1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/ADT/Optional.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Module.h"
35 #include <cstdarg>
36 
37 using namespace clang;
38 using namespace CodeGen;
39 using llvm::Value;
40 
41 //===----------------------------------------------------------------------===//
42 //                         Scalar Expression Emitter
43 //===----------------------------------------------------------------------===//
44 
45 namespace {
46 struct BinOpInfo {
47   Value *LHS;
48   Value *RHS;
49   QualType Ty;  // Computation Type.
50   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
51   bool FPContractable;
52   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
53 };
54 
55 static bool MustVisitNullValue(const Expr *E) {
56   // If a null pointer expression's type is the C++0x nullptr_t, then
57   // it's not necessarily a simple constant and it must be evaluated
58   // for its potential side effects.
59   return E->getType()->isNullPtrType();
60 }
61 
62 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
63 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
64                                                         const Expr *E) {
65   const Expr *Base = E->IgnoreImpCasts();
66   if (E == Base)
67     return llvm::None;
68 
69   QualType BaseTy = Base->getType();
70   if (!BaseTy->isPromotableIntegerType() ||
71       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
72     return llvm::None;
73 
74   return BaseTy;
75 }
76 
77 /// Check if \p E is a widened promoted integer.
78 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
79   return getUnwidenedIntegerType(Ctx, E).hasValue();
80 }
81 
82 /// Check if we can skip the overflow check for \p Op.
83 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
84   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
85          "Expected a unary or binary operator");
86 
87   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
88     return IsWidenedIntegerOp(Ctx, UO->getSubExpr());
89 
90   const auto *BO = cast<BinaryOperator>(Op.E);
91   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
92   if (!OptionalLHSTy)
93     return false;
94 
95   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
96   if (!OptionalRHSTy)
97     return false;
98 
99   QualType LHSTy = *OptionalLHSTy;
100   QualType RHSTy = *OptionalRHSTy;
101 
102   // We usually don't need overflow checks for binary operations with widened
103   // operands. Multiplication with promoted unsigned operands is a special case.
104   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
105       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
106     return true;
107 
108   // The overflow check can be skipped if either one of the unpromoted types
109   // are less than half the size of the promoted type.
110   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
111   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
112          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
113 }
114 
115 class ScalarExprEmitter
116   : public StmtVisitor<ScalarExprEmitter, Value*> {
117   CodeGenFunction &CGF;
118   CGBuilderTy &Builder;
119   bool IgnoreResultAssign;
120   llvm::LLVMContext &VMContext;
121 public:
122 
123   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
124     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
125       VMContext(cgf.getLLVMContext()) {
126   }
127 
128   //===--------------------------------------------------------------------===//
129   //                               Utilities
130   //===--------------------------------------------------------------------===//
131 
132   bool TestAndClearIgnoreResultAssign() {
133     bool I = IgnoreResultAssign;
134     IgnoreResultAssign = false;
135     return I;
136   }
137 
138   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
139   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
140   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
141     return CGF.EmitCheckedLValue(E, TCK);
142   }
143 
144   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
145                       const BinOpInfo &Info);
146 
147   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
148     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
149   }
150 
151   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
152     const AlignValueAttr *AVAttr = nullptr;
153     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
154       const ValueDecl *VD = DRE->getDecl();
155 
156       if (VD->getType()->isReferenceType()) {
157         if (const auto *TTy =
158             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
159           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
160       } else {
161         // Assumptions for function parameters are emitted at the start of the
162         // function, so there is no need to repeat that here.
163         if (isa<ParmVarDecl>(VD))
164           return;
165 
166         AVAttr = VD->getAttr<AlignValueAttr>();
167       }
168     }
169 
170     if (!AVAttr)
171       if (const auto *TTy =
172           dyn_cast<TypedefType>(E->getType()))
173         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
174 
175     if (!AVAttr)
176       return;
177 
178     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
179     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
180     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
181   }
182 
183   /// EmitLoadOfLValue - Given an expression with complex type that represents a
184   /// value l-value, this method emits the address of the l-value, then loads
185   /// and returns the result.
186   Value *EmitLoadOfLValue(const Expr *E) {
187     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
188                                 E->getExprLoc());
189 
190     EmitLValueAlignmentAssumption(E, V);
191     return V;
192   }
193 
194   /// EmitConversionToBool - Convert the specified expression value to a
195   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
196   Value *EmitConversionToBool(Value *Src, QualType DstTy);
197 
198   /// Emit a check that a conversion to or from a floating-point type does not
199   /// overflow.
200   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
201                                 Value *Src, QualType SrcType, QualType DstType,
202                                 llvm::Type *DstTy, SourceLocation Loc);
203 
204   /// Emit a conversion from the specified type to the specified destination
205   /// type, both of which are LLVM scalar types.
206   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
207                               SourceLocation Loc);
208 
209   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
210                               SourceLocation Loc, bool TreatBooleanAsSigned);
211 
212   /// Emit a conversion from the specified complex type to the specified
213   /// destination type, where the destination type is an LLVM scalar type.
214   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
215                                        QualType SrcTy, QualType DstTy,
216                                        SourceLocation Loc);
217 
218   /// EmitNullValue - Emit a value that corresponds to null for the given type.
219   Value *EmitNullValue(QualType Ty);
220 
221   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
222   Value *EmitFloatToBoolConversion(Value *V) {
223     // Compare against 0.0 for fp scalars.
224     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
225     return Builder.CreateFCmpUNE(V, Zero, "tobool");
226   }
227 
228   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
229   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
230     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
231 
232     return Builder.CreateICmpNE(V, Zero, "tobool");
233   }
234 
235   Value *EmitIntToBoolConversion(Value *V) {
236     // Because of the type rules of C, we often end up computing a
237     // logical value, then zero extending it to int, then wanting it
238     // as a logical value again.  Optimize this common case.
239     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
240       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
241         Value *Result = ZI->getOperand(0);
242         // If there aren't any more uses, zap the instruction to save space.
243         // Note that there can be more uses, for example if this
244         // is the result of an assignment.
245         if (ZI->use_empty())
246           ZI->eraseFromParent();
247         return Result;
248       }
249     }
250 
251     return Builder.CreateIsNotNull(V, "tobool");
252   }
253 
254   //===--------------------------------------------------------------------===//
255   //                            Visitor Methods
256   //===--------------------------------------------------------------------===//
257 
258   Value *Visit(Expr *E) {
259     ApplyDebugLocation DL(CGF, E);
260     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
261   }
262 
263   Value *VisitStmt(Stmt *S) {
264     S->dump(CGF.getContext().getSourceManager());
265     llvm_unreachable("Stmt can't have complex result type!");
266   }
267   Value *VisitExpr(Expr *S);
268 
269   Value *VisitParenExpr(ParenExpr *PE) {
270     return Visit(PE->getSubExpr());
271   }
272   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
273     return Visit(E->getReplacement());
274   }
275   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
276     return Visit(GE->getResultExpr());
277   }
278 
279   // Leaves.
280   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
281     return Builder.getInt(E->getValue());
282   }
283   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
284     return llvm::ConstantFP::get(VMContext, E->getValue());
285   }
286   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
287     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
288   }
289   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
290     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
291   }
292   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
293     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
294   }
295   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
296     return EmitNullValue(E->getType());
297   }
298   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
299     return EmitNullValue(E->getType());
300   }
301   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
302   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
303   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
304     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
305     return Builder.CreateBitCast(V, ConvertType(E->getType()));
306   }
307 
308   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
309     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
310   }
311 
312   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
313     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
314   }
315 
316   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
317     if (E->isGLValue())
318       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
319 
320     // Otherwise, assume the mapping is the scalar directly.
321     return CGF.getOpaqueRValueMapping(E).getScalarVal();
322   }
323 
324   // l-values.
325   Value *VisitDeclRefExpr(DeclRefExpr *E) {
326     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
327       if (result.isReference())
328         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
329                                 E->getExprLoc());
330       return result.getValue();
331     }
332     return EmitLoadOfLValue(E);
333   }
334 
335   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
336     return CGF.EmitObjCSelectorExpr(E);
337   }
338   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
339     return CGF.EmitObjCProtocolExpr(E);
340   }
341   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
342     return EmitLoadOfLValue(E);
343   }
344   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
345     if (E->getMethodDecl() &&
346         E->getMethodDecl()->getReturnType()->isReferenceType())
347       return EmitLoadOfLValue(E);
348     return CGF.EmitObjCMessageExpr(E).getScalarVal();
349   }
350 
351   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
352     LValue LV = CGF.EmitObjCIsaExpr(E);
353     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
354     return V;
355   }
356 
357   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
358     VersionTuple Version = E->getVersion();
359 
360     // If we're checking for a platform older than our minimum deployment
361     // target, we can fold the check away.
362     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
363       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
364 
365     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
366     llvm::Value *Args[] = {
367         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
368         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
369         llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
370     };
371 
372     return CGF.EmitBuiltinAvailable(Args);
373   }
374 
375   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
376   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
377   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
378   Value *VisitMemberExpr(MemberExpr *E);
379   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
380   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
381     return EmitLoadOfLValue(E);
382   }
383 
384   Value *VisitInitListExpr(InitListExpr *E);
385 
386   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
387     assert(CGF.getArrayInitIndex() &&
388            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
389     return CGF.getArrayInitIndex();
390   }
391 
392   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
393     return EmitNullValue(E->getType());
394   }
395   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
396     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
397     return VisitCastExpr(E);
398   }
399   Value *VisitCastExpr(CastExpr *E);
400 
401   Value *VisitCallExpr(const CallExpr *E) {
402     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
403       return EmitLoadOfLValue(E);
404 
405     Value *V = CGF.EmitCallExpr(E).getScalarVal();
406 
407     EmitLValueAlignmentAssumption(E, V);
408     return V;
409   }
410 
411   Value *VisitStmtExpr(const StmtExpr *E);
412 
413   // Unary Operators.
414   Value *VisitUnaryPostDec(const UnaryOperator *E) {
415     LValue LV = EmitLValue(E->getSubExpr());
416     return EmitScalarPrePostIncDec(E, LV, false, false);
417   }
418   Value *VisitUnaryPostInc(const UnaryOperator *E) {
419     LValue LV = EmitLValue(E->getSubExpr());
420     return EmitScalarPrePostIncDec(E, LV, true, false);
421   }
422   Value *VisitUnaryPreDec(const UnaryOperator *E) {
423     LValue LV = EmitLValue(E->getSubExpr());
424     return EmitScalarPrePostIncDec(E, LV, false, true);
425   }
426   Value *VisitUnaryPreInc(const UnaryOperator *E) {
427     LValue LV = EmitLValue(E->getSubExpr());
428     return EmitScalarPrePostIncDec(E, LV, true, true);
429   }
430 
431   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
432                                                   llvm::Value *InVal,
433                                                   bool IsInc);
434 
435   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
436                                        bool isInc, bool isPre);
437 
438 
439   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
440     if (isa<MemberPointerType>(E->getType())) // never sugared
441       return CGF.CGM.getMemberPointerConstant(E);
442 
443     return EmitLValue(E->getSubExpr()).getPointer();
444   }
445   Value *VisitUnaryDeref(const UnaryOperator *E) {
446     if (E->getType()->isVoidType())
447       return Visit(E->getSubExpr()); // the actual value should be unused
448     return EmitLoadOfLValue(E);
449   }
450   Value *VisitUnaryPlus(const UnaryOperator *E) {
451     // This differs from gcc, though, most likely due to a bug in gcc.
452     TestAndClearIgnoreResultAssign();
453     return Visit(E->getSubExpr());
454   }
455   Value *VisitUnaryMinus    (const UnaryOperator *E);
456   Value *VisitUnaryNot      (const UnaryOperator *E);
457   Value *VisitUnaryLNot     (const UnaryOperator *E);
458   Value *VisitUnaryReal     (const UnaryOperator *E);
459   Value *VisitUnaryImag     (const UnaryOperator *E);
460   Value *VisitUnaryExtension(const UnaryOperator *E) {
461     return Visit(E->getSubExpr());
462   }
463 
464   // C++
465   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
466     return EmitLoadOfLValue(E);
467   }
468 
469   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
470     return Visit(DAE->getExpr());
471   }
472   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
473     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
474     return Visit(DIE->getExpr());
475   }
476   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
477     return CGF.LoadCXXThis();
478   }
479 
480   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
481     CGF.enterFullExpression(E);
482     CodeGenFunction::RunCleanupsScope Scope(CGF);
483     return Visit(E->getSubExpr());
484   }
485   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
486     return CGF.EmitCXXNewExpr(E);
487   }
488   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
489     CGF.EmitCXXDeleteExpr(E);
490     return nullptr;
491   }
492 
493   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
494     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
495   }
496 
497   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
498     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
499   }
500 
501   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
502     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
503   }
504 
505   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
506     // C++ [expr.pseudo]p1:
507     //   The result shall only be used as the operand for the function call
508     //   operator (), and the result of such a call has type void. The only
509     //   effect is the evaluation of the postfix-expression before the dot or
510     //   arrow.
511     CGF.EmitScalarExpr(E->getBase());
512     return nullptr;
513   }
514 
515   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
516     return EmitNullValue(E->getType());
517   }
518 
519   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
520     CGF.EmitCXXThrowExpr(E);
521     return nullptr;
522   }
523 
524   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
525     return Builder.getInt1(E->getValue());
526   }
527 
528   // Binary Operators.
529   Value *EmitMul(const BinOpInfo &Ops) {
530     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
531       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
532       case LangOptions::SOB_Defined:
533         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
534       case LangOptions::SOB_Undefined:
535         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
536           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
537         // Fall through.
538       case LangOptions::SOB_Trapping:
539         if (CanElideOverflowCheck(CGF.getContext(), Ops))
540           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
541         return EmitOverflowCheckedBinOp(Ops);
542       }
543     }
544 
545     if (Ops.Ty->isUnsignedIntegerType() &&
546         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
547         !CanElideOverflowCheck(CGF.getContext(), Ops))
548       return EmitOverflowCheckedBinOp(Ops);
549 
550     if (Ops.LHS->getType()->isFPOrFPVectorTy())
551       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
552     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
553   }
554   /// Create a binary op that checks for overflow.
555   /// Currently only supports +, - and *.
556   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
557 
558   // Check for undefined division and modulus behaviors.
559   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
560                                                   llvm::Value *Zero,bool isDiv);
561   // Common helper for getting how wide LHS of shift is.
562   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
563   Value *EmitDiv(const BinOpInfo &Ops);
564   Value *EmitRem(const BinOpInfo &Ops);
565   Value *EmitAdd(const BinOpInfo &Ops);
566   Value *EmitSub(const BinOpInfo &Ops);
567   Value *EmitShl(const BinOpInfo &Ops);
568   Value *EmitShr(const BinOpInfo &Ops);
569   Value *EmitAnd(const BinOpInfo &Ops) {
570     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
571   }
572   Value *EmitXor(const BinOpInfo &Ops) {
573     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
574   }
575   Value *EmitOr (const BinOpInfo &Ops) {
576     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
577   }
578 
579   BinOpInfo EmitBinOps(const BinaryOperator *E);
580   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
581                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
582                                   Value *&Result);
583 
584   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
585                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
586 
587   // Binary operators and binary compound assignment operators.
588 #define HANDLEBINOP(OP) \
589   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
590     return Emit ## OP(EmitBinOps(E));                                      \
591   }                                                                        \
592   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
593     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
594   }
595   HANDLEBINOP(Mul)
596   HANDLEBINOP(Div)
597   HANDLEBINOP(Rem)
598   HANDLEBINOP(Add)
599   HANDLEBINOP(Sub)
600   HANDLEBINOP(Shl)
601   HANDLEBINOP(Shr)
602   HANDLEBINOP(And)
603   HANDLEBINOP(Xor)
604   HANDLEBINOP(Or)
605 #undef HANDLEBINOP
606 
607   // Comparisons.
608   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
609                      llvm::CmpInst::Predicate SICmpOpc,
610                      llvm::CmpInst::Predicate FCmpOpc);
611 #define VISITCOMP(CODE, UI, SI, FP) \
612     Value *VisitBin##CODE(const BinaryOperator *E) { \
613       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
614                          llvm::FCmpInst::FP); }
615   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
616   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
617   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
618   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
619   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
620   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
621 #undef VISITCOMP
622 
623   Value *VisitBinAssign     (const BinaryOperator *E);
624 
625   Value *VisitBinLAnd       (const BinaryOperator *E);
626   Value *VisitBinLOr        (const BinaryOperator *E);
627   Value *VisitBinComma      (const BinaryOperator *E);
628 
629   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
630   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
631 
632   // Other Operators.
633   Value *VisitBlockExpr(const BlockExpr *BE);
634   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
635   Value *VisitChooseExpr(ChooseExpr *CE);
636   Value *VisitVAArgExpr(VAArgExpr *VE);
637   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
638     return CGF.EmitObjCStringLiteral(E);
639   }
640   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
641     return CGF.EmitObjCBoxedExpr(E);
642   }
643   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
644     return CGF.EmitObjCArrayLiteral(E);
645   }
646   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
647     return CGF.EmitObjCDictionaryLiteral(E);
648   }
649   Value *VisitAsTypeExpr(AsTypeExpr *CE);
650   Value *VisitAtomicExpr(AtomicExpr *AE);
651 };
652 }  // end anonymous namespace.
653 
654 //===----------------------------------------------------------------------===//
655 //                                Utilities
656 //===----------------------------------------------------------------------===//
657 
658 /// EmitConversionToBool - Convert the specified expression value to a
659 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
660 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
661   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
662 
663   if (SrcType->isRealFloatingType())
664     return EmitFloatToBoolConversion(Src);
665 
666   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
667     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
668 
669   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
670          "Unknown scalar type to convert");
671 
672   if (isa<llvm::IntegerType>(Src->getType()))
673     return EmitIntToBoolConversion(Src);
674 
675   assert(isa<llvm::PointerType>(Src->getType()));
676   return EmitPointerToBoolConversion(Src, SrcType);
677 }
678 
679 void ScalarExprEmitter::EmitFloatConversionCheck(
680     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
681     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
682   CodeGenFunction::SanitizerScope SanScope(&CGF);
683   using llvm::APFloat;
684   using llvm::APSInt;
685 
686   llvm::Type *SrcTy = Src->getType();
687 
688   llvm::Value *Check = nullptr;
689   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
690     // Integer to floating-point. This can fail for unsigned short -> __half
691     // or unsigned __int128 -> float.
692     assert(DstType->isFloatingType());
693     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
694 
695     APFloat LargestFloat =
696       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
697     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
698 
699     bool IsExact;
700     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
701                                       &IsExact) != APFloat::opOK)
702       // The range of representable values of this floating point type includes
703       // all values of this integer type. Don't need an overflow check.
704       return;
705 
706     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
707     if (SrcIsUnsigned)
708       Check = Builder.CreateICmpULE(Src, Max);
709     else {
710       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
711       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
712       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
713       Check = Builder.CreateAnd(GE, LE);
714     }
715   } else {
716     const llvm::fltSemantics &SrcSema =
717       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
718     if (isa<llvm::IntegerType>(DstTy)) {
719       // Floating-point to integer. This has undefined behavior if the source is
720       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
721       // to an integer).
722       unsigned Width = CGF.getContext().getIntWidth(DstType);
723       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
724 
725       APSInt Min = APSInt::getMinValue(Width, Unsigned);
726       APFloat MinSrc(SrcSema, APFloat::uninitialized);
727       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
728           APFloat::opOverflow)
729         // Don't need an overflow check for lower bound. Just check for
730         // -Inf/NaN.
731         MinSrc = APFloat::getInf(SrcSema, true);
732       else
733         // Find the largest value which is too small to represent (before
734         // truncation toward zero).
735         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
736 
737       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
738       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
739       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
740           APFloat::opOverflow)
741         // Don't need an overflow check for upper bound. Just check for
742         // +Inf/NaN.
743         MaxSrc = APFloat::getInf(SrcSema, false);
744       else
745         // Find the smallest value which is too large to represent (before
746         // truncation toward zero).
747         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
748 
749       // If we're converting from __half, convert the range to float to match
750       // the type of src.
751       if (OrigSrcType->isHalfType()) {
752         const llvm::fltSemantics &Sema =
753           CGF.getContext().getFloatTypeSemantics(SrcType);
754         bool IsInexact;
755         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
756         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
757       }
758 
759       llvm::Value *GE =
760         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
761       llvm::Value *LE =
762         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
763       Check = Builder.CreateAnd(GE, LE);
764     } else {
765       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
766       //
767       // Floating-point to floating-point. This has undefined behavior if the
768       // source is not in the range of representable values of the destination
769       // type. The C and C++ standards are spectacularly unclear here. We
770       // diagnose finite out-of-range conversions, but allow infinities and NaNs
771       // to convert to the corresponding value in the smaller type.
772       //
773       // C11 Annex F gives all such conversions defined behavior for IEC 60559
774       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
775       // does not.
776 
777       // Converting from a lower rank to a higher rank can never have
778       // undefined behavior, since higher-rank types must have a superset
779       // of values of lower-rank types.
780       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
781         return;
782 
783       assert(!OrigSrcType->isHalfType() &&
784              "should not check conversion from __half, it has the lowest rank");
785 
786       const llvm::fltSemantics &DstSema =
787         CGF.getContext().getFloatTypeSemantics(DstType);
788       APFloat MinBad = APFloat::getLargest(DstSema, false);
789       APFloat MaxBad = APFloat::getInf(DstSema, false);
790 
791       bool IsInexact;
792       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
793       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
794 
795       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
796         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
797       llvm::Value *GE =
798         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
799       llvm::Value *LE =
800         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
801       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
802     }
803   }
804 
805   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
806                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
807                                   CGF.EmitCheckTypeDescriptor(DstType)};
808   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
809                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
810 }
811 
812 /// Emit a conversion from the specified type to the specified destination type,
813 /// both of which are LLVM scalar types.
814 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
815                                                QualType DstType,
816                                                SourceLocation Loc) {
817   return EmitScalarConversion(Src, SrcType, DstType, Loc, false);
818 }
819 
820 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
821                                                QualType DstType,
822                                                SourceLocation Loc,
823                                                bool TreatBooleanAsSigned) {
824   SrcType = CGF.getContext().getCanonicalType(SrcType);
825   DstType = CGF.getContext().getCanonicalType(DstType);
826   if (SrcType == DstType) return Src;
827 
828   if (DstType->isVoidType()) return nullptr;
829 
830   llvm::Value *OrigSrc = Src;
831   QualType OrigSrcType = SrcType;
832   llvm::Type *SrcTy = Src->getType();
833 
834   // Handle conversions to bool first, they are special: comparisons against 0.
835   if (DstType->isBooleanType())
836     return EmitConversionToBool(Src, SrcType);
837 
838   llvm::Type *DstTy = ConvertType(DstType);
839 
840   // Cast from half through float if half isn't a native type.
841   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
842     // Cast to FP using the intrinsic if the half type itself isn't supported.
843     if (DstTy->isFloatingPointTy()) {
844       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
845         return Builder.CreateCall(
846             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
847             Src);
848     } else {
849       // Cast to other types through float, using either the intrinsic or FPExt,
850       // depending on whether the half type itself is supported
851       // (as opposed to operations on half, available with NativeHalfType).
852       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
853         Src = Builder.CreateCall(
854             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
855                                  CGF.CGM.FloatTy),
856             Src);
857       } else {
858         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
859       }
860       SrcType = CGF.getContext().FloatTy;
861       SrcTy = CGF.FloatTy;
862     }
863   }
864 
865   // Ignore conversions like int -> uint.
866   if (SrcTy == DstTy)
867     return Src;
868 
869   // Handle pointer conversions next: pointers can only be converted to/from
870   // other pointers and integers. Check for pointer types in terms of LLVM, as
871   // some native types (like Obj-C id) may map to a pointer type.
872   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
873     // The source value may be an integer, or a pointer.
874     if (isa<llvm::PointerType>(SrcTy))
875       return Builder.CreateBitCast(Src, DstTy, "conv");
876 
877     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
878     // First, convert to the correct width so that we control the kind of
879     // extension.
880     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
881     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
882     llvm::Value* IntResult =
883         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
884     // Then, cast to pointer.
885     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
886   }
887 
888   if (isa<llvm::PointerType>(SrcTy)) {
889     // Must be an ptr to int cast.
890     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
891     return Builder.CreatePtrToInt(Src, DstTy, "conv");
892   }
893 
894   // A scalar can be splatted to an extended vector of the same element type
895   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
896     // Sema should add casts to make sure that the source expression's type is
897     // the same as the vector's element type (sans qualifiers)
898     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
899                SrcType.getTypePtr() &&
900            "Splatted expr doesn't match with vector element type?");
901 
902     // Splat the element across to all elements
903     unsigned NumElements = DstTy->getVectorNumElements();
904     return Builder.CreateVectorSplat(NumElements, Src, "splat");
905   }
906 
907   // Allow bitcast from vector to integer/fp of the same size.
908   if (isa<llvm::VectorType>(SrcTy) ||
909       isa<llvm::VectorType>(DstTy))
910     return Builder.CreateBitCast(Src, DstTy, "conv");
911 
912   // Finally, we have the arithmetic types: real int/float.
913   Value *Res = nullptr;
914   llvm::Type *ResTy = DstTy;
915 
916   // An overflowing conversion has undefined behavior if either the source type
917   // or the destination type is a floating-point type.
918   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
919       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
920     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
921                              Loc);
922 
923   // Cast to half through float if half isn't a native type.
924   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
925     // Make sure we cast in a single step if from another FP type.
926     if (SrcTy->isFloatingPointTy()) {
927       // Use the intrinsic if the half type itself isn't supported
928       // (as opposed to operations on half, available with NativeHalfType).
929       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
930         return Builder.CreateCall(
931             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
932       // If the half type is supported, just use an fptrunc.
933       return Builder.CreateFPTrunc(Src, DstTy);
934     }
935     DstTy = CGF.FloatTy;
936   }
937 
938   if (isa<llvm::IntegerType>(SrcTy)) {
939     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
940     if (SrcType->isBooleanType() && TreatBooleanAsSigned) {
941       InputSigned = true;
942     }
943     if (isa<llvm::IntegerType>(DstTy))
944       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
945     else if (InputSigned)
946       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
947     else
948       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
949   } else if (isa<llvm::IntegerType>(DstTy)) {
950     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
951     if (DstType->isSignedIntegerOrEnumerationType())
952       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
953     else
954       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
955   } else {
956     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
957            "Unknown real conversion");
958     if (DstTy->getTypeID() < SrcTy->getTypeID())
959       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
960     else
961       Res = Builder.CreateFPExt(Src, DstTy, "conv");
962   }
963 
964   if (DstTy != ResTy) {
965     if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
966       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
967       Res = Builder.CreateCall(
968         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
969         Res);
970     } else {
971       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
972     }
973   }
974 
975   return Res;
976 }
977 
978 /// Emit a conversion from the specified complex type to the specified
979 /// destination type, where the destination type is an LLVM scalar type.
980 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
981     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
982     SourceLocation Loc) {
983   // Get the source element type.
984   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
985 
986   // Handle conversions to bool first, they are special: comparisons against 0.
987   if (DstTy->isBooleanType()) {
988     //  Complex != 0  -> (Real != 0) | (Imag != 0)
989     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
990     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
991     return Builder.CreateOr(Src.first, Src.second, "tobool");
992   }
993 
994   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
995   // the imaginary part of the complex value is discarded and the value of the
996   // real part is converted according to the conversion rules for the
997   // corresponding real type.
998   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
999 }
1000 
1001 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1002   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1003 }
1004 
1005 /// \brief Emit a sanitization check for the given "binary" operation (which
1006 /// might actually be a unary increment which has been lowered to a binary
1007 /// operation). The check passes if all values in \p Checks (which are \c i1),
1008 /// are \c true.
1009 void ScalarExprEmitter::EmitBinOpCheck(
1010     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1011   assert(CGF.IsSanitizerScope);
1012   SanitizerHandler Check;
1013   SmallVector<llvm::Constant *, 4> StaticData;
1014   SmallVector<llvm::Value *, 2> DynamicData;
1015 
1016   BinaryOperatorKind Opcode = Info.Opcode;
1017   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1018     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1019 
1020   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1021   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1022   if (UO && UO->getOpcode() == UO_Minus) {
1023     Check = SanitizerHandler::NegateOverflow;
1024     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1025     DynamicData.push_back(Info.RHS);
1026   } else {
1027     if (BinaryOperator::isShiftOp(Opcode)) {
1028       // Shift LHS negative or too large, or RHS out of bounds.
1029       Check = SanitizerHandler::ShiftOutOfBounds;
1030       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1031       StaticData.push_back(
1032         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1033       StaticData.push_back(
1034         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1035     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1036       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1037       Check = SanitizerHandler::DivremOverflow;
1038       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1039     } else {
1040       // Arithmetic overflow (+, -, *).
1041       switch (Opcode) {
1042       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1043       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1044       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1045       default: llvm_unreachable("unexpected opcode for bin op check");
1046       }
1047       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1048     }
1049     DynamicData.push_back(Info.LHS);
1050     DynamicData.push_back(Info.RHS);
1051   }
1052 
1053   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1054 }
1055 
1056 //===----------------------------------------------------------------------===//
1057 //                            Visitor Methods
1058 //===----------------------------------------------------------------------===//
1059 
1060 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1061   CGF.ErrorUnsupported(E, "scalar expression");
1062   if (E->getType()->isVoidType())
1063     return nullptr;
1064   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1065 }
1066 
1067 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1068   // Vector Mask Case
1069   if (E->getNumSubExprs() == 2) {
1070     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1071     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1072     Value *Mask;
1073 
1074     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1075     unsigned LHSElts = LTy->getNumElements();
1076 
1077     Mask = RHS;
1078 
1079     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1080 
1081     // Mask off the high bits of each shuffle index.
1082     Value *MaskBits =
1083         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1084     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1085 
1086     // newv = undef
1087     // mask = mask & maskbits
1088     // for each elt
1089     //   n = extract mask i
1090     //   x = extract val n
1091     //   newv = insert newv, x, i
1092     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1093                                                   MTy->getNumElements());
1094     Value* NewV = llvm::UndefValue::get(RTy);
1095     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1096       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1097       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1098 
1099       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1100       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1101     }
1102     return NewV;
1103   }
1104 
1105   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1106   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1107 
1108   SmallVector<llvm::Constant*, 32> indices;
1109   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1110     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1111     // Check for -1 and output it as undef in the IR.
1112     if (Idx.isSigned() && Idx.isAllOnesValue())
1113       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1114     else
1115       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1116   }
1117 
1118   Value *SV = llvm::ConstantVector::get(indices);
1119   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1120 }
1121 
1122 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1123   QualType SrcType = E->getSrcExpr()->getType(),
1124            DstType = E->getType();
1125 
1126   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1127 
1128   SrcType = CGF.getContext().getCanonicalType(SrcType);
1129   DstType = CGF.getContext().getCanonicalType(DstType);
1130   if (SrcType == DstType) return Src;
1131 
1132   assert(SrcType->isVectorType() &&
1133          "ConvertVector source type must be a vector");
1134   assert(DstType->isVectorType() &&
1135          "ConvertVector destination type must be a vector");
1136 
1137   llvm::Type *SrcTy = Src->getType();
1138   llvm::Type *DstTy = ConvertType(DstType);
1139 
1140   // Ignore conversions like int -> uint.
1141   if (SrcTy == DstTy)
1142     return Src;
1143 
1144   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1145            DstEltType = DstType->getAs<VectorType>()->getElementType();
1146 
1147   assert(SrcTy->isVectorTy() &&
1148          "ConvertVector source IR type must be a vector");
1149   assert(DstTy->isVectorTy() &&
1150          "ConvertVector destination IR type must be a vector");
1151 
1152   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1153              *DstEltTy = DstTy->getVectorElementType();
1154 
1155   if (DstEltType->isBooleanType()) {
1156     assert((SrcEltTy->isFloatingPointTy() ||
1157             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1158 
1159     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1160     if (SrcEltTy->isFloatingPointTy()) {
1161       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1162     } else {
1163       return Builder.CreateICmpNE(Src, Zero, "tobool");
1164     }
1165   }
1166 
1167   // We have the arithmetic types: real int/float.
1168   Value *Res = nullptr;
1169 
1170   if (isa<llvm::IntegerType>(SrcEltTy)) {
1171     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1172     if (isa<llvm::IntegerType>(DstEltTy))
1173       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1174     else if (InputSigned)
1175       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1176     else
1177       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1178   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1179     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1180     if (DstEltType->isSignedIntegerOrEnumerationType())
1181       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1182     else
1183       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1184   } else {
1185     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1186            "Unknown real conversion");
1187     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1188       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1189     else
1190       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1191   }
1192 
1193   return Res;
1194 }
1195 
1196 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1197   llvm::APSInt Value;
1198   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1199     if (E->isArrow())
1200       CGF.EmitScalarExpr(E->getBase());
1201     else
1202       EmitLValue(E->getBase());
1203     return Builder.getInt(Value);
1204   }
1205 
1206   return EmitLoadOfLValue(E);
1207 }
1208 
1209 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1210   TestAndClearIgnoreResultAssign();
1211 
1212   // Emit subscript expressions in rvalue context's.  For most cases, this just
1213   // loads the lvalue formed by the subscript expr.  However, we have to be
1214   // careful, because the base of a vector subscript is occasionally an rvalue,
1215   // so we can't get it as an lvalue.
1216   if (!E->getBase()->getType()->isVectorType())
1217     return EmitLoadOfLValue(E);
1218 
1219   // Handle the vector case.  The base must be a vector, the index must be an
1220   // integer value.
1221   Value *Base = Visit(E->getBase());
1222   Value *Idx  = Visit(E->getIdx());
1223   QualType IdxTy = E->getIdx()->getType();
1224 
1225   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1226     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1227 
1228   return Builder.CreateExtractElement(Base, Idx, "vecext");
1229 }
1230 
1231 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1232                                   unsigned Off, llvm::Type *I32Ty) {
1233   int MV = SVI->getMaskValue(Idx);
1234   if (MV == -1)
1235     return llvm::UndefValue::get(I32Ty);
1236   return llvm::ConstantInt::get(I32Ty, Off+MV);
1237 }
1238 
1239 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1240   if (C->getBitWidth() != 32) {
1241       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1242                                                     C->getZExtValue()) &&
1243              "Index operand too large for shufflevector mask!");
1244       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1245   }
1246   return C;
1247 }
1248 
1249 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1250   bool Ignore = TestAndClearIgnoreResultAssign();
1251   (void)Ignore;
1252   assert (Ignore == false && "init list ignored");
1253   unsigned NumInitElements = E->getNumInits();
1254 
1255   if (E->hadArrayRangeDesignator())
1256     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1257 
1258   llvm::VectorType *VType =
1259     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1260 
1261   if (!VType) {
1262     if (NumInitElements == 0) {
1263       // C++11 value-initialization for the scalar.
1264       return EmitNullValue(E->getType());
1265     }
1266     // We have a scalar in braces. Just use the first element.
1267     return Visit(E->getInit(0));
1268   }
1269 
1270   unsigned ResElts = VType->getNumElements();
1271 
1272   // Loop over initializers collecting the Value for each, and remembering
1273   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1274   // us to fold the shuffle for the swizzle into the shuffle for the vector
1275   // initializer, since LLVM optimizers generally do not want to touch
1276   // shuffles.
1277   unsigned CurIdx = 0;
1278   bool VIsUndefShuffle = false;
1279   llvm::Value *V = llvm::UndefValue::get(VType);
1280   for (unsigned i = 0; i != NumInitElements; ++i) {
1281     Expr *IE = E->getInit(i);
1282     Value *Init = Visit(IE);
1283     SmallVector<llvm::Constant*, 16> Args;
1284 
1285     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1286 
1287     // Handle scalar elements.  If the scalar initializer is actually one
1288     // element of a different vector of the same width, use shuffle instead of
1289     // extract+insert.
1290     if (!VVT) {
1291       if (isa<ExtVectorElementExpr>(IE)) {
1292         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1293 
1294         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1295           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1296           Value *LHS = nullptr, *RHS = nullptr;
1297           if (CurIdx == 0) {
1298             // insert into undef -> shuffle (src, undef)
1299             // shufflemask must use an i32
1300             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1301             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1302 
1303             LHS = EI->getVectorOperand();
1304             RHS = V;
1305             VIsUndefShuffle = true;
1306           } else if (VIsUndefShuffle) {
1307             // insert into undefshuffle && size match -> shuffle (v, src)
1308             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1309             for (unsigned j = 0; j != CurIdx; ++j)
1310               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1311             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1312             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1313 
1314             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1315             RHS = EI->getVectorOperand();
1316             VIsUndefShuffle = false;
1317           }
1318           if (!Args.empty()) {
1319             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1320             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1321             ++CurIdx;
1322             continue;
1323           }
1324         }
1325       }
1326       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1327                                       "vecinit");
1328       VIsUndefShuffle = false;
1329       ++CurIdx;
1330       continue;
1331     }
1332 
1333     unsigned InitElts = VVT->getNumElements();
1334 
1335     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1336     // input is the same width as the vector being constructed, generate an
1337     // optimized shuffle of the swizzle input into the result.
1338     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1339     if (isa<ExtVectorElementExpr>(IE)) {
1340       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1341       Value *SVOp = SVI->getOperand(0);
1342       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1343 
1344       if (OpTy->getNumElements() == ResElts) {
1345         for (unsigned j = 0; j != CurIdx; ++j) {
1346           // If the current vector initializer is a shuffle with undef, merge
1347           // this shuffle directly into it.
1348           if (VIsUndefShuffle) {
1349             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1350                                       CGF.Int32Ty));
1351           } else {
1352             Args.push_back(Builder.getInt32(j));
1353           }
1354         }
1355         for (unsigned j = 0, je = InitElts; j != je; ++j)
1356           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1357         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1358 
1359         if (VIsUndefShuffle)
1360           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1361 
1362         Init = SVOp;
1363       }
1364     }
1365 
1366     // Extend init to result vector length, and then shuffle its contribution
1367     // to the vector initializer into V.
1368     if (Args.empty()) {
1369       for (unsigned j = 0; j != InitElts; ++j)
1370         Args.push_back(Builder.getInt32(j));
1371       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1372       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1373       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1374                                          Mask, "vext");
1375 
1376       Args.clear();
1377       for (unsigned j = 0; j != CurIdx; ++j)
1378         Args.push_back(Builder.getInt32(j));
1379       for (unsigned j = 0; j != InitElts; ++j)
1380         Args.push_back(Builder.getInt32(j+Offset));
1381       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1382     }
1383 
1384     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1385     // merging subsequent shuffles into this one.
1386     if (CurIdx == 0)
1387       std::swap(V, Init);
1388     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1389     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1390     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1391     CurIdx += InitElts;
1392   }
1393 
1394   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1395   // Emit remaining default initializers.
1396   llvm::Type *EltTy = VType->getElementType();
1397 
1398   // Emit remaining default initializers
1399   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1400     Value *Idx = Builder.getInt32(CurIdx);
1401     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1402     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1403   }
1404   return V;
1405 }
1406 
1407 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1408   const Expr *E = CE->getSubExpr();
1409 
1410   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1411     return false;
1412 
1413   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1414     // We always assume that 'this' is never null.
1415     return false;
1416   }
1417 
1418   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1419     // And that glvalue casts are never null.
1420     if (ICE->getValueKind() != VK_RValue)
1421       return false;
1422   }
1423 
1424   return true;
1425 }
1426 
1427 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1428 // have to handle a more broad range of conversions than explicit casts, as they
1429 // handle things like function to ptr-to-function decay etc.
1430 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1431   Expr *E = CE->getSubExpr();
1432   QualType DestTy = CE->getType();
1433   CastKind Kind = CE->getCastKind();
1434 
1435   // These cases are generally not written to ignore the result of
1436   // evaluating their sub-expressions, so we clear this now.
1437   bool Ignored = TestAndClearIgnoreResultAssign();
1438 
1439   // Since almost all cast kinds apply to scalars, this switch doesn't have
1440   // a default case, so the compiler will warn on a missing case.  The cases
1441   // are in the same order as in the CastKind enum.
1442   switch (Kind) {
1443   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1444   case CK_BuiltinFnToFnPtr:
1445     llvm_unreachable("builtin functions are handled elsewhere");
1446 
1447   case CK_LValueBitCast:
1448   case CK_ObjCObjectLValueCast: {
1449     Address Addr = EmitLValue(E).getAddress();
1450     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1451     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1452     return EmitLoadOfLValue(LV, CE->getExprLoc());
1453   }
1454 
1455   case CK_CPointerToObjCPointerCast:
1456   case CK_BlockPointerToObjCPointerCast:
1457   case CK_AnyPointerToBlockPointerCast:
1458   case CK_BitCast: {
1459     Value *Src = Visit(const_cast<Expr*>(E));
1460     llvm::Type *SrcTy = Src->getType();
1461     llvm::Type *DstTy = ConvertType(DestTy);
1462     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1463         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1464       llvm_unreachable("wrong cast for pointers in different address spaces"
1465                        "(must be an address space cast)!");
1466     }
1467 
1468     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1469       if (auto PT = DestTy->getAs<PointerType>())
1470         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1471                                       /*MayBeNull=*/true,
1472                                       CodeGenFunction::CFITCK_UnrelatedCast,
1473                                       CE->getLocStart());
1474     }
1475 
1476     return Builder.CreateBitCast(Src, DstTy);
1477   }
1478   case CK_AddressSpaceConversion: {
1479     Expr::EvalResult Result;
1480     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
1481         Result.Val.isNullPointer()) {
1482       // If E has side effect, it is emitted even if its final result is a
1483       // null pointer. In that case, a DCE pass should be able to
1484       // eliminate the useless instructions emitted during translating E.
1485       if (Result.HasSideEffects)
1486         Visit(E);
1487       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
1488           ConvertType(DestTy)), DestTy);
1489     }
1490     // Since target may map different address spaces in AST to the same address
1491     // space, an address space conversion may end up as a bitcast.
1492     auto *Src = Visit(E);
1493     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGF, Src,
1494                                                                E->getType(),
1495                                                                DestTy);
1496   }
1497   case CK_AtomicToNonAtomic:
1498   case CK_NonAtomicToAtomic:
1499   case CK_NoOp:
1500   case CK_UserDefinedConversion:
1501     return Visit(const_cast<Expr*>(E));
1502 
1503   case CK_BaseToDerived: {
1504     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1505     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1506 
1507     Address Base = CGF.EmitPointerWithAlignment(E);
1508     Address Derived =
1509       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
1510                                    CE->path_begin(), CE->path_end(),
1511                                    CGF.ShouldNullCheckClassCastValue(CE));
1512 
1513     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1514     // performed and the object is not of the derived type.
1515     if (CGF.sanitizePerformTypeCheck())
1516       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1517                         Derived.getPointer(), DestTy->getPointeeType());
1518 
1519     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1520       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
1521                                     Derived.getPointer(),
1522                                     /*MayBeNull=*/true,
1523                                     CodeGenFunction::CFITCK_DerivedCast,
1524                                     CE->getLocStart());
1525 
1526     return Derived.getPointer();
1527   }
1528   case CK_UncheckedDerivedToBase:
1529   case CK_DerivedToBase: {
1530     // The EmitPointerWithAlignment path does this fine; just discard
1531     // the alignment.
1532     return CGF.EmitPointerWithAlignment(CE).getPointer();
1533   }
1534 
1535   case CK_Dynamic: {
1536     Address V = CGF.EmitPointerWithAlignment(E);
1537     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1538     return CGF.EmitDynamicCast(V, DCE);
1539   }
1540 
1541   case CK_ArrayToPointerDecay:
1542     return CGF.EmitArrayToPointerDecay(E).getPointer();
1543   case CK_FunctionToPointerDecay:
1544     return EmitLValue(E).getPointer();
1545 
1546   case CK_NullToPointer:
1547     if (MustVisitNullValue(E))
1548       (void) Visit(E);
1549 
1550     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
1551                               DestTy);
1552 
1553   case CK_NullToMemberPointer: {
1554     if (MustVisitNullValue(E))
1555       (void) Visit(E);
1556 
1557     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1558     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1559   }
1560 
1561   case CK_ReinterpretMemberPointer:
1562   case CK_BaseToDerivedMemberPointer:
1563   case CK_DerivedToBaseMemberPointer: {
1564     Value *Src = Visit(E);
1565 
1566     // Note that the AST doesn't distinguish between checked and
1567     // unchecked member pointer conversions, so we always have to
1568     // implement checked conversions here.  This is inefficient when
1569     // actual control flow may be required in order to perform the
1570     // check, which it is for data member pointers (but not member
1571     // function pointers on Itanium and ARM).
1572     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1573   }
1574 
1575   case CK_ARCProduceObject:
1576     return CGF.EmitARCRetainScalarExpr(E);
1577   case CK_ARCConsumeObject:
1578     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1579   case CK_ARCReclaimReturnedObject:
1580     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
1581   case CK_ARCExtendBlockObject:
1582     return CGF.EmitARCExtendBlockObject(E);
1583 
1584   case CK_CopyAndAutoreleaseBlockObject:
1585     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1586 
1587   case CK_FloatingRealToComplex:
1588   case CK_FloatingComplexCast:
1589   case CK_IntegralRealToComplex:
1590   case CK_IntegralComplexCast:
1591   case CK_IntegralComplexToFloatingComplex:
1592   case CK_FloatingComplexToIntegralComplex:
1593   case CK_ConstructorConversion:
1594   case CK_ToUnion:
1595     llvm_unreachable("scalar cast to non-scalar value");
1596 
1597   case CK_LValueToRValue:
1598     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1599     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1600     return Visit(const_cast<Expr*>(E));
1601 
1602   case CK_IntegralToPointer: {
1603     Value *Src = Visit(const_cast<Expr*>(E));
1604 
1605     // First, convert to the correct width so that we control the kind of
1606     // extension.
1607     auto DestLLVMTy = ConvertType(DestTy);
1608     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
1609     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1610     llvm::Value* IntResult =
1611       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1612 
1613     return Builder.CreateIntToPtr(IntResult, DestLLVMTy);
1614   }
1615   case CK_PointerToIntegral:
1616     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1617     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1618 
1619   case CK_ToVoid: {
1620     CGF.EmitIgnoredExpr(E);
1621     return nullptr;
1622   }
1623   case CK_VectorSplat: {
1624     llvm::Type *DstTy = ConvertType(DestTy);
1625     Value *Elt = Visit(const_cast<Expr*>(E));
1626     // Splat the element across to all elements
1627     unsigned NumElements = DstTy->getVectorNumElements();
1628     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1629   }
1630 
1631   case CK_IntegralCast:
1632   case CK_IntegralToFloating:
1633   case CK_FloatingToIntegral:
1634   case CK_FloatingCast:
1635     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1636                                 CE->getExprLoc());
1637   case CK_BooleanToSignedIntegral:
1638     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1639                                 CE->getExprLoc(),
1640                                 /*TreatBooleanAsSigned=*/true);
1641   case CK_IntegralToBoolean:
1642     return EmitIntToBoolConversion(Visit(E));
1643   case CK_PointerToBoolean:
1644     return EmitPointerToBoolConversion(Visit(E), E->getType());
1645   case CK_FloatingToBoolean:
1646     return EmitFloatToBoolConversion(Visit(E));
1647   case CK_MemberPointerToBoolean: {
1648     llvm::Value *MemPtr = Visit(E);
1649     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1650     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1651   }
1652 
1653   case CK_FloatingComplexToReal:
1654   case CK_IntegralComplexToReal:
1655     return CGF.EmitComplexExpr(E, false, true).first;
1656 
1657   case CK_FloatingComplexToBoolean:
1658   case CK_IntegralComplexToBoolean: {
1659     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1660 
1661     // TODO: kill this function off, inline appropriate case here
1662     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
1663                                          CE->getExprLoc());
1664   }
1665 
1666   case CK_ZeroToOCLEvent: {
1667     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1668     return llvm::Constant::getNullValue(ConvertType(DestTy));
1669   }
1670 
1671   case CK_ZeroToOCLQueue: {
1672     assert(DestTy->isQueueT() && "CK_ZeroToOCLQueue cast on non queue_t type");
1673     return llvm::Constant::getNullValue(ConvertType(DestTy));
1674   }
1675 
1676   case CK_IntToOCLSampler:
1677     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
1678 
1679   } // end of switch
1680 
1681   llvm_unreachable("unknown scalar cast");
1682 }
1683 
1684 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1685   CodeGenFunction::StmtExprEvaluation eval(CGF);
1686   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1687                                            !E->getType()->isVoidType());
1688   if (!RetAlloca.isValid())
1689     return nullptr;
1690   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1691                               E->getExprLoc());
1692 }
1693 
1694 //===----------------------------------------------------------------------===//
1695 //                             Unary Operators
1696 //===----------------------------------------------------------------------===//
1697 
1698 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1699                                            llvm::Value *InVal, bool IsInc) {
1700   BinOpInfo BinOp;
1701   BinOp.LHS = InVal;
1702   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1703   BinOp.Ty = E->getType();
1704   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1705   BinOp.FPContractable = false;
1706   BinOp.E = E;
1707   return BinOp;
1708 }
1709 
1710 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1711     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1712   llvm::Value *Amount =
1713       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1714   StringRef Name = IsInc ? "inc" : "dec";
1715   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1716   case LangOptions::SOB_Defined:
1717     return Builder.CreateAdd(InVal, Amount, Name);
1718   case LangOptions::SOB_Undefined:
1719     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1720       return Builder.CreateNSWAdd(InVal, Amount, Name);
1721     // Fall through.
1722   case LangOptions::SOB_Trapping:
1723     if (IsWidenedIntegerOp(CGF.getContext(), E->getSubExpr()))
1724       return Builder.CreateNSWAdd(InVal, Amount, Name);
1725     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1726   }
1727   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1728 }
1729 
1730 llvm::Value *
1731 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1732                                            bool isInc, bool isPre) {
1733 
1734   QualType type = E->getSubExpr()->getType();
1735   llvm::PHINode *atomicPHI = nullptr;
1736   llvm::Value *value;
1737   llvm::Value *input;
1738 
1739   int amount = (isInc ? 1 : -1);
1740 
1741   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1742     type = atomicTy->getValueType();
1743     if (isInc && type->isBooleanType()) {
1744       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1745       if (isPre) {
1746         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
1747           ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
1748         return Builder.getTrue();
1749       }
1750       // For atomic bool increment, we just store true and return it for
1751       // preincrement, do an atomic swap with true for postincrement
1752       return Builder.CreateAtomicRMW(
1753           llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
1754           llvm::AtomicOrdering::SequentiallyConsistent);
1755     }
1756     // Special case for atomic increment / decrement on integers, emit
1757     // atomicrmw instructions.  We skip this if we want to be doing overflow
1758     // checking, and fall into the slow path with the atomic cmpxchg loop.
1759     if (!type->isBooleanType() && type->isIntegerType() &&
1760         !(type->isUnsignedIntegerType() &&
1761           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1762         CGF.getLangOpts().getSignedOverflowBehavior() !=
1763             LangOptions::SOB_Trapping) {
1764       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1765         llvm::AtomicRMWInst::Sub;
1766       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1767         llvm::Instruction::Sub;
1768       llvm::Value *amt = CGF.EmitToMemory(
1769           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1770       llvm::Value *old = Builder.CreateAtomicRMW(aop,
1771           LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
1772       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1773     }
1774     value = EmitLoadOfLValue(LV, E->getExprLoc());
1775     input = value;
1776     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1777     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1778     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1779     value = CGF.EmitToMemory(value, type);
1780     Builder.CreateBr(opBB);
1781     Builder.SetInsertPoint(opBB);
1782     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1783     atomicPHI->addIncoming(value, startBB);
1784     value = atomicPHI;
1785   } else {
1786     value = EmitLoadOfLValue(LV, E->getExprLoc());
1787     input = value;
1788   }
1789 
1790   // Special case of integer increment that we have to check first: bool++.
1791   // Due to promotion rules, we get:
1792   //   bool++ -> bool = bool + 1
1793   //          -> bool = (int)bool + 1
1794   //          -> bool = ((int)bool + 1 != 0)
1795   // An interesting aspect of this is that increment is always true.
1796   // Decrement does not have this property.
1797   if (isInc && type->isBooleanType()) {
1798     value = Builder.getTrue();
1799 
1800   // Most common case by far: integer increment.
1801   } else if (type->isIntegerType()) {
1802     // Note that signed integer inc/dec with width less than int can't
1803     // overflow because of promotion rules; we're just eliding a few steps here.
1804     bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1805                        CGF.IntTy->getIntegerBitWidth();
1806     if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1807       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1808     } else if (CanOverflow && type->isUnsignedIntegerType() &&
1809                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1810       value =
1811           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1812     } else {
1813       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1814       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1815     }
1816 
1817   // Next most common: pointer increment.
1818   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1819     QualType type = ptr->getPointeeType();
1820 
1821     // VLA types don't have constant size.
1822     if (const VariableArrayType *vla
1823           = CGF.getContext().getAsVariableArrayType(type)) {
1824       llvm::Value *numElts = CGF.getVLASize(vla).first;
1825       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1826       if (CGF.getLangOpts().isSignedOverflowDefined())
1827         value = Builder.CreateGEP(value, numElts, "vla.inc");
1828       else
1829         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1830 
1831     // Arithmetic on function pointers (!) is just +-1.
1832     } else if (type->isFunctionType()) {
1833       llvm::Value *amt = Builder.getInt32(amount);
1834 
1835       value = CGF.EmitCastToVoidPtr(value);
1836       if (CGF.getLangOpts().isSignedOverflowDefined())
1837         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1838       else
1839         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1840       value = Builder.CreateBitCast(value, input->getType());
1841 
1842     // For everything else, we can just do a simple increment.
1843     } else {
1844       llvm::Value *amt = Builder.getInt32(amount);
1845       if (CGF.getLangOpts().isSignedOverflowDefined())
1846         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1847       else
1848         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1849     }
1850 
1851   // Vector increment/decrement.
1852   } else if (type->isVectorType()) {
1853     if (type->hasIntegerRepresentation()) {
1854       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1855 
1856       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1857     } else {
1858       value = Builder.CreateFAdd(
1859                   value,
1860                   llvm::ConstantFP::get(value->getType(), amount),
1861                   isInc ? "inc" : "dec");
1862     }
1863 
1864   // Floating point.
1865   } else if (type->isRealFloatingType()) {
1866     // Add the inc/dec to the real part.
1867     llvm::Value *amt;
1868 
1869     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1870       // Another special case: half FP increment should be done via float
1871       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1872         value = Builder.CreateCall(
1873             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1874                                  CGF.CGM.FloatTy),
1875             input, "incdec.conv");
1876       } else {
1877         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
1878       }
1879     }
1880 
1881     if (value->getType()->isFloatTy())
1882       amt = llvm::ConstantFP::get(VMContext,
1883                                   llvm::APFloat(static_cast<float>(amount)));
1884     else if (value->getType()->isDoubleTy())
1885       amt = llvm::ConstantFP::get(VMContext,
1886                                   llvm::APFloat(static_cast<double>(amount)));
1887     else {
1888       // Remaining types are Half, LongDouble or __float128. Convert from float.
1889       llvm::APFloat F(static_cast<float>(amount));
1890       bool ignored;
1891       const llvm::fltSemantics *FS;
1892       // Don't use getFloatTypeSemantics because Half isn't
1893       // necessarily represented using the "half" LLVM type.
1894       if (value->getType()->isFP128Ty())
1895         FS = &CGF.getTarget().getFloat128Format();
1896       else if (value->getType()->isHalfTy())
1897         FS = &CGF.getTarget().getHalfFormat();
1898       else
1899         FS = &CGF.getTarget().getLongDoubleFormat();
1900       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
1901       amt = llvm::ConstantFP::get(VMContext, F);
1902     }
1903     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1904 
1905     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1906       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1907         value = Builder.CreateCall(
1908             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
1909                                  CGF.CGM.FloatTy),
1910             value, "incdec.conv");
1911       } else {
1912         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
1913       }
1914     }
1915 
1916   // Objective-C pointer types.
1917   } else {
1918     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1919     value = CGF.EmitCastToVoidPtr(value);
1920 
1921     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1922     if (!isInc) size = -size;
1923     llvm::Value *sizeValue =
1924       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1925 
1926     if (CGF.getLangOpts().isSignedOverflowDefined())
1927       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1928     else
1929       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1930     value = Builder.CreateBitCast(value, input->getType());
1931   }
1932 
1933   if (atomicPHI) {
1934     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1935     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1936     auto Pair = CGF.EmitAtomicCompareExchange(
1937         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
1938     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
1939     llvm::Value *success = Pair.second;
1940     atomicPHI->addIncoming(old, opBB);
1941     Builder.CreateCondBr(success, contBB, opBB);
1942     Builder.SetInsertPoint(contBB);
1943     return isPre ? value : input;
1944   }
1945 
1946   // Store the updated result through the lvalue.
1947   if (LV.isBitField())
1948     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1949   else
1950     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1951 
1952   // If this is a postinc, return the value read from memory, otherwise use the
1953   // updated value.
1954   return isPre ? value : input;
1955 }
1956 
1957 
1958 
1959 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1960   TestAndClearIgnoreResultAssign();
1961   // Emit unary minus with EmitSub so we handle overflow cases etc.
1962   BinOpInfo BinOp;
1963   BinOp.RHS = Visit(E->getSubExpr());
1964 
1965   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1966     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1967   else
1968     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1969   BinOp.Ty = E->getType();
1970   BinOp.Opcode = BO_Sub;
1971   BinOp.FPContractable = false;
1972   BinOp.E = E;
1973   return EmitSub(BinOp);
1974 }
1975 
1976 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1977   TestAndClearIgnoreResultAssign();
1978   Value *Op = Visit(E->getSubExpr());
1979   return Builder.CreateNot(Op, "neg");
1980 }
1981 
1982 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1983   // Perform vector logical not on comparison with zero vector.
1984   if (E->getType()->isExtVectorType()) {
1985     Value *Oper = Visit(E->getSubExpr());
1986     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1987     Value *Result;
1988     if (Oper->getType()->isFPOrFPVectorTy())
1989       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1990     else
1991       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1992     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1993   }
1994 
1995   // Compare operand to zero.
1996   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1997 
1998   // Invert value.
1999   // TODO: Could dynamically modify easy computations here.  For example, if
2000   // the operand is an icmp ne, turn into icmp eq.
2001   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2002 
2003   // ZExt result to the expr type.
2004   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2005 }
2006 
2007 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2008   // Try folding the offsetof to a constant.
2009   llvm::APSInt Value;
2010   if (E->EvaluateAsInt(Value, CGF.getContext()))
2011     return Builder.getInt(Value);
2012 
2013   // Loop over the components of the offsetof to compute the value.
2014   unsigned n = E->getNumComponents();
2015   llvm::Type* ResultType = ConvertType(E->getType());
2016   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2017   QualType CurrentType = E->getTypeSourceInfo()->getType();
2018   for (unsigned i = 0; i != n; ++i) {
2019     OffsetOfNode ON = E->getComponent(i);
2020     llvm::Value *Offset = nullptr;
2021     switch (ON.getKind()) {
2022     case OffsetOfNode::Array: {
2023       // Compute the index
2024       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2025       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2026       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2027       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2028 
2029       // Save the element type
2030       CurrentType =
2031           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2032 
2033       // Compute the element size
2034       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2035           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2036 
2037       // Multiply out to compute the result
2038       Offset = Builder.CreateMul(Idx, ElemSize);
2039       break;
2040     }
2041 
2042     case OffsetOfNode::Field: {
2043       FieldDecl *MemberDecl = ON.getField();
2044       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2045       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2046 
2047       // Compute the index of the field in its parent.
2048       unsigned i = 0;
2049       // FIXME: It would be nice if we didn't have to loop here!
2050       for (RecordDecl::field_iterator Field = RD->field_begin(),
2051                                       FieldEnd = RD->field_end();
2052            Field != FieldEnd; ++Field, ++i) {
2053         if (*Field == MemberDecl)
2054           break;
2055       }
2056       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2057 
2058       // Compute the offset to the field
2059       int64_t OffsetInt = RL.getFieldOffset(i) /
2060                           CGF.getContext().getCharWidth();
2061       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2062 
2063       // Save the element type.
2064       CurrentType = MemberDecl->getType();
2065       break;
2066     }
2067 
2068     case OffsetOfNode::Identifier:
2069       llvm_unreachable("dependent __builtin_offsetof");
2070 
2071     case OffsetOfNode::Base: {
2072       if (ON.getBase()->isVirtual()) {
2073         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2074         continue;
2075       }
2076 
2077       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2078       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2079 
2080       // Save the element type.
2081       CurrentType = ON.getBase()->getType();
2082 
2083       // Compute the offset to the base.
2084       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2085       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2086       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2087       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2088       break;
2089     }
2090     }
2091     Result = Builder.CreateAdd(Result, Offset);
2092   }
2093   return Result;
2094 }
2095 
2096 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2097 /// argument of the sizeof expression as an integer.
2098 Value *
2099 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2100                               const UnaryExprOrTypeTraitExpr *E) {
2101   QualType TypeToSize = E->getTypeOfArgument();
2102   if (E->getKind() == UETT_SizeOf) {
2103     if (const VariableArrayType *VAT =
2104           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2105       if (E->isArgumentType()) {
2106         // sizeof(type) - make sure to emit the VLA size.
2107         CGF.EmitVariablyModifiedType(TypeToSize);
2108       } else {
2109         // C99 6.5.3.4p2: If the argument is an expression of type
2110         // VLA, it is evaluated.
2111         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2112       }
2113 
2114       QualType eltType;
2115       llvm::Value *numElts;
2116       std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2117 
2118       llvm::Value *size = numElts;
2119 
2120       // Scale the number of non-VLA elements by the non-VLA element size.
2121       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2122       if (!eltSize.isOne())
2123         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2124 
2125       return size;
2126     }
2127   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2128     auto Alignment =
2129         CGF.getContext()
2130             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2131                 E->getTypeOfArgument()->getPointeeType()))
2132             .getQuantity();
2133     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2134   }
2135 
2136   // If this isn't sizeof(vla), the result must be constant; use the constant
2137   // folding logic so we don't have to duplicate it here.
2138   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2139 }
2140 
2141 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2142   Expr *Op = E->getSubExpr();
2143   if (Op->getType()->isAnyComplexType()) {
2144     // If it's an l-value, load through the appropriate subobject l-value.
2145     // Note that we have to ask E because Op might be an l-value that
2146     // this won't work for, e.g. an Obj-C property.
2147     if (E->isGLValue())
2148       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2149                                   E->getExprLoc()).getScalarVal();
2150 
2151     // Otherwise, calculate and project.
2152     return CGF.EmitComplexExpr(Op, false, true).first;
2153   }
2154 
2155   return Visit(Op);
2156 }
2157 
2158 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2159   Expr *Op = E->getSubExpr();
2160   if (Op->getType()->isAnyComplexType()) {
2161     // If it's an l-value, load through the appropriate subobject l-value.
2162     // Note that we have to ask E because Op might be an l-value that
2163     // this won't work for, e.g. an Obj-C property.
2164     if (Op->isGLValue())
2165       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2166                                   E->getExprLoc()).getScalarVal();
2167 
2168     // Otherwise, calculate and project.
2169     return CGF.EmitComplexExpr(Op, true, false).second;
2170   }
2171 
2172   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2173   // effects are evaluated, but not the actual value.
2174   if (Op->isGLValue())
2175     CGF.EmitLValue(Op);
2176   else
2177     CGF.EmitScalarExpr(Op, true);
2178   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2179 }
2180 
2181 //===----------------------------------------------------------------------===//
2182 //                           Binary Operators
2183 //===----------------------------------------------------------------------===//
2184 
2185 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2186   TestAndClearIgnoreResultAssign();
2187   BinOpInfo Result;
2188   Result.LHS = Visit(E->getLHS());
2189   Result.RHS = Visit(E->getRHS());
2190   Result.Ty  = E->getType();
2191   Result.Opcode = E->getOpcode();
2192   Result.FPContractable = E->isFPContractable();
2193   Result.E = E;
2194   return Result;
2195 }
2196 
2197 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2198                                               const CompoundAssignOperator *E,
2199                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2200                                                    Value *&Result) {
2201   QualType LHSTy = E->getLHS()->getType();
2202   BinOpInfo OpInfo;
2203 
2204   if (E->getComputationResultType()->isAnyComplexType())
2205     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2206 
2207   // Emit the RHS first.  __block variables need to have the rhs evaluated
2208   // first, plus this should improve codegen a little.
2209   OpInfo.RHS = Visit(E->getRHS());
2210   OpInfo.Ty = E->getComputationResultType();
2211   OpInfo.Opcode = E->getOpcode();
2212   OpInfo.FPContractable = E->isFPContractable();
2213   OpInfo.E = E;
2214   // Load/convert the LHS.
2215   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2216 
2217   llvm::PHINode *atomicPHI = nullptr;
2218   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2219     QualType type = atomicTy->getValueType();
2220     if (!type->isBooleanType() && type->isIntegerType() &&
2221         !(type->isUnsignedIntegerType() &&
2222           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2223         CGF.getLangOpts().getSignedOverflowBehavior() !=
2224             LangOptions::SOB_Trapping) {
2225       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2226       switch (OpInfo.Opcode) {
2227         // We don't have atomicrmw operands for *, %, /, <<, >>
2228         case BO_MulAssign: case BO_DivAssign:
2229         case BO_RemAssign:
2230         case BO_ShlAssign:
2231         case BO_ShrAssign:
2232           break;
2233         case BO_AddAssign:
2234           aop = llvm::AtomicRMWInst::Add;
2235           break;
2236         case BO_SubAssign:
2237           aop = llvm::AtomicRMWInst::Sub;
2238           break;
2239         case BO_AndAssign:
2240           aop = llvm::AtomicRMWInst::And;
2241           break;
2242         case BO_XorAssign:
2243           aop = llvm::AtomicRMWInst::Xor;
2244           break;
2245         case BO_OrAssign:
2246           aop = llvm::AtomicRMWInst::Or;
2247           break;
2248         default:
2249           llvm_unreachable("Invalid compound assignment type");
2250       }
2251       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2252         llvm::Value *amt = CGF.EmitToMemory(
2253             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2254                                  E->getExprLoc()),
2255             LHSTy);
2256         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2257             llvm::AtomicOrdering::SequentiallyConsistent);
2258         return LHSLV;
2259       }
2260     }
2261     // FIXME: For floating point types, we should be saving and restoring the
2262     // floating point environment in the loop.
2263     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2264     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2265     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2266     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2267     Builder.CreateBr(opBB);
2268     Builder.SetInsertPoint(opBB);
2269     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2270     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2271     OpInfo.LHS = atomicPHI;
2272   }
2273   else
2274     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2275 
2276   SourceLocation Loc = E->getExprLoc();
2277   OpInfo.LHS =
2278       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2279 
2280   // Expand the binary operator.
2281   Result = (this->*Func)(OpInfo);
2282 
2283   // Convert the result back to the LHS type.
2284   Result =
2285       EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2286 
2287   if (atomicPHI) {
2288     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2289     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2290     auto Pair = CGF.EmitAtomicCompareExchange(
2291         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2292     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2293     llvm::Value *success = Pair.second;
2294     atomicPHI->addIncoming(old, opBB);
2295     Builder.CreateCondBr(success, contBB, opBB);
2296     Builder.SetInsertPoint(contBB);
2297     return LHSLV;
2298   }
2299 
2300   // Store the result value into the LHS lvalue. Bit-fields are handled
2301   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2302   // 'An assignment expression has the value of the left operand after the
2303   // assignment...'.
2304   if (LHSLV.isBitField())
2305     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2306   else
2307     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2308 
2309   return LHSLV;
2310 }
2311 
2312 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2313                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2314   bool Ignore = TestAndClearIgnoreResultAssign();
2315   Value *RHS;
2316   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2317 
2318   // If the result is clearly ignored, return now.
2319   if (Ignore)
2320     return nullptr;
2321 
2322   // The result of an assignment in C is the assigned r-value.
2323   if (!CGF.getLangOpts().CPlusPlus)
2324     return RHS;
2325 
2326   // If the lvalue is non-volatile, return the computed value of the assignment.
2327   if (!LHS.isVolatileQualified())
2328     return RHS;
2329 
2330   // Otherwise, reload the value.
2331   return EmitLoadOfLValue(LHS, E->getExprLoc());
2332 }
2333 
2334 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2335     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2336   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2337 
2338   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2339     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2340                                     SanitizerKind::IntegerDivideByZero));
2341   }
2342 
2343   const auto *BO = cast<BinaryOperator>(Ops.E);
2344   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2345       Ops.Ty->hasSignedIntegerRepresentation() &&
2346       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS())) {
2347     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2348 
2349     llvm::Value *IntMin =
2350       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2351     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2352 
2353     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2354     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2355     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2356     Checks.push_back(
2357         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2358   }
2359 
2360   if (Checks.size() > 0)
2361     EmitBinOpCheck(Checks, Ops);
2362 }
2363 
2364 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2365   {
2366     CodeGenFunction::SanitizerScope SanScope(&CGF);
2367     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2368          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2369         Ops.Ty->isIntegerType()) {
2370       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2371       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2372     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2373                Ops.Ty->isRealFloatingType()) {
2374       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2375       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2376       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2377                      Ops);
2378     }
2379   }
2380 
2381   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2382     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2383     if (CGF.getLangOpts().OpenCL &&
2384         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
2385       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
2386       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
2387       // build option allows an application to specify that single precision
2388       // floating-point divide (x/y and 1/x) and sqrt used in the program
2389       // source are correctly rounded.
2390       llvm::Type *ValTy = Val->getType();
2391       if (ValTy->isFloatTy() ||
2392           (isa<llvm::VectorType>(ValTy) &&
2393            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2394         CGF.SetFPAccuracy(Val, 2.5);
2395     }
2396     return Val;
2397   }
2398   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2399     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2400   else
2401     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2402 }
2403 
2404 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2405   // Rem in C can't be a floating point type: C99 6.5.5p2.
2406   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2407        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2408       Ops.Ty->isIntegerType()) {
2409     CodeGenFunction::SanitizerScope SanScope(&CGF);
2410     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2411     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2412   }
2413 
2414   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2415     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2416   else
2417     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2418 }
2419 
2420 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2421   unsigned IID;
2422   unsigned OpID = 0;
2423 
2424   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2425   switch (Ops.Opcode) {
2426   case BO_Add:
2427   case BO_AddAssign:
2428     OpID = 1;
2429     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2430                      llvm::Intrinsic::uadd_with_overflow;
2431     break;
2432   case BO_Sub:
2433   case BO_SubAssign:
2434     OpID = 2;
2435     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2436                      llvm::Intrinsic::usub_with_overflow;
2437     break;
2438   case BO_Mul:
2439   case BO_MulAssign:
2440     OpID = 3;
2441     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2442                      llvm::Intrinsic::umul_with_overflow;
2443     break;
2444   default:
2445     llvm_unreachable("Unsupported operation for overflow detection");
2446   }
2447   OpID <<= 1;
2448   if (isSigned)
2449     OpID |= 1;
2450 
2451   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2452 
2453   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2454 
2455   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2456   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2457   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2458 
2459   // Handle overflow with llvm.trap if no custom handler has been specified.
2460   const std::string *handlerName =
2461     &CGF.getLangOpts().OverflowHandler;
2462   if (handlerName->empty()) {
2463     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2464     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2465     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2466       CodeGenFunction::SanitizerScope SanScope(&CGF);
2467       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2468       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2469                               : SanitizerKind::UnsignedIntegerOverflow;
2470       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2471     } else
2472       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2473     return result;
2474   }
2475 
2476   // Branch in case of overflow.
2477   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2478   llvm::BasicBlock *continueBB =
2479       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
2480   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2481 
2482   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2483 
2484   // If an overflow handler is set, then we want to call it and then use its
2485   // result, if it returns.
2486   Builder.SetInsertPoint(overflowBB);
2487 
2488   // Get the overflow handler.
2489   llvm::Type *Int8Ty = CGF.Int8Ty;
2490   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2491   llvm::FunctionType *handlerTy =
2492       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2493   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2494 
2495   // Sign extend the args to 64-bit, so that we can use the same handler for
2496   // all types of overflow.
2497   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2498   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2499 
2500   // Call the handler with the two arguments, the operation, and the size of
2501   // the result.
2502   llvm::Value *handlerArgs[] = {
2503     lhs,
2504     rhs,
2505     Builder.getInt8(OpID),
2506     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2507   };
2508   llvm::Value *handlerResult =
2509     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2510 
2511   // Truncate the result back to the desired size.
2512   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2513   Builder.CreateBr(continueBB);
2514 
2515   Builder.SetInsertPoint(continueBB);
2516   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2517   phi->addIncoming(result, initialBB);
2518   phi->addIncoming(handlerResult, overflowBB);
2519 
2520   return phi;
2521 }
2522 
2523 /// Emit pointer + index arithmetic.
2524 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2525                                     const BinOpInfo &op,
2526                                     bool isSubtraction) {
2527   // Must have binary (not unary) expr here.  Unary pointer
2528   // increment/decrement doesn't use this path.
2529   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2530 
2531   Value *pointer = op.LHS;
2532   Expr *pointerOperand = expr->getLHS();
2533   Value *index = op.RHS;
2534   Expr *indexOperand = expr->getRHS();
2535 
2536   // In a subtraction, the LHS is always the pointer.
2537   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2538     std::swap(pointer, index);
2539     std::swap(pointerOperand, indexOperand);
2540   }
2541 
2542   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2543   auto &DL = CGF.CGM.getDataLayout();
2544   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
2545   if (width != DL.getTypeSizeInBits(PtrTy)) {
2546     // Zero-extend or sign-extend the pointer value according to
2547     // whether the index is signed or not.
2548     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2549     index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
2550                                       "idx.ext");
2551   }
2552 
2553   // If this is subtraction, negate the index.
2554   if (isSubtraction)
2555     index = CGF.Builder.CreateNeg(index, "idx.neg");
2556 
2557   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2558     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2559                         /*Accessed*/ false);
2560 
2561   const PointerType *pointerType
2562     = pointerOperand->getType()->getAs<PointerType>();
2563   if (!pointerType) {
2564     QualType objectType = pointerOperand->getType()
2565                                         ->castAs<ObjCObjectPointerType>()
2566                                         ->getPointeeType();
2567     llvm::Value *objectSize
2568       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2569 
2570     index = CGF.Builder.CreateMul(index, objectSize);
2571 
2572     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2573     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2574     return CGF.Builder.CreateBitCast(result, pointer->getType());
2575   }
2576 
2577   QualType elementType = pointerType->getPointeeType();
2578   if (const VariableArrayType *vla
2579         = CGF.getContext().getAsVariableArrayType(elementType)) {
2580     // The element count here is the total number of non-VLA elements.
2581     llvm::Value *numElements = CGF.getVLASize(vla).first;
2582 
2583     // Effectively, the multiply by the VLA size is part of the GEP.
2584     // GEP indexes are signed, and scaling an index isn't permitted to
2585     // signed-overflow, so we use the same semantics for our explicit
2586     // multiply.  We suppress this if overflow is not undefined behavior.
2587     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2588       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2589       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2590     } else {
2591       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2592       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2593     }
2594     return pointer;
2595   }
2596 
2597   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2598   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2599   // future proof.
2600   if (elementType->isVoidType() || elementType->isFunctionType()) {
2601     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2602     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2603     return CGF.Builder.CreateBitCast(result, pointer->getType());
2604   }
2605 
2606   if (CGF.getLangOpts().isSignedOverflowDefined())
2607     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2608 
2609   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2610 }
2611 
2612 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2613 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2614 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2615 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2616 // efficient operations.
2617 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2618                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2619                            bool negMul, bool negAdd) {
2620   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2621 
2622   Value *MulOp0 = MulOp->getOperand(0);
2623   Value *MulOp1 = MulOp->getOperand(1);
2624   if (negMul) {
2625     MulOp0 =
2626       Builder.CreateFSub(
2627         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2628         "neg");
2629   } else if (negAdd) {
2630     Addend =
2631       Builder.CreateFSub(
2632         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2633         "neg");
2634   }
2635 
2636   Value *FMulAdd = Builder.CreateCall(
2637       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2638       {MulOp0, MulOp1, Addend});
2639    MulOp->eraseFromParent();
2640 
2641    return FMulAdd;
2642 }
2643 
2644 // Check whether it would be legal to emit an fmuladd intrinsic call to
2645 // represent op and if so, build the fmuladd.
2646 //
2647 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2648 // Does NOT check the type of the operation - it's assumed that this function
2649 // will be called from contexts where it's known that the type is contractable.
2650 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2651                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2652                          bool isSub=false) {
2653 
2654   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2655           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2656          "Only fadd/fsub can be the root of an fmuladd.");
2657 
2658   // Check whether this op is marked as fusable.
2659   if (!op.FPContractable)
2660     return nullptr;
2661 
2662   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2663   // either disabled, or handled entirely by the LLVM backend).
2664   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2665     return nullptr;
2666 
2667   // We have a potentially fusable op. Look for a mul on one of the operands.
2668   // Also, make sure that the mul result isn't used directly. In that case,
2669   // there's no point creating a muladd operation.
2670   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2671     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2672         LHSBinOp->use_empty())
2673       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2674   }
2675   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2676     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2677         RHSBinOp->use_empty())
2678       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2679   }
2680 
2681   return nullptr;
2682 }
2683 
2684 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2685   if (op.LHS->getType()->isPointerTy() ||
2686       op.RHS->getType()->isPointerTy())
2687     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2688 
2689   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2690     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2691     case LangOptions::SOB_Defined:
2692       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2693     case LangOptions::SOB_Undefined:
2694       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2695         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2696       // Fall through.
2697     case LangOptions::SOB_Trapping:
2698       if (CanElideOverflowCheck(CGF.getContext(), op))
2699         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2700       return EmitOverflowCheckedBinOp(op);
2701     }
2702   }
2703 
2704   if (op.Ty->isUnsignedIntegerType() &&
2705       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
2706       !CanElideOverflowCheck(CGF.getContext(), op))
2707     return EmitOverflowCheckedBinOp(op);
2708 
2709   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2710     // Try to form an fmuladd.
2711     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2712       return FMulAdd;
2713 
2714     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2715   }
2716 
2717   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2718 }
2719 
2720 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2721   // The LHS is always a pointer if either side is.
2722   if (!op.LHS->getType()->isPointerTy()) {
2723     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2724       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2725       case LangOptions::SOB_Defined:
2726         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2727       case LangOptions::SOB_Undefined:
2728         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2729           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2730         // Fall through.
2731       case LangOptions::SOB_Trapping:
2732         if (CanElideOverflowCheck(CGF.getContext(), op))
2733           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2734         return EmitOverflowCheckedBinOp(op);
2735       }
2736     }
2737 
2738     if (op.Ty->isUnsignedIntegerType() &&
2739         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
2740         !CanElideOverflowCheck(CGF.getContext(), op))
2741       return EmitOverflowCheckedBinOp(op);
2742 
2743     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2744       // Try to form an fmuladd.
2745       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2746         return FMulAdd;
2747       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2748     }
2749 
2750     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2751   }
2752 
2753   // If the RHS is not a pointer, then we have normal pointer
2754   // arithmetic.
2755   if (!op.RHS->getType()->isPointerTy())
2756     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2757 
2758   // Otherwise, this is a pointer subtraction.
2759 
2760   // Do the raw subtraction part.
2761   llvm::Value *LHS
2762     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2763   llvm::Value *RHS
2764     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2765   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2766 
2767   // Okay, figure out the element size.
2768   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2769   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2770 
2771   llvm::Value *divisor = nullptr;
2772 
2773   // For a variable-length array, this is going to be non-constant.
2774   if (const VariableArrayType *vla
2775         = CGF.getContext().getAsVariableArrayType(elementType)) {
2776     llvm::Value *numElements;
2777     std::tie(numElements, elementType) = CGF.getVLASize(vla);
2778 
2779     divisor = numElements;
2780 
2781     // Scale the number of non-VLA elements by the non-VLA element size.
2782     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2783     if (!eltSize.isOne())
2784       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2785 
2786   // For everything elese, we can just compute it, safe in the
2787   // assumption that Sema won't let anything through that we can't
2788   // safely compute the size of.
2789   } else {
2790     CharUnits elementSize;
2791     // Handle GCC extension for pointer arithmetic on void* and
2792     // function pointer types.
2793     if (elementType->isVoidType() || elementType->isFunctionType())
2794       elementSize = CharUnits::One();
2795     else
2796       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2797 
2798     // Don't even emit the divide for element size of 1.
2799     if (elementSize.isOne())
2800       return diffInChars;
2801 
2802     divisor = CGF.CGM.getSize(elementSize);
2803   }
2804 
2805   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2806   // pointer difference in C is only defined in the case where both operands
2807   // are pointing to elements of an array.
2808   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2809 }
2810 
2811 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2812   llvm::IntegerType *Ty;
2813   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2814     Ty = cast<llvm::IntegerType>(VT->getElementType());
2815   else
2816     Ty = cast<llvm::IntegerType>(LHS->getType());
2817   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2818 }
2819 
2820 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2821   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2822   // RHS to the same size as the LHS.
2823   Value *RHS = Ops.RHS;
2824   if (Ops.LHS->getType() != RHS->getType())
2825     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2826 
2827   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
2828                       Ops.Ty->hasSignedIntegerRepresentation() &&
2829                       !CGF.getLangOpts().isSignedOverflowDefined();
2830   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
2831   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2832   if (CGF.getLangOpts().OpenCL)
2833     RHS =
2834         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2835   else if ((SanitizeBase || SanitizeExponent) &&
2836            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2837     CodeGenFunction::SanitizerScope SanScope(&CGF);
2838     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
2839     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
2840     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
2841 
2842     if (SanitizeExponent) {
2843       Checks.push_back(
2844           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
2845     }
2846 
2847     if (SanitizeBase) {
2848       // Check whether we are shifting any non-zero bits off the top of the
2849       // integer. We only emit this check if exponent is valid - otherwise
2850       // instructions below will have undefined behavior themselves.
2851       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2852       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2853       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
2854       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
2855       llvm::Value *PromotedWidthMinusOne =
2856           (RHS == Ops.RHS) ? WidthMinusOne
2857                            : GetWidthMinusOneValue(Ops.LHS, RHS);
2858       CGF.EmitBlock(CheckShiftBase);
2859       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
2860           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
2861                                      /*NUW*/ true, /*NSW*/ true),
2862           "shl.check");
2863       if (CGF.getLangOpts().CPlusPlus) {
2864         // In C99, we are not permitted to shift a 1 bit into the sign bit.
2865         // Under C++11's rules, shifting a 1 bit into the sign bit is
2866         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2867         // define signed left shifts, so we use the C99 and C++11 rules there).
2868         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2869         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2870       }
2871       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2872       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2873       CGF.EmitBlock(Cont);
2874       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
2875       BaseCheck->addIncoming(Builder.getTrue(), Orig);
2876       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
2877       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
2878     }
2879 
2880     assert(!Checks.empty());
2881     EmitBinOpCheck(Checks, Ops);
2882   }
2883 
2884   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2885 }
2886 
2887 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2888   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2889   // RHS to the same size as the LHS.
2890   Value *RHS = Ops.RHS;
2891   if (Ops.LHS->getType() != RHS->getType())
2892     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2893 
2894   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2895   if (CGF.getLangOpts().OpenCL)
2896     RHS =
2897         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2898   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
2899            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2900     CodeGenFunction::SanitizerScope SanScope(&CGF);
2901     llvm::Value *Valid =
2902         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
2903     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
2904   }
2905 
2906   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2907     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2908   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2909 }
2910 
2911 enum IntrinsicType { VCMPEQ, VCMPGT };
2912 // return corresponding comparison intrinsic for given vector type
2913 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2914                                         BuiltinType::Kind ElemKind) {
2915   switch (ElemKind) {
2916   default: llvm_unreachable("unexpected element type");
2917   case BuiltinType::Char_U:
2918   case BuiltinType::UChar:
2919     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2920                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2921   case BuiltinType::Char_S:
2922   case BuiltinType::SChar:
2923     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2924                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2925   case BuiltinType::UShort:
2926     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2927                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2928   case BuiltinType::Short:
2929     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2930                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2931   case BuiltinType::UInt:
2932   case BuiltinType::ULong:
2933     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2934                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2935   case BuiltinType::Int:
2936   case BuiltinType::Long:
2937     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2938                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2939   case BuiltinType::Float:
2940     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2941                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2942   }
2943 }
2944 
2945 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
2946                                       llvm::CmpInst::Predicate UICmpOpc,
2947                                       llvm::CmpInst::Predicate SICmpOpc,
2948                                       llvm::CmpInst::Predicate FCmpOpc) {
2949   TestAndClearIgnoreResultAssign();
2950   Value *Result;
2951   QualType LHSTy = E->getLHS()->getType();
2952   QualType RHSTy = E->getRHS()->getType();
2953   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2954     assert(E->getOpcode() == BO_EQ ||
2955            E->getOpcode() == BO_NE);
2956     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2957     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2958     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2959                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2960   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
2961     Value *LHS = Visit(E->getLHS());
2962     Value *RHS = Visit(E->getRHS());
2963 
2964     // If AltiVec, the comparison results in a numeric type, so we use
2965     // intrinsics comparing vectors and giving 0 or 1 as a result
2966     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2967       // constants for mapping CR6 register bits to predicate result
2968       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2969 
2970       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2971 
2972       // in several cases vector arguments order will be reversed
2973       Value *FirstVecArg = LHS,
2974             *SecondVecArg = RHS;
2975 
2976       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2977       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2978       BuiltinType::Kind ElementKind = BTy->getKind();
2979 
2980       switch(E->getOpcode()) {
2981       default: llvm_unreachable("is not a comparison operation");
2982       case BO_EQ:
2983         CR6 = CR6_LT;
2984         ID = GetIntrinsic(VCMPEQ, ElementKind);
2985         break;
2986       case BO_NE:
2987         CR6 = CR6_EQ;
2988         ID = GetIntrinsic(VCMPEQ, ElementKind);
2989         break;
2990       case BO_LT:
2991         CR6 = CR6_LT;
2992         ID = GetIntrinsic(VCMPGT, ElementKind);
2993         std::swap(FirstVecArg, SecondVecArg);
2994         break;
2995       case BO_GT:
2996         CR6 = CR6_LT;
2997         ID = GetIntrinsic(VCMPGT, ElementKind);
2998         break;
2999       case BO_LE:
3000         if (ElementKind == BuiltinType::Float) {
3001           CR6 = CR6_LT;
3002           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3003           std::swap(FirstVecArg, SecondVecArg);
3004         }
3005         else {
3006           CR6 = CR6_EQ;
3007           ID = GetIntrinsic(VCMPGT, ElementKind);
3008         }
3009         break;
3010       case BO_GE:
3011         if (ElementKind == BuiltinType::Float) {
3012           CR6 = CR6_LT;
3013           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3014         }
3015         else {
3016           CR6 = CR6_EQ;
3017           ID = GetIntrinsic(VCMPGT, ElementKind);
3018           std::swap(FirstVecArg, SecondVecArg);
3019         }
3020         break;
3021       }
3022 
3023       Value *CR6Param = Builder.getInt32(CR6);
3024       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3025       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3026       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3027                                   E->getExprLoc());
3028     }
3029 
3030     if (LHS->getType()->isFPOrFPVectorTy()) {
3031       Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3032     } else if (LHSTy->hasSignedIntegerRepresentation()) {
3033       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3034     } else {
3035       // Unsigned integers and pointers.
3036       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3037     }
3038 
3039     // If this is a vector comparison, sign extend the result to the appropriate
3040     // vector integer type and return it (don't convert to bool).
3041     if (LHSTy->isVectorType())
3042       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3043 
3044   } else {
3045     // Complex Comparison: can only be an equality comparison.
3046     CodeGenFunction::ComplexPairTy LHS, RHS;
3047     QualType CETy;
3048     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3049       LHS = CGF.EmitComplexExpr(E->getLHS());
3050       CETy = CTy->getElementType();
3051     } else {
3052       LHS.first = Visit(E->getLHS());
3053       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3054       CETy = LHSTy;
3055     }
3056     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3057       RHS = CGF.EmitComplexExpr(E->getRHS());
3058       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
3059                                                      CTy->getElementType()) &&
3060              "The element types must always match.");
3061       (void)CTy;
3062     } else {
3063       RHS.first = Visit(E->getRHS());
3064       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
3065       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
3066              "The element types must always match.");
3067     }
3068 
3069     Value *ResultR, *ResultI;
3070     if (CETy->isRealFloatingType()) {
3071       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
3072       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
3073     } else {
3074       // Complex comparisons can only be equality comparisons.  As such, signed
3075       // and unsigned opcodes are the same.
3076       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
3077       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
3078     }
3079 
3080     if (E->getOpcode() == BO_EQ) {
3081       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
3082     } else {
3083       assert(E->getOpcode() == BO_NE &&
3084              "Complex comparison other than == or != ?");
3085       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
3086     }
3087   }
3088 
3089   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3090                               E->getExprLoc());
3091 }
3092 
3093 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3094   bool Ignore = TestAndClearIgnoreResultAssign();
3095 
3096   Value *RHS;
3097   LValue LHS;
3098 
3099   switch (E->getLHS()->getType().getObjCLifetime()) {
3100   case Qualifiers::OCL_Strong:
3101     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3102     break;
3103 
3104   case Qualifiers::OCL_Autoreleasing:
3105     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3106     break;
3107 
3108   case Qualifiers::OCL_ExplicitNone:
3109     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3110     break;
3111 
3112   case Qualifiers::OCL_Weak:
3113     RHS = Visit(E->getRHS());
3114     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3115     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3116     break;
3117 
3118   case Qualifiers::OCL_None:
3119     // __block variables need to have the rhs evaluated first, plus
3120     // this should improve codegen just a little.
3121     RHS = Visit(E->getRHS());
3122     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3123 
3124     // Store the value into the LHS.  Bit-fields are handled specially
3125     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3126     // 'An assignment expression has the value of the left operand after
3127     // the assignment...'.
3128     if (LHS.isBitField())
3129       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3130     else
3131       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3132   }
3133 
3134   // If the result is clearly ignored, return now.
3135   if (Ignore)
3136     return nullptr;
3137 
3138   // The result of an assignment in C is the assigned r-value.
3139   if (!CGF.getLangOpts().CPlusPlus)
3140     return RHS;
3141 
3142   // If the lvalue is non-volatile, return the computed value of the assignment.
3143   if (!LHS.isVolatileQualified())
3144     return RHS;
3145 
3146   // Otherwise, reload the value.
3147   return EmitLoadOfLValue(LHS, E->getExprLoc());
3148 }
3149 
3150 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3151   // Perform vector logical and on comparisons with zero vectors.
3152   if (E->getType()->isVectorType()) {
3153     CGF.incrementProfileCounter(E);
3154 
3155     Value *LHS = Visit(E->getLHS());
3156     Value *RHS = Visit(E->getRHS());
3157     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3158     if (LHS->getType()->isFPOrFPVectorTy()) {
3159       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3160       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3161     } else {
3162       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3163       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3164     }
3165     Value *And = Builder.CreateAnd(LHS, RHS);
3166     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3167   }
3168 
3169   llvm::Type *ResTy = ConvertType(E->getType());
3170 
3171   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3172   // If we have 1 && X, just emit X without inserting the control flow.
3173   bool LHSCondVal;
3174   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3175     if (LHSCondVal) { // If we have 1 && X, just emit X.
3176       CGF.incrementProfileCounter(E);
3177 
3178       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3179       // ZExt result to int or bool.
3180       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3181     }
3182 
3183     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3184     if (!CGF.ContainsLabel(E->getRHS()))
3185       return llvm::Constant::getNullValue(ResTy);
3186   }
3187 
3188   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3189   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3190 
3191   CodeGenFunction::ConditionalEvaluation eval(CGF);
3192 
3193   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3194   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3195                            CGF.getProfileCount(E->getRHS()));
3196 
3197   // Any edges into the ContBlock are now from an (indeterminate number of)
3198   // edges from this first condition.  All of these values will be false.  Start
3199   // setting up the PHI node in the Cont Block for this.
3200   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3201                                             "", ContBlock);
3202   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3203        PI != PE; ++PI)
3204     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3205 
3206   eval.begin(CGF);
3207   CGF.EmitBlock(RHSBlock);
3208   CGF.incrementProfileCounter(E);
3209   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3210   eval.end(CGF);
3211 
3212   // Reaquire the RHS block, as there may be subblocks inserted.
3213   RHSBlock = Builder.GetInsertBlock();
3214 
3215   // Emit an unconditional branch from this block to ContBlock.
3216   {
3217     // There is no need to emit line number for unconditional branch.
3218     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3219     CGF.EmitBlock(ContBlock);
3220   }
3221   // Insert an entry into the phi node for the edge with the value of RHSCond.
3222   PN->addIncoming(RHSCond, RHSBlock);
3223 
3224   // ZExt result to int.
3225   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3226 }
3227 
3228 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3229   // Perform vector logical or on comparisons with zero vectors.
3230   if (E->getType()->isVectorType()) {
3231     CGF.incrementProfileCounter(E);
3232 
3233     Value *LHS = Visit(E->getLHS());
3234     Value *RHS = Visit(E->getRHS());
3235     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3236     if (LHS->getType()->isFPOrFPVectorTy()) {
3237       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3238       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3239     } else {
3240       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3241       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3242     }
3243     Value *Or = Builder.CreateOr(LHS, RHS);
3244     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3245   }
3246 
3247   llvm::Type *ResTy = ConvertType(E->getType());
3248 
3249   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3250   // If we have 0 || X, just emit X without inserting the control flow.
3251   bool LHSCondVal;
3252   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3253     if (!LHSCondVal) { // If we have 0 || X, just emit X.
3254       CGF.incrementProfileCounter(E);
3255 
3256       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3257       // ZExt result to int or bool.
3258       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3259     }
3260 
3261     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3262     if (!CGF.ContainsLabel(E->getRHS()))
3263       return llvm::ConstantInt::get(ResTy, 1);
3264   }
3265 
3266   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3267   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3268 
3269   CodeGenFunction::ConditionalEvaluation eval(CGF);
3270 
3271   // Branch on the LHS first.  If it is true, go to the success (cont) block.
3272   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3273                            CGF.getCurrentProfileCount() -
3274                                CGF.getProfileCount(E->getRHS()));
3275 
3276   // Any edges into the ContBlock are now from an (indeterminate number of)
3277   // edges from this first condition.  All of these values will be true.  Start
3278   // setting up the PHI node in the Cont Block for this.
3279   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3280                                             "", ContBlock);
3281   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3282        PI != PE; ++PI)
3283     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3284 
3285   eval.begin(CGF);
3286 
3287   // Emit the RHS condition as a bool value.
3288   CGF.EmitBlock(RHSBlock);
3289   CGF.incrementProfileCounter(E);
3290   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3291 
3292   eval.end(CGF);
3293 
3294   // Reaquire the RHS block, as there may be subblocks inserted.
3295   RHSBlock = Builder.GetInsertBlock();
3296 
3297   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3298   // into the phi node for the edge with the value of RHSCond.
3299   CGF.EmitBlock(ContBlock);
3300   PN->addIncoming(RHSCond, RHSBlock);
3301 
3302   // ZExt result to int.
3303   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3304 }
3305 
3306 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3307   CGF.EmitIgnoredExpr(E->getLHS());
3308   CGF.EnsureInsertPoint();
3309   return Visit(E->getRHS());
3310 }
3311 
3312 //===----------------------------------------------------------------------===//
3313 //                             Other Operators
3314 //===----------------------------------------------------------------------===//
3315 
3316 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3317 /// expression is cheap enough and side-effect-free enough to evaluate
3318 /// unconditionally instead of conditionally.  This is used to convert control
3319 /// flow into selects in some cases.
3320 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3321                                                    CodeGenFunction &CGF) {
3322   // Anything that is an integer or floating point constant is fine.
3323   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3324 
3325   // Even non-volatile automatic variables can't be evaluated unconditionally.
3326   // Referencing a thread_local may cause non-trivial initialization work to
3327   // occur. If we're inside a lambda and one of the variables is from the scope
3328   // outside the lambda, that function may have returned already. Reading its
3329   // locals is a bad idea. Also, these reads may introduce races there didn't
3330   // exist in the source-level program.
3331 }
3332 
3333 
3334 Value *ScalarExprEmitter::
3335 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3336   TestAndClearIgnoreResultAssign();
3337 
3338   // Bind the common expression if necessary.
3339   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3340 
3341   Expr *condExpr = E->getCond();
3342   Expr *lhsExpr = E->getTrueExpr();
3343   Expr *rhsExpr = E->getFalseExpr();
3344 
3345   // If the condition constant folds and can be elided, try to avoid emitting
3346   // the condition and the dead arm.
3347   bool CondExprBool;
3348   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3349     Expr *live = lhsExpr, *dead = rhsExpr;
3350     if (!CondExprBool) std::swap(live, dead);
3351 
3352     // If the dead side doesn't have labels we need, just emit the Live part.
3353     if (!CGF.ContainsLabel(dead)) {
3354       if (CondExprBool)
3355         CGF.incrementProfileCounter(E);
3356       Value *Result = Visit(live);
3357 
3358       // If the live part is a throw expression, it acts like it has a void
3359       // type, so evaluating it returns a null Value*.  However, a conditional
3360       // with non-void type must return a non-null Value*.
3361       if (!Result && !E->getType()->isVoidType())
3362         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3363 
3364       return Result;
3365     }
3366   }
3367 
3368   // OpenCL: If the condition is a vector, we can treat this condition like
3369   // the select function.
3370   if (CGF.getLangOpts().OpenCL
3371       && condExpr->getType()->isVectorType()) {
3372     CGF.incrementProfileCounter(E);
3373 
3374     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3375     llvm::Value *LHS = Visit(lhsExpr);
3376     llvm::Value *RHS = Visit(rhsExpr);
3377 
3378     llvm::Type *condType = ConvertType(condExpr->getType());
3379     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3380 
3381     unsigned numElem = vecTy->getNumElements();
3382     llvm::Type *elemType = vecTy->getElementType();
3383 
3384     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3385     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3386     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3387                                           llvm::VectorType::get(elemType,
3388                                                                 numElem),
3389                                           "sext");
3390     llvm::Value *tmp2 = Builder.CreateNot(tmp);
3391 
3392     // Cast float to int to perform ANDs if necessary.
3393     llvm::Value *RHSTmp = RHS;
3394     llvm::Value *LHSTmp = LHS;
3395     bool wasCast = false;
3396     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3397     if (rhsVTy->getElementType()->isFloatingPointTy()) {
3398       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3399       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3400       wasCast = true;
3401     }
3402 
3403     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3404     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3405     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3406     if (wasCast)
3407       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3408 
3409     return tmp5;
3410   }
3411 
3412   // If this is a really simple expression (like x ? 4 : 5), emit this as a
3413   // select instead of as control flow.  We can only do this if it is cheap and
3414   // safe to evaluate the LHS and RHS unconditionally.
3415   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3416       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3417     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3418     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
3419 
3420     CGF.incrementProfileCounter(E, StepV);
3421 
3422     llvm::Value *LHS = Visit(lhsExpr);
3423     llvm::Value *RHS = Visit(rhsExpr);
3424     if (!LHS) {
3425       // If the conditional has void type, make sure we return a null Value*.
3426       assert(!RHS && "LHS and RHS types must match");
3427       return nullptr;
3428     }
3429     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3430   }
3431 
3432   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3433   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3434   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3435 
3436   CodeGenFunction::ConditionalEvaluation eval(CGF);
3437   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3438                            CGF.getProfileCount(lhsExpr));
3439 
3440   CGF.EmitBlock(LHSBlock);
3441   CGF.incrementProfileCounter(E);
3442   eval.begin(CGF);
3443   Value *LHS = Visit(lhsExpr);
3444   eval.end(CGF);
3445 
3446   LHSBlock = Builder.GetInsertBlock();
3447   Builder.CreateBr(ContBlock);
3448 
3449   CGF.EmitBlock(RHSBlock);
3450   eval.begin(CGF);
3451   Value *RHS = Visit(rhsExpr);
3452   eval.end(CGF);
3453 
3454   RHSBlock = Builder.GetInsertBlock();
3455   CGF.EmitBlock(ContBlock);
3456 
3457   // If the LHS or RHS is a throw expression, it will be legitimately null.
3458   if (!LHS)
3459     return RHS;
3460   if (!RHS)
3461     return LHS;
3462 
3463   // Create a PHI node for the real part.
3464   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3465   PN->addIncoming(LHS, LHSBlock);
3466   PN->addIncoming(RHS, RHSBlock);
3467   return PN;
3468 }
3469 
3470 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3471   return Visit(E->getChosenSubExpr());
3472 }
3473 
3474 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3475   QualType Ty = VE->getType();
3476 
3477   if (Ty->isVariablyModifiedType())
3478     CGF.EmitVariablyModifiedType(Ty);
3479 
3480   Address ArgValue = Address::invalid();
3481   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
3482 
3483   llvm::Type *ArgTy = ConvertType(VE->getType());
3484 
3485   // If EmitVAArg fails, emit an error.
3486   if (!ArgPtr.isValid()) {
3487     CGF.ErrorUnsupported(VE, "va_arg expression");
3488     return llvm::UndefValue::get(ArgTy);
3489   }
3490 
3491   // FIXME Volatility.
3492   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3493 
3494   // If EmitVAArg promoted the type, we must truncate it.
3495   if (ArgTy != Val->getType()) {
3496     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3497       Val = Builder.CreateIntToPtr(Val, ArgTy);
3498     else
3499       Val = Builder.CreateTrunc(Val, ArgTy);
3500   }
3501 
3502   return Val;
3503 }
3504 
3505 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3506   return CGF.EmitBlockLiteral(block);
3507 }
3508 
3509 // Convert a vec3 to vec4, or vice versa.
3510 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
3511                                  Value *Src, unsigned NumElementsDst) {
3512   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3513   SmallVector<llvm::Constant*, 4> Args;
3514   Args.push_back(Builder.getInt32(0));
3515   Args.push_back(Builder.getInt32(1));
3516   Args.push_back(Builder.getInt32(2));
3517   if (NumElementsDst == 4)
3518     Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3519   llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3520   return Builder.CreateShuffleVector(Src, UnV, Mask);
3521 }
3522 
3523 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
3524 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
3525 // but could be scalar or vectors of different lengths, and either can be
3526 // pointer.
3527 // There are 4 cases:
3528 // 1. non-pointer -> non-pointer  : needs 1 bitcast
3529 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
3530 // 3. pointer -> non-pointer
3531 //   a) pointer -> intptr_t       : needs 1 ptrtoint
3532 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
3533 // 4. non-pointer -> pointer
3534 //   a) intptr_t -> pointer       : needs 1 inttoptr
3535 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
3536 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
3537 // allow casting directly between pointer types and non-integer non-pointer
3538 // types.
3539 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
3540                                            const llvm::DataLayout &DL,
3541                                            Value *Src, llvm::Type *DstTy,
3542                                            StringRef Name = "") {
3543   auto SrcTy = Src->getType();
3544 
3545   // Case 1.
3546   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
3547     return Builder.CreateBitCast(Src, DstTy, Name);
3548 
3549   // Case 2.
3550   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
3551     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
3552 
3553   // Case 3.
3554   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
3555     // Case 3b.
3556     if (!DstTy->isIntegerTy())
3557       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
3558     // Cases 3a and 3b.
3559     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
3560   }
3561 
3562   // Case 4b.
3563   if (!SrcTy->isIntegerTy())
3564     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
3565   // Cases 4a and 4b.
3566   return Builder.CreateIntToPtr(Src, DstTy, Name);
3567 }
3568 
3569 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3570   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3571   llvm::Type *DstTy = ConvertType(E->getType());
3572 
3573   llvm::Type *SrcTy = Src->getType();
3574   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
3575     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
3576   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
3577     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
3578 
3579   // Going from vec3 to non-vec3 is a special case and requires a shuffle
3580   // vector to get a vec4, then a bitcast if the target type is different.
3581   if (NumElementsSrc == 3 && NumElementsDst != 3) {
3582     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
3583     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3584                                        DstTy);
3585     Src->setName("astype");
3586     return Src;
3587   }
3588 
3589   // Going from non-vec3 to vec3 is a special case and requires a bitcast
3590   // to vec4 if the original type is not vec4, then a shuffle vector to
3591   // get a vec3.
3592   if (NumElementsSrc != 3 && NumElementsDst == 3) {
3593     auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
3594     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3595                                        Vec4Ty);
3596     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
3597     Src->setName("astype");
3598     return Src;
3599   }
3600 
3601   return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
3602                                             Src, DstTy, "astype");
3603 }
3604 
3605 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3606   return CGF.EmitAtomicExpr(E).getScalarVal();
3607 }
3608 
3609 //===----------------------------------------------------------------------===//
3610 //                         Entry Point into this File
3611 //===----------------------------------------------------------------------===//
3612 
3613 /// Emit the computation of the specified expression of scalar type, ignoring
3614 /// the result.
3615 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3616   assert(E && hasScalarEvaluationKind(E->getType()) &&
3617          "Invalid scalar expression to emit");
3618 
3619   return ScalarExprEmitter(*this, IgnoreResultAssign)
3620       .Visit(const_cast<Expr *>(E));
3621 }
3622 
3623 /// Emit a conversion from the specified type to the specified destination type,
3624 /// both of which are LLVM scalar types.
3625 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3626                                              QualType DstTy,
3627                                              SourceLocation Loc) {
3628   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3629          "Invalid scalar expression to emit");
3630   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
3631 }
3632 
3633 /// Emit a conversion from the specified complex type to the specified
3634 /// destination type, where the destination type is an LLVM scalar type.
3635 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3636                                                       QualType SrcTy,
3637                                                       QualType DstTy,
3638                                                       SourceLocation Loc) {
3639   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3640          "Invalid complex -> scalar conversion");
3641   return ScalarExprEmitter(*this)
3642       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
3643 }
3644 
3645 
3646 llvm::Value *CodeGenFunction::
3647 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3648                         bool isInc, bool isPre) {
3649   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3650 }
3651 
3652 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3653   // object->isa or (*object).isa
3654   // Generate code as for: *(Class*)object
3655 
3656   Expr *BaseExpr = E->getBase();
3657   Address Addr = Address::invalid();
3658   if (BaseExpr->isRValue()) {
3659     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
3660   } else {
3661     Addr = EmitLValue(BaseExpr).getAddress();
3662   }
3663 
3664   // Cast the address to Class*.
3665   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
3666   return MakeAddrLValue(Addr, E->getType());
3667 }
3668 
3669 
3670 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3671                                             const CompoundAssignOperator *E) {
3672   ScalarExprEmitter Scalar(*this);
3673   Value *Result = nullptr;
3674   switch (E->getOpcode()) {
3675 #define COMPOUND_OP(Op)                                                       \
3676     case BO_##Op##Assign:                                                     \
3677       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3678                                              Result)
3679   COMPOUND_OP(Mul);
3680   COMPOUND_OP(Div);
3681   COMPOUND_OP(Rem);
3682   COMPOUND_OP(Add);
3683   COMPOUND_OP(Sub);
3684   COMPOUND_OP(Shl);
3685   COMPOUND_OP(Shr);
3686   COMPOUND_OP(And);
3687   COMPOUND_OP(Xor);
3688   COMPOUND_OP(Or);
3689 #undef COMPOUND_OP
3690 
3691   case BO_PtrMemD:
3692   case BO_PtrMemI:
3693   case BO_Mul:
3694   case BO_Div:
3695   case BO_Rem:
3696   case BO_Add:
3697   case BO_Sub:
3698   case BO_Shl:
3699   case BO_Shr:
3700   case BO_LT:
3701   case BO_GT:
3702   case BO_LE:
3703   case BO_GE:
3704   case BO_EQ:
3705   case BO_NE:
3706   case BO_And:
3707   case BO_Xor:
3708   case BO_Or:
3709   case BO_LAnd:
3710   case BO_LOr:
3711   case BO_Assign:
3712   case BO_Comma:
3713     llvm_unreachable("Not valid compound assignment operators");
3714   }
3715 
3716   llvm_unreachable("Unhandled compound assignment operator");
3717 }
3718