1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/GlobalVariable.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/Support/CFG.h" 32 #include <cstdarg> 33 34 using namespace clang; 35 using namespace CodeGen; 36 using llvm::Value; 37 38 //===----------------------------------------------------------------------===// 39 // Scalar Expression Emitter 40 //===----------------------------------------------------------------------===// 41 42 namespace { 43 struct BinOpInfo { 44 Value *LHS; 45 Value *RHS; 46 QualType Ty; // Computation Type. 47 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 48 bool FPContractable; 49 const Expr *E; // Entire expr, for error unsupported. May not be binop. 50 }; 51 52 static bool MustVisitNullValue(const Expr *E) { 53 // If a null pointer expression's type is the C++0x nullptr_t, then 54 // it's not necessarily a simple constant and it must be evaluated 55 // for its potential side effects. 56 return E->getType()->isNullPtrType(); 57 } 58 59 class ScalarExprEmitter 60 : public StmtVisitor<ScalarExprEmitter, Value*> { 61 CodeGenFunction &CGF; 62 CGBuilderTy &Builder; 63 bool IgnoreResultAssign; 64 llvm::LLVMContext &VMContext; 65 public: 66 67 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 68 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 69 VMContext(cgf.getLLVMContext()) { 70 } 71 72 //===--------------------------------------------------------------------===// 73 // Utilities 74 //===--------------------------------------------------------------------===// 75 76 bool TestAndClearIgnoreResultAssign() { 77 bool I = IgnoreResultAssign; 78 IgnoreResultAssign = false; 79 return I; 80 } 81 82 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 83 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 84 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 85 return CGF.EmitCheckedLValue(E, TCK); 86 } 87 88 void EmitBinOpCheck(Value *Check, const BinOpInfo &Info); 89 90 Value *EmitLoadOfLValue(LValue LV) { 91 return CGF.EmitLoadOfLValue(LV).getScalarVal(); 92 } 93 94 /// EmitLoadOfLValue - Given an expression with complex type that represents a 95 /// value l-value, this method emits the address of the l-value, then loads 96 /// and returns the result. 97 Value *EmitLoadOfLValue(const Expr *E) { 98 return EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load)); 99 } 100 101 /// EmitConversionToBool - Convert the specified expression value to a 102 /// boolean (i1) truth value. This is equivalent to "Val != 0". 103 Value *EmitConversionToBool(Value *Src, QualType DstTy); 104 105 /// \brief Emit a check that a conversion to or from a floating-point type 106 /// does not overflow. 107 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 108 Value *Src, QualType SrcType, 109 QualType DstType, llvm::Type *DstTy); 110 111 /// EmitScalarConversion - Emit a conversion from the specified type to the 112 /// specified destination type, both of which are LLVM scalar types. 113 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy); 114 115 /// EmitComplexToScalarConversion - Emit a conversion from the specified 116 /// complex type to the specified destination type, where the destination type 117 /// is an LLVM scalar type. 118 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 119 QualType SrcTy, QualType DstTy); 120 121 /// EmitNullValue - Emit a value that corresponds to null for the given type. 122 Value *EmitNullValue(QualType Ty); 123 124 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 125 Value *EmitFloatToBoolConversion(Value *V) { 126 // Compare against 0.0 for fp scalars. 127 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 128 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 129 } 130 131 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 132 Value *EmitPointerToBoolConversion(Value *V) { 133 Value *Zero = llvm::ConstantPointerNull::get( 134 cast<llvm::PointerType>(V->getType())); 135 return Builder.CreateICmpNE(V, Zero, "tobool"); 136 } 137 138 Value *EmitIntToBoolConversion(Value *V) { 139 // Because of the type rules of C, we often end up computing a 140 // logical value, then zero extending it to int, then wanting it 141 // as a logical value again. Optimize this common case. 142 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 143 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 144 Value *Result = ZI->getOperand(0); 145 // If there aren't any more uses, zap the instruction to save space. 146 // Note that there can be more uses, for example if this 147 // is the result of an assignment. 148 if (ZI->use_empty()) 149 ZI->eraseFromParent(); 150 return Result; 151 } 152 } 153 154 return Builder.CreateIsNotNull(V, "tobool"); 155 } 156 157 //===--------------------------------------------------------------------===// 158 // Visitor Methods 159 //===--------------------------------------------------------------------===// 160 161 Value *Visit(Expr *E) { 162 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 163 } 164 165 Value *VisitStmt(Stmt *S) { 166 S->dump(CGF.getContext().getSourceManager()); 167 llvm_unreachable("Stmt can't have complex result type!"); 168 } 169 Value *VisitExpr(Expr *S); 170 171 Value *VisitParenExpr(ParenExpr *PE) { 172 return Visit(PE->getSubExpr()); 173 } 174 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 175 return Visit(E->getReplacement()); 176 } 177 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 178 return Visit(GE->getResultExpr()); 179 } 180 181 // Leaves. 182 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 183 return Builder.getInt(E->getValue()); 184 } 185 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 186 return llvm::ConstantFP::get(VMContext, E->getValue()); 187 } 188 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 189 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 190 } 191 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 192 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 193 } 194 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 195 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 196 } 197 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 198 return EmitNullValue(E->getType()); 199 } 200 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 201 return EmitNullValue(E->getType()); 202 } 203 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 204 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 205 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 206 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 207 return Builder.CreateBitCast(V, ConvertType(E->getType())); 208 } 209 210 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 211 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 212 } 213 214 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 215 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 216 } 217 218 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 219 if (E->isGLValue()) 220 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E)); 221 222 // Otherwise, assume the mapping is the scalar directly. 223 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 224 } 225 226 // l-values. 227 Value *VisitDeclRefExpr(DeclRefExpr *E) { 228 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 229 if (result.isReference()) 230 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E)); 231 return result.getValue(); 232 } 233 return EmitLoadOfLValue(E); 234 } 235 236 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 237 return CGF.EmitObjCSelectorExpr(E); 238 } 239 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 240 return CGF.EmitObjCProtocolExpr(E); 241 } 242 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 243 return EmitLoadOfLValue(E); 244 } 245 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 246 if (E->getMethodDecl() && 247 E->getMethodDecl()->getResultType()->isReferenceType()) 248 return EmitLoadOfLValue(E); 249 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 250 } 251 252 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 253 LValue LV = CGF.EmitObjCIsaExpr(E); 254 Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal(); 255 return V; 256 } 257 258 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 259 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 260 Value *VisitMemberExpr(MemberExpr *E); 261 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 262 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 263 return EmitLoadOfLValue(E); 264 } 265 266 Value *VisitInitListExpr(InitListExpr *E); 267 268 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 269 return EmitNullValue(E->getType()); 270 } 271 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 272 if (E->getType()->isVariablyModifiedType()) 273 CGF.EmitVariablyModifiedType(E->getType()); 274 return VisitCastExpr(E); 275 } 276 Value *VisitCastExpr(CastExpr *E); 277 278 Value *VisitCallExpr(const CallExpr *E) { 279 if (E->getCallReturnType()->isReferenceType()) 280 return EmitLoadOfLValue(E); 281 282 return CGF.EmitCallExpr(E).getScalarVal(); 283 } 284 285 Value *VisitStmtExpr(const StmtExpr *E); 286 287 // Unary Operators. 288 Value *VisitUnaryPostDec(const UnaryOperator *E) { 289 LValue LV = EmitLValue(E->getSubExpr()); 290 return EmitScalarPrePostIncDec(E, LV, false, false); 291 } 292 Value *VisitUnaryPostInc(const UnaryOperator *E) { 293 LValue LV = EmitLValue(E->getSubExpr()); 294 return EmitScalarPrePostIncDec(E, LV, true, false); 295 } 296 Value *VisitUnaryPreDec(const UnaryOperator *E) { 297 LValue LV = EmitLValue(E->getSubExpr()); 298 return EmitScalarPrePostIncDec(E, LV, false, true); 299 } 300 Value *VisitUnaryPreInc(const UnaryOperator *E) { 301 LValue LV = EmitLValue(E->getSubExpr()); 302 return EmitScalarPrePostIncDec(E, LV, true, true); 303 } 304 305 llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 306 llvm::Value *InVal, 307 llvm::Value *NextVal, 308 bool IsInc); 309 310 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 311 bool isInc, bool isPre); 312 313 314 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 315 if (isa<MemberPointerType>(E->getType())) // never sugared 316 return CGF.CGM.getMemberPointerConstant(E); 317 318 return EmitLValue(E->getSubExpr()).getAddress(); 319 } 320 Value *VisitUnaryDeref(const UnaryOperator *E) { 321 if (E->getType()->isVoidType()) 322 return Visit(E->getSubExpr()); // the actual value should be unused 323 return EmitLoadOfLValue(E); 324 } 325 Value *VisitUnaryPlus(const UnaryOperator *E) { 326 // This differs from gcc, though, most likely due to a bug in gcc. 327 TestAndClearIgnoreResultAssign(); 328 return Visit(E->getSubExpr()); 329 } 330 Value *VisitUnaryMinus (const UnaryOperator *E); 331 Value *VisitUnaryNot (const UnaryOperator *E); 332 Value *VisitUnaryLNot (const UnaryOperator *E); 333 Value *VisitUnaryReal (const UnaryOperator *E); 334 Value *VisitUnaryImag (const UnaryOperator *E); 335 Value *VisitUnaryExtension(const UnaryOperator *E) { 336 return Visit(E->getSubExpr()); 337 } 338 339 // C++ 340 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 341 return EmitLoadOfLValue(E); 342 } 343 344 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 345 return Visit(DAE->getExpr()); 346 } 347 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 348 return CGF.LoadCXXThis(); 349 } 350 351 Value *VisitExprWithCleanups(ExprWithCleanups *E) { 352 CGF.enterFullExpression(E); 353 CodeGenFunction::RunCleanupsScope Scope(CGF); 354 return Visit(E->getSubExpr()); 355 } 356 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 357 return CGF.EmitCXXNewExpr(E); 358 } 359 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 360 CGF.EmitCXXDeleteExpr(E); 361 return 0; 362 } 363 Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) { 364 return Builder.getInt1(E->getValue()); 365 } 366 367 Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) { 368 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 369 } 370 371 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 372 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 373 } 374 375 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 376 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 377 } 378 379 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 380 // C++ [expr.pseudo]p1: 381 // The result shall only be used as the operand for the function call 382 // operator (), and the result of such a call has type void. The only 383 // effect is the evaluation of the postfix-expression before the dot or 384 // arrow. 385 CGF.EmitScalarExpr(E->getBase()); 386 return 0; 387 } 388 389 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 390 return EmitNullValue(E->getType()); 391 } 392 393 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 394 CGF.EmitCXXThrowExpr(E); 395 return 0; 396 } 397 398 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 399 return Builder.getInt1(E->getValue()); 400 } 401 402 // Binary Operators. 403 Value *EmitMul(const BinOpInfo &Ops) { 404 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 405 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 406 case LangOptions::SOB_Defined: 407 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 408 case LangOptions::SOB_Undefined: 409 if (!CGF.SanOpts->SignedIntegerOverflow) 410 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 411 // Fall through. 412 case LangOptions::SOB_Trapping: 413 return EmitOverflowCheckedBinOp(Ops); 414 } 415 } 416 417 if (Ops.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) 418 return EmitOverflowCheckedBinOp(Ops); 419 420 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 421 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 422 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 423 } 424 /// Create a binary op that checks for overflow. 425 /// Currently only supports +, - and *. 426 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 427 428 // Check for undefined division and modulus behaviors. 429 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 430 llvm::Value *Zero,bool isDiv); 431 // Common helper for getting how wide LHS of shift is. 432 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 433 Value *EmitDiv(const BinOpInfo &Ops); 434 Value *EmitRem(const BinOpInfo &Ops); 435 Value *EmitAdd(const BinOpInfo &Ops); 436 Value *EmitSub(const BinOpInfo &Ops); 437 Value *EmitShl(const BinOpInfo &Ops); 438 Value *EmitShr(const BinOpInfo &Ops); 439 Value *EmitAnd(const BinOpInfo &Ops) { 440 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 441 } 442 Value *EmitXor(const BinOpInfo &Ops) { 443 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 444 } 445 Value *EmitOr (const BinOpInfo &Ops) { 446 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 447 } 448 449 BinOpInfo EmitBinOps(const BinaryOperator *E); 450 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 451 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 452 Value *&Result); 453 454 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 455 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 456 457 // Binary operators and binary compound assignment operators. 458 #define HANDLEBINOP(OP) \ 459 Value *VisitBin ## OP(const BinaryOperator *E) { \ 460 return Emit ## OP(EmitBinOps(E)); \ 461 } \ 462 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 463 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 464 } 465 HANDLEBINOP(Mul) 466 HANDLEBINOP(Div) 467 HANDLEBINOP(Rem) 468 HANDLEBINOP(Add) 469 HANDLEBINOP(Sub) 470 HANDLEBINOP(Shl) 471 HANDLEBINOP(Shr) 472 HANDLEBINOP(And) 473 HANDLEBINOP(Xor) 474 HANDLEBINOP(Or) 475 #undef HANDLEBINOP 476 477 // Comparisons. 478 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, 479 unsigned SICmpOpc, unsigned FCmpOpc); 480 #define VISITCOMP(CODE, UI, SI, FP) \ 481 Value *VisitBin##CODE(const BinaryOperator *E) { \ 482 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 483 llvm::FCmpInst::FP); } 484 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 485 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 486 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 487 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 488 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 489 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 490 #undef VISITCOMP 491 492 Value *VisitBinAssign (const BinaryOperator *E); 493 494 Value *VisitBinLAnd (const BinaryOperator *E); 495 Value *VisitBinLOr (const BinaryOperator *E); 496 Value *VisitBinComma (const BinaryOperator *E); 497 498 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 499 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 500 501 // Other Operators. 502 Value *VisitBlockExpr(const BlockExpr *BE); 503 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 504 Value *VisitChooseExpr(ChooseExpr *CE); 505 Value *VisitVAArgExpr(VAArgExpr *VE); 506 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 507 return CGF.EmitObjCStringLiteral(E); 508 } 509 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 510 return CGF.EmitObjCBoxedExpr(E); 511 } 512 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 513 return CGF.EmitObjCArrayLiteral(E); 514 } 515 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 516 return CGF.EmitObjCDictionaryLiteral(E); 517 } 518 Value *VisitAsTypeExpr(AsTypeExpr *CE); 519 Value *VisitAtomicExpr(AtomicExpr *AE); 520 }; 521 } // end anonymous namespace. 522 523 //===----------------------------------------------------------------------===// 524 // Utilities 525 //===----------------------------------------------------------------------===// 526 527 /// EmitConversionToBool - Convert the specified expression value to a 528 /// boolean (i1) truth value. This is equivalent to "Val != 0". 529 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 530 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 531 532 if (SrcType->isRealFloatingType()) 533 return EmitFloatToBoolConversion(Src); 534 535 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 536 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 537 538 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 539 "Unknown scalar type to convert"); 540 541 if (isa<llvm::IntegerType>(Src->getType())) 542 return EmitIntToBoolConversion(Src); 543 544 assert(isa<llvm::PointerType>(Src->getType())); 545 return EmitPointerToBoolConversion(Src); 546 } 547 548 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc, 549 QualType OrigSrcType, 550 Value *Src, QualType SrcType, 551 QualType DstType, 552 llvm::Type *DstTy) { 553 using llvm::APFloat; 554 using llvm::APSInt; 555 556 llvm::Type *SrcTy = Src->getType(); 557 558 llvm::Value *Check = 0; 559 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 560 // Integer to floating-point. This can fail for unsigned short -> __half 561 // or unsigned __int128 -> float. 562 assert(DstType->isFloatingType()); 563 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 564 565 APFloat LargestFloat = 566 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 567 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 568 569 bool IsExact; 570 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 571 &IsExact) != APFloat::opOK) 572 // The range of representable values of this floating point type includes 573 // all values of this integer type. Don't need an overflow check. 574 return; 575 576 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 577 if (SrcIsUnsigned) 578 Check = Builder.CreateICmpULE(Src, Max); 579 else { 580 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 581 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 582 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 583 Check = Builder.CreateAnd(GE, LE); 584 } 585 } else { 586 // Floating-point to integer or floating-point to floating-point. This has 587 // undefined behavior if the source is +-Inf, NaN, or doesn't fit into the 588 // destination type (after truncation to an integer for float-to-integer). 589 const llvm::fltSemantics &SrcSema = 590 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 591 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 592 APFloat MinSrc(SrcSema, APFloat::uninitialized); 593 594 if (isa<llvm::IntegerType>(DstTy)) { 595 unsigned Width = CGF.getContext().getIntWidth(DstType); 596 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 597 598 APSInt Min = APSInt::getMinValue(Width, Unsigned); 599 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 600 APFloat::opOverflow) 601 // Don't need an overflow check for lower bound. Just check for 602 // -Inf/NaN. 603 MinSrc = APFloat::getInf(SrcSema, true); 604 else 605 // Find the largest value which is too small to represent (before 606 // truncation toward zero). 607 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 608 609 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 610 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 611 APFloat::opOverflow) 612 // Don't need an overflow check for upper bound. Just check for 613 // +Inf/NaN. 614 MaxSrc = APFloat::getInf(SrcSema, false); 615 else 616 // Find the smallest value which is too large to represent (before 617 // truncation toward zero). 618 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 619 } else { 620 const llvm::fltSemantics &DstSema = 621 CGF.getContext().getFloatTypeSemantics(DstType); 622 bool IsInexact; 623 624 MinSrc = APFloat::getLargest(DstSema, true); 625 if (MinSrc.convert(SrcSema, APFloat::rmTowardZero, &IsInexact) & 626 APFloat::opOverflow) 627 MinSrc = APFloat::getLargest(SrcSema, true); 628 629 MaxSrc = APFloat::getLargest(DstSema, false); 630 if (MaxSrc.convert(SrcSema, APFloat::rmTowardZero, &IsInexact) & 631 APFloat::opOverflow) 632 MaxSrc = APFloat::getLargest(SrcSema, false); 633 } 634 635 // If we're converting from __half, convert the range to float to match 636 // the type of src. 637 if (OrigSrcType->isHalfType()) { 638 const llvm::fltSemantics &Sema = 639 CGF.getContext().getFloatTypeSemantics(SrcType); 640 bool IsInexact; 641 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 642 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 643 } 644 645 if (isa<llvm::IntegerType>(DstTy)) { 646 llvm::Value *GE = 647 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 648 llvm::Value *LE = 649 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 650 Check = Builder.CreateAnd(GE, LE); 651 } else { 652 llvm::Value *GE = 653 Builder.CreateFCmpOGE(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 654 llvm::Value *LE = 655 Builder.CreateFCmpOLE(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 656 Check = Builder.CreateAnd(GE, LE); 657 } 658 } 659 660 // FIXME: Provide a SourceLocation. 661 llvm::Constant *StaticArgs[] = { 662 CGF.EmitCheckTypeDescriptor(OrigSrcType), 663 CGF.EmitCheckTypeDescriptor(DstType) 664 }; 665 CGF.EmitCheck(Check, "float_cast_overflow", StaticArgs, OrigSrc, 666 CodeGenFunction::CRK_Recoverable); 667 } 668 669 /// EmitScalarConversion - Emit a conversion from the specified type to the 670 /// specified destination type, both of which are LLVM scalar types. 671 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 672 QualType DstType) { 673 SrcType = CGF.getContext().getCanonicalType(SrcType); 674 DstType = CGF.getContext().getCanonicalType(DstType); 675 if (SrcType == DstType) return Src; 676 677 if (DstType->isVoidType()) return 0; 678 679 llvm::Value *OrigSrc = Src; 680 QualType OrigSrcType = SrcType; 681 llvm::Type *SrcTy = Src->getType(); 682 683 // If casting to/from storage-only half FP, use special intrinsics. 684 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 685 Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src); 686 SrcType = CGF.getContext().FloatTy; 687 SrcTy = CGF.FloatTy; 688 } 689 690 // Handle conversions to bool first, they are special: comparisons against 0. 691 if (DstType->isBooleanType()) 692 return EmitConversionToBool(Src, SrcType); 693 694 llvm::Type *DstTy = ConvertType(DstType); 695 696 // Ignore conversions like int -> uint. 697 if (SrcTy == DstTy) 698 return Src; 699 700 // Handle pointer conversions next: pointers can only be converted to/from 701 // other pointers and integers. Check for pointer types in terms of LLVM, as 702 // some native types (like Obj-C id) may map to a pointer type. 703 if (isa<llvm::PointerType>(DstTy)) { 704 // The source value may be an integer, or a pointer. 705 if (isa<llvm::PointerType>(SrcTy)) 706 return Builder.CreateBitCast(Src, DstTy, "conv"); 707 708 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 709 // First, convert to the correct width so that we control the kind of 710 // extension. 711 llvm::Type *MiddleTy = CGF.IntPtrTy; 712 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 713 llvm::Value* IntResult = 714 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 715 // Then, cast to pointer. 716 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 717 } 718 719 if (isa<llvm::PointerType>(SrcTy)) { 720 // Must be an ptr to int cast. 721 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 722 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 723 } 724 725 // A scalar can be splatted to an extended vector of the same element type 726 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 727 // Cast the scalar to element type 728 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType(); 729 llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy); 730 731 // Splat the element across to all elements 732 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 733 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 734 } 735 736 // Allow bitcast from vector to integer/fp of the same size. 737 if (isa<llvm::VectorType>(SrcTy) || 738 isa<llvm::VectorType>(DstTy)) 739 return Builder.CreateBitCast(Src, DstTy, "conv"); 740 741 // Finally, we have the arithmetic types: real int/float. 742 Value *Res = NULL; 743 llvm::Type *ResTy = DstTy; 744 745 // An overflowing conversion has undefined behavior if either the source type 746 // or the destination type is a floating-point type. 747 if (CGF.SanOpts->FloatCastOverflow && 748 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 749 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, 750 DstTy); 751 752 // Cast to half via float 753 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) 754 DstTy = CGF.FloatTy; 755 756 if (isa<llvm::IntegerType>(SrcTy)) { 757 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 758 if (isa<llvm::IntegerType>(DstTy)) 759 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 760 else if (InputSigned) 761 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 762 else 763 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 764 } else if (isa<llvm::IntegerType>(DstTy)) { 765 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 766 if (DstType->isSignedIntegerOrEnumerationType()) 767 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 768 else 769 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 770 } else { 771 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 772 "Unknown real conversion"); 773 if (DstTy->getTypeID() < SrcTy->getTypeID()) 774 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 775 else 776 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 777 } 778 779 if (DstTy != ResTy) { 780 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 781 Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res); 782 } 783 784 return Res; 785 } 786 787 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 788 /// type to the specified destination type, where the destination type is an 789 /// LLVM scalar type. 790 Value *ScalarExprEmitter:: 791 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 792 QualType SrcTy, QualType DstTy) { 793 // Get the source element type. 794 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 795 796 // Handle conversions to bool first, they are special: comparisons against 0. 797 if (DstTy->isBooleanType()) { 798 // Complex != 0 -> (Real != 0) | (Imag != 0) 799 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy); 800 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy); 801 return Builder.CreateOr(Src.first, Src.second, "tobool"); 802 } 803 804 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 805 // the imaginary part of the complex value is discarded and the value of the 806 // real part is converted according to the conversion rules for the 807 // corresponding real type. 808 return EmitScalarConversion(Src.first, SrcTy, DstTy); 809 } 810 811 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 812 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 813 } 814 815 /// \brief Emit a sanitization check for the given "binary" operation (which 816 /// might actually be a unary increment which has been lowered to a binary 817 /// operation). The check passes if \p Check, which is an \c i1, is \c true. 818 void ScalarExprEmitter::EmitBinOpCheck(Value *Check, const BinOpInfo &Info) { 819 StringRef CheckName; 820 SmallVector<llvm::Constant *, 4> StaticData; 821 SmallVector<llvm::Value *, 2> DynamicData; 822 823 BinaryOperatorKind Opcode = Info.Opcode; 824 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 825 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 826 827 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 828 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 829 if (UO && UO->getOpcode() == UO_Minus) { 830 CheckName = "negate_overflow"; 831 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 832 DynamicData.push_back(Info.RHS); 833 } else { 834 if (BinaryOperator::isShiftOp(Opcode)) { 835 // Shift LHS negative or too large, or RHS out of bounds. 836 CheckName = "shift_out_of_bounds"; 837 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 838 StaticData.push_back( 839 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 840 StaticData.push_back( 841 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 842 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 843 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 844 CheckName = "divrem_overflow"; 845 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 846 } else { 847 // Signed arithmetic overflow (+, -, *). 848 switch (Opcode) { 849 case BO_Add: CheckName = "add_overflow"; break; 850 case BO_Sub: CheckName = "sub_overflow"; break; 851 case BO_Mul: CheckName = "mul_overflow"; break; 852 default: llvm_unreachable("unexpected opcode for bin op check"); 853 } 854 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 855 } 856 DynamicData.push_back(Info.LHS); 857 DynamicData.push_back(Info.RHS); 858 } 859 860 CGF.EmitCheck(Check, CheckName, StaticData, DynamicData, 861 CodeGenFunction::CRK_Recoverable); 862 } 863 864 //===----------------------------------------------------------------------===// 865 // Visitor Methods 866 //===----------------------------------------------------------------------===// 867 868 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 869 CGF.ErrorUnsupported(E, "scalar expression"); 870 if (E->getType()->isVoidType()) 871 return 0; 872 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 873 } 874 875 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 876 // Vector Mask Case 877 if (E->getNumSubExprs() == 2 || 878 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) { 879 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 880 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 881 Value *Mask; 882 883 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 884 unsigned LHSElts = LTy->getNumElements(); 885 886 if (E->getNumSubExprs() == 3) { 887 Mask = CGF.EmitScalarExpr(E->getExpr(2)); 888 889 // Shuffle LHS & RHS into one input vector. 890 SmallVector<llvm::Constant*, 32> concat; 891 for (unsigned i = 0; i != LHSElts; ++i) { 892 concat.push_back(Builder.getInt32(2*i)); 893 concat.push_back(Builder.getInt32(2*i+1)); 894 } 895 896 Value* CV = llvm::ConstantVector::get(concat); 897 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat"); 898 LHSElts *= 2; 899 } else { 900 Mask = RHS; 901 } 902 903 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 904 llvm::Constant* EltMask; 905 906 // Treat vec3 like vec4. 907 if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) 908 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 909 (1 << llvm::Log2_32(LHSElts+2))-1); 910 else if ((LHSElts == 3) && (E->getNumSubExprs() == 2)) 911 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 912 (1 << llvm::Log2_32(LHSElts+1))-1); 913 else 914 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 915 (1 << llvm::Log2_32(LHSElts))-1); 916 917 // Mask off the high bits of each shuffle index. 918 Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(), 919 EltMask); 920 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 921 922 // newv = undef 923 // mask = mask & maskbits 924 // for each elt 925 // n = extract mask i 926 // x = extract val n 927 // newv = insert newv, x, i 928 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 929 MTy->getNumElements()); 930 Value* NewV = llvm::UndefValue::get(RTy); 931 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 932 Value *IIndx = Builder.getInt32(i); 933 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 934 Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext"); 935 936 // Handle vec3 special since the index will be off by one for the RHS. 937 if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) { 938 Value *cmpIndx, *newIndx; 939 cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3), 940 "cmp_shuf_idx"); 941 newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj"); 942 Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx"); 943 } 944 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 945 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 946 } 947 return NewV; 948 } 949 950 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 951 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 952 953 // Handle vec3 special since the index will be off by one for the RHS. 954 llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType()); 955 SmallVector<llvm::Constant*, 32> indices; 956 for (unsigned i = 2; i < E->getNumSubExprs(); i++) { 957 unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 958 if (VTy->getNumElements() == 3 && Idx > 3) 959 Idx -= 1; 960 indices.push_back(Builder.getInt32(Idx)); 961 } 962 963 Value *SV = llvm::ConstantVector::get(indices); 964 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 965 } 966 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 967 llvm::APSInt Value; 968 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 969 if (E->isArrow()) 970 CGF.EmitScalarExpr(E->getBase()); 971 else 972 EmitLValue(E->getBase()); 973 return Builder.getInt(Value); 974 } 975 976 // Emit debug info for aggregate now, if it was delayed to reduce 977 // debug info size. 978 CGDebugInfo *DI = CGF.getDebugInfo(); 979 if (DI && 980 CGF.CGM.getCodeGenOpts().getDebugInfo() 981 == CodeGenOptions::LimitedDebugInfo) { 982 QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType(); 983 if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) 984 if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl())) 985 DI->getOrCreateRecordType(PTy->getPointeeType(), 986 M->getParent()->getLocation()); 987 } 988 return EmitLoadOfLValue(E); 989 } 990 991 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 992 TestAndClearIgnoreResultAssign(); 993 994 // Emit subscript expressions in rvalue context's. For most cases, this just 995 // loads the lvalue formed by the subscript expr. However, we have to be 996 // careful, because the base of a vector subscript is occasionally an rvalue, 997 // so we can't get it as an lvalue. 998 if (!E->getBase()->getType()->isVectorType()) 999 return EmitLoadOfLValue(E); 1000 1001 // Handle the vector case. The base must be a vector, the index must be an 1002 // integer value. 1003 Value *Base = Visit(E->getBase()); 1004 Value *Idx = Visit(E->getIdx()); 1005 QualType IdxTy = E->getIdx()->getType(); 1006 1007 if (CGF.SanOpts->Bounds) 1008 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1009 1010 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 1011 Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast"); 1012 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1013 } 1014 1015 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1016 unsigned Off, llvm::Type *I32Ty) { 1017 int MV = SVI->getMaskValue(Idx); 1018 if (MV == -1) 1019 return llvm::UndefValue::get(I32Ty); 1020 return llvm::ConstantInt::get(I32Ty, Off+MV); 1021 } 1022 1023 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1024 bool Ignore = TestAndClearIgnoreResultAssign(); 1025 (void)Ignore; 1026 assert (Ignore == false && "init list ignored"); 1027 unsigned NumInitElements = E->getNumInits(); 1028 1029 if (E->hadArrayRangeDesignator()) 1030 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1031 1032 llvm::VectorType *VType = 1033 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1034 1035 if (!VType) { 1036 if (NumInitElements == 0) { 1037 // C++11 value-initialization for the scalar. 1038 return EmitNullValue(E->getType()); 1039 } 1040 // We have a scalar in braces. Just use the first element. 1041 return Visit(E->getInit(0)); 1042 } 1043 1044 unsigned ResElts = VType->getNumElements(); 1045 1046 // Loop over initializers collecting the Value for each, and remembering 1047 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1048 // us to fold the shuffle for the swizzle into the shuffle for the vector 1049 // initializer, since LLVM optimizers generally do not want to touch 1050 // shuffles. 1051 unsigned CurIdx = 0; 1052 bool VIsUndefShuffle = false; 1053 llvm::Value *V = llvm::UndefValue::get(VType); 1054 for (unsigned i = 0; i != NumInitElements; ++i) { 1055 Expr *IE = E->getInit(i); 1056 Value *Init = Visit(IE); 1057 SmallVector<llvm::Constant*, 16> Args; 1058 1059 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1060 1061 // Handle scalar elements. If the scalar initializer is actually one 1062 // element of a different vector of the same width, use shuffle instead of 1063 // extract+insert. 1064 if (!VVT) { 1065 if (isa<ExtVectorElementExpr>(IE)) { 1066 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1067 1068 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1069 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1070 Value *LHS = 0, *RHS = 0; 1071 if (CurIdx == 0) { 1072 // insert into undef -> shuffle (src, undef) 1073 Args.push_back(C); 1074 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1075 1076 LHS = EI->getVectorOperand(); 1077 RHS = V; 1078 VIsUndefShuffle = true; 1079 } else if (VIsUndefShuffle) { 1080 // insert into undefshuffle && size match -> shuffle (v, src) 1081 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1082 for (unsigned j = 0; j != CurIdx; ++j) 1083 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1084 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1085 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1086 1087 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1088 RHS = EI->getVectorOperand(); 1089 VIsUndefShuffle = false; 1090 } 1091 if (!Args.empty()) { 1092 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1093 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1094 ++CurIdx; 1095 continue; 1096 } 1097 } 1098 } 1099 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1100 "vecinit"); 1101 VIsUndefShuffle = false; 1102 ++CurIdx; 1103 continue; 1104 } 1105 1106 unsigned InitElts = VVT->getNumElements(); 1107 1108 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1109 // input is the same width as the vector being constructed, generate an 1110 // optimized shuffle of the swizzle input into the result. 1111 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1112 if (isa<ExtVectorElementExpr>(IE)) { 1113 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1114 Value *SVOp = SVI->getOperand(0); 1115 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1116 1117 if (OpTy->getNumElements() == ResElts) { 1118 for (unsigned j = 0; j != CurIdx; ++j) { 1119 // If the current vector initializer is a shuffle with undef, merge 1120 // this shuffle directly into it. 1121 if (VIsUndefShuffle) { 1122 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1123 CGF.Int32Ty)); 1124 } else { 1125 Args.push_back(Builder.getInt32(j)); 1126 } 1127 } 1128 for (unsigned j = 0, je = InitElts; j != je; ++j) 1129 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1130 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1131 1132 if (VIsUndefShuffle) 1133 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1134 1135 Init = SVOp; 1136 } 1137 } 1138 1139 // Extend init to result vector length, and then shuffle its contribution 1140 // to the vector initializer into V. 1141 if (Args.empty()) { 1142 for (unsigned j = 0; j != InitElts; ++j) 1143 Args.push_back(Builder.getInt32(j)); 1144 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1145 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1146 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1147 Mask, "vext"); 1148 1149 Args.clear(); 1150 for (unsigned j = 0; j != CurIdx; ++j) 1151 Args.push_back(Builder.getInt32(j)); 1152 for (unsigned j = 0; j != InitElts; ++j) 1153 Args.push_back(Builder.getInt32(j+Offset)); 1154 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1155 } 1156 1157 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1158 // merging subsequent shuffles into this one. 1159 if (CurIdx == 0) 1160 std::swap(V, Init); 1161 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1162 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1163 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1164 CurIdx += InitElts; 1165 } 1166 1167 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1168 // Emit remaining default initializers. 1169 llvm::Type *EltTy = VType->getElementType(); 1170 1171 // Emit remaining default initializers 1172 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1173 Value *Idx = Builder.getInt32(CurIdx); 1174 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1175 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1176 } 1177 return V; 1178 } 1179 1180 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) { 1181 const Expr *E = CE->getSubExpr(); 1182 1183 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1184 return false; 1185 1186 if (isa<CXXThisExpr>(E)) { 1187 // We always assume that 'this' is never null. 1188 return false; 1189 } 1190 1191 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1192 // And that glvalue casts are never null. 1193 if (ICE->getValueKind() != VK_RValue) 1194 return false; 1195 } 1196 1197 return true; 1198 } 1199 1200 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1201 // have to handle a more broad range of conversions than explicit casts, as they 1202 // handle things like function to ptr-to-function decay etc. 1203 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1204 Expr *E = CE->getSubExpr(); 1205 QualType DestTy = CE->getType(); 1206 CastKind Kind = CE->getCastKind(); 1207 1208 if (!DestTy->isVoidType()) 1209 TestAndClearIgnoreResultAssign(); 1210 1211 // Since almost all cast kinds apply to scalars, this switch doesn't have 1212 // a default case, so the compiler will warn on a missing case. The cases 1213 // are in the same order as in the CastKind enum. 1214 switch (Kind) { 1215 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1216 case CK_BuiltinFnToFnPtr: 1217 llvm_unreachable("builtin functions are handled elsewhere"); 1218 1219 case CK_LValueBitCast: 1220 case CK_ObjCObjectLValueCast: { 1221 Value *V = EmitLValue(E).getAddress(); 1222 V = Builder.CreateBitCast(V, 1223 ConvertType(CGF.getContext().getPointerType(DestTy))); 1224 return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy)); 1225 } 1226 1227 case CK_CPointerToObjCPointerCast: 1228 case CK_BlockPointerToObjCPointerCast: 1229 case CK_AnyPointerToBlockPointerCast: 1230 case CK_BitCast: { 1231 Value *Src = Visit(const_cast<Expr*>(E)); 1232 return Builder.CreateBitCast(Src, ConvertType(DestTy)); 1233 } 1234 case CK_AtomicToNonAtomic: 1235 case CK_NonAtomicToAtomic: 1236 case CK_NoOp: 1237 case CK_UserDefinedConversion: 1238 return Visit(const_cast<Expr*>(E)); 1239 1240 case CK_BaseToDerived: { 1241 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1242 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1243 1244 llvm::Value *V = Visit(E); 1245 1246 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1247 // performed and the object is not of the derived type. 1248 if (CGF.SanitizePerformTypeCheck) 1249 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1250 V, DestTy->getPointeeType()); 1251 1252 return CGF.GetAddressOfDerivedClass(V, DerivedClassDecl, 1253 CE->path_begin(), CE->path_end(), 1254 ShouldNullCheckClassCastValue(CE)); 1255 } 1256 case CK_UncheckedDerivedToBase: 1257 case CK_DerivedToBase: { 1258 const CXXRecordDecl *DerivedClassDecl = 1259 E->getType()->getPointeeCXXRecordDecl(); 1260 assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!"); 1261 1262 return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl, 1263 CE->path_begin(), CE->path_end(), 1264 ShouldNullCheckClassCastValue(CE)); 1265 } 1266 case CK_Dynamic: { 1267 Value *V = Visit(const_cast<Expr*>(E)); 1268 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1269 return CGF.EmitDynamicCast(V, DCE); 1270 } 1271 1272 case CK_ArrayToPointerDecay: { 1273 assert(E->getType()->isArrayType() && 1274 "Array to pointer decay must have array source type!"); 1275 1276 Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays. 1277 1278 // Note that VLA pointers are always decayed, so we don't need to do 1279 // anything here. 1280 if (!E->getType()->isVariableArrayType()) { 1281 assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer"); 1282 assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType()) 1283 ->getElementType()) && 1284 "Expected pointer to array"); 1285 V = Builder.CreateStructGEP(V, 0, "arraydecay"); 1286 } 1287 1288 // Make sure the array decay ends up being the right type. This matters if 1289 // the array type was of an incomplete type. 1290 return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType())); 1291 } 1292 case CK_FunctionToPointerDecay: 1293 return EmitLValue(E).getAddress(); 1294 1295 case CK_NullToPointer: 1296 if (MustVisitNullValue(E)) 1297 (void) Visit(E); 1298 1299 return llvm::ConstantPointerNull::get( 1300 cast<llvm::PointerType>(ConvertType(DestTy))); 1301 1302 case CK_NullToMemberPointer: { 1303 if (MustVisitNullValue(E)) 1304 (void) Visit(E); 1305 1306 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1307 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1308 } 1309 1310 case CK_ReinterpretMemberPointer: 1311 case CK_BaseToDerivedMemberPointer: 1312 case CK_DerivedToBaseMemberPointer: { 1313 Value *Src = Visit(E); 1314 1315 // Note that the AST doesn't distinguish between checked and 1316 // unchecked member pointer conversions, so we always have to 1317 // implement checked conversions here. This is inefficient when 1318 // actual control flow may be required in order to perform the 1319 // check, which it is for data member pointers (but not member 1320 // function pointers on Itanium and ARM). 1321 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1322 } 1323 1324 case CK_ARCProduceObject: 1325 return CGF.EmitARCRetainScalarExpr(E); 1326 case CK_ARCConsumeObject: 1327 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1328 case CK_ARCReclaimReturnedObject: { 1329 llvm::Value *value = Visit(E); 1330 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 1331 return CGF.EmitObjCConsumeObject(E->getType(), value); 1332 } 1333 case CK_ARCExtendBlockObject: 1334 return CGF.EmitARCExtendBlockObject(E); 1335 1336 case CK_CopyAndAutoreleaseBlockObject: 1337 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1338 1339 case CK_FloatingRealToComplex: 1340 case CK_FloatingComplexCast: 1341 case CK_IntegralRealToComplex: 1342 case CK_IntegralComplexCast: 1343 case CK_IntegralComplexToFloatingComplex: 1344 case CK_FloatingComplexToIntegralComplex: 1345 case CK_ConstructorConversion: 1346 case CK_ToUnion: 1347 llvm_unreachable("scalar cast to non-scalar value"); 1348 1349 case CK_LValueToRValue: 1350 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1351 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1352 return Visit(const_cast<Expr*>(E)); 1353 1354 case CK_IntegralToPointer: { 1355 Value *Src = Visit(const_cast<Expr*>(E)); 1356 1357 // First, convert to the correct width so that we control the kind of 1358 // extension. 1359 llvm::Type *MiddleTy = CGF.IntPtrTy; 1360 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1361 llvm::Value* IntResult = 1362 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1363 1364 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); 1365 } 1366 case CK_PointerToIntegral: 1367 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1368 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1369 1370 case CK_ToVoid: { 1371 CGF.EmitIgnoredExpr(E); 1372 return 0; 1373 } 1374 case CK_VectorSplat: { 1375 llvm::Type *DstTy = ConvertType(DestTy); 1376 Value *Elt = Visit(const_cast<Expr*>(E)); 1377 Elt = EmitScalarConversion(Elt, E->getType(), 1378 DestTy->getAs<VectorType>()->getElementType()); 1379 1380 // Splat the element across to all elements 1381 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 1382 return Builder.CreateVectorSplat(NumElements, Elt, "splat");; 1383 } 1384 1385 case CK_IntegralCast: 1386 case CK_IntegralToFloating: 1387 case CK_FloatingToIntegral: 1388 case CK_FloatingCast: 1389 return EmitScalarConversion(Visit(E), E->getType(), DestTy); 1390 case CK_IntegralToBoolean: 1391 return EmitIntToBoolConversion(Visit(E)); 1392 case CK_PointerToBoolean: 1393 return EmitPointerToBoolConversion(Visit(E)); 1394 case CK_FloatingToBoolean: 1395 return EmitFloatToBoolConversion(Visit(E)); 1396 case CK_MemberPointerToBoolean: { 1397 llvm::Value *MemPtr = Visit(E); 1398 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1399 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1400 } 1401 1402 case CK_FloatingComplexToReal: 1403 case CK_IntegralComplexToReal: 1404 return CGF.EmitComplexExpr(E, false, true).first; 1405 1406 case CK_FloatingComplexToBoolean: 1407 case CK_IntegralComplexToBoolean: { 1408 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1409 1410 // TODO: kill this function off, inline appropriate case here 1411 return EmitComplexToScalarConversion(V, E->getType(), DestTy); 1412 } 1413 1414 case CK_ZeroToOCLEvent: { 1415 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non event type"); 1416 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1417 } 1418 1419 } 1420 1421 llvm_unreachable("unknown scalar cast"); 1422 } 1423 1424 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1425 CodeGenFunction::StmtExprEvaluation eval(CGF); 1426 return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType()) 1427 .getScalarVal(); 1428 } 1429 1430 //===----------------------------------------------------------------------===// 1431 // Unary Operators 1432 //===----------------------------------------------------------------------===// 1433 1434 llvm::Value *ScalarExprEmitter:: 1435 EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 1436 llvm::Value *InVal, 1437 llvm::Value *NextVal, bool IsInc) { 1438 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1439 case LangOptions::SOB_Defined: 1440 return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1441 case LangOptions::SOB_Undefined: 1442 if (!CGF.SanOpts->SignedIntegerOverflow) 1443 return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1444 // Fall through. 1445 case LangOptions::SOB_Trapping: 1446 BinOpInfo BinOp; 1447 BinOp.LHS = InVal; 1448 BinOp.RHS = NextVal; 1449 BinOp.Ty = E->getType(); 1450 BinOp.Opcode = BO_Add; 1451 BinOp.FPContractable = false; 1452 BinOp.E = E; 1453 return EmitOverflowCheckedBinOp(BinOp); 1454 } 1455 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1456 } 1457 1458 llvm::Value * 1459 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1460 bool isInc, bool isPre) { 1461 1462 QualType type = E->getSubExpr()->getType(); 1463 llvm::PHINode *atomicPHI = 0; 1464 llvm::Value *value; 1465 llvm::Value *input; 1466 1467 int amount = (isInc ? 1 : -1); 1468 1469 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1470 type = atomicTy->getValueType(); 1471 if (isInc && type->isBooleanType()) { 1472 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1473 if (isPre) { 1474 Builder.Insert(new llvm::StoreInst(True, 1475 LV.getAddress(), LV.isVolatileQualified(), 1476 LV.getAlignment().getQuantity(), 1477 llvm::SequentiallyConsistent)); 1478 return Builder.getTrue(); 1479 } 1480 // For atomic bool increment, we just store true and return it for 1481 // preincrement, do an atomic swap with true for postincrement 1482 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 1483 LV.getAddress(), True, llvm::SequentiallyConsistent); 1484 } 1485 // Special case for atomic increment / decrement on integers, emit 1486 // atomicrmw instructions. We skip this if we want to be doing overflow 1487 // checking, and fall into the slow path with the atomic cmpxchg loop. 1488 if (!type->isBooleanType() && type->isIntegerType() && 1489 !(type->isUnsignedIntegerType() && 1490 CGF.SanOpts->UnsignedIntegerOverflow) && 1491 CGF.getLangOpts().getSignedOverflowBehavior() != 1492 LangOptions::SOB_Trapping) { 1493 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1494 llvm::AtomicRMWInst::Sub; 1495 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1496 llvm::Instruction::Sub; 1497 llvm::Value *amt = CGF.EmitToMemory( 1498 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1499 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1500 LV.getAddress(), amt, llvm::SequentiallyConsistent); 1501 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1502 } 1503 value = EmitLoadOfLValue(LV); 1504 input = value; 1505 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1506 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1507 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1508 value = CGF.EmitToMemory(value, type); 1509 Builder.CreateBr(opBB); 1510 Builder.SetInsertPoint(opBB); 1511 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1512 atomicPHI->addIncoming(value, startBB); 1513 value = atomicPHI; 1514 } else { 1515 value = EmitLoadOfLValue(LV); 1516 input = value; 1517 } 1518 1519 // Special case of integer increment that we have to check first: bool++. 1520 // Due to promotion rules, we get: 1521 // bool++ -> bool = bool + 1 1522 // -> bool = (int)bool + 1 1523 // -> bool = ((int)bool + 1 != 0) 1524 // An interesting aspect of this is that increment is always true. 1525 // Decrement does not have this property. 1526 if (isInc && type->isBooleanType()) { 1527 value = Builder.getTrue(); 1528 1529 // Most common case by far: integer increment. 1530 } else if (type->isIntegerType()) { 1531 1532 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1533 1534 // Note that signed integer inc/dec with width less than int can't 1535 // overflow because of promotion rules; we're just eliding a few steps here. 1536 if (value->getType()->getPrimitiveSizeInBits() >= 1537 CGF.IntTy->getBitWidth() && 1538 type->isSignedIntegerOrEnumerationType()) { 1539 value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc); 1540 } else if (value->getType()->getPrimitiveSizeInBits() >= 1541 CGF.IntTy->getBitWidth() && type->isUnsignedIntegerType() && 1542 CGF.SanOpts->UnsignedIntegerOverflow) { 1543 BinOpInfo BinOp; 1544 BinOp.LHS = value; 1545 BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false); 1546 BinOp.Ty = E->getType(); 1547 BinOp.Opcode = isInc ? BO_Add : BO_Sub; 1548 BinOp.FPContractable = false; 1549 BinOp.E = E; 1550 value = EmitOverflowCheckedBinOp(BinOp); 1551 } else 1552 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1553 1554 // Next most common: pointer increment. 1555 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1556 QualType type = ptr->getPointeeType(); 1557 1558 // VLA types don't have constant size. 1559 if (const VariableArrayType *vla 1560 = CGF.getContext().getAsVariableArrayType(type)) { 1561 llvm::Value *numElts = CGF.getVLASize(vla).first; 1562 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1563 if (CGF.getLangOpts().isSignedOverflowDefined()) 1564 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1565 else 1566 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); 1567 1568 // Arithmetic on function pointers (!) is just +-1. 1569 } else if (type->isFunctionType()) { 1570 llvm::Value *amt = Builder.getInt32(amount); 1571 1572 value = CGF.EmitCastToVoidPtr(value); 1573 if (CGF.getLangOpts().isSignedOverflowDefined()) 1574 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1575 else 1576 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1577 value = Builder.CreateBitCast(value, input->getType()); 1578 1579 // For everything else, we can just do a simple increment. 1580 } else { 1581 llvm::Value *amt = Builder.getInt32(amount); 1582 if (CGF.getLangOpts().isSignedOverflowDefined()) 1583 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1584 else 1585 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1586 } 1587 1588 // Vector increment/decrement. 1589 } else if (type->isVectorType()) { 1590 if (type->hasIntegerRepresentation()) { 1591 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1592 1593 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1594 } else { 1595 value = Builder.CreateFAdd( 1596 value, 1597 llvm::ConstantFP::get(value->getType(), amount), 1598 isInc ? "inc" : "dec"); 1599 } 1600 1601 // Floating point. 1602 } else if (type->isRealFloatingType()) { 1603 // Add the inc/dec to the real part. 1604 llvm::Value *amt; 1605 1606 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1607 // Another special case: half FP increment should be done via float 1608 value = 1609 Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), 1610 input); 1611 } 1612 1613 if (value->getType()->isFloatTy()) 1614 amt = llvm::ConstantFP::get(VMContext, 1615 llvm::APFloat(static_cast<float>(amount))); 1616 else if (value->getType()->isDoubleTy()) 1617 amt = llvm::ConstantFP::get(VMContext, 1618 llvm::APFloat(static_cast<double>(amount))); 1619 else { 1620 llvm::APFloat F(static_cast<float>(amount)); 1621 bool ignored; 1622 F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero, 1623 &ignored); 1624 amt = llvm::ConstantFP::get(VMContext, F); 1625 } 1626 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 1627 1628 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) 1629 value = 1630 Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), 1631 value); 1632 1633 // Objective-C pointer types. 1634 } else { 1635 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 1636 value = CGF.EmitCastToVoidPtr(value); 1637 1638 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 1639 if (!isInc) size = -size; 1640 llvm::Value *sizeValue = 1641 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 1642 1643 if (CGF.getLangOpts().isSignedOverflowDefined()) 1644 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 1645 else 1646 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 1647 value = Builder.CreateBitCast(value, input->getType()); 1648 } 1649 1650 if (atomicPHI) { 1651 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1652 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1653 llvm::Value *old = Builder.CreateAtomicCmpXchg(LV.getAddress(), atomicPHI, 1654 CGF.EmitToMemory(value, type), llvm::SequentiallyConsistent); 1655 atomicPHI->addIncoming(old, opBB); 1656 llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI); 1657 Builder.CreateCondBr(success, contBB, opBB); 1658 Builder.SetInsertPoint(contBB); 1659 return isPre ? value : input; 1660 } 1661 1662 // Store the updated result through the lvalue. 1663 if (LV.isBitField()) 1664 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 1665 else 1666 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 1667 1668 // If this is a postinc, return the value read from memory, otherwise use the 1669 // updated value. 1670 return isPre ? value : input; 1671 } 1672 1673 1674 1675 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1676 TestAndClearIgnoreResultAssign(); 1677 // Emit unary minus with EmitSub so we handle overflow cases etc. 1678 BinOpInfo BinOp; 1679 BinOp.RHS = Visit(E->getSubExpr()); 1680 1681 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 1682 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 1683 else 1684 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 1685 BinOp.Ty = E->getType(); 1686 BinOp.Opcode = BO_Sub; 1687 BinOp.FPContractable = false; 1688 BinOp.E = E; 1689 return EmitSub(BinOp); 1690 } 1691 1692 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1693 TestAndClearIgnoreResultAssign(); 1694 Value *Op = Visit(E->getSubExpr()); 1695 return Builder.CreateNot(Op, "neg"); 1696 } 1697 1698 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1699 // Perform vector logical not on comparison with zero vector. 1700 if (E->getType()->isExtVectorType()) { 1701 Value *Oper = Visit(E->getSubExpr()); 1702 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 1703 Value *Result; 1704 if (Oper->getType()->isFPOrFPVectorTy()) 1705 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 1706 else 1707 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 1708 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 1709 } 1710 1711 // Compare operand to zero. 1712 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1713 1714 // Invert value. 1715 // TODO: Could dynamically modify easy computations here. For example, if 1716 // the operand is an icmp ne, turn into icmp eq. 1717 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1718 1719 // ZExt result to the expr type. 1720 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1721 } 1722 1723 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 1724 // Try folding the offsetof to a constant. 1725 llvm::APSInt Value; 1726 if (E->EvaluateAsInt(Value, CGF.getContext())) 1727 return Builder.getInt(Value); 1728 1729 // Loop over the components of the offsetof to compute the value. 1730 unsigned n = E->getNumComponents(); 1731 llvm::Type* ResultType = ConvertType(E->getType()); 1732 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 1733 QualType CurrentType = E->getTypeSourceInfo()->getType(); 1734 for (unsigned i = 0; i != n; ++i) { 1735 OffsetOfExpr::OffsetOfNode ON = E->getComponent(i); 1736 llvm::Value *Offset = 0; 1737 switch (ON.getKind()) { 1738 case OffsetOfExpr::OffsetOfNode::Array: { 1739 // Compute the index 1740 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 1741 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 1742 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 1743 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 1744 1745 // Save the element type 1746 CurrentType = 1747 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 1748 1749 // Compute the element size 1750 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 1751 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 1752 1753 // Multiply out to compute the result 1754 Offset = Builder.CreateMul(Idx, ElemSize); 1755 break; 1756 } 1757 1758 case OffsetOfExpr::OffsetOfNode::Field: { 1759 FieldDecl *MemberDecl = ON.getField(); 1760 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1761 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1762 1763 // Compute the index of the field in its parent. 1764 unsigned i = 0; 1765 // FIXME: It would be nice if we didn't have to loop here! 1766 for (RecordDecl::field_iterator Field = RD->field_begin(), 1767 FieldEnd = RD->field_end(); 1768 Field != FieldEnd; ++Field, ++i) { 1769 if (*Field == MemberDecl) 1770 break; 1771 } 1772 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 1773 1774 // Compute the offset to the field 1775 int64_t OffsetInt = RL.getFieldOffset(i) / 1776 CGF.getContext().getCharWidth(); 1777 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1778 1779 // Save the element type. 1780 CurrentType = MemberDecl->getType(); 1781 break; 1782 } 1783 1784 case OffsetOfExpr::OffsetOfNode::Identifier: 1785 llvm_unreachable("dependent __builtin_offsetof"); 1786 1787 case OffsetOfExpr::OffsetOfNode::Base: { 1788 if (ON.getBase()->isVirtual()) { 1789 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 1790 continue; 1791 } 1792 1793 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1794 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1795 1796 // Save the element type. 1797 CurrentType = ON.getBase()->getType(); 1798 1799 // Compute the offset to the base. 1800 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 1801 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 1802 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 1803 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 1804 break; 1805 } 1806 } 1807 Result = Builder.CreateAdd(Result, Offset); 1808 } 1809 return Result; 1810 } 1811 1812 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 1813 /// argument of the sizeof expression as an integer. 1814 Value * 1815 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 1816 const UnaryExprOrTypeTraitExpr *E) { 1817 QualType TypeToSize = E->getTypeOfArgument(); 1818 if (E->getKind() == UETT_SizeOf) { 1819 if (const VariableArrayType *VAT = 1820 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 1821 if (E->isArgumentType()) { 1822 // sizeof(type) - make sure to emit the VLA size. 1823 CGF.EmitVariablyModifiedType(TypeToSize); 1824 } else { 1825 // C99 6.5.3.4p2: If the argument is an expression of type 1826 // VLA, it is evaluated. 1827 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 1828 } 1829 1830 QualType eltType; 1831 llvm::Value *numElts; 1832 llvm::tie(numElts, eltType) = CGF.getVLASize(VAT); 1833 1834 llvm::Value *size = numElts; 1835 1836 // Scale the number of non-VLA elements by the non-VLA element size. 1837 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 1838 if (!eltSize.isOne()) 1839 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 1840 1841 return size; 1842 } 1843 } 1844 1845 // If this isn't sizeof(vla), the result must be constant; use the constant 1846 // folding logic so we don't have to duplicate it here. 1847 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 1848 } 1849 1850 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 1851 Expr *Op = E->getSubExpr(); 1852 if (Op->getType()->isAnyComplexType()) { 1853 // If it's an l-value, load through the appropriate subobject l-value. 1854 // Note that we have to ask E because Op might be an l-value that 1855 // this won't work for, e.g. an Obj-C property. 1856 if (E->isGLValue()) 1857 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal(); 1858 1859 // Otherwise, calculate and project. 1860 return CGF.EmitComplexExpr(Op, false, true).first; 1861 } 1862 1863 return Visit(Op); 1864 } 1865 1866 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 1867 Expr *Op = E->getSubExpr(); 1868 if (Op->getType()->isAnyComplexType()) { 1869 // If it's an l-value, load through the appropriate subobject l-value. 1870 // Note that we have to ask E because Op might be an l-value that 1871 // this won't work for, e.g. an Obj-C property. 1872 if (Op->isGLValue()) 1873 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal(); 1874 1875 // Otherwise, calculate and project. 1876 return CGF.EmitComplexExpr(Op, true, false).second; 1877 } 1878 1879 // __imag on a scalar returns zero. Emit the subexpr to ensure side 1880 // effects are evaluated, but not the actual value. 1881 if (Op->isGLValue()) 1882 CGF.EmitLValue(Op); 1883 else 1884 CGF.EmitScalarExpr(Op, true); 1885 return llvm::Constant::getNullValue(ConvertType(E->getType())); 1886 } 1887 1888 //===----------------------------------------------------------------------===// 1889 // Binary Operators 1890 //===----------------------------------------------------------------------===// 1891 1892 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 1893 TestAndClearIgnoreResultAssign(); 1894 BinOpInfo Result; 1895 Result.LHS = Visit(E->getLHS()); 1896 Result.RHS = Visit(E->getRHS()); 1897 Result.Ty = E->getType(); 1898 Result.Opcode = E->getOpcode(); 1899 Result.FPContractable = E->isFPContractable(); 1900 Result.E = E; 1901 return Result; 1902 } 1903 1904 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 1905 const CompoundAssignOperator *E, 1906 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 1907 Value *&Result) { 1908 QualType LHSTy = E->getLHS()->getType(); 1909 BinOpInfo OpInfo; 1910 1911 if (E->getComputationResultType()->isAnyComplexType()) { 1912 // This needs to go through the complex expression emitter, but it's a tad 1913 // complicated to do that... I'm leaving it out for now. (Note that we do 1914 // actually need the imaginary part of the RHS for multiplication and 1915 // division.) 1916 CGF.ErrorUnsupported(E, "complex compound assignment"); 1917 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1918 return LValue(); 1919 } 1920 1921 // Emit the RHS first. __block variables need to have the rhs evaluated 1922 // first, plus this should improve codegen a little. 1923 OpInfo.RHS = Visit(E->getRHS()); 1924 OpInfo.Ty = E->getComputationResultType(); 1925 OpInfo.Opcode = E->getOpcode(); 1926 OpInfo.FPContractable = false; 1927 OpInfo.E = E; 1928 // Load/convert the LHS. 1929 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 1930 1931 llvm::PHINode *atomicPHI = 0; 1932 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 1933 QualType type = atomicTy->getValueType(); 1934 if (!type->isBooleanType() && type->isIntegerType() && 1935 !(type->isUnsignedIntegerType() && 1936 CGF.SanOpts->UnsignedIntegerOverflow) && 1937 CGF.getLangOpts().getSignedOverflowBehavior() != 1938 LangOptions::SOB_Trapping) { 1939 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 1940 switch (OpInfo.Opcode) { 1941 // We don't have atomicrmw operands for *, %, /, <<, >> 1942 case BO_MulAssign: case BO_DivAssign: 1943 case BO_RemAssign: 1944 case BO_ShlAssign: 1945 case BO_ShrAssign: 1946 break; 1947 case BO_AddAssign: 1948 aop = llvm::AtomicRMWInst::Add; 1949 break; 1950 case BO_SubAssign: 1951 aop = llvm::AtomicRMWInst::Sub; 1952 break; 1953 case BO_AndAssign: 1954 aop = llvm::AtomicRMWInst::And; 1955 break; 1956 case BO_XorAssign: 1957 aop = llvm::AtomicRMWInst::Xor; 1958 break; 1959 case BO_OrAssign: 1960 aop = llvm::AtomicRMWInst::Or; 1961 break; 1962 default: 1963 llvm_unreachable("Invalid compound assignment type"); 1964 } 1965 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 1966 llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS, 1967 E->getRHS()->getType(), LHSTy), LHSTy); 1968 Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt, 1969 llvm::SequentiallyConsistent); 1970 return LHSLV; 1971 } 1972 } 1973 // FIXME: For floating point types, we should be saving and restoring the 1974 // floating point environment in the loop. 1975 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1976 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1977 OpInfo.LHS = EmitLoadOfLValue(LHSLV); 1978 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 1979 Builder.CreateBr(opBB); 1980 Builder.SetInsertPoint(opBB); 1981 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 1982 atomicPHI->addIncoming(OpInfo.LHS, startBB); 1983 OpInfo.LHS = atomicPHI; 1984 } 1985 else 1986 OpInfo.LHS = EmitLoadOfLValue(LHSLV); 1987 1988 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, 1989 E->getComputationLHSType()); 1990 1991 // Expand the binary operator. 1992 Result = (this->*Func)(OpInfo); 1993 1994 // Convert the result back to the LHS type. 1995 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy); 1996 1997 if (atomicPHI) { 1998 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1999 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2000 llvm::Value *old = Builder.CreateAtomicCmpXchg(LHSLV.getAddress(), atomicPHI, 2001 CGF.EmitToMemory(Result, LHSTy), llvm::SequentiallyConsistent); 2002 atomicPHI->addIncoming(old, opBB); 2003 llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI); 2004 Builder.CreateCondBr(success, contBB, opBB); 2005 Builder.SetInsertPoint(contBB); 2006 return LHSLV; 2007 } 2008 2009 // Store the result value into the LHS lvalue. Bit-fields are handled 2010 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2011 // 'An assignment expression has the value of the left operand after the 2012 // assignment...'. 2013 if (LHSLV.isBitField()) 2014 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2015 else 2016 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2017 2018 return LHSLV; 2019 } 2020 2021 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2022 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2023 bool Ignore = TestAndClearIgnoreResultAssign(); 2024 Value *RHS; 2025 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2026 2027 // If the result is clearly ignored, return now. 2028 if (Ignore) 2029 return 0; 2030 2031 // The result of an assignment in C is the assigned r-value. 2032 if (!CGF.getLangOpts().CPlusPlus) 2033 return RHS; 2034 2035 // If the lvalue is non-volatile, return the computed value of the assignment. 2036 if (!LHS.isVolatileQualified()) 2037 return RHS; 2038 2039 // Otherwise, reload the value. 2040 return EmitLoadOfLValue(LHS); 2041 } 2042 2043 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2044 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2045 llvm::Value *Cond = 0; 2046 2047 if (CGF.SanOpts->IntegerDivideByZero) 2048 Cond = Builder.CreateICmpNE(Ops.RHS, Zero); 2049 2050 if (CGF.SanOpts->SignedIntegerOverflow && 2051 Ops.Ty->hasSignedIntegerRepresentation()) { 2052 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2053 2054 llvm::Value *IntMin = 2055 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2056 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2057 2058 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2059 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2060 llvm::Value *Overflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2061 Cond = Cond ? Builder.CreateAnd(Cond, Overflow, "and") : Overflow; 2062 } 2063 2064 if (Cond) 2065 EmitBinOpCheck(Cond, Ops); 2066 } 2067 2068 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2069 if ((CGF.SanOpts->IntegerDivideByZero || 2070 CGF.SanOpts->SignedIntegerOverflow) && 2071 Ops.Ty->isIntegerType()) { 2072 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2073 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2074 } else if (CGF.SanOpts->FloatDivideByZero && 2075 Ops.Ty->isRealFloatingType()) { 2076 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2077 EmitBinOpCheck(Builder.CreateFCmpUNE(Ops.RHS, Zero), Ops); 2078 } 2079 2080 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2081 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2082 if (CGF.getLangOpts().OpenCL) { 2083 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp 2084 llvm::Type *ValTy = Val->getType(); 2085 if (ValTy->isFloatTy() || 2086 (isa<llvm::VectorType>(ValTy) && 2087 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2088 CGF.SetFPAccuracy(Val, 2.5); 2089 } 2090 return Val; 2091 } 2092 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2093 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2094 else 2095 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2096 } 2097 2098 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2099 // Rem in C can't be a floating point type: C99 6.5.5p2. 2100 if (CGF.SanOpts->IntegerDivideByZero) { 2101 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2102 2103 if (Ops.Ty->isIntegerType()) 2104 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2105 } 2106 2107 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2108 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2109 else 2110 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2111 } 2112 2113 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2114 unsigned IID; 2115 unsigned OpID = 0; 2116 2117 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2118 switch (Ops.Opcode) { 2119 case BO_Add: 2120 case BO_AddAssign: 2121 OpID = 1; 2122 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2123 llvm::Intrinsic::uadd_with_overflow; 2124 break; 2125 case BO_Sub: 2126 case BO_SubAssign: 2127 OpID = 2; 2128 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2129 llvm::Intrinsic::usub_with_overflow; 2130 break; 2131 case BO_Mul: 2132 case BO_MulAssign: 2133 OpID = 3; 2134 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2135 llvm::Intrinsic::umul_with_overflow; 2136 break; 2137 default: 2138 llvm_unreachable("Unsupported operation for overflow detection"); 2139 } 2140 OpID <<= 1; 2141 if (isSigned) 2142 OpID |= 1; 2143 2144 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2145 2146 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2147 2148 Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS); 2149 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2150 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2151 2152 // Handle overflow with llvm.trap if no custom handler has been specified. 2153 const std::string *handlerName = 2154 &CGF.getLangOpts().OverflowHandler; 2155 if (handlerName->empty()) { 2156 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2157 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2158 if (!isSigned || CGF.SanOpts->SignedIntegerOverflow) 2159 EmitBinOpCheck(Builder.CreateNot(overflow), Ops); 2160 else 2161 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2162 return result; 2163 } 2164 2165 // Branch in case of overflow. 2166 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2167 llvm::Function::iterator insertPt = initialBB; 2168 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn, 2169 llvm::next(insertPt)); 2170 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2171 2172 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2173 2174 // If an overflow handler is set, then we want to call it and then use its 2175 // result, if it returns. 2176 Builder.SetInsertPoint(overflowBB); 2177 2178 // Get the overflow handler. 2179 llvm::Type *Int8Ty = CGF.Int8Ty; 2180 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2181 llvm::FunctionType *handlerTy = 2182 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2183 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2184 2185 // Sign extend the args to 64-bit, so that we can use the same handler for 2186 // all types of overflow. 2187 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2188 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2189 2190 // Call the handler with the two arguments, the operation, and the size of 2191 // the result. 2192 llvm::Value *handlerArgs[] = { 2193 lhs, 2194 rhs, 2195 Builder.getInt8(OpID), 2196 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2197 }; 2198 llvm::Value *handlerResult = 2199 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2200 2201 // Truncate the result back to the desired size. 2202 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2203 Builder.CreateBr(continueBB); 2204 2205 Builder.SetInsertPoint(continueBB); 2206 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2207 phi->addIncoming(result, initialBB); 2208 phi->addIncoming(handlerResult, overflowBB); 2209 2210 return phi; 2211 } 2212 2213 /// Emit pointer + index arithmetic. 2214 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2215 const BinOpInfo &op, 2216 bool isSubtraction) { 2217 // Must have binary (not unary) expr here. Unary pointer 2218 // increment/decrement doesn't use this path. 2219 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2220 2221 Value *pointer = op.LHS; 2222 Expr *pointerOperand = expr->getLHS(); 2223 Value *index = op.RHS; 2224 Expr *indexOperand = expr->getRHS(); 2225 2226 // In a subtraction, the LHS is always the pointer. 2227 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2228 std::swap(pointer, index); 2229 std::swap(pointerOperand, indexOperand); 2230 } 2231 2232 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2233 if (width != CGF.PointerWidthInBits) { 2234 // Zero-extend or sign-extend the pointer value according to 2235 // whether the index is signed or not. 2236 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2237 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned, 2238 "idx.ext"); 2239 } 2240 2241 // If this is subtraction, negate the index. 2242 if (isSubtraction) 2243 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2244 2245 if (CGF.SanOpts->Bounds) 2246 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2247 /*Accessed*/ false); 2248 2249 const PointerType *pointerType 2250 = pointerOperand->getType()->getAs<PointerType>(); 2251 if (!pointerType) { 2252 QualType objectType = pointerOperand->getType() 2253 ->castAs<ObjCObjectPointerType>() 2254 ->getPointeeType(); 2255 llvm::Value *objectSize 2256 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2257 2258 index = CGF.Builder.CreateMul(index, objectSize); 2259 2260 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2261 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2262 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2263 } 2264 2265 QualType elementType = pointerType->getPointeeType(); 2266 if (const VariableArrayType *vla 2267 = CGF.getContext().getAsVariableArrayType(elementType)) { 2268 // The element count here is the total number of non-VLA elements. 2269 llvm::Value *numElements = CGF.getVLASize(vla).first; 2270 2271 // Effectively, the multiply by the VLA size is part of the GEP. 2272 // GEP indexes are signed, and scaling an index isn't permitted to 2273 // signed-overflow, so we use the same semantics for our explicit 2274 // multiply. We suppress this if overflow is not undefined behavior. 2275 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2276 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2277 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2278 } else { 2279 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2280 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2281 } 2282 return pointer; 2283 } 2284 2285 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2286 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2287 // future proof. 2288 if (elementType->isVoidType() || elementType->isFunctionType()) { 2289 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2290 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2291 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2292 } 2293 2294 if (CGF.getLangOpts().isSignedOverflowDefined()) 2295 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2296 2297 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2298 } 2299 2300 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2301 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2302 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2303 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2304 // efficient operations. 2305 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2306 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2307 bool negMul, bool negAdd) { 2308 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2309 2310 Value *MulOp0 = MulOp->getOperand(0); 2311 Value *MulOp1 = MulOp->getOperand(1); 2312 if (negMul) { 2313 MulOp0 = 2314 Builder.CreateFSub( 2315 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2316 "neg"); 2317 } else if (negAdd) { 2318 Addend = 2319 Builder.CreateFSub( 2320 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2321 "neg"); 2322 } 2323 2324 Value *FMulAdd = 2325 Builder.CreateCall3( 2326 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2327 MulOp0, MulOp1, Addend); 2328 MulOp->eraseFromParent(); 2329 2330 return FMulAdd; 2331 } 2332 2333 // Check whether it would be legal to emit an fmuladd intrinsic call to 2334 // represent op and if so, build the fmuladd. 2335 // 2336 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2337 // Does NOT check the type of the operation - it's assumed that this function 2338 // will be called from contexts where it's known that the type is contractable. 2339 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2340 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2341 bool isSub=false) { 2342 2343 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2344 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2345 "Only fadd/fsub can be the root of an fmuladd."); 2346 2347 // Check whether this op is marked as fusable. 2348 if (!op.FPContractable) 2349 return 0; 2350 2351 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is 2352 // either disabled, or handled entirely by the LLVM backend). 2353 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On) 2354 return 0; 2355 2356 // We have a potentially fusable op. Look for a mul on one of the operands. 2357 if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2358 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2359 assert(LHSBinOp->getNumUses() == 0 && 2360 "Operations with multiple uses shouldn't be contracted."); 2361 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2362 } 2363 } else if (llvm::BinaryOperator* RHSBinOp = 2364 dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2365 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2366 assert(RHSBinOp->getNumUses() == 0 && 2367 "Operations with multiple uses shouldn't be contracted."); 2368 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2369 } 2370 } 2371 2372 return 0; 2373 } 2374 2375 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2376 if (op.LHS->getType()->isPointerTy() || 2377 op.RHS->getType()->isPointerTy()) 2378 return emitPointerArithmetic(CGF, op, /*subtraction*/ false); 2379 2380 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2381 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2382 case LangOptions::SOB_Defined: 2383 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2384 case LangOptions::SOB_Undefined: 2385 if (!CGF.SanOpts->SignedIntegerOverflow) 2386 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2387 // Fall through. 2388 case LangOptions::SOB_Trapping: 2389 return EmitOverflowCheckedBinOp(op); 2390 } 2391 } 2392 2393 if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) 2394 return EmitOverflowCheckedBinOp(op); 2395 2396 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2397 // Try to form an fmuladd. 2398 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2399 return FMulAdd; 2400 2401 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2402 } 2403 2404 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2405 } 2406 2407 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2408 // The LHS is always a pointer if either side is. 2409 if (!op.LHS->getType()->isPointerTy()) { 2410 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2411 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2412 case LangOptions::SOB_Defined: 2413 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2414 case LangOptions::SOB_Undefined: 2415 if (!CGF.SanOpts->SignedIntegerOverflow) 2416 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2417 // Fall through. 2418 case LangOptions::SOB_Trapping: 2419 return EmitOverflowCheckedBinOp(op); 2420 } 2421 } 2422 2423 if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) 2424 return EmitOverflowCheckedBinOp(op); 2425 2426 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2427 // Try to form an fmuladd. 2428 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2429 return FMulAdd; 2430 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2431 } 2432 2433 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2434 } 2435 2436 // If the RHS is not a pointer, then we have normal pointer 2437 // arithmetic. 2438 if (!op.RHS->getType()->isPointerTy()) 2439 return emitPointerArithmetic(CGF, op, /*subtraction*/ true); 2440 2441 // Otherwise, this is a pointer subtraction. 2442 2443 // Do the raw subtraction part. 2444 llvm::Value *LHS 2445 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2446 llvm::Value *RHS 2447 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2448 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2449 2450 // Okay, figure out the element size. 2451 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2452 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2453 2454 llvm::Value *divisor = 0; 2455 2456 // For a variable-length array, this is going to be non-constant. 2457 if (const VariableArrayType *vla 2458 = CGF.getContext().getAsVariableArrayType(elementType)) { 2459 llvm::Value *numElements; 2460 llvm::tie(numElements, elementType) = CGF.getVLASize(vla); 2461 2462 divisor = numElements; 2463 2464 // Scale the number of non-VLA elements by the non-VLA element size. 2465 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2466 if (!eltSize.isOne()) 2467 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2468 2469 // For everything elese, we can just compute it, safe in the 2470 // assumption that Sema won't let anything through that we can't 2471 // safely compute the size of. 2472 } else { 2473 CharUnits elementSize; 2474 // Handle GCC extension for pointer arithmetic on void* and 2475 // function pointer types. 2476 if (elementType->isVoidType() || elementType->isFunctionType()) 2477 elementSize = CharUnits::One(); 2478 else 2479 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2480 2481 // Don't even emit the divide for element size of 1. 2482 if (elementSize.isOne()) 2483 return diffInChars; 2484 2485 divisor = CGF.CGM.getSize(elementSize); 2486 } 2487 2488 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2489 // pointer difference in C is only defined in the case where both operands 2490 // are pointing to elements of an array. 2491 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2492 } 2493 2494 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2495 llvm::IntegerType *Ty; 2496 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 2497 Ty = cast<llvm::IntegerType>(VT->getElementType()); 2498 else 2499 Ty = cast<llvm::IntegerType>(LHS->getType()); 2500 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 2501 } 2502 2503 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2504 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2505 // RHS to the same size as the LHS. 2506 Value *RHS = Ops.RHS; 2507 if (Ops.LHS->getType() != RHS->getType()) 2508 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2509 2510 if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL && 2511 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2512 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS); 2513 llvm::Value *Valid = Builder.CreateICmpULE(RHS, WidthMinusOne); 2514 2515 if (Ops.Ty->hasSignedIntegerRepresentation()) { 2516 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 2517 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2518 llvm::BasicBlock *CheckBitsShifted = CGF.createBasicBlock("check"); 2519 Builder.CreateCondBr(Valid, CheckBitsShifted, Cont); 2520 2521 // Check whether we are shifting any non-zero bits off the top of the 2522 // integer. 2523 CGF.EmitBlock(CheckBitsShifted); 2524 llvm::Value *BitsShiftedOff = 2525 Builder.CreateLShr(Ops.LHS, 2526 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros", 2527 /*NUW*/true, /*NSW*/true), 2528 "shl.check"); 2529 if (CGF.getLangOpts().CPlusPlus) { 2530 // In C99, we are not permitted to shift a 1 bit into the sign bit. 2531 // Under C++11's rules, shifting a 1 bit into the sign bit is 2532 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 2533 // define signed left shifts, so we use the C99 and C++11 rules there). 2534 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 2535 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 2536 } 2537 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 2538 llvm::Value *SecondCheck = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 2539 CGF.EmitBlock(Cont); 2540 llvm::PHINode *P = Builder.CreatePHI(Valid->getType(), 2); 2541 P->addIncoming(Valid, Orig); 2542 P->addIncoming(SecondCheck, CheckBitsShifted); 2543 Valid = P; 2544 } 2545 2546 EmitBinOpCheck(Valid, Ops); 2547 } 2548 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2549 if (CGF.getLangOpts().OpenCL) 2550 RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 2551 2552 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2553 } 2554 2555 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2556 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2557 // RHS to the same size as the LHS. 2558 Value *RHS = Ops.RHS; 2559 if (Ops.LHS->getType() != RHS->getType()) 2560 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2561 2562 if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL && 2563 isa<llvm::IntegerType>(Ops.LHS->getType())) 2564 EmitBinOpCheck(Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)), Ops); 2565 2566 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2567 if (CGF.getLangOpts().OpenCL) 2568 RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 2569 2570 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2571 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 2572 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 2573 } 2574 2575 enum IntrinsicType { VCMPEQ, VCMPGT }; 2576 // return corresponding comparison intrinsic for given vector type 2577 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 2578 BuiltinType::Kind ElemKind) { 2579 switch (ElemKind) { 2580 default: llvm_unreachable("unexpected element type"); 2581 case BuiltinType::Char_U: 2582 case BuiltinType::UChar: 2583 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2584 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 2585 case BuiltinType::Char_S: 2586 case BuiltinType::SChar: 2587 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2588 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 2589 case BuiltinType::UShort: 2590 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2591 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 2592 case BuiltinType::Short: 2593 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2594 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 2595 case BuiltinType::UInt: 2596 case BuiltinType::ULong: 2597 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2598 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 2599 case BuiltinType::Int: 2600 case BuiltinType::Long: 2601 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2602 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 2603 case BuiltinType::Float: 2604 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 2605 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 2606 } 2607 } 2608 2609 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, 2610 unsigned SICmpOpc, unsigned FCmpOpc) { 2611 TestAndClearIgnoreResultAssign(); 2612 Value *Result; 2613 QualType LHSTy = E->getLHS()->getType(); 2614 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 2615 assert(E->getOpcode() == BO_EQ || 2616 E->getOpcode() == BO_NE); 2617 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 2618 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 2619 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 2620 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 2621 } else if (!LHSTy->isAnyComplexType()) { 2622 Value *LHS = Visit(E->getLHS()); 2623 Value *RHS = Visit(E->getRHS()); 2624 2625 // If AltiVec, the comparison results in a numeric type, so we use 2626 // intrinsics comparing vectors and giving 0 or 1 as a result 2627 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 2628 // constants for mapping CR6 register bits to predicate result 2629 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 2630 2631 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 2632 2633 // in several cases vector arguments order will be reversed 2634 Value *FirstVecArg = LHS, 2635 *SecondVecArg = RHS; 2636 2637 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 2638 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 2639 BuiltinType::Kind ElementKind = BTy->getKind(); 2640 2641 switch(E->getOpcode()) { 2642 default: llvm_unreachable("is not a comparison operation"); 2643 case BO_EQ: 2644 CR6 = CR6_LT; 2645 ID = GetIntrinsic(VCMPEQ, ElementKind); 2646 break; 2647 case BO_NE: 2648 CR6 = CR6_EQ; 2649 ID = GetIntrinsic(VCMPEQ, ElementKind); 2650 break; 2651 case BO_LT: 2652 CR6 = CR6_LT; 2653 ID = GetIntrinsic(VCMPGT, ElementKind); 2654 std::swap(FirstVecArg, SecondVecArg); 2655 break; 2656 case BO_GT: 2657 CR6 = CR6_LT; 2658 ID = GetIntrinsic(VCMPGT, ElementKind); 2659 break; 2660 case BO_LE: 2661 if (ElementKind == BuiltinType::Float) { 2662 CR6 = CR6_LT; 2663 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2664 std::swap(FirstVecArg, SecondVecArg); 2665 } 2666 else { 2667 CR6 = CR6_EQ; 2668 ID = GetIntrinsic(VCMPGT, ElementKind); 2669 } 2670 break; 2671 case BO_GE: 2672 if (ElementKind == BuiltinType::Float) { 2673 CR6 = CR6_LT; 2674 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2675 } 2676 else { 2677 CR6 = CR6_EQ; 2678 ID = GetIntrinsic(VCMPGT, ElementKind); 2679 std::swap(FirstVecArg, SecondVecArg); 2680 } 2681 break; 2682 } 2683 2684 Value *CR6Param = Builder.getInt32(CR6); 2685 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 2686 Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, ""); 2687 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2688 } 2689 2690 if (LHS->getType()->isFPOrFPVectorTy()) { 2691 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc, 2692 LHS, RHS, "cmp"); 2693 } else if (LHSTy->hasSignedIntegerRepresentation()) { 2694 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, 2695 LHS, RHS, "cmp"); 2696 } else { 2697 // Unsigned integers and pointers. 2698 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2699 LHS, RHS, "cmp"); 2700 } 2701 2702 // If this is a vector comparison, sign extend the result to the appropriate 2703 // vector integer type and return it (don't convert to bool). 2704 if (LHSTy->isVectorType()) 2705 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2706 2707 } else { 2708 // Complex Comparison: can only be an equality comparison. 2709 CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS()); 2710 CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS()); 2711 2712 QualType CETy = LHSTy->getAs<ComplexType>()->getElementType(); 2713 2714 Value *ResultR, *ResultI; 2715 if (CETy->isRealFloatingType()) { 2716 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2717 LHS.first, RHS.first, "cmp.r"); 2718 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2719 LHS.second, RHS.second, "cmp.i"); 2720 } else { 2721 // Complex comparisons can only be equality comparisons. As such, signed 2722 // and unsigned opcodes are the same. 2723 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2724 LHS.first, RHS.first, "cmp.r"); 2725 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2726 LHS.second, RHS.second, "cmp.i"); 2727 } 2728 2729 if (E->getOpcode() == BO_EQ) { 2730 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 2731 } else { 2732 assert(E->getOpcode() == BO_NE && 2733 "Complex comparison other than == or != ?"); 2734 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 2735 } 2736 } 2737 2738 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2739 } 2740 2741 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 2742 bool Ignore = TestAndClearIgnoreResultAssign(); 2743 2744 Value *RHS; 2745 LValue LHS; 2746 2747 switch (E->getLHS()->getType().getObjCLifetime()) { 2748 case Qualifiers::OCL_Strong: 2749 llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 2750 break; 2751 2752 case Qualifiers::OCL_Autoreleasing: 2753 llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E); 2754 break; 2755 2756 case Qualifiers::OCL_Weak: 2757 RHS = Visit(E->getRHS()); 2758 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2759 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 2760 break; 2761 2762 // No reason to do any of these differently. 2763 case Qualifiers::OCL_None: 2764 case Qualifiers::OCL_ExplicitNone: 2765 // __block variables need to have the rhs evaluated first, plus 2766 // this should improve codegen just a little. 2767 RHS = Visit(E->getRHS()); 2768 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2769 2770 // Store the value into the LHS. Bit-fields are handled specially 2771 // because the result is altered by the store, i.e., [C99 6.5.16p1] 2772 // 'An assignment expression has the value of the left operand after 2773 // the assignment...'. 2774 if (LHS.isBitField()) 2775 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 2776 else 2777 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 2778 } 2779 2780 // If the result is clearly ignored, return now. 2781 if (Ignore) 2782 return 0; 2783 2784 // The result of an assignment in C is the assigned r-value. 2785 if (!CGF.getLangOpts().CPlusPlus) 2786 return RHS; 2787 2788 // If the lvalue is non-volatile, return the computed value of the assignment. 2789 if (!LHS.isVolatileQualified()) 2790 return RHS; 2791 2792 // Otherwise, reload the value. 2793 return EmitLoadOfLValue(LHS); 2794 } 2795 2796 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 2797 // Perform vector logical and on comparisons with zero vectors. 2798 if (E->getType()->isVectorType()) { 2799 Value *LHS = Visit(E->getLHS()); 2800 Value *RHS = Visit(E->getRHS()); 2801 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 2802 if (LHS->getType()->isFPOrFPVectorTy()) { 2803 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 2804 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 2805 } else { 2806 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 2807 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 2808 } 2809 Value *And = Builder.CreateAnd(LHS, RHS); 2810 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 2811 } 2812 2813 llvm::Type *ResTy = ConvertType(E->getType()); 2814 2815 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 2816 // If we have 1 && X, just emit X without inserting the control flow. 2817 bool LHSCondVal; 2818 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 2819 if (LHSCondVal) { // If we have 1 && X, just emit X. 2820 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2821 // ZExt result to int or bool. 2822 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 2823 } 2824 2825 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 2826 if (!CGF.ContainsLabel(E->getRHS())) 2827 return llvm::Constant::getNullValue(ResTy); 2828 } 2829 2830 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 2831 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 2832 2833 CodeGenFunction::ConditionalEvaluation eval(CGF); 2834 2835 // Branch on the LHS first. If it is false, go to the failure (cont) block. 2836 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock); 2837 2838 // Any edges into the ContBlock are now from an (indeterminate number of) 2839 // edges from this first condition. All of these values will be false. Start 2840 // setting up the PHI node in the Cont Block for this. 2841 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 2842 "", ContBlock); 2843 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 2844 PI != PE; ++PI) 2845 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 2846 2847 eval.begin(CGF); 2848 CGF.EmitBlock(RHSBlock); 2849 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2850 eval.end(CGF); 2851 2852 // Reaquire the RHS block, as there may be subblocks inserted. 2853 RHSBlock = Builder.GetInsertBlock(); 2854 2855 // Emit an unconditional branch from this block to ContBlock. Insert an entry 2856 // into the phi node for the edge with the value of RHSCond. 2857 if (CGF.getDebugInfo()) 2858 // There is no need to emit line number for unconditional branch. 2859 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 2860 CGF.EmitBlock(ContBlock); 2861 PN->addIncoming(RHSCond, RHSBlock); 2862 2863 // ZExt result to int. 2864 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 2865 } 2866 2867 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 2868 // Perform vector logical or on comparisons with zero vectors. 2869 if (E->getType()->isVectorType()) { 2870 Value *LHS = Visit(E->getLHS()); 2871 Value *RHS = Visit(E->getRHS()); 2872 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 2873 if (LHS->getType()->isFPOrFPVectorTy()) { 2874 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 2875 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 2876 } else { 2877 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 2878 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 2879 } 2880 Value *Or = Builder.CreateOr(LHS, RHS); 2881 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 2882 } 2883 2884 llvm::Type *ResTy = ConvertType(E->getType()); 2885 2886 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 2887 // If we have 0 || X, just emit X without inserting the control flow. 2888 bool LHSCondVal; 2889 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 2890 if (!LHSCondVal) { // If we have 0 || X, just emit X. 2891 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2892 // ZExt result to int or bool. 2893 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 2894 } 2895 2896 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 2897 if (!CGF.ContainsLabel(E->getRHS())) 2898 return llvm::ConstantInt::get(ResTy, 1); 2899 } 2900 2901 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 2902 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 2903 2904 CodeGenFunction::ConditionalEvaluation eval(CGF); 2905 2906 // Branch on the LHS first. If it is true, go to the success (cont) block. 2907 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock); 2908 2909 // Any edges into the ContBlock are now from an (indeterminate number of) 2910 // edges from this first condition. All of these values will be true. Start 2911 // setting up the PHI node in the Cont Block for this. 2912 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 2913 "", ContBlock); 2914 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 2915 PI != PE; ++PI) 2916 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 2917 2918 eval.begin(CGF); 2919 2920 // Emit the RHS condition as a bool value. 2921 CGF.EmitBlock(RHSBlock); 2922 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2923 2924 eval.end(CGF); 2925 2926 // Reaquire the RHS block, as there may be subblocks inserted. 2927 RHSBlock = Builder.GetInsertBlock(); 2928 2929 // Emit an unconditional branch from this block to ContBlock. Insert an entry 2930 // into the phi node for the edge with the value of RHSCond. 2931 CGF.EmitBlock(ContBlock); 2932 PN->addIncoming(RHSCond, RHSBlock); 2933 2934 // ZExt result to int. 2935 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 2936 } 2937 2938 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 2939 CGF.EmitIgnoredExpr(E->getLHS()); 2940 CGF.EnsureInsertPoint(); 2941 return Visit(E->getRHS()); 2942 } 2943 2944 //===----------------------------------------------------------------------===// 2945 // Other Operators 2946 //===----------------------------------------------------------------------===// 2947 2948 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 2949 /// expression is cheap enough and side-effect-free enough to evaluate 2950 /// unconditionally instead of conditionally. This is used to convert control 2951 /// flow into selects in some cases. 2952 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 2953 CodeGenFunction &CGF) { 2954 E = E->IgnoreParens(); 2955 2956 // Anything that is an integer or floating point constant is fine. 2957 if (E->isConstantInitializer(CGF.getContext(), false)) 2958 return true; 2959 2960 // Non-volatile automatic variables too, to get "cond ? X : Y" where 2961 // X and Y are local variables. 2962 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 2963 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) 2964 if (VD->hasLocalStorage() && !(CGF.getContext() 2965 .getCanonicalType(VD->getType()) 2966 .isVolatileQualified())) 2967 return true; 2968 2969 return false; 2970 } 2971 2972 2973 Value *ScalarExprEmitter:: 2974 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 2975 TestAndClearIgnoreResultAssign(); 2976 2977 // Bind the common expression if necessary. 2978 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 2979 2980 Expr *condExpr = E->getCond(); 2981 Expr *lhsExpr = E->getTrueExpr(); 2982 Expr *rhsExpr = E->getFalseExpr(); 2983 2984 // If the condition constant folds and can be elided, try to avoid emitting 2985 // the condition and the dead arm. 2986 bool CondExprBool; 2987 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2988 Expr *live = lhsExpr, *dead = rhsExpr; 2989 if (!CondExprBool) std::swap(live, dead); 2990 2991 // If the dead side doesn't have labels we need, just emit the Live part. 2992 if (!CGF.ContainsLabel(dead)) { 2993 Value *Result = Visit(live); 2994 2995 // If the live part is a throw expression, it acts like it has a void 2996 // type, so evaluating it returns a null Value*. However, a conditional 2997 // with non-void type must return a non-null Value*. 2998 if (!Result && !E->getType()->isVoidType()) 2999 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3000 3001 return Result; 3002 } 3003 } 3004 3005 // OpenCL: If the condition is a vector, we can treat this condition like 3006 // the select function. 3007 if (CGF.getLangOpts().OpenCL 3008 && condExpr->getType()->isVectorType()) { 3009 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3010 llvm::Value *LHS = Visit(lhsExpr); 3011 llvm::Value *RHS = Visit(rhsExpr); 3012 3013 llvm::Type *condType = ConvertType(condExpr->getType()); 3014 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3015 3016 unsigned numElem = vecTy->getNumElements(); 3017 llvm::Type *elemType = vecTy->getElementType(); 3018 3019 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3020 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3021 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3022 llvm::VectorType::get(elemType, 3023 numElem), 3024 "sext"); 3025 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3026 3027 // Cast float to int to perform ANDs if necessary. 3028 llvm::Value *RHSTmp = RHS; 3029 llvm::Value *LHSTmp = LHS; 3030 bool wasCast = false; 3031 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3032 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3033 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3034 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3035 wasCast = true; 3036 } 3037 3038 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3039 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3040 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3041 if (wasCast) 3042 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3043 3044 return tmp5; 3045 } 3046 3047 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3048 // select instead of as control flow. We can only do this if it is cheap and 3049 // safe to evaluate the LHS and RHS unconditionally. 3050 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3051 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3052 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3053 llvm::Value *LHS = Visit(lhsExpr); 3054 llvm::Value *RHS = Visit(rhsExpr); 3055 if (!LHS) { 3056 // If the conditional has void type, make sure we return a null Value*. 3057 assert(!RHS && "LHS and RHS types must match"); 3058 return 0; 3059 } 3060 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3061 } 3062 3063 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3064 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3065 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3066 3067 CodeGenFunction::ConditionalEvaluation eval(CGF); 3068 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock); 3069 3070 CGF.EmitBlock(LHSBlock); 3071 eval.begin(CGF); 3072 Value *LHS = Visit(lhsExpr); 3073 eval.end(CGF); 3074 3075 LHSBlock = Builder.GetInsertBlock(); 3076 Builder.CreateBr(ContBlock); 3077 3078 CGF.EmitBlock(RHSBlock); 3079 eval.begin(CGF); 3080 Value *RHS = Visit(rhsExpr); 3081 eval.end(CGF); 3082 3083 RHSBlock = Builder.GetInsertBlock(); 3084 CGF.EmitBlock(ContBlock); 3085 3086 // If the LHS or RHS is a throw expression, it will be legitimately null. 3087 if (!LHS) 3088 return RHS; 3089 if (!RHS) 3090 return LHS; 3091 3092 // Create a PHI node for the real part. 3093 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3094 PN->addIncoming(LHS, LHSBlock); 3095 PN->addIncoming(RHS, RHSBlock); 3096 return PN; 3097 } 3098 3099 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3100 return Visit(E->getChosenSubExpr(CGF.getContext())); 3101 } 3102 3103 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3104 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 3105 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 3106 3107 // If EmitVAArg fails, we fall back to the LLVM instruction. 3108 if (!ArgPtr) 3109 return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType())); 3110 3111 // FIXME Volatility. 3112 return Builder.CreateLoad(ArgPtr); 3113 } 3114 3115 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3116 return CGF.EmitBlockLiteral(block); 3117 } 3118 3119 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3120 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3121 llvm::Type *DstTy = ConvertType(E->getType()); 3122 3123 // Going from vec4->vec3 or vec3->vec4 is a special case and requires 3124 // a shuffle vector instead of a bitcast. 3125 llvm::Type *SrcTy = Src->getType(); 3126 if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) { 3127 unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements(); 3128 unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements(); 3129 if ((numElementsDst == 3 && numElementsSrc == 4) 3130 || (numElementsDst == 4 && numElementsSrc == 3)) { 3131 3132 3133 // In the case of going from int4->float3, a bitcast is needed before 3134 // doing a shuffle. 3135 llvm::Type *srcElemTy = 3136 cast<llvm::VectorType>(SrcTy)->getElementType(); 3137 llvm::Type *dstElemTy = 3138 cast<llvm::VectorType>(DstTy)->getElementType(); 3139 3140 if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy()) 3141 || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) { 3142 // Create a float type of the same size as the source or destination. 3143 llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy, 3144 numElementsSrc); 3145 3146 Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast"); 3147 } 3148 3149 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3150 3151 SmallVector<llvm::Constant*, 3> Args; 3152 Args.push_back(Builder.getInt32(0)); 3153 Args.push_back(Builder.getInt32(1)); 3154 Args.push_back(Builder.getInt32(2)); 3155 3156 if (numElementsDst == 4) 3157 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3158 3159 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3160 3161 return Builder.CreateShuffleVector(Src, UnV, Mask, "astype"); 3162 } 3163 } 3164 3165 return Builder.CreateBitCast(Src, DstTy, "astype"); 3166 } 3167 3168 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3169 return CGF.EmitAtomicExpr(E).getScalarVal(); 3170 } 3171 3172 //===----------------------------------------------------------------------===// 3173 // Entry Point into this File 3174 //===----------------------------------------------------------------------===// 3175 3176 /// EmitScalarExpr - Emit the computation of the specified expression of scalar 3177 /// type, ignoring the result. 3178 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3179 assert(E && hasScalarEvaluationKind(E->getType()) && 3180 "Invalid scalar expression to emit"); 3181 3182 if (isa<CXXDefaultArgExpr>(E)) 3183 disableDebugInfo(); 3184 Value *V = ScalarExprEmitter(*this, IgnoreResultAssign) 3185 .Visit(const_cast<Expr*>(E)); 3186 if (isa<CXXDefaultArgExpr>(E)) 3187 enableDebugInfo(); 3188 return V; 3189 } 3190 3191 /// EmitScalarConversion - Emit a conversion from the specified type to the 3192 /// specified destination type, both of which are LLVM scalar types. 3193 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3194 QualType DstTy) { 3195 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3196 "Invalid scalar expression to emit"); 3197 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy); 3198 } 3199 3200 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 3201 /// type to the specified destination type, where the destination type is an 3202 /// LLVM scalar type. 3203 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3204 QualType SrcTy, 3205 QualType DstTy) { 3206 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3207 "Invalid complex -> scalar conversion"); 3208 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy, 3209 DstTy); 3210 } 3211 3212 3213 llvm::Value *CodeGenFunction:: 3214 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3215 bool isInc, bool isPre) { 3216 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3217 } 3218 3219 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3220 llvm::Value *V; 3221 // object->isa or (*object).isa 3222 // Generate code as for: *(Class*)object 3223 // build Class* type 3224 llvm::Type *ClassPtrTy = ConvertType(E->getType()); 3225 3226 Expr *BaseExpr = E->getBase(); 3227 if (BaseExpr->isRValue()) { 3228 V = CreateMemTemp(E->getType(), "resval"); 3229 llvm::Value *Src = EmitScalarExpr(BaseExpr); 3230 Builder.CreateStore(Src, V); 3231 V = ScalarExprEmitter(*this).EmitLoadOfLValue( 3232 MakeNaturalAlignAddrLValue(V, E->getType())); 3233 } else { 3234 if (E->isArrow()) 3235 V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr); 3236 else 3237 V = EmitLValue(BaseExpr).getAddress(); 3238 } 3239 3240 // build Class* type 3241 ClassPtrTy = ClassPtrTy->getPointerTo(); 3242 V = Builder.CreateBitCast(V, ClassPtrTy); 3243 return MakeNaturalAlignAddrLValue(V, E->getType()); 3244 } 3245 3246 3247 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3248 const CompoundAssignOperator *E) { 3249 ScalarExprEmitter Scalar(*this); 3250 Value *Result = 0; 3251 switch (E->getOpcode()) { 3252 #define COMPOUND_OP(Op) \ 3253 case BO_##Op##Assign: \ 3254 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3255 Result) 3256 COMPOUND_OP(Mul); 3257 COMPOUND_OP(Div); 3258 COMPOUND_OP(Rem); 3259 COMPOUND_OP(Add); 3260 COMPOUND_OP(Sub); 3261 COMPOUND_OP(Shl); 3262 COMPOUND_OP(Shr); 3263 COMPOUND_OP(And); 3264 COMPOUND_OP(Xor); 3265 COMPOUND_OP(Or); 3266 #undef COMPOUND_OP 3267 3268 case BO_PtrMemD: 3269 case BO_PtrMemI: 3270 case BO_Mul: 3271 case BO_Div: 3272 case BO_Rem: 3273 case BO_Add: 3274 case BO_Sub: 3275 case BO_Shl: 3276 case BO_Shr: 3277 case BO_LT: 3278 case BO_GT: 3279 case BO_LE: 3280 case BO_GE: 3281 case BO_EQ: 3282 case BO_NE: 3283 case BO_And: 3284 case BO_Xor: 3285 case BO_Or: 3286 case BO_LAnd: 3287 case BO_LOr: 3288 case BO_Assign: 3289 case BO_Comma: 3290 llvm_unreachable("Not valid compound assignment operators"); 3291 } 3292 3293 llvm_unreachable("Unhandled compound assignment operator"); 3294 } 3295