1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/APFixedPoint.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/FixedPointBuilder.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/IntrinsicsPowerPC.h"
41 #include "llvm/IR/MatrixBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include <cstdarg>
44 
45 using namespace clang;
46 using namespace CodeGen;
47 using llvm::Value;
48 
49 //===----------------------------------------------------------------------===//
50 //                         Scalar Expression Emitter
51 //===----------------------------------------------------------------------===//
52 
53 namespace {
54 
55 /// Determine whether the given binary operation may overflow.
56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
58 /// the returned overflow check is precise. The returned value is 'true' for
59 /// all other opcodes, to be conservative.
60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
61                              BinaryOperator::Opcode Opcode, bool Signed,
62                              llvm::APInt &Result) {
63   // Assume overflow is possible, unless we can prove otherwise.
64   bool Overflow = true;
65   const auto &LHSAP = LHS->getValue();
66   const auto &RHSAP = RHS->getValue();
67   if (Opcode == BO_Add) {
68     Result = Signed ? LHSAP.sadd_ov(RHSAP, Overflow)
69                     : LHSAP.uadd_ov(RHSAP, Overflow);
70   } else if (Opcode == BO_Sub) {
71     Result = Signed ? LHSAP.ssub_ov(RHSAP, Overflow)
72                     : LHSAP.usub_ov(RHSAP, Overflow);
73   } else if (Opcode == BO_Mul) {
74     Result = Signed ? LHSAP.smul_ov(RHSAP, Overflow)
75                     : LHSAP.umul_ov(RHSAP, Overflow);
76   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
77     if (Signed && !RHS->isZero())
78       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
79     else
80       return false;
81   }
82   return Overflow;
83 }
84 
85 struct BinOpInfo {
86   Value *LHS;
87   Value *RHS;
88   QualType Ty;  // Computation Type.
89   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
90   FPOptions FPFeatures;
91   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
92 
93   /// Check if the binop can result in integer overflow.
94   bool mayHaveIntegerOverflow() const {
95     // Without constant input, we can't rule out overflow.
96     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
97     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
98     if (!LHSCI || !RHSCI)
99       return true;
100 
101     llvm::APInt Result;
102     return ::mayHaveIntegerOverflow(
103         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
104   }
105 
106   /// Check if the binop computes a division or a remainder.
107   bool isDivremOp() const {
108     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
109            Opcode == BO_RemAssign;
110   }
111 
112   /// Check if the binop can result in an integer division by zero.
113   bool mayHaveIntegerDivisionByZero() const {
114     if (isDivremOp())
115       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
116         return CI->isZero();
117     return true;
118   }
119 
120   /// Check if the binop can result in a float division by zero.
121   bool mayHaveFloatDivisionByZero() const {
122     if (isDivremOp())
123       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
124         return CFP->isZero();
125     return true;
126   }
127 
128   /// Check if at least one operand is a fixed point type. In such cases, this
129   /// operation did not follow usual arithmetic conversion and both operands
130   /// might not be of the same type.
131   bool isFixedPointOp() const {
132     // We cannot simply check the result type since comparison operations return
133     // an int.
134     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
135       QualType LHSType = BinOp->getLHS()->getType();
136       QualType RHSType = BinOp->getRHS()->getType();
137       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
138     }
139     if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
140       return UnOp->getSubExpr()->getType()->isFixedPointType();
141     return false;
142   }
143 };
144 
145 static bool MustVisitNullValue(const Expr *E) {
146   // If a null pointer expression's type is the C++0x nullptr_t, then
147   // it's not necessarily a simple constant and it must be evaluated
148   // for its potential side effects.
149   return E->getType()->isNullPtrType();
150 }
151 
152 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
153 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
154                                                         const Expr *E) {
155   const Expr *Base = E->IgnoreImpCasts();
156   if (E == Base)
157     return llvm::None;
158 
159   QualType BaseTy = Base->getType();
160   if (!BaseTy->isPromotableIntegerType() ||
161       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
162     return llvm::None;
163 
164   return BaseTy;
165 }
166 
167 /// Check if \p E is a widened promoted integer.
168 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
169   return getUnwidenedIntegerType(Ctx, E).hasValue();
170 }
171 
172 /// Check if we can skip the overflow check for \p Op.
173 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
174   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
175          "Expected a unary or binary operator");
176 
177   // If the binop has constant inputs and we can prove there is no overflow,
178   // we can elide the overflow check.
179   if (!Op.mayHaveIntegerOverflow())
180     return true;
181 
182   // If a unary op has a widened operand, the op cannot overflow.
183   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
184     return !UO->canOverflow();
185 
186   // We usually don't need overflow checks for binops with widened operands.
187   // Multiplication with promoted unsigned operands is a special case.
188   const auto *BO = cast<BinaryOperator>(Op.E);
189   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
190   if (!OptionalLHSTy)
191     return false;
192 
193   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
194   if (!OptionalRHSTy)
195     return false;
196 
197   QualType LHSTy = *OptionalLHSTy;
198   QualType RHSTy = *OptionalRHSTy;
199 
200   // This is the simple case: binops without unsigned multiplication, and with
201   // widened operands. No overflow check is needed here.
202   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
203       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
204     return true;
205 
206   // For unsigned multiplication the overflow check can be elided if either one
207   // of the unpromoted types are less than half the size of the promoted type.
208   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
209   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
210          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
211 }
212 
213 class ScalarExprEmitter
214   : public StmtVisitor<ScalarExprEmitter, Value*> {
215   CodeGenFunction &CGF;
216   CGBuilderTy &Builder;
217   bool IgnoreResultAssign;
218   llvm::LLVMContext &VMContext;
219 public:
220 
221   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
222     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
223       VMContext(cgf.getLLVMContext()) {
224   }
225 
226   //===--------------------------------------------------------------------===//
227   //                               Utilities
228   //===--------------------------------------------------------------------===//
229 
230   bool TestAndClearIgnoreResultAssign() {
231     bool I = IgnoreResultAssign;
232     IgnoreResultAssign = false;
233     return I;
234   }
235 
236   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
237   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
238   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
239     return CGF.EmitCheckedLValue(E, TCK);
240   }
241 
242   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
243                       const BinOpInfo &Info);
244 
245   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
246     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
247   }
248 
249   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
250     const AlignValueAttr *AVAttr = nullptr;
251     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
252       const ValueDecl *VD = DRE->getDecl();
253 
254       if (VD->getType()->isReferenceType()) {
255         if (const auto *TTy =
256             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
257           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
258       } else {
259         // Assumptions for function parameters are emitted at the start of the
260         // function, so there is no need to repeat that here,
261         // unless the alignment-assumption sanitizer is enabled,
262         // then we prefer the assumption over alignment attribute
263         // on IR function param.
264         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
265           return;
266 
267         AVAttr = VD->getAttr<AlignValueAttr>();
268       }
269     }
270 
271     if (!AVAttr)
272       if (const auto *TTy =
273           dyn_cast<TypedefType>(E->getType()))
274         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
275 
276     if (!AVAttr)
277       return;
278 
279     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
280     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
281     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
282   }
283 
284   /// EmitLoadOfLValue - Given an expression with complex type that represents a
285   /// value l-value, this method emits the address of the l-value, then loads
286   /// and returns the result.
287   Value *EmitLoadOfLValue(const Expr *E) {
288     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
289                                 E->getExprLoc());
290 
291     EmitLValueAlignmentAssumption(E, V);
292     return V;
293   }
294 
295   /// EmitConversionToBool - Convert the specified expression value to a
296   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
297   Value *EmitConversionToBool(Value *Src, QualType DstTy);
298 
299   /// Emit a check that a conversion from a floating-point type does not
300   /// overflow.
301   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
302                                 Value *Src, QualType SrcType, QualType DstType,
303                                 llvm::Type *DstTy, SourceLocation Loc);
304 
305   /// Known implicit conversion check kinds.
306   /// Keep in sync with the enum of the same name in ubsan_handlers.h
307   enum ImplicitConversionCheckKind : unsigned char {
308     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
309     ICCK_UnsignedIntegerTruncation = 1,
310     ICCK_SignedIntegerTruncation = 2,
311     ICCK_IntegerSignChange = 3,
312     ICCK_SignedIntegerTruncationOrSignChange = 4,
313   };
314 
315   /// Emit a check that an [implicit] truncation of an integer  does not
316   /// discard any bits. It is not UB, so we use the value after truncation.
317   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
318                                   QualType DstType, SourceLocation Loc);
319 
320   /// Emit a check that an [implicit] conversion of an integer does not change
321   /// the sign of the value. It is not UB, so we use the value after conversion.
322   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
323   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
324                                   QualType DstType, SourceLocation Loc);
325 
326   /// Emit a conversion from the specified type to the specified destination
327   /// type, both of which are LLVM scalar types.
328   struct ScalarConversionOpts {
329     bool TreatBooleanAsSigned;
330     bool EmitImplicitIntegerTruncationChecks;
331     bool EmitImplicitIntegerSignChangeChecks;
332 
333     ScalarConversionOpts()
334         : TreatBooleanAsSigned(false),
335           EmitImplicitIntegerTruncationChecks(false),
336           EmitImplicitIntegerSignChangeChecks(false) {}
337 
338     ScalarConversionOpts(clang::SanitizerSet SanOpts)
339         : TreatBooleanAsSigned(false),
340           EmitImplicitIntegerTruncationChecks(
341               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
342           EmitImplicitIntegerSignChangeChecks(
343               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
344   };
345   Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
346                         llvm::Type *SrcTy, llvm::Type *DstTy,
347                         ScalarConversionOpts Opts);
348   Value *
349   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
350                        SourceLocation Loc,
351                        ScalarConversionOpts Opts = ScalarConversionOpts());
352 
353   /// Convert between either a fixed point and other fixed point or fixed point
354   /// and an integer.
355   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
356                                   SourceLocation Loc);
357 
358   /// Emit a conversion from the specified complex type to the specified
359   /// destination type, where the destination type is an LLVM scalar type.
360   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
361                                        QualType SrcTy, QualType DstTy,
362                                        SourceLocation Loc);
363 
364   /// EmitNullValue - Emit a value that corresponds to null for the given type.
365   Value *EmitNullValue(QualType Ty);
366 
367   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
368   Value *EmitFloatToBoolConversion(Value *V) {
369     // Compare against 0.0 for fp scalars.
370     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
371     return Builder.CreateFCmpUNE(V, Zero, "tobool");
372   }
373 
374   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
375   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
376     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
377 
378     return Builder.CreateICmpNE(V, Zero, "tobool");
379   }
380 
381   Value *EmitIntToBoolConversion(Value *V) {
382     // Because of the type rules of C, we often end up computing a
383     // logical value, then zero extending it to int, then wanting it
384     // as a logical value again.  Optimize this common case.
385     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
386       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
387         Value *Result = ZI->getOperand(0);
388         // If there aren't any more uses, zap the instruction to save space.
389         // Note that there can be more uses, for example if this
390         // is the result of an assignment.
391         if (ZI->use_empty())
392           ZI->eraseFromParent();
393         return Result;
394       }
395     }
396 
397     return Builder.CreateIsNotNull(V, "tobool");
398   }
399 
400   //===--------------------------------------------------------------------===//
401   //                            Visitor Methods
402   //===--------------------------------------------------------------------===//
403 
404   Value *Visit(Expr *E) {
405     ApplyDebugLocation DL(CGF, E);
406     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
407   }
408 
409   Value *VisitStmt(Stmt *S) {
410     S->dump(llvm::errs(), CGF.getContext());
411     llvm_unreachable("Stmt can't have complex result type!");
412   }
413   Value *VisitExpr(Expr *S);
414 
415   Value *VisitConstantExpr(ConstantExpr *E) {
416     // A constant expression of type 'void' generates no code and produces no
417     // value.
418     if (E->getType()->isVoidType())
419       return nullptr;
420 
421     if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
422       if (E->isGLValue())
423         return CGF.Builder.CreateLoad(Address::deprecated(
424             Result, CGF.getContext().getTypeAlignInChars(E->getType())));
425       return Result;
426     }
427     return Visit(E->getSubExpr());
428   }
429   Value *VisitParenExpr(ParenExpr *PE) {
430     return Visit(PE->getSubExpr());
431   }
432   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
433     return Visit(E->getReplacement());
434   }
435   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
436     return Visit(GE->getResultExpr());
437   }
438   Value *VisitCoawaitExpr(CoawaitExpr *S) {
439     return CGF.EmitCoawaitExpr(*S).getScalarVal();
440   }
441   Value *VisitCoyieldExpr(CoyieldExpr *S) {
442     return CGF.EmitCoyieldExpr(*S).getScalarVal();
443   }
444   Value *VisitUnaryCoawait(const UnaryOperator *E) {
445     return Visit(E->getSubExpr());
446   }
447 
448   // Leaves.
449   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
450     return Builder.getInt(E->getValue());
451   }
452   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
453     return Builder.getInt(E->getValue());
454   }
455   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
456     return llvm::ConstantFP::get(VMContext, E->getValue());
457   }
458   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
459     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
460   }
461   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
462     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
463   }
464   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
465     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
466   }
467   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
468     return EmitNullValue(E->getType());
469   }
470   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
471     return EmitNullValue(E->getType());
472   }
473   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
474   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
475   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
476     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
477     return Builder.CreateBitCast(V, ConvertType(E->getType()));
478   }
479 
480   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
481     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
482   }
483 
484   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
485     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
486   }
487 
488   Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E);
489 
490   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
491     if (E->isGLValue())
492       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
493                               E->getExprLoc());
494 
495     // Otherwise, assume the mapping is the scalar directly.
496     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
497   }
498 
499   // l-values.
500   Value *VisitDeclRefExpr(DeclRefExpr *E) {
501     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
502       return CGF.emitScalarConstant(Constant, E);
503     return EmitLoadOfLValue(E);
504   }
505 
506   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
507     return CGF.EmitObjCSelectorExpr(E);
508   }
509   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
510     return CGF.EmitObjCProtocolExpr(E);
511   }
512   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
513     return EmitLoadOfLValue(E);
514   }
515   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
516     if (E->getMethodDecl() &&
517         E->getMethodDecl()->getReturnType()->isReferenceType())
518       return EmitLoadOfLValue(E);
519     return CGF.EmitObjCMessageExpr(E).getScalarVal();
520   }
521 
522   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
523     LValue LV = CGF.EmitObjCIsaExpr(E);
524     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
525     return V;
526   }
527 
528   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
529     VersionTuple Version = E->getVersion();
530 
531     // If we're checking for a platform older than our minimum deployment
532     // target, we can fold the check away.
533     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
534       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
535 
536     return CGF.EmitBuiltinAvailable(Version);
537   }
538 
539   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
540   Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
541   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
542   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
543   Value *VisitMemberExpr(MemberExpr *E);
544   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
545   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
546     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
547     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
548     // literals aren't l-values in C++. We do so simply because that's the
549     // cleanest way to handle compound literals in C++.
550     // See the discussion here: https://reviews.llvm.org/D64464
551     return EmitLoadOfLValue(E);
552   }
553 
554   Value *VisitInitListExpr(InitListExpr *E);
555 
556   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
557     assert(CGF.getArrayInitIndex() &&
558            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
559     return CGF.getArrayInitIndex();
560   }
561 
562   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
563     return EmitNullValue(E->getType());
564   }
565   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
566     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
567     return VisitCastExpr(E);
568   }
569   Value *VisitCastExpr(CastExpr *E);
570 
571   Value *VisitCallExpr(const CallExpr *E) {
572     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
573       return EmitLoadOfLValue(E);
574 
575     Value *V = CGF.EmitCallExpr(E).getScalarVal();
576 
577     EmitLValueAlignmentAssumption(E, V);
578     return V;
579   }
580 
581   Value *VisitStmtExpr(const StmtExpr *E);
582 
583   // Unary Operators.
584   Value *VisitUnaryPostDec(const UnaryOperator *E) {
585     LValue LV = EmitLValue(E->getSubExpr());
586     return EmitScalarPrePostIncDec(E, LV, false, false);
587   }
588   Value *VisitUnaryPostInc(const UnaryOperator *E) {
589     LValue LV = EmitLValue(E->getSubExpr());
590     return EmitScalarPrePostIncDec(E, LV, true, false);
591   }
592   Value *VisitUnaryPreDec(const UnaryOperator *E) {
593     LValue LV = EmitLValue(E->getSubExpr());
594     return EmitScalarPrePostIncDec(E, LV, false, true);
595   }
596   Value *VisitUnaryPreInc(const UnaryOperator *E) {
597     LValue LV = EmitLValue(E->getSubExpr());
598     return EmitScalarPrePostIncDec(E, LV, true, true);
599   }
600 
601   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
602                                                   llvm::Value *InVal,
603                                                   bool IsInc);
604 
605   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
606                                        bool isInc, bool isPre);
607 
608 
609   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
610     if (isa<MemberPointerType>(E->getType())) // never sugared
611       return CGF.CGM.getMemberPointerConstant(E);
612 
613     return EmitLValue(E->getSubExpr()).getPointer(CGF);
614   }
615   Value *VisitUnaryDeref(const UnaryOperator *E) {
616     if (E->getType()->isVoidType())
617       return Visit(E->getSubExpr()); // the actual value should be unused
618     return EmitLoadOfLValue(E);
619   }
620   Value *VisitUnaryPlus(const UnaryOperator *E) {
621     // This differs from gcc, though, most likely due to a bug in gcc.
622     TestAndClearIgnoreResultAssign();
623     return Visit(E->getSubExpr());
624   }
625   Value *VisitUnaryMinus    (const UnaryOperator *E);
626   Value *VisitUnaryNot      (const UnaryOperator *E);
627   Value *VisitUnaryLNot     (const UnaryOperator *E);
628   Value *VisitUnaryReal     (const UnaryOperator *E);
629   Value *VisitUnaryImag     (const UnaryOperator *E);
630   Value *VisitUnaryExtension(const UnaryOperator *E) {
631     return Visit(E->getSubExpr());
632   }
633 
634   // C++
635   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
636     return EmitLoadOfLValue(E);
637   }
638   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
639     auto &Ctx = CGF.getContext();
640     APValue Evaluated =
641         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
642     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
643                                              SLE->getType());
644   }
645 
646   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
647     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
648     return Visit(DAE->getExpr());
649   }
650   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
651     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
652     return Visit(DIE->getExpr());
653   }
654   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
655     return CGF.LoadCXXThis();
656   }
657 
658   Value *VisitExprWithCleanups(ExprWithCleanups *E);
659   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
660     return CGF.EmitCXXNewExpr(E);
661   }
662   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
663     CGF.EmitCXXDeleteExpr(E);
664     return nullptr;
665   }
666 
667   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
668     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
669   }
670 
671   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
672     return Builder.getInt1(E->isSatisfied());
673   }
674 
675   Value *VisitRequiresExpr(const RequiresExpr *E) {
676     return Builder.getInt1(E->isSatisfied());
677   }
678 
679   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
680     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
681   }
682 
683   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
684     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
685   }
686 
687   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
688     // C++ [expr.pseudo]p1:
689     //   The result shall only be used as the operand for the function call
690     //   operator (), and the result of such a call has type void. The only
691     //   effect is the evaluation of the postfix-expression before the dot or
692     //   arrow.
693     CGF.EmitScalarExpr(E->getBase());
694     return nullptr;
695   }
696 
697   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
698     return EmitNullValue(E->getType());
699   }
700 
701   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
702     CGF.EmitCXXThrowExpr(E);
703     return nullptr;
704   }
705 
706   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
707     return Builder.getInt1(E->getValue());
708   }
709 
710   // Binary Operators.
711   Value *EmitMul(const BinOpInfo &Ops) {
712     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
713       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
714       case LangOptions::SOB_Defined:
715         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
716       case LangOptions::SOB_Undefined:
717         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
718           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
719         LLVM_FALLTHROUGH;
720       case LangOptions::SOB_Trapping:
721         if (CanElideOverflowCheck(CGF.getContext(), Ops))
722           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
723         return EmitOverflowCheckedBinOp(Ops);
724       }
725     }
726 
727     if (Ops.Ty->isConstantMatrixType()) {
728       llvm::MatrixBuilder MB(Builder);
729       // We need to check the types of the operands of the operator to get the
730       // correct matrix dimensions.
731       auto *BO = cast<BinaryOperator>(Ops.E);
732       auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
733           BO->getLHS()->getType().getCanonicalType());
734       auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
735           BO->getRHS()->getType().getCanonicalType());
736       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
737       if (LHSMatTy && RHSMatTy)
738         return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
739                                        LHSMatTy->getNumColumns(),
740                                        RHSMatTy->getNumColumns());
741       return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
742     }
743 
744     if (Ops.Ty->isUnsignedIntegerType() &&
745         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
746         !CanElideOverflowCheck(CGF.getContext(), Ops))
747       return EmitOverflowCheckedBinOp(Ops);
748 
749     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
750       //  Preserve the old values
751       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
752       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
753     }
754     if (Ops.isFixedPointOp())
755       return EmitFixedPointBinOp(Ops);
756     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
757   }
758   /// Create a binary op that checks for overflow.
759   /// Currently only supports +, - and *.
760   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
761 
762   // Check for undefined division and modulus behaviors.
763   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
764                                                   llvm::Value *Zero,bool isDiv);
765   // Common helper for getting how wide LHS of shift is.
766   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
767 
768   // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
769   // non powers of two.
770   Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
771 
772   Value *EmitDiv(const BinOpInfo &Ops);
773   Value *EmitRem(const BinOpInfo &Ops);
774   Value *EmitAdd(const BinOpInfo &Ops);
775   Value *EmitSub(const BinOpInfo &Ops);
776   Value *EmitShl(const BinOpInfo &Ops);
777   Value *EmitShr(const BinOpInfo &Ops);
778   Value *EmitAnd(const BinOpInfo &Ops) {
779     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
780   }
781   Value *EmitXor(const BinOpInfo &Ops) {
782     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
783   }
784   Value *EmitOr (const BinOpInfo &Ops) {
785     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
786   }
787 
788   // Helper functions for fixed point binary operations.
789   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
790 
791   BinOpInfo EmitBinOps(const BinaryOperator *E);
792   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
793                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
794                                   Value *&Result);
795 
796   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
797                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
798 
799   // Binary operators and binary compound assignment operators.
800 #define HANDLEBINOP(OP) \
801   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
802     return Emit ## OP(EmitBinOps(E));                                      \
803   }                                                                        \
804   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
805     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
806   }
807   HANDLEBINOP(Mul)
808   HANDLEBINOP(Div)
809   HANDLEBINOP(Rem)
810   HANDLEBINOP(Add)
811   HANDLEBINOP(Sub)
812   HANDLEBINOP(Shl)
813   HANDLEBINOP(Shr)
814   HANDLEBINOP(And)
815   HANDLEBINOP(Xor)
816   HANDLEBINOP(Or)
817 #undef HANDLEBINOP
818 
819   // Comparisons.
820   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
821                      llvm::CmpInst::Predicate SICmpOpc,
822                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
823 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
824     Value *VisitBin##CODE(const BinaryOperator *E) { \
825       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
826                          llvm::FCmpInst::FP, SIG); }
827   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
828   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
829   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
830   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
831   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
832   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
833 #undef VISITCOMP
834 
835   Value *VisitBinAssign     (const BinaryOperator *E);
836 
837   Value *VisitBinLAnd       (const BinaryOperator *E);
838   Value *VisitBinLOr        (const BinaryOperator *E);
839   Value *VisitBinComma      (const BinaryOperator *E);
840 
841   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
842   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
843 
844   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
845     return Visit(E->getSemanticForm());
846   }
847 
848   // Other Operators.
849   Value *VisitBlockExpr(const BlockExpr *BE);
850   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
851   Value *VisitChooseExpr(ChooseExpr *CE);
852   Value *VisitVAArgExpr(VAArgExpr *VE);
853   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
854     return CGF.EmitObjCStringLiteral(E);
855   }
856   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
857     return CGF.EmitObjCBoxedExpr(E);
858   }
859   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
860     return CGF.EmitObjCArrayLiteral(E);
861   }
862   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
863     return CGF.EmitObjCDictionaryLiteral(E);
864   }
865   Value *VisitAsTypeExpr(AsTypeExpr *CE);
866   Value *VisitAtomicExpr(AtomicExpr *AE);
867 };
868 }  // end anonymous namespace.
869 
870 //===----------------------------------------------------------------------===//
871 //                                Utilities
872 //===----------------------------------------------------------------------===//
873 
874 /// EmitConversionToBool - Convert the specified expression value to a
875 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
876 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
877   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
878 
879   if (SrcType->isRealFloatingType())
880     return EmitFloatToBoolConversion(Src);
881 
882   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
883     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
884 
885   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
886          "Unknown scalar type to convert");
887 
888   if (isa<llvm::IntegerType>(Src->getType()))
889     return EmitIntToBoolConversion(Src);
890 
891   assert(isa<llvm::PointerType>(Src->getType()));
892   return EmitPointerToBoolConversion(Src, SrcType);
893 }
894 
895 void ScalarExprEmitter::EmitFloatConversionCheck(
896     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
897     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
898   assert(SrcType->isFloatingType() && "not a conversion from floating point");
899   if (!isa<llvm::IntegerType>(DstTy))
900     return;
901 
902   CodeGenFunction::SanitizerScope SanScope(&CGF);
903   using llvm::APFloat;
904   using llvm::APSInt;
905 
906   llvm::Value *Check = nullptr;
907   const llvm::fltSemantics &SrcSema =
908     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
909 
910   // Floating-point to integer. This has undefined behavior if the source is
911   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
912   // to an integer).
913   unsigned Width = CGF.getContext().getIntWidth(DstType);
914   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
915 
916   APSInt Min = APSInt::getMinValue(Width, Unsigned);
917   APFloat MinSrc(SrcSema, APFloat::uninitialized);
918   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
919       APFloat::opOverflow)
920     // Don't need an overflow check for lower bound. Just check for
921     // -Inf/NaN.
922     MinSrc = APFloat::getInf(SrcSema, true);
923   else
924     // Find the largest value which is too small to represent (before
925     // truncation toward zero).
926     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
927 
928   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
929   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
930   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
931       APFloat::opOverflow)
932     // Don't need an overflow check for upper bound. Just check for
933     // +Inf/NaN.
934     MaxSrc = APFloat::getInf(SrcSema, false);
935   else
936     // Find the smallest value which is too large to represent (before
937     // truncation toward zero).
938     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
939 
940   // If we're converting from __half, convert the range to float to match
941   // the type of src.
942   if (OrigSrcType->isHalfType()) {
943     const llvm::fltSemantics &Sema =
944       CGF.getContext().getFloatTypeSemantics(SrcType);
945     bool IsInexact;
946     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
947     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
948   }
949 
950   llvm::Value *GE =
951     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
952   llvm::Value *LE =
953     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
954   Check = Builder.CreateAnd(GE, LE);
955 
956   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
957                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
958                                   CGF.EmitCheckTypeDescriptor(DstType)};
959   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
960                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
961 }
962 
963 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
964 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
965 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
966                  std::pair<llvm::Value *, SanitizerMask>>
967 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
968                                  QualType DstType, CGBuilderTy &Builder) {
969   llvm::Type *SrcTy = Src->getType();
970   llvm::Type *DstTy = Dst->getType();
971   (void)DstTy; // Only used in assert()
972 
973   // This should be truncation of integral types.
974   assert(Src != Dst);
975   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
976   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
977          "non-integer llvm type");
978 
979   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
980   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
981 
982   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
983   // Else, it is a signed truncation.
984   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
985   SanitizerMask Mask;
986   if (!SrcSigned && !DstSigned) {
987     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
988     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
989   } else {
990     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
991     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
992   }
993 
994   llvm::Value *Check = nullptr;
995   // 1. Extend the truncated value back to the same width as the Src.
996   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
997   // 2. Equality-compare with the original source value
998   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
999   // If the comparison result is 'i1 false', then the truncation was lossy.
1000   return std::make_pair(Kind, std::make_pair(Check, Mask));
1001 }
1002 
1003 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1004     QualType SrcType, QualType DstType) {
1005   return SrcType->isIntegerType() && DstType->isIntegerType();
1006 }
1007 
1008 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1009                                                    Value *Dst, QualType DstType,
1010                                                    SourceLocation Loc) {
1011   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1012     return;
1013 
1014   // We only care about int->int conversions here.
1015   // We ignore conversions to/from pointer and/or bool.
1016   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1017                                                                        DstType))
1018     return;
1019 
1020   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1021   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1022   // This must be truncation. Else we do not care.
1023   if (SrcBits <= DstBits)
1024     return;
1025 
1026   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1027 
1028   // If the integer sign change sanitizer is enabled,
1029   // and we are truncating from larger unsigned type to smaller signed type,
1030   // let that next sanitizer deal with it.
1031   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1032   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1033   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1034       (!SrcSigned && DstSigned))
1035     return;
1036 
1037   CodeGenFunction::SanitizerScope SanScope(&CGF);
1038 
1039   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1040             std::pair<llvm::Value *, SanitizerMask>>
1041       Check =
1042           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1043   // If the comparison result is 'i1 false', then the truncation was lossy.
1044 
1045   // Do we care about this type of truncation?
1046   if (!CGF.SanOpts.has(Check.second.second))
1047     return;
1048 
1049   llvm::Constant *StaticArgs[] = {
1050       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1051       CGF.EmitCheckTypeDescriptor(DstType),
1052       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1053   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1054                 {Src, Dst});
1055 }
1056 
1057 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1058 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1059 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1060                  std::pair<llvm::Value *, SanitizerMask>>
1061 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1062                                  QualType DstType, CGBuilderTy &Builder) {
1063   llvm::Type *SrcTy = Src->getType();
1064   llvm::Type *DstTy = Dst->getType();
1065 
1066   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1067          "non-integer llvm type");
1068 
1069   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1070   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1071   (void)SrcSigned; // Only used in assert()
1072   (void)DstSigned; // Only used in assert()
1073   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1074   unsigned DstBits = DstTy->getScalarSizeInBits();
1075   (void)SrcBits; // Only used in assert()
1076   (void)DstBits; // Only used in assert()
1077 
1078   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1079          "either the widths should be different, or the signednesses.");
1080 
1081   // NOTE: zero value is considered to be non-negative.
1082   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1083                                        const char *Name) -> Value * {
1084     // Is this value a signed type?
1085     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1086     llvm::Type *VTy = V->getType();
1087     if (!VSigned) {
1088       // If the value is unsigned, then it is never negative.
1089       // FIXME: can we encounter non-scalar VTy here?
1090       return llvm::ConstantInt::getFalse(VTy->getContext());
1091     }
1092     // Get the zero of the same type with which we will be comparing.
1093     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1094     // %V.isnegative = icmp slt %V, 0
1095     // I.e is %V *strictly* less than zero, does it have negative value?
1096     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1097                               llvm::Twine(Name) + "." + V->getName() +
1098                                   ".negativitycheck");
1099   };
1100 
1101   // 1. Was the old Value negative?
1102   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1103   // 2. Is the new Value negative?
1104   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1105   // 3. Now, was the 'negativity status' preserved during the conversion?
1106   //    NOTE: conversion from negative to zero is considered to change the sign.
1107   //    (We want to get 'false' when the conversion changed the sign)
1108   //    So we should just equality-compare the negativity statuses.
1109   llvm::Value *Check = nullptr;
1110   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1111   // If the comparison result is 'false', then the conversion changed the sign.
1112   return std::make_pair(
1113       ScalarExprEmitter::ICCK_IntegerSignChange,
1114       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1115 }
1116 
1117 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1118                                                    Value *Dst, QualType DstType,
1119                                                    SourceLocation Loc) {
1120   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1121     return;
1122 
1123   llvm::Type *SrcTy = Src->getType();
1124   llvm::Type *DstTy = Dst->getType();
1125 
1126   // We only care about int->int conversions here.
1127   // We ignore conversions to/from pointer and/or bool.
1128   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1129                                                                        DstType))
1130     return;
1131 
1132   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1133   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1134   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1135   unsigned DstBits = DstTy->getScalarSizeInBits();
1136 
1137   // Now, we do not need to emit the check in *all* of the cases.
1138   // We can avoid emitting it in some obvious cases where it would have been
1139   // dropped by the opt passes (instcombine) always anyways.
1140   // If it's a cast between effectively the same type, no check.
1141   // NOTE: this is *not* equivalent to checking the canonical types.
1142   if (SrcSigned == DstSigned && SrcBits == DstBits)
1143     return;
1144   // At least one of the values needs to have signed type.
1145   // If both are unsigned, then obviously, neither of them can be negative.
1146   if (!SrcSigned && !DstSigned)
1147     return;
1148   // If the conversion is to *larger* *signed* type, then no check is needed.
1149   // Because either sign-extension happens (so the sign will remain),
1150   // or zero-extension will happen (the sign bit will be zero.)
1151   if ((DstBits > SrcBits) && DstSigned)
1152     return;
1153   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1154       (SrcBits > DstBits) && SrcSigned) {
1155     // If the signed integer truncation sanitizer is enabled,
1156     // and this is a truncation from signed type, then no check is needed.
1157     // Because here sign change check is interchangeable with truncation check.
1158     return;
1159   }
1160   // That's it. We can't rule out any more cases with the data we have.
1161 
1162   CodeGenFunction::SanitizerScope SanScope(&CGF);
1163 
1164   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1165             std::pair<llvm::Value *, SanitizerMask>>
1166       Check;
1167 
1168   // Each of these checks needs to return 'false' when an issue was detected.
1169   ImplicitConversionCheckKind CheckKind;
1170   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1171   // So we can 'and' all the checks together, and still get 'false',
1172   // if at least one of the checks detected an issue.
1173 
1174   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1175   CheckKind = Check.first;
1176   Checks.emplace_back(Check.second);
1177 
1178   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1179       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1180     // If the signed integer truncation sanitizer was enabled,
1181     // and we are truncating from larger unsigned type to smaller signed type,
1182     // let's handle the case we skipped in that check.
1183     Check =
1184         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1185     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1186     Checks.emplace_back(Check.second);
1187     // If the comparison result is 'i1 false', then the truncation was lossy.
1188   }
1189 
1190   llvm::Constant *StaticArgs[] = {
1191       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1192       CGF.EmitCheckTypeDescriptor(DstType),
1193       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1194   // EmitCheck() will 'and' all the checks together.
1195   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1196                 {Src, Dst});
1197 }
1198 
1199 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
1200                                          QualType DstType, llvm::Type *SrcTy,
1201                                          llvm::Type *DstTy,
1202                                          ScalarConversionOpts Opts) {
1203   // The Element types determine the type of cast to perform.
1204   llvm::Type *SrcElementTy;
1205   llvm::Type *DstElementTy;
1206   QualType SrcElementType;
1207   QualType DstElementType;
1208   if (SrcType->isMatrixType() && DstType->isMatrixType()) {
1209     SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1210     DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1211     SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
1212     DstElementType = DstType->castAs<MatrixType>()->getElementType();
1213   } else {
1214     assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
1215            "cannot cast between matrix and non-matrix types");
1216     SrcElementTy = SrcTy;
1217     DstElementTy = DstTy;
1218     SrcElementType = SrcType;
1219     DstElementType = DstType;
1220   }
1221 
1222   if (isa<llvm::IntegerType>(SrcElementTy)) {
1223     bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
1224     if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1225       InputSigned = true;
1226     }
1227 
1228     if (isa<llvm::IntegerType>(DstElementTy))
1229       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1230     if (InputSigned)
1231       return Builder.CreateSIToFP(Src, DstTy, "conv");
1232     return Builder.CreateUIToFP(Src, DstTy, "conv");
1233   }
1234 
1235   if (isa<llvm::IntegerType>(DstElementTy)) {
1236     assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
1237     bool IsSigned = DstElementType->isSignedIntegerOrEnumerationType();
1238 
1239     // If we can't recognize overflow as undefined behavior, assume that
1240     // overflow saturates. This protects against normal optimizations if we are
1241     // compiling with non-standard FP semantics.
1242     if (!CGF.CGM.getCodeGenOpts().StrictFloatCastOverflow) {
1243       llvm::Intrinsic::ID IID =
1244           IsSigned ? llvm::Intrinsic::fptosi_sat : llvm::Intrinsic::fptoui_sat;
1245       return Builder.CreateCall(CGF.CGM.getIntrinsic(IID, {DstTy, SrcTy}), Src);
1246     }
1247 
1248     if (IsSigned)
1249       return Builder.CreateFPToSI(Src, DstTy, "conv");
1250     return Builder.CreateFPToUI(Src, DstTy, "conv");
1251   }
1252 
1253   if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
1254     return Builder.CreateFPTrunc(Src, DstTy, "conv");
1255   return Builder.CreateFPExt(Src, DstTy, "conv");
1256 }
1257 
1258 /// Emit a conversion from the specified type to the specified destination type,
1259 /// both of which are LLVM scalar types.
1260 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1261                                                QualType DstType,
1262                                                SourceLocation Loc,
1263                                                ScalarConversionOpts Opts) {
1264   // All conversions involving fixed point types should be handled by the
1265   // EmitFixedPoint family functions. This is done to prevent bloating up this
1266   // function more, and although fixed point numbers are represented by
1267   // integers, we do not want to follow any logic that assumes they should be
1268   // treated as integers.
1269   // TODO(leonardchan): When necessary, add another if statement checking for
1270   // conversions to fixed point types from other types.
1271   if (SrcType->isFixedPointType()) {
1272     if (DstType->isBooleanType())
1273       // It is important that we check this before checking if the dest type is
1274       // an integer because booleans are technically integer types.
1275       // We do not need to check the padding bit on unsigned types if unsigned
1276       // padding is enabled because overflow into this bit is undefined
1277       // behavior.
1278       return Builder.CreateIsNotNull(Src, "tobool");
1279     if (DstType->isFixedPointType() || DstType->isIntegerType() ||
1280         DstType->isRealFloatingType())
1281       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1282 
1283     llvm_unreachable(
1284         "Unhandled scalar conversion from a fixed point type to another type.");
1285   } else if (DstType->isFixedPointType()) {
1286     if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
1287       // This also includes converting booleans and enums to fixed point types.
1288       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1289 
1290     llvm_unreachable(
1291         "Unhandled scalar conversion to a fixed point type from another type.");
1292   }
1293 
1294   QualType NoncanonicalSrcType = SrcType;
1295   QualType NoncanonicalDstType = DstType;
1296 
1297   SrcType = CGF.getContext().getCanonicalType(SrcType);
1298   DstType = CGF.getContext().getCanonicalType(DstType);
1299   if (SrcType == DstType) return Src;
1300 
1301   if (DstType->isVoidType()) return nullptr;
1302 
1303   llvm::Value *OrigSrc = Src;
1304   QualType OrigSrcType = SrcType;
1305   llvm::Type *SrcTy = Src->getType();
1306 
1307   // Handle conversions to bool first, they are special: comparisons against 0.
1308   if (DstType->isBooleanType())
1309     return EmitConversionToBool(Src, SrcType);
1310 
1311   llvm::Type *DstTy = ConvertType(DstType);
1312 
1313   // Cast from half through float if half isn't a native type.
1314   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1315     // Cast to FP using the intrinsic if the half type itself isn't supported.
1316     if (DstTy->isFloatingPointTy()) {
1317       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1318         return Builder.CreateCall(
1319             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1320             Src);
1321     } else {
1322       // Cast to other types through float, using either the intrinsic or FPExt,
1323       // depending on whether the half type itself is supported
1324       // (as opposed to operations on half, available with NativeHalfType).
1325       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1326         Src = Builder.CreateCall(
1327             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1328                                  CGF.CGM.FloatTy),
1329             Src);
1330       } else {
1331         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1332       }
1333       SrcType = CGF.getContext().FloatTy;
1334       SrcTy = CGF.FloatTy;
1335     }
1336   }
1337 
1338   // Ignore conversions like int -> uint.
1339   if (SrcTy == DstTy) {
1340     if (Opts.EmitImplicitIntegerSignChangeChecks)
1341       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1342                                  NoncanonicalDstType, Loc);
1343 
1344     return Src;
1345   }
1346 
1347   // Handle pointer conversions next: pointers can only be converted to/from
1348   // other pointers and integers. Check for pointer types in terms of LLVM, as
1349   // some native types (like Obj-C id) may map to a pointer type.
1350   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1351     // The source value may be an integer, or a pointer.
1352     if (isa<llvm::PointerType>(SrcTy))
1353       return Builder.CreateBitCast(Src, DstTy, "conv");
1354 
1355     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1356     // First, convert to the correct width so that we control the kind of
1357     // extension.
1358     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1359     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1360     llvm::Value* IntResult =
1361         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1362     // Then, cast to pointer.
1363     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1364   }
1365 
1366   if (isa<llvm::PointerType>(SrcTy)) {
1367     // Must be an ptr to int cast.
1368     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1369     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1370   }
1371 
1372   // A scalar can be splatted to an extended vector of the same element type
1373   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1374     // Sema should add casts to make sure that the source expression's type is
1375     // the same as the vector's element type (sans qualifiers)
1376     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1377                SrcType.getTypePtr() &&
1378            "Splatted expr doesn't match with vector element type?");
1379 
1380     // Splat the element across to all elements
1381     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1382     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1383   }
1384 
1385   if (SrcType->isMatrixType() && DstType->isMatrixType())
1386     return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1387 
1388   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1389     // Allow bitcast from vector to integer/fp of the same size.
1390     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1391     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1392     if (SrcSize == DstSize)
1393       return Builder.CreateBitCast(Src, DstTy, "conv");
1394 
1395     // Conversions between vectors of different sizes are not allowed except
1396     // when vectors of half are involved. Operations on storage-only half
1397     // vectors require promoting half vector operands to float vectors and
1398     // truncating the result, which is either an int or float vector, to a
1399     // short or half vector.
1400 
1401     // Source and destination are both expected to be vectors.
1402     llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1403     llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1404     (void)DstElementTy;
1405 
1406     assert(((SrcElementTy->isIntegerTy() &&
1407              DstElementTy->isIntegerTy()) ||
1408             (SrcElementTy->isFloatingPointTy() &&
1409              DstElementTy->isFloatingPointTy())) &&
1410            "unexpected conversion between a floating-point vector and an "
1411            "integer vector");
1412 
1413     // Truncate an i32 vector to an i16 vector.
1414     if (SrcElementTy->isIntegerTy())
1415       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1416 
1417     // Truncate a float vector to a half vector.
1418     if (SrcSize > DstSize)
1419       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1420 
1421     // Promote a half vector to a float vector.
1422     return Builder.CreateFPExt(Src, DstTy, "conv");
1423   }
1424 
1425   // Finally, we have the arithmetic types: real int/float.
1426   Value *Res = nullptr;
1427   llvm::Type *ResTy = DstTy;
1428 
1429   // An overflowing conversion has undefined behavior if either the source type
1430   // or the destination type is a floating-point type. However, we consider the
1431   // range of representable values for all floating-point types to be
1432   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1433   // floating-point type.
1434   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1435       OrigSrcType->isFloatingType())
1436     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1437                              Loc);
1438 
1439   // Cast to half through float if half isn't a native type.
1440   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1441     // Make sure we cast in a single step if from another FP type.
1442     if (SrcTy->isFloatingPointTy()) {
1443       // Use the intrinsic if the half type itself isn't supported
1444       // (as opposed to operations on half, available with NativeHalfType).
1445       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1446         return Builder.CreateCall(
1447             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1448       // If the half type is supported, just use an fptrunc.
1449       return Builder.CreateFPTrunc(Src, DstTy);
1450     }
1451     DstTy = CGF.FloatTy;
1452   }
1453 
1454   Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1455 
1456   if (DstTy != ResTy) {
1457     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1458       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1459       Res = Builder.CreateCall(
1460         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1461         Res);
1462     } else {
1463       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1464     }
1465   }
1466 
1467   if (Opts.EmitImplicitIntegerTruncationChecks)
1468     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1469                                NoncanonicalDstType, Loc);
1470 
1471   if (Opts.EmitImplicitIntegerSignChangeChecks)
1472     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1473                                NoncanonicalDstType, Loc);
1474 
1475   return Res;
1476 }
1477 
1478 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1479                                                    QualType DstTy,
1480                                                    SourceLocation Loc) {
1481   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1482   llvm::Value *Result;
1483   if (SrcTy->isRealFloatingType())
1484     Result = FPBuilder.CreateFloatingToFixed(Src,
1485         CGF.getContext().getFixedPointSemantics(DstTy));
1486   else if (DstTy->isRealFloatingType())
1487     Result = FPBuilder.CreateFixedToFloating(Src,
1488         CGF.getContext().getFixedPointSemantics(SrcTy),
1489         ConvertType(DstTy));
1490   else {
1491     auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1492     auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1493 
1494     if (DstTy->isIntegerType())
1495       Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1496                                               DstFPSema.getWidth(),
1497                                               DstFPSema.isSigned());
1498     else if (SrcTy->isIntegerType())
1499       Result =  FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1500                                                DstFPSema);
1501     else
1502       Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1503   }
1504   return Result;
1505 }
1506 
1507 /// Emit a conversion from the specified complex type to the specified
1508 /// destination type, where the destination type is an LLVM scalar type.
1509 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1510     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1511     SourceLocation Loc) {
1512   // Get the source element type.
1513   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1514 
1515   // Handle conversions to bool first, they are special: comparisons against 0.
1516   if (DstTy->isBooleanType()) {
1517     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1518     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1519     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1520     return Builder.CreateOr(Src.first, Src.second, "tobool");
1521   }
1522 
1523   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1524   // the imaginary part of the complex value is discarded and the value of the
1525   // real part is converted according to the conversion rules for the
1526   // corresponding real type.
1527   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1528 }
1529 
1530 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1531   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1532 }
1533 
1534 /// Emit a sanitization check for the given "binary" operation (which
1535 /// might actually be a unary increment which has been lowered to a binary
1536 /// operation). The check passes if all values in \p Checks (which are \c i1),
1537 /// are \c true.
1538 void ScalarExprEmitter::EmitBinOpCheck(
1539     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1540   assert(CGF.IsSanitizerScope);
1541   SanitizerHandler Check;
1542   SmallVector<llvm::Constant *, 4> StaticData;
1543   SmallVector<llvm::Value *, 2> DynamicData;
1544 
1545   BinaryOperatorKind Opcode = Info.Opcode;
1546   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1547     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1548 
1549   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1550   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1551   if (UO && UO->getOpcode() == UO_Minus) {
1552     Check = SanitizerHandler::NegateOverflow;
1553     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1554     DynamicData.push_back(Info.RHS);
1555   } else {
1556     if (BinaryOperator::isShiftOp(Opcode)) {
1557       // Shift LHS negative or too large, or RHS out of bounds.
1558       Check = SanitizerHandler::ShiftOutOfBounds;
1559       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1560       StaticData.push_back(
1561         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1562       StaticData.push_back(
1563         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1564     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1565       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1566       Check = SanitizerHandler::DivremOverflow;
1567       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1568     } else {
1569       // Arithmetic overflow (+, -, *).
1570       switch (Opcode) {
1571       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1572       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1573       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1574       default: llvm_unreachable("unexpected opcode for bin op check");
1575       }
1576       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1577     }
1578     DynamicData.push_back(Info.LHS);
1579     DynamicData.push_back(Info.RHS);
1580   }
1581 
1582   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1583 }
1584 
1585 //===----------------------------------------------------------------------===//
1586 //                            Visitor Methods
1587 //===----------------------------------------------------------------------===//
1588 
1589 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1590   CGF.ErrorUnsupported(E, "scalar expression");
1591   if (E->getType()->isVoidType())
1592     return nullptr;
1593   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1594 }
1595 
1596 Value *
1597 ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) {
1598   ASTContext &Context = CGF.getContext();
1599   llvm::Optional<LangAS> GlobalAS =
1600       Context.getTargetInfo().getConstantAddressSpace();
1601   llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr(
1602       E->ComputeName(Context), "__usn_str",
1603       static_cast<unsigned>(GlobalAS.getValueOr(LangAS::Default)));
1604 
1605   unsigned ExprAS = Context.getTargetAddressSpace(E->getType());
1606 
1607   if (GlobalConstStr->getType()->getPointerAddressSpace() == ExprAS)
1608     return GlobalConstStr;
1609 
1610   llvm::PointerType *PtrTy = cast<llvm::PointerType>(GlobalConstStr->getType());
1611   llvm::PointerType *NewPtrTy =
1612       llvm::PointerType::getWithSamePointeeType(PtrTy, ExprAS);
1613   return Builder.CreateAddrSpaceCast(GlobalConstStr, NewPtrTy, "usn_addr_cast");
1614 }
1615 
1616 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1617   // Vector Mask Case
1618   if (E->getNumSubExprs() == 2) {
1619     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1620     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1621     Value *Mask;
1622 
1623     auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1624     unsigned LHSElts = LTy->getNumElements();
1625 
1626     Mask = RHS;
1627 
1628     auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1629 
1630     // Mask off the high bits of each shuffle index.
1631     Value *MaskBits =
1632         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1633     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1634 
1635     // newv = undef
1636     // mask = mask & maskbits
1637     // for each elt
1638     //   n = extract mask i
1639     //   x = extract val n
1640     //   newv = insert newv, x, i
1641     auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1642                                            MTy->getNumElements());
1643     Value* NewV = llvm::UndefValue::get(RTy);
1644     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1645       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1646       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1647 
1648       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1649       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1650     }
1651     return NewV;
1652   }
1653 
1654   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1655   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1656 
1657   SmallVector<int, 32> Indices;
1658   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1659     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1660     // Check for -1 and output it as undef in the IR.
1661     if (Idx.isSigned() && Idx.isAllOnes())
1662       Indices.push_back(-1);
1663     else
1664       Indices.push_back(Idx.getZExtValue());
1665   }
1666 
1667   return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1668 }
1669 
1670 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1671   QualType SrcType = E->getSrcExpr()->getType(),
1672            DstType = E->getType();
1673 
1674   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1675 
1676   SrcType = CGF.getContext().getCanonicalType(SrcType);
1677   DstType = CGF.getContext().getCanonicalType(DstType);
1678   if (SrcType == DstType) return Src;
1679 
1680   assert(SrcType->isVectorType() &&
1681          "ConvertVector source type must be a vector");
1682   assert(DstType->isVectorType() &&
1683          "ConvertVector destination type must be a vector");
1684 
1685   llvm::Type *SrcTy = Src->getType();
1686   llvm::Type *DstTy = ConvertType(DstType);
1687 
1688   // Ignore conversions like int -> uint.
1689   if (SrcTy == DstTy)
1690     return Src;
1691 
1692   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1693            DstEltType = DstType->castAs<VectorType>()->getElementType();
1694 
1695   assert(SrcTy->isVectorTy() &&
1696          "ConvertVector source IR type must be a vector");
1697   assert(DstTy->isVectorTy() &&
1698          "ConvertVector destination IR type must be a vector");
1699 
1700   llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1701              *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1702 
1703   if (DstEltType->isBooleanType()) {
1704     assert((SrcEltTy->isFloatingPointTy() ||
1705             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1706 
1707     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1708     if (SrcEltTy->isFloatingPointTy()) {
1709       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1710     } else {
1711       return Builder.CreateICmpNE(Src, Zero, "tobool");
1712     }
1713   }
1714 
1715   // We have the arithmetic types: real int/float.
1716   Value *Res = nullptr;
1717 
1718   if (isa<llvm::IntegerType>(SrcEltTy)) {
1719     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1720     if (isa<llvm::IntegerType>(DstEltTy))
1721       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1722     else if (InputSigned)
1723       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1724     else
1725       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1726   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1727     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1728     if (DstEltType->isSignedIntegerOrEnumerationType())
1729       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1730     else
1731       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1732   } else {
1733     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1734            "Unknown real conversion");
1735     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1736       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1737     else
1738       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1739   }
1740 
1741   return Res;
1742 }
1743 
1744 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1745   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1746     CGF.EmitIgnoredExpr(E->getBase());
1747     return CGF.emitScalarConstant(Constant, E);
1748   } else {
1749     Expr::EvalResult Result;
1750     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1751       llvm::APSInt Value = Result.Val.getInt();
1752       CGF.EmitIgnoredExpr(E->getBase());
1753       return Builder.getInt(Value);
1754     }
1755   }
1756 
1757   return EmitLoadOfLValue(E);
1758 }
1759 
1760 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1761   TestAndClearIgnoreResultAssign();
1762 
1763   // Emit subscript expressions in rvalue context's.  For most cases, this just
1764   // loads the lvalue formed by the subscript expr.  However, we have to be
1765   // careful, because the base of a vector subscript is occasionally an rvalue,
1766   // so we can't get it as an lvalue.
1767   if (!E->getBase()->getType()->isVectorType())
1768     return EmitLoadOfLValue(E);
1769 
1770   // Handle the vector case.  The base must be a vector, the index must be an
1771   // integer value.
1772   Value *Base = Visit(E->getBase());
1773   Value *Idx  = Visit(E->getIdx());
1774   QualType IdxTy = E->getIdx()->getType();
1775 
1776   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1777     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1778 
1779   return Builder.CreateExtractElement(Base, Idx, "vecext");
1780 }
1781 
1782 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1783   TestAndClearIgnoreResultAssign();
1784 
1785   // Handle the vector case.  The base must be a vector, the index must be an
1786   // integer value.
1787   Value *RowIdx = Visit(E->getRowIdx());
1788   Value *ColumnIdx = Visit(E->getColumnIdx());
1789 
1790   const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>();
1791   unsigned NumRows = MatrixTy->getNumRows();
1792   llvm::MatrixBuilder MB(Builder);
1793   Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows);
1794   if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0)
1795     MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened());
1796 
1797   Value *Matrix = Visit(E->getBase());
1798 
1799   // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1800   return Builder.CreateExtractElement(Matrix, Idx, "matrixext");
1801 }
1802 
1803 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1804                       unsigned Off) {
1805   int MV = SVI->getMaskValue(Idx);
1806   if (MV == -1)
1807     return -1;
1808   return Off + MV;
1809 }
1810 
1811 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1812   assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1813          "Index operand too large for shufflevector mask!");
1814   return C->getZExtValue();
1815 }
1816 
1817 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1818   bool Ignore = TestAndClearIgnoreResultAssign();
1819   (void)Ignore;
1820   assert (Ignore == false && "init list ignored");
1821   unsigned NumInitElements = E->getNumInits();
1822 
1823   if (E->hadArrayRangeDesignator())
1824     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1825 
1826   llvm::VectorType *VType =
1827     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1828 
1829   if (!VType) {
1830     if (NumInitElements == 0) {
1831       // C++11 value-initialization for the scalar.
1832       return EmitNullValue(E->getType());
1833     }
1834     // We have a scalar in braces. Just use the first element.
1835     return Visit(E->getInit(0));
1836   }
1837 
1838   unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
1839 
1840   // Loop over initializers collecting the Value for each, and remembering
1841   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1842   // us to fold the shuffle for the swizzle into the shuffle for the vector
1843   // initializer, since LLVM optimizers generally do not want to touch
1844   // shuffles.
1845   unsigned CurIdx = 0;
1846   bool VIsUndefShuffle = false;
1847   llvm::Value *V = llvm::UndefValue::get(VType);
1848   for (unsigned i = 0; i != NumInitElements; ++i) {
1849     Expr *IE = E->getInit(i);
1850     Value *Init = Visit(IE);
1851     SmallVector<int, 16> Args;
1852 
1853     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1854 
1855     // Handle scalar elements.  If the scalar initializer is actually one
1856     // element of a different vector of the same width, use shuffle instead of
1857     // extract+insert.
1858     if (!VVT) {
1859       if (isa<ExtVectorElementExpr>(IE)) {
1860         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1861 
1862         if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
1863                 ->getNumElements() == ResElts) {
1864           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1865           Value *LHS = nullptr, *RHS = nullptr;
1866           if (CurIdx == 0) {
1867             // insert into undef -> shuffle (src, undef)
1868             // shufflemask must use an i32
1869             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1870             Args.resize(ResElts, -1);
1871 
1872             LHS = EI->getVectorOperand();
1873             RHS = V;
1874             VIsUndefShuffle = true;
1875           } else if (VIsUndefShuffle) {
1876             // insert into undefshuffle && size match -> shuffle (v, src)
1877             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1878             for (unsigned j = 0; j != CurIdx; ++j)
1879               Args.push_back(getMaskElt(SVV, j, 0));
1880             Args.push_back(ResElts + C->getZExtValue());
1881             Args.resize(ResElts, -1);
1882 
1883             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1884             RHS = EI->getVectorOperand();
1885             VIsUndefShuffle = false;
1886           }
1887           if (!Args.empty()) {
1888             V = Builder.CreateShuffleVector(LHS, RHS, Args);
1889             ++CurIdx;
1890             continue;
1891           }
1892         }
1893       }
1894       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1895                                       "vecinit");
1896       VIsUndefShuffle = false;
1897       ++CurIdx;
1898       continue;
1899     }
1900 
1901     unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
1902 
1903     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1904     // input is the same width as the vector being constructed, generate an
1905     // optimized shuffle of the swizzle input into the result.
1906     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1907     if (isa<ExtVectorElementExpr>(IE)) {
1908       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1909       Value *SVOp = SVI->getOperand(0);
1910       auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
1911 
1912       if (OpTy->getNumElements() == ResElts) {
1913         for (unsigned j = 0; j != CurIdx; ++j) {
1914           // If the current vector initializer is a shuffle with undef, merge
1915           // this shuffle directly into it.
1916           if (VIsUndefShuffle) {
1917             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1918           } else {
1919             Args.push_back(j);
1920           }
1921         }
1922         for (unsigned j = 0, je = InitElts; j != je; ++j)
1923           Args.push_back(getMaskElt(SVI, j, Offset));
1924         Args.resize(ResElts, -1);
1925 
1926         if (VIsUndefShuffle)
1927           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1928 
1929         Init = SVOp;
1930       }
1931     }
1932 
1933     // Extend init to result vector length, and then shuffle its contribution
1934     // to the vector initializer into V.
1935     if (Args.empty()) {
1936       for (unsigned j = 0; j != InitElts; ++j)
1937         Args.push_back(j);
1938       Args.resize(ResElts, -1);
1939       Init = Builder.CreateShuffleVector(Init, Args, "vext");
1940 
1941       Args.clear();
1942       for (unsigned j = 0; j != CurIdx; ++j)
1943         Args.push_back(j);
1944       for (unsigned j = 0; j != InitElts; ++j)
1945         Args.push_back(j + Offset);
1946       Args.resize(ResElts, -1);
1947     }
1948 
1949     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1950     // merging subsequent shuffles into this one.
1951     if (CurIdx == 0)
1952       std::swap(V, Init);
1953     V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1954     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1955     CurIdx += InitElts;
1956   }
1957 
1958   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1959   // Emit remaining default initializers.
1960   llvm::Type *EltTy = VType->getElementType();
1961 
1962   // Emit remaining default initializers
1963   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1964     Value *Idx = Builder.getInt32(CurIdx);
1965     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1966     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1967   }
1968   return V;
1969 }
1970 
1971 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1972   const Expr *E = CE->getSubExpr();
1973 
1974   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1975     return false;
1976 
1977   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1978     // We always assume that 'this' is never null.
1979     return false;
1980   }
1981 
1982   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1983     // And that glvalue casts are never null.
1984     if (ICE->isGLValue())
1985       return false;
1986   }
1987 
1988   return true;
1989 }
1990 
1991 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1992 // have to handle a more broad range of conversions than explicit casts, as they
1993 // handle things like function to ptr-to-function decay etc.
1994 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1995   Expr *E = CE->getSubExpr();
1996   QualType DestTy = CE->getType();
1997   CastKind Kind = CE->getCastKind();
1998 
1999   // These cases are generally not written to ignore the result of
2000   // evaluating their sub-expressions, so we clear this now.
2001   bool Ignored = TestAndClearIgnoreResultAssign();
2002 
2003   // Since almost all cast kinds apply to scalars, this switch doesn't have
2004   // a default case, so the compiler will warn on a missing case.  The cases
2005   // are in the same order as in the CastKind enum.
2006   switch (Kind) {
2007   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
2008   case CK_BuiltinFnToFnPtr:
2009     llvm_unreachable("builtin functions are handled elsewhere");
2010 
2011   case CK_LValueBitCast:
2012   case CK_ObjCObjectLValueCast: {
2013     Address Addr = EmitLValue(E).getAddress(CGF);
2014     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2015     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2016     return EmitLoadOfLValue(LV, CE->getExprLoc());
2017   }
2018 
2019   case CK_LValueToRValueBitCast: {
2020     LValue SourceLVal = CGF.EmitLValue(E);
2021     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
2022                                                 CGF.ConvertTypeForMem(DestTy));
2023     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2024     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2025     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2026   }
2027 
2028   case CK_CPointerToObjCPointerCast:
2029   case CK_BlockPointerToObjCPointerCast:
2030   case CK_AnyPointerToBlockPointerCast:
2031   case CK_BitCast: {
2032     Value *Src = Visit(const_cast<Expr*>(E));
2033     llvm::Type *SrcTy = Src->getType();
2034     llvm::Type *DstTy = ConvertType(DestTy);
2035     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2036         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2037       llvm_unreachable("wrong cast for pointers in different address spaces"
2038                        "(must be an address space cast)!");
2039     }
2040 
2041     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2042       if (auto PT = DestTy->getAs<PointerType>()) {
2043         CGF.EmitVTablePtrCheckForCast(
2044             PT->getPointeeType(),
2045             Address(Src,
2046                     CGF.ConvertTypeForMem(
2047                         E->getType()->getAs<PointerType>()->getPointeeType()),
2048                     CGF.getPointerAlign()),
2049             /*MayBeNull=*/true, CodeGenFunction::CFITCK_UnrelatedCast,
2050             CE->getBeginLoc());
2051       }
2052     }
2053 
2054     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2055       const QualType SrcType = E->getType();
2056 
2057       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2058         // Casting to pointer that could carry dynamic information (provided by
2059         // invariant.group) requires launder.
2060         Src = Builder.CreateLaunderInvariantGroup(Src);
2061       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2062         // Casting to pointer that does not carry dynamic information (provided
2063         // by invariant.group) requires stripping it.  Note that we don't do it
2064         // if the source could not be dynamic type and destination could be
2065         // dynamic because dynamic information is already laundered.  It is
2066         // because launder(strip(src)) == launder(src), so there is no need to
2067         // add extra strip before launder.
2068         Src = Builder.CreateStripInvariantGroup(Src);
2069       }
2070     }
2071 
2072     // Update heapallocsite metadata when there is an explicit pointer cast.
2073     if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2074       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
2075         QualType PointeeType = DestTy->getPointeeType();
2076         if (!PointeeType.isNull())
2077           CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2078                                                        CE->getExprLoc());
2079       }
2080     }
2081 
2082     // If Src is a fixed vector and Dst is a scalable vector, and both have the
2083     // same element type, use the llvm.experimental.vector.insert intrinsic to
2084     // perform the bitcast.
2085     if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
2086       if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
2087         // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
2088         // vector, use a vector insert and bitcast the result.
2089         bool NeedsBitCast = false;
2090         auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2091         llvm::Type *OrigType = DstTy;
2092         if (ScalableDst == PredType &&
2093             FixedSrc->getElementType() == Builder.getInt8Ty()) {
2094           DstTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2095           ScalableDst = cast<llvm::ScalableVectorType>(DstTy);
2096           NeedsBitCast = true;
2097         }
2098         if (FixedSrc->getElementType() == ScalableDst->getElementType()) {
2099           llvm::Value *UndefVec = llvm::UndefValue::get(DstTy);
2100           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2101           llvm::Value *Result = Builder.CreateInsertVector(
2102               DstTy, UndefVec, Src, Zero, "castScalableSve");
2103           if (NeedsBitCast)
2104             Result = Builder.CreateBitCast(Result, OrigType);
2105           return Result;
2106         }
2107       }
2108     }
2109 
2110     // If Src is a scalable vector and Dst is a fixed vector, and both have the
2111     // same element type, use the llvm.experimental.vector.extract intrinsic to
2112     // perform the bitcast.
2113     if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
2114       if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) {
2115         // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
2116         // vector, bitcast the source and use a vector extract.
2117         auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2118         if (ScalableSrc == PredType &&
2119             FixedDst->getElementType() == Builder.getInt8Ty()) {
2120           SrcTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2121           ScalableSrc = cast<llvm::ScalableVectorType>(SrcTy);
2122           Src = Builder.CreateBitCast(Src, SrcTy);
2123         }
2124         if (ScalableSrc->getElementType() == FixedDst->getElementType()) {
2125           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2126           return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve");
2127         }
2128       }
2129     }
2130 
2131     // Perform VLAT <-> VLST bitcast through memory.
2132     // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics
2133     //       require the element types of the vectors to be the same, we
2134     //       need to keep this around for bitcasts between VLAT <-> VLST where
2135     //       the element types of the vectors are not the same, until we figure
2136     //       out a better way of doing these casts.
2137     if ((isa<llvm::FixedVectorType>(SrcTy) &&
2138          isa<llvm::ScalableVectorType>(DstTy)) ||
2139         (isa<llvm::ScalableVectorType>(SrcTy) &&
2140          isa<llvm::FixedVectorType>(DstTy))) {
2141       Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value");
2142       LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
2143       CGF.EmitStoreOfScalar(Src, LV);
2144       Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy),
2145                                           "castFixedSve");
2146       LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2147       DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2148       return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2149     }
2150 
2151     return Builder.CreateBitCast(Src, DstTy);
2152   }
2153   case CK_AddressSpaceConversion: {
2154     Expr::EvalResult Result;
2155     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2156         Result.Val.isNullPointer()) {
2157       // If E has side effect, it is emitted even if its final result is a
2158       // null pointer. In that case, a DCE pass should be able to
2159       // eliminate the useless instructions emitted during translating E.
2160       if (Result.HasSideEffects)
2161         Visit(E);
2162       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2163           ConvertType(DestTy)), DestTy);
2164     }
2165     // Since target may map different address spaces in AST to the same address
2166     // space, an address space conversion may end up as a bitcast.
2167     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2168         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2169         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2170   }
2171   case CK_AtomicToNonAtomic:
2172   case CK_NonAtomicToAtomic:
2173   case CK_UserDefinedConversion:
2174     return Visit(const_cast<Expr*>(E));
2175 
2176   case CK_NoOp: {
2177     llvm::Value *V = Visit(const_cast<Expr *>(E));
2178     if (V) {
2179       // CK_NoOp can model a pointer qualification conversion, which can remove
2180       // an array bound and change the IR type.
2181       // FIXME: Once pointee types are removed from IR, remove this.
2182       llvm::Type *T = ConvertType(DestTy);
2183       if (T != V->getType())
2184         V = Builder.CreateBitCast(V, T);
2185     }
2186     return V;
2187   }
2188 
2189   case CK_BaseToDerived: {
2190     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2191     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2192 
2193     Address Base = CGF.EmitPointerWithAlignment(E);
2194     Address Derived =
2195       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2196                                    CE->path_begin(), CE->path_end(),
2197                                    CGF.ShouldNullCheckClassCastValue(CE));
2198 
2199     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2200     // performed and the object is not of the derived type.
2201     if (CGF.sanitizePerformTypeCheck())
2202       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2203                         Derived.getPointer(), DestTy->getPointeeType());
2204 
2205     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2206       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
2207                                     /*MayBeNull=*/true,
2208                                     CodeGenFunction::CFITCK_DerivedCast,
2209                                     CE->getBeginLoc());
2210 
2211     return Derived.getPointer();
2212   }
2213   case CK_UncheckedDerivedToBase:
2214   case CK_DerivedToBase: {
2215     // The EmitPointerWithAlignment path does this fine; just discard
2216     // the alignment.
2217     return CGF.EmitPointerWithAlignment(CE).getPointer();
2218   }
2219 
2220   case CK_Dynamic: {
2221     Address V = CGF.EmitPointerWithAlignment(E);
2222     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2223     return CGF.EmitDynamicCast(V, DCE);
2224   }
2225 
2226   case CK_ArrayToPointerDecay:
2227     return CGF.EmitArrayToPointerDecay(E).getPointer();
2228   case CK_FunctionToPointerDecay:
2229     return EmitLValue(E).getPointer(CGF);
2230 
2231   case CK_NullToPointer:
2232     if (MustVisitNullValue(E))
2233       CGF.EmitIgnoredExpr(E);
2234 
2235     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2236                               DestTy);
2237 
2238   case CK_NullToMemberPointer: {
2239     if (MustVisitNullValue(E))
2240       CGF.EmitIgnoredExpr(E);
2241 
2242     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2243     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2244   }
2245 
2246   case CK_ReinterpretMemberPointer:
2247   case CK_BaseToDerivedMemberPointer:
2248   case CK_DerivedToBaseMemberPointer: {
2249     Value *Src = Visit(E);
2250 
2251     // Note that the AST doesn't distinguish between checked and
2252     // unchecked member pointer conversions, so we always have to
2253     // implement checked conversions here.  This is inefficient when
2254     // actual control flow may be required in order to perform the
2255     // check, which it is for data member pointers (but not member
2256     // function pointers on Itanium and ARM).
2257     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2258   }
2259 
2260   case CK_ARCProduceObject:
2261     return CGF.EmitARCRetainScalarExpr(E);
2262   case CK_ARCConsumeObject:
2263     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2264   case CK_ARCReclaimReturnedObject:
2265     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2266   case CK_ARCExtendBlockObject:
2267     return CGF.EmitARCExtendBlockObject(E);
2268 
2269   case CK_CopyAndAutoreleaseBlockObject:
2270     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2271 
2272   case CK_FloatingRealToComplex:
2273   case CK_FloatingComplexCast:
2274   case CK_IntegralRealToComplex:
2275   case CK_IntegralComplexCast:
2276   case CK_IntegralComplexToFloatingComplex:
2277   case CK_FloatingComplexToIntegralComplex:
2278   case CK_ConstructorConversion:
2279   case CK_ToUnion:
2280     llvm_unreachable("scalar cast to non-scalar value");
2281 
2282   case CK_LValueToRValue:
2283     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2284     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2285     return Visit(const_cast<Expr*>(E));
2286 
2287   case CK_IntegralToPointer: {
2288     Value *Src = Visit(const_cast<Expr*>(E));
2289 
2290     // First, convert to the correct width so that we control the kind of
2291     // extension.
2292     auto DestLLVMTy = ConvertType(DestTy);
2293     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2294     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2295     llvm::Value* IntResult =
2296       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2297 
2298     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2299 
2300     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2301       // Going from integer to pointer that could be dynamic requires reloading
2302       // dynamic information from invariant.group.
2303       if (DestTy.mayBeDynamicClass())
2304         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2305     }
2306     return IntToPtr;
2307   }
2308   case CK_PointerToIntegral: {
2309     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2310     auto *PtrExpr = Visit(E);
2311 
2312     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2313       const QualType SrcType = E->getType();
2314 
2315       // Casting to integer requires stripping dynamic information as it does
2316       // not carries it.
2317       if (SrcType.mayBeDynamicClass())
2318         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2319     }
2320 
2321     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2322   }
2323   case CK_ToVoid: {
2324     CGF.EmitIgnoredExpr(E);
2325     return nullptr;
2326   }
2327   case CK_MatrixCast: {
2328     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2329                                 CE->getExprLoc());
2330   }
2331   case CK_VectorSplat: {
2332     llvm::Type *DstTy = ConvertType(DestTy);
2333     Value *Elt = Visit(const_cast<Expr*>(E));
2334     // Splat the element across to all elements
2335     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
2336     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2337   }
2338 
2339   case CK_FixedPointCast:
2340     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2341                                 CE->getExprLoc());
2342 
2343   case CK_FixedPointToBoolean:
2344     assert(E->getType()->isFixedPointType() &&
2345            "Expected src type to be fixed point type");
2346     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2347     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2348                                 CE->getExprLoc());
2349 
2350   case CK_FixedPointToIntegral:
2351     assert(E->getType()->isFixedPointType() &&
2352            "Expected src type to be fixed point type");
2353     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2354     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2355                                 CE->getExprLoc());
2356 
2357   case CK_IntegralToFixedPoint:
2358     assert(E->getType()->isIntegerType() &&
2359            "Expected src type to be an integer");
2360     assert(DestTy->isFixedPointType() &&
2361            "Expected dest type to be fixed point type");
2362     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2363                                 CE->getExprLoc());
2364 
2365   case CK_IntegralCast: {
2366     ScalarConversionOpts Opts;
2367     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2368       if (!ICE->isPartOfExplicitCast())
2369         Opts = ScalarConversionOpts(CGF.SanOpts);
2370     }
2371     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2372                                 CE->getExprLoc(), Opts);
2373   }
2374   case CK_IntegralToFloating:
2375   case CK_FloatingToIntegral:
2376   case CK_FloatingCast:
2377   case CK_FixedPointToFloating:
2378   case CK_FloatingToFixedPoint: {
2379     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2380     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2381                                 CE->getExprLoc());
2382   }
2383   case CK_BooleanToSignedIntegral: {
2384     ScalarConversionOpts Opts;
2385     Opts.TreatBooleanAsSigned = true;
2386     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2387                                 CE->getExprLoc(), Opts);
2388   }
2389   case CK_IntegralToBoolean:
2390     return EmitIntToBoolConversion(Visit(E));
2391   case CK_PointerToBoolean:
2392     return EmitPointerToBoolConversion(Visit(E), E->getType());
2393   case CK_FloatingToBoolean: {
2394     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2395     return EmitFloatToBoolConversion(Visit(E));
2396   }
2397   case CK_MemberPointerToBoolean: {
2398     llvm::Value *MemPtr = Visit(E);
2399     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2400     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2401   }
2402 
2403   case CK_FloatingComplexToReal:
2404   case CK_IntegralComplexToReal:
2405     return CGF.EmitComplexExpr(E, false, true).first;
2406 
2407   case CK_FloatingComplexToBoolean:
2408   case CK_IntegralComplexToBoolean: {
2409     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2410 
2411     // TODO: kill this function off, inline appropriate case here
2412     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2413                                          CE->getExprLoc());
2414   }
2415 
2416   case CK_ZeroToOCLOpaqueType: {
2417     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2418             DestTy->isOCLIntelSubgroupAVCType()) &&
2419            "CK_ZeroToOCLEvent cast on non-event type");
2420     return llvm::Constant::getNullValue(ConvertType(DestTy));
2421   }
2422 
2423   case CK_IntToOCLSampler:
2424     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2425 
2426   } // end of switch
2427 
2428   llvm_unreachable("unknown scalar cast");
2429 }
2430 
2431 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2432   CodeGenFunction::StmtExprEvaluation eval(CGF);
2433   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2434                                            !E->getType()->isVoidType());
2435   if (!RetAlloca.isValid())
2436     return nullptr;
2437   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2438                               E->getExprLoc());
2439 }
2440 
2441 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2442   CodeGenFunction::RunCleanupsScope Scope(CGF);
2443   Value *V = Visit(E->getSubExpr());
2444   // Defend against dominance problems caused by jumps out of expression
2445   // evaluation through the shared cleanup block.
2446   Scope.ForceCleanup({&V});
2447   return V;
2448 }
2449 
2450 //===----------------------------------------------------------------------===//
2451 //                             Unary Operators
2452 //===----------------------------------------------------------------------===//
2453 
2454 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2455                                            llvm::Value *InVal, bool IsInc,
2456                                            FPOptions FPFeatures) {
2457   BinOpInfo BinOp;
2458   BinOp.LHS = InVal;
2459   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2460   BinOp.Ty = E->getType();
2461   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2462   BinOp.FPFeatures = FPFeatures;
2463   BinOp.E = E;
2464   return BinOp;
2465 }
2466 
2467 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2468     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2469   llvm::Value *Amount =
2470       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2471   StringRef Name = IsInc ? "inc" : "dec";
2472   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2473   case LangOptions::SOB_Defined:
2474     return Builder.CreateAdd(InVal, Amount, Name);
2475   case LangOptions::SOB_Undefined:
2476     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2477       return Builder.CreateNSWAdd(InVal, Amount, Name);
2478     LLVM_FALLTHROUGH;
2479   case LangOptions::SOB_Trapping:
2480     if (!E->canOverflow())
2481       return Builder.CreateNSWAdd(InVal, Amount, Name);
2482     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2483         E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2484   }
2485   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2486 }
2487 
2488 namespace {
2489 /// Handles check and update for lastprivate conditional variables.
2490 class OMPLastprivateConditionalUpdateRAII {
2491 private:
2492   CodeGenFunction &CGF;
2493   const UnaryOperator *E;
2494 
2495 public:
2496   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2497                                       const UnaryOperator *E)
2498       : CGF(CGF), E(E) {}
2499   ~OMPLastprivateConditionalUpdateRAII() {
2500     if (CGF.getLangOpts().OpenMP)
2501       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2502           CGF, E->getSubExpr());
2503   }
2504 };
2505 } // namespace
2506 
2507 llvm::Value *
2508 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2509                                            bool isInc, bool isPre) {
2510   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2511   QualType type = E->getSubExpr()->getType();
2512   llvm::PHINode *atomicPHI = nullptr;
2513   llvm::Value *value;
2514   llvm::Value *input;
2515 
2516   int amount = (isInc ? 1 : -1);
2517   bool isSubtraction = !isInc;
2518 
2519   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2520     type = atomicTy->getValueType();
2521     if (isInc && type->isBooleanType()) {
2522       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2523       if (isPre) {
2524         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2525             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2526         return Builder.getTrue();
2527       }
2528       // For atomic bool increment, we just store true and return it for
2529       // preincrement, do an atomic swap with true for postincrement
2530       return Builder.CreateAtomicRMW(
2531           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2532           llvm::AtomicOrdering::SequentiallyConsistent);
2533     }
2534     // Special case for atomic increment / decrement on integers, emit
2535     // atomicrmw instructions.  We skip this if we want to be doing overflow
2536     // checking, and fall into the slow path with the atomic cmpxchg loop.
2537     if (!type->isBooleanType() && type->isIntegerType() &&
2538         !(type->isUnsignedIntegerType() &&
2539           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2540         CGF.getLangOpts().getSignedOverflowBehavior() !=
2541             LangOptions::SOB_Trapping) {
2542       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2543         llvm::AtomicRMWInst::Sub;
2544       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2545         llvm::Instruction::Sub;
2546       llvm::Value *amt = CGF.EmitToMemory(
2547           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2548       llvm::Value *old =
2549           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2550                                   llvm::AtomicOrdering::SequentiallyConsistent);
2551       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2552     }
2553     value = EmitLoadOfLValue(LV, E->getExprLoc());
2554     input = value;
2555     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2556     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2557     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2558     value = CGF.EmitToMemory(value, type);
2559     Builder.CreateBr(opBB);
2560     Builder.SetInsertPoint(opBB);
2561     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2562     atomicPHI->addIncoming(value, startBB);
2563     value = atomicPHI;
2564   } else {
2565     value = EmitLoadOfLValue(LV, E->getExprLoc());
2566     input = value;
2567   }
2568 
2569   // Special case of integer increment that we have to check first: bool++.
2570   // Due to promotion rules, we get:
2571   //   bool++ -> bool = bool + 1
2572   //          -> bool = (int)bool + 1
2573   //          -> bool = ((int)bool + 1 != 0)
2574   // An interesting aspect of this is that increment is always true.
2575   // Decrement does not have this property.
2576   if (isInc && type->isBooleanType()) {
2577     value = Builder.getTrue();
2578 
2579   // Most common case by far: integer increment.
2580   } else if (type->isIntegerType()) {
2581     QualType promotedType;
2582     bool canPerformLossyDemotionCheck = false;
2583     if (type->isPromotableIntegerType()) {
2584       promotedType = CGF.getContext().getPromotedIntegerType(type);
2585       assert(promotedType != type && "Shouldn't promote to the same type.");
2586       canPerformLossyDemotionCheck = true;
2587       canPerformLossyDemotionCheck &=
2588           CGF.getContext().getCanonicalType(type) !=
2589           CGF.getContext().getCanonicalType(promotedType);
2590       canPerformLossyDemotionCheck &=
2591           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2592               type, promotedType);
2593       assert((!canPerformLossyDemotionCheck ||
2594               type->isSignedIntegerOrEnumerationType() ||
2595               promotedType->isSignedIntegerOrEnumerationType() ||
2596               ConvertType(type)->getScalarSizeInBits() ==
2597                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2598              "The following check expects that if we do promotion to different "
2599              "underlying canonical type, at least one of the types (either "
2600              "base or promoted) will be signed, or the bitwidths will match.");
2601     }
2602     if (CGF.SanOpts.hasOneOf(
2603             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2604         canPerformLossyDemotionCheck) {
2605       // While `x += 1` (for `x` with width less than int) is modeled as
2606       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2607       // ease; inc/dec with width less than int can't overflow because of
2608       // promotion rules, so we omit promotion+demotion, which means that we can
2609       // not catch lossy "demotion". Because we still want to catch these cases
2610       // when the sanitizer is enabled, we perform the promotion, then perform
2611       // the increment/decrement in the wider type, and finally
2612       // perform the demotion. This will catch lossy demotions.
2613 
2614       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2615       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2616       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2617       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2618       // emitted.
2619       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2620                                    ScalarConversionOpts(CGF.SanOpts));
2621 
2622       // Note that signed integer inc/dec with width less than int can't
2623       // overflow because of promotion rules; we're just eliding a few steps
2624       // here.
2625     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2626       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2627     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2628                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2629       value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2630           E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2631     } else {
2632       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2633       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2634     }
2635 
2636   // Next most common: pointer increment.
2637   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2638     QualType type = ptr->getPointeeType();
2639 
2640     // VLA types don't have constant size.
2641     if (const VariableArrayType *vla
2642           = CGF.getContext().getAsVariableArrayType(type)) {
2643       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2644       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2645       llvm::Type *elemTy = value->getType()->getPointerElementType();
2646       if (CGF.getLangOpts().isSignedOverflowDefined())
2647         value = Builder.CreateGEP(elemTy, value, numElts, "vla.inc");
2648       else
2649         value = CGF.EmitCheckedInBoundsGEP(
2650             elemTy, value, numElts, /*SignedIndices=*/false, isSubtraction,
2651             E->getExprLoc(), "vla.inc");
2652 
2653     // Arithmetic on function pointers (!) is just +-1.
2654     } else if (type->isFunctionType()) {
2655       llvm::Value *amt = Builder.getInt32(amount);
2656 
2657       value = CGF.EmitCastToVoidPtr(value);
2658       if (CGF.getLangOpts().isSignedOverflowDefined())
2659         value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr");
2660       else
2661         value = CGF.EmitCheckedInBoundsGEP(CGF.Int8Ty, value, amt,
2662                                            /*SignedIndices=*/false,
2663                                            isSubtraction, E->getExprLoc(),
2664                                            "incdec.funcptr");
2665       value = Builder.CreateBitCast(value, input->getType());
2666 
2667     // For everything else, we can just do a simple increment.
2668     } else {
2669       llvm::Value *amt = Builder.getInt32(amount);
2670       llvm::Type *elemTy = CGF.ConvertTypeForMem(type);
2671       if (CGF.getLangOpts().isSignedOverflowDefined())
2672         value = Builder.CreateGEP(elemTy, value, amt, "incdec.ptr");
2673       else
2674         value = CGF.EmitCheckedInBoundsGEP(
2675             elemTy, value, amt, /*SignedIndices=*/false, isSubtraction,
2676             E->getExprLoc(), "incdec.ptr");
2677     }
2678 
2679   // Vector increment/decrement.
2680   } else if (type->isVectorType()) {
2681     if (type->hasIntegerRepresentation()) {
2682       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2683 
2684       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2685     } else {
2686       value = Builder.CreateFAdd(
2687                   value,
2688                   llvm::ConstantFP::get(value->getType(), amount),
2689                   isInc ? "inc" : "dec");
2690     }
2691 
2692   // Floating point.
2693   } else if (type->isRealFloatingType()) {
2694     // Add the inc/dec to the real part.
2695     llvm::Value *amt;
2696     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
2697 
2698     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2699       // Another special case: half FP increment should be done via float
2700       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2701         value = Builder.CreateCall(
2702             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2703                                  CGF.CGM.FloatTy),
2704             input, "incdec.conv");
2705       } else {
2706         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2707       }
2708     }
2709 
2710     if (value->getType()->isFloatTy())
2711       amt = llvm::ConstantFP::get(VMContext,
2712                                   llvm::APFloat(static_cast<float>(amount)));
2713     else if (value->getType()->isDoubleTy())
2714       amt = llvm::ConstantFP::get(VMContext,
2715                                   llvm::APFloat(static_cast<double>(amount)));
2716     else {
2717       // Remaining types are Half, LongDouble, __ibm128 or __float128. Convert
2718       // from float.
2719       llvm::APFloat F(static_cast<float>(amount));
2720       bool ignored;
2721       const llvm::fltSemantics *FS;
2722       // Don't use getFloatTypeSemantics because Half isn't
2723       // necessarily represented using the "half" LLVM type.
2724       if (value->getType()->isFP128Ty())
2725         FS = &CGF.getTarget().getFloat128Format();
2726       else if (value->getType()->isHalfTy())
2727         FS = &CGF.getTarget().getHalfFormat();
2728       else if (value->getType()->isPPC_FP128Ty())
2729         FS = &CGF.getTarget().getIbm128Format();
2730       else
2731         FS = &CGF.getTarget().getLongDoubleFormat();
2732       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2733       amt = llvm::ConstantFP::get(VMContext, F);
2734     }
2735     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2736 
2737     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2738       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2739         value = Builder.CreateCall(
2740             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2741                                  CGF.CGM.FloatTy),
2742             value, "incdec.conv");
2743       } else {
2744         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2745       }
2746     }
2747 
2748   // Fixed-point types.
2749   } else if (type->isFixedPointType()) {
2750     // Fixed-point types are tricky. In some cases, it isn't possible to
2751     // represent a 1 or a -1 in the type at all. Piggyback off of
2752     // EmitFixedPointBinOp to avoid having to reimplement saturation.
2753     BinOpInfo Info;
2754     Info.E = E;
2755     Info.Ty = E->getType();
2756     Info.Opcode = isInc ? BO_Add : BO_Sub;
2757     Info.LHS = value;
2758     Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2759     // If the type is signed, it's better to represent this as +(-1) or -(-1),
2760     // since -1 is guaranteed to be representable.
2761     if (type->isSignedFixedPointType()) {
2762       Info.Opcode = isInc ? BO_Sub : BO_Add;
2763       Info.RHS = Builder.CreateNeg(Info.RHS);
2764     }
2765     // Now, convert from our invented integer literal to the type of the unary
2766     // op. This will upscale and saturate if necessary. This value can become
2767     // undef in some cases.
2768     llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
2769     auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
2770     Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
2771     value = EmitFixedPointBinOp(Info);
2772 
2773   // Objective-C pointer types.
2774   } else {
2775     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2776     value = CGF.EmitCastToVoidPtr(value);
2777 
2778     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2779     if (!isInc) size = -size;
2780     llvm::Value *sizeValue =
2781       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2782 
2783     if (CGF.getLangOpts().isSignedOverflowDefined())
2784       value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr");
2785     else
2786       value = CGF.EmitCheckedInBoundsGEP(
2787           CGF.Int8Ty, value, sizeValue, /*SignedIndices=*/false, isSubtraction,
2788           E->getExprLoc(), "incdec.objptr");
2789     value = Builder.CreateBitCast(value, input->getType());
2790   }
2791 
2792   if (atomicPHI) {
2793     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2794     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2795     auto Pair = CGF.EmitAtomicCompareExchange(
2796         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2797     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2798     llvm::Value *success = Pair.second;
2799     atomicPHI->addIncoming(old, curBlock);
2800     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2801     Builder.SetInsertPoint(contBB);
2802     return isPre ? value : input;
2803   }
2804 
2805   // Store the updated result through the lvalue.
2806   if (LV.isBitField())
2807     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2808   else
2809     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2810 
2811   // If this is a postinc, return the value read from memory, otherwise use the
2812   // updated value.
2813   return isPre ? value : input;
2814 }
2815 
2816 
2817 
2818 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2819   TestAndClearIgnoreResultAssign();
2820   Value *Op = Visit(E->getSubExpr());
2821 
2822   // Generate a unary FNeg for FP ops.
2823   if (Op->getType()->isFPOrFPVectorTy())
2824     return Builder.CreateFNeg(Op, "fneg");
2825 
2826   // Emit unary minus with EmitSub so we handle overflow cases etc.
2827   BinOpInfo BinOp;
2828   BinOp.RHS = Op;
2829   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2830   BinOp.Ty = E->getType();
2831   BinOp.Opcode = BO_Sub;
2832   BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2833   BinOp.E = E;
2834   return EmitSub(BinOp);
2835 }
2836 
2837 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2838   TestAndClearIgnoreResultAssign();
2839   Value *Op = Visit(E->getSubExpr());
2840   return Builder.CreateNot(Op, "neg");
2841 }
2842 
2843 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2844   // Perform vector logical not on comparison with zero vector.
2845   if (E->getType()->isVectorType() &&
2846       E->getType()->castAs<VectorType>()->getVectorKind() ==
2847           VectorType::GenericVector) {
2848     Value *Oper = Visit(E->getSubExpr());
2849     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2850     Value *Result;
2851     if (Oper->getType()->isFPOrFPVectorTy()) {
2852       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
2853           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2854       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2855     } else
2856       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2857     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2858   }
2859 
2860   // Compare operand to zero.
2861   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2862 
2863   // Invert value.
2864   // TODO: Could dynamically modify easy computations here.  For example, if
2865   // the operand is an icmp ne, turn into icmp eq.
2866   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2867 
2868   // ZExt result to the expr type.
2869   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2870 }
2871 
2872 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2873   // Try folding the offsetof to a constant.
2874   Expr::EvalResult EVResult;
2875   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2876     llvm::APSInt Value = EVResult.Val.getInt();
2877     return Builder.getInt(Value);
2878   }
2879 
2880   // Loop over the components of the offsetof to compute the value.
2881   unsigned n = E->getNumComponents();
2882   llvm::Type* ResultType = ConvertType(E->getType());
2883   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2884   QualType CurrentType = E->getTypeSourceInfo()->getType();
2885   for (unsigned i = 0; i != n; ++i) {
2886     OffsetOfNode ON = E->getComponent(i);
2887     llvm::Value *Offset = nullptr;
2888     switch (ON.getKind()) {
2889     case OffsetOfNode::Array: {
2890       // Compute the index
2891       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2892       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2893       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2894       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2895 
2896       // Save the element type
2897       CurrentType =
2898           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2899 
2900       // Compute the element size
2901       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2902           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2903 
2904       // Multiply out to compute the result
2905       Offset = Builder.CreateMul(Idx, ElemSize);
2906       break;
2907     }
2908 
2909     case OffsetOfNode::Field: {
2910       FieldDecl *MemberDecl = ON.getField();
2911       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2912       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2913 
2914       // Compute the index of the field in its parent.
2915       unsigned i = 0;
2916       // FIXME: It would be nice if we didn't have to loop here!
2917       for (RecordDecl::field_iterator Field = RD->field_begin(),
2918                                       FieldEnd = RD->field_end();
2919            Field != FieldEnd; ++Field, ++i) {
2920         if (*Field == MemberDecl)
2921           break;
2922       }
2923       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2924 
2925       // Compute the offset to the field
2926       int64_t OffsetInt = RL.getFieldOffset(i) /
2927                           CGF.getContext().getCharWidth();
2928       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2929 
2930       // Save the element type.
2931       CurrentType = MemberDecl->getType();
2932       break;
2933     }
2934 
2935     case OffsetOfNode::Identifier:
2936       llvm_unreachable("dependent __builtin_offsetof");
2937 
2938     case OffsetOfNode::Base: {
2939       if (ON.getBase()->isVirtual()) {
2940         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2941         continue;
2942       }
2943 
2944       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2945       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2946 
2947       // Save the element type.
2948       CurrentType = ON.getBase()->getType();
2949 
2950       // Compute the offset to the base.
2951       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2952       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2953       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2954       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2955       break;
2956     }
2957     }
2958     Result = Builder.CreateAdd(Result, Offset);
2959   }
2960   return Result;
2961 }
2962 
2963 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2964 /// argument of the sizeof expression as an integer.
2965 Value *
2966 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2967                               const UnaryExprOrTypeTraitExpr *E) {
2968   QualType TypeToSize = E->getTypeOfArgument();
2969   if (E->getKind() == UETT_SizeOf) {
2970     if (const VariableArrayType *VAT =
2971           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2972       if (E->isArgumentType()) {
2973         // sizeof(type) - make sure to emit the VLA size.
2974         CGF.EmitVariablyModifiedType(TypeToSize);
2975       } else {
2976         // C99 6.5.3.4p2: If the argument is an expression of type
2977         // VLA, it is evaluated.
2978         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2979       }
2980 
2981       auto VlaSize = CGF.getVLASize(VAT);
2982       llvm::Value *size = VlaSize.NumElts;
2983 
2984       // Scale the number of non-VLA elements by the non-VLA element size.
2985       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2986       if (!eltSize.isOne())
2987         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2988 
2989       return size;
2990     }
2991   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2992     auto Alignment =
2993         CGF.getContext()
2994             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2995                 E->getTypeOfArgument()->getPointeeType()))
2996             .getQuantity();
2997     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2998   }
2999 
3000   // If this isn't sizeof(vla), the result must be constant; use the constant
3001   // folding logic so we don't have to duplicate it here.
3002   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
3003 }
3004 
3005 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
3006   Expr *Op = E->getSubExpr();
3007   if (Op->getType()->isAnyComplexType()) {
3008     // If it's an l-value, load through the appropriate subobject l-value.
3009     // Note that we have to ask E because Op might be an l-value that
3010     // this won't work for, e.g. an Obj-C property.
3011     if (E->isGLValue())
3012       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
3013                                   E->getExprLoc()).getScalarVal();
3014 
3015     // Otherwise, calculate and project.
3016     return CGF.EmitComplexExpr(Op, false, true).first;
3017   }
3018 
3019   return Visit(Op);
3020 }
3021 
3022 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
3023   Expr *Op = E->getSubExpr();
3024   if (Op->getType()->isAnyComplexType()) {
3025     // If it's an l-value, load through the appropriate subobject l-value.
3026     // Note that we have to ask E because Op might be an l-value that
3027     // this won't work for, e.g. an Obj-C property.
3028     if (Op->isGLValue())
3029       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
3030                                   E->getExprLoc()).getScalarVal();
3031 
3032     // Otherwise, calculate and project.
3033     return CGF.EmitComplexExpr(Op, true, false).second;
3034   }
3035 
3036   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
3037   // effects are evaluated, but not the actual value.
3038   if (Op->isGLValue())
3039     CGF.EmitLValue(Op);
3040   else
3041     CGF.EmitScalarExpr(Op, true);
3042   return llvm::Constant::getNullValue(ConvertType(E->getType()));
3043 }
3044 
3045 //===----------------------------------------------------------------------===//
3046 //                           Binary Operators
3047 //===----------------------------------------------------------------------===//
3048 
3049 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
3050   TestAndClearIgnoreResultAssign();
3051   BinOpInfo Result;
3052   Result.LHS = Visit(E->getLHS());
3053   Result.RHS = Visit(E->getRHS());
3054   Result.Ty  = E->getType();
3055   Result.Opcode = E->getOpcode();
3056   Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3057   Result.E = E;
3058   return Result;
3059 }
3060 
3061 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
3062                                               const CompoundAssignOperator *E,
3063                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
3064                                                    Value *&Result) {
3065   QualType LHSTy = E->getLHS()->getType();
3066   BinOpInfo OpInfo;
3067 
3068   if (E->getComputationResultType()->isAnyComplexType())
3069     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
3070 
3071   // Emit the RHS first.  __block variables need to have the rhs evaluated
3072   // first, plus this should improve codegen a little.
3073   OpInfo.RHS = Visit(E->getRHS());
3074   OpInfo.Ty = E->getComputationResultType();
3075   OpInfo.Opcode = E->getOpcode();
3076   OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3077   OpInfo.E = E;
3078   // Load/convert the LHS.
3079   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3080 
3081   llvm::PHINode *atomicPHI = nullptr;
3082   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
3083     QualType type = atomicTy->getValueType();
3084     if (!type->isBooleanType() && type->isIntegerType() &&
3085         !(type->isUnsignedIntegerType() &&
3086           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
3087         CGF.getLangOpts().getSignedOverflowBehavior() !=
3088             LangOptions::SOB_Trapping) {
3089       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
3090       llvm::Instruction::BinaryOps Op;
3091       switch (OpInfo.Opcode) {
3092         // We don't have atomicrmw operands for *, %, /, <<, >>
3093         case BO_MulAssign: case BO_DivAssign:
3094         case BO_RemAssign:
3095         case BO_ShlAssign:
3096         case BO_ShrAssign:
3097           break;
3098         case BO_AddAssign:
3099           AtomicOp = llvm::AtomicRMWInst::Add;
3100           Op = llvm::Instruction::Add;
3101           break;
3102         case BO_SubAssign:
3103           AtomicOp = llvm::AtomicRMWInst::Sub;
3104           Op = llvm::Instruction::Sub;
3105           break;
3106         case BO_AndAssign:
3107           AtomicOp = llvm::AtomicRMWInst::And;
3108           Op = llvm::Instruction::And;
3109           break;
3110         case BO_XorAssign:
3111           AtomicOp = llvm::AtomicRMWInst::Xor;
3112           Op = llvm::Instruction::Xor;
3113           break;
3114         case BO_OrAssign:
3115           AtomicOp = llvm::AtomicRMWInst::Or;
3116           Op = llvm::Instruction::Or;
3117           break;
3118         default:
3119           llvm_unreachable("Invalid compound assignment type");
3120       }
3121       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3122         llvm::Value *Amt = CGF.EmitToMemory(
3123             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3124                                  E->getExprLoc()),
3125             LHSTy);
3126         Value *OldVal = Builder.CreateAtomicRMW(
3127             AtomicOp, LHSLV.getPointer(CGF), Amt,
3128             llvm::AtomicOrdering::SequentiallyConsistent);
3129 
3130         // Since operation is atomic, the result type is guaranteed to be the
3131         // same as the input in LLVM terms.
3132         Result = Builder.CreateBinOp(Op, OldVal, Amt);
3133         return LHSLV;
3134       }
3135     }
3136     // FIXME: For floating point types, we should be saving and restoring the
3137     // floating point environment in the loop.
3138     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3139     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3140     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3141     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3142     Builder.CreateBr(opBB);
3143     Builder.SetInsertPoint(opBB);
3144     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3145     atomicPHI->addIncoming(OpInfo.LHS, startBB);
3146     OpInfo.LHS = atomicPHI;
3147   }
3148   else
3149     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3150 
3151   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3152   SourceLocation Loc = E->getExprLoc();
3153   OpInfo.LHS =
3154       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
3155 
3156   // Expand the binary operator.
3157   Result = (this->*Func)(OpInfo);
3158 
3159   // Convert the result back to the LHS type,
3160   // potentially with Implicit Conversion sanitizer check.
3161   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
3162                                 Loc, ScalarConversionOpts(CGF.SanOpts));
3163 
3164   if (atomicPHI) {
3165     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3166     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3167     auto Pair = CGF.EmitAtomicCompareExchange(
3168         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3169     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3170     llvm::Value *success = Pair.second;
3171     atomicPHI->addIncoming(old, curBlock);
3172     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3173     Builder.SetInsertPoint(contBB);
3174     return LHSLV;
3175   }
3176 
3177   // Store the result value into the LHS lvalue. Bit-fields are handled
3178   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3179   // 'An assignment expression has the value of the left operand after the
3180   // assignment...'.
3181   if (LHSLV.isBitField())
3182     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3183   else
3184     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3185 
3186   if (CGF.getLangOpts().OpenMP)
3187     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3188                                                                   E->getLHS());
3189   return LHSLV;
3190 }
3191 
3192 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3193                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3194   bool Ignore = TestAndClearIgnoreResultAssign();
3195   Value *RHS = nullptr;
3196   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3197 
3198   // If the result is clearly ignored, return now.
3199   if (Ignore)
3200     return nullptr;
3201 
3202   // The result of an assignment in C is the assigned r-value.
3203   if (!CGF.getLangOpts().CPlusPlus)
3204     return RHS;
3205 
3206   // If the lvalue is non-volatile, return the computed value of the assignment.
3207   if (!LHS.isVolatileQualified())
3208     return RHS;
3209 
3210   // Otherwise, reload the value.
3211   return EmitLoadOfLValue(LHS, E->getExprLoc());
3212 }
3213 
3214 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3215     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3216   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3217 
3218   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3219     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3220                                     SanitizerKind::IntegerDivideByZero));
3221   }
3222 
3223   const auto *BO = cast<BinaryOperator>(Ops.E);
3224   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3225       Ops.Ty->hasSignedIntegerRepresentation() &&
3226       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3227       Ops.mayHaveIntegerOverflow()) {
3228     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3229 
3230     llvm::Value *IntMin =
3231       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3232     llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
3233 
3234     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3235     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3236     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3237     Checks.push_back(
3238         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3239   }
3240 
3241   if (Checks.size() > 0)
3242     EmitBinOpCheck(Checks, Ops);
3243 }
3244 
3245 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3246   {
3247     CodeGenFunction::SanitizerScope SanScope(&CGF);
3248     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3249          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3250         Ops.Ty->isIntegerType() &&
3251         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3252       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3253       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3254     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3255                Ops.Ty->isRealFloatingType() &&
3256                Ops.mayHaveFloatDivisionByZero()) {
3257       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3258       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3259       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3260                      Ops);
3261     }
3262   }
3263 
3264   if (Ops.Ty->isConstantMatrixType()) {
3265     llvm::MatrixBuilder MB(Builder);
3266     // We need to check the types of the operands of the operator to get the
3267     // correct matrix dimensions.
3268     auto *BO = cast<BinaryOperator>(Ops.E);
3269     (void)BO;
3270     assert(
3271         isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
3272         "first operand must be a matrix");
3273     assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
3274            "second operand must be an arithmetic type");
3275     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3276     return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
3277                               Ops.Ty->hasUnsignedIntegerRepresentation());
3278   }
3279 
3280   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3281     llvm::Value *Val;
3282     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3283     Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3284     if ((CGF.getLangOpts().OpenCL &&
3285          !CGF.CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
3286         (CGF.getLangOpts().HIP && CGF.getLangOpts().CUDAIsDevice &&
3287          !CGF.CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
3288       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3289       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3290       // build option allows an application to specify that single precision
3291       // floating-point divide (x/y and 1/x) and sqrt used in the program
3292       // source are correctly rounded.
3293       llvm::Type *ValTy = Val->getType();
3294       if (ValTy->isFloatTy() ||
3295           (isa<llvm::VectorType>(ValTy) &&
3296            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3297         CGF.SetFPAccuracy(Val, 2.5);
3298     }
3299     return Val;
3300   }
3301   else if (Ops.isFixedPointOp())
3302     return EmitFixedPointBinOp(Ops);
3303   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3304     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3305   else
3306     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3307 }
3308 
3309 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3310   // Rem in C can't be a floating point type: C99 6.5.5p2.
3311   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3312        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3313       Ops.Ty->isIntegerType() &&
3314       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3315     CodeGenFunction::SanitizerScope SanScope(&CGF);
3316     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3317     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3318   }
3319 
3320   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3321     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3322   else
3323     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3324 }
3325 
3326 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3327   unsigned IID;
3328   unsigned OpID = 0;
3329   SanitizerHandler OverflowKind;
3330 
3331   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3332   switch (Ops.Opcode) {
3333   case BO_Add:
3334   case BO_AddAssign:
3335     OpID = 1;
3336     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3337                      llvm::Intrinsic::uadd_with_overflow;
3338     OverflowKind = SanitizerHandler::AddOverflow;
3339     break;
3340   case BO_Sub:
3341   case BO_SubAssign:
3342     OpID = 2;
3343     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3344                      llvm::Intrinsic::usub_with_overflow;
3345     OverflowKind = SanitizerHandler::SubOverflow;
3346     break;
3347   case BO_Mul:
3348   case BO_MulAssign:
3349     OpID = 3;
3350     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3351                      llvm::Intrinsic::umul_with_overflow;
3352     OverflowKind = SanitizerHandler::MulOverflow;
3353     break;
3354   default:
3355     llvm_unreachable("Unsupported operation for overflow detection");
3356   }
3357   OpID <<= 1;
3358   if (isSigned)
3359     OpID |= 1;
3360 
3361   CodeGenFunction::SanitizerScope SanScope(&CGF);
3362   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3363 
3364   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3365 
3366   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3367   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3368   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3369 
3370   // Handle overflow with llvm.trap if no custom handler has been specified.
3371   const std::string *handlerName =
3372     &CGF.getLangOpts().OverflowHandler;
3373   if (handlerName->empty()) {
3374     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3375     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3376     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3377       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3378       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3379                               : SanitizerKind::UnsignedIntegerOverflow;
3380       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3381     } else
3382       CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3383     return result;
3384   }
3385 
3386   // Branch in case of overflow.
3387   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3388   llvm::BasicBlock *continueBB =
3389       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3390   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3391 
3392   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3393 
3394   // If an overflow handler is set, then we want to call it and then use its
3395   // result, if it returns.
3396   Builder.SetInsertPoint(overflowBB);
3397 
3398   // Get the overflow handler.
3399   llvm::Type *Int8Ty = CGF.Int8Ty;
3400   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3401   llvm::FunctionType *handlerTy =
3402       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3403   llvm::FunctionCallee handler =
3404       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3405 
3406   // Sign extend the args to 64-bit, so that we can use the same handler for
3407   // all types of overflow.
3408   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3409   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3410 
3411   // Call the handler with the two arguments, the operation, and the size of
3412   // the result.
3413   llvm::Value *handlerArgs[] = {
3414     lhs,
3415     rhs,
3416     Builder.getInt8(OpID),
3417     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3418   };
3419   llvm::Value *handlerResult =
3420     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3421 
3422   // Truncate the result back to the desired size.
3423   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3424   Builder.CreateBr(continueBB);
3425 
3426   Builder.SetInsertPoint(continueBB);
3427   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3428   phi->addIncoming(result, initialBB);
3429   phi->addIncoming(handlerResult, overflowBB);
3430 
3431   return phi;
3432 }
3433 
3434 /// Emit pointer + index arithmetic.
3435 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3436                                     const BinOpInfo &op,
3437                                     bool isSubtraction) {
3438   // Must have binary (not unary) expr here.  Unary pointer
3439   // increment/decrement doesn't use this path.
3440   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3441 
3442   Value *pointer = op.LHS;
3443   Expr *pointerOperand = expr->getLHS();
3444   Value *index = op.RHS;
3445   Expr *indexOperand = expr->getRHS();
3446 
3447   // In a subtraction, the LHS is always the pointer.
3448   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3449     std::swap(pointer, index);
3450     std::swap(pointerOperand, indexOperand);
3451   }
3452 
3453   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3454 
3455   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3456   auto &DL = CGF.CGM.getDataLayout();
3457   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3458 
3459   // Some versions of glibc and gcc use idioms (particularly in their malloc
3460   // routines) that add a pointer-sized integer (known to be a pointer value)
3461   // to a null pointer in order to cast the value back to an integer or as
3462   // part of a pointer alignment algorithm.  This is undefined behavior, but
3463   // we'd like to be able to compile programs that use it.
3464   //
3465   // Normally, we'd generate a GEP with a null-pointer base here in response
3466   // to that code, but it's also UB to dereference a pointer created that
3467   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3468   // generate a direct cast of the integer value to a pointer.
3469   //
3470   // The idiom (p = nullptr + N) is not met if any of the following are true:
3471   //
3472   //   The operation is subtraction.
3473   //   The index is not pointer-sized.
3474   //   The pointer type is not byte-sized.
3475   //
3476   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3477                                                        op.Opcode,
3478                                                        expr->getLHS(),
3479                                                        expr->getRHS()))
3480     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3481 
3482   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3483     // Zero-extend or sign-extend the pointer value according to
3484     // whether the index is signed or not.
3485     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3486                                       "idx.ext");
3487   }
3488 
3489   // If this is subtraction, negate the index.
3490   if (isSubtraction)
3491     index = CGF.Builder.CreateNeg(index, "idx.neg");
3492 
3493   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3494     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3495                         /*Accessed*/ false);
3496 
3497   const PointerType *pointerType
3498     = pointerOperand->getType()->getAs<PointerType>();
3499   if (!pointerType) {
3500     QualType objectType = pointerOperand->getType()
3501                                         ->castAs<ObjCObjectPointerType>()
3502                                         ->getPointeeType();
3503     llvm::Value *objectSize
3504       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3505 
3506     index = CGF.Builder.CreateMul(index, objectSize);
3507 
3508     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3509     result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
3510     return CGF.Builder.CreateBitCast(result, pointer->getType());
3511   }
3512 
3513   QualType elementType = pointerType->getPointeeType();
3514   if (const VariableArrayType *vla
3515         = CGF.getContext().getAsVariableArrayType(elementType)) {
3516     // The element count here is the total number of non-VLA elements.
3517     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3518 
3519     // Effectively, the multiply by the VLA size is part of the GEP.
3520     // GEP indexes are signed, and scaling an index isn't permitted to
3521     // signed-overflow, so we use the same semantics for our explicit
3522     // multiply.  We suppress this if overflow is not undefined behavior.
3523     llvm::Type *elemTy = pointer->getType()->getPointerElementType();
3524     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3525       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3526       pointer = CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
3527     } else {
3528       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3529       pointer = CGF.EmitCheckedInBoundsGEP(
3530           elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
3531           "add.ptr");
3532     }
3533     return pointer;
3534   }
3535 
3536   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3537   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3538   // future proof.
3539   if (elementType->isVoidType() || elementType->isFunctionType()) {
3540     Value *result = CGF.EmitCastToVoidPtr(pointer);
3541     result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
3542     return CGF.Builder.CreateBitCast(result, pointer->getType());
3543   }
3544 
3545   llvm::Type *elemTy = CGF.ConvertTypeForMem(elementType);
3546   if (CGF.getLangOpts().isSignedOverflowDefined())
3547     return CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
3548 
3549   return CGF.EmitCheckedInBoundsGEP(
3550       elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
3551       "add.ptr");
3552 }
3553 
3554 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3555 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3556 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3557 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3558 // efficient operations.
3559 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3560                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3561                            bool negMul, bool negAdd) {
3562   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3563 
3564   Value *MulOp0 = MulOp->getOperand(0);
3565   Value *MulOp1 = MulOp->getOperand(1);
3566   if (negMul)
3567     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3568   if (negAdd)
3569     Addend = Builder.CreateFNeg(Addend, "neg");
3570 
3571   Value *FMulAdd = nullptr;
3572   if (Builder.getIsFPConstrained()) {
3573     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3574            "Only constrained operation should be created when Builder is in FP "
3575            "constrained mode");
3576     FMulAdd = Builder.CreateConstrainedFPCall(
3577         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3578                              Addend->getType()),
3579         {MulOp0, MulOp1, Addend});
3580   } else {
3581     FMulAdd = Builder.CreateCall(
3582         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3583         {MulOp0, MulOp1, Addend});
3584   }
3585   MulOp->eraseFromParent();
3586 
3587   return FMulAdd;
3588 }
3589 
3590 // Check whether it would be legal to emit an fmuladd intrinsic call to
3591 // represent op and if so, build the fmuladd.
3592 //
3593 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3594 // Does NOT check the type of the operation - it's assumed that this function
3595 // will be called from contexts where it's known that the type is contractable.
3596 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3597                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3598                          bool isSub=false) {
3599 
3600   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3601           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3602          "Only fadd/fsub can be the root of an fmuladd.");
3603 
3604   // Check whether this op is marked as fusable.
3605   if (!op.FPFeatures.allowFPContractWithinStatement())
3606     return nullptr;
3607 
3608   // We have a potentially fusable op. Look for a mul on one of the operands.
3609   // Also, make sure that the mul result isn't used directly. In that case,
3610   // there's no point creating a muladd operation.
3611   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3612     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3613         LHSBinOp->use_empty())
3614       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3615   }
3616   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3617     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3618         RHSBinOp->use_empty())
3619       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3620   }
3621 
3622   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3623     if (LHSBinOp->getIntrinsicID() ==
3624             llvm::Intrinsic::experimental_constrained_fmul &&
3625         LHSBinOp->use_empty())
3626       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3627   }
3628   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3629     if (RHSBinOp->getIntrinsicID() ==
3630             llvm::Intrinsic::experimental_constrained_fmul &&
3631         RHSBinOp->use_empty())
3632       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3633   }
3634 
3635   return nullptr;
3636 }
3637 
3638 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3639   if (op.LHS->getType()->isPointerTy() ||
3640       op.RHS->getType()->isPointerTy())
3641     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3642 
3643   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3644     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3645     case LangOptions::SOB_Defined:
3646       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3647     case LangOptions::SOB_Undefined:
3648       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3649         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3650       LLVM_FALLTHROUGH;
3651     case LangOptions::SOB_Trapping:
3652       if (CanElideOverflowCheck(CGF.getContext(), op))
3653         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3654       return EmitOverflowCheckedBinOp(op);
3655     }
3656   }
3657 
3658   if (op.Ty->isConstantMatrixType()) {
3659     llvm::MatrixBuilder MB(Builder);
3660     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3661     return MB.CreateAdd(op.LHS, op.RHS);
3662   }
3663 
3664   if (op.Ty->isUnsignedIntegerType() &&
3665       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3666       !CanElideOverflowCheck(CGF.getContext(), op))
3667     return EmitOverflowCheckedBinOp(op);
3668 
3669   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3670     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3671     // Try to form an fmuladd.
3672     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3673       return FMulAdd;
3674 
3675     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3676   }
3677 
3678   if (op.isFixedPointOp())
3679     return EmitFixedPointBinOp(op);
3680 
3681   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3682 }
3683 
3684 /// The resulting value must be calculated with exact precision, so the operands
3685 /// may not be the same type.
3686 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3687   using llvm::APSInt;
3688   using llvm::ConstantInt;
3689 
3690   // This is either a binary operation where at least one of the operands is
3691   // a fixed-point type, or a unary operation where the operand is a fixed-point
3692   // type. The result type of a binary operation is determined by
3693   // Sema::handleFixedPointConversions().
3694   QualType ResultTy = op.Ty;
3695   QualType LHSTy, RHSTy;
3696   if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3697     RHSTy = BinOp->getRHS()->getType();
3698     if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3699       // For compound assignment, the effective type of the LHS at this point
3700       // is the computation LHS type, not the actual LHS type, and the final
3701       // result type is not the type of the expression but rather the
3702       // computation result type.
3703       LHSTy = CAO->getComputationLHSType();
3704       ResultTy = CAO->getComputationResultType();
3705     } else
3706       LHSTy = BinOp->getLHS()->getType();
3707   } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3708     LHSTy = UnOp->getSubExpr()->getType();
3709     RHSTy = UnOp->getSubExpr()->getType();
3710   }
3711   ASTContext &Ctx = CGF.getContext();
3712   Value *LHS = op.LHS;
3713   Value *RHS = op.RHS;
3714 
3715   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3716   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3717   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3718   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3719 
3720   // Perform the actual operation.
3721   Value *Result;
3722   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3723   switch (op.Opcode) {
3724   case BO_AddAssign:
3725   case BO_Add:
3726     Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
3727     break;
3728   case BO_SubAssign:
3729   case BO_Sub:
3730     Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
3731     break;
3732   case BO_MulAssign:
3733   case BO_Mul:
3734     Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
3735     break;
3736   case BO_DivAssign:
3737   case BO_Div:
3738     Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
3739     break;
3740   case BO_ShlAssign:
3741   case BO_Shl:
3742     Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
3743     break;
3744   case BO_ShrAssign:
3745   case BO_Shr:
3746     Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
3747     break;
3748   case BO_LT:
3749     return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3750   case BO_GT:
3751     return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3752   case BO_LE:
3753     return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3754   case BO_GE:
3755     return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3756   case BO_EQ:
3757     // For equality operations, we assume any padding bits on unsigned types are
3758     // zero'd out. They could be overwritten through non-saturating operations
3759     // that cause overflow, but this leads to undefined behavior.
3760     return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
3761   case BO_NE:
3762     return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3763   case BO_Cmp:
3764   case BO_LAnd:
3765   case BO_LOr:
3766     llvm_unreachable("Found unimplemented fixed point binary operation");
3767   case BO_PtrMemD:
3768   case BO_PtrMemI:
3769   case BO_Rem:
3770   case BO_Xor:
3771   case BO_And:
3772   case BO_Or:
3773   case BO_Assign:
3774   case BO_RemAssign:
3775   case BO_AndAssign:
3776   case BO_XorAssign:
3777   case BO_OrAssign:
3778   case BO_Comma:
3779     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3780   }
3781 
3782   bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
3783                  BinaryOperator::isShiftAssignOp(op.Opcode);
3784   // Convert to the result type.
3785   return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
3786                                                       : CommonFixedSema,
3787                                       ResultFixedSema);
3788 }
3789 
3790 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3791   // The LHS is always a pointer if either side is.
3792   if (!op.LHS->getType()->isPointerTy()) {
3793     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3794       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3795       case LangOptions::SOB_Defined:
3796         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3797       case LangOptions::SOB_Undefined:
3798         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3799           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3800         LLVM_FALLTHROUGH;
3801       case LangOptions::SOB_Trapping:
3802         if (CanElideOverflowCheck(CGF.getContext(), op))
3803           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3804         return EmitOverflowCheckedBinOp(op);
3805       }
3806     }
3807 
3808     if (op.Ty->isConstantMatrixType()) {
3809       llvm::MatrixBuilder MB(Builder);
3810       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3811       return MB.CreateSub(op.LHS, op.RHS);
3812     }
3813 
3814     if (op.Ty->isUnsignedIntegerType() &&
3815         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3816         !CanElideOverflowCheck(CGF.getContext(), op))
3817       return EmitOverflowCheckedBinOp(op);
3818 
3819     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3820       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3821       // Try to form an fmuladd.
3822       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3823         return FMulAdd;
3824       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
3825     }
3826 
3827     if (op.isFixedPointOp())
3828       return EmitFixedPointBinOp(op);
3829 
3830     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3831   }
3832 
3833   // If the RHS is not a pointer, then we have normal pointer
3834   // arithmetic.
3835   if (!op.RHS->getType()->isPointerTy())
3836     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3837 
3838   // Otherwise, this is a pointer subtraction.
3839 
3840   // Do the raw subtraction part.
3841   llvm::Value *LHS
3842     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3843   llvm::Value *RHS
3844     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3845   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3846 
3847   // Okay, figure out the element size.
3848   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3849   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3850 
3851   llvm::Value *divisor = nullptr;
3852 
3853   // For a variable-length array, this is going to be non-constant.
3854   if (const VariableArrayType *vla
3855         = CGF.getContext().getAsVariableArrayType(elementType)) {
3856     auto VlaSize = CGF.getVLASize(vla);
3857     elementType = VlaSize.Type;
3858     divisor = VlaSize.NumElts;
3859 
3860     // Scale the number of non-VLA elements by the non-VLA element size.
3861     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3862     if (!eltSize.isOne())
3863       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3864 
3865   // For everything elese, we can just compute it, safe in the
3866   // assumption that Sema won't let anything through that we can't
3867   // safely compute the size of.
3868   } else {
3869     CharUnits elementSize;
3870     // Handle GCC extension for pointer arithmetic on void* and
3871     // function pointer types.
3872     if (elementType->isVoidType() || elementType->isFunctionType())
3873       elementSize = CharUnits::One();
3874     else
3875       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3876 
3877     // Don't even emit the divide for element size of 1.
3878     if (elementSize.isOne())
3879       return diffInChars;
3880 
3881     divisor = CGF.CGM.getSize(elementSize);
3882   }
3883 
3884   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3885   // pointer difference in C is only defined in the case where both operands
3886   // are pointing to elements of an array.
3887   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3888 }
3889 
3890 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3891   llvm::IntegerType *Ty;
3892   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3893     Ty = cast<llvm::IntegerType>(VT->getElementType());
3894   else
3895     Ty = cast<llvm::IntegerType>(LHS->getType());
3896   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3897 }
3898 
3899 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
3900                                               const Twine &Name) {
3901   llvm::IntegerType *Ty;
3902   if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3903     Ty = cast<llvm::IntegerType>(VT->getElementType());
3904   else
3905     Ty = cast<llvm::IntegerType>(LHS->getType());
3906 
3907   if (llvm::isPowerOf2_64(Ty->getBitWidth()))
3908         return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
3909 
3910   return Builder.CreateURem(
3911       RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
3912 }
3913 
3914 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3915   // TODO: This misses out on the sanitizer check below.
3916   if (Ops.isFixedPointOp())
3917     return EmitFixedPointBinOp(Ops);
3918 
3919   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3920   // RHS to the same size as the LHS.
3921   Value *RHS = Ops.RHS;
3922   if (Ops.LHS->getType() != RHS->getType())
3923     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3924 
3925   bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3926                             Ops.Ty->hasSignedIntegerRepresentation() &&
3927                             !CGF.getLangOpts().isSignedOverflowDefined() &&
3928                             !CGF.getLangOpts().CPlusPlus20;
3929   bool SanitizeUnsignedBase =
3930       CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
3931       Ops.Ty->hasUnsignedIntegerRepresentation();
3932   bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
3933   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3934   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3935   if (CGF.getLangOpts().OpenCL)
3936     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
3937   else if ((SanitizeBase || SanitizeExponent) &&
3938            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3939     CodeGenFunction::SanitizerScope SanScope(&CGF);
3940     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3941     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3942     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3943 
3944     if (SanitizeExponent) {
3945       Checks.push_back(
3946           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3947     }
3948 
3949     if (SanitizeBase) {
3950       // Check whether we are shifting any non-zero bits off the top of the
3951       // integer. We only emit this check if exponent is valid - otherwise
3952       // instructions below will have undefined behavior themselves.
3953       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3954       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3955       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3956       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3957       llvm::Value *PromotedWidthMinusOne =
3958           (RHS == Ops.RHS) ? WidthMinusOne
3959                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3960       CGF.EmitBlock(CheckShiftBase);
3961       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3962           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3963                                      /*NUW*/ true, /*NSW*/ true),
3964           "shl.check");
3965       if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
3966         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3967         // Under C++11's rules, shifting a 1 bit into the sign bit is
3968         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3969         // define signed left shifts, so we use the C99 and C++11 rules there).
3970         // Unsigned shifts can always shift into the top bit.
3971         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3972         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3973       }
3974       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3975       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3976       CGF.EmitBlock(Cont);
3977       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3978       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3979       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3980       Checks.push_back(std::make_pair(
3981           BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
3982                                         : SanitizerKind::UnsignedShiftBase));
3983     }
3984 
3985     assert(!Checks.empty());
3986     EmitBinOpCheck(Checks, Ops);
3987   }
3988 
3989   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3990 }
3991 
3992 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3993   // TODO: This misses out on the sanitizer check below.
3994   if (Ops.isFixedPointOp())
3995     return EmitFixedPointBinOp(Ops);
3996 
3997   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3998   // RHS to the same size as the LHS.
3999   Value *RHS = Ops.RHS;
4000   if (Ops.LHS->getType() != RHS->getType())
4001     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4002 
4003   // OpenCL 6.3j: shift values are effectively % word size of LHS.
4004   if (CGF.getLangOpts().OpenCL)
4005     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
4006   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
4007            isa<llvm::IntegerType>(Ops.LHS->getType())) {
4008     CodeGenFunction::SanitizerScope SanScope(&CGF);
4009     llvm::Value *Valid =
4010         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
4011     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
4012   }
4013 
4014   if (Ops.Ty->hasUnsignedIntegerRepresentation())
4015     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
4016   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
4017 }
4018 
4019 enum IntrinsicType { VCMPEQ, VCMPGT };
4020 // return corresponding comparison intrinsic for given vector type
4021 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
4022                                         BuiltinType::Kind ElemKind) {
4023   switch (ElemKind) {
4024   default: llvm_unreachable("unexpected element type");
4025   case BuiltinType::Char_U:
4026   case BuiltinType::UChar:
4027     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4028                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
4029   case BuiltinType::Char_S:
4030   case BuiltinType::SChar:
4031     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4032                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
4033   case BuiltinType::UShort:
4034     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4035                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
4036   case BuiltinType::Short:
4037     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4038                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
4039   case BuiltinType::UInt:
4040     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4041                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
4042   case BuiltinType::Int:
4043     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4044                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
4045   case BuiltinType::ULong:
4046   case BuiltinType::ULongLong:
4047     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4048                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
4049   case BuiltinType::Long:
4050   case BuiltinType::LongLong:
4051     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4052                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
4053   case BuiltinType::Float:
4054     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
4055                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
4056   case BuiltinType::Double:
4057     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
4058                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
4059   case BuiltinType::UInt128:
4060     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4061                           : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
4062   case BuiltinType::Int128:
4063     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4064                           : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
4065   }
4066 }
4067 
4068 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
4069                                       llvm::CmpInst::Predicate UICmpOpc,
4070                                       llvm::CmpInst::Predicate SICmpOpc,
4071                                       llvm::CmpInst::Predicate FCmpOpc,
4072                                       bool IsSignaling) {
4073   TestAndClearIgnoreResultAssign();
4074   Value *Result;
4075   QualType LHSTy = E->getLHS()->getType();
4076   QualType RHSTy = E->getRHS()->getType();
4077   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
4078     assert(E->getOpcode() == BO_EQ ||
4079            E->getOpcode() == BO_NE);
4080     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
4081     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
4082     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
4083                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
4084   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
4085     BinOpInfo BOInfo = EmitBinOps(E);
4086     Value *LHS = BOInfo.LHS;
4087     Value *RHS = BOInfo.RHS;
4088 
4089     // If AltiVec, the comparison results in a numeric type, so we use
4090     // intrinsics comparing vectors and giving 0 or 1 as a result
4091     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
4092       // constants for mapping CR6 register bits to predicate result
4093       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
4094 
4095       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
4096 
4097       // in several cases vector arguments order will be reversed
4098       Value *FirstVecArg = LHS,
4099             *SecondVecArg = RHS;
4100 
4101       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
4102       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
4103 
4104       switch(E->getOpcode()) {
4105       default: llvm_unreachable("is not a comparison operation");
4106       case BO_EQ:
4107         CR6 = CR6_LT;
4108         ID = GetIntrinsic(VCMPEQ, ElementKind);
4109         break;
4110       case BO_NE:
4111         CR6 = CR6_EQ;
4112         ID = GetIntrinsic(VCMPEQ, ElementKind);
4113         break;
4114       case BO_LT:
4115         CR6 = CR6_LT;
4116         ID = GetIntrinsic(VCMPGT, ElementKind);
4117         std::swap(FirstVecArg, SecondVecArg);
4118         break;
4119       case BO_GT:
4120         CR6 = CR6_LT;
4121         ID = GetIntrinsic(VCMPGT, ElementKind);
4122         break;
4123       case BO_LE:
4124         if (ElementKind == BuiltinType::Float) {
4125           CR6 = CR6_LT;
4126           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4127           std::swap(FirstVecArg, SecondVecArg);
4128         }
4129         else {
4130           CR6 = CR6_EQ;
4131           ID = GetIntrinsic(VCMPGT, ElementKind);
4132         }
4133         break;
4134       case BO_GE:
4135         if (ElementKind == BuiltinType::Float) {
4136           CR6 = CR6_LT;
4137           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4138         }
4139         else {
4140           CR6 = CR6_EQ;
4141           ID = GetIntrinsic(VCMPGT, ElementKind);
4142           std::swap(FirstVecArg, SecondVecArg);
4143         }
4144         break;
4145       }
4146 
4147       Value *CR6Param = Builder.getInt32(CR6);
4148       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4149       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4150 
4151       // The result type of intrinsic may not be same as E->getType().
4152       // If E->getType() is not BoolTy, EmitScalarConversion will do the
4153       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4154       // do nothing, if ResultTy is not i1 at the same time, it will cause
4155       // crash later.
4156       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4157       if (ResultTy->getBitWidth() > 1 &&
4158           E->getType() == CGF.getContext().BoolTy)
4159         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4160       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4161                                   E->getExprLoc());
4162     }
4163 
4164     if (BOInfo.isFixedPointOp()) {
4165       Result = EmitFixedPointBinOp(BOInfo);
4166     } else if (LHS->getType()->isFPOrFPVectorTy()) {
4167       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4168       if (!IsSignaling)
4169         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4170       else
4171         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4172     } else if (LHSTy->hasSignedIntegerRepresentation()) {
4173       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4174     } else {
4175       // Unsigned integers and pointers.
4176 
4177       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4178           !isa<llvm::ConstantPointerNull>(LHS) &&
4179           !isa<llvm::ConstantPointerNull>(RHS)) {
4180 
4181         // Dynamic information is required to be stripped for comparisons,
4182         // because it could leak the dynamic information.  Based on comparisons
4183         // of pointers to dynamic objects, the optimizer can replace one pointer
4184         // with another, which might be incorrect in presence of invariant
4185         // groups. Comparison with null is safe because null does not carry any
4186         // dynamic information.
4187         if (LHSTy.mayBeDynamicClass())
4188           LHS = Builder.CreateStripInvariantGroup(LHS);
4189         if (RHSTy.mayBeDynamicClass())
4190           RHS = Builder.CreateStripInvariantGroup(RHS);
4191       }
4192 
4193       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4194     }
4195 
4196     // If this is a vector comparison, sign extend the result to the appropriate
4197     // vector integer type and return it (don't convert to bool).
4198     if (LHSTy->isVectorType())
4199       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4200 
4201   } else {
4202     // Complex Comparison: can only be an equality comparison.
4203     CodeGenFunction::ComplexPairTy LHS, RHS;
4204     QualType CETy;
4205     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4206       LHS = CGF.EmitComplexExpr(E->getLHS());
4207       CETy = CTy->getElementType();
4208     } else {
4209       LHS.first = Visit(E->getLHS());
4210       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4211       CETy = LHSTy;
4212     }
4213     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4214       RHS = CGF.EmitComplexExpr(E->getRHS());
4215       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4216                                                      CTy->getElementType()) &&
4217              "The element types must always match.");
4218       (void)CTy;
4219     } else {
4220       RHS.first = Visit(E->getRHS());
4221       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4222       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4223              "The element types must always match.");
4224     }
4225 
4226     Value *ResultR, *ResultI;
4227     if (CETy->isRealFloatingType()) {
4228       // As complex comparisons can only be equality comparisons, they
4229       // are never signaling comparisons.
4230       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4231       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4232     } else {
4233       // Complex comparisons can only be equality comparisons.  As such, signed
4234       // and unsigned opcodes are the same.
4235       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4236       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4237     }
4238 
4239     if (E->getOpcode() == BO_EQ) {
4240       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4241     } else {
4242       assert(E->getOpcode() == BO_NE &&
4243              "Complex comparison other than == or != ?");
4244       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4245     }
4246   }
4247 
4248   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4249                               E->getExprLoc());
4250 }
4251 
4252 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4253   bool Ignore = TestAndClearIgnoreResultAssign();
4254 
4255   Value *RHS;
4256   LValue LHS;
4257 
4258   switch (E->getLHS()->getType().getObjCLifetime()) {
4259   case Qualifiers::OCL_Strong:
4260     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4261     break;
4262 
4263   case Qualifiers::OCL_Autoreleasing:
4264     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4265     break;
4266 
4267   case Qualifiers::OCL_ExplicitNone:
4268     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4269     break;
4270 
4271   case Qualifiers::OCL_Weak:
4272     RHS = Visit(E->getRHS());
4273     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4274     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4275     break;
4276 
4277   case Qualifiers::OCL_None:
4278     // __block variables need to have the rhs evaluated first, plus
4279     // this should improve codegen just a little.
4280     RHS = Visit(E->getRHS());
4281     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4282 
4283     // Store the value into the LHS.  Bit-fields are handled specially
4284     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4285     // 'An assignment expression has the value of the left operand after
4286     // the assignment...'.
4287     if (LHS.isBitField()) {
4288       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4289     } else {
4290       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4291       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4292     }
4293   }
4294 
4295   // If the result is clearly ignored, return now.
4296   if (Ignore)
4297     return nullptr;
4298 
4299   // The result of an assignment in C is the assigned r-value.
4300   if (!CGF.getLangOpts().CPlusPlus)
4301     return RHS;
4302 
4303   // If the lvalue is non-volatile, return the computed value of the assignment.
4304   if (!LHS.isVolatileQualified())
4305     return RHS;
4306 
4307   // Otherwise, reload the value.
4308   return EmitLoadOfLValue(LHS, E->getExprLoc());
4309 }
4310 
4311 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4312   // Perform vector logical and on comparisons with zero vectors.
4313   if (E->getType()->isVectorType()) {
4314     CGF.incrementProfileCounter(E);
4315 
4316     Value *LHS = Visit(E->getLHS());
4317     Value *RHS = Visit(E->getRHS());
4318     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4319     if (LHS->getType()->isFPOrFPVectorTy()) {
4320       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4321           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4322       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4323       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4324     } else {
4325       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4326       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4327     }
4328     Value *And = Builder.CreateAnd(LHS, RHS);
4329     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4330   }
4331 
4332   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4333   llvm::Type *ResTy = ConvertType(E->getType());
4334 
4335   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4336   // If we have 1 && X, just emit X without inserting the control flow.
4337   bool LHSCondVal;
4338   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4339     if (LHSCondVal) { // If we have 1 && X, just emit X.
4340       CGF.incrementProfileCounter(E);
4341 
4342       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4343 
4344       // If we're generating for profiling or coverage, generate a branch to a
4345       // block that increments the RHS counter needed to track branch condition
4346       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4347       // "FalseBlock" after the increment is done.
4348       if (InstrumentRegions &&
4349           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4350         llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
4351         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4352         Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
4353         CGF.EmitBlock(RHSBlockCnt);
4354         CGF.incrementProfileCounter(E->getRHS());
4355         CGF.EmitBranch(FBlock);
4356         CGF.EmitBlock(FBlock);
4357       }
4358 
4359       // ZExt result to int or bool.
4360       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4361     }
4362 
4363     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4364     if (!CGF.ContainsLabel(E->getRHS()))
4365       return llvm::Constant::getNullValue(ResTy);
4366   }
4367 
4368   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4369   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4370 
4371   CodeGenFunction::ConditionalEvaluation eval(CGF);
4372 
4373   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4374   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4375                            CGF.getProfileCount(E->getRHS()));
4376 
4377   // Any edges into the ContBlock are now from an (indeterminate number of)
4378   // edges from this first condition.  All of these values will be false.  Start
4379   // setting up the PHI node in the Cont Block for this.
4380   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4381                                             "", ContBlock);
4382   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4383        PI != PE; ++PI)
4384     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4385 
4386   eval.begin(CGF);
4387   CGF.EmitBlock(RHSBlock);
4388   CGF.incrementProfileCounter(E);
4389   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4390   eval.end(CGF);
4391 
4392   // Reaquire the RHS block, as there may be subblocks inserted.
4393   RHSBlock = Builder.GetInsertBlock();
4394 
4395   // If we're generating for profiling or coverage, generate a branch on the
4396   // RHS to a block that increments the RHS true counter needed to track branch
4397   // condition coverage.
4398   if (InstrumentRegions &&
4399       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4400     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4401     Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
4402     CGF.EmitBlock(RHSBlockCnt);
4403     CGF.incrementProfileCounter(E->getRHS());
4404     CGF.EmitBranch(ContBlock);
4405     PN->addIncoming(RHSCond, RHSBlockCnt);
4406   }
4407 
4408   // Emit an unconditional branch from this block to ContBlock.
4409   {
4410     // There is no need to emit line number for unconditional branch.
4411     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4412     CGF.EmitBlock(ContBlock);
4413   }
4414   // Insert an entry into the phi node for the edge with the value of RHSCond.
4415   PN->addIncoming(RHSCond, RHSBlock);
4416 
4417   // Artificial location to preserve the scope information
4418   {
4419     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4420     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4421   }
4422 
4423   // ZExt result to int.
4424   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4425 }
4426 
4427 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4428   // Perform vector logical or on comparisons with zero vectors.
4429   if (E->getType()->isVectorType()) {
4430     CGF.incrementProfileCounter(E);
4431 
4432     Value *LHS = Visit(E->getLHS());
4433     Value *RHS = Visit(E->getRHS());
4434     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4435     if (LHS->getType()->isFPOrFPVectorTy()) {
4436       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4437           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4438       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4439       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4440     } else {
4441       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4442       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4443     }
4444     Value *Or = Builder.CreateOr(LHS, RHS);
4445     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4446   }
4447 
4448   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4449   llvm::Type *ResTy = ConvertType(E->getType());
4450 
4451   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4452   // If we have 0 || X, just emit X without inserting the control flow.
4453   bool LHSCondVal;
4454   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4455     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4456       CGF.incrementProfileCounter(E);
4457 
4458       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4459 
4460       // If we're generating for profiling or coverage, generate a branch to a
4461       // block that increments the RHS counter need to track branch condition
4462       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4463       // "FalseBlock" after the increment is done.
4464       if (InstrumentRegions &&
4465           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4466         llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
4467         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4468         Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
4469         CGF.EmitBlock(RHSBlockCnt);
4470         CGF.incrementProfileCounter(E->getRHS());
4471         CGF.EmitBranch(FBlock);
4472         CGF.EmitBlock(FBlock);
4473       }
4474 
4475       // ZExt result to int or bool.
4476       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4477     }
4478 
4479     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4480     if (!CGF.ContainsLabel(E->getRHS()))
4481       return llvm::ConstantInt::get(ResTy, 1);
4482   }
4483 
4484   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4485   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4486 
4487   CodeGenFunction::ConditionalEvaluation eval(CGF);
4488 
4489   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4490   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4491                            CGF.getCurrentProfileCount() -
4492                                CGF.getProfileCount(E->getRHS()));
4493 
4494   // Any edges into the ContBlock are now from an (indeterminate number of)
4495   // edges from this first condition.  All of these values will be true.  Start
4496   // setting up the PHI node in the Cont Block for this.
4497   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4498                                             "", ContBlock);
4499   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4500        PI != PE; ++PI)
4501     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4502 
4503   eval.begin(CGF);
4504 
4505   // Emit the RHS condition as a bool value.
4506   CGF.EmitBlock(RHSBlock);
4507   CGF.incrementProfileCounter(E);
4508   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4509 
4510   eval.end(CGF);
4511 
4512   // Reaquire the RHS block, as there may be subblocks inserted.
4513   RHSBlock = Builder.GetInsertBlock();
4514 
4515   // If we're generating for profiling or coverage, generate a branch on the
4516   // RHS to a block that increments the RHS true counter needed to track branch
4517   // condition coverage.
4518   if (InstrumentRegions &&
4519       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4520     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4521     Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
4522     CGF.EmitBlock(RHSBlockCnt);
4523     CGF.incrementProfileCounter(E->getRHS());
4524     CGF.EmitBranch(ContBlock);
4525     PN->addIncoming(RHSCond, RHSBlockCnt);
4526   }
4527 
4528   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4529   // into the phi node for the edge with the value of RHSCond.
4530   CGF.EmitBlock(ContBlock);
4531   PN->addIncoming(RHSCond, RHSBlock);
4532 
4533   // ZExt result to int.
4534   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4535 }
4536 
4537 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4538   CGF.EmitIgnoredExpr(E->getLHS());
4539   CGF.EnsureInsertPoint();
4540   return Visit(E->getRHS());
4541 }
4542 
4543 //===----------------------------------------------------------------------===//
4544 //                             Other Operators
4545 //===----------------------------------------------------------------------===//
4546 
4547 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4548 /// expression is cheap enough and side-effect-free enough to evaluate
4549 /// unconditionally instead of conditionally.  This is used to convert control
4550 /// flow into selects in some cases.
4551 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4552                                                    CodeGenFunction &CGF) {
4553   // Anything that is an integer or floating point constant is fine.
4554   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4555 
4556   // Even non-volatile automatic variables can't be evaluated unconditionally.
4557   // Referencing a thread_local may cause non-trivial initialization work to
4558   // occur. If we're inside a lambda and one of the variables is from the scope
4559   // outside the lambda, that function may have returned already. Reading its
4560   // locals is a bad idea. Also, these reads may introduce races there didn't
4561   // exist in the source-level program.
4562 }
4563 
4564 
4565 Value *ScalarExprEmitter::
4566 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4567   TestAndClearIgnoreResultAssign();
4568 
4569   // Bind the common expression if necessary.
4570   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4571 
4572   Expr *condExpr = E->getCond();
4573   Expr *lhsExpr = E->getTrueExpr();
4574   Expr *rhsExpr = E->getFalseExpr();
4575 
4576   // If the condition constant folds and can be elided, try to avoid emitting
4577   // the condition and the dead arm.
4578   bool CondExprBool;
4579   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4580     Expr *live = lhsExpr, *dead = rhsExpr;
4581     if (!CondExprBool) std::swap(live, dead);
4582 
4583     // If the dead side doesn't have labels we need, just emit the Live part.
4584     if (!CGF.ContainsLabel(dead)) {
4585       if (CondExprBool)
4586         CGF.incrementProfileCounter(E);
4587       Value *Result = Visit(live);
4588 
4589       // If the live part is a throw expression, it acts like it has a void
4590       // type, so evaluating it returns a null Value*.  However, a conditional
4591       // with non-void type must return a non-null Value*.
4592       if (!Result && !E->getType()->isVoidType())
4593         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4594 
4595       return Result;
4596     }
4597   }
4598 
4599   // OpenCL: If the condition is a vector, we can treat this condition like
4600   // the select function.
4601   if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4602       condExpr->getType()->isExtVectorType()) {
4603     CGF.incrementProfileCounter(E);
4604 
4605     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4606     llvm::Value *LHS = Visit(lhsExpr);
4607     llvm::Value *RHS = Visit(rhsExpr);
4608 
4609     llvm::Type *condType = ConvertType(condExpr->getType());
4610     auto *vecTy = cast<llvm::FixedVectorType>(condType);
4611 
4612     unsigned numElem = vecTy->getNumElements();
4613     llvm::Type *elemType = vecTy->getElementType();
4614 
4615     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4616     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4617     llvm::Value *tmp = Builder.CreateSExt(
4618         TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4619     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4620 
4621     // Cast float to int to perform ANDs if necessary.
4622     llvm::Value *RHSTmp = RHS;
4623     llvm::Value *LHSTmp = LHS;
4624     bool wasCast = false;
4625     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4626     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4627       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4628       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4629       wasCast = true;
4630     }
4631 
4632     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4633     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4634     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4635     if (wasCast)
4636       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4637 
4638     return tmp5;
4639   }
4640 
4641   if (condExpr->getType()->isVectorType()) {
4642     CGF.incrementProfileCounter(E);
4643 
4644     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4645     llvm::Value *LHS = Visit(lhsExpr);
4646     llvm::Value *RHS = Visit(rhsExpr);
4647 
4648     llvm::Type *CondType = ConvertType(condExpr->getType());
4649     auto *VecTy = cast<llvm::VectorType>(CondType);
4650     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4651 
4652     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4653     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4654   }
4655 
4656   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4657   // select instead of as control flow.  We can only do this if it is cheap and
4658   // safe to evaluate the LHS and RHS unconditionally.
4659   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4660       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4661     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4662     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4663 
4664     CGF.incrementProfileCounter(E, StepV);
4665 
4666     llvm::Value *LHS = Visit(lhsExpr);
4667     llvm::Value *RHS = Visit(rhsExpr);
4668     if (!LHS) {
4669       // If the conditional has void type, make sure we return a null Value*.
4670       assert(!RHS && "LHS and RHS types must match");
4671       return nullptr;
4672     }
4673     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4674   }
4675 
4676   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4677   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4678   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4679 
4680   CodeGenFunction::ConditionalEvaluation eval(CGF);
4681   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4682                            CGF.getProfileCount(lhsExpr));
4683 
4684   CGF.EmitBlock(LHSBlock);
4685   CGF.incrementProfileCounter(E);
4686   eval.begin(CGF);
4687   Value *LHS = Visit(lhsExpr);
4688   eval.end(CGF);
4689 
4690   LHSBlock = Builder.GetInsertBlock();
4691   Builder.CreateBr(ContBlock);
4692 
4693   CGF.EmitBlock(RHSBlock);
4694   eval.begin(CGF);
4695   Value *RHS = Visit(rhsExpr);
4696   eval.end(CGF);
4697 
4698   RHSBlock = Builder.GetInsertBlock();
4699   CGF.EmitBlock(ContBlock);
4700 
4701   // If the LHS or RHS is a throw expression, it will be legitimately null.
4702   if (!LHS)
4703     return RHS;
4704   if (!RHS)
4705     return LHS;
4706 
4707   // Create a PHI node for the real part.
4708   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4709   PN->addIncoming(LHS, LHSBlock);
4710   PN->addIncoming(RHS, RHSBlock);
4711   return PN;
4712 }
4713 
4714 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4715   return Visit(E->getChosenSubExpr());
4716 }
4717 
4718 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4719   QualType Ty = VE->getType();
4720 
4721   if (Ty->isVariablyModifiedType())
4722     CGF.EmitVariablyModifiedType(Ty);
4723 
4724   Address ArgValue = Address::invalid();
4725   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4726 
4727   llvm::Type *ArgTy = ConvertType(VE->getType());
4728 
4729   // If EmitVAArg fails, emit an error.
4730   if (!ArgPtr.isValid()) {
4731     CGF.ErrorUnsupported(VE, "va_arg expression");
4732     return llvm::UndefValue::get(ArgTy);
4733   }
4734 
4735   // FIXME Volatility.
4736   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4737 
4738   // If EmitVAArg promoted the type, we must truncate it.
4739   if (ArgTy != Val->getType()) {
4740     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4741       Val = Builder.CreateIntToPtr(Val, ArgTy);
4742     else
4743       Val = Builder.CreateTrunc(Val, ArgTy);
4744   }
4745 
4746   return Val;
4747 }
4748 
4749 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4750   return CGF.EmitBlockLiteral(block);
4751 }
4752 
4753 // Convert a vec3 to vec4, or vice versa.
4754 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4755                                  Value *Src, unsigned NumElementsDst) {
4756   static constexpr int Mask[] = {0, 1, 2, -1};
4757   return Builder.CreateShuffleVector(Src,
4758                                      llvm::makeArrayRef(Mask, NumElementsDst));
4759 }
4760 
4761 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4762 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4763 // but could be scalar or vectors of different lengths, and either can be
4764 // pointer.
4765 // There are 4 cases:
4766 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4767 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4768 // 3. pointer -> non-pointer
4769 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4770 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4771 // 4. non-pointer -> pointer
4772 //   a) intptr_t -> pointer       : needs 1 inttoptr
4773 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4774 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4775 // allow casting directly between pointer types and non-integer non-pointer
4776 // types.
4777 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4778                                            const llvm::DataLayout &DL,
4779                                            Value *Src, llvm::Type *DstTy,
4780                                            StringRef Name = "") {
4781   auto SrcTy = Src->getType();
4782 
4783   // Case 1.
4784   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4785     return Builder.CreateBitCast(Src, DstTy, Name);
4786 
4787   // Case 2.
4788   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4789     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4790 
4791   // Case 3.
4792   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4793     // Case 3b.
4794     if (!DstTy->isIntegerTy())
4795       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4796     // Cases 3a and 3b.
4797     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4798   }
4799 
4800   // Case 4b.
4801   if (!SrcTy->isIntegerTy())
4802     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4803   // Cases 4a and 4b.
4804   return Builder.CreateIntToPtr(Src, DstTy, Name);
4805 }
4806 
4807 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4808   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4809   llvm::Type *DstTy = ConvertType(E->getType());
4810 
4811   llvm::Type *SrcTy = Src->getType();
4812   unsigned NumElementsSrc =
4813       isa<llvm::VectorType>(SrcTy)
4814           ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
4815           : 0;
4816   unsigned NumElementsDst =
4817       isa<llvm::VectorType>(DstTy)
4818           ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
4819           : 0;
4820 
4821   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4822   // vector to get a vec4, then a bitcast if the target type is different.
4823   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4824     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4825     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4826                                        DstTy);
4827 
4828     Src->setName("astype");
4829     return Src;
4830   }
4831 
4832   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4833   // to vec4 if the original type is not vec4, then a shuffle vector to
4834   // get a vec3.
4835   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4836     auto *Vec4Ty = llvm::FixedVectorType::get(
4837         cast<llvm::VectorType>(DstTy)->getElementType(), 4);
4838     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4839                                        Vec4Ty);
4840 
4841     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4842     Src->setName("astype");
4843     return Src;
4844   }
4845 
4846   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4847                                       Src, DstTy, "astype");
4848 }
4849 
4850 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4851   return CGF.EmitAtomicExpr(E).getScalarVal();
4852 }
4853 
4854 //===----------------------------------------------------------------------===//
4855 //                         Entry Point into this File
4856 //===----------------------------------------------------------------------===//
4857 
4858 /// Emit the computation of the specified expression of scalar type, ignoring
4859 /// the result.
4860 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4861   assert(E && hasScalarEvaluationKind(E->getType()) &&
4862          "Invalid scalar expression to emit");
4863 
4864   return ScalarExprEmitter(*this, IgnoreResultAssign)
4865       .Visit(const_cast<Expr *>(E));
4866 }
4867 
4868 /// Emit a conversion from the specified type to the specified destination type,
4869 /// both of which are LLVM scalar types.
4870 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4871                                              QualType DstTy,
4872                                              SourceLocation Loc) {
4873   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4874          "Invalid scalar expression to emit");
4875   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4876 }
4877 
4878 /// Emit a conversion from the specified complex type to the specified
4879 /// destination type, where the destination type is an LLVM scalar type.
4880 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4881                                                       QualType SrcTy,
4882                                                       QualType DstTy,
4883                                                       SourceLocation Loc) {
4884   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4885          "Invalid complex -> scalar conversion");
4886   return ScalarExprEmitter(*this)
4887       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4888 }
4889 
4890 
4891 llvm::Value *CodeGenFunction::
4892 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4893                         bool isInc, bool isPre) {
4894   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4895 }
4896 
4897 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4898   // object->isa or (*object).isa
4899   // Generate code as for: *(Class*)object
4900 
4901   Expr *BaseExpr = E->getBase();
4902   Address Addr = Address::invalid();
4903   if (BaseExpr->isPRValue()) {
4904     Addr = Address::deprecated(EmitScalarExpr(BaseExpr), getPointerAlign());
4905   } else {
4906     Addr = EmitLValue(BaseExpr).getAddress(*this);
4907   }
4908 
4909   // Cast the address to Class*.
4910   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4911   return MakeAddrLValue(Addr, E->getType());
4912 }
4913 
4914 
4915 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4916                                             const CompoundAssignOperator *E) {
4917   ScalarExprEmitter Scalar(*this);
4918   Value *Result = nullptr;
4919   switch (E->getOpcode()) {
4920 #define COMPOUND_OP(Op)                                                       \
4921     case BO_##Op##Assign:                                                     \
4922       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4923                                              Result)
4924   COMPOUND_OP(Mul);
4925   COMPOUND_OP(Div);
4926   COMPOUND_OP(Rem);
4927   COMPOUND_OP(Add);
4928   COMPOUND_OP(Sub);
4929   COMPOUND_OP(Shl);
4930   COMPOUND_OP(Shr);
4931   COMPOUND_OP(And);
4932   COMPOUND_OP(Xor);
4933   COMPOUND_OP(Or);
4934 #undef COMPOUND_OP
4935 
4936   case BO_PtrMemD:
4937   case BO_PtrMemI:
4938   case BO_Mul:
4939   case BO_Div:
4940   case BO_Rem:
4941   case BO_Add:
4942   case BO_Sub:
4943   case BO_Shl:
4944   case BO_Shr:
4945   case BO_LT:
4946   case BO_GT:
4947   case BO_LE:
4948   case BO_GE:
4949   case BO_EQ:
4950   case BO_NE:
4951   case BO_Cmp:
4952   case BO_And:
4953   case BO_Xor:
4954   case BO_Or:
4955   case BO_LAnd:
4956   case BO_LOr:
4957   case BO_Assign:
4958   case BO_Comma:
4959     llvm_unreachable("Not valid compound assignment operators");
4960   }
4961 
4962   llvm_unreachable("Unhandled compound assignment operator");
4963 }
4964 
4965 struct GEPOffsetAndOverflow {
4966   // The total (signed) byte offset for the GEP.
4967   llvm::Value *TotalOffset;
4968   // The offset overflow flag - true if the total offset overflows.
4969   llvm::Value *OffsetOverflows;
4970 };
4971 
4972 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4973 /// and compute the total offset it applies from it's base pointer BasePtr.
4974 /// Returns offset in bytes and a boolean flag whether an overflow happened
4975 /// during evaluation.
4976 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4977                                                  llvm::LLVMContext &VMContext,
4978                                                  CodeGenModule &CGM,
4979                                                  CGBuilderTy &Builder) {
4980   const auto &DL = CGM.getDataLayout();
4981 
4982   // The total (signed) byte offset for the GEP.
4983   llvm::Value *TotalOffset = nullptr;
4984 
4985   // Was the GEP already reduced to a constant?
4986   if (isa<llvm::Constant>(GEPVal)) {
4987     // Compute the offset by casting both pointers to integers and subtracting:
4988     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4989     Value *BasePtr_int =
4990         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4991     Value *GEPVal_int =
4992         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4993     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4994     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4995   }
4996 
4997   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4998   assert(GEP->getPointerOperand() == BasePtr &&
4999          "BasePtr must be the base of the GEP.");
5000   assert(GEP->isInBounds() && "Expected inbounds GEP");
5001 
5002   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
5003 
5004   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
5005   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5006   auto *SAddIntrinsic =
5007       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
5008   auto *SMulIntrinsic =
5009       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
5010 
5011   // The offset overflow flag - true if the total offset overflows.
5012   llvm::Value *OffsetOverflows = Builder.getFalse();
5013 
5014   /// Return the result of the given binary operation.
5015   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
5016                   llvm::Value *RHS) -> llvm::Value * {
5017     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
5018 
5019     // If the operands are constants, return a constant result.
5020     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
5021       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
5022         llvm::APInt N;
5023         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
5024                                                   /*Signed=*/true, N);
5025         if (HasOverflow)
5026           OffsetOverflows = Builder.getTrue();
5027         return llvm::ConstantInt::get(VMContext, N);
5028       }
5029     }
5030 
5031     // Otherwise, compute the result with checked arithmetic.
5032     auto *ResultAndOverflow = Builder.CreateCall(
5033         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
5034     OffsetOverflows = Builder.CreateOr(
5035         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
5036     return Builder.CreateExtractValue(ResultAndOverflow, 0);
5037   };
5038 
5039   // Determine the total byte offset by looking at each GEP operand.
5040   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
5041        GTI != GTE; ++GTI) {
5042     llvm::Value *LocalOffset;
5043     auto *Index = GTI.getOperand();
5044     // Compute the local offset contributed by this indexing step:
5045     if (auto *STy = GTI.getStructTypeOrNull()) {
5046       // For struct indexing, the local offset is the byte position of the
5047       // specified field.
5048       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
5049       LocalOffset = llvm::ConstantInt::get(
5050           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
5051     } else {
5052       // Otherwise this is array-like indexing. The local offset is the index
5053       // multiplied by the element size.
5054       auto *ElementSize = llvm::ConstantInt::get(
5055           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
5056       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
5057       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
5058     }
5059 
5060     // If this is the first offset, set it as the total offset. Otherwise, add
5061     // the local offset into the running total.
5062     if (!TotalOffset || TotalOffset == Zero)
5063       TotalOffset = LocalOffset;
5064     else
5065       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
5066   }
5067 
5068   return {TotalOffset, OffsetOverflows};
5069 }
5070 
5071 Value *
5072 CodeGenFunction::EmitCheckedInBoundsGEP(llvm::Type *ElemTy, Value *Ptr,
5073                                         ArrayRef<Value *> IdxList,
5074                                         bool SignedIndices, bool IsSubtraction,
5075                                         SourceLocation Loc, const Twine &Name) {
5076   llvm::Type *PtrTy = Ptr->getType();
5077   Value *GEPVal = Builder.CreateInBoundsGEP(ElemTy, Ptr, IdxList, Name);
5078 
5079   // If the pointer overflow sanitizer isn't enabled, do nothing.
5080   if (!SanOpts.has(SanitizerKind::PointerOverflow))
5081     return GEPVal;
5082 
5083   // Perform nullptr-and-offset check unless the nullptr is defined.
5084   bool PerformNullCheck = !NullPointerIsDefined(
5085       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
5086   // Check for overflows unless the GEP got constant-folded,
5087   // and only in the default address space
5088   bool PerformOverflowCheck =
5089       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
5090 
5091   if (!(PerformNullCheck || PerformOverflowCheck))
5092     return GEPVal;
5093 
5094   const auto &DL = CGM.getDataLayout();
5095 
5096   SanitizerScope SanScope(this);
5097   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
5098 
5099   GEPOffsetAndOverflow EvaluatedGEP =
5100       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
5101 
5102   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
5103           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
5104          "If the offset got constant-folded, we don't expect that there was an "
5105          "overflow.");
5106 
5107   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5108 
5109   // Common case: if the total offset is zero, and we are using C++ semantics,
5110   // where nullptr+0 is defined, don't emit a check.
5111   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
5112     return GEPVal;
5113 
5114   // Now that we've computed the total offset, add it to the base pointer (with
5115   // wrapping semantics).
5116   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
5117   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
5118 
5119   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
5120 
5121   if (PerformNullCheck) {
5122     // In C++, if the base pointer evaluates to a null pointer value,
5123     // the only valid  pointer this inbounds GEP can produce is also
5124     // a null pointer, so the offset must also evaluate to zero.
5125     // Likewise, if we have non-zero base pointer, we can not get null pointer
5126     // as a result, so the offset can not be -intptr_t(BasePtr).
5127     // In other words, both pointers are either null, or both are non-null,
5128     // or the behaviour is undefined.
5129     //
5130     // C, however, is more strict in this regard, and gives more
5131     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
5132     // So both the input to the 'gep inbounds' AND the output must not be null.
5133     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
5134     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
5135     auto *Valid =
5136         CGM.getLangOpts().CPlusPlus
5137             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
5138             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
5139     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
5140   }
5141 
5142   if (PerformOverflowCheck) {
5143     // The GEP is valid if:
5144     // 1) The total offset doesn't overflow, and
5145     // 2) The sign of the difference between the computed address and the base
5146     // pointer matches the sign of the total offset.
5147     llvm::Value *ValidGEP;
5148     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
5149     if (SignedIndices) {
5150       // GEP is computed as `unsigned base + signed offset`, therefore:
5151       // * If offset was positive, then the computed pointer can not be
5152       //   [unsigned] less than the base pointer, unless it overflowed.
5153       // * If offset was negative, then the computed pointer can not be
5154       //   [unsigned] greater than the bas pointere, unless it overflowed.
5155       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5156       auto *PosOrZeroOffset =
5157           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
5158       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
5159       ValidGEP =
5160           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
5161     } else if (!IsSubtraction) {
5162       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
5163       // computed pointer can not be [unsigned] less than base pointer,
5164       // unless there was an overflow.
5165       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5166       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5167     } else {
5168       // GEP is computed as `unsigned base - unsigned offset`, therefore the
5169       // computed pointer can not be [unsigned] greater than base pointer,
5170       // unless there was an overflow.
5171       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5172       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5173     }
5174     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5175     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
5176   }
5177 
5178   assert(!Checks.empty() && "Should have produced some checks.");
5179 
5180   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5181   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5182   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5183   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5184 
5185   return GEPVal;
5186 }
5187