1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalVariable.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/Module.h" 32 #include <cstdarg> 33 34 using namespace clang; 35 using namespace CodeGen; 36 using llvm::Value; 37 38 //===----------------------------------------------------------------------===// 39 // Scalar Expression Emitter 40 //===----------------------------------------------------------------------===// 41 42 namespace { 43 struct BinOpInfo { 44 Value *LHS; 45 Value *RHS; 46 QualType Ty; // Computation Type. 47 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 48 bool FPContractable; 49 const Expr *E; // Entire expr, for error unsupported. May not be binop. 50 }; 51 52 static bool MustVisitNullValue(const Expr *E) { 53 // If a null pointer expression's type is the C++0x nullptr_t, then 54 // it's not necessarily a simple constant and it must be evaluated 55 // for its potential side effects. 56 return E->getType()->isNullPtrType(); 57 } 58 59 class ScalarExprEmitter 60 : public StmtVisitor<ScalarExprEmitter, Value*> { 61 CodeGenFunction &CGF; 62 CGBuilderTy &Builder; 63 bool IgnoreResultAssign; 64 llvm::LLVMContext &VMContext; 65 public: 66 67 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 68 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 69 VMContext(cgf.getLLVMContext()) { 70 } 71 72 //===--------------------------------------------------------------------===// 73 // Utilities 74 //===--------------------------------------------------------------------===// 75 76 bool TestAndClearIgnoreResultAssign() { 77 bool I = IgnoreResultAssign; 78 IgnoreResultAssign = false; 79 return I; 80 } 81 82 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 83 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 84 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 85 return CGF.EmitCheckedLValue(E, TCK); 86 } 87 88 void EmitBinOpCheck(Value *Check, const BinOpInfo &Info); 89 90 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 91 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 92 } 93 94 /// EmitLoadOfLValue - Given an expression with complex type that represents a 95 /// value l-value, this method emits the address of the l-value, then loads 96 /// and returns the result. 97 Value *EmitLoadOfLValue(const Expr *E) { 98 return EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 99 E->getExprLoc()); 100 } 101 102 /// EmitConversionToBool - Convert the specified expression value to a 103 /// boolean (i1) truth value. This is equivalent to "Val != 0". 104 Value *EmitConversionToBool(Value *Src, QualType DstTy); 105 106 /// \brief Emit a check that a conversion to or from a floating-point type 107 /// does not overflow. 108 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 109 Value *Src, QualType SrcType, 110 QualType DstType, llvm::Type *DstTy); 111 112 /// EmitScalarConversion - Emit a conversion from the specified type to the 113 /// specified destination type, both of which are LLVM scalar types. 114 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy); 115 116 /// EmitComplexToScalarConversion - Emit a conversion from the specified 117 /// complex type to the specified destination type, where the destination type 118 /// is an LLVM scalar type. 119 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 120 QualType SrcTy, QualType DstTy); 121 122 /// EmitNullValue - Emit a value that corresponds to null for the given type. 123 Value *EmitNullValue(QualType Ty); 124 125 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 126 Value *EmitFloatToBoolConversion(Value *V) { 127 // Compare against 0.0 for fp scalars. 128 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 129 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 130 } 131 132 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 133 Value *EmitPointerToBoolConversion(Value *V) { 134 Value *Zero = llvm::ConstantPointerNull::get( 135 cast<llvm::PointerType>(V->getType())); 136 return Builder.CreateICmpNE(V, Zero, "tobool"); 137 } 138 139 Value *EmitIntToBoolConversion(Value *V) { 140 // Because of the type rules of C, we often end up computing a 141 // logical value, then zero extending it to int, then wanting it 142 // as a logical value again. Optimize this common case. 143 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 144 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 145 Value *Result = ZI->getOperand(0); 146 // If there aren't any more uses, zap the instruction to save space. 147 // Note that there can be more uses, for example if this 148 // is the result of an assignment. 149 if (ZI->use_empty()) 150 ZI->eraseFromParent(); 151 return Result; 152 } 153 } 154 155 return Builder.CreateIsNotNull(V, "tobool"); 156 } 157 158 //===--------------------------------------------------------------------===// 159 // Visitor Methods 160 //===--------------------------------------------------------------------===// 161 162 Value *Visit(Expr *E) { 163 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 164 } 165 166 Value *VisitStmt(Stmt *S) { 167 S->dump(CGF.getContext().getSourceManager()); 168 llvm_unreachable("Stmt can't have complex result type!"); 169 } 170 Value *VisitExpr(Expr *S); 171 172 Value *VisitParenExpr(ParenExpr *PE) { 173 return Visit(PE->getSubExpr()); 174 } 175 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 176 return Visit(E->getReplacement()); 177 } 178 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 179 return Visit(GE->getResultExpr()); 180 } 181 182 // Leaves. 183 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 184 return Builder.getInt(E->getValue()); 185 } 186 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 187 return llvm::ConstantFP::get(VMContext, E->getValue()); 188 } 189 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 190 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 191 } 192 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 193 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 194 } 195 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 196 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 197 } 198 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 199 return EmitNullValue(E->getType()); 200 } 201 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 202 return EmitNullValue(E->getType()); 203 } 204 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 205 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 206 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 207 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 208 return Builder.CreateBitCast(V, ConvertType(E->getType())); 209 } 210 211 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 212 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 213 } 214 215 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 216 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 217 } 218 219 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 220 if (E->isGLValue()) 221 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 222 223 // Otherwise, assume the mapping is the scalar directly. 224 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 225 } 226 227 // l-values. 228 Value *VisitDeclRefExpr(DeclRefExpr *E) { 229 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 230 if (result.isReference()) 231 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 232 E->getExprLoc()); 233 return result.getValue(); 234 } 235 return EmitLoadOfLValue(E); 236 } 237 238 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 239 return CGF.EmitObjCSelectorExpr(E); 240 } 241 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 242 return CGF.EmitObjCProtocolExpr(E); 243 } 244 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 245 return EmitLoadOfLValue(E); 246 } 247 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 248 if (E->getMethodDecl() && 249 E->getMethodDecl()->getReturnType()->isReferenceType()) 250 return EmitLoadOfLValue(E); 251 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 252 } 253 254 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 255 LValue LV = CGF.EmitObjCIsaExpr(E); 256 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 257 return V; 258 } 259 260 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 261 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 262 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 263 Value *VisitMemberExpr(MemberExpr *E); 264 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 265 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 266 return EmitLoadOfLValue(E); 267 } 268 269 Value *VisitInitListExpr(InitListExpr *E); 270 271 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 272 return EmitNullValue(E->getType()); 273 } 274 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 275 if (E->getType()->isVariablyModifiedType()) 276 CGF.EmitVariablyModifiedType(E->getType()); 277 return VisitCastExpr(E); 278 } 279 Value *VisitCastExpr(CastExpr *E); 280 281 Value *VisitCallExpr(const CallExpr *E) { 282 if (E->getCallReturnType()->isReferenceType()) 283 return EmitLoadOfLValue(E); 284 285 return CGF.EmitCallExpr(E).getScalarVal(); 286 } 287 288 Value *VisitStmtExpr(const StmtExpr *E); 289 290 // Unary Operators. 291 Value *VisitUnaryPostDec(const UnaryOperator *E) { 292 LValue LV = EmitLValue(E->getSubExpr()); 293 return EmitScalarPrePostIncDec(E, LV, false, false); 294 } 295 Value *VisitUnaryPostInc(const UnaryOperator *E) { 296 LValue LV = EmitLValue(E->getSubExpr()); 297 return EmitScalarPrePostIncDec(E, LV, true, false); 298 } 299 Value *VisitUnaryPreDec(const UnaryOperator *E) { 300 LValue LV = EmitLValue(E->getSubExpr()); 301 return EmitScalarPrePostIncDec(E, LV, false, true); 302 } 303 Value *VisitUnaryPreInc(const UnaryOperator *E) { 304 LValue LV = EmitLValue(E->getSubExpr()); 305 return EmitScalarPrePostIncDec(E, LV, true, true); 306 } 307 308 llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 309 llvm::Value *InVal, 310 llvm::Value *NextVal, 311 bool IsInc); 312 313 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 314 bool isInc, bool isPre); 315 316 317 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 318 if (isa<MemberPointerType>(E->getType())) // never sugared 319 return CGF.CGM.getMemberPointerConstant(E); 320 321 return EmitLValue(E->getSubExpr()).getAddress(); 322 } 323 Value *VisitUnaryDeref(const UnaryOperator *E) { 324 if (E->getType()->isVoidType()) 325 return Visit(E->getSubExpr()); // the actual value should be unused 326 return EmitLoadOfLValue(E); 327 } 328 Value *VisitUnaryPlus(const UnaryOperator *E) { 329 // This differs from gcc, though, most likely due to a bug in gcc. 330 TestAndClearIgnoreResultAssign(); 331 return Visit(E->getSubExpr()); 332 } 333 Value *VisitUnaryMinus (const UnaryOperator *E); 334 Value *VisitUnaryNot (const UnaryOperator *E); 335 Value *VisitUnaryLNot (const UnaryOperator *E); 336 Value *VisitUnaryReal (const UnaryOperator *E); 337 Value *VisitUnaryImag (const UnaryOperator *E); 338 Value *VisitUnaryExtension(const UnaryOperator *E) { 339 return Visit(E->getSubExpr()); 340 } 341 342 // C++ 343 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 344 return EmitLoadOfLValue(E); 345 } 346 347 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 348 return Visit(DAE->getExpr()); 349 } 350 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 351 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 352 return Visit(DIE->getExpr()); 353 } 354 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 355 return CGF.LoadCXXThis(); 356 } 357 358 Value *VisitExprWithCleanups(ExprWithCleanups *E) { 359 CGF.enterFullExpression(E); 360 CodeGenFunction::RunCleanupsScope Scope(CGF); 361 return Visit(E->getSubExpr()); 362 } 363 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 364 return CGF.EmitCXXNewExpr(E); 365 } 366 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 367 CGF.EmitCXXDeleteExpr(E); 368 return nullptr; 369 } 370 371 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 372 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 373 } 374 375 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 376 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 377 } 378 379 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 380 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 381 } 382 383 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 384 // C++ [expr.pseudo]p1: 385 // The result shall only be used as the operand for the function call 386 // operator (), and the result of such a call has type void. The only 387 // effect is the evaluation of the postfix-expression before the dot or 388 // arrow. 389 CGF.EmitScalarExpr(E->getBase()); 390 return nullptr; 391 } 392 393 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 394 return EmitNullValue(E->getType()); 395 } 396 397 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 398 CGF.EmitCXXThrowExpr(E); 399 return nullptr; 400 } 401 402 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 403 return Builder.getInt1(E->getValue()); 404 } 405 406 // Binary Operators. 407 Value *EmitMul(const BinOpInfo &Ops) { 408 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 409 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 410 case LangOptions::SOB_Defined: 411 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 412 case LangOptions::SOB_Undefined: 413 if (!CGF.SanOpts->SignedIntegerOverflow) 414 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 415 // Fall through. 416 case LangOptions::SOB_Trapping: 417 return EmitOverflowCheckedBinOp(Ops); 418 } 419 } 420 421 if (Ops.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) 422 return EmitOverflowCheckedBinOp(Ops); 423 424 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 425 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 426 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 427 } 428 /// Create a binary op that checks for overflow. 429 /// Currently only supports +, - and *. 430 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 431 432 // Check for undefined division and modulus behaviors. 433 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 434 llvm::Value *Zero,bool isDiv); 435 // Common helper for getting how wide LHS of shift is. 436 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 437 Value *EmitDiv(const BinOpInfo &Ops); 438 Value *EmitRem(const BinOpInfo &Ops); 439 Value *EmitAdd(const BinOpInfo &Ops); 440 Value *EmitSub(const BinOpInfo &Ops); 441 Value *EmitShl(const BinOpInfo &Ops); 442 Value *EmitShr(const BinOpInfo &Ops); 443 Value *EmitAnd(const BinOpInfo &Ops) { 444 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 445 } 446 Value *EmitXor(const BinOpInfo &Ops) { 447 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 448 } 449 Value *EmitOr (const BinOpInfo &Ops) { 450 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 451 } 452 453 BinOpInfo EmitBinOps(const BinaryOperator *E); 454 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 455 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 456 Value *&Result); 457 458 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 459 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 460 461 // Binary operators and binary compound assignment operators. 462 #define HANDLEBINOP(OP) \ 463 Value *VisitBin ## OP(const BinaryOperator *E) { \ 464 return Emit ## OP(EmitBinOps(E)); \ 465 } \ 466 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 467 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 468 } 469 HANDLEBINOP(Mul) 470 HANDLEBINOP(Div) 471 HANDLEBINOP(Rem) 472 HANDLEBINOP(Add) 473 HANDLEBINOP(Sub) 474 HANDLEBINOP(Shl) 475 HANDLEBINOP(Shr) 476 HANDLEBINOP(And) 477 HANDLEBINOP(Xor) 478 HANDLEBINOP(Or) 479 #undef HANDLEBINOP 480 481 // Comparisons. 482 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, 483 unsigned SICmpOpc, unsigned FCmpOpc); 484 #define VISITCOMP(CODE, UI, SI, FP) \ 485 Value *VisitBin##CODE(const BinaryOperator *E) { \ 486 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 487 llvm::FCmpInst::FP); } 488 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 489 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 490 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 491 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 492 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 493 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 494 #undef VISITCOMP 495 496 Value *VisitBinAssign (const BinaryOperator *E); 497 498 Value *VisitBinLAnd (const BinaryOperator *E); 499 Value *VisitBinLOr (const BinaryOperator *E); 500 Value *VisitBinComma (const BinaryOperator *E); 501 502 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 503 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 504 505 // Other Operators. 506 Value *VisitBlockExpr(const BlockExpr *BE); 507 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 508 Value *VisitChooseExpr(ChooseExpr *CE); 509 Value *VisitVAArgExpr(VAArgExpr *VE); 510 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 511 return CGF.EmitObjCStringLiteral(E); 512 } 513 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 514 return CGF.EmitObjCBoxedExpr(E); 515 } 516 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 517 return CGF.EmitObjCArrayLiteral(E); 518 } 519 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 520 return CGF.EmitObjCDictionaryLiteral(E); 521 } 522 Value *VisitAsTypeExpr(AsTypeExpr *CE); 523 Value *VisitAtomicExpr(AtomicExpr *AE); 524 }; 525 } // end anonymous namespace. 526 527 //===----------------------------------------------------------------------===// 528 // Utilities 529 //===----------------------------------------------------------------------===// 530 531 /// EmitConversionToBool - Convert the specified expression value to a 532 /// boolean (i1) truth value. This is equivalent to "Val != 0". 533 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 534 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 535 536 if (SrcType->isRealFloatingType()) 537 return EmitFloatToBoolConversion(Src); 538 539 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 540 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 541 542 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 543 "Unknown scalar type to convert"); 544 545 if (isa<llvm::IntegerType>(Src->getType())) 546 return EmitIntToBoolConversion(Src); 547 548 assert(isa<llvm::PointerType>(Src->getType())); 549 return EmitPointerToBoolConversion(Src); 550 } 551 552 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc, 553 QualType OrigSrcType, 554 Value *Src, QualType SrcType, 555 QualType DstType, 556 llvm::Type *DstTy) { 557 using llvm::APFloat; 558 using llvm::APSInt; 559 560 llvm::Type *SrcTy = Src->getType(); 561 562 llvm::Value *Check = nullptr; 563 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 564 // Integer to floating-point. This can fail for unsigned short -> __half 565 // or unsigned __int128 -> float. 566 assert(DstType->isFloatingType()); 567 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 568 569 APFloat LargestFloat = 570 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 571 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 572 573 bool IsExact; 574 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 575 &IsExact) != APFloat::opOK) 576 // The range of representable values of this floating point type includes 577 // all values of this integer type. Don't need an overflow check. 578 return; 579 580 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 581 if (SrcIsUnsigned) 582 Check = Builder.CreateICmpULE(Src, Max); 583 else { 584 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 585 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 586 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 587 Check = Builder.CreateAnd(GE, LE); 588 } 589 } else { 590 const llvm::fltSemantics &SrcSema = 591 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 592 if (isa<llvm::IntegerType>(DstTy)) { 593 // Floating-point to integer. This has undefined behavior if the source is 594 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 595 // to an integer). 596 unsigned Width = CGF.getContext().getIntWidth(DstType); 597 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 598 599 APSInt Min = APSInt::getMinValue(Width, Unsigned); 600 APFloat MinSrc(SrcSema, APFloat::uninitialized); 601 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 602 APFloat::opOverflow) 603 // Don't need an overflow check for lower bound. Just check for 604 // -Inf/NaN. 605 MinSrc = APFloat::getInf(SrcSema, true); 606 else 607 // Find the largest value which is too small to represent (before 608 // truncation toward zero). 609 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 610 611 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 612 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 613 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 614 APFloat::opOverflow) 615 // Don't need an overflow check for upper bound. Just check for 616 // +Inf/NaN. 617 MaxSrc = APFloat::getInf(SrcSema, false); 618 else 619 // Find the smallest value which is too large to represent (before 620 // truncation toward zero). 621 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 622 623 // If we're converting from __half, convert the range to float to match 624 // the type of src. 625 if (OrigSrcType->isHalfType()) { 626 const llvm::fltSemantics &Sema = 627 CGF.getContext().getFloatTypeSemantics(SrcType); 628 bool IsInexact; 629 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 630 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 631 } 632 633 llvm::Value *GE = 634 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 635 llvm::Value *LE = 636 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 637 Check = Builder.CreateAnd(GE, LE); 638 } else { 639 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 640 // 641 // Floating-point to floating-point. This has undefined behavior if the 642 // source is not in the range of representable values of the destination 643 // type. The C and C++ standards are spectacularly unclear here. We 644 // diagnose finite out-of-range conversions, but allow infinities and NaNs 645 // to convert to the corresponding value in the smaller type. 646 // 647 // C11 Annex F gives all such conversions defined behavior for IEC 60559 648 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 649 // does not. 650 651 // Converting from a lower rank to a higher rank can never have 652 // undefined behavior, since higher-rank types must have a superset 653 // of values of lower-rank types. 654 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 655 return; 656 657 assert(!OrigSrcType->isHalfType() && 658 "should not check conversion from __half, it has the lowest rank"); 659 660 const llvm::fltSemantics &DstSema = 661 CGF.getContext().getFloatTypeSemantics(DstType); 662 APFloat MinBad = APFloat::getLargest(DstSema, false); 663 APFloat MaxBad = APFloat::getInf(DstSema, false); 664 665 bool IsInexact; 666 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 667 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 668 669 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 670 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 671 llvm::Value *GE = 672 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 673 llvm::Value *LE = 674 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 675 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 676 } 677 } 678 679 // FIXME: Provide a SourceLocation. 680 llvm::Constant *StaticArgs[] = { 681 CGF.EmitCheckTypeDescriptor(OrigSrcType), 682 CGF.EmitCheckTypeDescriptor(DstType) 683 }; 684 CGF.EmitCheck(Check, "float_cast_overflow", StaticArgs, OrigSrc, 685 CodeGenFunction::CRK_Recoverable); 686 } 687 688 /// EmitScalarConversion - Emit a conversion from the specified type to the 689 /// specified destination type, both of which are LLVM scalar types. 690 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 691 QualType DstType) { 692 SrcType = CGF.getContext().getCanonicalType(SrcType); 693 DstType = CGF.getContext().getCanonicalType(DstType); 694 if (SrcType == DstType) return Src; 695 696 if (DstType->isVoidType()) return nullptr; 697 698 llvm::Value *OrigSrc = Src; 699 QualType OrigSrcType = SrcType; 700 llvm::Type *SrcTy = Src->getType(); 701 702 // If casting to/from storage-only half FP, use special intrinsics. 703 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 704 Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src); 705 SrcType = CGF.getContext().FloatTy; 706 SrcTy = CGF.FloatTy; 707 } 708 709 // Handle conversions to bool first, they are special: comparisons against 0. 710 if (DstType->isBooleanType()) 711 return EmitConversionToBool(Src, SrcType); 712 713 llvm::Type *DstTy = ConvertType(DstType); 714 715 // Ignore conversions like int -> uint. 716 if (SrcTy == DstTy) 717 return Src; 718 719 // Handle pointer conversions next: pointers can only be converted to/from 720 // other pointers and integers. Check for pointer types in terms of LLVM, as 721 // some native types (like Obj-C id) may map to a pointer type. 722 if (isa<llvm::PointerType>(DstTy)) { 723 // The source value may be an integer, or a pointer. 724 if (isa<llvm::PointerType>(SrcTy)) 725 return Builder.CreateBitCast(Src, DstTy, "conv"); 726 727 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 728 // First, convert to the correct width so that we control the kind of 729 // extension. 730 llvm::Type *MiddleTy = CGF.IntPtrTy; 731 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 732 llvm::Value* IntResult = 733 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 734 // Then, cast to pointer. 735 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 736 } 737 738 if (isa<llvm::PointerType>(SrcTy)) { 739 // Must be an ptr to int cast. 740 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 741 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 742 } 743 744 // A scalar can be splatted to an extended vector of the same element type 745 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 746 // Cast the scalar to element type 747 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType(); 748 llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy); 749 750 // Splat the element across to all elements 751 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 752 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 753 } 754 755 // Allow bitcast from vector to integer/fp of the same size. 756 if (isa<llvm::VectorType>(SrcTy) || 757 isa<llvm::VectorType>(DstTy)) 758 return Builder.CreateBitCast(Src, DstTy, "conv"); 759 760 // Finally, we have the arithmetic types: real int/float. 761 Value *Res = nullptr; 762 llvm::Type *ResTy = DstTy; 763 764 // An overflowing conversion has undefined behavior if either the source type 765 // or the destination type is a floating-point type. 766 if (CGF.SanOpts->FloatCastOverflow && 767 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 768 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, 769 DstTy); 770 771 // Cast to half via float 772 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) 773 DstTy = CGF.FloatTy; 774 775 if (isa<llvm::IntegerType>(SrcTy)) { 776 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 777 if (isa<llvm::IntegerType>(DstTy)) 778 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 779 else if (InputSigned) 780 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 781 else 782 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 783 } else if (isa<llvm::IntegerType>(DstTy)) { 784 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 785 if (DstType->isSignedIntegerOrEnumerationType()) 786 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 787 else 788 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 789 } else { 790 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 791 "Unknown real conversion"); 792 if (DstTy->getTypeID() < SrcTy->getTypeID()) 793 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 794 else 795 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 796 } 797 798 if (DstTy != ResTy) { 799 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 800 Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res); 801 } 802 803 return Res; 804 } 805 806 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 807 /// type to the specified destination type, where the destination type is an 808 /// LLVM scalar type. 809 Value *ScalarExprEmitter:: 810 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 811 QualType SrcTy, QualType DstTy) { 812 // Get the source element type. 813 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 814 815 // Handle conversions to bool first, they are special: comparisons against 0. 816 if (DstTy->isBooleanType()) { 817 // Complex != 0 -> (Real != 0) | (Imag != 0) 818 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy); 819 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy); 820 return Builder.CreateOr(Src.first, Src.second, "tobool"); 821 } 822 823 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 824 // the imaginary part of the complex value is discarded and the value of the 825 // real part is converted according to the conversion rules for the 826 // corresponding real type. 827 return EmitScalarConversion(Src.first, SrcTy, DstTy); 828 } 829 830 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 831 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 832 } 833 834 /// \brief Emit a sanitization check for the given "binary" operation (which 835 /// might actually be a unary increment which has been lowered to a binary 836 /// operation). The check passes if \p Check, which is an \c i1, is \c true. 837 void ScalarExprEmitter::EmitBinOpCheck(Value *Check, const BinOpInfo &Info) { 838 StringRef CheckName; 839 SmallVector<llvm::Constant *, 4> StaticData; 840 SmallVector<llvm::Value *, 2> DynamicData; 841 842 BinaryOperatorKind Opcode = Info.Opcode; 843 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 844 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 845 846 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 847 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 848 if (UO && UO->getOpcode() == UO_Minus) { 849 CheckName = "negate_overflow"; 850 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 851 DynamicData.push_back(Info.RHS); 852 } else { 853 if (BinaryOperator::isShiftOp(Opcode)) { 854 // Shift LHS negative or too large, or RHS out of bounds. 855 CheckName = "shift_out_of_bounds"; 856 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 857 StaticData.push_back( 858 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 859 StaticData.push_back( 860 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 861 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 862 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 863 CheckName = "divrem_overflow"; 864 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 865 } else { 866 // Signed arithmetic overflow (+, -, *). 867 switch (Opcode) { 868 case BO_Add: CheckName = "add_overflow"; break; 869 case BO_Sub: CheckName = "sub_overflow"; break; 870 case BO_Mul: CheckName = "mul_overflow"; break; 871 default: llvm_unreachable("unexpected opcode for bin op check"); 872 } 873 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 874 } 875 DynamicData.push_back(Info.LHS); 876 DynamicData.push_back(Info.RHS); 877 } 878 879 CGF.EmitCheck(Check, CheckName, StaticData, DynamicData, 880 CodeGenFunction::CRK_Recoverable); 881 } 882 883 //===----------------------------------------------------------------------===// 884 // Visitor Methods 885 //===----------------------------------------------------------------------===// 886 887 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 888 CGF.ErrorUnsupported(E, "scalar expression"); 889 if (E->getType()->isVoidType()) 890 return nullptr; 891 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 892 } 893 894 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 895 // Vector Mask Case 896 if (E->getNumSubExprs() == 2 || 897 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) { 898 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 899 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 900 Value *Mask; 901 902 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 903 unsigned LHSElts = LTy->getNumElements(); 904 905 if (E->getNumSubExprs() == 3) { 906 Mask = CGF.EmitScalarExpr(E->getExpr(2)); 907 908 // Shuffle LHS & RHS into one input vector. 909 SmallVector<llvm::Constant*, 32> concat; 910 for (unsigned i = 0; i != LHSElts; ++i) { 911 concat.push_back(Builder.getInt32(2*i)); 912 concat.push_back(Builder.getInt32(2*i+1)); 913 } 914 915 Value* CV = llvm::ConstantVector::get(concat); 916 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat"); 917 LHSElts *= 2; 918 } else { 919 Mask = RHS; 920 } 921 922 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 923 llvm::Constant* EltMask; 924 925 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 926 llvm::NextPowerOf2(LHSElts-1)-1); 927 928 // Mask off the high bits of each shuffle index. 929 Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(), 930 EltMask); 931 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 932 933 // newv = undef 934 // mask = mask & maskbits 935 // for each elt 936 // n = extract mask i 937 // x = extract val n 938 // newv = insert newv, x, i 939 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 940 MTy->getNumElements()); 941 Value* NewV = llvm::UndefValue::get(RTy); 942 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 943 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 944 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 945 946 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 947 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 948 } 949 return NewV; 950 } 951 952 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 953 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 954 955 SmallVector<llvm::Constant*, 32> indices; 956 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 957 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 958 // Check for -1 and output it as undef in the IR. 959 if (Idx.isSigned() && Idx.isAllOnesValue()) 960 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 961 else 962 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 963 } 964 965 Value *SV = llvm::ConstantVector::get(indices); 966 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 967 } 968 969 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 970 QualType SrcType = E->getSrcExpr()->getType(), 971 DstType = E->getType(); 972 973 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 974 975 SrcType = CGF.getContext().getCanonicalType(SrcType); 976 DstType = CGF.getContext().getCanonicalType(DstType); 977 if (SrcType == DstType) return Src; 978 979 assert(SrcType->isVectorType() && 980 "ConvertVector source type must be a vector"); 981 assert(DstType->isVectorType() && 982 "ConvertVector destination type must be a vector"); 983 984 llvm::Type *SrcTy = Src->getType(); 985 llvm::Type *DstTy = ConvertType(DstType); 986 987 // Ignore conversions like int -> uint. 988 if (SrcTy == DstTy) 989 return Src; 990 991 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 992 DstEltType = DstType->getAs<VectorType>()->getElementType(); 993 994 assert(SrcTy->isVectorTy() && 995 "ConvertVector source IR type must be a vector"); 996 assert(DstTy->isVectorTy() && 997 "ConvertVector destination IR type must be a vector"); 998 999 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1000 *DstEltTy = DstTy->getVectorElementType(); 1001 1002 if (DstEltType->isBooleanType()) { 1003 assert((SrcEltTy->isFloatingPointTy() || 1004 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1005 1006 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1007 if (SrcEltTy->isFloatingPointTy()) { 1008 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1009 } else { 1010 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1011 } 1012 } 1013 1014 // We have the arithmetic types: real int/float. 1015 Value *Res = nullptr; 1016 1017 if (isa<llvm::IntegerType>(SrcEltTy)) { 1018 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1019 if (isa<llvm::IntegerType>(DstEltTy)) 1020 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1021 else if (InputSigned) 1022 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1023 else 1024 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1025 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1026 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1027 if (DstEltType->isSignedIntegerOrEnumerationType()) 1028 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1029 else 1030 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1031 } else { 1032 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1033 "Unknown real conversion"); 1034 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1035 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1036 else 1037 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1038 } 1039 1040 return Res; 1041 } 1042 1043 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1044 llvm::APSInt Value; 1045 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1046 if (E->isArrow()) 1047 CGF.EmitScalarExpr(E->getBase()); 1048 else 1049 EmitLValue(E->getBase()); 1050 return Builder.getInt(Value); 1051 } 1052 1053 return EmitLoadOfLValue(E); 1054 } 1055 1056 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1057 TestAndClearIgnoreResultAssign(); 1058 1059 // Emit subscript expressions in rvalue context's. For most cases, this just 1060 // loads the lvalue formed by the subscript expr. However, we have to be 1061 // careful, because the base of a vector subscript is occasionally an rvalue, 1062 // so we can't get it as an lvalue. 1063 if (!E->getBase()->getType()->isVectorType()) 1064 return EmitLoadOfLValue(E); 1065 1066 // Handle the vector case. The base must be a vector, the index must be an 1067 // integer value. 1068 Value *Base = Visit(E->getBase()); 1069 Value *Idx = Visit(E->getIdx()); 1070 QualType IdxTy = E->getIdx()->getType(); 1071 1072 if (CGF.SanOpts->ArrayBounds) 1073 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1074 1075 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1076 } 1077 1078 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1079 unsigned Off, llvm::Type *I32Ty) { 1080 int MV = SVI->getMaskValue(Idx); 1081 if (MV == -1) 1082 return llvm::UndefValue::get(I32Ty); 1083 return llvm::ConstantInt::get(I32Ty, Off+MV); 1084 } 1085 1086 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1087 bool Ignore = TestAndClearIgnoreResultAssign(); 1088 (void)Ignore; 1089 assert (Ignore == false && "init list ignored"); 1090 unsigned NumInitElements = E->getNumInits(); 1091 1092 if (E->hadArrayRangeDesignator()) 1093 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1094 1095 llvm::VectorType *VType = 1096 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1097 1098 if (!VType) { 1099 if (NumInitElements == 0) { 1100 // C++11 value-initialization for the scalar. 1101 return EmitNullValue(E->getType()); 1102 } 1103 // We have a scalar in braces. Just use the first element. 1104 return Visit(E->getInit(0)); 1105 } 1106 1107 unsigned ResElts = VType->getNumElements(); 1108 1109 // Loop over initializers collecting the Value for each, and remembering 1110 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1111 // us to fold the shuffle for the swizzle into the shuffle for the vector 1112 // initializer, since LLVM optimizers generally do not want to touch 1113 // shuffles. 1114 unsigned CurIdx = 0; 1115 bool VIsUndefShuffle = false; 1116 llvm::Value *V = llvm::UndefValue::get(VType); 1117 for (unsigned i = 0; i != NumInitElements; ++i) { 1118 Expr *IE = E->getInit(i); 1119 Value *Init = Visit(IE); 1120 SmallVector<llvm::Constant*, 16> Args; 1121 1122 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1123 1124 // Handle scalar elements. If the scalar initializer is actually one 1125 // element of a different vector of the same width, use shuffle instead of 1126 // extract+insert. 1127 if (!VVT) { 1128 if (isa<ExtVectorElementExpr>(IE)) { 1129 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1130 1131 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1132 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1133 Value *LHS = nullptr, *RHS = nullptr; 1134 if (CurIdx == 0) { 1135 // insert into undef -> shuffle (src, undef) 1136 Args.push_back(C); 1137 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1138 1139 LHS = EI->getVectorOperand(); 1140 RHS = V; 1141 VIsUndefShuffle = true; 1142 } else if (VIsUndefShuffle) { 1143 // insert into undefshuffle && size match -> shuffle (v, src) 1144 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1145 for (unsigned j = 0; j != CurIdx; ++j) 1146 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1147 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1148 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1149 1150 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1151 RHS = EI->getVectorOperand(); 1152 VIsUndefShuffle = false; 1153 } 1154 if (!Args.empty()) { 1155 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1156 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1157 ++CurIdx; 1158 continue; 1159 } 1160 } 1161 } 1162 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1163 "vecinit"); 1164 VIsUndefShuffle = false; 1165 ++CurIdx; 1166 continue; 1167 } 1168 1169 unsigned InitElts = VVT->getNumElements(); 1170 1171 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1172 // input is the same width as the vector being constructed, generate an 1173 // optimized shuffle of the swizzle input into the result. 1174 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1175 if (isa<ExtVectorElementExpr>(IE)) { 1176 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1177 Value *SVOp = SVI->getOperand(0); 1178 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1179 1180 if (OpTy->getNumElements() == ResElts) { 1181 for (unsigned j = 0; j != CurIdx; ++j) { 1182 // If the current vector initializer is a shuffle with undef, merge 1183 // this shuffle directly into it. 1184 if (VIsUndefShuffle) { 1185 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1186 CGF.Int32Ty)); 1187 } else { 1188 Args.push_back(Builder.getInt32(j)); 1189 } 1190 } 1191 for (unsigned j = 0, je = InitElts; j != je; ++j) 1192 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1193 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1194 1195 if (VIsUndefShuffle) 1196 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1197 1198 Init = SVOp; 1199 } 1200 } 1201 1202 // Extend init to result vector length, and then shuffle its contribution 1203 // to the vector initializer into V. 1204 if (Args.empty()) { 1205 for (unsigned j = 0; j != InitElts; ++j) 1206 Args.push_back(Builder.getInt32(j)); 1207 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1208 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1209 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1210 Mask, "vext"); 1211 1212 Args.clear(); 1213 for (unsigned j = 0; j != CurIdx; ++j) 1214 Args.push_back(Builder.getInt32(j)); 1215 for (unsigned j = 0; j != InitElts; ++j) 1216 Args.push_back(Builder.getInt32(j+Offset)); 1217 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1218 } 1219 1220 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1221 // merging subsequent shuffles into this one. 1222 if (CurIdx == 0) 1223 std::swap(V, Init); 1224 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1225 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1226 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1227 CurIdx += InitElts; 1228 } 1229 1230 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1231 // Emit remaining default initializers. 1232 llvm::Type *EltTy = VType->getElementType(); 1233 1234 // Emit remaining default initializers 1235 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1236 Value *Idx = Builder.getInt32(CurIdx); 1237 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1238 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1239 } 1240 return V; 1241 } 1242 1243 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) { 1244 const Expr *E = CE->getSubExpr(); 1245 1246 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1247 return false; 1248 1249 if (isa<CXXThisExpr>(E)) { 1250 // We always assume that 'this' is never null. 1251 return false; 1252 } 1253 1254 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1255 // And that glvalue casts are never null. 1256 if (ICE->getValueKind() != VK_RValue) 1257 return false; 1258 } 1259 1260 return true; 1261 } 1262 1263 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1264 // have to handle a more broad range of conversions than explicit casts, as they 1265 // handle things like function to ptr-to-function decay etc. 1266 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1267 Expr *E = CE->getSubExpr(); 1268 QualType DestTy = CE->getType(); 1269 CastKind Kind = CE->getCastKind(); 1270 1271 if (!DestTy->isVoidType()) 1272 TestAndClearIgnoreResultAssign(); 1273 1274 // Since almost all cast kinds apply to scalars, this switch doesn't have 1275 // a default case, so the compiler will warn on a missing case. The cases 1276 // are in the same order as in the CastKind enum. 1277 switch (Kind) { 1278 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1279 case CK_BuiltinFnToFnPtr: 1280 llvm_unreachable("builtin functions are handled elsewhere"); 1281 1282 case CK_LValueBitCast: 1283 case CK_ObjCObjectLValueCast: { 1284 Value *V = EmitLValue(E).getAddress(); 1285 V = Builder.CreateBitCast(V, 1286 ConvertType(CGF.getContext().getPointerType(DestTy))); 1287 return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy), 1288 CE->getExprLoc()); 1289 } 1290 1291 case CK_CPointerToObjCPointerCast: 1292 case CK_BlockPointerToObjCPointerCast: 1293 case CK_AnyPointerToBlockPointerCast: 1294 case CK_BitCast: { 1295 Value *Src = Visit(const_cast<Expr*>(E)); 1296 llvm::Type *SrcTy = Src->getType(); 1297 llvm::Type *DstTy = ConvertType(DestTy); 1298 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1299 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1300 llvm::Type *MidTy = CGF.CGM.getDataLayout().getIntPtrType(SrcTy); 1301 return Builder.CreateIntToPtr(Builder.CreatePtrToInt(Src, MidTy), DstTy); 1302 } 1303 return Builder.CreateBitCast(Src, DstTy); 1304 } 1305 case CK_AddressSpaceConversion: { 1306 Value *Src = Visit(const_cast<Expr*>(E)); 1307 return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy)); 1308 } 1309 case CK_AtomicToNonAtomic: 1310 case CK_NonAtomicToAtomic: 1311 case CK_NoOp: 1312 case CK_UserDefinedConversion: 1313 return Visit(const_cast<Expr*>(E)); 1314 1315 case CK_BaseToDerived: { 1316 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1317 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1318 1319 llvm::Value *V = Visit(E); 1320 1321 llvm::Value *Derived = 1322 CGF.GetAddressOfDerivedClass(V, DerivedClassDecl, 1323 CE->path_begin(), CE->path_end(), 1324 ShouldNullCheckClassCastValue(CE)); 1325 1326 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1327 // performed and the object is not of the derived type. 1328 if (CGF.SanitizePerformTypeCheck) 1329 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1330 Derived, DestTy->getPointeeType()); 1331 1332 return Derived; 1333 } 1334 case CK_UncheckedDerivedToBase: 1335 case CK_DerivedToBase: { 1336 const CXXRecordDecl *DerivedClassDecl = 1337 E->getType()->getPointeeCXXRecordDecl(); 1338 assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!"); 1339 1340 return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl, 1341 CE->path_begin(), CE->path_end(), 1342 ShouldNullCheckClassCastValue(CE)); 1343 } 1344 case CK_Dynamic: { 1345 Value *V = Visit(const_cast<Expr*>(E)); 1346 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1347 return CGF.EmitDynamicCast(V, DCE); 1348 } 1349 1350 case CK_ArrayToPointerDecay: { 1351 assert(E->getType()->isArrayType() && 1352 "Array to pointer decay must have array source type!"); 1353 1354 Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays. 1355 1356 // Note that VLA pointers are always decayed, so we don't need to do 1357 // anything here. 1358 if (!E->getType()->isVariableArrayType()) { 1359 assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer"); 1360 assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType()) 1361 ->getElementType()) && 1362 "Expected pointer to array"); 1363 V = Builder.CreateStructGEP(V, 0, "arraydecay"); 1364 } 1365 1366 // Make sure the array decay ends up being the right type. This matters if 1367 // the array type was of an incomplete type. 1368 return CGF.Builder.CreatePointerCast(V, ConvertType(CE->getType())); 1369 } 1370 case CK_FunctionToPointerDecay: 1371 return EmitLValue(E).getAddress(); 1372 1373 case CK_NullToPointer: 1374 if (MustVisitNullValue(E)) 1375 (void) Visit(E); 1376 1377 return llvm::ConstantPointerNull::get( 1378 cast<llvm::PointerType>(ConvertType(DestTy))); 1379 1380 case CK_NullToMemberPointer: { 1381 if (MustVisitNullValue(E)) 1382 (void) Visit(E); 1383 1384 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1385 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1386 } 1387 1388 case CK_ReinterpretMemberPointer: 1389 case CK_BaseToDerivedMemberPointer: 1390 case CK_DerivedToBaseMemberPointer: { 1391 Value *Src = Visit(E); 1392 1393 // Note that the AST doesn't distinguish between checked and 1394 // unchecked member pointer conversions, so we always have to 1395 // implement checked conversions here. This is inefficient when 1396 // actual control flow may be required in order to perform the 1397 // check, which it is for data member pointers (but not member 1398 // function pointers on Itanium and ARM). 1399 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1400 } 1401 1402 case CK_ARCProduceObject: 1403 return CGF.EmitARCRetainScalarExpr(E); 1404 case CK_ARCConsumeObject: 1405 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1406 case CK_ARCReclaimReturnedObject: { 1407 llvm::Value *value = Visit(E); 1408 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 1409 return CGF.EmitObjCConsumeObject(E->getType(), value); 1410 } 1411 case CK_ARCExtendBlockObject: 1412 return CGF.EmitARCExtendBlockObject(E); 1413 1414 case CK_CopyAndAutoreleaseBlockObject: 1415 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1416 1417 case CK_FloatingRealToComplex: 1418 case CK_FloatingComplexCast: 1419 case CK_IntegralRealToComplex: 1420 case CK_IntegralComplexCast: 1421 case CK_IntegralComplexToFloatingComplex: 1422 case CK_FloatingComplexToIntegralComplex: 1423 case CK_ConstructorConversion: 1424 case CK_ToUnion: 1425 llvm_unreachable("scalar cast to non-scalar value"); 1426 1427 case CK_LValueToRValue: 1428 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1429 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1430 return Visit(const_cast<Expr*>(E)); 1431 1432 case CK_IntegralToPointer: { 1433 Value *Src = Visit(const_cast<Expr*>(E)); 1434 1435 // First, convert to the correct width so that we control the kind of 1436 // extension. 1437 llvm::Type *MiddleTy = CGF.IntPtrTy; 1438 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1439 llvm::Value* IntResult = 1440 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1441 1442 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); 1443 } 1444 case CK_PointerToIntegral: 1445 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1446 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1447 1448 case CK_ToVoid: { 1449 CGF.EmitIgnoredExpr(E); 1450 return nullptr; 1451 } 1452 case CK_VectorSplat: { 1453 llvm::Type *DstTy = ConvertType(DestTy); 1454 Value *Elt = Visit(const_cast<Expr*>(E)); 1455 Elt = EmitScalarConversion(Elt, E->getType(), 1456 DestTy->getAs<VectorType>()->getElementType()); 1457 1458 // Splat the element across to all elements 1459 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 1460 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 1461 } 1462 1463 case CK_IntegralCast: 1464 case CK_IntegralToFloating: 1465 case CK_FloatingToIntegral: 1466 case CK_FloatingCast: 1467 return EmitScalarConversion(Visit(E), E->getType(), DestTy); 1468 case CK_IntegralToBoolean: 1469 return EmitIntToBoolConversion(Visit(E)); 1470 case CK_PointerToBoolean: 1471 return EmitPointerToBoolConversion(Visit(E)); 1472 case CK_FloatingToBoolean: 1473 return EmitFloatToBoolConversion(Visit(E)); 1474 case CK_MemberPointerToBoolean: { 1475 llvm::Value *MemPtr = Visit(E); 1476 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1477 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1478 } 1479 1480 case CK_FloatingComplexToReal: 1481 case CK_IntegralComplexToReal: 1482 return CGF.EmitComplexExpr(E, false, true).first; 1483 1484 case CK_FloatingComplexToBoolean: 1485 case CK_IntegralComplexToBoolean: { 1486 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1487 1488 // TODO: kill this function off, inline appropriate case here 1489 return EmitComplexToScalarConversion(V, E->getType(), DestTy); 1490 } 1491 1492 case CK_ZeroToOCLEvent: { 1493 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); 1494 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1495 } 1496 1497 } 1498 1499 llvm_unreachable("unknown scalar cast"); 1500 } 1501 1502 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1503 CodeGenFunction::StmtExprEvaluation eval(CGF); 1504 llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1505 !E->getType()->isVoidType()); 1506 if (!RetAlloca) 1507 return nullptr; 1508 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 1509 E->getExprLoc()); 1510 } 1511 1512 //===----------------------------------------------------------------------===// 1513 // Unary Operators 1514 //===----------------------------------------------------------------------===// 1515 1516 llvm::Value *ScalarExprEmitter:: 1517 EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 1518 llvm::Value *InVal, 1519 llvm::Value *NextVal, bool IsInc) { 1520 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1521 case LangOptions::SOB_Defined: 1522 return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1523 case LangOptions::SOB_Undefined: 1524 if (!CGF.SanOpts->SignedIntegerOverflow) 1525 return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1526 // Fall through. 1527 case LangOptions::SOB_Trapping: 1528 BinOpInfo BinOp; 1529 BinOp.LHS = InVal; 1530 BinOp.RHS = NextVal; 1531 BinOp.Ty = E->getType(); 1532 BinOp.Opcode = BO_Add; 1533 BinOp.FPContractable = false; 1534 BinOp.E = E; 1535 return EmitOverflowCheckedBinOp(BinOp); 1536 } 1537 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1538 } 1539 1540 llvm::Value * 1541 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1542 bool isInc, bool isPre) { 1543 1544 QualType type = E->getSubExpr()->getType(); 1545 llvm::PHINode *atomicPHI = nullptr; 1546 llvm::Value *value; 1547 llvm::Value *input; 1548 1549 int amount = (isInc ? 1 : -1); 1550 1551 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1552 type = atomicTy->getValueType(); 1553 if (isInc && type->isBooleanType()) { 1554 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1555 if (isPre) { 1556 Builder.Insert(new llvm::StoreInst(True, 1557 LV.getAddress(), LV.isVolatileQualified(), 1558 LV.getAlignment().getQuantity(), 1559 llvm::SequentiallyConsistent)); 1560 return Builder.getTrue(); 1561 } 1562 // For atomic bool increment, we just store true and return it for 1563 // preincrement, do an atomic swap with true for postincrement 1564 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 1565 LV.getAddress(), True, llvm::SequentiallyConsistent); 1566 } 1567 // Special case for atomic increment / decrement on integers, emit 1568 // atomicrmw instructions. We skip this if we want to be doing overflow 1569 // checking, and fall into the slow path with the atomic cmpxchg loop. 1570 if (!type->isBooleanType() && type->isIntegerType() && 1571 !(type->isUnsignedIntegerType() && 1572 CGF.SanOpts->UnsignedIntegerOverflow) && 1573 CGF.getLangOpts().getSignedOverflowBehavior() != 1574 LangOptions::SOB_Trapping) { 1575 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1576 llvm::AtomicRMWInst::Sub; 1577 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1578 llvm::Instruction::Sub; 1579 llvm::Value *amt = CGF.EmitToMemory( 1580 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1581 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1582 LV.getAddress(), amt, llvm::SequentiallyConsistent); 1583 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1584 } 1585 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1586 input = value; 1587 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1588 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1589 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1590 value = CGF.EmitToMemory(value, type); 1591 Builder.CreateBr(opBB); 1592 Builder.SetInsertPoint(opBB); 1593 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1594 atomicPHI->addIncoming(value, startBB); 1595 value = atomicPHI; 1596 } else { 1597 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1598 input = value; 1599 } 1600 1601 // Special case of integer increment that we have to check first: bool++. 1602 // Due to promotion rules, we get: 1603 // bool++ -> bool = bool + 1 1604 // -> bool = (int)bool + 1 1605 // -> bool = ((int)bool + 1 != 0) 1606 // An interesting aspect of this is that increment is always true. 1607 // Decrement does not have this property. 1608 if (isInc && type->isBooleanType()) { 1609 value = Builder.getTrue(); 1610 1611 // Most common case by far: integer increment. 1612 } else if (type->isIntegerType()) { 1613 1614 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1615 1616 // Note that signed integer inc/dec with width less than int can't 1617 // overflow because of promotion rules; we're just eliding a few steps here. 1618 if (value->getType()->getPrimitiveSizeInBits() >= 1619 CGF.IntTy->getBitWidth() && 1620 type->isSignedIntegerOrEnumerationType()) { 1621 value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc); 1622 } else if (value->getType()->getPrimitiveSizeInBits() >= 1623 CGF.IntTy->getBitWidth() && type->isUnsignedIntegerType() && 1624 CGF.SanOpts->UnsignedIntegerOverflow) { 1625 BinOpInfo BinOp; 1626 BinOp.LHS = value; 1627 BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false); 1628 BinOp.Ty = E->getType(); 1629 BinOp.Opcode = isInc ? BO_Add : BO_Sub; 1630 BinOp.FPContractable = false; 1631 BinOp.E = E; 1632 value = EmitOverflowCheckedBinOp(BinOp); 1633 } else 1634 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1635 1636 // Next most common: pointer increment. 1637 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1638 QualType type = ptr->getPointeeType(); 1639 1640 // VLA types don't have constant size. 1641 if (const VariableArrayType *vla 1642 = CGF.getContext().getAsVariableArrayType(type)) { 1643 llvm::Value *numElts = CGF.getVLASize(vla).first; 1644 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1645 if (CGF.getLangOpts().isSignedOverflowDefined()) 1646 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1647 else 1648 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); 1649 1650 // Arithmetic on function pointers (!) is just +-1. 1651 } else if (type->isFunctionType()) { 1652 llvm::Value *amt = Builder.getInt32(amount); 1653 1654 value = CGF.EmitCastToVoidPtr(value); 1655 if (CGF.getLangOpts().isSignedOverflowDefined()) 1656 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1657 else 1658 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1659 value = Builder.CreateBitCast(value, input->getType()); 1660 1661 // For everything else, we can just do a simple increment. 1662 } else { 1663 llvm::Value *amt = Builder.getInt32(amount); 1664 if (CGF.getLangOpts().isSignedOverflowDefined()) 1665 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1666 else 1667 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1668 } 1669 1670 // Vector increment/decrement. 1671 } else if (type->isVectorType()) { 1672 if (type->hasIntegerRepresentation()) { 1673 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1674 1675 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1676 } else { 1677 value = Builder.CreateFAdd( 1678 value, 1679 llvm::ConstantFP::get(value->getType(), amount), 1680 isInc ? "inc" : "dec"); 1681 } 1682 1683 // Floating point. 1684 } else if (type->isRealFloatingType()) { 1685 // Add the inc/dec to the real part. 1686 llvm::Value *amt; 1687 1688 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1689 // Another special case: half FP increment should be done via float 1690 value = 1691 Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), 1692 input); 1693 } 1694 1695 if (value->getType()->isFloatTy()) 1696 amt = llvm::ConstantFP::get(VMContext, 1697 llvm::APFloat(static_cast<float>(amount))); 1698 else if (value->getType()->isDoubleTy()) 1699 amt = llvm::ConstantFP::get(VMContext, 1700 llvm::APFloat(static_cast<double>(amount))); 1701 else { 1702 llvm::APFloat F(static_cast<float>(amount)); 1703 bool ignored; 1704 F.convert(CGF.getTarget().getLongDoubleFormat(), 1705 llvm::APFloat::rmTowardZero, &ignored); 1706 amt = llvm::ConstantFP::get(VMContext, F); 1707 } 1708 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 1709 1710 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) 1711 value = 1712 Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), 1713 value); 1714 1715 // Objective-C pointer types. 1716 } else { 1717 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 1718 value = CGF.EmitCastToVoidPtr(value); 1719 1720 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 1721 if (!isInc) size = -size; 1722 llvm::Value *sizeValue = 1723 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 1724 1725 if (CGF.getLangOpts().isSignedOverflowDefined()) 1726 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 1727 else 1728 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 1729 value = Builder.CreateBitCast(value, input->getType()); 1730 } 1731 1732 if (atomicPHI) { 1733 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1734 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1735 llvm::Value *pair = Builder.CreateAtomicCmpXchg( 1736 LV.getAddress(), atomicPHI, CGF.EmitToMemory(value, type), 1737 llvm::SequentiallyConsistent, llvm::SequentiallyConsistent); 1738 llvm::Value *old = Builder.CreateExtractValue(pair, 0); 1739 llvm::Value *success = Builder.CreateExtractValue(pair, 1); 1740 atomicPHI->addIncoming(old, opBB); 1741 Builder.CreateCondBr(success, contBB, opBB); 1742 Builder.SetInsertPoint(contBB); 1743 return isPre ? value : input; 1744 } 1745 1746 // Store the updated result through the lvalue. 1747 if (LV.isBitField()) 1748 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 1749 else 1750 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 1751 1752 // If this is a postinc, return the value read from memory, otherwise use the 1753 // updated value. 1754 return isPre ? value : input; 1755 } 1756 1757 1758 1759 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1760 TestAndClearIgnoreResultAssign(); 1761 // Emit unary minus with EmitSub so we handle overflow cases etc. 1762 BinOpInfo BinOp; 1763 BinOp.RHS = Visit(E->getSubExpr()); 1764 1765 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 1766 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 1767 else 1768 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 1769 BinOp.Ty = E->getType(); 1770 BinOp.Opcode = BO_Sub; 1771 BinOp.FPContractable = false; 1772 BinOp.E = E; 1773 return EmitSub(BinOp); 1774 } 1775 1776 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1777 TestAndClearIgnoreResultAssign(); 1778 Value *Op = Visit(E->getSubExpr()); 1779 return Builder.CreateNot(Op, "neg"); 1780 } 1781 1782 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1783 // Perform vector logical not on comparison with zero vector. 1784 if (E->getType()->isExtVectorType()) { 1785 Value *Oper = Visit(E->getSubExpr()); 1786 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 1787 Value *Result; 1788 if (Oper->getType()->isFPOrFPVectorTy()) 1789 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 1790 else 1791 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 1792 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 1793 } 1794 1795 // Compare operand to zero. 1796 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1797 1798 // Invert value. 1799 // TODO: Could dynamically modify easy computations here. For example, if 1800 // the operand is an icmp ne, turn into icmp eq. 1801 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1802 1803 // ZExt result to the expr type. 1804 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1805 } 1806 1807 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 1808 // Try folding the offsetof to a constant. 1809 llvm::APSInt Value; 1810 if (E->EvaluateAsInt(Value, CGF.getContext())) 1811 return Builder.getInt(Value); 1812 1813 // Loop over the components of the offsetof to compute the value. 1814 unsigned n = E->getNumComponents(); 1815 llvm::Type* ResultType = ConvertType(E->getType()); 1816 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 1817 QualType CurrentType = E->getTypeSourceInfo()->getType(); 1818 for (unsigned i = 0; i != n; ++i) { 1819 OffsetOfExpr::OffsetOfNode ON = E->getComponent(i); 1820 llvm::Value *Offset = nullptr; 1821 switch (ON.getKind()) { 1822 case OffsetOfExpr::OffsetOfNode::Array: { 1823 // Compute the index 1824 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 1825 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 1826 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 1827 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 1828 1829 // Save the element type 1830 CurrentType = 1831 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 1832 1833 // Compute the element size 1834 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 1835 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 1836 1837 // Multiply out to compute the result 1838 Offset = Builder.CreateMul(Idx, ElemSize); 1839 break; 1840 } 1841 1842 case OffsetOfExpr::OffsetOfNode::Field: { 1843 FieldDecl *MemberDecl = ON.getField(); 1844 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1845 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1846 1847 // Compute the index of the field in its parent. 1848 unsigned i = 0; 1849 // FIXME: It would be nice if we didn't have to loop here! 1850 for (RecordDecl::field_iterator Field = RD->field_begin(), 1851 FieldEnd = RD->field_end(); 1852 Field != FieldEnd; ++Field, ++i) { 1853 if (*Field == MemberDecl) 1854 break; 1855 } 1856 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 1857 1858 // Compute the offset to the field 1859 int64_t OffsetInt = RL.getFieldOffset(i) / 1860 CGF.getContext().getCharWidth(); 1861 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1862 1863 // Save the element type. 1864 CurrentType = MemberDecl->getType(); 1865 break; 1866 } 1867 1868 case OffsetOfExpr::OffsetOfNode::Identifier: 1869 llvm_unreachable("dependent __builtin_offsetof"); 1870 1871 case OffsetOfExpr::OffsetOfNode::Base: { 1872 if (ON.getBase()->isVirtual()) { 1873 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 1874 continue; 1875 } 1876 1877 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1878 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1879 1880 // Save the element type. 1881 CurrentType = ON.getBase()->getType(); 1882 1883 // Compute the offset to the base. 1884 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 1885 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 1886 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 1887 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 1888 break; 1889 } 1890 } 1891 Result = Builder.CreateAdd(Result, Offset); 1892 } 1893 return Result; 1894 } 1895 1896 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 1897 /// argument of the sizeof expression as an integer. 1898 Value * 1899 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 1900 const UnaryExprOrTypeTraitExpr *E) { 1901 QualType TypeToSize = E->getTypeOfArgument(); 1902 if (E->getKind() == UETT_SizeOf) { 1903 if (const VariableArrayType *VAT = 1904 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 1905 if (E->isArgumentType()) { 1906 // sizeof(type) - make sure to emit the VLA size. 1907 CGF.EmitVariablyModifiedType(TypeToSize); 1908 } else { 1909 // C99 6.5.3.4p2: If the argument is an expression of type 1910 // VLA, it is evaluated. 1911 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 1912 } 1913 1914 QualType eltType; 1915 llvm::Value *numElts; 1916 std::tie(numElts, eltType) = CGF.getVLASize(VAT); 1917 1918 llvm::Value *size = numElts; 1919 1920 // Scale the number of non-VLA elements by the non-VLA element size. 1921 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 1922 if (!eltSize.isOne()) 1923 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 1924 1925 return size; 1926 } 1927 } 1928 1929 // If this isn't sizeof(vla), the result must be constant; use the constant 1930 // folding logic so we don't have to duplicate it here. 1931 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 1932 } 1933 1934 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 1935 Expr *Op = E->getSubExpr(); 1936 if (Op->getType()->isAnyComplexType()) { 1937 // If it's an l-value, load through the appropriate subobject l-value. 1938 // Note that we have to ask E because Op might be an l-value that 1939 // this won't work for, e.g. an Obj-C property. 1940 if (E->isGLValue()) 1941 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 1942 E->getExprLoc()).getScalarVal(); 1943 1944 // Otherwise, calculate and project. 1945 return CGF.EmitComplexExpr(Op, false, true).first; 1946 } 1947 1948 return Visit(Op); 1949 } 1950 1951 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 1952 Expr *Op = E->getSubExpr(); 1953 if (Op->getType()->isAnyComplexType()) { 1954 // If it's an l-value, load through the appropriate subobject l-value. 1955 // Note that we have to ask E because Op might be an l-value that 1956 // this won't work for, e.g. an Obj-C property. 1957 if (Op->isGLValue()) 1958 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 1959 E->getExprLoc()).getScalarVal(); 1960 1961 // Otherwise, calculate and project. 1962 return CGF.EmitComplexExpr(Op, true, false).second; 1963 } 1964 1965 // __imag on a scalar returns zero. Emit the subexpr to ensure side 1966 // effects are evaluated, but not the actual value. 1967 if (Op->isGLValue()) 1968 CGF.EmitLValue(Op); 1969 else 1970 CGF.EmitScalarExpr(Op, true); 1971 return llvm::Constant::getNullValue(ConvertType(E->getType())); 1972 } 1973 1974 //===----------------------------------------------------------------------===// 1975 // Binary Operators 1976 //===----------------------------------------------------------------------===// 1977 1978 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 1979 TestAndClearIgnoreResultAssign(); 1980 BinOpInfo Result; 1981 Result.LHS = Visit(E->getLHS()); 1982 Result.RHS = Visit(E->getRHS()); 1983 Result.Ty = E->getType(); 1984 Result.Opcode = E->getOpcode(); 1985 Result.FPContractable = E->isFPContractable(); 1986 Result.E = E; 1987 return Result; 1988 } 1989 1990 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 1991 const CompoundAssignOperator *E, 1992 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 1993 Value *&Result) { 1994 QualType LHSTy = E->getLHS()->getType(); 1995 BinOpInfo OpInfo; 1996 1997 if (E->getComputationResultType()->isAnyComplexType()) 1998 return CGF.EmitScalarCompooundAssignWithComplex(E, Result); 1999 2000 // Emit the RHS first. __block variables need to have the rhs evaluated 2001 // first, plus this should improve codegen a little. 2002 OpInfo.RHS = Visit(E->getRHS()); 2003 OpInfo.Ty = E->getComputationResultType(); 2004 OpInfo.Opcode = E->getOpcode(); 2005 OpInfo.FPContractable = false; 2006 OpInfo.E = E; 2007 // Load/convert the LHS. 2008 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2009 2010 llvm::PHINode *atomicPHI = nullptr; 2011 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2012 QualType type = atomicTy->getValueType(); 2013 if (!type->isBooleanType() && type->isIntegerType() && 2014 !(type->isUnsignedIntegerType() && 2015 CGF.SanOpts->UnsignedIntegerOverflow) && 2016 CGF.getLangOpts().getSignedOverflowBehavior() != 2017 LangOptions::SOB_Trapping) { 2018 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2019 switch (OpInfo.Opcode) { 2020 // We don't have atomicrmw operands for *, %, /, <<, >> 2021 case BO_MulAssign: case BO_DivAssign: 2022 case BO_RemAssign: 2023 case BO_ShlAssign: 2024 case BO_ShrAssign: 2025 break; 2026 case BO_AddAssign: 2027 aop = llvm::AtomicRMWInst::Add; 2028 break; 2029 case BO_SubAssign: 2030 aop = llvm::AtomicRMWInst::Sub; 2031 break; 2032 case BO_AndAssign: 2033 aop = llvm::AtomicRMWInst::And; 2034 break; 2035 case BO_XorAssign: 2036 aop = llvm::AtomicRMWInst::Xor; 2037 break; 2038 case BO_OrAssign: 2039 aop = llvm::AtomicRMWInst::Or; 2040 break; 2041 default: 2042 llvm_unreachable("Invalid compound assignment type"); 2043 } 2044 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2045 llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS, 2046 E->getRHS()->getType(), LHSTy), LHSTy); 2047 Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt, 2048 llvm::SequentiallyConsistent); 2049 return LHSLV; 2050 } 2051 } 2052 // FIXME: For floating point types, we should be saving and restoring the 2053 // floating point environment in the loop. 2054 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2055 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2056 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2057 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2058 Builder.CreateBr(opBB); 2059 Builder.SetInsertPoint(opBB); 2060 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2061 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2062 OpInfo.LHS = atomicPHI; 2063 } 2064 else 2065 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2066 2067 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, 2068 E->getComputationLHSType()); 2069 2070 // Expand the binary operator. 2071 Result = (this->*Func)(OpInfo); 2072 2073 // Convert the result back to the LHS type. 2074 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy); 2075 2076 if (atomicPHI) { 2077 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2078 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2079 llvm::Value *pair = Builder.CreateAtomicCmpXchg( 2080 LHSLV.getAddress(), atomicPHI, CGF.EmitToMemory(Result, LHSTy), 2081 llvm::SequentiallyConsistent, llvm::SequentiallyConsistent); 2082 llvm::Value *old = Builder.CreateExtractValue(pair, 0); 2083 llvm::Value *success = Builder.CreateExtractValue(pair, 1); 2084 atomicPHI->addIncoming(old, opBB); 2085 Builder.CreateCondBr(success, contBB, opBB); 2086 Builder.SetInsertPoint(contBB); 2087 return LHSLV; 2088 } 2089 2090 // Store the result value into the LHS lvalue. Bit-fields are handled 2091 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2092 // 'An assignment expression has the value of the left operand after the 2093 // assignment...'. 2094 if (LHSLV.isBitField()) 2095 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2096 else 2097 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2098 2099 return LHSLV; 2100 } 2101 2102 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2103 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2104 bool Ignore = TestAndClearIgnoreResultAssign(); 2105 Value *RHS; 2106 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2107 2108 // If the result is clearly ignored, return now. 2109 if (Ignore) 2110 return nullptr; 2111 2112 // The result of an assignment in C is the assigned r-value. 2113 if (!CGF.getLangOpts().CPlusPlus) 2114 return RHS; 2115 2116 // If the lvalue is non-volatile, return the computed value of the assignment. 2117 if (!LHS.isVolatileQualified()) 2118 return RHS; 2119 2120 // Otherwise, reload the value. 2121 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2122 } 2123 2124 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2125 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2126 llvm::Value *Cond = nullptr; 2127 2128 if (CGF.SanOpts->IntegerDivideByZero) 2129 Cond = Builder.CreateICmpNE(Ops.RHS, Zero); 2130 2131 if (CGF.SanOpts->SignedIntegerOverflow && 2132 Ops.Ty->hasSignedIntegerRepresentation()) { 2133 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2134 2135 llvm::Value *IntMin = 2136 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2137 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2138 2139 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2140 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2141 llvm::Value *Overflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2142 Cond = Cond ? Builder.CreateAnd(Cond, Overflow, "and") : Overflow; 2143 } 2144 2145 if (Cond) 2146 EmitBinOpCheck(Cond, Ops); 2147 } 2148 2149 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2150 if ((CGF.SanOpts->IntegerDivideByZero || 2151 CGF.SanOpts->SignedIntegerOverflow) && 2152 Ops.Ty->isIntegerType()) { 2153 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2154 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2155 } else if (CGF.SanOpts->FloatDivideByZero && 2156 Ops.Ty->isRealFloatingType()) { 2157 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2158 EmitBinOpCheck(Builder.CreateFCmpUNE(Ops.RHS, Zero), Ops); 2159 } 2160 2161 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2162 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2163 if (CGF.getLangOpts().OpenCL) { 2164 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp 2165 llvm::Type *ValTy = Val->getType(); 2166 if (ValTy->isFloatTy() || 2167 (isa<llvm::VectorType>(ValTy) && 2168 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2169 CGF.SetFPAccuracy(Val, 2.5); 2170 } 2171 return Val; 2172 } 2173 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2174 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2175 else 2176 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2177 } 2178 2179 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2180 // Rem in C can't be a floating point type: C99 6.5.5p2. 2181 if (CGF.SanOpts->IntegerDivideByZero) { 2182 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2183 2184 if (Ops.Ty->isIntegerType()) 2185 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2186 } 2187 2188 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2189 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2190 else 2191 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2192 } 2193 2194 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2195 unsigned IID; 2196 unsigned OpID = 0; 2197 2198 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2199 switch (Ops.Opcode) { 2200 case BO_Add: 2201 case BO_AddAssign: 2202 OpID = 1; 2203 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2204 llvm::Intrinsic::uadd_with_overflow; 2205 break; 2206 case BO_Sub: 2207 case BO_SubAssign: 2208 OpID = 2; 2209 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2210 llvm::Intrinsic::usub_with_overflow; 2211 break; 2212 case BO_Mul: 2213 case BO_MulAssign: 2214 OpID = 3; 2215 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2216 llvm::Intrinsic::umul_with_overflow; 2217 break; 2218 default: 2219 llvm_unreachable("Unsupported operation for overflow detection"); 2220 } 2221 OpID <<= 1; 2222 if (isSigned) 2223 OpID |= 1; 2224 2225 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2226 2227 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2228 2229 Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS); 2230 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2231 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2232 2233 // Handle overflow with llvm.trap if no custom handler has been specified. 2234 const std::string *handlerName = 2235 &CGF.getLangOpts().OverflowHandler; 2236 if (handlerName->empty()) { 2237 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2238 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2239 if (!isSigned || CGF.SanOpts->SignedIntegerOverflow) 2240 EmitBinOpCheck(Builder.CreateNot(overflow), Ops); 2241 else 2242 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2243 return result; 2244 } 2245 2246 // Branch in case of overflow. 2247 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2248 llvm::Function::iterator insertPt = initialBB; 2249 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn, 2250 std::next(insertPt)); 2251 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2252 2253 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2254 2255 // If an overflow handler is set, then we want to call it and then use its 2256 // result, if it returns. 2257 Builder.SetInsertPoint(overflowBB); 2258 2259 // Get the overflow handler. 2260 llvm::Type *Int8Ty = CGF.Int8Ty; 2261 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2262 llvm::FunctionType *handlerTy = 2263 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2264 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2265 2266 // Sign extend the args to 64-bit, so that we can use the same handler for 2267 // all types of overflow. 2268 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2269 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2270 2271 // Call the handler with the two arguments, the operation, and the size of 2272 // the result. 2273 llvm::Value *handlerArgs[] = { 2274 lhs, 2275 rhs, 2276 Builder.getInt8(OpID), 2277 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2278 }; 2279 llvm::Value *handlerResult = 2280 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2281 2282 // Truncate the result back to the desired size. 2283 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2284 Builder.CreateBr(continueBB); 2285 2286 Builder.SetInsertPoint(continueBB); 2287 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2288 phi->addIncoming(result, initialBB); 2289 phi->addIncoming(handlerResult, overflowBB); 2290 2291 return phi; 2292 } 2293 2294 /// Emit pointer + index arithmetic. 2295 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2296 const BinOpInfo &op, 2297 bool isSubtraction) { 2298 // Must have binary (not unary) expr here. Unary pointer 2299 // increment/decrement doesn't use this path. 2300 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2301 2302 Value *pointer = op.LHS; 2303 Expr *pointerOperand = expr->getLHS(); 2304 Value *index = op.RHS; 2305 Expr *indexOperand = expr->getRHS(); 2306 2307 // In a subtraction, the LHS is always the pointer. 2308 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2309 std::swap(pointer, index); 2310 std::swap(pointerOperand, indexOperand); 2311 } 2312 2313 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2314 if (width != CGF.PointerWidthInBits) { 2315 // Zero-extend or sign-extend the pointer value according to 2316 // whether the index is signed or not. 2317 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2318 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned, 2319 "idx.ext"); 2320 } 2321 2322 // If this is subtraction, negate the index. 2323 if (isSubtraction) 2324 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2325 2326 if (CGF.SanOpts->ArrayBounds) 2327 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2328 /*Accessed*/ false); 2329 2330 const PointerType *pointerType 2331 = pointerOperand->getType()->getAs<PointerType>(); 2332 if (!pointerType) { 2333 QualType objectType = pointerOperand->getType() 2334 ->castAs<ObjCObjectPointerType>() 2335 ->getPointeeType(); 2336 llvm::Value *objectSize 2337 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2338 2339 index = CGF.Builder.CreateMul(index, objectSize); 2340 2341 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2342 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2343 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2344 } 2345 2346 QualType elementType = pointerType->getPointeeType(); 2347 if (const VariableArrayType *vla 2348 = CGF.getContext().getAsVariableArrayType(elementType)) { 2349 // The element count here is the total number of non-VLA elements. 2350 llvm::Value *numElements = CGF.getVLASize(vla).first; 2351 2352 // Effectively, the multiply by the VLA size is part of the GEP. 2353 // GEP indexes are signed, and scaling an index isn't permitted to 2354 // signed-overflow, so we use the same semantics for our explicit 2355 // multiply. We suppress this if overflow is not undefined behavior. 2356 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2357 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2358 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2359 } else { 2360 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2361 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2362 } 2363 return pointer; 2364 } 2365 2366 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2367 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2368 // future proof. 2369 if (elementType->isVoidType() || elementType->isFunctionType()) { 2370 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2371 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2372 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2373 } 2374 2375 if (CGF.getLangOpts().isSignedOverflowDefined()) 2376 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2377 2378 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2379 } 2380 2381 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2382 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2383 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2384 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2385 // efficient operations. 2386 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2387 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2388 bool negMul, bool negAdd) { 2389 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2390 2391 Value *MulOp0 = MulOp->getOperand(0); 2392 Value *MulOp1 = MulOp->getOperand(1); 2393 if (negMul) { 2394 MulOp0 = 2395 Builder.CreateFSub( 2396 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2397 "neg"); 2398 } else if (negAdd) { 2399 Addend = 2400 Builder.CreateFSub( 2401 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2402 "neg"); 2403 } 2404 2405 Value *FMulAdd = 2406 Builder.CreateCall3( 2407 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2408 MulOp0, MulOp1, Addend); 2409 MulOp->eraseFromParent(); 2410 2411 return FMulAdd; 2412 } 2413 2414 // Check whether it would be legal to emit an fmuladd intrinsic call to 2415 // represent op and if so, build the fmuladd. 2416 // 2417 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2418 // Does NOT check the type of the operation - it's assumed that this function 2419 // will be called from contexts where it's known that the type is contractable. 2420 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2421 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2422 bool isSub=false) { 2423 2424 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2425 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2426 "Only fadd/fsub can be the root of an fmuladd."); 2427 2428 // Check whether this op is marked as fusable. 2429 if (!op.FPContractable) 2430 return nullptr; 2431 2432 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is 2433 // either disabled, or handled entirely by the LLVM backend). 2434 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On) 2435 return nullptr; 2436 2437 // We have a potentially fusable op. Look for a mul on one of the operands. 2438 if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2439 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2440 assert(LHSBinOp->getNumUses() == 0 && 2441 "Operations with multiple uses shouldn't be contracted."); 2442 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2443 } 2444 } else if (llvm::BinaryOperator* RHSBinOp = 2445 dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2446 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2447 assert(RHSBinOp->getNumUses() == 0 && 2448 "Operations with multiple uses shouldn't be contracted."); 2449 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2450 } 2451 } 2452 2453 return nullptr; 2454 } 2455 2456 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2457 if (op.LHS->getType()->isPointerTy() || 2458 op.RHS->getType()->isPointerTy()) 2459 return emitPointerArithmetic(CGF, op, /*subtraction*/ false); 2460 2461 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2462 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2463 case LangOptions::SOB_Defined: 2464 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2465 case LangOptions::SOB_Undefined: 2466 if (!CGF.SanOpts->SignedIntegerOverflow) 2467 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2468 // Fall through. 2469 case LangOptions::SOB_Trapping: 2470 return EmitOverflowCheckedBinOp(op); 2471 } 2472 } 2473 2474 if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) 2475 return EmitOverflowCheckedBinOp(op); 2476 2477 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2478 // Try to form an fmuladd. 2479 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2480 return FMulAdd; 2481 2482 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2483 } 2484 2485 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2486 } 2487 2488 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2489 // The LHS is always a pointer if either side is. 2490 if (!op.LHS->getType()->isPointerTy()) { 2491 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2492 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2493 case LangOptions::SOB_Defined: 2494 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2495 case LangOptions::SOB_Undefined: 2496 if (!CGF.SanOpts->SignedIntegerOverflow) 2497 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2498 // Fall through. 2499 case LangOptions::SOB_Trapping: 2500 return EmitOverflowCheckedBinOp(op); 2501 } 2502 } 2503 2504 if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) 2505 return EmitOverflowCheckedBinOp(op); 2506 2507 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2508 // Try to form an fmuladd. 2509 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2510 return FMulAdd; 2511 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2512 } 2513 2514 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2515 } 2516 2517 // If the RHS is not a pointer, then we have normal pointer 2518 // arithmetic. 2519 if (!op.RHS->getType()->isPointerTy()) 2520 return emitPointerArithmetic(CGF, op, /*subtraction*/ true); 2521 2522 // Otherwise, this is a pointer subtraction. 2523 2524 // Do the raw subtraction part. 2525 llvm::Value *LHS 2526 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2527 llvm::Value *RHS 2528 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2529 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2530 2531 // Okay, figure out the element size. 2532 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2533 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2534 2535 llvm::Value *divisor = nullptr; 2536 2537 // For a variable-length array, this is going to be non-constant. 2538 if (const VariableArrayType *vla 2539 = CGF.getContext().getAsVariableArrayType(elementType)) { 2540 llvm::Value *numElements; 2541 std::tie(numElements, elementType) = CGF.getVLASize(vla); 2542 2543 divisor = numElements; 2544 2545 // Scale the number of non-VLA elements by the non-VLA element size. 2546 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2547 if (!eltSize.isOne()) 2548 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2549 2550 // For everything elese, we can just compute it, safe in the 2551 // assumption that Sema won't let anything through that we can't 2552 // safely compute the size of. 2553 } else { 2554 CharUnits elementSize; 2555 // Handle GCC extension for pointer arithmetic on void* and 2556 // function pointer types. 2557 if (elementType->isVoidType() || elementType->isFunctionType()) 2558 elementSize = CharUnits::One(); 2559 else 2560 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2561 2562 // Don't even emit the divide for element size of 1. 2563 if (elementSize.isOne()) 2564 return diffInChars; 2565 2566 divisor = CGF.CGM.getSize(elementSize); 2567 } 2568 2569 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2570 // pointer difference in C is only defined in the case where both operands 2571 // are pointing to elements of an array. 2572 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2573 } 2574 2575 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2576 llvm::IntegerType *Ty; 2577 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 2578 Ty = cast<llvm::IntegerType>(VT->getElementType()); 2579 else 2580 Ty = cast<llvm::IntegerType>(LHS->getType()); 2581 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 2582 } 2583 2584 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2585 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2586 // RHS to the same size as the LHS. 2587 Value *RHS = Ops.RHS; 2588 if (Ops.LHS->getType() != RHS->getType()) 2589 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2590 2591 if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL && 2592 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2593 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS); 2594 llvm::Value *Valid = Builder.CreateICmpULE(RHS, WidthMinusOne); 2595 2596 if (Ops.Ty->hasSignedIntegerRepresentation()) { 2597 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 2598 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2599 llvm::BasicBlock *CheckBitsShifted = CGF.createBasicBlock("check"); 2600 Builder.CreateCondBr(Valid, CheckBitsShifted, Cont); 2601 2602 // Check whether we are shifting any non-zero bits off the top of the 2603 // integer. 2604 CGF.EmitBlock(CheckBitsShifted); 2605 llvm::Value *BitsShiftedOff = 2606 Builder.CreateLShr(Ops.LHS, 2607 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros", 2608 /*NUW*/true, /*NSW*/true), 2609 "shl.check"); 2610 if (CGF.getLangOpts().CPlusPlus) { 2611 // In C99, we are not permitted to shift a 1 bit into the sign bit. 2612 // Under C++11's rules, shifting a 1 bit into the sign bit is 2613 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 2614 // define signed left shifts, so we use the C99 and C++11 rules there). 2615 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 2616 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 2617 } 2618 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 2619 llvm::Value *SecondCheck = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 2620 CGF.EmitBlock(Cont); 2621 llvm::PHINode *P = Builder.CreatePHI(Valid->getType(), 2); 2622 P->addIncoming(Valid, Orig); 2623 P->addIncoming(SecondCheck, CheckBitsShifted); 2624 Valid = P; 2625 } 2626 2627 EmitBinOpCheck(Valid, Ops); 2628 } 2629 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2630 if (CGF.getLangOpts().OpenCL) 2631 RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 2632 2633 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2634 } 2635 2636 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2637 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2638 // RHS to the same size as the LHS. 2639 Value *RHS = Ops.RHS; 2640 if (Ops.LHS->getType() != RHS->getType()) 2641 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2642 2643 if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL && 2644 isa<llvm::IntegerType>(Ops.LHS->getType())) 2645 EmitBinOpCheck(Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)), Ops); 2646 2647 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2648 if (CGF.getLangOpts().OpenCL) 2649 RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 2650 2651 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2652 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 2653 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 2654 } 2655 2656 enum IntrinsicType { VCMPEQ, VCMPGT }; 2657 // return corresponding comparison intrinsic for given vector type 2658 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 2659 BuiltinType::Kind ElemKind) { 2660 switch (ElemKind) { 2661 default: llvm_unreachable("unexpected element type"); 2662 case BuiltinType::Char_U: 2663 case BuiltinType::UChar: 2664 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2665 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 2666 case BuiltinType::Char_S: 2667 case BuiltinType::SChar: 2668 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2669 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 2670 case BuiltinType::UShort: 2671 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2672 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 2673 case BuiltinType::Short: 2674 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2675 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 2676 case BuiltinType::UInt: 2677 case BuiltinType::ULong: 2678 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2679 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 2680 case BuiltinType::Int: 2681 case BuiltinType::Long: 2682 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2683 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 2684 case BuiltinType::Float: 2685 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 2686 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 2687 } 2688 } 2689 2690 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, 2691 unsigned SICmpOpc, unsigned FCmpOpc) { 2692 TestAndClearIgnoreResultAssign(); 2693 Value *Result; 2694 QualType LHSTy = E->getLHS()->getType(); 2695 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 2696 assert(E->getOpcode() == BO_EQ || 2697 E->getOpcode() == BO_NE); 2698 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 2699 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 2700 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 2701 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 2702 } else if (!LHSTy->isAnyComplexType()) { 2703 Value *LHS = Visit(E->getLHS()); 2704 Value *RHS = Visit(E->getRHS()); 2705 2706 // If AltiVec, the comparison results in a numeric type, so we use 2707 // intrinsics comparing vectors and giving 0 or 1 as a result 2708 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 2709 // constants for mapping CR6 register bits to predicate result 2710 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 2711 2712 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 2713 2714 // in several cases vector arguments order will be reversed 2715 Value *FirstVecArg = LHS, 2716 *SecondVecArg = RHS; 2717 2718 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 2719 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 2720 BuiltinType::Kind ElementKind = BTy->getKind(); 2721 2722 switch(E->getOpcode()) { 2723 default: llvm_unreachable("is not a comparison operation"); 2724 case BO_EQ: 2725 CR6 = CR6_LT; 2726 ID = GetIntrinsic(VCMPEQ, ElementKind); 2727 break; 2728 case BO_NE: 2729 CR6 = CR6_EQ; 2730 ID = GetIntrinsic(VCMPEQ, ElementKind); 2731 break; 2732 case BO_LT: 2733 CR6 = CR6_LT; 2734 ID = GetIntrinsic(VCMPGT, ElementKind); 2735 std::swap(FirstVecArg, SecondVecArg); 2736 break; 2737 case BO_GT: 2738 CR6 = CR6_LT; 2739 ID = GetIntrinsic(VCMPGT, ElementKind); 2740 break; 2741 case BO_LE: 2742 if (ElementKind == BuiltinType::Float) { 2743 CR6 = CR6_LT; 2744 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2745 std::swap(FirstVecArg, SecondVecArg); 2746 } 2747 else { 2748 CR6 = CR6_EQ; 2749 ID = GetIntrinsic(VCMPGT, ElementKind); 2750 } 2751 break; 2752 case BO_GE: 2753 if (ElementKind == BuiltinType::Float) { 2754 CR6 = CR6_LT; 2755 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2756 } 2757 else { 2758 CR6 = CR6_EQ; 2759 ID = GetIntrinsic(VCMPGT, ElementKind); 2760 std::swap(FirstVecArg, SecondVecArg); 2761 } 2762 break; 2763 } 2764 2765 Value *CR6Param = Builder.getInt32(CR6); 2766 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 2767 Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, ""); 2768 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2769 } 2770 2771 if (LHS->getType()->isFPOrFPVectorTy()) { 2772 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc, 2773 LHS, RHS, "cmp"); 2774 } else if (LHSTy->hasSignedIntegerRepresentation()) { 2775 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, 2776 LHS, RHS, "cmp"); 2777 } else { 2778 // Unsigned integers and pointers. 2779 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2780 LHS, RHS, "cmp"); 2781 } 2782 2783 // If this is a vector comparison, sign extend the result to the appropriate 2784 // vector integer type and return it (don't convert to bool). 2785 if (LHSTy->isVectorType()) 2786 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2787 2788 } else { 2789 // Complex Comparison: can only be an equality comparison. 2790 CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS()); 2791 CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS()); 2792 2793 QualType CETy = LHSTy->getAs<ComplexType>()->getElementType(); 2794 2795 Value *ResultR, *ResultI; 2796 if (CETy->isRealFloatingType()) { 2797 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2798 LHS.first, RHS.first, "cmp.r"); 2799 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2800 LHS.second, RHS.second, "cmp.i"); 2801 } else { 2802 // Complex comparisons can only be equality comparisons. As such, signed 2803 // and unsigned opcodes are the same. 2804 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2805 LHS.first, RHS.first, "cmp.r"); 2806 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2807 LHS.second, RHS.second, "cmp.i"); 2808 } 2809 2810 if (E->getOpcode() == BO_EQ) { 2811 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 2812 } else { 2813 assert(E->getOpcode() == BO_NE && 2814 "Complex comparison other than == or != ?"); 2815 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 2816 } 2817 } 2818 2819 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2820 } 2821 2822 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 2823 bool Ignore = TestAndClearIgnoreResultAssign(); 2824 2825 Value *RHS; 2826 LValue LHS; 2827 2828 switch (E->getLHS()->getType().getObjCLifetime()) { 2829 case Qualifiers::OCL_Strong: 2830 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 2831 break; 2832 2833 case Qualifiers::OCL_Autoreleasing: 2834 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 2835 break; 2836 2837 case Qualifiers::OCL_Weak: 2838 RHS = Visit(E->getRHS()); 2839 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2840 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 2841 break; 2842 2843 // No reason to do any of these differently. 2844 case Qualifiers::OCL_None: 2845 case Qualifiers::OCL_ExplicitNone: 2846 // __block variables need to have the rhs evaluated first, plus 2847 // this should improve codegen just a little. 2848 RHS = Visit(E->getRHS()); 2849 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2850 2851 // Store the value into the LHS. Bit-fields are handled specially 2852 // because the result is altered by the store, i.e., [C99 6.5.16p1] 2853 // 'An assignment expression has the value of the left operand after 2854 // the assignment...'. 2855 if (LHS.isBitField()) 2856 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 2857 else 2858 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 2859 } 2860 2861 // If the result is clearly ignored, return now. 2862 if (Ignore) 2863 return nullptr; 2864 2865 // The result of an assignment in C is the assigned r-value. 2866 if (!CGF.getLangOpts().CPlusPlus) 2867 return RHS; 2868 2869 // If the lvalue is non-volatile, return the computed value of the assignment. 2870 if (!LHS.isVolatileQualified()) 2871 return RHS; 2872 2873 // Otherwise, reload the value. 2874 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2875 } 2876 2877 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 2878 RegionCounter Cnt = CGF.getPGORegionCounter(E); 2879 2880 // Perform vector logical and on comparisons with zero vectors. 2881 if (E->getType()->isVectorType()) { 2882 Cnt.beginRegion(Builder); 2883 2884 Value *LHS = Visit(E->getLHS()); 2885 Value *RHS = Visit(E->getRHS()); 2886 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 2887 if (LHS->getType()->isFPOrFPVectorTy()) { 2888 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 2889 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 2890 } else { 2891 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 2892 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 2893 } 2894 Value *And = Builder.CreateAnd(LHS, RHS); 2895 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 2896 } 2897 2898 llvm::Type *ResTy = ConvertType(E->getType()); 2899 2900 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 2901 // If we have 1 && X, just emit X without inserting the control flow. 2902 bool LHSCondVal; 2903 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 2904 if (LHSCondVal) { // If we have 1 && X, just emit X. 2905 Cnt.beginRegion(Builder); 2906 2907 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2908 // ZExt result to int or bool. 2909 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 2910 } 2911 2912 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 2913 if (!CGF.ContainsLabel(E->getRHS())) 2914 return llvm::Constant::getNullValue(ResTy); 2915 } 2916 2917 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 2918 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 2919 2920 CodeGenFunction::ConditionalEvaluation eval(CGF); 2921 2922 // Branch on the LHS first. If it is false, go to the failure (cont) block. 2923 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, Cnt.getCount()); 2924 2925 // Any edges into the ContBlock are now from an (indeterminate number of) 2926 // edges from this first condition. All of these values will be false. Start 2927 // setting up the PHI node in the Cont Block for this. 2928 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 2929 "", ContBlock); 2930 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 2931 PI != PE; ++PI) 2932 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 2933 2934 eval.begin(CGF); 2935 CGF.EmitBlock(RHSBlock); 2936 Cnt.beginRegion(Builder); 2937 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2938 eval.end(CGF); 2939 2940 // Reaquire the RHS block, as there may be subblocks inserted. 2941 RHSBlock = Builder.GetInsertBlock(); 2942 2943 // Emit an unconditional branch from this block to ContBlock. Insert an entry 2944 // into the phi node for the edge with the value of RHSCond. 2945 if (CGF.getDebugInfo()) 2946 // There is no need to emit line number for unconditional branch. 2947 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 2948 CGF.EmitBlock(ContBlock); 2949 PN->addIncoming(RHSCond, RHSBlock); 2950 2951 // ZExt result to int. 2952 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 2953 } 2954 2955 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 2956 RegionCounter Cnt = CGF.getPGORegionCounter(E); 2957 2958 // Perform vector logical or on comparisons with zero vectors. 2959 if (E->getType()->isVectorType()) { 2960 Cnt.beginRegion(Builder); 2961 2962 Value *LHS = Visit(E->getLHS()); 2963 Value *RHS = Visit(E->getRHS()); 2964 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 2965 if (LHS->getType()->isFPOrFPVectorTy()) { 2966 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 2967 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 2968 } else { 2969 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 2970 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 2971 } 2972 Value *Or = Builder.CreateOr(LHS, RHS); 2973 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 2974 } 2975 2976 llvm::Type *ResTy = ConvertType(E->getType()); 2977 2978 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 2979 // If we have 0 || X, just emit X without inserting the control flow. 2980 bool LHSCondVal; 2981 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 2982 if (!LHSCondVal) { // If we have 0 || X, just emit X. 2983 Cnt.beginRegion(Builder); 2984 2985 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2986 // ZExt result to int or bool. 2987 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 2988 } 2989 2990 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 2991 if (!CGF.ContainsLabel(E->getRHS())) 2992 return llvm::ConstantInt::get(ResTy, 1); 2993 } 2994 2995 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 2996 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 2997 2998 CodeGenFunction::ConditionalEvaluation eval(CGF); 2999 3000 // Branch on the LHS first. If it is true, go to the success (cont) block. 3001 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3002 Cnt.getParentCount() - Cnt.getCount()); 3003 3004 // Any edges into the ContBlock are now from an (indeterminate number of) 3005 // edges from this first condition. All of these values will be true. Start 3006 // setting up the PHI node in the Cont Block for this. 3007 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3008 "", ContBlock); 3009 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3010 PI != PE; ++PI) 3011 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3012 3013 eval.begin(CGF); 3014 3015 // Emit the RHS condition as a bool value. 3016 CGF.EmitBlock(RHSBlock); 3017 Cnt.beginRegion(Builder); 3018 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3019 3020 eval.end(CGF); 3021 3022 // Reaquire the RHS block, as there may be subblocks inserted. 3023 RHSBlock = Builder.GetInsertBlock(); 3024 3025 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3026 // into the phi node for the edge with the value of RHSCond. 3027 CGF.EmitBlock(ContBlock); 3028 PN->addIncoming(RHSCond, RHSBlock); 3029 3030 // ZExt result to int. 3031 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3032 } 3033 3034 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3035 CGF.EmitIgnoredExpr(E->getLHS()); 3036 CGF.EnsureInsertPoint(); 3037 return Visit(E->getRHS()); 3038 } 3039 3040 //===----------------------------------------------------------------------===// 3041 // Other Operators 3042 //===----------------------------------------------------------------------===// 3043 3044 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3045 /// expression is cheap enough and side-effect-free enough to evaluate 3046 /// unconditionally instead of conditionally. This is used to convert control 3047 /// flow into selects in some cases. 3048 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3049 CodeGenFunction &CGF) { 3050 // Anything that is an integer or floating point constant is fine. 3051 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3052 3053 // Even non-volatile automatic variables can't be evaluated unconditionally. 3054 // Referencing a thread_local may cause non-trivial initialization work to 3055 // occur. If we're inside a lambda and one of the variables is from the scope 3056 // outside the lambda, that function may have returned already. Reading its 3057 // locals is a bad idea. Also, these reads may introduce races there didn't 3058 // exist in the source-level program. 3059 } 3060 3061 3062 Value *ScalarExprEmitter:: 3063 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3064 TestAndClearIgnoreResultAssign(); 3065 3066 // Bind the common expression if necessary. 3067 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3068 RegionCounter Cnt = CGF.getPGORegionCounter(E); 3069 3070 Expr *condExpr = E->getCond(); 3071 Expr *lhsExpr = E->getTrueExpr(); 3072 Expr *rhsExpr = E->getFalseExpr(); 3073 3074 // If the condition constant folds and can be elided, try to avoid emitting 3075 // the condition and the dead arm. 3076 bool CondExprBool; 3077 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3078 Expr *live = lhsExpr, *dead = rhsExpr; 3079 if (!CondExprBool) std::swap(live, dead); 3080 3081 // If the dead side doesn't have labels we need, just emit the Live part. 3082 if (!CGF.ContainsLabel(dead)) { 3083 if (CondExprBool) 3084 Cnt.beginRegion(Builder); 3085 Value *Result = Visit(live); 3086 3087 // If the live part is a throw expression, it acts like it has a void 3088 // type, so evaluating it returns a null Value*. However, a conditional 3089 // with non-void type must return a non-null Value*. 3090 if (!Result && !E->getType()->isVoidType()) 3091 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3092 3093 return Result; 3094 } 3095 } 3096 3097 // OpenCL: If the condition is a vector, we can treat this condition like 3098 // the select function. 3099 if (CGF.getLangOpts().OpenCL 3100 && condExpr->getType()->isVectorType()) { 3101 Cnt.beginRegion(Builder); 3102 3103 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3104 llvm::Value *LHS = Visit(lhsExpr); 3105 llvm::Value *RHS = Visit(rhsExpr); 3106 3107 llvm::Type *condType = ConvertType(condExpr->getType()); 3108 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3109 3110 unsigned numElem = vecTy->getNumElements(); 3111 llvm::Type *elemType = vecTy->getElementType(); 3112 3113 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3114 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3115 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3116 llvm::VectorType::get(elemType, 3117 numElem), 3118 "sext"); 3119 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3120 3121 // Cast float to int to perform ANDs if necessary. 3122 llvm::Value *RHSTmp = RHS; 3123 llvm::Value *LHSTmp = LHS; 3124 bool wasCast = false; 3125 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3126 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3127 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3128 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3129 wasCast = true; 3130 } 3131 3132 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3133 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3134 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3135 if (wasCast) 3136 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3137 3138 return tmp5; 3139 } 3140 3141 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3142 // select instead of as control flow. We can only do this if it is cheap and 3143 // safe to evaluate the LHS and RHS unconditionally. 3144 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3145 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3146 Cnt.beginRegion(Builder); 3147 3148 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3149 llvm::Value *LHS = Visit(lhsExpr); 3150 llvm::Value *RHS = Visit(rhsExpr); 3151 if (!LHS) { 3152 // If the conditional has void type, make sure we return a null Value*. 3153 assert(!RHS && "LHS and RHS types must match"); 3154 return nullptr; 3155 } 3156 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3157 } 3158 3159 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3160 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3161 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3162 3163 CodeGenFunction::ConditionalEvaluation eval(CGF); 3164 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, Cnt.getCount()); 3165 3166 CGF.EmitBlock(LHSBlock); 3167 Cnt.beginRegion(Builder); 3168 eval.begin(CGF); 3169 Value *LHS = Visit(lhsExpr); 3170 eval.end(CGF); 3171 3172 LHSBlock = Builder.GetInsertBlock(); 3173 Builder.CreateBr(ContBlock); 3174 3175 CGF.EmitBlock(RHSBlock); 3176 eval.begin(CGF); 3177 Value *RHS = Visit(rhsExpr); 3178 eval.end(CGF); 3179 3180 RHSBlock = Builder.GetInsertBlock(); 3181 CGF.EmitBlock(ContBlock); 3182 3183 // If the LHS or RHS is a throw expression, it will be legitimately null. 3184 if (!LHS) 3185 return RHS; 3186 if (!RHS) 3187 return LHS; 3188 3189 // Create a PHI node for the real part. 3190 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3191 PN->addIncoming(LHS, LHSBlock); 3192 PN->addIncoming(RHS, RHSBlock); 3193 return PN; 3194 } 3195 3196 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3197 return Visit(E->getChosenSubExpr()); 3198 } 3199 3200 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3201 QualType Ty = VE->getType(); 3202 if (Ty->isVariablyModifiedType()) 3203 CGF.EmitVariablyModifiedType(Ty); 3204 3205 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 3206 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 3207 3208 // If EmitVAArg fails, we fall back to the LLVM instruction. 3209 if (!ArgPtr) 3210 return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType())); 3211 3212 // FIXME Volatility. 3213 return Builder.CreateLoad(ArgPtr); 3214 } 3215 3216 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3217 return CGF.EmitBlockLiteral(block); 3218 } 3219 3220 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3221 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3222 llvm::Type *DstTy = ConvertType(E->getType()); 3223 3224 // Going from vec4->vec3 or vec3->vec4 is a special case and requires 3225 // a shuffle vector instead of a bitcast. 3226 llvm::Type *SrcTy = Src->getType(); 3227 if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) { 3228 unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements(); 3229 unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements(); 3230 if ((numElementsDst == 3 && numElementsSrc == 4) 3231 || (numElementsDst == 4 && numElementsSrc == 3)) { 3232 3233 3234 // In the case of going from int4->float3, a bitcast is needed before 3235 // doing a shuffle. 3236 llvm::Type *srcElemTy = 3237 cast<llvm::VectorType>(SrcTy)->getElementType(); 3238 llvm::Type *dstElemTy = 3239 cast<llvm::VectorType>(DstTy)->getElementType(); 3240 3241 if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy()) 3242 || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) { 3243 // Create a float type of the same size as the source or destination. 3244 llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy, 3245 numElementsSrc); 3246 3247 Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast"); 3248 } 3249 3250 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3251 3252 SmallVector<llvm::Constant*, 3> Args; 3253 Args.push_back(Builder.getInt32(0)); 3254 Args.push_back(Builder.getInt32(1)); 3255 Args.push_back(Builder.getInt32(2)); 3256 3257 if (numElementsDst == 4) 3258 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3259 3260 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3261 3262 return Builder.CreateShuffleVector(Src, UnV, Mask, "astype"); 3263 } 3264 } 3265 3266 return Builder.CreateBitCast(Src, DstTy, "astype"); 3267 } 3268 3269 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3270 return CGF.EmitAtomicExpr(E).getScalarVal(); 3271 } 3272 3273 //===----------------------------------------------------------------------===// 3274 // Entry Point into this File 3275 //===----------------------------------------------------------------------===// 3276 3277 /// EmitScalarExpr - Emit the computation of the specified expression of scalar 3278 /// type, ignoring the result. 3279 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3280 assert(E && hasScalarEvaluationKind(E->getType()) && 3281 "Invalid scalar expression to emit"); 3282 3283 if (isa<CXXDefaultArgExpr>(E)) 3284 disableDebugInfo(); 3285 Value *V = ScalarExprEmitter(*this, IgnoreResultAssign) 3286 .Visit(const_cast<Expr*>(E)); 3287 if (isa<CXXDefaultArgExpr>(E)) 3288 enableDebugInfo(); 3289 return V; 3290 } 3291 3292 /// EmitScalarConversion - Emit a conversion from the specified type to the 3293 /// specified destination type, both of which are LLVM scalar types. 3294 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3295 QualType DstTy) { 3296 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3297 "Invalid scalar expression to emit"); 3298 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy); 3299 } 3300 3301 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 3302 /// type to the specified destination type, where the destination type is an 3303 /// LLVM scalar type. 3304 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3305 QualType SrcTy, 3306 QualType DstTy) { 3307 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3308 "Invalid complex -> scalar conversion"); 3309 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy, 3310 DstTy); 3311 } 3312 3313 3314 llvm::Value *CodeGenFunction:: 3315 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3316 bool isInc, bool isPre) { 3317 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3318 } 3319 3320 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3321 llvm::Value *V; 3322 // object->isa or (*object).isa 3323 // Generate code as for: *(Class*)object 3324 // build Class* type 3325 llvm::Type *ClassPtrTy = ConvertType(E->getType()); 3326 3327 Expr *BaseExpr = E->getBase(); 3328 if (BaseExpr->isRValue()) { 3329 V = CreateMemTemp(E->getType(), "resval"); 3330 llvm::Value *Src = EmitScalarExpr(BaseExpr); 3331 Builder.CreateStore(Src, V); 3332 V = ScalarExprEmitter(*this).EmitLoadOfLValue( 3333 MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc()); 3334 } else { 3335 if (E->isArrow()) 3336 V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr); 3337 else 3338 V = EmitLValue(BaseExpr).getAddress(); 3339 } 3340 3341 // build Class* type 3342 ClassPtrTy = ClassPtrTy->getPointerTo(); 3343 V = Builder.CreateBitCast(V, ClassPtrTy); 3344 return MakeNaturalAlignAddrLValue(V, E->getType()); 3345 } 3346 3347 3348 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3349 const CompoundAssignOperator *E) { 3350 ScalarExprEmitter Scalar(*this); 3351 Value *Result = nullptr; 3352 switch (E->getOpcode()) { 3353 #define COMPOUND_OP(Op) \ 3354 case BO_##Op##Assign: \ 3355 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3356 Result) 3357 COMPOUND_OP(Mul); 3358 COMPOUND_OP(Div); 3359 COMPOUND_OP(Rem); 3360 COMPOUND_OP(Add); 3361 COMPOUND_OP(Sub); 3362 COMPOUND_OP(Shl); 3363 COMPOUND_OP(Shr); 3364 COMPOUND_OP(And); 3365 COMPOUND_OP(Xor); 3366 COMPOUND_OP(Or); 3367 #undef COMPOUND_OP 3368 3369 case BO_PtrMemD: 3370 case BO_PtrMemI: 3371 case BO_Mul: 3372 case BO_Div: 3373 case BO_Rem: 3374 case BO_Add: 3375 case BO_Sub: 3376 case BO_Shl: 3377 case BO_Shr: 3378 case BO_LT: 3379 case BO_GT: 3380 case BO_LE: 3381 case BO_GE: 3382 case BO_EQ: 3383 case BO_NE: 3384 case BO_And: 3385 case BO_Xor: 3386 case BO_Or: 3387 case BO_LAnd: 3388 case BO_LOr: 3389 case BO_Assign: 3390 case BO_Comma: 3391 llvm_unreachable("Not valid compound assignment operators"); 3392 } 3393 3394 llvm_unreachable("Unhandled compound assignment operator"); 3395 } 3396