVolatileQualified()) 2948 return RHS; 2949 2950 // Otherwise, reload the value. 2951 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2952 } 2953 2954 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2955 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2956 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2957 2958 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2959 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2960 SanitizerKind::IntegerDivideByZero)); 2961 } 2962 2963 const auto *BO = cast<BinaryOperator>(Ops.E); 2964 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2965 Ops.Ty->hasSignedIntegerRepresentation() && 2966 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 2967 Ops.mayHaveIntegerOverflow()) { 2968 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2969 2970 llvm::Value *IntMin = 2971 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2972 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2973 2974 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2975 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2976 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2977 Checks.push_back( 2978 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2979 } 2980 2981 if (Checks.size() > 0) 2982 EmitBinOpCheck(Checks, Ops); 2983 } 2984 2985 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2986 { 2987 CodeGenFunction::SanitizerScope SanScope(&CGF); 2988 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2989 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2990 Ops.Ty->isIntegerType() && 2991 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 2992 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2993 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2994 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2995 Ops.Ty->isRealFloatingType() && 2996 Ops.mayHaveFloatDivisionByZero()) { 2997 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2998 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2999 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 3000 Ops); 3001 } 3002 } 3003 3004 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 3005 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 3006 if (CGF.getLangOpts().OpenCL && 3007 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 3008 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 3009 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 3010 // build option allows an application to specify that single precision 3011 // floating-point divide (x/y and 1/x) and sqrt used in the program 3012 // source are correctly rounded. 3013 llvm::Type *ValTy = Val->getType(); 3014 if (ValTy->isFloatTy() || 3015 (isa<llvm::VectorType>(ValTy) && 3016 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 3017 CGF.SetFPAccuracy(Val, 2.5); 3018 } 3019 return Val; 3020 } 3021 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3022 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 3023 else 3024 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 3025 } 3026 3027 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 3028 // Rem in C can't be a floating point type: C99 6.5.5p2. 3029 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3030 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3031 Ops.Ty->isIntegerType() && 3032 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3033 CodeGenFunction::SanitizerScope SanScope(&CGF); 3034 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3035 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3036 } 3037 3038 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3039 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3040 else 3041 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3042 } 3043 3044 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3045 unsigned IID; 3046 unsigned OpID = 0; 3047 3048 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3049 switch (Ops.Opcode) { 3050 case BO_Add: 3051 case BO_AddAssign: 3052 OpID = 1; 3053 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3054 llvm::Intrinsic::uadd_with_overflow; 3055 break; 3056 case BO_Sub: 3057 case BO_SubAssign: 3058 OpID = 2; 3059 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3060 llvm::Intrinsic::usub_with_overflow; 3061 break; 3062 case BO_Mul: 3063 case BO_MulAssign: 3064 OpID = 3; 3065 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3066 llvm::Intrinsic::umul_with_overflow; 3067 break; 3068 default: 3069 llvm_unreachable("Unsupported operation for overflow detection"); 3070 } 3071 OpID <<= 1; 3072 if (isSigned) 3073 OpID |= 1; 3074 3075 CodeGenFunction::SanitizerScope SanScope(&CGF); 3076 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3077 3078 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3079 3080 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3081 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3082 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3083 3084 // Handle overflow with llvm.trap if no custom handler has been specified. 3085 const std::string *handlerName = 3086 &CGF.getLangOpts().OverflowHandler; 3087 if (handlerName->empty()) { 3088 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3089 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3090 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3091 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3092 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3093 : SanitizerKind::UnsignedIntegerOverflow; 3094 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3095 } else 3096 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 3097 return result; 3098 } 3099 3100 // Branch in case of overflow. 3101 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3102 llvm::BasicBlock *continueBB = 3103 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3104 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3105 3106 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3107 3108 // If an overflow handler is set, then we want to call it and then use its 3109 // result, if it returns. 3110 Builder.SetInsertPoint(overflowBB); 3111 3112 // Get the overflow handler. 3113 llvm::Type *Int8Ty = CGF.Int8Ty; 3114 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3115 llvm::FunctionType *handlerTy = 3116 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3117 llvm::FunctionCallee handler = 3118 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3119 3120 // Sign extend the args to 64-bit, so that we can use the same handler for 3121 // all types of overflow. 3122 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3123 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3124 3125 // Call the handler with the two arguments, the operation, and the size of 3126 // the result. 3127 llvm::Value *handlerArgs[] = { 3128 lhs, 3129 rhs, 3130 Builder.getInt8(OpID), 3131 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3132 }; 3133 llvm::Value *handlerResult = 3134 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3135 3136 // Truncate the result back to the desired size. 3137 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3138 Builder.CreateBr(continueBB); 3139 3140 Builder.SetInsertPoint(continueBB); 3141 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3142 phi->addIncoming(result, initialBB); 3143 phi->addIncoming(handlerResult, overflowBB); 3144 3145 return phi; 3146 } 3147 3148 /// Emit pointer + index arithmetic. 3149 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3150 const BinOpInfo &op, 3151 bool isSubtraction) { 3152 // Must have binary (not unary) expr here. Unary pointer 3153 // increment/decrement doesn't use this path. 3154 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3155 3156 Value *pointer = op.LHS; 3157 Expr *pointerOperand = expr->getLHS(); 3158 Value *index = op.RHS; 3159 Expr *indexOperand = expr->getRHS(); 3160 3161 // In a subtraction, the LHS is always the pointer. 3162 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3163 std::swap(pointer, index); 3164 std::swap(pointerOperand, indexOperand); 3165 } 3166 3167 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3168 3169 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3170 auto &DL = CGF.CGM.getDataLayout(); 3171 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3172 3173 // Some versions of glibc and gcc use idioms (particularly in their malloc 3174 // routines) that add a pointer-sized integer (known to be a pointer value) 3175 // to a null pointer in order to cast the value back to an integer or as 3176 // part of a pointer alignment algorithm. This is undefined behavior, but 3177 // we'd like to be able to compile programs that use it. 3178 // 3179 // Normally, we'd generate a GEP with a null-pointer base here in response 3180 // to that code, but it's also UB to dereference a pointer created that 3181 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3182 // generate a direct cast of the integer value to a pointer. 3183 // 3184 // The idiom (p = nullptr + N) is not met if any of the following are true: 3185 // 3186 // The operation is subtraction. 3187 // The index is not pointer-sized. 3188 // The pointer type is not byte-sized. 3189 // 3190 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3191 op.Opcode, 3192 expr->getLHS(), 3193 expr->getRHS())) 3194 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3195 3196 if (width != DL.getTypeSizeInBits(PtrTy)) { 3197 // Zero-extend or sign-extend the pointer value according to 3198 // whether the index is signed or not. 3199 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned, 3200 "idx.ext"); 3201 } 3202 3203 // If this is subtraction, negate the index. 3204 if (isSubtraction) 3205 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3206 3207 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3208 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3209 /*Accessed*/ false); 3210 3211 const PointerType *pointerType 3212 = pointerOperand->getType()->getAs<PointerType>(); 3213 if (!pointerType) { 3214 QualType objectType = pointerOperand->getType() 3215 ->castAs<ObjCObjectPointerType>() 3216 ->getPointeeType(); 3217 llvm::Value *objectSize 3218 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3219 3220 index = CGF.Builder.CreateMul(index, objectSize); 3221 3222 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3223 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3224 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3225 } 3226 3227 QualType elementType = pointerType->getPointeeType(); 3228 if (const VariableArrayType *vla 3229 = CGF.getContext().getAsVariableArrayType(elementType)) { 3230 // The element count here is the total number of non-VLA elements. 3231 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3232 3233 // Effectively, the multiply by the VLA size is part of the GEP. 3234 // GEP indexes are signed, and scaling an index isn't permitted to 3235 // signed-overflow, so we use the same semantics for our explicit 3236 // multiply. We suppress this if overflow is not undefined behavior. 3237 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3238 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3239 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3240 } else { 3241 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3242 pointer = 3243 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3244 op.E->getExprLoc(), "add.ptr"); 3245 } 3246 return pointer; 3247 } 3248 3249 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3250 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3251 // future proof. 3252 if (elementType->isVoidType() || elementType->isFunctionType()) { 3253 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3254 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3255 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3256 } 3257 3258 if (CGF.getLangOpts().isSignedOverflowDefined()) 3259 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3260 3261 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3262 op.E->getExprLoc(), "add.ptr"); 3263 } 3264 3265 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3266 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3267 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3268 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3269 // efficient operations. 3270 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 3271 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3272 bool negMul, bool negAdd) { 3273 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3274 3275 Value *MulOp0 = MulOp->getOperand(0); 3276 Value *MulOp1 = MulOp->getOperand(1); 3277 if (negMul) { 3278 MulOp0 = 3279 Builder.CreateFSub( 3280 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 3281 "neg"); 3282 } else if (negAdd) { 3283 Addend = 3284 Builder.CreateFSub( 3285 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 3286 "neg"); 3287 } 3288 3289 Value *FMulAdd = Builder.CreateCall( 3290 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3291 {MulOp0, MulOp1, Addend}); 3292 MulOp->eraseFromParent(); 3293 3294 return FMulAdd; 3295 } 3296 3297 // Check whether it would be legal to emit an fmuladd intrinsic call to 3298 // represent op and if so, build the fmuladd. 3299 // 3300 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3301 // Does NOT check the type of the operation - it's assumed that this function 3302 // will be called from contexts where it's known that the type is contractable. 3303 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3304 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3305 bool isSub=false) { 3306 3307 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3308 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3309 "Only fadd/fsub can be the root of an fmuladd."); 3310 3311 // Check whether this op is marked as fusable. 3312 if (!op.FPFeatures.allowFPContractWithinStatement()) 3313 return nullptr; 3314 3315 // We have a potentially fusable op. Look for a mul on one of the operands. 3316 // Also, make sure that the mul result isn't used directly. In that case, 3317 // there's no point creating a muladd operation. 3318 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3319 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3320 LHSBinOp->use_empty()) 3321 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3322 } 3323 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3324 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3325 RHSBinOp->use_empty()) 3326 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3327 } 3328 3329 return nullptr; 3330 } 3331 3332 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3333 if (op.LHS->getType()->isPointerTy() || 3334 op.RHS->getType()->isPointerTy()) 3335 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3336 3337 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3338 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3339 case LangOptions::SOB_Defined: 3340 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3341 case LangOptions::SOB_Undefined: 3342 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3343 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3344 LLVM_FALLTHROUGH; 3345 case LangOptions::SOB_Trapping: 3346 if (CanElideOverflowCheck(CGF.getContext(), op)) 3347 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3348 return EmitOverflowCheckedBinOp(op); 3349 } 3350 } 3351 3352 if (op.Ty->isUnsignedIntegerType() && 3353 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3354 !CanElideOverflowCheck(CGF.getContext(), op)) 3355 return EmitOverflowCheckedBinOp(op); 3356 3357 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3358 // Try to form an fmuladd. 3359 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3360 return FMulAdd; 3361 3362 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3363 return propagateFMFlags(V, op); 3364 } 3365 3366 if (op.isFixedPointBinOp()) 3367 return EmitFixedPointBinOp(op); 3368 3369 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3370 } 3371 3372 /// The resulting value must be calculated with exact precision, so the operands 3373 /// may not be the same type. 3374 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { 3375 using llvm::APSInt; 3376 using llvm::ConstantInt; 3377 3378 const auto *BinOp = cast<BinaryOperator>(op.E); 3379 3380 // The result is a fixed point type and at least one of the operands is fixed 3381 // point while the other is either fixed point or an int. This resulting type 3382 // should be determined by Sema::handleFixedPointConversions(). 3383 QualType ResultTy = op.Ty; 3384 QualType LHSTy = BinOp->getLHS()->getType(); 3385 QualType RHSTy = BinOp->getRHS()->getType(); 3386 ASTContext &Ctx = CGF.getContext(); 3387 Value *LHS = op.LHS; 3388 Value *RHS = op.RHS; 3389 3390 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); 3391 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); 3392 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); 3393 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); 3394 3395 // Convert the operands to the full precision type. 3396 Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema, 3397 BinOp->getExprLoc()); 3398 Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema, 3399 BinOp->getExprLoc()); 3400 3401 // Perform the actual addition. 3402 Value *Result; 3403 switch (BinOp->getOpcode()) { 3404 case BO_Add: { 3405 if (ResultFixedSema.isSaturated()) { 3406 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned() 3407 ? llvm::Intrinsic::sadd_sat 3408 : llvm::Intrinsic::uadd_sat; 3409 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3410 } else { 3411 Result = Builder.CreateAdd(FullLHS, FullRHS); 3412 } 3413 break; 3414 } 3415 case BO_Sub: { 3416 if (ResultFixedSema.isSaturated()) { 3417 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned() 3418 ? llvm::Intrinsic::ssub_sat 3419 : llvm::Intrinsic::usub_sat; 3420 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3421 } else { 3422 Result = Builder.CreateSub(FullLHS, FullRHS); 3423 } 3424 break; 3425 } 3426 case BO_LT: 3427 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS) 3428 : Builder.CreateICmpULT(FullLHS, FullRHS); 3429 case BO_GT: 3430 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS) 3431 : Builder.CreateICmpUGT(FullLHS, FullRHS); 3432 case BO_LE: 3433 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS) 3434 : Builder.CreateICmpULE(FullLHS, FullRHS); 3435 case BO_GE: 3436 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS) 3437 : Builder.CreateICmpUGE(FullLHS, FullRHS); 3438 case BO_EQ: 3439 // For equality operations, we assume any padding bits on unsigned types are 3440 // zero'd out. They could be overwritten through non-saturating operations 3441 // that cause overflow, but this leads to undefined behavior. 3442 return Builder.CreateICmpEQ(FullLHS, FullRHS); 3443 case BO_NE: 3444 return Builder.CreateICmpNE(FullLHS, FullRHS); 3445 case BO_Mul: 3446 case BO_Div: 3447 case BO_Shl: 3448 case BO_Shr: 3449 case BO_Cmp: 3450 case BO_LAnd: 3451 case BO_LOr: 3452 case BO_MulAssign: 3453 case BO_DivAssign: 3454 case BO_AddAssign: 3455 case BO_SubAssign: 3456 case BO_ShlAssign: 3457 case BO_ShrAssign: 3458 llvm_unreachable("Found unimplemented fixed point binary operation"); 3459 case BO_PtrMemD: 3460 case BO_PtrMemI: 3461 case BO_Rem: 3462 case BO_Xor: 3463 case BO_And: 3464 case BO_Or: 3465 case BO_Assign: 3466 case BO_RemAssign: 3467 case BO_AndAssign: 3468 case BO_XorAssign: 3469 case BO_OrAssign: 3470 case BO_Comma: 3471 llvm_unreachable("Found unsupported binary operation for fixed point types."); 3472 } 3473 3474 // Convert to the result type. 3475 return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema, 3476 BinOp->getExprLoc()); 3477 } 3478 3479 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3480 // The LHS is always a pointer if either side is. 3481 if (!op.LHS->getType()->isPointerTy()) { 3482 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3483 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3484 case LangOptions::SOB_Defined: 3485 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3486 case LangOptions::SOB_Undefined: 3487 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3488 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3489 LLVM_FALLTHROUGH; 3490 case LangOptions::SOB_Trapping: 3491 if (CanElideOverflowCheck(CGF.getContext(), op)) 3492 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3493 return EmitOverflowCheckedBinOp(op); 3494 } 3495 } 3496 3497 if (op.Ty->isUnsignedIntegerType() && 3498 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3499 !CanElideOverflowCheck(CGF.getContext(), op)) 3500 return EmitOverflowCheckedBinOp(op); 3501 3502 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3503 // Try to form an fmuladd. 3504 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3505 return FMulAdd; 3506 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3507 return propagateFMFlags(V, op); 3508 } 3509 3510 if (op.isFixedPointBinOp()) 3511 return EmitFixedPointBinOp(op); 3512 3513 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3514 } 3515 3516 // If the RHS is not a pointer, then we have normal pointer 3517 // arithmetic. 3518 if (!op.RHS->getType()->isPointerTy()) 3519 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3520 3521 // Otherwise, this is a pointer subtraction. 3522 3523 // Do the raw subtraction part. 3524 llvm::Value *LHS 3525 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3526 llvm::Value *RHS 3527 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3528 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3529 3530 // Okay, figure out the element size. 3531 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3532 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3533 3534 llvm::Value *divisor = nullptr; 3535 3536 // For a variable-length array, this is going to be non-constant. 3537 if (const VariableArrayType *vla 3538 = CGF.getContext().getAsVariableArrayType(elementType)) { 3539 auto VlaSize = CGF.getVLASize(vla); 3540 elementType = VlaSize.Type; 3541 divisor = VlaSize.NumElts; 3542 3543 // Scale the number of non-VLA elements by the non-VLA element size. 3544 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3545 if (!eltSize.isOne()) 3546 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3547 3548 // For everything elese, we can just compute it, safe in the 3549 // assumption that Sema won't let anything through that we can't 3550 // safely compute the size of. 3551 } else { 3552 CharUnits elementSize; 3553 // Handle GCC extension for pointer arithmetic on void* and 3554 // function pointer types. 3555 if (elementType->isVoidType() || elementType->isFunctionType()) 3556 elementSize = CharUnits::One(); 3557 else 3558 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3559 3560 // Don't even emit the divide for element size of 1. 3561 if (elementSize.isOne()) 3562 return diffInChars; 3563 3564 divisor = CGF.CGM.getSize(elementSize); 3565 } 3566 3567 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3568 // pointer difference in C is only defined in the case where both operands 3569 // are pointing to elements of an array. 3570 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3571 } 3572 3573 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3574 llvm::IntegerType *Ty; 3575 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3576 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3577 else 3578 Ty = cast<llvm::IntegerType>(LHS->getType()); 3579 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3580 } 3581 3582 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3583 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3584 // RHS to the same size as the LHS. 3585 Value *RHS = Ops.RHS; 3586 if (Ops.LHS->getType() != RHS->getType()) 3587 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3588 3589 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3590 Ops.Ty->hasSignedIntegerRepresentation() && 3591 !CGF.getLangOpts().isSignedOverflowDefined() && 3592 !CGF.getLangOpts().CPlusPlus2a; 3593 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3594 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3595 if (CGF.getLangOpts().OpenCL) 3596 RHS = 3597 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 3598 else if ((SanitizeBase || SanitizeExponent) && 3599 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3600 CodeGenFunction::SanitizerScope SanScope(&CGF); 3601 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3602 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3603 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3604 3605 if (SanitizeExponent) { 3606 Checks.push_back( 3607 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3608 } 3609 3610 if (SanitizeBase) { 3611 // Check whether we are shifting any non-zero bits off the top of the 3612 // integer. We only emit this check if exponent is valid - otherwise 3613 // instructions below will have undefined behavior themselves. 3614 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3615 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3616 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3617 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3618 llvm::Value *PromotedWidthMinusOne = 3619 (RHS == Ops.RHS) ? WidthMinusOne 3620 : GetWidthMinusOneValue(Ops.LHS, RHS); 3621 CGF.EmitBlock(CheckShiftBase); 3622 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3623 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3624 /*NUW*/ true, /*NSW*/ true), 3625 "shl.check"); 3626 if (CGF.getLangOpts().CPlusPlus) { 3627 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3628 // Under C++11's rules, shifting a 1 bit into the sign bit is 3629 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3630 // define signed left shifts, so we use the C99 and C++11 rules there). 3631 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3632 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3633 } 3634 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3635 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3636 CGF.EmitBlock(Cont); 3637 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3638 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3639 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3640 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 3641 } 3642 3643 assert(!Checks.empty()); 3644 EmitBinOpCheck(Checks, Ops); 3645 } 3646 3647 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3648 } 3649 3650 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3651 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3652 // RHS to the same size as the LHS. 3653 Value *RHS = Ops.RHS; 3654 if (Ops.LHS->getType() != RHS->getType()) 3655 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3656 3657 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3658 if (CGF.getLangOpts().OpenCL) 3659 RHS = 3660 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 3661 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3662 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3663 CodeGenFunction::SanitizerScope SanScope(&CGF); 3664 llvm::Value *Valid = 3665 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3666 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3667 } 3668 3669 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3670 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3671 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3672 } 3673 3674 enum IntrinsicType { VCMPEQ, VCMPGT }; 3675 // return corresponding comparison intrinsic for given vector type 3676 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3677 BuiltinType::Kind ElemKind) { 3678 switch (ElemKind) { 3679 default: llvm_unreachable("unexpected element type"); 3680 case BuiltinType::Char_U: 3681 case BuiltinType::UChar: 3682 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3683 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3684 case BuiltinType::Char_S: 3685 case BuiltinType::SChar: 3686 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3687 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3688 case BuiltinType::UShort: 3689 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3690 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3691 case BuiltinType::Short: 3692 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3693 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3694 case BuiltinType::UInt: 3695 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3696 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3697 case BuiltinType::Int: 3698 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3699 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3700 case BuiltinType::ULong: 3701 case BuiltinType::ULongLong: 3702 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3703 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 3704 case BuiltinType::Long: 3705 case BuiltinType::LongLong: 3706 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3707 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 3708 case BuiltinType::Float: 3709 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3710 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3711 case BuiltinType::Double: 3712 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 3713 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 3714 } 3715 } 3716 3717 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3718 llvm::CmpInst::Predicate UICmpOpc, 3719 llvm::CmpInst::Predicate SICmpOpc, 3720 llvm::CmpInst::Predicate FCmpOpc) { 3721 TestAndClearIgnoreResultAssign(); 3722 Value *Result; 3723 QualType LHSTy = E->getLHS()->getType(); 3724 QualType RHSTy = E->getRHS()->getType(); 3725 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3726 assert(E->getOpcode() == BO_EQ || 3727 E->getOpcode() == BO_NE); 3728 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3729 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3730 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3731 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3732 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3733 BinOpInfo BOInfo = EmitBinOps(E); 3734 Value *LHS = BOInfo.LHS; 3735 Value *RHS = BOInfo.RHS; 3736 3737 // If AltiVec, the comparison results in a numeric type, so we use 3738 // intrinsics comparing vectors and giving 0 or 1 as a result 3739 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3740 // constants for mapping CR6 register bits to predicate result 3741 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3742 3743 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3744 3745 // in several cases vector arguments order will be reversed 3746 Value *FirstVecArg = LHS, 3747 *SecondVecArg = RHS; 3748 3749 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType(); 3750 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 3751 BuiltinType::Kind ElementKind = BTy->getKind(); 3752 3753 switch(E->getOpcode()) { 3754 default: llvm_unreachable("is not a comparison operation"); 3755 case BO_EQ: 3756 CR6 = CR6_LT; 3757 ID = GetIntrinsic(VCMPEQ, ElementKind); 3758 break; 3759 case BO_NE: 3760 CR6 = CR6_EQ; 3761 ID = GetIntrinsic(VCMPEQ, ElementKind); 3762 break; 3763 case BO_LT: 3764 CR6 = CR6_LT; 3765 ID = GetIntrinsic(VCMPGT, ElementKind); 3766 std::swap(FirstVecArg, SecondVecArg); 3767 break; 3768 case BO_GT: 3769 CR6 = CR6_LT; 3770 ID = GetIntrinsic(VCMPGT, ElementKind); 3771 break; 3772 case BO_LE: 3773 if (ElementKind == BuiltinType::Float) { 3774 CR6 = CR6_LT; 3775 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3776 std::swap(FirstVecArg, SecondVecArg); 3777 } 3778 else { 3779 CR6 = CR6_EQ; 3780 ID = GetIntrinsic(VCMPGT, ElementKind); 3781 } 3782 break; 3783 case BO_GE: 3784 if (ElementKind == BuiltinType::Float) { 3785 CR6 = CR6_LT; 3786 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3787 } 3788 else { 3789 CR6 = CR6_EQ; 3790 ID = GetIntrinsic(VCMPGT, ElementKind); 3791 std::swap(FirstVecArg, SecondVecArg); 3792 } 3793 break; 3794 } 3795 3796 Value *CR6Param = Builder.getInt32(CR6); 3797 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 3798 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 3799 3800 // The result type of intrinsic may not be same as E->getType(). 3801 // If E->getType() is not BoolTy, EmitScalarConversion will do the 3802 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 3803 // do nothing, if ResultTy is not i1 at the same time, it will cause 3804 // crash later. 3805 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 3806 if (ResultTy->getBitWidth() > 1 && 3807 E->getType() == CGF.getContext().BoolTy) 3808 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 3809 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3810 E->getExprLoc()); 3811 } 3812 3813 if (BOInfo.isFixedPointBinOp()) { 3814 Result = EmitFixedPointBinOp(BOInfo); 3815 } else if (LHS->getType()->isFPOrFPVectorTy()) { 3816 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 3817 } else if (LHSTy->hasSignedIntegerRepresentation()) { 3818 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 3819 } else { 3820 // Unsigned integers and pointers. 3821 3822 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 3823 !isa<llvm::ConstantPointerNull>(LHS) && 3824 !isa<llvm::ConstantPointerNull>(RHS)) { 3825 3826 // Dynamic information is required to be stripped for comparisons, 3827 // because it could leak the dynamic information. Based on comparisons 3828 // of pointers to dynamic objects, the optimizer can replace one pointer 3829 // with another, which might be incorrect in presence of invariant 3830 // groups. Comparison with null is safe because null does not carry any 3831 // dynamic information. 3832 if (LHSTy.mayBeDynamicClass()) 3833 LHS = Builder.CreateStripInvariantGroup(LHS); 3834 if (RHSTy.mayBeDynamicClass()) 3835 RHS = Builder.CreateStripInvariantGroup(RHS); 3836 } 3837 3838 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 3839 } 3840 3841 // If this is a vector comparison, sign extend the result to the appropriate 3842 // vector integer type and return it (don't convert to bool). 3843 if (LHSTy->isVectorType()) 3844 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 3845 3846 } else { 3847 // Complex Comparison: can only be an equality comparison. 3848 CodeGenFunction::ComplexPairTy LHS, RHS; 3849 QualType CETy; 3850 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 3851 LHS = CGF.EmitComplexExpr(E->getLHS()); 3852 CETy = CTy->getElementType(); 3853 } else { 3854 LHS.first = Visit(E->getLHS()); 3855 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 3856 CETy = LHSTy; 3857 } 3858 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 3859 RHS = CGF.EmitComplexExpr(E->getRHS()); 3860 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 3861 CTy->getElementType()) && 3862 "The element types must always match."); 3863 (void)CTy; 3864 } else { 3865 RHS.first = Visit(E->getRHS()); 3866 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 3867 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 3868 "The element types must always match."); 3869 } 3870 3871 Value *ResultR, *ResultI; 3872 if (CETy->isRealFloatingType()) { 3873 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 3874 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 3875 } else { 3876 // Complex comparisons can only be equality comparisons. As such, signed 3877 // and unsigned opcodes are the same. 3878 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 3879 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 3880 } 3881 3882 if (E->getOpcode() == BO_EQ) { 3883 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 3884 } else { 3885 assert(E->getOpcode() == BO_NE && 3886 "Complex comparison other than == or != ?"); 3887 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 3888 } 3889 } 3890 3891 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3892 E->getExprLoc()); 3893 } 3894 3895 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 3896 bool Ignore = TestAndClearIgnoreResultAssign(); 3897 3898 Value *RHS; 3899 LValue LHS; 3900 3901 switch (E->getLHS()->getType().getObjCLifetime()) { 3902 case Qualifiers::OCL_Strong: 3903 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 3904 break; 3905 3906 case Qualifiers::OCL_Autoreleasing: 3907 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3908 break; 3909 3910 case Qualifiers::OCL_ExplicitNone: 3911 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 3912 break; 3913 3914 case Qualifiers::OCL_Weak: 3915 RHS = Visit(E->getRHS()); 3916 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3917 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3918 break; 3919 3920 case Qualifiers::OCL_None: 3921 // __block variables need to have the rhs evaluated first, plus 3922 // this should improve codegen just a little. 3923 RHS = Visit(E->getRHS()); 3924 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3925 3926 // Store the value into the LHS. Bit-fields are handled specially 3927 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3928 // 'An assignment expression has the value of the left operand after 3929 // the assignment...'. 3930 if (LHS.isBitField()) { 3931 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3932 } else { 3933 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 3934 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3935 } 3936 } 3937 3938 // If the result is clearly ignored, return now. 3939 if (Ignore) 3940 return nullptr; 3941 3942 // The result of an assignment in C is the assigned r-value. 3943 if (!CGF.getLangOpts().CPlusPlus) 3944 return RHS; 3945 3946 // If the lvalue is non-volatile, return the computed value of the assignment. 3947 if (!LHS.isVolatileQualified()) 3948 return RHS; 3949 3950 // Otherwise, reload the value. 3951 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3952 } 3953 3954 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3955 // Perform vector logical and on comparisons with zero vectors. 3956 if (E->getType()->isVectorType()) { 3957 CGF.incrementProfileCounter(E); 3958 3959 Value *LHS = Visit(E->getLHS()); 3960 Value *RHS = Visit(E->getRHS()); 3961 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3962 if (LHS->getType()->isFPOrFPVectorTy()) { 3963 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3964 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3965 } else { 3966 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3967 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3968 } 3969 Value *And = Builder.CreateAnd(LHS, RHS); 3970 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3971 } 3972 3973 llvm::Type *ResTy = ConvertType(E->getType()); 3974 3975 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3976 // If we have 1 && X, just emit X without inserting the control flow. 3977 bool LHSCondVal; 3978 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3979 if (LHSCondVal) { // If we have 1 && X, just emit X. 3980 CGF.incrementProfileCounter(E); 3981 3982 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3983 // ZExt result to int or bool. 3984 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3985 } 3986 3987 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3988 if (!CGF.ContainsLabel(E->getRHS())) 3989 return llvm::Constant::getNullValue(ResTy); 3990 } 3991 3992 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3993 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3994 3995 CodeGenFunction::ConditionalEvaluation eval(CGF); 3996 3997 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3998 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 3999 CGF.getProfileCount(E->getRHS())); 4000 4001 // Any edges into the ContBlock are now from an (indeterminate number of) 4002 // edges from this first condition. All of these values will be false. Start 4003 // setting up the PHI node in the Cont Block for this. 4004 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4005 "", ContBlock); 4006 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4007 PI != PE; ++PI) 4008 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 4009 4010 eval.begin(CGF); 4011 CGF.EmitBlock(RHSBlock); 4012 CGF.incrementProfileCounter(E); 4013 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4014 eval.end(CGF); 4015 4016 // Reaquire the RHS block, as there may be subblocks inserted. 4017 RHSBlock = Builder.GetInsertBlock(); 4018 4019 // Emit an unconditional branch from this block to ContBlock. 4020 { 4021 // There is no need to emit line number for unconditional branch. 4022 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4023 CGF.EmitBlock(ContBlock); 4024 } 4025 // Insert an entry into the phi node for the edge with the value of RHSCond. 4026 PN->addIncoming(RHSCond, RHSBlock); 4027 4028 // Artificial location to preserve the scope information 4029 { 4030 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 4031 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 4032 } 4033 4034 // ZExt result to int. 4035 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 4036 } 4037 4038 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 4039 // Perform vector logical or on comparisons with zero vectors. 4040 if (E->getType()->isVectorType()) { 4041 CGF.incrementProfileCounter(E); 4042 4043 Value *LHS = Visit(E->getLHS()); 4044 Value *RHS = Visit(E->getRHS()); 4045 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4046 if (LHS->getType()->isFPOrFPVectorTy()) { 4047 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4048 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4049 } else { 4050 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4051 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4052 } 4053 Value *Or = Builder.CreateOr(LHS, RHS); 4054 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 4055 } 4056 4057 llvm::Type *ResTy = ConvertType(E->getType()); 4058 4059 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 4060 // If we have 0 || X, just emit X without inserting the control flow. 4061 bool LHSCondVal; 4062 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4063 if (!LHSCondVal) { // If we have 0 || X, just emit X. 4064 CGF.incrementProfileCounter(E); 4065 4066 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4067 // ZExt result to int or bool. 4068 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 4069 } 4070 4071 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 4072 if (!CGF.ContainsLabel(E->getRHS())) 4073 return llvm::ConstantInt::get(ResTy, 1); 4074 } 4075 4076 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 4077 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 4078 4079 CodeGenFunction::ConditionalEvaluation eval(CGF); 4080 4081 // Branch on the LHS first. If it is true, go to the success (cont) block. 4082 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 4083 CGF.getCurrentProfileCount() - 4084 CGF.getProfileCount(E->getRHS())); 4085 4086 // Any edges into the ContBlock are now from an (indeterminate number of) 4087 // edges from this first condition. All of these values will be true. Start 4088 // setting up the PHI node in the Cont Block for this. 4089 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4090 "", ContBlock); 4091 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4092 PI != PE; ++PI) 4093 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 4094 4095 eval.begin(CGF); 4096 4097 // Emit the RHS condition as a bool value. 4098 CGF.EmitBlock(RHSBlock); 4099 CGF.incrementProfileCounter(E); 4100 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4101 4102 eval.end(CGF); 4103 4104 // Reaquire the RHS block, as there may be subblocks inserted. 4105 RHSBlock = Builder.GetInsertBlock(); 4106 4107 // Emit an unconditional branch from this block to ContBlock. Insert an entry 4108 // into the phi node for the edge with the value of RHSCond. 4109 CGF.EmitBlock(ContBlock); 4110 PN->addIncoming(RHSCond, RHSBlock); 4111 4112 // ZExt result to int. 4113 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 4114 } 4115 4116 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 4117 CGF.EmitIgnoredExpr(E->getLHS()); 4118 CGF.EnsureInsertPoint(); 4119 return Visit(E->getRHS()); 4120 } 4121 4122 //===----------------------------------------------------------------------===// 4123 // Other Operators 4124 //===----------------------------------------------------------------------===// 4125 4126 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 4127 /// expression is cheap enough and side-effect-free enough to evaluate 4128 /// unconditionally instead of conditionally. This is used to convert control 4129 /// flow into selects in some cases. 4130 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 4131 CodeGenFunction &CGF) { 4132 // Anything that is an integer or floating point constant is fine. 4133 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 4134 4135 // Even non-volatile automatic variables can't be evaluated unconditionally. 4136 // Referencing a thread_local may cause non-trivial initialization work to 4137 // occur. If we're inside a lambda and one of the variables is from the scope 4138 // outside the lambda, that function may have returned already. Reading its 4139 // locals is a bad idea. Also, these reads may introduce races there didn't 4140 // exist in the source-level program. 4141 } 4142 4143 4144 Value *ScalarExprEmitter:: 4145 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 4146 TestAndClearIgnoreResultAssign(); 4147 4148 // Bind the common expression if necessary. 4149 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4150 4151 Expr *condExpr = E->getCond(); 4152 Expr *lhsExpr = E->getTrueExpr(); 4153 Expr *rhsExpr = E->getFalseExpr(); 4154 4155 // If the condition constant folds and can be elided, try to avoid emitting 4156 // the condition and the dead arm. 4157 bool CondExprBool; 4158 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4159 Expr *live = lhsExpr, *dead = rhsExpr; 4160 if (!CondExprBool) std::swap(live, dead); 4161 4162 // If the dead side doesn't have labels we need, just emit the Live part. 4163 if (!CGF.ContainsLabel(dead)) { 4164 if (CondExprBool) 4165 CGF.incrementProfileCounter(E); 4166 Value *Result = Visit(live); 4167 4168 // If the live part is a throw expression, it acts like it has a void 4169 // type, so evaluating it returns a null Value*. However, a conditional 4170 // with non-void type must return a non-null Value*. 4171 if (!Result && !E->getType()->isVoidType()) 4172 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4173 4174 return Result; 4175 } 4176 } 4177 4178 // OpenCL: If the condition is a vector, we can treat this condition like 4179 // the select function. 4180 if (CGF.getLangOpts().OpenCL 4181 && condExpr->getType()->isVectorType()) { 4182 CGF.incrementProfileCounter(E); 4183 4184 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4185 llvm::Value *LHS = Visit(lhsExpr); 4186 llvm::Value *RHS = Visit(rhsExpr); 4187 4188 llvm::Type *condType = ConvertType(condExpr->getType()); 4189 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 4190 4191 unsigned numElem = vecTy->getNumElements(); 4192 llvm::Type *elemType = vecTy->getElementType(); 4193 4194 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4195 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4196 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 4197 llvm::VectorType::get(elemType, 4198 numElem), 4199 "sext"); 4200 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4201 4202 // Cast float to int to perform ANDs if necessary. 4203 llvm::Value *RHSTmp = RHS; 4204 llvm::Value *LHSTmp = LHS; 4205 bool wasCast = false; 4206 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4207 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4208 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4209 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4210 wasCast = true; 4211 } 4212 4213 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4214 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4215 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4216 if (wasCast) 4217 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4218 4219 return tmp5; 4220 } 4221 4222 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4223 // select instead of as control flow. We can only do this if it is cheap and 4224 // safe to evaluate the LHS and RHS unconditionally. 4225 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4226 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4227 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4228 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4229 4230 CGF.incrementProfileCounter(E, StepV); 4231 4232 llvm::Value *LHS = Visit(lhsExpr); 4233 llvm::Value *RHS = Visit(rhsExpr); 4234 if (!LHS) { 4235 // If the conditional has void type, make sure we return a null Value*. 4236 assert(!RHS && "LHS and RHS types must match"); 4237 return nullptr; 4238 } 4239 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4240 } 4241 4242 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4243 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4244 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4245 4246 CodeGenFunction::ConditionalEvaluation eval(CGF); 4247 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4248 CGF.getProfileCount(lhsExpr)); 4249 4250 CGF.EmitBlock(LHSBlock); 4251 CGF.incrementProfileCounter(E); 4252 eval.begin(CGF); 4253 Value *LHS = Visit(lhsExpr); 4254 eval.end(CGF); 4255 4256 LHSBlock = Builder.GetInsertBlock(); 4257 Builder.CreateBr(ContBlock); 4258 4259 CGF.EmitBlock(RHSBlock); 4260 eval.begin(CGF); 4261 Value *RHS = Visit(rhsExpr); 4262 eval.end(CGF); 4263 4264 RHSBlock = Builder.GetInsertBlock(); 4265 CGF.EmitBlock(ContBlock); 4266 4267 // If the LHS or RHS is a throw expression, it will be legitimately null. 4268 if (!LHS) 4269 return RHS; 4270 if (!RHS) 4271 return LHS; 4272 4273 // Create a PHI node for the real part. 4274 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4275 PN->addIncoming(LHS, LHSBlock); 4276 PN->addIncoming(RHS, RHSBlock); 4277 return PN; 4278 } 4279 4280 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4281 return Visit(E->getChosenSubExpr()); 4282 } 4283 4284 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4285 QualType Ty = VE->getType(); 4286 4287 if (Ty->isVariablyModifiedType()) 4288 CGF.EmitVariablyModifiedType(Ty); 4289 4290 Address ArgValue = Address::invalid(); 4291 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4292 4293 llvm::Type *ArgTy = ConvertType(VE->getType()); 4294 4295 // If EmitVAArg fails, emit an error. 4296 if (!ArgPtr.isValid()) { 4297 CGF.ErrorUnsupported(VE, "va_arg expression"); 4298 return llvm::UndefValue::get(ArgTy); 4299 } 4300 4301 // FIXME Volatility. 4302 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4303 4304 // If EmitVAArg promoted the type, we must truncate it. 4305 if (ArgTy != Val->getType()) { 4306 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4307 Val = Builder.CreateIntToPtr(Val, ArgTy); 4308 else 4309 Val = Builder.CreateTrunc(Val, ArgTy); 4310 } 4311 4312 return Val; 4313 } 4314 4315 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4316 return CGF.EmitBlockLiteral(block); 4317 } 4318 4319 // Convert a vec3 to vec4, or vice versa. 4320 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4321 Value *Src, unsigned NumElementsDst) { 4322 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 4323 SmallVector<llvm::Constant*, 4> Args; 4324 Args.push_back(Builder.getInt32(0)); 4325 Args.push_back(Builder.getInt32(1)); 4326 Args.push_back(Builder.getInt32(2)); 4327 if (NumElementsDst == 4) 4328 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 4329 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 4330 return Builder.CreateShuffleVector(Src, UnV, Mask); 4331 } 4332 4333 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4334 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4335 // but could be scalar or vectors of different lengths, and either can be 4336 // pointer. 4337 // There are 4 cases: 4338 // 1. non-pointer -> non-pointer : needs 1 bitcast 4339 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4340 // 3. pointer -> non-pointer 4341 // a) pointer -> intptr_t : needs 1 ptrtoint 4342 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4343 // 4. non-pointer -> pointer 4344 // a) intptr_t -> pointer : needs 1 inttoptr 4345 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4346 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4347 // allow casting directly between pointer types and non-integer non-pointer 4348 // types. 4349 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4350 const llvm::DataLayout &DL, 4351 Value *Src, llvm::Type *DstTy, 4352 StringRef Name = "") { 4353 auto SrcTy = Src->getType(); 4354 4355 // Case 1. 4356 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4357 return Builder.CreateBitCast(Src, DstTy, Name); 4358 4359 // Case 2. 4360 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4361 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4362 4363 // Case 3. 4364 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4365 // Case 3b. 4366 if (!DstTy->isIntegerTy()) 4367 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4368 // Cases 3a and 3b. 4369 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4370 } 4371 4372 // Case 4b. 4373 if (!SrcTy->isIntegerTy()) 4374 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4375 // Cases 4a and 4b. 4376 return Builder.CreateIntToPtr(Src, DstTy, Name); 4377 } 4378 4379 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4380 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4381 llvm::Type *DstTy = ConvertType(E->getType()); 4382 4383 llvm::Type *SrcTy = Src->getType(); 4384 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 4385 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 4386 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 4387 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 4388 4389 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4390 // vector to get a vec4, then a bitcast if the target type is different. 4391 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4392 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4393 4394 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4395 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4396 DstTy); 4397 } 4398 4399 Src->setName("astype"); 4400 return Src; 4401 } 4402 4403 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4404 // to vec4 if the original type is not vec4, then a shuffle vector to 4405 // get a vec3. 4406 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4407 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4408 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 4409 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4410 Vec4Ty); 4411 } 4412 4413 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4414 Src->setName("astype"); 4415 return Src; 4416 } 4417 4418 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4419 Src, DstTy, "astype"); 4420 } 4421 4422 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4423 return CGF.EmitAtomicExpr(E).getScalarVal(); 4424 } 4425 4426 //===----------------------------------------------------------------------===// 4427 // Entry Point into this File 4428 //===----------------------------------------------------------------------===// 4429 4430 /// Emit the computation of the specified expression of scalar type, ignoring 4431 /// the result. 4432 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4433 assert(E && hasScalarEvaluationKind(E->getType()) && 4434 "Invalid scalar expression to emit"); 4435 4436 return ScalarExprEmitter(*this, IgnoreResultAssign) 4437 .Visit(const_cast<Expr *>(E)); 4438 } 4439 4440 /// Emit a conversion from the specified type to the specified destination type, 4441 /// both of which are LLVM scalar types. 4442 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4443 QualType DstTy, 4444 SourceLocation Loc) { 4445 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4446 "Invalid scalar expression to emit"); 4447 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4448 } 4449 4450 /// Emit a conversion from the specified complex type to the specified 4451 /// destination type, where the destination type is an LLVM scalar type. 4452 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4453 QualType SrcTy, 4454 QualType DstTy, 4455 SourceLocation Loc) { 4456 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4457 "Invalid complex -> scalar conversion"); 4458 return ScalarExprEmitter(*this) 4459 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4460 } 4461 4462 4463 llvm::Value *CodeGenFunction:: 4464 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4465 bool isInc, bool isPre) { 4466 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4467 } 4468 4469 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4470 // object->isa or (*object).isa 4471 // Generate code as for: *(Class*)object 4472 4473 Expr *BaseExpr = E->getBase(); 4474 Address Addr = Address::invalid(); 4475 if (BaseExpr->isRValue()) { 4476 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4477 } else { 4478 Addr = EmitLValue(BaseExpr).getAddress(); 4479 } 4480 4481 // Cast the address to Class*. 4482 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4483 return MakeAddrLValue(Addr, E->getType()); 4484 } 4485 4486 4487 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4488 const CompoundAssignOperator *E) { 4489 ScalarExprEmitter Scalar(*this); 4490 Value *Result = nullptr; 4491 switch (E->getOpcode()) { 4492 #define COMPOUND_OP(Op) \ 4493 case BO_##Op##Assign: \ 4494 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4495 Result) 4496 COMPOUND_OP(Mul); 4497 COMPOUND_OP(Div); 4498 COMPOUND_OP(Rem); 4499 COMPOUND_OP(Add); 4500 COMPOUND_OP(Sub); 4501 COMPOUND_OP(Shl); 4502 COMPOUND_OP(Shr); 4503 COMPOUND_OP(And); 4504 COMPOUND_OP(Xor); 4505 COMPOUND_OP(Or); 4506 #undef COMPOUND_OP 4507 4508 case BO_PtrMemD: 4509 case BO_PtrMemI: 4510 case BO_Mul: 4511 case BO_Div: 4512 case BO_Rem: 4513 case BO_Add: 4514 case BO_Sub: 4515 case BO_Shl: 4516 case BO_Shr: 4517 case BO_LT: 4518 case BO_GT: 4519 case BO_LE: 4520 case BO_GE: 4521 case BO_EQ: 4522 case BO_NE: 4523 case BO_Cmp: 4524 case BO_And: 4525 case BO_Xor: 4526 case BO_Or: 4527 case BO_LAnd: 4528 case BO_LOr: 4529 case BO_Assign: 4530 case BO_Comma: 4531 llvm_unreachable("Not valid compound assignment operators"); 4532 } 4533 4534 llvm_unreachable("Unhandled compound assignment operator"); 4535 } 4536 4537 struct GEPOffsetAndOverflow { 4538 // The total (signed) byte offset for the GEP. 4539 llvm::Value *TotalOffset; 4540 // The offset overflow flag - true if the total offset overflows. 4541 llvm::Value *OffsetOverflows; 4542 }; 4543 4544 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant, 4545 /// and compute the total offset it applies from it's base pointer BasePtr. 4546 /// Returns offset in bytes and a boolean flag whether an overflow happened 4547 /// during evaluation. 4548 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal, 4549 llvm::LLVMContext &VMContext, 4550 CodeGenModule &CGM, 4551 CGBuilderTy Builder) { 4552 const auto &DL = CGM.getDataLayout(); 4553 4554 // The total (signed) byte offset for the GEP. 4555 llvm::Value *TotalOffset = nullptr; 4556 4557 // Was the GEP already reduced to a constant? 4558 if (isa<llvm::Constant>(GEPVal)) { 4559 // Compute the offset by casting both pointers to integers and subtracting: 4560 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr) 4561 Value *BasePtr_int = 4562 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType())); 4563 Value *GEPVal_int = 4564 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType())); 4565 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int); 4566 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()}; 4567 } 4568 4569 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4570 assert(GEP->getPointerOperand() == BasePtr && 4571 "BasePtr must be the the base of the GEP."); 4572 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4573 4574 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4575 4576 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4577 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4578 auto *SAddIntrinsic = 4579 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4580 auto *SMulIntrinsic = 4581 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4582 4583 // The offset overflow flag - true if the total offset overflows. 4584 llvm::Value *OffsetOverflows = Builder.getFalse(); 4585 4586 /// Return the result of the given binary operation. 4587 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 4588 llvm::Value *RHS) -> llvm::Value * { 4589 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 4590 4591 // If the operands are constants, return a constant result. 4592 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 4593 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 4594 llvm::APInt N; 4595 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 4596 /*Signed=*/true, N); 4597 if (HasOverflow) 4598 OffsetOverflows = Builder.getTrue(); 4599 return llvm::ConstantInt::get(VMContext, N); 4600 } 4601 } 4602 4603 // Otherwise, compute the result with checked arithmetic. 4604 auto *ResultAndOverflow = Builder.CreateCall( 4605 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 4606 OffsetOverflows = Builder.CreateOr( 4607 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 4608 return Builder.CreateExtractValue(ResultAndOverflow, 0); 4609 }; 4610 4611 // Determine the total byte offset by looking at each GEP operand. 4612 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 4613 GTI != GTE; ++GTI) { 4614 llvm::Value *LocalOffset; 4615 auto *Index = GTI.getOperand(); 4616 // Compute the local offset contributed by this indexing step: 4617 if (auto *STy = GTI.getStructTypeOrNull()) { 4618 // For struct indexing, the local offset is the byte position of the 4619 // specified field. 4620 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 4621 LocalOffset = llvm::ConstantInt::get( 4622 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 4623 } else { 4624 // Otherwise this is array-like indexing. The local offset is the index 4625 // multiplied by the element size. 4626 auto *ElementSize = llvm::ConstantInt::get( 4627 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 4628 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 4629 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 4630 } 4631 4632 // If this is the first offset, set it as the total offset. Otherwise, add 4633 // the local offset into the running total. 4634 if (!TotalOffset || TotalOffset == Zero) 4635 TotalOffset = LocalOffset; 4636 else 4637 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 4638 } 4639 4640 return {TotalOffset, OffsetOverflows}; 4641 } 4642 4643 Value * 4644 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList, 4645 bool SignedIndices, bool IsSubtraction, 4646 SourceLocation Loc, const Twine &Name) { 4647 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 4648 4649 // If the pointer overflow sanitizer isn't enabled, do nothing. 4650 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 4651 return GEPVal; 4652 4653 llvm::Type *PtrTy = Ptr->getType(); 4654 4655 // Perform nullptr-and-offset check unless the nullptr is defined. 4656 bool PerformNullCheck = !NullPointerIsDefined( 4657 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace()); 4658 // Check for overflows unless the GEP got constant-folded, 4659 // and only in the default address space 4660 bool PerformOverflowCheck = 4661 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0; 4662 4663 if (!(PerformNullCheck || PerformOverflowCheck)) 4664 return GEPVal; 4665 4666 const auto &DL = CGM.getDataLayout(); 4667 4668 SanitizerScope SanScope(this); 4669 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy); 4670 4671 GEPOffsetAndOverflow EvaluatedGEP = 4672 EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder); 4673 4674 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || 4675 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && 4676 "If the offset got constant-folded, we don't expect that there was an " 4677 "overflow."); 4678 4679 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4680 4681 // Common case: if the total offset is zero, and we are using C++ semantics, 4682 // where nullptr+0 is defined, don't emit a check. 4683 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus) 4684 return GEPVal; 4685 4686 // Now that we've computed the total offset, add it to the base pointer (with 4687 // wrapping semantics). 4688 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy); 4689 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset); 4690 4691 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 4692 4693 if (PerformNullCheck) { 4694 // In C++, if the base pointer evaluates to a null pointer value, 4695 // the only valid pointer this inbounds GEP can produce is also 4696 // a null pointer, so the offset must also evaluate to zero. 4697 // Likewise, if we have non-zero base pointer, we can not get null pointer 4698 // as a result, so the offset can not be -intptr_t(BasePtr). 4699 // In other words, both pointers are either null, or both are non-null, 4700 // or the behaviour is undefined. 4701 // 4702 // C, however, is more strict in this regard, and gives more 4703 // optimization opportunities: in C, additionally, nullptr+0 is undefined. 4704 // So both the input to the 'gep inbounds' AND the output must not be null. 4705 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr); 4706 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP); 4707 auto *Valid = 4708 CGM.getLangOpts().CPlusPlus 4709 ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr) 4710 : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr); 4711 Checks.emplace_back(Valid, SanitizerKind::PointerOverflow); 4712 } 4713 4714 if (PerformOverflowCheck) { 4715 // The GEP is valid if: 4716 // 1) The total offset doesn't overflow, and 4717 // 2) The sign of the difference between the computed address and the base 4718 // pointer matches the sign of the total offset. 4719 llvm::Value *ValidGEP; 4720 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows); 4721 if (SignedIndices) { 4722 // GEP is computed as `unsigned base + signed offset`, therefore: 4723 // * If offset was positive, then the computed pointer can not be 4724 // [unsigned] less than the base pointer, unless it overflowed. 4725 // * If offset was negative, then the computed pointer can not be 4726 // [unsigned] greater than the bas pointere, unless it overflowed. 4727 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4728 auto *PosOrZeroOffset = 4729 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero); 4730 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 4731 ValidGEP = 4732 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid); 4733 } else if (!IsSubtraction) { 4734 // GEP is computed as `unsigned base + unsigned offset`, therefore the 4735 // computed pointer can not be [unsigned] less than base pointer, 4736 // unless there was an overflow. 4737 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`. 4738 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4739 } else { 4740 // GEP is computed as `unsigned base - unsigned offset`, therefore the 4741 // computed pointer can not be [unsigned] greater than base pointer, 4742 // unless there was an overflow. 4743 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`. 4744 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr); 4745 } 4746 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow); 4747 Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow); 4748 } 4749 4750 assert(!Checks.empty() && "Should have produced some checks."); 4751 4752 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 4753 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 4754 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 4755 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 4756 4757 return GEPVal; 4758 } 4759