1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalVariable.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/Module.h" 32 #include <cstdarg> 33 34 using namespace clang; 35 using namespace CodeGen; 36 using llvm::Value; 37 38 //===----------------------------------------------------------------------===// 39 // Scalar Expression Emitter 40 //===----------------------------------------------------------------------===// 41 42 namespace { 43 struct BinOpInfo { 44 Value *LHS; 45 Value *RHS; 46 QualType Ty; // Computation Type. 47 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 48 bool FPContractable; 49 const Expr *E; // Entire expr, for error unsupported. May not be binop. 50 }; 51 52 static bool MustVisitNullValue(const Expr *E) { 53 // If a null pointer expression's type is the C++0x nullptr_t, then 54 // it's not necessarily a simple constant and it must be evaluated 55 // for its potential side effects. 56 return E->getType()->isNullPtrType(); 57 } 58 59 class ScalarExprEmitter 60 : public StmtVisitor<ScalarExprEmitter, Value*> { 61 CodeGenFunction &CGF; 62 CGBuilderTy &Builder; 63 bool IgnoreResultAssign; 64 llvm::LLVMContext &VMContext; 65 public: 66 67 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 68 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 69 VMContext(cgf.getLLVMContext()) { 70 } 71 72 //===--------------------------------------------------------------------===// 73 // Utilities 74 //===--------------------------------------------------------------------===// 75 76 bool TestAndClearIgnoreResultAssign() { 77 bool I = IgnoreResultAssign; 78 IgnoreResultAssign = false; 79 return I; 80 } 81 82 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 83 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 84 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 85 return CGF.EmitCheckedLValue(E, TCK); 86 } 87 88 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerKind>> Checks, 89 const BinOpInfo &Info); 90 91 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 92 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 93 } 94 95 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 96 const AlignValueAttr *AVAttr = nullptr; 97 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 98 const ValueDecl *VD = DRE->getDecl(); 99 100 if (VD->getType()->isReferenceType()) { 101 if (const auto *TTy = 102 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 103 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 104 } else { 105 // Assumptions for function parameters are emitted at the start of the 106 // function, so there is no need to repeat that here. 107 if (isa<ParmVarDecl>(VD)) 108 return; 109 110 AVAttr = VD->getAttr<AlignValueAttr>(); 111 } 112 } 113 114 if (!AVAttr) 115 if (const auto *TTy = 116 dyn_cast<TypedefType>(E->getType())) 117 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 118 119 if (!AVAttr) 120 return; 121 122 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 123 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 124 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); 125 } 126 127 /// EmitLoadOfLValue - Given an expression with complex type that represents a 128 /// value l-value, this method emits the address of the l-value, then loads 129 /// and returns the result. 130 Value *EmitLoadOfLValue(const Expr *E) { 131 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 132 E->getExprLoc()); 133 134 EmitLValueAlignmentAssumption(E, V); 135 return V; 136 } 137 138 /// EmitConversionToBool - Convert the specified expression value to a 139 /// boolean (i1) truth value. This is equivalent to "Val != 0". 140 Value *EmitConversionToBool(Value *Src, QualType DstTy); 141 142 /// \brief Emit a check that a conversion to or from a floating-point type 143 /// does not overflow. 144 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 145 Value *Src, QualType SrcType, 146 QualType DstType, llvm::Type *DstTy); 147 148 /// EmitScalarConversion - Emit a conversion from the specified type to the 149 /// specified destination type, both of which are LLVM scalar types. 150 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy); 151 152 /// EmitComplexToScalarConversion - Emit a conversion from the specified 153 /// complex type to the specified destination type, where the destination type 154 /// is an LLVM scalar type. 155 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 156 QualType SrcTy, QualType DstTy); 157 158 /// EmitNullValue - Emit a value that corresponds to null for the given type. 159 Value *EmitNullValue(QualType Ty); 160 161 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 162 Value *EmitFloatToBoolConversion(Value *V) { 163 // Compare against 0.0 for fp scalars. 164 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 165 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 166 } 167 168 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 169 Value *EmitPointerToBoolConversion(Value *V) { 170 Value *Zero = llvm::ConstantPointerNull::get( 171 cast<llvm::PointerType>(V->getType())); 172 return Builder.CreateICmpNE(V, Zero, "tobool"); 173 } 174 175 Value *EmitIntToBoolConversion(Value *V) { 176 // Because of the type rules of C, we often end up computing a 177 // logical value, then zero extending it to int, then wanting it 178 // as a logical value again. Optimize this common case. 179 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 180 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 181 Value *Result = ZI->getOperand(0); 182 // If there aren't any more uses, zap the instruction to save space. 183 // Note that there can be more uses, for example if this 184 // is the result of an assignment. 185 if (ZI->use_empty()) 186 ZI->eraseFromParent(); 187 return Result; 188 } 189 } 190 191 return Builder.CreateIsNotNull(V, "tobool"); 192 } 193 194 //===--------------------------------------------------------------------===// 195 // Visitor Methods 196 //===--------------------------------------------------------------------===// 197 198 Value *Visit(Expr *E) { 199 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 200 } 201 202 Value *VisitStmt(Stmt *S) { 203 S->dump(CGF.getContext().getSourceManager()); 204 llvm_unreachable("Stmt can't have complex result type!"); 205 } 206 Value *VisitExpr(Expr *S); 207 208 Value *VisitParenExpr(ParenExpr *PE) { 209 return Visit(PE->getSubExpr()); 210 } 211 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 212 return Visit(E->getReplacement()); 213 } 214 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 215 return Visit(GE->getResultExpr()); 216 } 217 218 // Leaves. 219 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 220 return Builder.getInt(E->getValue()); 221 } 222 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 223 return llvm::ConstantFP::get(VMContext, E->getValue()); 224 } 225 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 226 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 227 } 228 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 229 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 230 } 231 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 232 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 233 } 234 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 235 return EmitNullValue(E->getType()); 236 } 237 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 238 return EmitNullValue(E->getType()); 239 } 240 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 241 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 242 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 243 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 244 return Builder.CreateBitCast(V, ConvertType(E->getType())); 245 } 246 247 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 248 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 249 } 250 251 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 252 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 253 } 254 255 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 256 if (E->isGLValue()) 257 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 258 259 // Otherwise, assume the mapping is the scalar directly. 260 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 261 } 262 263 // l-values. 264 Value *VisitDeclRefExpr(DeclRefExpr *E) { 265 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 266 if (result.isReference()) 267 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 268 E->getExprLoc()); 269 return result.getValue(); 270 } 271 return EmitLoadOfLValue(E); 272 } 273 274 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 275 return CGF.EmitObjCSelectorExpr(E); 276 } 277 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 278 return CGF.EmitObjCProtocolExpr(E); 279 } 280 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 281 return EmitLoadOfLValue(E); 282 } 283 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 284 if (E->getMethodDecl() && 285 E->getMethodDecl()->getReturnType()->isReferenceType()) 286 return EmitLoadOfLValue(E); 287 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 288 } 289 290 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 291 LValue LV = CGF.EmitObjCIsaExpr(E); 292 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 293 return V; 294 } 295 296 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 297 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 298 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 299 Value *VisitMemberExpr(MemberExpr *E); 300 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 301 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 302 return EmitLoadOfLValue(E); 303 } 304 305 Value *VisitInitListExpr(InitListExpr *E); 306 307 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 308 return EmitNullValue(E->getType()); 309 } 310 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 311 if (E->getType()->isVariablyModifiedType()) 312 CGF.EmitVariablyModifiedType(E->getType()); 313 314 if (CGDebugInfo *DI = CGF.getDebugInfo()) 315 DI->EmitExplicitCastType(E->getType()); 316 317 return VisitCastExpr(E); 318 } 319 Value *VisitCastExpr(CastExpr *E); 320 321 Value *VisitCallExpr(const CallExpr *E) { 322 if (E->getCallReturnType()->isReferenceType()) 323 return EmitLoadOfLValue(E); 324 325 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 326 327 EmitLValueAlignmentAssumption(E, V); 328 return V; 329 } 330 331 Value *VisitStmtExpr(const StmtExpr *E); 332 333 // Unary Operators. 334 Value *VisitUnaryPostDec(const UnaryOperator *E) { 335 LValue LV = EmitLValue(E->getSubExpr()); 336 return EmitScalarPrePostIncDec(E, LV, false, false); 337 } 338 Value *VisitUnaryPostInc(const UnaryOperator *E) { 339 LValue LV = EmitLValue(E->getSubExpr()); 340 return EmitScalarPrePostIncDec(E, LV, true, false); 341 } 342 Value *VisitUnaryPreDec(const UnaryOperator *E) { 343 LValue LV = EmitLValue(E->getSubExpr()); 344 return EmitScalarPrePostIncDec(E, LV, false, true); 345 } 346 Value *VisitUnaryPreInc(const UnaryOperator *E) { 347 LValue LV = EmitLValue(E->getSubExpr()); 348 return EmitScalarPrePostIncDec(E, LV, true, true); 349 } 350 351 llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 352 llvm::Value *InVal, 353 llvm::Value *NextVal, 354 bool IsInc); 355 356 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 357 bool isInc, bool isPre); 358 359 360 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 361 if (isa<MemberPointerType>(E->getType())) // never sugared 362 return CGF.CGM.getMemberPointerConstant(E); 363 364 return EmitLValue(E->getSubExpr()).getAddress(); 365 } 366 Value *VisitUnaryDeref(const UnaryOperator *E) { 367 if (E->getType()->isVoidType()) 368 return Visit(E->getSubExpr()); // the actual value should be unused 369 return EmitLoadOfLValue(E); 370 } 371 Value *VisitUnaryPlus(const UnaryOperator *E) { 372 // This differs from gcc, though, most likely due to a bug in gcc. 373 TestAndClearIgnoreResultAssign(); 374 return Visit(E->getSubExpr()); 375 } 376 Value *VisitUnaryMinus (const UnaryOperator *E); 377 Value *VisitUnaryNot (const UnaryOperator *E); 378 Value *VisitUnaryLNot (const UnaryOperator *E); 379 Value *VisitUnaryReal (const UnaryOperator *E); 380 Value *VisitUnaryImag (const UnaryOperator *E); 381 Value *VisitUnaryExtension(const UnaryOperator *E) { 382 return Visit(E->getSubExpr()); 383 } 384 385 // C++ 386 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 387 return EmitLoadOfLValue(E); 388 } 389 390 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 391 return Visit(DAE->getExpr()); 392 } 393 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 394 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 395 return Visit(DIE->getExpr()); 396 } 397 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 398 return CGF.LoadCXXThis(); 399 } 400 401 Value *VisitExprWithCleanups(ExprWithCleanups *E) { 402 CGF.enterFullExpression(E); 403 CodeGenFunction::RunCleanupsScope Scope(CGF); 404 return Visit(E->getSubExpr()); 405 } 406 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 407 return CGF.EmitCXXNewExpr(E); 408 } 409 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 410 CGF.EmitCXXDeleteExpr(E); 411 return nullptr; 412 } 413 414 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 415 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 416 } 417 418 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 419 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 420 } 421 422 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 423 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 424 } 425 426 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 427 // C++ [expr.pseudo]p1: 428 // The result shall only be used as the operand for the function call 429 // operator (), and the result of such a call has type void. The only 430 // effect is the evaluation of the postfix-expression before the dot or 431 // arrow. 432 CGF.EmitScalarExpr(E->getBase()); 433 return nullptr; 434 } 435 436 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 437 return EmitNullValue(E->getType()); 438 } 439 440 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 441 CGF.EmitCXXThrowExpr(E); 442 return nullptr; 443 } 444 445 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 446 return Builder.getInt1(E->getValue()); 447 } 448 449 // Binary Operators. 450 Value *EmitMul(const BinOpInfo &Ops) { 451 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 452 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 453 case LangOptions::SOB_Defined: 454 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 455 case LangOptions::SOB_Undefined: 456 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 457 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 458 // Fall through. 459 case LangOptions::SOB_Trapping: 460 return EmitOverflowCheckedBinOp(Ops); 461 } 462 } 463 464 if (Ops.Ty->isUnsignedIntegerType() && 465 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 466 return EmitOverflowCheckedBinOp(Ops); 467 468 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 469 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 470 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 471 } 472 /// Create a binary op that checks for overflow. 473 /// Currently only supports +, - and *. 474 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 475 476 // Check for undefined division and modulus behaviors. 477 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 478 llvm::Value *Zero,bool isDiv); 479 // Common helper for getting how wide LHS of shift is. 480 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 481 Value *EmitDiv(const BinOpInfo &Ops); 482 Value *EmitRem(const BinOpInfo &Ops); 483 Value *EmitAdd(const BinOpInfo &Ops); 484 Value *EmitSub(const BinOpInfo &Ops); 485 Value *EmitShl(const BinOpInfo &Ops); 486 Value *EmitShr(const BinOpInfo &Ops); 487 Value *EmitAnd(const BinOpInfo &Ops) { 488 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 489 } 490 Value *EmitXor(const BinOpInfo &Ops) { 491 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 492 } 493 Value *EmitOr (const BinOpInfo &Ops) { 494 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 495 } 496 497 BinOpInfo EmitBinOps(const BinaryOperator *E); 498 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 499 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 500 Value *&Result); 501 502 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 503 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 504 505 // Binary operators and binary compound assignment operators. 506 #define HANDLEBINOP(OP) \ 507 Value *VisitBin ## OP(const BinaryOperator *E) { \ 508 return Emit ## OP(EmitBinOps(E)); \ 509 } \ 510 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 511 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 512 } 513 HANDLEBINOP(Mul) 514 HANDLEBINOP(Div) 515 HANDLEBINOP(Rem) 516 HANDLEBINOP(Add) 517 HANDLEBINOP(Sub) 518 HANDLEBINOP(Shl) 519 HANDLEBINOP(Shr) 520 HANDLEBINOP(And) 521 HANDLEBINOP(Xor) 522 HANDLEBINOP(Or) 523 #undef HANDLEBINOP 524 525 // Comparisons. 526 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, 527 unsigned SICmpOpc, unsigned FCmpOpc); 528 #define VISITCOMP(CODE, UI, SI, FP) \ 529 Value *VisitBin##CODE(const BinaryOperator *E) { \ 530 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 531 llvm::FCmpInst::FP); } 532 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 533 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 534 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 535 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 536 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 537 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 538 #undef VISITCOMP 539 540 Value *VisitBinAssign (const BinaryOperator *E); 541 542 Value *VisitBinLAnd (const BinaryOperator *E); 543 Value *VisitBinLOr (const BinaryOperator *E); 544 Value *VisitBinComma (const BinaryOperator *E); 545 546 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 547 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 548 549 // Other Operators. 550 Value *VisitBlockExpr(const BlockExpr *BE); 551 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 552 Value *VisitChooseExpr(ChooseExpr *CE); 553 Value *VisitVAArgExpr(VAArgExpr *VE); 554 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 555 return CGF.EmitObjCStringLiteral(E); 556 } 557 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 558 return CGF.EmitObjCBoxedExpr(E); 559 } 560 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 561 return CGF.EmitObjCArrayLiteral(E); 562 } 563 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 564 return CGF.EmitObjCDictionaryLiteral(E); 565 } 566 Value *VisitAsTypeExpr(AsTypeExpr *CE); 567 Value *VisitAtomicExpr(AtomicExpr *AE); 568 }; 569 } // end anonymous namespace. 570 571 //===----------------------------------------------------------------------===// 572 // Utilities 573 //===----------------------------------------------------------------------===// 574 575 /// EmitConversionToBool - Convert the specified expression value to a 576 /// boolean (i1) truth value. This is equivalent to "Val != 0". 577 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 578 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 579 580 if (SrcType->isRealFloatingType()) 581 return EmitFloatToBoolConversion(Src); 582 583 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 584 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 585 586 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 587 "Unknown scalar type to convert"); 588 589 if (isa<llvm::IntegerType>(Src->getType())) 590 return EmitIntToBoolConversion(Src); 591 592 assert(isa<llvm::PointerType>(Src->getType())); 593 return EmitPointerToBoolConversion(Src); 594 } 595 596 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc, 597 QualType OrigSrcType, 598 Value *Src, QualType SrcType, 599 QualType DstType, 600 llvm::Type *DstTy) { 601 CodeGenFunction::SanitizerScope SanScope(&CGF); 602 using llvm::APFloat; 603 using llvm::APSInt; 604 605 llvm::Type *SrcTy = Src->getType(); 606 607 llvm::Value *Check = nullptr; 608 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 609 // Integer to floating-point. This can fail for unsigned short -> __half 610 // or unsigned __int128 -> float. 611 assert(DstType->isFloatingType()); 612 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 613 614 APFloat LargestFloat = 615 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 616 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 617 618 bool IsExact; 619 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 620 &IsExact) != APFloat::opOK) 621 // The range of representable values of this floating point type includes 622 // all values of this integer type. Don't need an overflow check. 623 return; 624 625 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 626 if (SrcIsUnsigned) 627 Check = Builder.CreateICmpULE(Src, Max); 628 else { 629 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 630 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 631 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 632 Check = Builder.CreateAnd(GE, LE); 633 } 634 } else { 635 const llvm::fltSemantics &SrcSema = 636 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 637 if (isa<llvm::IntegerType>(DstTy)) { 638 // Floating-point to integer. This has undefined behavior if the source is 639 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 640 // to an integer). 641 unsigned Width = CGF.getContext().getIntWidth(DstType); 642 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 643 644 APSInt Min = APSInt::getMinValue(Width, Unsigned); 645 APFloat MinSrc(SrcSema, APFloat::uninitialized); 646 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 647 APFloat::opOverflow) 648 // Don't need an overflow check for lower bound. Just check for 649 // -Inf/NaN. 650 MinSrc = APFloat::getInf(SrcSema, true); 651 else 652 // Find the largest value which is too small to represent (before 653 // truncation toward zero). 654 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 655 656 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 657 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 658 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 659 APFloat::opOverflow) 660 // Don't need an overflow check for upper bound. Just check for 661 // +Inf/NaN. 662 MaxSrc = APFloat::getInf(SrcSema, false); 663 else 664 // Find the smallest value which is too large to represent (before 665 // truncation toward zero). 666 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 667 668 // If we're converting from __half, convert the range to float to match 669 // the type of src. 670 if (OrigSrcType->isHalfType()) { 671 const llvm::fltSemantics &Sema = 672 CGF.getContext().getFloatTypeSemantics(SrcType); 673 bool IsInexact; 674 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 675 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 676 } 677 678 llvm::Value *GE = 679 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 680 llvm::Value *LE = 681 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 682 Check = Builder.CreateAnd(GE, LE); 683 } else { 684 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 685 // 686 // Floating-point to floating-point. This has undefined behavior if the 687 // source is not in the range of representable values of the destination 688 // type. The C and C++ standards are spectacularly unclear here. We 689 // diagnose finite out-of-range conversions, but allow infinities and NaNs 690 // to convert to the corresponding value in the smaller type. 691 // 692 // C11 Annex F gives all such conversions defined behavior for IEC 60559 693 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 694 // does not. 695 696 // Converting from a lower rank to a higher rank can never have 697 // undefined behavior, since higher-rank types must have a superset 698 // of values of lower-rank types. 699 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 700 return; 701 702 assert(!OrigSrcType->isHalfType() && 703 "should not check conversion from __half, it has the lowest rank"); 704 705 const llvm::fltSemantics &DstSema = 706 CGF.getContext().getFloatTypeSemantics(DstType); 707 APFloat MinBad = APFloat::getLargest(DstSema, false); 708 APFloat MaxBad = APFloat::getInf(DstSema, false); 709 710 bool IsInexact; 711 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 712 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 713 714 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 715 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 716 llvm::Value *GE = 717 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 718 llvm::Value *LE = 719 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 720 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 721 } 722 } 723 724 // FIXME: Provide a SourceLocation. 725 llvm::Constant *StaticArgs[] = { 726 CGF.EmitCheckTypeDescriptor(OrigSrcType), 727 CGF.EmitCheckTypeDescriptor(DstType) 728 }; 729 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 730 "float_cast_overflow", StaticArgs, OrigSrc); 731 } 732 733 /// EmitScalarConversion - Emit a conversion from the specified type to the 734 /// specified destination type, both of which are LLVM scalar types. 735 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 736 QualType DstType) { 737 SrcType = CGF.getContext().getCanonicalType(SrcType); 738 DstType = CGF.getContext().getCanonicalType(DstType); 739 if (SrcType == DstType) return Src; 740 741 if (DstType->isVoidType()) return nullptr; 742 743 llvm::Value *OrigSrc = Src; 744 QualType OrigSrcType = SrcType; 745 llvm::Type *SrcTy = Src->getType(); 746 747 // If casting to/from storage-only half FP, use special intrinsics. 748 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType && 749 !CGF.getContext().getLangOpts().HalfArgsAndReturns) { 750 Src = Builder.CreateCall( 751 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 752 CGF.CGM.FloatTy), 753 Src); 754 SrcType = CGF.getContext().FloatTy; 755 SrcTy = CGF.FloatTy; 756 } 757 758 // Handle conversions to bool first, they are special: comparisons against 0. 759 if (DstType->isBooleanType()) 760 return EmitConversionToBool(Src, SrcType); 761 762 llvm::Type *DstTy = ConvertType(DstType); 763 764 // Ignore conversions like int -> uint. 765 if (SrcTy == DstTy) 766 return Src; 767 768 // Handle pointer conversions next: pointers can only be converted to/from 769 // other pointers and integers. Check for pointer types in terms of LLVM, as 770 // some native types (like Obj-C id) may map to a pointer type. 771 if (isa<llvm::PointerType>(DstTy)) { 772 // The source value may be an integer, or a pointer. 773 if (isa<llvm::PointerType>(SrcTy)) 774 return Builder.CreateBitCast(Src, DstTy, "conv"); 775 776 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 777 // First, convert to the correct width so that we control the kind of 778 // extension. 779 llvm::Type *MiddleTy = CGF.IntPtrTy; 780 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 781 llvm::Value* IntResult = 782 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 783 // Then, cast to pointer. 784 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 785 } 786 787 if (isa<llvm::PointerType>(SrcTy)) { 788 // Must be an ptr to int cast. 789 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 790 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 791 } 792 793 // A scalar can be splatted to an extended vector of the same element type 794 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 795 // Cast the scalar to element type 796 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType(); 797 llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy); 798 799 // Splat the element across to all elements 800 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 801 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 802 } 803 804 // Allow bitcast from vector to integer/fp of the same size. 805 if (isa<llvm::VectorType>(SrcTy) || 806 isa<llvm::VectorType>(DstTy)) 807 return Builder.CreateBitCast(Src, DstTy, "conv"); 808 809 // Finally, we have the arithmetic types: real int/float. 810 Value *Res = nullptr; 811 llvm::Type *ResTy = DstTy; 812 813 // An overflowing conversion has undefined behavior if either the source type 814 // or the destination type is a floating-point type. 815 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 816 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 817 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, 818 DstTy); 819 820 // Cast to half via float 821 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType && 822 !CGF.getContext().getLangOpts().HalfArgsAndReturns) 823 DstTy = CGF.FloatTy; 824 825 if (isa<llvm::IntegerType>(SrcTy)) { 826 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 827 if (isa<llvm::IntegerType>(DstTy)) 828 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 829 else if (InputSigned) 830 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 831 else 832 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 833 } else if (isa<llvm::IntegerType>(DstTy)) { 834 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 835 if (DstType->isSignedIntegerOrEnumerationType()) 836 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 837 else 838 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 839 } else { 840 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 841 "Unknown real conversion"); 842 if (DstTy->getTypeID() < SrcTy->getTypeID()) 843 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 844 else 845 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 846 } 847 848 if (DstTy != ResTy) { 849 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 850 Res = Builder.CreateCall( 851 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 852 Res); 853 } 854 855 return Res; 856 } 857 858 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 859 /// type to the specified destination type, where the destination type is an 860 /// LLVM scalar type. 861 Value *ScalarExprEmitter:: 862 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 863 QualType SrcTy, QualType DstTy) { 864 // Get the source element type. 865 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 866 867 // Handle conversions to bool first, they are special: comparisons against 0. 868 if (DstTy->isBooleanType()) { 869 // Complex != 0 -> (Real != 0) | (Imag != 0) 870 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy); 871 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy); 872 return Builder.CreateOr(Src.first, Src.second, "tobool"); 873 } 874 875 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 876 // the imaginary part of the complex value is discarded and the value of the 877 // real part is converted according to the conversion rules for the 878 // corresponding real type. 879 return EmitScalarConversion(Src.first, SrcTy, DstTy); 880 } 881 882 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 883 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 884 } 885 886 /// \brief Emit a sanitization check for the given "binary" operation (which 887 /// might actually be a unary increment which has been lowered to a binary 888 /// operation). The check passes if all values in \p Checks (which are \c i1), 889 /// are \c true. 890 void ScalarExprEmitter::EmitBinOpCheck( 891 ArrayRef<std::pair<Value *, SanitizerKind>> Checks, const BinOpInfo &Info) { 892 assert(CGF.IsSanitizerScope); 893 StringRef CheckName; 894 SmallVector<llvm::Constant *, 4> StaticData; 895 SmallVector<llvm::Value *, 2> DynamicData; 896 897 BinaryOperatorKind Opcode = Info.Opcode; 898 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 899 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 900 901 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 902 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 903 if (UO && UO->getOpcode() == UO_Minus) { 904 CheckName = "negate_overflow"; 905 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 906 DynamicData.push_back(Info.RHS); 907 } else { 908 if (BinaryOperator::isShiftOp(Opcode)) { 909 // Shift LHS negative or too large, or RHS out of bounds. 910 CheckName = "shift_out_of_bounds"; 911 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 912 StaticData.push_back( 913 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 914 StaticData.push_back( 915 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 916 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 917 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 918 CheckName = "divrem_overflow"; 919 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 920 } else { 921 // Arithmetic overflow (+, -, *). 922 switch (Opcode) { 923 case BO_Add: CheckName = "add_overflow"; break; 924 case BO_Sub: CheckName = "sub_overflow"; break; 925 case BO_Mul: CheckName = "mul_overflow"; break; 926 default: llvm_unreachable("unexpected opcode for bin op check"); 927 } 928 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 929 } 930 DynamicData.push_back(Info.LHS); 931 DynamicData.push_back(Info.RHS); 932 } 933 934 CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData); 935 } 936 937 //===----------------------------------------------------------------------===// 938 // Visitor Methods 939 //===----------------------------------------------------------------------===// 940 941 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 942 CGF.ErrorUnsupported(E, "scalar expression"); 943 if (E->getType()->isVoidType()) 944 return nullptr; 945 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 946 } 947 948 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 949 // Vector Mask Case 950 if (E->getNumSubExprs() == 2 || 951 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) { 952 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 953 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 954 Value *Mask; 955 956 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 957 unsigned LHSElts = LTy->getNumElements(); 958 959 if (E->getNumSubExprs() == 3) { 960 Mask = CGF.EmitScalarExpr(E->getExpr(2)); 961 962 // Shuffle LHS & RHS into one input vector. 963 SmallVector<llvm::Constant*, 32> concat; 964 for (unsigned i = 0; i != LHSElts; ++i) { 965 concat.push_back(Builder.getInt32(2*i)); 966 concat.push_back(Builder.getInt32(2*i+1)); 967 } 968 969 Value* CV = llvm::ConstantVector::get(concat); 970 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat"); 971 LHSElts *= 2; 972 } else { 973 Mask = RHS; 974 } 975 976 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 977 llvm::Constant* EltMask; 978 979 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 980 llvm::NextPowerOf2(LHSElts-1)-1); 981 982 // Mask off the high bits of each shuffle index. 983 Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(), 984 EltMask); 985 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 986 987 // newv = undef 988 // mask = mask & maskbits 989 // for each elt 990 // n = extract mask i 991 // x = extract val n 992 // newv = insert newv, x, i 993 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 994 MTy->getNumElements()); 995 Value* NewV = llvm::UndefValue::get(RTy); 996 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 997 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 998 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 999 1000 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1001 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1002 } 1003 return NewV; 1004 } 1005 1006 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1007 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1008 1009 SmallVector<llvm::Constant*, 32> indices; 1010 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1011 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1012 // Check for -1 and output it as undef in the IR. 1013 if (Idx.isSigned() && Idx.isAllOnesValue()) 1014 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1015 else 1016 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1017 } 1018 1019 Value *SV = llvm::ConstantVector::get(indices); 1020 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1021 } 1022 1023 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1024 QualType SrcType = E->getSrcExpr()->getType(), 1025 DstType = E->getType(); 1026 1027 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1028 1029 SrcType = CGF.getContext().getCanonicalType(SrcType); 1030 DstType = CGF.getContext().getCanonicalType(DstType); 1031 if (SrcType == DstType) return Src; 1032 1033 assert(SrcType->isVectorType() && 1034 "ConvertVector source type must be a vector"); 1035 assert(DstType->isVectorType() && 1036 "ConvertVector destination type must be a vector"); 1037 1038 llvm::Type *SrcTy = Src->getType(); 1039 llvm::Type *DstTy = ConvertType(DstType); 1040 1041 // Ignore conversions like int -> uint. 1042 if (SrcTy == DstTy) 1043 return Src; 1044 1045 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1046 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1047 1048 assert(SrcTy->isVectorTy() && 1049 "ConvertVector source IR type must be a vector"); 1050 assert(DstTy->isVectorTy() && 1051 "ConvertVector destination IR type must be a vector"); 1052 1053 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1054 *DstEltTy = DstTy->getVectorElementType(); 1055 1056 if (DstEltType->isBooleanType()) { 1057 assert((SrcEltTy->isFloatingPointTy() || 1058 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1059 1060 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1061 if (SrcEltTy->isFloatingPointTy()) { 1062 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1063 } else { 1064 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1065 } 1066 } 1067 1068 // We have the arithmetic types: real int/float. 1069 Value *Res = nullptr; 1070 1071 if (isa<llvm::IntegerType>(SrcEltTy)) { 1072 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1073 if (isa<llvm::IntegerType>(DstEltTy)) 1074 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1075 else if (InputSigned) 1076 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1077 else 1078 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1079 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1080 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1081 if (DstEltType->isSignedIntegerOrEnumerationType()) 1082 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1083 else 1084 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1085 } else { 1086 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1087 "Unknown real conversion"); 1088 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1089 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1090 else 1091 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1092 } 1093 1094 return Res; 1095 } 1096 1097 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1098 llvm::APSInt Value; 1099 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1100 if (E->isArrow()) 1101 CGF.EmitScalarExpr(E->getBase()); 1102 else 1103 EmitLValue(E->getBase()); 1104 return Builder.getInt(Value); 1105 } 1106 1107 return EmitLoadOfLValue(E); 1108 } 1109 1110 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1111 TestAndClearIgnoreResultAssign(); 1112 1113 // Emit subscript expressions in rvalue context's. For most cases, this just 1114 // loads the lvalue formed by the subscript expr. However, we have to be 1115 // careful, because the base of a vector subscript is occasionally an rvalue, 1116 // so we can't get it as an lvalue. 1117 if (!E->getBase()->getType()->isVectorType()) 1118 return EmitLoadOfLValue(E); 1119 1120 // Handle the vector case. The base must be a vector, the index must be an 1121 // integer value. 1122 Value *Base = Visit(E->getBase()); 1123 Value *Idx = Visit(E->getIdx()); 1124 QualType IdxTy = E->getIdx()->getType(); 1125 1126 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1127 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1128 1129 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1130 } 1131 1132 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1133 unsigned Off, llvm::Type *I32Ty) { 1134 int MV = SVI->getMaskValue(Idx); 1135 if (MV == -1) 1136 return llvm::UndefValue::get(I32Ty); 1137 return llvm::ConstantInt::get(I32Ty, Off+MV); 1138 } 1139 1140 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1141 bool Ignore = TestAndClearIgnoreResultAssign(); 1142 (void)Ignore; 1143 assert (Ignore == false && "init list ignored"); 1144 unsigned NumInitElements = E->getNumInits(); 1145 1146 if (E->hadArrayRangeDesignator()) 1147 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1148 1149 llvm::VectorType *VType = 1150 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1151 1152 if (!VType) { 1153 if (NumInitElements == 0) { 1154 // C++11 value-initialization for the scalar. 1155 return EmitNullValue(E->getType()); 1156 } 1157 // We have a scalar in braces. Just use the first element. 1158 return Visit(E->getInit(0)); 1159 } 1160 1161 unsigned ResElts = VType->getNumElements(); 1162 1163 // Loop over initializers collecting the Value for each, and remembering 1164 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1165 // us to fold the shuffle for the swizzle into the shuffle for the vector 1166 // initializer, since LLVM optimizers generally do not want to touch 1167 // shuffles. 1168 unsigned CurIdx = 0; 1169 bool VIsUndefShuffle = false; 1170 llvm::Value *V = llvm::UndefValue::get(VType); 1171 for (unsigned i = 0; i != NumInitElements; ++i) { 1172 Expr *IE = E->getInit(i); 1173 Value *Init = Visit(IE); 1174 SmallVector<llvm::Constant*, 16> Args; 1175 1176 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1177 1178 // Handle scalar elements. If the scalar initializer is actually one 1179 // element of a different vector of the same width, use shuffle instead of 1180 // extract+insert. 1181 if (!VVT) { 1182 if (isa<ExtVectorElementExpr>(IE)) { 1183 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1184 1185 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1186 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1187 Value *LHS = nullptr, *RHS = nullptr; 1188 if (CurIdx == 0) { 1189 // insert into undef -> shuffle (src, undef) 1190 Args.push_back(C); 1191 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1192 1193 LHS = EI->getVectorOperand(); 1194 RHS = V; 1195 VIsUndefShuffle = true; 1196 } else if (VIsUndefShuffle) { 1197 // insert into undefshuffle && size match -> shuffle (v, src) 1198 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1199 for (unsigned j = 0; j != CurIdx; ++j) 1200 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1201 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1202 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1203 1204 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1205 RHS = EI->getVectorOperand(); 1206 VIsUndefShuffle = false; 1207 } 1208 if (!Args.empty()) { 1209 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1210 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1211 ++CurIdx; 1212 continue; 1213 } 1214 } 1215 } 1216 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1217 "vecinit"); 1218 VIsUndefShuffle = false; 1219 ++CurIdx; 1220 continue; 1221 } 1222 1223 unsigned InitElts = VVT->getNumElements(); 1224 1225 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1226 // input is the same width as the vector being constructed, generate an 1227 // optimized shuffle of the swizzle input into the result. 1228 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1229 if (isa<ExtVectorElementExpr>(IE)) { 1230 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1231 Value *SVOp = SVI->getOperand(0); 1232 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1233 1234 if (OpTy->getNumElements() == ResElts) { 1235 for (unsigned j = 0; j != CurIdx; ++j) { 1236 // If the current vector initializer is a shuffle with undef, merge 1237 // this shuffle directly into it. 1238 if (VIsUndefShuffle) { 1239 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1240 CGF.Int32Ty)); 1241 } else { 1242 Args.push_back(Builder.getInt32(j)); 1243 } 1244 } 1245 for (unsigned j = 0, je = InitElts; j != je; ++j) 1246 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1247 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1248 1249 if (VIsUndefShuffle) 1250 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1251 1252 Init = SVOp; 1253 } 1254 } 1255 1256 // Extend init to result vector length, and then shuffle its contribution 1257 // to the vector initializer into V. 1258 if (Args.empty()) { 1259 for (unsigned j = 0; j != InitElts; ++j) 1260 Args.push_back(Builder.getInt32(j)); 1261 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1262 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1263 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1264 Mask, "vext"); 1265 1266 Args.clear(); 1267 for (unsigned j = 0; j != CurIdx; ++j) 1268 Args.push_back(Builder.getInt32(j)); 1269 for (unsigned j = 0; j != InitElts; ++j) 1270 Args.push_back(Builder.getInt32(j+Offset)); 1271 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1272 } 1273 1274 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1275 // merging subsequent shuffles into this one. 1276 if (CurIdx == 0) 1277 std::swap(V, Init); 1278 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1279 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1280 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1281 CurIdx += InitElts; 1282 } 1283 1284 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1285 // Emit remaining default initializers. 1286 llvm::Type *EltTy = VType->getElementType(); 1287 1288 // Emit remaining default initializers 1289 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1290 Value *Idx = Builder.getInt32(CurIdx); 1291 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1292 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1293 } 1294 return V; 1295 } 1296 1297 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) { 1298 const Expr *E = CE->getSubExpr(); 1299 1300 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1301 return false; 1302 1303 if (isa<CXXThisExpr>(E)) { 1304 // We always assume that 'this' is never null. 1305 return false; 1306 } 1307 1308 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1309 // And that glvalue casts are never null. 1310 if (ICE->getValueKind() != VK_RValue) 1311 return false; 1312 } 1313 1314 return true; 1315 } 1316 1317 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1318 // have to handle a more broad range of conversions than explicit casts, as they 1319 // handle things like function to ptr-to-function decay etc. 1320 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1321 Expr *E = CE->getSubExpr(); 1322 QualType DestTy = CE->getType(); 1323 CastKind Kind = CE->getCastKind(); 1324 1325 if (!DestTy->isVoidType()) 1326 TestAndClearIgnoreResultAssign(); 1327 1328 // Since almost all cast kinds apply to scalars, this switch doesn't have 1329 // a default case, so the compiler will warn on a missing case. The cases 1330 // are in the same order as in the CastKind enum. 1331 switch (Kind) { 1332 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1333 case CK_BuiltinFnToFnPtr: 1334 llvm_unreachable("builtin functions are handled elsewhere"); 1335 1336 case CK_LValueBitCast: 1337 case CK_ObjCObjectLValueCast: { 1338 Value *V = EmitLValue(E).getAddress(); 1339 V = Builder.CreateBitCast(V, 1340 ConvertType(CGF.getContext().getPointerType(DestTy))); 1341 return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy), 1342 CE->getExprLoc()); 1343 } 1344 1345 case CK_CPointerToObjCPointerCast: 1346 case CK_BlockPointerToObjCPointerCast: 1347 case CK_AnyPointerToBlockPointerCast: 1348 case CK_BitCast: { 1349 Value *Src = Visit(const_cast<Expr*>(E)); 1350 llvm::Type *SrcTy = Src->getType(); 1351 llvm::Type *DstTy = ConvertType(DestTy); 1352 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1353 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1354 llvm_unreachable("wrong cast for pointers in different address spaces" 1355 "(must be an address space cast)!"); 1356 } 1357 return Builder.CreateBitCast(Src, DstTy); 1358 } 1359 case CK_AddressSpaceConversion: { 1360 Value *Src = Visit(const_cast<Expr*>(E)); 1361 return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy)); 1362 } 1363 case CK_AtomicToNonAtomic: 1364 case CK_NonAtomicToAtomic: 1365 case CK_NoOp: 1366 case CK_UserDefinedConversion: 1367 return Visit(const_cast<Expr*>(E)); 1368 1369 case CK_BaseToDerived: { 1370 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1371 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1372 1373 llvm::Value *V = Visit(E); 1374 1375 llvm::Value *Derived = 1376 CGF.GetAddressOfDerivedClass(V, DerivedClassDecl, 1377 CE->path_begin(), CE->path_end(), 1378 ShouldNullCheckClassCastValue(CE)); 1379 1380 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1381 // performed and the object is not of the derived type. 1382 if (CGF.sanitizePerformTypeCheck()) 1383 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1384 Derived, DestTy->getPointeeType()); 1385 1386 return Derived; 1387 } 1388 case CK_UncheckedDerivedToBase: 1389 case CK_DerivedToBase: { 1390 const CXXRecordDecl *DerivedClassDecl = 1391 E->getType()->getPointeeCXXRecordDecl(); 1392 assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!"); 1393 1394 return CGF.GetAddressOfBaseClass( 1395 Visit(E), DerivedClassDecl, CE->path_begin(), CE->path_end(), 1396 ShouldNullCheckClassCastValue(CE), CE->getExprLoc()); 1397 } 1398 case CK_Dynamic: { 1399 Value *V = Visit(const_cast<Expr*>(E)); 1400 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1401 return CGF.EmitDynamicCast(V, DCE); 1402 } 1403 1404 case CK_ArrayToPointerDecay: { 1405 assert(E->getType()->isArrayType() && 1406 "Array to pointer decay must have array source type!"); 1407 1408 Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays. 1409 1410 // Note that VLA pointers are always decayed, so we don't need to do 1411 // anything here. 1412 if (!E->getType()->isVariableArrayType()) { 1413 assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer"); 1414 V = CGF.Builder.CreatePointerCast( 1415 V, ConvertType(E->getType())->getPointerTo( 1416 V->getType()->getPointerAddressSpace())); 1417 1418 assert(isa<llvm::ArrayType>(V->getType()->getPointerElementType()) && 1419 "Expected pointer to array"); 1420 V = Builder.CreateStructGEP(V, 0, "arraydecay"); 1421 } 1422 1423 // Make sure the array decay ends up being the right type. This matters if 1424 // the array type was of an incomplete type. 1425 return CGF.Builder.CreatePointerCast(V, ConvertType(CE->getType())); 1426 } 1427 case CK_FunctionToPointerDecay: 1428 return EmitLValue(E).getAddress(); 1429 1430 case CK_NullToPointer: 1431 if (MustVisitNullValue(E)) 1432 (void) Visit(E); 1433 1434 return llvm::ConstantPointerNull::get( 1435 cast<llvm::PointerType>(ConvertType(DestTy))); 1436 1437 case CK_NullToMemberPointer: { 1438 if (MustVisitNullValue(E)) 1439 (void) Visit(E); 1440 1441 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1442 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1443 } 1444 1445 case CK_ReinterpretMemberPointer: 1446 case CK_BaseToDerivedMemberPointer: 1447 case CK_DerivedToBaseMemberPointer: { 1448 Value *Src = Visit(E); 1449 1450 // Note that the AST doesn't distinguish between checked and 1451 // unchecked member pointer conversions, so we always have to 1452 // implement checked conversions here. This is inefficient when 1453 // actual control flow may be required in order to perform the 1454 // check, which it is for data member pointers (but not member 1455 // function pointers on Itanium and ARM). 1456 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1457 } 1458 1459 case CK_ARCProduceObject: 1460 return CGF.EmitARCRetainScalarExpr(E); 1461 case CK_ARCConsumeObject: 1462 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1463 case CK_ARCReclaimReturnedObject: { 1464 llvm::Value *value = Visit(E); 1465 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 1466 return CGF.EmitObjCConsumeObject(E->getType(), value); 1467 } 1468 case CK_ARCExtendBlockObject: 1469 return CGF.EmitARCExtendBlockObject(E); 1470 1471 case CK_CopyAndAutoreleaseBlockObject: 1472 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1473 1474 case CK_FloatingRealToComplex: 1475 case CK_FloatingComplexCast: 1476 case CK_IntegralRealToComplex: 1477 case CK_IntegralComplexCast: 1478 case CK_IntegralComplexToFloatingComplex: 1479 case CK_FloatingComplexToIntegralComplex: 1480 case CK_ConstructorConversion: 1481 case CK_ToUnion: 1482 llvm_unreachable("scalar cast to non-scalar value"); 1483 1484 case CK_LValueToRValue: 1485 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1486 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1487 return Visit(const_cast<Expr*>(E)); 1488 1489 case CK_IntegralToPointer: { 1490 Value *Src = Visit(const_cast<Expr*>(E)); 1491 1492 // First, convert to the correct width so that we control the kind of 1493 // extension. 1494 llvm::Type *MiddleTy = CGF.IntPtrTy; 1495 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1496 llvm::Value* IntResult = 1497 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1498 1499 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); 1500 } 1501 case CK_PointerToIntegral: 1502 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1503 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1504 1505 case CK_ToVoid: { 1506 CGF.EmitIgnoredExpr(E); 1507 return nullptr; 1508 } 1509 case CK_VectorSplat: { 1510 llvm::Type *DstTy = ConvertType(DestTy); 1511 Value *Elt = Visit(const_cast<Expr*>(E)); 1512 Elt = EmitScalarConversion(Elt, E->getType(), 1513 DestTy->getAs<VectorType>()->getElementType()); 1514 1515 // Splat the element across to all elements 1516 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 1517 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 1518 } 1519 1520 case CK_IntegralCast: 1521 case CK_IntegralToFloating: 1522 case CK_FloatingToIntegral: 1523 case CK_FloatingCast: 1524 return EmitScalarConversion(Visit(E), E->getType(), DestTy); 1525 case CK_IntegralToBoolean: 1526 return EmitIntToBoolConversion(Visit(E)); 1527 case CK_PointerToBoolean: 1528 return EmitPointerToBoolConversion(Visit(E)); 1529 case CK_FloatingToBoolean: 1530 return EmitFloatToBoolConversion(Visit(E)); 1531 case CK_MemberPointerToBoolean: { 1532 llvm::Value *MemPtr = Visit(E); 1533 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1534 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1535 } 1536 1537 case CK_FloatingComplexToReal: 1538 case CK_IntegralComplexToReal: 1539 return CGF.EmitComplexExpr(E, false, true).first; 1540 1541 case CK_FloatingComplexToBoolean: 1542 case CK_IntegralComplexToBoolean: { 1543 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1544 1545 // TODO: kill this function off, inline appropriate case here 1546 return EmitComplexToScalarConversion(V, E->getType(), DestTy); 1547 } 1548 1549 case CK_ZeroToOCLEvent: { 1550 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); 1551 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1552 } 1553 1554 } 1555 1556 llvm_unreachable("unknown scalar cast"); 1557 } 1558 1559 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1560 CodeGenFunction::StmtExprEvaluation eval(CGF); 1561 llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1562 !E->getType()->isVoidType()); 1563 if (!RetAlloca) 1564 return nullptr; 1565 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 1566 E->getExprLoc()); 1567 } 1568 1569 //===----------------------------------------------------------------------===// 1570 // Unary Operators 1571 //===----------------------------------------------------------------------===// 1572 1573 llvm::Value *ScalarExprEmitter:: 1574 EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 1575 llvm::Value *InVal, 1576 llvm::Value *NextVal, bool IsInc) { 1577 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1578 case LangOptions::SOB_Defined: 1579 return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1580 case LangOptions::SOB_Undefined: 1581 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 1582 return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1583 // Fall through. 1584 case LangOptions::SOB_Trapping: 1585 BinOpInfo BinOp; 1586 BinOp.LHS = InVal; 1587 BinOp.RHS = NextVal; 1588 BinOp.Ty = E->getType(); 1589 BinOp.Opcode = BO_Add; 1590 BinOp.FPContractable = false; 1591 BinOp.E = E; 1592 return EmitOverflowCheckedBinOp(BinOp); 1593 } 1594 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1595 } 1596 1597 llvm::Value * 1598 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1599 bool isInc, bool isPre) { 1600 1601 QualType type = E->getSubExpr()->getType(); 1602 llvm::PHINode *atomicPHI = nullptr; 1603 llvm::Value *value; 1604 llvm::Value *input; 1605 1606 int amount = (isInc ? 1 : -1); 1607 1608 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1609 type = atomicTy->getValueType(); 1610 if (isInc && type->isBooleanType()) { 1611 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1612 if (isPre) { 1613 Builder.Insert(new llvm::StoreInst(True, 1614 LV.getAddress(), LV.isVolatileQualified(), 1615 LV.getAlignment().getQuantity(), 1616 llvm::SequentiallyConsistent)); 1617 return Builder.getTrue(); 1618 } 1619 // For atomic bool increment, we just store true and return it for 1620 // preincrement, do an atomic swap with true for postincrement 1621 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 1622 LV.getAddress(), True, llvm::SequentiallyConsistent); 1623 } 1624 // Special case for atomic increment / decrement on integers, emit 1625 // atomicrmw instructions. We skip this if we want to be doing overflow 1626 // checking, and fall into the slow path with the atomic cmpxchg loop. 1627 if (!type->isBooleanType() && type->isIntegerType() && 1628 !(type->isUnsignedIntegerType() && 1629 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 1630 CGF.getLangOpts().getSignedOverflowBehavior() != 1631 LangOptions::SOB_Trapping) { 1632 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1633 llvm::AtomicRMWInst::Sub; 1634 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1635 llvm::Instruction::Sub; 1636 llvm::Value *amt = CGF.EmitToMemory( 1637 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1638 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1639 LV.getAddress(), amt, llvm::SequentiallyConsistent); 1640 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1641 } 1642 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1643 input = value; 1644 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1645 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1646 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1647 value = CGF.EmitToMemory(value, type); 1648 Builder.CreateBr(opBB); 1649 Builder.SetInsertPoint(opBB); 1650 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1651 atomicPHI->addIncoming(value, startBB); 1652 value = atomicPHI; 1653 } else { 1654 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1655 input = value; 1656 } 1657 1658 // Special case of integer increment that we have to check first: bool++. 1659 // Due to promotion rules, we get: 1660 // bool++ -> bool = bool + 1 1661 // -> bool = (int)bool + 1 1662 // -> bool = ((int)bool + 1 != 0) 1663 // An interesting aspect of this is that increment is always true. 1664 // Decrement does not have this property. 1665 if (isInc && type->isBooleanType()) { 1666 value = Builder.getTrue(); 1667 1668 // Most common case by far: integer increment. 1669 } else if (type->isIntegerType()) { 1670 1671 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1672 1673 // Note that signed integer inc/dec with width less than int can't 1674 // overflow because of promotion rules; we're just eliding a few steps here. 1675 bool CanOverflow = value->getType()->getIntegerBitWidth() >= 1676 CGF.IntTy->getIntegerBitWidth(); 1677 if (CanOverflow && type->isSignedIntegerOrEnumerationType()) { 1678 value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc); 1679 } else if (CanOverflow && type->isUnsignedIntegerType() && 1680 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 1681 BinOpInfo BinOp; 1682 BinOp.LHS = value; 1683 BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false); 1684 BinOp.Ty = E->getType(); 1685 BinOp.Opcode = isInc ? BO_Add : BO_Sub; 1686 BinOp.FPContractable = false; 1687 BinOp.E = E; 1688 value = EmitOverflowCheckedBinOp(BinOp); 1689 } else 1690 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1691 1692 // Next most common: pointer increment. 1693 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1694 QualType type = ptr->getPointeeType(); 1695 1696 // VLA types don't have constant size. 1697 if (const VariableArrayType *vla 1698 = CGF.getContext().getAsVariableArrayType(type)) { 1699 llvm::Value *numElts = CGF.getVLASize(vla).first; 1700 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1701 if (CGF.getLangOpts().isSignedOverflowDefined()) 1702 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1703 else 1704 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); 1705 1706 // Arithmetic on function pointers (!) is just +-1. 1707 } else if (type->isFunctionType()) { 1708 llvm::Value *amt = Builder.getInt32(amount); 1709 1710 value = CGF.EmitCastToVoidPtr(value); 1711 if (CGF.getLangOpts().isSignedOverflowDefined()) 1712 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1713 else 1714 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1715 value = Builder.CreateBitCast(value, input->getType()); 1716 1717 // For everything else, we can just do a simple increment. 1718 } else { 1719 llvm::Value *amt = Builder.getInt32(amount); 1720 if (CGF.getLangOpts().isSignedOverflowDefined()) 1721 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1722 else 1723 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1724 } 1725 1726 // Vector increment/decrement. 1727 } else if (type->isVectorType()) { 1728 if (type->hasIntegerRepresentation()) { 1729 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1730 1731 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1732 } else { 1733 value = Builder.CreateFAdd( 1734 value, 1735 llvm::ConstantFP::get(value->getType(), amount), 1736 isInc ? "inc" : "dec"); 1737 } 1738 1739 // Floating point. 1740 } else if (type->isRealFloatingType()) { 1741 // Add the inc/dec to the real part. 1742 llvm::Value *amt; 1743 1744 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType && 1745 !CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1746 // Another special case: half FP increment should be done via float 1747 value = Builder.CreateCall( 1748 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1749 CGF.CGM.FloatTy), 1750 input); 1751 } 1752 1753 if (value->getType()->isFloatTy()) 1754 amt = llvm::ConstantFP::get(VMContext, 1755 llvm::APFloat(static_cast<float>(amount))); 1756 else if (value->getType()->isDoubleTy()) 1757 amt = llvm::ConstantFP::get(VMContext, 1758 llvm::APFloat(static_cast<double>(amount))); 1759 else { 1760 llvm::APFloat F(static_cast<float>(amount)); 1761 bool ignored; 1762 F.convert(CGF.getTarget().getLongDoubleFormat(), 1763 llvm::APFloat::rmTowardZero, &ignored); 1764 amt = llvm::ConstantFP::get(VMContext, F); 1765 } 1766 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 1767 1768 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType && 1769 !CGF.getContext().getLangOpts().HalfArgsAndReturns) 1770 value = Builder.CreateCall( 1771 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 1772 CGF.CGM.FloatTy), 1773 value); 1774 1775 // Objective-C pointer types. 1776 } else { 1777 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 1778 value = CGF.EmitCastToVoidPtr(value); 1779 1780 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 1781 if (!isInc) size = -size; 1782 llvm::Value *sizeValue = 1783 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 1784 1785 if (CGF.getLangOpts().isSignedOverflowDefined()) 1786 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 1787 else 1788 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 1789 value = Builder.CreateBitCast(value, input->getType()); 1790 } 1791 1792 if (atomicPHI) { 1793 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1794 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1795 auto Pair = CGF.EmitAtomicCompareExchange( 1796 LV, RValue::get(atomicPHI), RValue::get(CGF.EmitToMemory(value, type)), 1797 E->getExprLoc()); 1798 llvm::Value *old = Pair.first.getScalarVal(); 1799 llvm::Value *success = Pair.second.getScalarVal(); 1800 atomicPHI->addIncoming(old, opBB); 1801 Builder.CreateCondBr(success, contBB, opBB); 1802 Builder.SetInsertPoint(contBB); 1803 return isPre ? value : input; 1804 } 1805 1806 // Store the updated result through the lvalue. 1807 if (LV.isBitField()) 1808 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 1809 else 1810 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 1811 1812 // If this is a postinc, return the value read from memory, otherwise use the 1813 // updated value. 1814 return isPre ? value : input; 1815 } 1816 1817 1818 1819 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1820 TestAndClearIgnoreResultAssign(); 1821 // Emit unary minus with EmitSub so we handle overflow cases etc. 1822 BinOpInfo BinOp; 1823 BinOp.RHS = Visit(E->getSubExpr()); 1824 1825 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 1826 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 1827 else 1828 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 1829 BinOp.Ty = E->getType(); 1830 BinOp.Opcode = BO_Sub; 1831 BinOp.FPContractable = false; 1832 BinOp.E = E; 1833 return EmitSub(BinOp); 1834 } 1835 1836 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1837 TestAndClearIgnoreResultAssign(); 1838 Value *Op = Visit(E->getSubExpr()); 1839 return Builder.CreateNot(Op, "neg"); 1840 } 1841 1842 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1843 // Perform vector logical not on comparison with zero vector. 1844 if (E->getType()->isExtVectorType()) { 1845 Value *Oper = Visit(E->getSubExpr()); 1846 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 1847 Value *Result; 1848 if (Oper->getType()->isFPOrFPVectorTy()) 1849 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 1850 else 1851 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 1852 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 1853 } 1854 1855 // Compare operand to zero. 1856 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1857 1858 // Invert value. 1859 // TODO: Could dynamically modify easy computations here. For example, if 1860 // the operand is an icmp ne, turn into icmp eq. 1861 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1862 1863 // ZExt result to the expr type. 1864 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1865 } 1866 1867 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 1868 // Try folding the offsetof to a constant. 1869 llvm::APSInt Value; 1870 if (E->EvaluateAsInt(Value, CGF.getContext())) 1871 return Builder.getInt(Value); 1872 1873 // Loop over the components of the offsetof to compute the value. 1874 unsigned n = E->getNumComponents(); 1875 llvm::Type* ResultType = ConvertType(E->getType()); 1876 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 1877 QualType CurrentType = E->getTypeSourceInfo()->getType(); 1878 for (unsigned i = 0; i != n; ++i) { 1879 OffsetOfExpr::OffsetOfNode ON = E->getComponent(i); 1880 llvm::Value *Offset = nullptr; 1881 switch (ON.getKind()) { 1882 case OffsetOfExpr::OffsetOfNode::Array: { 1883 // Compute the index 1884 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 1885 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 1886 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 1887 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 1888 1889 // Save the element type 1890 CurrentType = 1891 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 1892 1893 // Compute the element size 1894 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 1895 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 1896 1897 // Multiply out to compute the result 1898 Offset = Builder.CreateMul(Idx, ElemSize); 1899 break; 1900 } 1901 1902 case OffsetOfExpr::OffsetOfNode::Field: { 1903 FieldDecl *MemberDecl = ON.getField(); 1904 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1905 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1906 1907 // Compute the index of the field in its parent. 1908 unsigned i = 0; 1909 // FIXME: It would be nice if we didn't have to loop here! 1910 for (RecordDecl::field_iterator Field = RD->field_begin(), 1911 FieldEnd = RD->field_end(); 1912 Field != FieldEnd; ++Field, ++i) { 1913 if (*Field == MemberDecl) 1914 break; 1915 } 1916 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 1917 1918 // Compute the offset to the field 1919 int64_t OffsetInt = RL.getFieldOffset(i) / 1920 CGF.getContext().getCharWidth(); 1921 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1922 1923 // Save the element type. 1924 CurrentType = MemberDecl->getType(); 1925 break; 1926 } 1927 1928 case OffsetOfExpr::OffsetOfNode::Identifier: 1929 llvm_unreachable("dependent __builtin_offsetof"); 1930 1931 case OffsetOfExpr::OffsetOfNode::Base: { 1932 if (ON.getBase()->isVirtual()) { 1933 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 1934 continue; 1935 } 1936 1937 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1938 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1939 1940 // Save the element type. 1941 CurrentType = ON.getBase()->getType(); 1942 1943 // Compute the offset to the base. 1944 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 1945 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 1946 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 1947 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 1948 break; 1949 } 1950 } 1951 Result = Builder.CreateAdd(Result, Offset); 1952 } 1953 return Result; 1954 } 1955 1956 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 1957 /// argument of the sizeof expression as an integer. 1958 Value * 1959 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 1960 const UnaryExprOrTypeTraitExpr *E) { 1961 QualType TypeToSize = E->getTypeOfArgument(); 1962 if (E->getKind() == UETT_SizeOf) { 1963 if (const VariableArrayType *VAT = 1964 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 1965 if (E->isArgumentType()) { 1966 // sizeof(type) - make sure to emit the VLA size. 1967 CGF.EmitVariablyModifiedType(TypeToSize); 1968 } else { 1969 // C99 6.5.3.4p2: If the argument is an expression of type 1970 // VLA, it is evaluated. 1971 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 1972 } 1973 1974 QualType eltType; 1975 llvm::Value *numElts; 1976 std::tie(numElts, eltType) = CGF.getVLASize(VAT); 1977 1978 llvm::Value *size = numElts; 1979 1980 // Scale the number of non-VLA elements by the non-VLA element size. 1981 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 1982 if (!eltSize.isOne()) 1983 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 1984 1985 return size; 1986 } 1987 } 1988 1989 // If this isn't sizeof(vla), the result must be constant; use the constant 1990 // folding logic so we don't have to duplicate it here. 1991 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 1992 } 1993 1994 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 1995 Expr *Op = E->getSubExpr(); 1996 if (Op->getType()->isAnyComplexType()) { 1997 // If it's an l-value, load through the appropriate subobject l-value. 1998 // Note that we have to ask E because Op might be an l-value that 1999 // this won't work for, e.g. an Obj-C property. 2000 if (E->isGLValue()) 2001 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2002 E->getExprLoc()).getScalarVal(); 2003 2004 // Otherwise, calculate and project. 2005 return CGF.EmitComplexExpr(Op, false, true).first; 2006 } 2007 2008 return Visit(Op); 2009 } 2010 2011 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2012 Expr *Op = E->getSubExpr(); 2013 if (Op->getType()->isAnyComplexType()) { 2014 // If it's an l-value, load through the appropriate subobject l-value. 2015 // Note that we have to ask E because Op might be an l-value that 2016 // this won't work for, e.g. an Obj-C property. 2017 if (Op->isGLValue()) 2018 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2019 E->getExprLoc()).getScalarVal(); 2020 2021 // Otherwise, calculate and project. 2022 return CGF.EmitComplexExpr(Op, true, false).second; 2023 } 2024 2025 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2026 // effects are evaluated, but not the actual value. 2027 if (Op->isGLValue()) 2028 CGF.EmitLValue(Op); 2029 else 2030 CGF.EmitScalarExpr(Op, true); 2031 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2032 } 2033 2034 //===----------------------------------------------------------------------===// 2035 // Binary Operators 2036 //===----------------------------------------------------------------------===// 2037 2038 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2039 TestAndClearIgnoreResultAssign(); 2040 BinOpInfo Result; 2041 Result.LHS = Visit(E->getLHS()); 2042 Result.RHS = Visit(E->getRHS()); 2043 Result.Ty = E->getType(); 2044 Result.Opcode = E->getOpcode(); 2045 Result.FPContractable = E->isFPContractable(); 2046 Result.E = E; 2047 return Result; 2048 } 2049 2050 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2051 const CompoundAssignOperator *E, 2052 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2053 Value *&Result) { 2054 QualType LHSTy = E->getLHS()->getType(); 2055 BinOpInfo OpInfo; 2056 2057 if (E->getComputationResultType()->isAnyComplexType()) 2058 return CGF.EmitScalarCompooundAssignWithComplex(E, Result); 2059 2060 // Emit the RHS first. __block variables need to have the rhs evaluated 2061 // first, plus this should improve codegen a little. 2062 OpInfo.RHS = Visit(E->getRHS()); 2063 OpInfo.Ty = E->getComputationResultType(); 2064 OpInfo.Opcode = E->getOpcode(); 2065 OpInfo.FPContractable = false; 2066 OpInfo.E = E; 2067 // Load/convert the LHS. 2068 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2069 2070 llvm::PHINode *atomicPHI = nullptr; 2071 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2072 QualType type = atomicTy->getValueType(); 2073 if (!type->isBooleanType() && type->isIntegerType() && 2074 !(type->isUnsignedIntegerType() && 2075 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2076 CGF.getLangOpts().getSignedOverflowBehavior() != 2077 LangOptions::SOB_Trapping) { 2078 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2079 switch (OpInfo.Opcode) { 2080 // We don't have atomicrmw operands for *, %, /, <<, >> 2081 case BO_MulAssign: case BO_DivAssign: 2082 case BO_RemAssign: 2083 case BO_ShlAssign: 2084 case BO_ShrAssign: 2085 break; 2086 case BO_AddAssign: 2087 aop = llvm::AtomicRMWInst::Add; 2088 break; 2089 case BO_SubAssign: 2090 aop = llvm::AtomicRMWInst::Sub; 2091 break; 2092 case BO_AndAssign: 2093 aop = llvm::AtomicRMWInst::And; 2094 break; 2095 case BO_XorAssign: 2096 aop = llvm::AtomicRMWInst::Xor; 2097 break; 2098 case BO_OrAssign: 2099 aop = llvm::AtomicRMWInst::Or; 2100 break; 2101 default: 2102 llvm_unreachable("Invalid compound assignment type"); 2103 } 2104 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2105 llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS, 2106 E->getRHS()->getType(), LHSTy), LHSTy); 2107 Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt, 2108 llvm::SequentiallyConsistent); 2109 return LHSLV; 2110 } 2111 } 2112 // FIXME: For floating point types, we should be saving and restoring the 2113 // floating point environment in the loop. 2114 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2115 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2116 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2117 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2118 Builder.CreateBr(opBB); 2119 Builder.SetInsertPoint(opBB); 2120 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2121 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2122 OpInfo.LHS = atomicPHI; 2123 } 2124 else 2125 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2126 2127 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, 2128 E->getComputationLHSType()); 2129 2130 // Expand the binary operator. 2131 Result = (this->*Func)(OpInfo); 2132 2133 // Convert the result back to the LHS type. 2134 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy); 2135 2136 if (atomicPHI) { 2137 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2138 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2139 auto Pair = CGF.EmitAtomicCompareExchange( 2140 LHSLV, RValue::get(atomicPHI), 2141 RValue::get(CGF.EmitToMemory(Result, LHSTy)), E->getExprLoc()); 2142 llvm::Value *old = Pair.first.getScalarVal(); 2143 llvm::Value *success = Pair.second.getScalarVal(); 2144 atomicPHI->addIncoming(old, opBB); 2145 Builder.CreateCondBr(success, contBB, opBB); 2146 Builder.SetInsertPoint(contBB); 2147 return LHSLV; 2148 } 2149 2150 // Store the result value into the LHS lvalue. Bit-fields are handled 2151 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2152 // 'An assignment expression has the value of the left operand after the 2153 // assignment...'. 2154 if (LHSLV.isBitField()) 2155 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2156 else 2157 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2158 2159 return LHSLV; 2160 } 2161 2162 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2163 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2164 bool Ignore = TestAndClearIgnoreResultAssign(); 2165 Value *RHS; 2166 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2167 2168 // If the result is clearly ignored, return now. 2169 if (Ignore) 2170 return nullptr; 2171 2172 // The result of an assignment in C is the assigned r-value. 2173 if (!CGF.getLangOpts().CPlusPlus) 2174 return RHS; 2175 2176 // If the lvalue is non-volatile, return the computed value of the assignment. 2177 if (!LHS.isVolatileQualified()) 2178 return RHS; 2179 2180 // Otherwise, reload the value. 2181 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2182 } 2183 2184 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2185 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2186 SmallVector<std::pair<llvm::Value *, SanitizerKind>, 2> Checks; 2187 2188 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2189 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2190 SanitizerKind::IntegerDivideByZero)); 2191 } 2192 2193 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2194 Ops.Ty->hasSignedIntegerRepresentation()) { 2195 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2196 2197 llvm::Value *IntMin = 2198 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2199 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2200 2201 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2202 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2203 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2204 Checks.push_back( 2205 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2206 } 2207 2208 if (Checks.size() > 0) 2209 EmitBinOpCheck(Checks, Ops); 2210 } 2211 2212 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2213 { 2214 CodeGenFunction::SanitizerScope SanScope(&CGF); 2215 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2216 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2217 Ops.Ty->isIntegerType()) { 2218 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2219 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2220 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2221 Ops.Ty->isRealFloatingType()) { 2222 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2223 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2224 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2225 Ops); 2226 } 2227 } 2228 2229 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2230 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2231 if (CGF.getLangOpts().OpenCL) { 2232 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp 2233 llvm::Type *ValTy = Val->getType(); 2234 if (ValTy->isFloatTy() || 2235 (isa<llvm::VectorType>(ValTy) && 2236 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2237 CGF.SetFPAccuracy(Val, 2.5); 2238 } 2239 return Val; 2240 } 2241 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2242 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2243 else 2244 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2245 } 2246 2247 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2248 // Rem in C can't be a floating point type: C99 6.5.5p2. 2249 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2250 CodeGenFunction::SanitizerScope SanScope(&CGF); 2251 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2252 2253 if (Ops.Ty->isIntegerType()) 2254 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2255 } 2256 2257 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2258 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2259 else 2260 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2261 } 2262 2263 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2264 unsigned IID; 2265 unsigned OpID = 0; 2266 2267 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2268 switch (Ops.Opcode) { 2269 case BO_Add: 2270 case BO_AddAssign: 2271 OpID = 1; 2272 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2273 llvm::Intrinsic::uadd_with_overflow; 2274 break; 2275 case BO_Sub: 2276 case BO_SubAssign: 2277 OpID = 2; 2278 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2279 llvm::Intrinsic::usub_with_overflow; 2280 break; 2281 case BO_Mul: 2282 case BO_MulAssign: 2283 OpID = 3; 2284 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2285 llvm::Intrinsic::umul_with_overflow; 2286 break; 2287 default: 2288 llvm_unreachable("Unsupported operation for overflow detection"); 2289 } 2290 OpID <<= 1; 2291 if (isSigned) 2292 OpID |= 1; 2293 2294 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2295 2296 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2297 2298 Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS); 2299 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2300 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2301 2302 // Handle overflow with llvm.trap if no custom handler has been specified. 2303 const std::string *handlerName = 2304 &CGF.getLangOpts().OverflowHandler; 2305 if (handlerName->empty()) { 2306 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2307 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2308 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 2309 CodeGenFunction::SanitizerScope SanScope(&CGF); 2310 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 2311 SanitizerKind Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 2312 : SanitizerKind::UnsignedIntegerOverflow; 2313 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 2314 } else 2315 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2316 return result; 2317 } 2318 2319 // Branch in case of overflow. 2320 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2321 llvm::Function::iterator insertPt = initialBB; 2322 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn, 2323 std::next(insertPt)); 2324 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2325 2326 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2327 2328 // If an overflow handler is set, then we want to call it and then use its 2329 // result, if it returns. 2330 Builder.SetInsertPoint(overflowBB); 2331 2332 // Get the overflow handler. 2333 llvm::Type *Int8Ty = CGF.Int8Ty; 2334 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2335 llvm::FunctionType *handlerTy = 2336 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2337 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2338 2339 // Sign extend the args to 64-bit, so that we can use the same handler for 2340 // all types of overflow. 2341 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2342 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2343 2344 // Call the handler with the two arguments, the operation, and the size of 2345 // the result. 2346 llvm::Value *handlerArgs[] = { 2347 lhs, 2348 rhs, 2349 Builder.getInt8(OpID), 2350 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2351 }; 2352 llvm::Value *handlerResult = 2353 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2354 2355 // Truncate the result back to the desired size. 2356 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2357 Builder.CreateBr(continueBB); 2358 2359 Builder.SetInsertPoint(continueBB); 2360 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2361 phi->addIncoming(result, initialBB); 2362 phi->addIncoming(handlerResult, overflowBB); 2363 2364 return phi; 2365 } 2366 2367 /// Emit pointer + index arithmetic. 2368 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2369 const BinOpInfo &op, 2370 bool isSubtraction) { 2371 // Must have binary (not unary) expr here. Unary pointer 2372 // increment/decrement doesn't use this path. 2373 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2374 2375 Value *pointer = op.LHS; 2376 Expr *pointerOperand = expr->getLHS(); 2377 Value *index = op.RHS; 2378 Expr *indexOperand = expr->getRHS(); 2379 2380 // In a subtraction, the LHS is always the pointer. 2381 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2382 std::swap(pointer, index); 2383 std::swap(pointerOperand, indexOperand); 2384 } 2385 2386 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2387 if (width != CGF.PointerWidthInBits) { 2388 // Zero-extend or sign-extend the pointer value according to 2389 // whether the index is signed or not. 2390 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2391 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned, 2392 "idx.ext"); 2393 } 2394 2395 // If this is subtraction, negate the index. 2396 if (isSubtraction) 2397 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2398 2399 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 2400 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2401 /*Accessed*/ false); 2402 2403 const PointerType *pointerType 2404 = pointerOperand->getType()->getAs<PointerType>(); 2405 if (!pointerType) { 2406 QualType objectType = pointerOperand->getType() 2407 ->castAs<ObjCObjectPointerType>() 2408 ->getPointeeType(); 2409 llvm::Value *objectSize 2410 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2411 2412 index = CGF.Builder.CreateMul(index, objectSize); 2413 2414 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2415 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2416 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2417 } 2418 2419 QualType elementType = pointerType->getPointeeType(); 2420 if (const VariableArrayType *vla 2421 = CGF.getContext().getAsVariableArrayType(elementType)) { 2422 // The element count here is the total number of non-VLA elements. 2423 llvm::Value *numElements = CGF.getVLASize(vla).first; 2424 2425 // Effectively, the multiply by the VLA size is part of the GEP. 2426 // GEP indexes are signed, and scaling an index isn't permitted to 2427 // signed-overflow, so we use the same semantics for our explicit 2428 // multiply. We suppress this if overflow is not undefined behavior. 2429 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2430 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2431 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2432 } else { 2433 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2434 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2435 } 2436 return pointer; 2437 } 2438 2439 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2440 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2441 // future proof. 2442 if (elementType->isVoidType() || elementType->isFunctionType()) { 2443 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2444 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2445 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2446 } 2447 2448 if (CGF.getLangOpts().isSignedOverflowDefined()) 2449 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2450 2451 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2452 } 2453 2454 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2455 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2456 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2457 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2458 // efficient operations. 2459 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2460 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2461 bool negMul, bool negAdd) { 2462 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2463 2464 Value *MulOp0 = MulOp->getOperand(0); 2465 Value *MulOp1 = MulOp->getOperand(1); 2466 if (negMul) { 2467 MulOp0 = 2468 Builder.CreateFSub( 2469 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2470 "neg"); 2471 } else if (negAdd) { 2472 Addend = 2473 Builder.CreateFSub( 2474 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2475 "neg"); 2476 } 2477 2478 Value *FMulAdd = 2479 Builder.CreateCall3( 2480 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2481 MulOp0, MulOp1, Addend); 2482 MulOp->eraseFromParent(); 2483 2484 return FMulAdd; 2485 } 2486 2487 // Check whether it would be legal to emit an fmuladd intrinsic call to 2488 // represent op and if so, build the fmuladd. 2489 // 2490 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2491 // Does NOT check the type of the operation - it's assumed that this function 2492 // will be called from contexts where it's known that the type is contractable. 2493 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2494 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2495 bool isSub=false) { 2496 2497 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2498 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2499 "Only fadd/fsub can be the root of an fmuladd."); 2500 2501 // Check whether this op is marked as fusable. 2502 if (!op.FPContractable) 2503 return nullptr; 2504 2505 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is 2506 // either disabled, or handled entirely by the LLVM backend). 2507 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On) 2508 return nullptr; 2509 2510 // We have a potentially fusable op. Look for a mul on one of the operands. 2511 if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2512 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2513 assert(LHSBinOp->getNumUses() == 0 && 2514 "Operations with multiple uses shouldn't be contracted."); 2515 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2516 } 2517 } else if (llvm::BinaryOperator* RHSBinOp = 2518 dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2519 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2520 assert(RHSBinOp->getNumUses() == 0 && 2521 "Operations with multiple uses shouldn't be contracted."); 2522 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2523 } 2524 } 2525 2526 return nullptr; 2527 } 2528 2529 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2530 if (op.LHS->getType()->isPointerTy() || 2531 op.RHS->getType()->isPointerTy()) 2532 return emitPointerArithmetic(CGF, op, /*subtraction*/ false); 2533 2534 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2535 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2536 case LangOptions::SOB_Defined: 2537 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2538 case LangOptions::SOB_Undefined: 2539 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2540 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2541 // Fall through. 2542 case LangOptions::SOB_Trapping: 2543 return EmitOverflowCheckedBinOp(op); 2544 } 2545 } 2546 2547 if (op.Ty->isUnsignedIntegerType() && 2548 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2549 return EmitOverflowCheckedBinOp(op); 2550 2551 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2552 // Try to form an fmuladd. 2553 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2554 return FMulAdd; 2555 2556 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2557 } 2558 2559 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2560 } 2561 2562 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2563 // The LHS is always a pointer if either side is. 2564 if (!op.LHS->getType()->isPointerTy()) { 2565 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2566 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2567 case LangOptions::SOB_Defined: 2568 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2569 case LangOptions::SOB_Undefined: 2570 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2571 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2572 // Fall through. 2573 case LangOptions::SOB_Trapping: 2574 return EmitOverflowCheckedBinOp(op); 2575 } 2576 } 2577 2578 if (op.Ty->isUnsignedIntegerType() && 2579 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2580 return EmitOverflowCheckedBinOp(op); 2581 2582 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2583 // Try to form an fmuladd. 2584 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2585 return FMulAdd; 2586 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2587 } 2588 2589 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2590 } 2591 2592 // If the RHS is not a pointer, then we have normal pointer 2593 // arithmetic. 2594 if (!op.RHS->getType()->isPointerTy()) 2595 return emitPointerArithmetic(CGF, op, /*subtraction*/ true); 2596 2597 // Otherwise, this is a pointer subtraction. 2598 2599 // Do the raw subtraction part. 2600 llvm::Value *LHS 2601 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2602 llvm::Value *RHS 2603 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2604 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2605 2606 // Okay, figure out the element size. 2607 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2608 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2609 2610 llvm::Value *divisor = nullptr; 2611 2612 // For a variable-length array, this is going to be non-constant. 2613 if (const VariableArrayType *vla 2614 = CGF.getContext().getAsVariableArrayType(elementType)) { 2615 llvm::Value *numElements; 2616 std::tie(numElements, elementType) = CGF.getVLASize(vla); 2617 2618 divisor = numElements; 2619 2620 // Scale the number of non-VLA elements by the non-VLA element size. 2621 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2622 if (!eltSize.isOne()) 2623 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2624 2625 // For everything elese, we can just compute it, safe in the 2626 // assumption that Sema won't let anything through that we can't 2627 // safely compute the size of. 2628 } else { 2629 CharUnits elementSize; 2630 // Handle GCC extension for pointer arithmetic on void* and 2631 // function pointer types. 2632 if (elementType->isVoidType() || elementType->isFunctionType()) 2633 elementSize = CharUnits::One(); 2634 else 2635 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2636 2637 // Don't even emit the divide for element size of 1. 2638 if (elementSize.isOne()) 2639 return diffInChars; 2640 2641 divisor = CGF.CGM.getSize(elementSize); 2642 } 2643 2644 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2645 // pointer difference in C is only defined in the case where both operands 2646 // are pointing to elements of an array. 2647 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2648 } 2649 2650 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2651 llvm::IntegerType *Ty; 2652 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 2653 Ty = cast<llvm::IntegerType>(VT->getElementType()); 2654 else 2655 Ty = cast<llvm::IntegerType>(LHS->getType()); 2656 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 2657 } 2658 2659 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2660 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2661 // RHS to the same size as the LHS. 2662 Value *RHS = Ops.RHS; 2663 if (Ops.LHS->getType() != RHS->getType()) 2664 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2665 2666 if (CGF.SanOpts.has(SanitizerKind::Shift) && !CGF.getLangOpts().OpenCL && 2667 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2668 CodeGenFunction::SanitizerScope SanScope(&CGF); 2669 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS); 2670 llvm::Value *Valid = Builder.CreateICmpULE(RHS, WidthMinusOne); 2671 2672 if (Ops.Ty->hasSignedIntegerRepresentation()) { 2673 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 2674 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2675 llvm::BasicBlock *CheckBitsShifted = CGF.createBasicBlock("check"); 2676 Builder.CreateCondBr(Valid, CheckBitsShifted, Cont); 2677 2678 // Check whether we are shifting any non-zero bits off the top of the 2679 // integer. 2680 CGF.EmitBlock(CheckBitsShifted); 2681 llvm::Value *BitsShiftedOff = 2682 Builder.CreateLShr(Ops.LHS, 2683 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros", 2684 /*NUW*/true, /*NSW*/true), 2685 "shl.check"); 2686 if (CGF.getLangOpts().CPlusPlus) { 2687 // In C99, we are not permitted to shift a 1 bit into the sign bit. 2688 // Under C++11's rules, shifting a 1 bit into the sign bit is 2689 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 2690 // define signed left shifts, so we use the C99 and C++11 rules there). 2691 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 2692 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 2693 } 2694 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 2695 llvm::Value *SecondCheck = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 2696 CGF.EmitBlock(Cont); 2697 llvm::PHINode *P = Builder.CreatePHI(Valid->getType(), 2); 2698 P->addIncoming(Valid, Orig); 2699 P->addIncoming(SecondCheck, CheckBitsShifted); 2700 Valid = P; 2701 } 2702 2703 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::Shift), Ops); 2704 } 2705 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2706 if (CGF.getLangOpts().OpenCL) 2707 RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 2708 2709 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2710 } 2711 2712 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2713 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2714 // RHS to the same size as the LHS. 2715 Value *RHS = Ops.RHS; 2716 if (Ops.LHS->getType() != RHS->getType()) 2717 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2718 2719 if (CGF.SanOpts.has(SanitizerKind::Shift) && !CGF.getLangOpts().OpenCL && 2720 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2721 CodeGenFunction::SanitizerScope SanScope(&CGF); 2722 llvm::Value *Valid = 2723 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 2724 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::Shift), Ops); 2725 } 2726 2727 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2728 if (CGF.getLangOpts().OpenCL) 2729 RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 2730 2731 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2732 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 2733 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 2734 } 2735 2736 enum IntrinsicType { VCMPEQ, VCMPGT }; 2737 // return corresponding comparison intrinsic for given vector type 2738 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 2739 BuiltinType::Kind ElemKind) { 2740 switch (ElemKind) { 2741 default: llvm_unreachable("unexpected element type"); 2742 case BuiltinType::Char_U: 2743 case BuiltinType::UChar: 2744 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2745 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 2746 case BuiltinType::Char_S: 2747 case BuiltinType::SChar: 2748 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2749 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 2750 case BuiltinType::UShort: 2751 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2752 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 2753 case BuiltinType::Short: 2754 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2755 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 2756 case BuiltinType::UInt: 2757 case BuiltinType::ULong: 2758 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2759 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 2760 case BuiltinType::Int: 2761 case BuiltinType::Long: 2762 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2763 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 2764 case BuiltinType::Float: 2765 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 2766 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 2767 } 2768 } 2769 2770 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, 2771 unsigned SICmpOpc, unsigned FCmpOpc) { 2772 TestAndClearIgnoreResultAssign(); 2773 Value *Result; 2774 QualType LHSTy = E->getLHS()->getType(); 2775 QualType RHSTy = E->getRHS()->getType(); 2776 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 2777 assert(E->getOpcode() == BO_EQ || 2778 E->getOpcode() == BO_NE); 2779 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 2780 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 2781 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 2782 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 2783 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 2784 Value *LHS = Visit(E->getLHS()); 2785 Value *RHS = Visit(E->getRHS()); 2786 2787 // If AltiVec, the comparison results in a numeric type, so we use 2788 // intrinsics comparing vectors and giving 0 or 1 as a result 2789 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 2790 // constants for mapping CR6 register bits to predicate result 2791 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 2792 2793 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 2794 2795 // in several cases vector arguments order will be reversed 2796 Value *FirstVecArg = LHS, 2797 *SecondVecArg = RHS; 2798 2799 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 2800 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 2801 BuiltinType::Kind ElementKind = BTy->getKind(); 2802 2803 switch(E->getOpcode()) { 2804 default: llvm_unreachable("is not a comparison operation"); 2805 case BO_EQ: 2806 CR6 = CR6_LT; 2807 ID = GetIntrinsic(VCMPEQ, ElementKind); 2808 break; 2809 case BO_NE: 2810 CR6 = CR6_EQ; 2811 ID = GetIntrinsic(VCMPEQ, ElementKind); 2812 break; 2813 case BO_LT: 2814 CR6 = CR6_LT; 2815 ID = GetIntrinsic(VCMPGT, ElementKind); 2816 std::swap(FirstVecArg, SecondVecArg); 2817 break; 2818 case BO_GT: 2819 CR6 = CR6_LT; 2820 ID = GetIntrinsic(VCMPGT, ElementKind); 2821 break; 2822 case BO_LE: 2823 if (ElementKind == BuiltinType::Float) { 2824 CR6 = CR6_LT; 2825 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2826 std::swap(FirstVecArg, SecondVecArg); 2827 } 2828 else { 2829 CR6 = CR6_EQ; 2830 ID = GetIntrinsic(VCMPGT, ElementKind); 2831 } 2832 break; 2833 case BO_GE: 2834 if (ElementKind == BuiltinType::Float) { 2835 CR6 = CR6_LT; 2836 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2837 } 2838 else { 2839 CR6 = CR6_EQ; 2840 ID = GetIntrinsic(VCMPGT, ElementKind); 2841 std::swap(FirstVecArg, SecondVecArg); 2842 } 2843 break; 2844 } 2845 2846 Value *CR6Param = Builder.getInt32(CR6); 2847 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 2848 Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, ""); 2849 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2850 } 2851 2852 if (LHS->getType()->isFPOrFPVectorTy()) { 2853 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc, 2854 LHS, RHS, "cmp"); 2855 } else if (LHSTy->hasSignedIntegerRepresentation()) { 2856 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, 2857 LHS, RHS, "cmp"); 2858 } else { 2859 // Unsigned integers and pointers. 2860 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2861 LHS, RHS, "cmp"); 2862 } 2863 2864 // If this is a vector comparison, sign extend the result to the appropriate 2865 // vector integer type and return it (don't convert to bool). 2866 if (LHSTy->isVectorType()) 2867 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2868 2869 } else { 2870 // Complex Comparison: can only be an equality comparison. 2871 CodeGenFunction::ComplexPairTy LHS, RHS; 2872 QualType CETy; 2873 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 2874 LHS = CGF.EmitComplexExpr(E->getLHS()); 2875 CETy = CTy->getElementType(); 2876 } else { 2877 LHS.first = Visit(E->getLHS()); 2878 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 2879 CETy = LHSTy; 2880 } 2881 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 2882 RHS = CGF.EmitComplexExpr(E->getRHS()); 2883 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 2884 CTy->getElementType()) && 2885 "The element types must always match."); 2886 (void)CTy; 2887 } else { 2888 RHS.first = Visit(E->getRHS()); 2889 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 2890 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 2891 "The element types must always match."); 2892 } 2893 2894 Value *ResultR, *ResultI; 2895 if (CETy->isRealFloatingType()) { 2896 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2897 LHS.first, RHS.first, "cmp.r"); 2898 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2899 LHS.second, RHS.second, "cmp.i"); 2900 } else { 2901 // Complex comparisons can only be equality comparisons. As such, signed 2902 // and unsigned opcodes are the same. 2903 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2904 LHS.first, RHS.first, "cmp.r"); 2905 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2906 LHS.second, RHS.second, "cmp.i"); 2907 } 2908 2909 if (E->getOpcode() == BO_EQ) { 2910 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 2911 } else { 2912 assert(E->getOpcode() == BO_NE && 2913 "Complex comparison other than == or != ?"); 2914 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 2915 } 2916 } 2917 2918 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2919 } 2920 2921 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 2922 bool Ignore = TestAndClearIgnoreResultAssign(); 2923 2924 Value *RHS; 2925 LValue LHS; 2926 2927 switch (E->getLHS()->getType().getObjCLifetime()) { 2928 case Qualifiers::OCL_Strong: 2929 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 2930 break; 2931 2932 case Qualifiers::OCL_Autoreleasing: 2933 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 2934 break; 2935 2936 case Qualifiers::OCL_Weak: 2937 RHS = Visit(E->getRHS()); 2938 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2939 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 2940 break; 2941 2942 // No reason to do any of these differently. 2943 case Qualifiers::OCL_None: 2944 case Qualifiers::OCL_ExplicitNone: 2945 // __block variables need to have the rhs evaluated first, plus 2946 // this should improve codegen just a little. 2947 RHS = Visit(E->getRHS()); 2948 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2949 2950 // Store the value into the LHS. Bit-fields are handled specially 2951 // because the result is altered by the store, i.e., [C99 6.5.16p1] 2952 // 'An assignment expression has the value of the left operand after 2953 // the assignment...'. 2954 if (LHS.isBitField()) 2955 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 2956 else 2957 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 2958 } 2959 2960 // If the result is clearly ignored, return now. 2961 if (Ignore) 2962 return nullptr; 2963 2964 // The result of an assignment in C is the assigned r-value. 2965 if (!CGF.getLangOpts().CPlusPlus) 2966 return RHS; 2967 2968 // If the lvalue is non-volatile, return the computed value of the assignment. 2969 if (!LHS.isVolatileQualified()) 2970 return RHS; 2971 2972 // Otherwise, reload the value. 2973 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2974 } 2975 2976 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 2977 RegionCounter Cnt = CGF.getPGORegionCounter(E); 2978 2979 // Perform vector logical and on comparisons with zero vectors. 2980 if (E->getType()->isVectorType()) { 2981 Cnt.beginRegion(Builder); 2982 2983 Value *LHS = Visit(E->getLHS()); 2984 Value *RHS = Visit(E->getRHS()); 2985 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 2986 if (LHS->getType()->isFPOrFPVectorTy()) { 2987 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 2988 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 2989 } else { 2990 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 2991 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 2992 } 2993 Value *And = Builder.CreateAnd(LHS, RHS); 2994 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 2995 } 2996 2997 llvm::Type *ResTy = ConvertType(E->getType()); 2998 2999 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3000 // If we have 1 && X, just emit X without inserting the control flow. 3001 bool LHSCondVal; 3002 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3003 if (LHSCondVal) { // If we have 1 && X, just emit X. 3004 Cnt.beginRegion(Builder); 3005 3006 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3007 // ZExt result to int or bool. 3008 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3009 } 3010 3011 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3012 if (!CGF.ContainsLabel(E->getRHS())) 3013 return llvm::Constant::getNullValue(ResTy); 3014 } 3015 3016 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3017 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3018 3019 CodeGenFunction::ConditionalEvaluation eval(CGF); 3020 3021 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3022 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, Cnt.getCount()); 3023 3024 // Any edges into the ContBlock are now from an (indeterminate number of) 3025 // edges from this first condition. All of these values will be false. Start 3026 // setting up the PHI node in the Cont Block for this. 3027 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3028 "", ContBlock); 3029 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3030 PI != PE; ++PI) 3031 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3032 3033 eval.begin(CGF); 3034 CGF.EmitBlock(RHSBlock); 3035 Cnt.beginRegion(Builder); 3036 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3037 eval.end(CGF); 3038 3039 // Reaquire the RHS block, as there may be subblocks inserted. 3040 RHSBlock = Builder.GetInsertBlock(); 3041 3042 // Emit an unconditional branch from this block to ContBlock. 3043 { 3044 // There is no need to emit line number for unconditional branch. 3045 SuppressDebugLocation S(Builder); 3046 CGF.EmitBlock(ContBlock); 3047 } 3048 // Insert an entry into the phi node for the edge with the value of RHSCond. 3049 PN->addIncoming(RHSCond, RHSBlock); 3050 3051 // ZExt result to int. 3052 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3053 } 3054 3055 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3056 RegionCounter Cnt = CGF.getPGORegionCounter(E); 3057 3058 // Perform vector logical or on comparisons with zero vectors. 3059 if (E->getType()->isVectorType()) { 3060 Cnt.beginRegion(Builder); 3061 3062 Value *LHS = Visit(E->getLHS()); 3063 Value *RHS = Visit(E->getRHS()); 3064 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3065 if (LHS->getType()->isFPOrFPVectorTy()) { 3066 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3067 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3068 } else { 3069 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3070 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3071 } 3072 Value *Or = Builder.CreateOr(LHS, RHS); 3073 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3074 } 3075 3076 llvm::Type *ResTy = ConvertType(E->getType()); 3077 3078 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3079 // If we have 0 || X, just emit X without inserting the control flow. 3080 bool LHSCondVal; 3081 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3082 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3083 Cnt.beginRegion(Builder); 3084 3085 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3086 // ZExt result to int or bool. 3087 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3088 } 3089 3090 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3091 if (!CGF.ContainsLabel(E->getRHS())) 3092 return llvm::ConstantInt::get(ResTy, 1); 3093 } 3094 3095 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3096 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3097 3098 CodeGenFunction::ConditionalEvaluation eval(CGF); 3099 3100 // Branch on the LHS first. If it is true, go to the success (cont) block. 3101 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3102 Cnt.getParentCount() - Cnt.getCount()); 3103 3104 // Any edges into the ContBlock are now from an (indeterminate number of) 3105 // edges from this first condition. All of these values will be true. Start 3106 // setting up the PHI node in the Cont Block for this. 3107 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3108 "", ContBlock); 3109 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3110 PI != PE; ++PI) 3111 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3112 3113 eval.begin(CGF); 3114 3115 // Emit the RHS condition as a bool value. 3116 CGF.EmitBlock(RHSBlock); 3117 Cnt.beginRegion(Builder); 3118 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3119 3120 eval.end(CGF); 3121 3122 // Reaquire the RHS block, as there may be subblocks inserted. 3123 RHSBlock = Builder.GetInsertBlock(); 3124 3125 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3126 // into the phi node for the edge with the value of RHSCond. 3127 CGF.EmitBlock(ContBlock); 3128 PN->addIncoming(RHSCond, RHSBlock); 3129 3130 // ZExt result to int. 3131 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3132 } 3133 3134 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3135 CGF.EmitIgnoredExpr(E->getLHS()); 3136 CGF.EnsureInsertPoint(); 3137 return Visit(E->getRHS()); 3138 } 3139 3140 //===----------------------------------------------------------------------===// 3141 // Other Operators 3142 //===----------------------------------------------------------------------===// 3143 3144 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3145 /// expression is cheap enough and side-effect-free enough to evaluate 3146 /// unconditionally instead of conditionally. This is used to convert control 3147 /// flow into selects in some cases. 3148 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3149 CodeGenFunction &CGF) { 3150 // Anything that is an integer or floating point constant is fine. 3151 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3152 3153 // Even non-volatile automatic variables can't be evaluated unconditionally. 3154 // Referencing a thread_local may cause non-trivial initialization work to 3155 // occur. If we're inside a lambda and one of the variables is from the scope 3156 // outside the lambda, that function may have returned already. Reading its 3157 // locals is a bad idea. Also, these reads may introduce races there didn't 3158 // exist in the source-level program. 3159 } 3160 3161 3162 Value *ScalarExprEmitter:: 3163 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3164 TestAndClearIgnoreResultAssign(); 3165 3166 // Bind the common expression if necessary. 3167 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3168 RegionCounter Cnt = CGF.getPGORegionCounter(E); 3169 3170 Expr *condExpr = E->getCond(); 3171 Expr *lhsExpr = E->getTrueExpr(); 3172 Expr *rhsExpr = E->getFalseExpr(); 3173 3174 // If the condition constant folds and can be elided, try to avoid emitting 3175 // the condition and the dead arm. 3176 bool CondExprBool; 3177 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3178 Expr *live = lhsExpr, *dead = rhsExpr; 3179 if (!CondExprBool) std::swap(live, dead); 3180 3181 // If the dead side doesn't have labels we need, just emit the Live part. 3182 if (!CGF.ContainsLabel(dead)) { 3183 if (CondExprBool) 3184 Cnt.beginRegion(Builder); 3185 Value *Result = Visit(live); 3186 3187 // If the live part is a throw expression, it acts like it has a void 3188 // type, so evaluating it returns a null Value*. However, a conditional 3189 // with non-void type must return a non-null Value*. 3190 if (!Result && !E->getType()->isVoidType()) 3191 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3192 3193 return Result; 3194 } 3195 } 3196 3197 // OpenCL: If the condition is a vector, we can treat this condition like 3198 // the select function. 3199 if (CGF.getLangOpts().OpenCL 3200 && condExpr->getType()->isVectorType()) { 3201 Cnt.beginRegion(Builder); 3202 3203 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3204 llvm::Value *LHS = Visit(lhsExpr); 3205 llvm::Value *RHS = Visit(rhsExpr); 3206 3207 llvm::Type *condType = ConvertType(condExpr->getType()); 3208 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3209 3210 unsigned numElem = vecTy->getNumElements(); 3211 llvm::Type *elemType = vecTy->getElementType(); 3212 3213 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3214 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3215 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3216 llvm::VectorType::get(elemType, 3217 numElem), 3218 "sext"); 3219 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3220 3221 // Cast float to int to perform ANDs if necessary. 3222 llvm::Value *RHSTmp = RHS; 3223 llvm::Value *LHSTmp = LHS; 3224 bool wasCast = false; 3225 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3226 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3227 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3228 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3229 wasCast = true; 3230 } 3231 3232 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3233 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3234 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3235 if (wasCast) 3236 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3237 3238 return tmp5; 3239 } 3240 3241 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3242 // select instead of as control flow. We can only do this if it is cheap and 3243 // safe to evaluate the LHS and RHS unconditionally. 3244 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3245 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3246 Cnt.beginRegion(Builder); 3247 3248 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3249 llvm::Value *LHS = Visit(lhsExpr); 3250 llvm::Value *RHS = Visit(rhsExpr); 3251 if (!LHS) { 3252 // If the conditional has void type, make sure we return a null Value*. 3253 assert(!RHS && "LHS and RHS types must match"); 3254 return nullptr; 3255 } 3256 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3257 } 3258 3259 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3260 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3261 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3262 3263 CodeGenFunction::ConditionalEvaluation eval(CGF); 3264 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, Cnt.getCount()); 3265 3266 CGF.EmitBlock(LHSBlock); 3267 Cnt.beginRegion(Builder); 3268 eval.begin(CGF); 3269 Value *LHS = Visit(lhsExpr); 3270 eval.end(CGF); 3271 3272 LHSBlock = Builder.GetInsertBlock(); 3273 Builder.CreateBr(ContBlock); 3274 3275 CGF.EmitBlock(RHSBlock); 3276 eval.begin(CGF); 3277 Value *RHS = Visit(rhsExpr); 3278 eval.end(CGF); 3279 3280 RHSBlock = Builder.GetInsertBlock(); 3281 CGF.EmitBlock(ContBlock); 3282 3283 // If the LHS or RHS is a throw expression, it will be legitimately null. 3284 if (!LHS) 3285 return RHS; 3286 if (!RHS) 3287 return LHS; 3288 3289 // Create a PHI node for the real part. 3290 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3291 PN->addIncoming(LHS, LHSBlock); 3292 PN->addIncoming(RHS, RHSBlock); 3293 return PN; 3294 } 3295 3296 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3297 return Visit(E->getChosenSubExpr()); 3298 } 3299 3300 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3301 QualType Ty = VE->getType(); 3302 3303 if (Ty->isVariablyModifiedType()) 3304 CGF.EmitVariablyModifiedType(Ty); 3305 3306 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 3307 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 3308 llvm::Type *ArgTy = ConvertType(VE->getType()); 3309 3310 // If EmitVAArg fails, we fall back to the LLVM instruction. 3311 if (!ArgPtr) 3312 return Builder.CreateVAArg(ArgValue, ArgTy); 3313 3314 // FIXME Volatility. 3315 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 3316 3317 // If EmitVAArg promoted the type, we must truncate it. 3318 if (ArgTy != Val->getType()) 3319 Val = Builder.CreateTrunc(Val, ArgTy); 3320 3321 return Val; 3322 } 3323 3324 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3325 return CGF.EmitBlockLiteral(block); 3326 } 3327 3328 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3329 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3330 llvm::Type *DstTy = ConvertType(E->getType()); 3331 3332 // Going from vec4->vec3 or vec3->vec4 is a special case and requires 3333 // a shuffle vector instead of a bitcast. 3334 llvm::Type *SrcTy = Src->getType(); 3335 if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) { 3336 unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements(); 3337 unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements(); 3338 if ((numElementsDst == 3 && numElementsSrc == 4) 3339 || (numElementsDst == 4 && numElementsSrc == 3)) { 3340 3341 3342 // In the case of going from int4->float3, a bitcast is needed before 3343 // doing a shuffle. 3344 llvm::Type *srcElemTy = 3345 cast<llvm::VectorType>(SrcTy)->getElementType(); 3346 llvm::Type *dstElemTy = 3347 cast<llvm::VectorType>(DstTy)->getElementType(); 3348 3349 if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy()) 3350 || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) { 3351 // Create a float type of the same size as the source or destination. 3352 llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy, 3353 numElementsSrc); 3354 3355 Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast"); 3356 } 3357 3358 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3359 3360 SmallVector<llvm::Constant*, 3> Args; 3361 Args.push_back(Builder.getInt32(0)); 3362 Args.push_back(Builder.getInt32(1)); 3363 Args.push_back(Builder.getInt32(2)); 3364 3365 if (numElementsDst == 4) 3366 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3367 3368 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3369 3370 return Builder.CreateShuffleVector(Src, UnV, Mask, "astype"); 3371 } 3372 } 3373 3374 return Builder.CreateBitCast(Src, DstTy, "astype"); 3375 } 3376 3377 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3378 return CGF.EmitAtomicExpr(E).getScalarVal(); 3379 } 3380 3381 //===----------------------------------------------------------------------===// 3382 // Entry Point into this File 3383 //===----------------------------------------------------------------------===// 3384 3385 /// EmitScalarExpr - Emit the computation of the specified expression of scalar 3386 /// type, ignoring the result. 3387 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3388 assert(E && hasScalarEvaluationKind(E->getType()) && 3389 "Invalid scalar expression to emit"); 3390 3391 if (isa<CXXDefaultArgExpr>(E)) 3392 disableDebugInfo(); 3393 Value *V = ScalarExprEmitter(*this, IgnoreResultAssign) 3394 .Visit(const_cast<Expr*>(E)); 3395 if (isa<CXXDefaultArgExpr>(E)) 3396 enableDebugInfo(); 3397 return V; 3398 } 3399 3400 /// EmitScalarConversion - Emit a conversion from the specified type to the 3401 /// specified destination type, both of which are LLVM scalar types. 3402 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3403 QualType DstTy) { 3404 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3405 "Invalid scalar expression to emit"); 3406 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy); 3407 } 3408 3409 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 3410 /// type to the specified destination type, where the destination type is an 3411 /// LLVM scalar type. 3412 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3413 QualType SrcTy, 3414 QualType DstTy) { 3415 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3416 "Invalid complex -> scalar conversion"); 3417 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy, 3418 DstTy); 3419 } 3420 3421 3422 llvm::Value *CodeGenFunction:: 3423 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3424 bool isInc, bool isPre) { 3425 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3426 } 3427 3428 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3429 llvm::Value *V; 3430 // object->isa or (*object).isa 3431 // Generate code as for: *(Class*)object 3432 // build Class* type 3433 llvm::Type *ClassPtrTy = ConvertType(E->getType()); 3434 3435 Expr *BaseExpr = E->getBase(); 3436 if (BaseExpr->isRValue()) { 3437 V = CreateMemTemp(E->getType(), "resval"); 3438 llvm::Value *Src = EmitScalarExpr(BaseExpr); 3439 Builder.CreateStore(Src, V); 3440 V = ScalarExprEmitter(*this).EmitLoadOfLValue( 3441 MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc()); 3442 } else { 3443 if (E->isArrow()) 3444 V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr); 3445 else 3446 V = EmitLValue(BaseExpr).getAddress(); 3447 } 3448 3449 // build Class* type 3450 ClassPtrTy = ClassPtrTy->getPointerTo(); 3451 V = Builder.CreateBitCast(V, ClassPtrTy); 3452 return MakeNaturalAlignAddrLValue(V, E->getType()); 3453 } 3454 3455 3456 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3457 const CompoundAssignOperator *E) { 3458 ScalarExprEmitter Scalar(*this); 3459 Value *Result = nullptr; 3460 switch (E->getOpcode()) { 3461 #define COMPOUND_OP(Op) \ 3462 case BO_##Op##Assign: \ 3463 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3464 Result) 3465 COMPOUND_OP(Mul); 3466 COMPOUND_OP(Div); 3467 COMPOUND_OP(Rem); 3468 COMPOUND_OP(Add); 3469 COMPOUND_OP(Sub); 3470 COMPOUND_OP(Shl); 3471 COMPOUND_OP(Shr); 3472 COMPOUND_OP(And); 3473 COMPOUND_OP(Xor); 3474 COMPOUND_OP(Or); 3475 #undef COMPOUND_OP 3476 3477 case BO_PtrMemD: 3478 case BO_PtrMemI: 3479 case BO_Mul: 3480 case BO_Div: 3481 case BO_Rem: 3482 case BO_Add: 3483 case BO_Sub: 3484 case BO_Shl: 3485 case BO_Shr: 3486 case BO_LT: 3487 case BO_GT: 3488 case BO_LE: 3489 case BO_GE: 3490 case BO_EQ: 3491 case BO_NE: 3492 case BO_And: 3493 case BO_Xor: 3494 case BO_Or: 3495 case BO_LAnd: 3496 case BO_LOr: 3497 case BO_Assign: 3498 case BO_Comma: 3499 llvm_unreachable("Not valid compound assignment operators"); 3500 } 3501 3502 llvm_unreachable("Unhandled compound assignment operator"); 3503 } 3504