1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Module.h"
33 #include <cstdarg>
34 
35 using namespace clang;
36 using namespace CodeGen;
37 using llvm::Value;
38 
39 //===----------------------------------------------------------------------===//
40 //                         Scalar Expression Emitter
41 //===----------------------------------------------------------------------===//
42 
43 namespace {
44 struct BinOpInfo {
45   Value *LHS;
46   Value *RHS;
47   QualType Ty;  // Computation Type.
48   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
49   bool FPContractable;
50   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
51 };
52 
53 static bool MustVisitNullValue(const Expr *E) {
54   // If a null pointer expression's type is the C++0x nullptr_t, then
55   // it's not necessarily a simple constant and it must be evaluated
56   // for its potential side effects.
57   return E->getType()->isNullPtrType();
58 }
59 
60 class ScalarExprEmitter
61   : public StmtVisitor<ScalarExprEmitter, Value*> {
62   CodeGenFunction &CGF;
63   CGBuilderTy &Builder;
64   bool IgnoreResultAssign;
65   llvm::LLVMContext &VMContext;
66 public:
67 
68   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
69     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
70       VMContext(cgf.getLLVMContext()) {
71   }
72 
73   //===--------------------------------------------------------------------===//
74   //                               Utilities
75   //===--------------------------------------------------------------------===//
76 
77   bool TestAndClearIgnoreResultAssign() {
78     bool I = IgnoreResultAssign;
79     IgnoreResultAssign = false;
80     return I;
81   }
82 
83   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
84   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
85   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
86     return CGF.EmitCheckedLValue(E, TCK);
87   }
88 
89   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
90                       const BinOpInfo &Info);
91 
92   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
93     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
94   }
95 
96   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
97     const AlignValueAttr *AVAttr = nullptr;
98     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
99       const ValueDecl *VD = DRE->getDecl();
100 
101       if (VD->getType()->isReferenceType()) {
102         if (const auto *TTy =
103             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
104           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
105       } else {
106         // Assumptions for function parameters are emitted at the start of the
107         // function, so there is no need to repeat that here.
108         if (isa<ParmVarDecl>(VD))
109           return;
110 
111         AVAttr = VD->getAttr<AlignValueAttr>();
112       }
113     }
114 
115     if (!AVAttr)
116       if (const auto *TTy =
117           dyn_cast<TypedefType>(E->getType()))
118         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
119 
120     if (!AVAttr)
121       return;
122 
123     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
124     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
125     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
126   }
127 
128   /// EmitLoadOfLValue - Given an expression with complex type that represents a
129   /// value l-value, this method emits the address of the l-value, then loads
130   /// and returns the result.
131   Value *EmitLoadOfLValue(const Expr *E) {
132     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
133                                 E->getExprLoc());
134 
135     EmitLValueAlignmentAssumption(E, V);
136     return V;
137   }
138 
139   /// EmitConversionToBool - Convert the specified expression value to a
140   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
141   Value *EmitConversionToBool(Value *Src, QualType DstTy);
142 
143   /// Emit a check that a conversion to or from a floating-point type does not
144   /// overflow.
145   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
146                                 Value *Src, QualType SrcType, QualType DstType,
147                                 llvm::Type *DstTy, SourceLocation Loc);
148 
149   /// Emit a conversion from the specified type to the specified destination
150   /// type, both of which are LLVM scalar types.
151   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
152                               SourceLocation Loc);
153 
154   /// Emit a conversion from the specified complex type to the specified
155   /// destination type, where the destination type is an LLVM scalar type.
156   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
157                                        QualType SrcTy, QualType DstTy,
158                                        SourceLocation Loc);
159 
160   /// EmitNullValue - Emit a value that corresponds to null for the given type.
161   Value *EmitNullValue(QualType Ty);
162 
163   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
164   Value *EmitFloatToBoolConversion(Value *V) {
165     // Compare against 0.0 for fp scalars.
166     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
167     return Builder.CreateFCmpUNE(V, Zero, "tobool");
168   }
169 
170   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
171   Value *EmitPointerToBoolConversion(Value *V) {
172     Value *Zero = llvm::ConstantPointerNull::get(
173                                       cast<llvm::PointerType>(V->getType()));
174     return Builder.CreateICmpNE(V, Zero, "tobool");
175   }
176 
177   Value *EmitIntToBoolConversion(Value *V) {
178     // Because of the type rules of C, we often end up computing a
179     // logical value, then zero extending it to int, then wanting it
180     // as a logical value again.  Optimize this common case.
181     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
182       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
183         Value *Result = ZI->getOperand(0);
184         // If there aren't any more uses, zap the instruction to save space.
185         // Note that there can be more uses, for example if this
186         // is the result of an assignment.
187         if (ZI->use_empty())
188           ZI->eraseFromParent();
189         return Result;
190       }
191     }
192 
193     return Builder.CreateIsNotNull(V, "tobool");
194   }
195 
196   //===--------------------------------------------------------------------===//
197   //                            Visitor Methods
198   //===--------------------------------------------------------------------===//
199 
200   Value *Visit(Expr *E) {
201     ApplyDebugLocation DL(CGF, E);
202     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
203   }
204 
205   Value *VisitStmt(Stmt *S) {
206     S->dump(CGF.getContext().getSourceManager());
207     llvm_unreachable("Stmt can't have complex result type!");
208   }
209   Value *VisitExpr(Expr *S);
210 
211   Value *VisitParenExpr(ParenExpr *PE) {
212     return Visit(PE->getSubExpr());
213   }
214   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
215     return Visit(E->getReplacement());
216   }
217   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
218     return Visit(GE->getResultExpr());
219   }
220 
221   // Leaves.
222   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
223     return Builder.getInt(E->getValue());
224   }
225   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
226     return llvm::ConstantFP::get(VMContext, E->getValue());
227   }
228   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
229     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
230   }
231   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
232     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
233   }
234   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
235     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
236   }
237   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
238     return EmitNullValue(E->getType());
239   }
240   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
241     return EmitNullValue(E->getType());
242   }
243   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
244   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
245   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
246     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
247     return Builder.CreateBitCast(V, ConvertType(E->getType()));
248   }
249 
250   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
251     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
252   }
253 
254   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
255     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
256   }
257 
258   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
259     if (E->isGLValue())
260       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
261 
262     // Otherwise, assume the mapping is the scalar directly.
263     return CGF.getOpaqueRValueMapping(E).getScalarVal();
264   }
265 
266   // l-values.
267   Value *VisitDeclRefExpr(DeclRefExpr *E) {
268     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
269       if (result.isReference())
270         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
271                                 E->getExprLoc());
272       return result.getValue();
273     }
274     return EmitLoadOfLValue(E);
275   }
276 
277   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
278     return CGF.EmitObjCSelectorExpr(E);
279   }
280   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
281     return CGF.EmitObjCProtocolExpr(E);
282   }
283   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
284     return EmitLoadOfLValue(E);
285   }
286   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
287     if (E->getMethodDecl() &&
288         E->getMethodDecl()->getReturnType()->isReferenceType())
289       return EmitLoadOfLValue(E);
290     return CGF.EmitObjCMessageExpr(E).getScalarVal();
291   }
292 
293   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
294     LValue LV = CGF.EmitObjCIsaExpr(E);
295     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
296     return V;
297   }
298 
299   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
300   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
301   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
302   Value *VisitMemberExpr(MemberExpr *E);
303   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
304   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
305     return EmitLoadOfLValue(E);
306   }
307 
308   Value *VisitInitListExpr(InitListExpr *E);
309 
310   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
311     return EmitNullValue(E->getType());
312   }
313   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
314     if (E->getType()->isVariablyModifiedType())
315       CGF.EmitVariablyModifiedType(E->getType());
316 
317     if (CGDebugInfo *DI = CGF.getDebugInfo())
318       DI->EmitExplicitCastType(E->getType());
319 
320     return VisitCastExpr(E);
321   }
322   Value *VisitCastExpr(CastExpr *E);
323 
324   Value *VisitCallExpr(const CallExpr *E) {
325     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
326       return EmitLoadOfLValue(E);
327 
328     Value *V = CGF.EmitCallExpr(E).getScalarVal();
329 
330     EmitLValueAlignmentAssumption(E, V);
331     return V;
332   }
333 
334   Value *VisitStmtExpr(const StmtExpr *E);
335 
336   // Unary Operators.
337   Value *VisitUnaryPostDec(const UnaryOperator *E) {
338     LValue LV = EmitLValue(E->getSubExpr());
339     return EmitScalarPrePostIncDec(E, LV, false, false);
340   }
341   Value *VisitUnaryPostInc(const UnaryOperator *E) {
342     LValue LV = EmitLValue(E->getSubExpr());
343     return EmitScalarPrePostIncDec(E, LV, true, false);
344   }
345   Value *VisitUnaryPreDec(const UnaryOperator *E) {
346     LValue LV = EmitLValue(E->getSubExpr());
347     return EmitScalarPrePostIncDec(E, LV, false, true);
348   }
349   Value *VisitUnaryPreInc(const UnaryOperator *E) {
350     LValue LV = EmitLValue(E->getSubExpr());
351     return EmitScalarPrePostIncDec(E, LV, true, true);
352   }
353 
354   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
355                                                   llvm::Value *InVal,
356                                                   bool IsInc);
357 
358   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
359                                        bool isInc, bool isPre);
360 
361 
362   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
363     if (isa<MemberPointerType>(E->getType())) // never sugared
364       return CGF.CGM.getMemberPointerConstant(E);
365 
366     return EmitLValue(E->getSubExpr()).getAddress();
367   }
368   Value *VisitUnaryDeref(const UnaryOperator *E) {
369     if (E->getType()->isVoidType())
370       return Visit(E->getSubExpr()); // the actual value should be unused
371     return EmitLoadOfLValue(E);
372   }
373   Value *VisitUnaryPlus(const UnaryOperator *E) {
374     // This differs from gcc, though, most likely due to a bug in gcc.
375     TestAndClearIgnoreResultAssign();
376     return Visit(E->getSubExpr());
377   }
378   Value *VisitUnaryMinus    (const UnaryOperator *E);
379   Value *VisitUnaryNot      (const UnaryOperator *E);
380   Value *VisitUnaryLNot     (const UnaryOperator *E);
381   Value *VisitUnaryReal     (const UnaryOperator *E);
382   Value *VisitUnaryImag     (const UnaryOperator *E);
383   Value *VisitUnaryExtension(const UnaryOperator *E) {
384     return Visit(E->getSubExpr());
385   }
386 
387   // C++
388   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
389     return EmitLoadOfLValue(E);
390   }
391 
392   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
393     return Visit(DAE->getExpr());
394   }
395   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
396     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
397     return Visit(DIE->getExpr());
398   }
399   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
400     return CGF.LoadCXXThis();
401   }
402 
403   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
404     CGF.enterFullExpression(E);
405     CodeGenFunction::RunCleanupsScope Scope(CGF);
406     return Visit(E->getSubExpr());
407   }
408   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
409     return CGF.EmitCXXNewExpr(E);
410   }
411   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
412     CGF.EmitCXXDeleteExpr(E);
413     return nullptr;
414   }
415 
416   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
417     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
418   }
419 
420   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
421     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
422   }
423 
424   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
425     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
426   }
427 
428   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
429     // C++ [expr.pseudo]p1:
430     //   The result shall only be used as the operand for the function call
431     //   operator (), and the result of such a call has type void. The only
432     //   effect is the evaluation of the postfix-expression before the dot or
433     //   arrow.
434     CGF.EmitScalarExpr(E->getBase());
435     return nullptr;
436   }
437 
438   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
439     return EmitNullValue(E->getType());
440   }
441 
442   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
443     CGF.EmitCXXThrowExpr(E);
444     return nullptr;
445   }
446 
447   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
448     return Builder.getInt1(E->getValue());
449   }
450 
451   // Binary Operators.
452   Value *EmitMul(const BinOpInfo &Ops) {
453     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
454       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
455       case LangOptions::SOB_Defined:
456         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
457       case LangOptions::SOB_Undefined:
458         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
459           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
460         // Fall through.
461       case LangOptions::SOB_Trapping:
462         return EmitOverflowCheckedBinOp(Ops);
463       }
464     }
465 
466     if (Ops.Ty->isUnsignedIntegerType() &&
467         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
468       return EmitOverflowCheckedBinOp(Ops);
469 
470     if (Ops.LHS->getType()->isFPOrFPVectorTy())
471       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
472     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
473   }
474   /// Create a binary op that checks for overflow.
475   /// Currently only supports +, - and *.
476   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
477 
478   // Check for undefined division and modulus behaviors.
479   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
480                                                   llvm::Value *Zero,bool isDiv);
481   // Common helper for getting how wide LHS of shift is.
482   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
483   Value *EmitDiv(const BinOpInfo &Ops);
484   Value *EmitRem(const BinOpInfo &Ops);
485   Value *EmitAdd(const BinOpInfo &Ops);
486   Value *EmitSub(const BinOpInfo &Ops);
487   Value *EmitShl(const BinOpInfo &Ops);
488   Value *EmitShr(const BinOpInfo &Ops);
489   Value *EmitAnd(const BinOpInfo &Ops) {
490     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
491   }
492   Value *EmitXor(const BinOpInfo &Ops) {
493     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
494   }
495   Value *EmitOr (const BinOpInfo &Ops) {
496     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
497   }
498 
499   BinOpInfo EmitBinOps(const BinaryOperator *E);
500   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
501                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
502                                   Value *&Result);
503 
504   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
505                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
506 
507   // Binary operators and binary compound assignment operators.
508 #define HANDLEBINOP(OP) \
509   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
510     return Emit ## OP(EmitBinOps(E));                                      \
511   }                                                                        \
512   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
513     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
514   }
515   HANDLEBINOP(Mul)
516   HANDLEBINOP(Div)
517   HANDLEBINOP(Rem)
518   HANDLEBINOP(Add)
519   HANDLEBINOP(Sub)
520   HANDLEBINOP(Shl)
521   HANDLEBINOP(Shr)
522   HANDLEBINOP(And)
523   HANDLEBINOP(Xor)
524   HANDLEBINOP(Or)
525 #undef HANDLEBINOP
526 
527   // Comparisons.
528   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
529                      unsigned SICmpOpc, unsigned FCmpOpc);
530 #define VISITCOMP(CODE, UI, SI, FP) \
531     Value *VisitBin##CODE(const BinaryOperator *E) { \
532       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
533                          llvm::FCmpInst::FP); }
534   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
535   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
536   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
537   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
538   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
539   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
540 #undef VISITCOMP
541 
542   Value *VisitBinAssign     (const BinaryOperator *E);
543 
544   Value *VisitBinLAnd       (const BinaryOperator *E);
545   Value *VisitBinLOr        (const BinaryOperator *E);
546   Value *VisitBinComma      (const BinaryOperator *E);
547 
548   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
549   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
550 
551   // Other Operators.
552   Value *VisitBlockExpr(const BlockExpr *BE);
553   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
554   Value *VisitChooseExpr(ChooseExpr *CE);
555   Value *VisitVAArgExpr(VAArgExpr *VE);
556   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
557     return CGF.EmitObjCStringLiteral(E);
558   }
559   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
560     return CGF.EmitObjCBoxedExpr(E);
561   }
562   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
563     return CGF.EmitObjCArrayLiteral(E);
564   }
565   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
566     return CGF.EmitObjCDictionaryLiteral(E);
567   }
568   Value *VisitAsTypeExpr(AsTypeExpr *CE);
569   Value *VisitAtomicExpr(AtomicExpr *AE);
570 };
571 }  // end anonymous namespace.
572 
573 //===----------------------------------------------------------------------===//
574 //                                Utilities
575 //===----------------------------------------------------------------------===//
576 
577 /// EmitConversionToBool - Convert the specified expression value to a
578 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
579 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
580   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
581 
582   if (SrcType->isRealFloatingType())
583     return EmitFloatToBoolConversion(Src);
584 
585   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
586     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
587 
588   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
589          "Unknown scalar type to convert");
590 
591   if (isa<llvm::IntegerType>(Src->getType()))
592     return EmitIntToBoolConversion(Src);
593 
594   assert(isa<llvm::PointerType>(Src->getType()));
595   return EmitPointerToBoolConversion(Src);
596 }
597 
598 void ScalarExprEmitter::EmitFloatConversionCheck(
599     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
600     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
601   CodeGenFunction::SanitizerScope SanScope(&CGF);
602   using llvm::APFloat;
603   using llvm::APSInt;
604 
605   llvm::Type *SrcTy = Src->getType();
606 
607   llvm::Value *Check = nullptr;
608   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
609     // Integer to floating-point. This can fail for unsigned short -> __half
610     // or unsigned __int128 -> float.
611     assert(DstType->isFloatingType());
612     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
613 
614     APFloat LargestFloat =
615       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
616     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
617 
618     bool IsExact;
619     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
620                                       &IsExact) != APFloat::opOK)
621       // The range of representable values of this floating point type includes
622       // all values of this integer type. Don't need an overflow check.
623       return;
624 
625     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
626     if (SrcIsUnsigned)
627       Check = Builder.CreateICmpULE(Src, Max);
628     else {
629       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
630       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
631       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
632       Check = Builder.CreateAnd(GE, LE);
633     }
634   } else {
635     const llvm::fltSemantics &SrcSema =
636       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
637     if (isa<llvm::IntegerType>(DstTy)) {
638       // Floating-point to integer. This has undefined behavior if the source is
639       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
640       // to an integer).
641       unsigned Width = CGF.getContext().getIntWidth(DstType);
642       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
643 
644       APSInt Min = APSInt::getMinValue(Width, Unsigned);
645       APFloat MinSrc(SrcSema, APFloat::uninitialized);
646       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
647           APFloat::opOverflow)
648         // Don't need an overflow check for lower bound. Just check for
649         // -Inf/NaN.
650         MinSrc = APFloat::getInf(SrcSema, true);
651       else
652         // Find the largest value which is too small to represent (before
653         // truncation toward zero).
654         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
655 
656       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
657       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
658       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
659           APFloat::opOverflow)
660         // Don't need an overflow check for upper bound. Just check for
661         // +Inf/NaN.
662         MaxSrc = APFloat::getInf(SrcSema, false);
663       else
664         // Find the smallest value which is too large to represent (before
665         // truncation toward zero).
666         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
667 
668       // If we're converting from __half, convert the range to float to match
669       // the type of src.
670       if (OrigSrcType->isHalfType()) {
671         const llvm::fltSemantics &Sema =
672           CGF.getContext().getFloatTypeSemantics(SrcType);
673         bool IsInexact;
674         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
675         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
676       }
677 
678       llvm::Value *GE =
679         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
680       llvm::Value *LE =
681         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
682       Check = Builder.CreateAnd(GE, LE);
683     } else {
684       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
685       //
686       // Floating-point to floating-point. This has undefined behavior if the
687       // source is not in the range of representable values of the destination
688       // type. The C and C++ standards are spectacularly unclear here. We
689       // diagnose finite out-of-range conversions, but allow infinities and NaNs
690       // to convert to the corresponding value in the smaller type.
691       //
692       // C11 Annex F gives all such conversions defined behavior for IEC 60559
693       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
694       // does not.
695 
696       // Converting from a lower rank to a higher rank can never have
697       // undefined behavior, since higher-rank types must have a superset
698       // of values of lower-rank types.
699       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
700         return;
701 
702       assert(!OrigSrcType->isHalfType() &&
703              "should not check conversion from __half, it has the lowest rank");
704 
705       const llvm::fltSemantics &DstSema =
706         CGF.getContext().getFloatTypeSemantics(DstType);
707       APFloat MinBad = APFloat::getLargest(DstSema, false);
708       APFloat MaxBad = APFloat::getInf(DstSema, false);
709 
710       bool IsInexact;
711       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
712       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
713 
714       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
715         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
716       llvm::Value *GE =
717         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
718       llvm::Value *LE =
719         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
720       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
721     }
722   }
723 
724   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
725                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
726                                   CGF.EmitCheckTypeDescriptor(DstType)};
727   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
728                 "float_cast_overflow", StaticArgs, OrigSrc);
729 }
730 
731 /// Emit a conversion from the specified type to the specified destination type,
732 /// both of which are LLVM scalar types.
733 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
734                                                QualType DstType,
735                                                SourceLocation Loc) {
736   SrcType = CGF.getContext().getCanonicalType(SrcType);
737   DstType = CGF.getContext().getCanonicalType(DstType);
738   if (SrcType == DstType) return Src;
739 
740   if (DstType->isVoidType()) return nullptr;
741 
742   llvm::Value *OrigSrc = Src;
743   QualType OrigSrcType = SrcType;
744   llvm::Type *SrcTy = Src->getType();
745 
746   // Handle conversions to bool first, they are special: comparisons against 0.
747   if (DstType->isBooleanType())
748     return EmitConversionToBool(Src, SrcType);
749 
750   llvm::Type *DstTy = ConvertType(DstType);
751 
752   // Cast from half through float if half isn't a native type.
753   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
754     // Cast to FP using the intrinsic if the half type itself isn't supported.
755     if (DstTy->isFloatingPointTy()) {
756       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
757         return Builder.CreateCall(
758             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
759             Src);
760     } else {
761       // Cast to other types through float, using either the intrinsic or FPExt,
762       // depending on whether the half type itself is supported
763       // (as opposed to operations on half, available with NativeHalfType).
764       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
765         Src = Builder.CreateCall(
766             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
767                                  CGF.CGM.FloatTy),
768             Src);
769       } else {
770         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
771       }
772       SrcType = CGF.getContext().FloatTy;
773       SrcTy = CGF.FloatTy;
774     }
775   }
776 
777   // Ignore conversions like int -> uint.
778   if (SrcTy == DstTy)
779     return Src;
780 
781   // Handle pointer conversions next: pointers can only be converted to/from
782   // other pointers and integers. Check for pointer types in terms of LLVM, as
783   // some native types (like Obj-C id) may map to a pointer type.
784   if (isa<llvm::PointerType>(DstTy)) {
785     // The source value may be an integer, or a pointer.
786     if (isa<llvm::PointerType>(SrcTy))
787       return Builder.CreateBitCast(Src, DstTy, "conv");
788 
789     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
790     // First, convert to the correct width so that we control the kind of
791     // extension.
792     llvm::Type *MiddleTy = CGF.IntPtrTy;
793     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
794     llvm::Value* IntResult =
795         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
796     // Then, cast to pointer.
797     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
798   }
799 
800   if (isa<llvm::PointerType>(SrcTy)) {
801     // Must be an ptr to int cast.
802     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
803     return Builder.CreatePtrToInt(Src, DstTy, "conv");
804   }
805 
806   // A scalar can be splatted to an extended vector of the same element type
807   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
808     // Cast the scalar to element type
809     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
810     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy, Loc);
811 
812     // Splat the element across to all elements
813     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
814     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
815   }
816 
817   // Allow bitcast from vector to integer/fp of the same size.
818   if (isa<llvm::VectorType>(SrcTy) ||
819       isa<llvm::VectorType>(DstTy))
820     return Builder.CreateBitCast(Src, DstTy, "conv");
821 
822   // Finally, we have the arithmetic types: real int/float.
823   Value *Res = nullptr;
824   llvm::Type *ResTy = DstTy;
825 
826   // An overflowing conversion has undefined behavior if either the source type
827   // or the destination type is a floating-point type.
828   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
829       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
830     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
831                              Loc);
832 
833   // Cast to half through float if half isn't a native type.
834   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
835     // Make sure we cast in a single step if from another FP type.
836     if (SrcTy->isFloatingPointTy()) {
837       // Use the intrinsic if the half type itself isn't supported
838       // (as opposed to operations on half, available with NativeHalfType).
839       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
840         return Builder.CreateCall(
841             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
842       // If the half type is supported, just use an fptrunc.
843       return Builder.CreateFPTrunc(Src, DstTy);
844     }
845     DstTy = CGF.FloatTy;
846   }
847 
848   if (isa<llvm::IntegerType>(SrcTy)) {
849     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
850     if (isa<llvm::IntegerType>(DstTy))
851       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
852     else if (InputSigned)
853       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
854     else
855       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
856   } else if (isa<llvm::IntegerType>(DstTy)) {
857     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
858     if (DstType->isSignedIntegerOrEnumerationType())
859       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
860     else
861       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
862   } else {
863     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
864            "Unknown real conversion");
865     if (DstTy->getTypeID() < SrcTy->getTypeID())
866       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
867     else
868       Res = Builder.CreateFPExt(Src, DstTy, "conv");
869   }
870 
871   if (DstTy != ResTy) {
872     if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
873       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
874       Res = Builder.CreateCall(
875         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
876         Res);
877     } else {
878       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
879     }
880   }
881 
882   return Res;
883 }
884 
885 /// Emit a conversion from the specified complex type to the specified
886 /// destination type, where the destination type is an LLVM scalar type.
887 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
888     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
889     SourceLocation Loc) {
890   // Get the source element type.
891   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
892 
893   // Handle conversions to bool first, they are special: comparisons against 0.
894   if (DstTy->isBooleanType()) {
895     //  Complex != 0  -> (Real != 0) | (Imag != 0)
896     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
897     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
898     return Builder.CreateOr(Src.first, Src.second, "tobool");
899   }
900 
901   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
902   // the imaginary part of the complex value is discarded and the value of the
903   // real part is converted according to the conversion rules for the
904   // corresponding real type.
905   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
906 }
907 
908 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
909   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
910 }
911 
912 /// \brief Emit a sanitization check for the given "binary" operation (which
913 /// might actually be a unary increment which has been lowered to a binary
914 /// operation). The check passes if all values in \p Checks (which are \c i1),
915 /// are \c true.
916 void ScalarExprEmitter::EmitBinOpCheck(
917     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
918   assert(CGF.IsSanitizerScope);
919   StringRef CheckName;
920   SmallVector<llvm::Constant *, 4> StaticData;
921   SmallVector<llvm::Value *, 2> DynamicData;
922 
923   BinaryOperatorKind Opcode = Info.Opcode;
924   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
925     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
926 
927   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
928   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
929   if (UO && UO->getOpcode() == UO_Minus) {
930     CheckName = "negate_overflow";
931     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
932     DynamicData.push_back(Info.RHS);
933   } else {
934     if (BinaryOperator::isShiftOp(Opcode)) {
935       // Shift LHS negative or too large, or RHS out of bounds.
936       CheckName = "shift_out_of_bounds";
937       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
938       StaticData.push_back(
939         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
940       StaticData.push_back(
941         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
942     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
943       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
944       CheckName = "divrem_overflow";
945       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
946     } else {
947       // Arithmetic overflow (+, -, *).
948       switch (Opcode) {
949       case BO_Add: CheckName = "add_overflow"; break;
950       case BO_Sub: CheckName = "sub_overflow"; break;
951       case BO_Mul: CheckName = "mul_overflow"; break;
952       default: llvm_unreachable("unexpected opcode for bin op check");
953       }
954       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
955     }
956     DynamicData.push_back(Info.LHS);
957     DynamicData.push_back(Info.RHS);
958   }
959 
960   CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
961 }
962 
963 //===----------------------------------------------------------------------===//
964 //                            Visitor Methods
965 //===----------------------------------------------------------------------===//
966 
967 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
968   CGF.ErrorUnsupported(E, "scalar expression");
969   if (E->getType()->isVoidType())
970     return nullptr;
971   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
972 }
973 
974 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
975   // Vector Mask Case
976   if (E->getNumSubExprs() == 2 ||
977       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
978     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
979     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
980     Value *Mask;
981 
982     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
983     unsigned LHSElts = LTy->getNumElements();
984 
985     if (E->getNumSubExprs() == 3) {
986       Mask = CGF.EmitScalarExpr(E->getExpr(2));
987 
988       // Shuffle LHS & RHS into one input vector.
989       SmallVector<llvm::Constant*, 32> concat;
990       for (unsigned i = 0; i != LHSElts; ++i) {
991         concat.push_back(Builder.getInt32(2*i));
992         concat.push_back(Builder.getInt32(2*i+1));
993       }
994 
995       Value* CV = llvm::ConstantVector::get(concat);
996       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
997       LHSElts *= 2;
998     } else {
999       Mask = RHS;
1000     }
1001 
1002     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1003 
1004     // Mask off the high bits of each shuffle index.
1005     Value *MaskBits =
1006         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1007     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1008 
1009     // newv = undef
1010     // mask = mask & maskbits
1011     // for each elt
1012     //   n = extract mask i
1013     //   x = extract val n
1014     //   newv = insert newv, x, i
1015     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1016                                                   MTy->getNumElements());
1017     Value* NewV = llvm::UndefValue::get(RTy);
1018     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1019       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1020       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1021 
1022       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1023       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1024     }
1025     return NewV;
1026   }
1027 
1028   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1029   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1030 
1031   SmallVector<llvm::Constant*, 32> indices;
1032   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1033     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1034     // Check for -1 and output it as undef in the IR.
1035     if (Idx.isSigned() && Idx.isAllOnesValue())
1036       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1037     else
1038       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1039   }
1040 
1041   Value *SV = llvm::ConstantVector::get(indices);
1042   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1043 }
1044 
1045 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1046   QualType SrcType = E->getSrcExpr()->getType(),
1047            DstType = E->getType();
1048 
1049   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1050 
1051   SrcType = CGF.getContext().getCanonicalType(SrcType);
1052   DstType = CGF.getContext().getCanonicalType(DstType);
1053   if (SrcType == DstType) return Src;
1054 
1055   assert(SrcType->isVectorType() &&
1056          "ConvertVector source type must be a vector");
1057   assert(DstType->isVectorType() &&
1058          "ConvertVector destination type must be a vector");
1059 
1060   llvm::Type *SrcTy = Src->getType();
1061   llvm::Type *DstTy = ConvertType(DstType);
1062 
1063   // Ignore conversions like int -> uint.
1064   if (SrcTy == DstTy)
1065     return Src;
1066 
1067   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1068            DstEltType = DstType->getAs<VectorType>()->getElementType();
1069 
1070   assert(SrcTy->isVectorTy() &&
1071          "ConvertVector source IR type must be a vector");
1072   assert(DstTy->isVectorTy() &&
1073          "ConvertVector destination IR type must be a vector");
1074 
1075   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1076              *DstEltTy = DstTy->getVectorElementType();
1077 
1078   if (DstEltType->isBooleanType()) {
1079     assert((SrcEltTy->isFloatingPointTy() ||
1080             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1081 
1082     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1083     if (SrcEltTy->isFloatingPointTy()) {
1084       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1085     } else {
1086       return Builder.CreateICmpNE(Src, Zero, "tobool");
1087     }
1088   }
1089 
1090   // We have the arithmetic types: real int/float.
1091   Value *Res = nullptr;
1092 
1093   if (isa<llvm::IntegerType>(SrcEltTy)) {
1094     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1095     if (isa<llvm::IntegerType>(DstEltTy))
1096       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1097     else if (InputSigned)
1098       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1099     else
1100       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1101   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1102     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1103     if (DstEltType->isSignedIntegerOrEnumerationType())
1104       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1105     else
1106       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1107   } else {
1108     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1109            "Unknown real conversion");
1110     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1111       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1112     else
1113       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1114   }
1115 
1116   return Res;
1117 }
1118 
1119 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1120   llvm::APSInt Value;
1121   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1122     if (E->isArrow())
1123       CGF.EmitScalarExpr(E->getBase());
1124     else
1125       EmitLValue(E->getBase());
1126     return Builder.getInt(Value);
1127   }
1128 
1129   return EmitLoadOfLValue(E);
1130 }
1131 
1132 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1133   TestAndClearIgnoreResultAssign();
1134 
1135   // Emit subscript expressions in rvalue context's.  For most cases, this just
1136   // loads the lvalue formed by the subscript expr.  However, we have to be
1137   // careful, because the base of a vector subscript is occasionally an rvalue,
1138   // so we can't get it as an lvalue.
1139   if (!E->getBase()->getType()->isVectorType())
1140     return EmitLoadOfLValue(E);
1141 
1142   // Handle the vector case.  The base must be a vector, the index must be an
1143   // integer value.
1144   Value *Base = Visit(E->getBase());
1145   Value *Idx  = Visit(E->getIdx());
1146   QualType IdxTy = E->getIdx()->getType();
1147 
1148   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1149     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1150 
1151   return Builder.CreateExtractElement(Base, Idx, "vecext");
1152 }
1153 
1154 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1155                                   unsigned Off, llvm::Type *I32Ty) {
1156   int MV = SVI->getMaskValue(Idx);
1157   if (MV == -1)
1158     return llvm::UndefValue::get(I32Ty);
1159   return llvm::ConstantInt::get(I32Ty, Off+MV);
1160 }
1161 
1162 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1163   if (C->getBitWidth() != 32) {
1164       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1165                                                     C->getZExtValue()) &&
1166              "Index operand too large for shufflevector mask!");
1167       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1168   }
1169   return C;
1170 }
1171 
1172 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1173   bool Ignore = TestAndClearIgnoreResultAssign();
1174   (void)Ignore;
1175   assert (Ignore == false && "init list ignored");
1176   unsigned NumInitElements = E->getNumInits();
1177 
1178   if (E->hadArrayRangeDesignator())
1179     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1180 
1181   llvm::VectorType *VType =
1182     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1183 
1184   if (!VType) {
1185     if (NumInitElements == 0) {
1186       // C++11 value-initialization for the scalar.
1187       return EmitNullValue(E->getType());
1188     }
1189     // We have a scalar in braces. Just use the first element.
1190     return Visit(E->getInit(0));
1191   }
1192 
1193   unsigned ResElts = VType->getNumElements();
1194 
1195   // Loop over initializers collecting the Value for each, and remembering
1196   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1197   // us to fold the shuffle for the swizzle into the shuffle for the vector
1198   // initializer, since LLVM optimizers generally do not want to touch
1199   // shuffles.
1200   unsigned CurIdx = 0;
1201   bool VIsUndefShuffle = false;
1202   llvm::Value *V = llvm::UndefValue::get(VType);
1203   for (unsigned i = 0; i != NumInitElements; ++i) {
1204     Expr *IE = E->getInit(i);
1205     Value *Init = Visit(IE);
1206     SmallVector<llvm::Constant*, 16> Args;
1207 
1208     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1209 
1210     // Handle scalar elements.  If the scalar initializer is actually one
1211     // element of a different vector of the same width, use shuffle instead of
1212     // extract+insert.
1213     if (!VVT) {
1214       if (isa<ExtVectorElementExpr>(IE)) {
1215         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1216 
1217         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1218           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1219           Value *LHS = nullptr, *RHS = nullptr;
1220           if (CurIdx == 0) {
1221             // insert into undef -> shuffle (src, undef)
1222             // shufflemask must use an i32
1223             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1224             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1225 
1226             LHS = EI->getVectorOperand();
1227             RHS = V;
1228             VIsUndefShuffle = true;
1229           } else if (VIsUndefShuffle) {
1230             // insert into undefshuffle && size match -> shuffle (v, src)
1231             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1232             for (unsigned j = 0; j != CurIdx; ++j)
1233               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1234             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1235             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1236 
1237             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1238             RHS = EI->getVectorOperand();
1239             VIsUndefShuffle = false;
1240           }
1241           if (!Args.empty()) {
1242             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1243             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1244             ++CurIdx;
1245             continue;
1246           }
1247         }
1248       }
1249       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1250                                       "vecinit");
1251       VIsUndefShuffle = false;
1252       ++CurIdx;
1253       continue;
1254     }
1255 
1256     unsigned InitElts = VVT->getNumElements();
1257 
1258     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1259     // input is the same width as the vector being constructed, generate an
1260     // optimized shuffle of the swizzle input into the result.
1261     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1262     if (isa<ExtVectorElementExpr>(IE)) {
1263       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1264       Value *SVOp = SVI->getOperand(0);
1265       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1266 
1267       if (OpTy->getNumElements() == ResElts) {
1268         for (unsigned j = 0; j != CurIdx; ++j) {
1269           // If the current vector initializer is a shuffle with undef, merge
1270           // this shuffle directly into it.
1271           if (VIsUndefShuffle) {
1272             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1273                                       CGF.Int32Ty));
1274           } else {
1275             Args.push_back(Builder.getInt32(j));
1276           }
1277         }
1278         for (unsigned j = 0, je = InitElts; j != je; ++j)
1279           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1280         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1281 
1282         if (VIsUndefShuffle)
1283           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1284 
1285         Init = SVOp;
1286       }
1287     }
1288 
1289     // Extend init to result vector length, and then shuffle its contribution
1290     // to the vector initializer into V.
1291     if (Args.empty()) {
1292       for (unsigned j = 0; j != InitElts; ++j)
1293         Args.push_back(Builder.getInt32(j));
1294       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1295       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1296       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1297                                          Mask, "vext");
1298 
1299       Args.clear();
1300       for (unsigned j = 0; j != CurIdx; ++j)
1301         Args.push_back(Builder.getInt32(j));
1302       for (unsigned j = 0; j != InitElts; ++j)
1303         Args.push_back(Builder.getInt32(j+Offset));
1304       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1305     }
1306 
1307     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1308     // merging subsequent shuffles into this one.
1309     if (CurIdx == 0)
1310       std::swap(V, Init);
1311     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1312     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1313     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1314     CurIdx += InitElts;
1315   }
1316 
1317   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1318   // Emit remaining default initializers.
1319   llvm::Type *EltTy = VType->getElementType();
1320 
1321   // Emit remaining default initializers
1322   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1323     Value *Idx = Builder.getInt32(CurIdx);
1324     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1325     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1326   }
1327   return V;
1328 }
1329 
1330 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1331   const Expr *E = CE->getSubExpr();
1332 
1333   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1334     return false;
1335 
1336   if (isa<CXXThisExpr>(E)) {
1337     // We always assume that 'this' is never null.
1338     return false;
1339   }
1340 
1341   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1342     // And that glvalue casts are never null.
1343     if (ICE->getValueKind() != VK_RValue)
1344       return false;
1345   }
1346 
1347   return true;
1348 }
1349 
1350 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1351 // have to handle a more broad range of conversions than explicit casts, as they
1352 // handle things like function to ptr-to-function decay etc.
1353 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1354   Expr *E = CE->getSubExpr();
1355   QualType DestTy = CE->getType();
1356   CastKind Kind = CE->getCastKind();
1357 
1358   if (!DestTy->isVoidType())
1359     TestAndClearIgnoreResultAssign();
1360 
1361   // Since almost all cast kinds apply to scalars, this switch doesn't have
1362   // a default case, so the compiler will warn on a missing case.  The cases
1363   // are in the same order as in the CastKind enum.
1364   switch (Kind) {
1365   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1366   case CK_BuiltinFnToFnPtr:
1367     llvm_unreachable("builtin functions are handled elsewhere");
1368 
1369   case CK_LValueBitCast:
1370   case CK_ObjCObjectLValueCast: {
1371     Value *V = EmitLValue(E).getAddress();
1372     V = Builder.CreateBitCast(V,
1373                           ConvertType(CGF.getContext().getPointerType(DestTy)));
1374     return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy),
1375                             CE->getExprLoc());
1376   }
1377 
1378   case CK_CPointerToObjCPointerCast:
1379   case CK_BlockPointerToObjCPointerCast:
1380   case CK_AnyPointerToBlockPointerCast:
1381   case CK_BitCast: {
1382     Value *Src = Visit(const_cast<Expr*>(E));
1383     llvm::Type *SrcTy = Src->getType();
1384     llvm::Type *DstTy = ConvertType(DestTy);
1385     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1386         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1387       llvm_unreachable("wrong cast for pointers in different address spaces"
1388                        "(must be an address space cast)!");
1389     }
1390 
1391     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1392       if (auto PT = DestTy->getAs<PointerType>())
1393         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1394                                       /*MayBeNull=*/true,
1395                                       CodeGenFunction::CFITCK_UnrelatedCast,
1396                                       CE->getLocStart());
1397     }
1398 
1399     return Builder.CreateBitCast(Src, DstTy);
1400   }
1401   case CK_AddressSpaceConversion: {
1402     Value *Src = Visit(const_cast<Expr*>(E));
1403     return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
1404   }
1405   case CK_AtomicToNonAtomic:
1406   case CK_NonAtomicToAtomic:
1407   case CK_NoOp:
1408   case CK_UserDefinedConversion:
1409     return Visit(const_cast<Expr*>(E));
1410 
1411   case CK_BaseToDerived: {
1412     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1413     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1414 
1415     llvm::Value *V = Visit(E);
1416 
1417     llvm::Value *Derived =
1418       CGF.GetAddressOfDerivedClass(V, DerivedClassDecl,
1419                                    CE->path_begin(), CE->path_end(),
1420                                    ShouldNullCheckClassCastValue(CE));
1421 
1422     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1423     // performed and the object is not of the derived type.
1424     if (CGF.sanitizePerformTypeCheck())
1425       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1426                         Derived, DestTy->getPointeeType());
1427 
1428     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1429       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
1430                                     /*MayBeNull=*/true,
1431                                     CodeGenFunction::CFITCK_DerivedCast,
1432                                     CE->getLocStart());
1433 
1434     return Derived;
1435   }
1436   case CK_UncheckedDerivedToBase:
1437   case CK_DerivedToBase: {
1438     const CXXRecordDecl *DerivedClassDecl =
1439       E->getType()->getPointeeCXXRecordDecl();
1440     assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
1441 
1442     return CGF.GetAddressOfBaseClass(
1443         Visit(E), DerivedClassDecl, CE->path_begin(), CE->path_end(),
1444         ShouldNullCheckClassCastValue(CE), CE->getExprLoc());
1445   }
1446   case CK_Dynamic: {
1447     Value *V = Visit(const_cast<Expr*>(E));
1448     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1449     return CGF.EmitDynamicCast(V, DCE);
1450   }
1451 
1452   case CK_ArrayToPointerDecay: {
1453     assert(E->getType()->isArrayType() &&
1454            "Array to pointer decay must have array source type!");
1455 
1456     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1457 
1458     // Note that VLA pointers are always decayed, so we don't need to do
1459     // anything here.
1460     if (!E->getType()->isVariableArrayType()) {
1461       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1462       llvm::Type *NewTy = ConvertType(E->getType());
1463       V = CGF.Builder.CreatePointerCast(
1464           V, NewTy->getPointerTo(V->getType()->getPointerAddressSpace()));
1465 
1466       assert(isa<llvm::ArrayType>(V->getType()->getPointerElementType()) &&
1467              "Expected pointer to array");
1468       V = Builder.CreateStructGEP(NewTy, V, 0, "arraydecay");
1469     }
1470 
1471     // Make sure the array decay ends up being the right type.  This matters if
1472     // the array type was of an incomplete type.
1473     return CGF.Builder.CreatePointerCast(V, ConvertType(CE->getType()));
1474   }
1475   case CK_FunctionToPointerDecay:
1476     return EmitLValue(E).getAddress();
1477 
1478   case CK_NullToPointer:
1479     if (MustVisitNullValue(E))
1480       (void) Visit(E);
1481 
1482     return llvm::ConstantPointerNull::get(
1483                                cast<llvm::PointerType>(ConvertType(DestTy)));
1484 
1485   case CK_NullToMemberPointer: {
1486     if (MustVisitNullValue(E))
1487       (void) Visit(E);
1488 
1489     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1490     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1491   }
1492 
1493   case CK_ReinterpretMemberPointer:
1494   case CK_BaseToDerivedMemberPointer:
1495   case CK_DerivedToBaseMemberPointer: {
1496     Value *Src = Visit(E);
1497 
1498     // Note that the AST doesn't distinguish between checked and
1499     // unchecked member pointer conversions, so we always have to
1500     // implement checked conversions here.  This is inefficient when
1501     // actual control flow may be required in order to perform the
1502     // check, which it is for data member pointers (but not member
1503     // function pointers on Itanium and ARM).
1504     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1505   }
1506 
1507   case CK_ARCProduceObject:
1508     return CGF.EmitARCRetainScalarExpr(E);
1509   case CK_ARCConsumeObject:
1510     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1511   case CK_ARCReclaimReturnedObject: {
1512     llvm::Value *value = Visit(E);
1513     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1514     return CGF.EmitObjCConsumeObject(E->getType(), value);
1515   }
1516   case CK_ARCExtendBlockObject:
1517     return CGF.EmitARCExtendBlockObject(E);
1518 
1519   case CK_CopyAndAutoreleaseBlockObject:
1520     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1521 
1522   case CK_FloatingRealToComplex:
1523   case CK_FloatingComplexCast:
1524   case CK_IntegralRealToComplex:
1525   case CK_IntegralComplexCast:
1526   case CK_IntegralComplexToFloatingComplex:
1527   case CK_FloatingComplexToIntegralComplex:
1528   case CK_ConstructorConversion:
1529   case CK_ToUnion:
1530     llvm_unreachable("scalar cast to non-scalar value");
1531 
1532   case CK_LValueToRValue:
1533     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1534     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1535     return Visit(const_cast<Expr*>(E));
1536 
1537   case CK_IntegralToPointer: {
1538     Value *Src = Visit(const_cast<Expr*>(E));
1539 
1540     // First, convert to the correct width so that we control the kind of
1541     // extension.
1542     llvm::Type *MiddleTy = CGF.IntPtrTy;
1543     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1544     llvm::Value* IntResult =
1545       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1546 
1547     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1548   }
1549   case CK_PointerToIntegral:
1550     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1551     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1552 
1553   case CK_ToVoid: {
1554     CGF.EmitIgnoredExpr(E);
1555     return nullptr;
1556   }
1557   case CK_VectorSplat: {
1558     llvm::Type *DstTy = ConvertType(DestTy);
1559     Value *Elt = Visit(const_cast<Expr*>(E));
1560     Elt = EmitScalarConversion(Elt, E->getType(),
1561                                DestTy->getAs<VectorType>()->getElementType(),
1562                                CE->getExprLoc());
1563 
1564     // Splat the element across to all elements
1565     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1566     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1567   }
1568 
1569   case CK_IntegralCast:
1570   case CK_IntegralToFloating:
1571   case CK_FloatingToIntegral:
1572   case CK_FloatingCast:
1573     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1574                                 CE->getExprLoc());
1575   case CK_IntegralToBoolean:
1576     return EmitIntToBoolConversion(Visit(E));
1577   case CK_PointerToBoolean:
1578     return EmitPointerToBoolConversion(Visit(E));
1579   case CK_FloatingToBoolean:
1580     return EmitFloatToBoolConversion(Visit(E));
1581   case CK_MemberPointerToBoolean: {
1582     llvm::Value *MemPtr = Visit(E);
1583     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1584     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1585   }
1586 
1587   case CK_FloatingComplexToReal:
1588   case CK_IntegralComplexToReal:
1589     return CGF.EmitComplexExpr(E, false, true).first;
1590 
1591   case CK_FloatingComplexToBoolean:
1592   case CK_IntegralComplexToBoolean: {
1593     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1594 
1595     // TODO: kill this function off, inline appropriate case here
1596     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
1597                                          CE->getExprLoc());
1598   }
1599 
1600   case CK_ZeroToOCLEvent: {
1601     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1602     return llvm::Constant::getNullValue(ConvertType(DestTy));
1603   }
1604 
1605   }
1606 
1607   llvm_unreachable("unknown scalar cast");
1608 }
1609 
1610 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1611   CodeGenFunction::StmtExprEvaluation eval(CGF);
1612   llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1613                                                 !E->getType()->isVoidType());
1614   if (!RetAlloca)
1615     return nullptr;
1616   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1617                               E->getExprLoc());
1618 }
1619 
1620 //===----------------------------------------------------------------------===//
1621 //                             Unary Operators
1622 //===----------------------------------------------------------------------===//
1623 
1624 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1625                                            llvm::Value *InVal, bool IsInc) {
1626   BinOpInfo BinOp;
1627   BinOp.LHS = InVal;
1628   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1629   BinOp.Ty = E->getType();
1630   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1631   BinOp.FPContractable = false;
1632   BinOp.E = E;
1633   return BinOp;
1634 }
1635 
1636 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1637     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1638   llvm::Value *Amount =
1639       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1640   StringRef Name = IsInc ? "inc" : "dec";
1641   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1642   case LangOptions::SOB_Defined:
1643     return Builder.CreateAdd(InVal, Amount, Name);
1644   case LangOptions::SOB_Undefined:
1645     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1646       return Builder.CreateNSWAdd(InVal, Amount, Name);
1647     // Fall through.
1648   case LangOptions::SOB_Trapping:
1649     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1650   }
1651   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1652 }
1653 
1654 llvm::Value *
1655 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1656                                            bool isInc, bool isPre) {
1657 
1658   QualType type = E->getSubExpr()->getType();
1659   llvm::PHINode *atomicPHI = nullptr;
1660   llvm::Value *value;
1661   llvm::Value *input;
1662 
1663   int amount = (isInc ? 1 : -1);
1664 
1665   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1666     type = atomicTy->getValueType();
1667     if (isInc && type->isBooleanType()) {
1668       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1669       if (isPre) {
1670         Builder.Insert(new llvm::StoreInst(True,
1671               LV.getAddress(), LV.isVolatileQualified(),
1672               LV.getAlignment().getQuantity(),
1673               llvm::SequentiallyConsistent));
1674         return Builder.getTrue();
1675       }
1676       // For atomic bool increment, we just store true and return it for
1677       // preincrement, do an atomic swap with true for postincrement
1678         return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1679             LV.getAddress(), True, llvm::SequentiallyConsistent);
1680     }
1681     // Special case for atomic increment / decrement on integers, emit
1682     // atomicrmw instructions.  We skip this if we want to be doing overflow
1683     // checking, and fall into the slow path with the atomic cmpxchg loop.
1684     if (!type->isBooleanType() && type->isIntegerType() &&
1685         !(type->isUnsignedIntegerType() &&
1686           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1687         CGF.getLangOpts().getSignedOverflowBehavior() !=
1688             LangOptions::SOB_Trapping) {
1689       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1690         llvm::AtomicRMWInst::Sub;
1691       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1692         llvm::Instruction::Sub;
1693       llvm::Value *amt = CGF.EmitToMemory(
1694           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1695       llvm::Value *old = Builder.CreateAtomicRMW(aop,
1696           LV.getAddress(), amt, llvm::SequentiallyConsistent);
1697       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1698     }
1699     value = EmitLoadOfLValue(LV, E->getExprLoc());
1700     input = value;
1701     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1702     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1703     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1704     value = CGF.EmitToMemory(value, type);
1705     Builder.CreateBr(opBB);
1706     Builder.SetInsertPoint(opBB);
1707     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1708     atomicPHI->addIncoming(value, startBB);
1709     value = atomicPHI;
1710   } else {
1711     value = EmitLoadOfLValue(LV, E->getExprLoc());
1712     input = value;
1713   }
1714 
1715   // Special case of integer increment that we have to check first: bool++.
1716   // Due to promotion rules, we get:
1717   //   bool++ -> bool = bool + 1
1718   //          -> bool = (int)bool + 1
1719   //          -> bool = ((int)bool + 1 != 0)
1720   // An interesting aspect of this is that increment is always true.
1721   // Decrement does not have this property.
1722   if (isInc && type->isBooleanType()) {
1723     value = Builder.getTrue();
1724 
1725   // Most common case by far: integer increment.
1726   } else if (type->isIntegerType()) {
1727     // Note that signed integer inc/dec with width less than int can't
1728     // overflow because of promotion rules; we're just eliding a few steps here.
1729     bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1730                        CGF.IntTy->getIntegerBitWidth();
1731     if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1732       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1733     } else if (CanOverflow && type->isUnsignedIntegerType() &&
1734                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1735       value =
1736           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1737     } else {
1738       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1739       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1740     }
1741 
1742   // Next most common: pointer increment.
1743   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1744     QualType type = ptr->getPointeeType();
1745 
1746     // VLA types don't have constant size.
1747     if (const VariableArrayType *vla
1748           = CGF.getContext().getAsVariableArrayType(type)) {
1749       llvm::Value *numElts = CGF.getVLASize(vla).first;
1750       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1751       if (CGF.getLangOpts().isSignedOverflowDefined())
1752         value = Builder.CreateGEP(value, numElts, "vla.inc");
1753       else
1754         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1755 
1756     // Arithmetic on function pointers (!) is just +-1.
1757     } else if (type->isFunctionType()) {
1758       llvm::Value *amt = Builder.getInt32(amount);
1759 
1760       value = CGF.EmitCastToVoidPtr(value);
1761       if (CGF.getLangOpts().isSignedOverflowDefined())
1762         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1763       else
1764         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1765       value = Builder.CreateBitCast(value, input->getType());
1766 
1767     // For everything else, we can just do a simple increment.
1768     } else {
1769       llvm::Value *amt = Builder.getInt32(amount);
1770       if (CGF.getLangOpts().isSignedOverflowDefined())
1771         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1772       else
1773         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1774     }
1775 
1776   // Vector increment/decrement.
1777   } else if (type->isVectorType()) {
1778     if (type->hasIntegerRepresentation()) {
1779       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1780 
1781       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1782     } else {
1783       value = Builder.CreateFAdd(
1784                   value,
1785                   llvm::ConstantFP::get(value->getType(), amount),
1786                   isInc ? "inc" : "dec");
1787     }
1788 
1789   // Floating point.
1790   } else if (type->isRealFloatingType()) {
1791     // Add the inc/dec to the real part.
1792     llvm::Value *amt;
1793 
1794     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1795       // Another special case: half FP increment should be done via float
1796       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1797         value = Builder.CreateCall(
1798             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1799                                  CGF.CGM.FloatTy),
1800             input, "incdec.conv");
1801       } else {
1802         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
1803       }
1804     }
1805 
1806     if (value->getType()->isFloatTy())
1807       amt = llvm::ConstantFP::get(VMContext,
1808                                   llvm::APFloat(static_cast<float>(amount)));
1809     else if (value->getType()->isDoubleTy())
1810       amt = llvm::ConstantFP::get(VMContext,
1811                                   llvm::APFloat(static_cast<double>(amount)));
1812     else {
1813       // Remaining types are either Half or LongDouble.  Convert from float.
1814       llvm::APFloat F(static_cast<float>(amount));
1815       bool ignored;
1816       // Don't use getFloatTypeSemantics because Half isn't
1817       // necessarily represented using the "half" LLVM type.
1818       F.convert(value->getType()->isHalfTy()
1819                     ? CGF.getTarget().getHalfFormat()
1820                     : CGF.getTarget().getLongDoubleFormat(),
1821                 llvm::APFloat::rmTowardZero, &ignored);
1822       amt = llvm::ConstantFP::get(VMContext, F);
1823     }
1824     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1825 
1826     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1827       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1828         value = Builder.CreateCall(
1829             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
1830                                  CGF.CGM.FloatTy),
1831             value, "incdec.conv");
1832       } else {
1833         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
1834       }
1835     }
1836 
1837   // Objective-C pointer types.
1838   } else {
1839     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1840     value = CGF.EmitCastToVoidPtr(value);
1841 
1842     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1843     if (!isInc) size = -size;
1844     llvm::Value *sizeValue =
1845       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1846 
1847     if (CGF.getLangOpts().isSignedOverflowDefined())
1848       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1849     else
1850       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1851     value = Builder.CreateBitCast(value, input->getType());
1852   }
1853 
1854   if (atomicPHI) {
1855     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1856     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1857     auto Pair = CGF.EmitAtomicCompareExchange(
1858         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
1859     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
1860     llvm::Value *success = Pair.second;
1861     atomicPHI->addIncoming(old, opBB);
1862     Builder.CreateCondBr(success, contBB, opBB);
1863     Builder.SetInsertPoint(contBB);
1864     return isPre ? value : input;
1865   }
1866 
1867   // Store the updated result through the lvalue.
1868   if (LV.isBitField())
1869     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1870   else
1871     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1872 
1873   // If this is a postinc, return the value read from memory, otherwise use the
1874   // updated value.
1875   return isPre ? value : input;
1876 }
1877 
1878 
1879 
1880 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1881   TestAndClearIgnoreResultAssign();
1882   // Emit unary minus with EmitSub so we handle overflow cases etc.
1883   BinOpInfo BinOp;
1884   BinOp.RHS = Visit(E->getSubExpr());
1885 
1886   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1887     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1888   else
1889     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1890   BinOp.Ty = E->getType();
1891   BinOp.Opcode = BO_Sub;
1892   BinOp.FPContractable = false;
1893   BinOp.E = E;
1894   return EmitSub(BinOp);
1895 }
1896 
1897 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1898   TestAndClearIgnoreResultAssign();
1899   Value *Op = Visit(E->getSubExpr());
1900   return Builder.CreateNot(Op, "neg");
1901 }
1902 
1903 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1904   // Perform vector logical not on comparison with zero vector.
1905   if (E->getType()->isExtVectorType()) {
1906     Value *Oper = Visit(E->getSubExpr());
1907     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1908     Value *Result;
1909     if (Oper->getType()->isFPOrFPVectorTy())
1910       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1911     else
1912       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1913     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1914   }
1915 
1916   // Compare operand to zero.
1917   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1918 
1919   // Invert value.
1920   // TODO: Could dynamically modify easy computations here.  For example, if
1921   // the operand is an icmp ne, turn into icmp eq.
1922   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1923 
1924   // ZExt result to the expr type.
1925   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1926 }
1927 
1928 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1929   // Try folding the offsetof to a constant.
1930   llvm::APSInt Value;
1931   if (E->EvaluateAsInt(Value, CGF.getContext()))
1932     return Builder.getInt(Value);
1933 
1934   // Loop over the components of the offsetof to compute the value.
1935   unsigned n = E->getNumComponents();
1936   llvm::Type* ResultType = ConvertType(E->getType());
1937   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1938   QualType CurrentType = E->getTypeSourceInfo()->getType();
1939   for (unsigned i = 0; i != n; ++i) {
1940     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1941     llvm::Value *Offset = nullptr;
1942     switch (ON.getKind()) {
1943     case OffsetOfExpr::OffsetOfNode::Array: {
1944       // Compute the index
1945       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1946       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1947       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1948       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1949 
1950       // Save the element type
1951       CurrentType =
1952           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1953 
1954       // Compute the element size
1955       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1956           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1957 
1958       // Multiply out to compute the result
1959       Offset = Builder.CreateMul(Idx, ElemSize);
1960       break;
1961     }
1962 
1963     case OffsetOfExpr::OffsetOfNode::Field: {
1964       FieldDecl *MemberDecl = ON.getField();
1965       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1966       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1967 
1968       // Compute the index of the field in its parent.
1969       unsigned i = 0;
1970       // FIXME: It would be nice if we didn't have to loop here!
1971       for (RecordDecl::field_iterator Field = RD->field_begin(),
1972                                       FieldEnd = RD->field_end();
1973            Field != FieldEnd; ++Field, ++i) {
1974         if (*Field == MemberDecl)
1975           break;
1976       }
1977       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1978 
1979       // Compute the offset to the field
1980       int64_t OffsetInt = RL.getFieldOffset(i) /
1981                           CGF.getContext().getCharWidth();
1982       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1983 
1984       // Save the element type.
1985       CurrentType = MemberDecl->getType();
1986       break;
1987     }
1988 
1989     case OffsetOfExpr::OffsetOfNode::Identifier:
1990       llvm_unreachable("dependent __builtin_offsetof");
1991 
1992     case OffsetOfExpr::OffsetOfNode::Base: {
1993       if (ON.getBase()->isVirtual()) {
1994         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1995         continue;
1996       }
1997 
1998       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1999       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2000 
2001       // Save the element type.
2002       CurrentType = ON.getBase()->getType();
2003 
2004       // Compute the offset to the base.
2005       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2006       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2007       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2008       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2009       break;
2010     }
2011     }
2012     Result = Builder.CreateAdd(Result, Offset);
2013   }
2014   return Result;
2015 }
2016 
2017 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2018 /// argument of the sizeof expression as an integer.
2019 Value *
2020 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2021                               const UnaryExprOrTypeTraitExpr *E) {
2022   QualType TypeToSize = E->getTypeOfArgument();
2023   if (E->getKind() == UETT_SizeOf) {
2024     if (const VariableArrayType *VAT =
2025           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2026       if (E->isArgumentType()) {
2027         // sizeof(type) - make sure to emit the VLA size.
2028         CGF.EmitVariablyModifiedType(TypeToSize);
2029       } else {
2030         // C99 6.5.3.4p2: If the argument is an expression of type
2031         // VLA, it is evaluated.
2032         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2033       }
2034 
2035       QualType eltType;
2036       llvm::Value *numElts;
2037       std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2038 
2039       llvm::Value *size = numElts;
2040 
2041       // Scale the number of non-VLA elements by the non-VLA element size.
2042       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2043       if (!eltSize.isOne())
2044         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2045 
2046       return size;
2047     }
2048   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2049     auto Alignment =
2050         CGF.getContext()
2051             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2052                 E->getTypeOfArgument()->getPointeeType()))
2053             .getQuantity();
2054     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2055   }
2056 
2057   // If this isn't sizeof(vla), the result must be constant; use the constant
2058   // folding logic so we don't have to duplicate it here.
2059   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2060 }
2061 
2062 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2063   Expr *Op = E->getSubExpr();
2064   if (Op->getType()->isAnyComplexType()) {
2065     // If it's an l-value, load through the appropriate subobject l-value.
2066     // Note that we have to ask E because Op might be an l-value that
2067     // this won't work for, e.g. an Obj-C property.
2068     if (E->isGLValue())
2069       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2070                                   E->getExprLoc()).getScalarVal();
2071 
2072     // Otherwise, calculate and project.
2073     return CGF.EmitComplexExpr(Op, false, true).first;
2074   }
2075 
2076   return Visit(Op);
2077 }
2078 
2079 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2080   Expr *Op = E->getSubExpr();
2081   if (Op->getType()->isAnyComplexType()) {
2082     // If it's an l-value, load through the appropriate subobject l-value.
2083     // Note that we have to ask E because Op might be an l-value that
2084     // this won't work for, e.g. an Obj-C property.
2085     if (Op->isGLValue())
2086       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2087                                   E->getExprLoc()).getScalarVal();
2088 
2089     // Otherwise, calculate and project.
2090     return CGF.EmitComplexExpr(Op, true, false).second;
2091   }
2092 
2093   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2094   // effects are evaluated, but not the actual value.
2095   if (Op->isGLValue())
2096     CGF.EmitLValue(Op);
2097   else
2098     CGF.EmitScalarExpr(Op, true);
2099   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2100 }
2101 
2102 //===----------------------------------------------------------------------===//
2103 //                           Binary Operators
2104 //===----------------------------------------------------------------------===//
2105 
2106 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2107   TestAndClearIgnoreResultAssign();
2108   BinOpInfo Result;
2109   Result.LHS = Visit(E->getLHS());
2110   Result.RHS = Visit(E->getRHS());
2111   Result.Ty  = E->getType();
2112   Result.Opcode = E->getOpcode();
2113   Result.FPContractable = E->isFPContractable();
2114   Result.E = E;
2115   return Result;
2116 }
2117 
2118 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2119                                               const CompoundAssignOperator *E,
2120                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2121                                                    Value *&Result) {
2122   QualType LHSTy = E->getLHS()->getType();
2123   BinOpInfo OpInfo;
2124 
2125   if (E->getComputationResultType()->isAnyComplexType())
2126     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2127 
2128   // Emit the RHS first.  __block variables need to have the rhs evaluated
2129   // first, plus this should improve codegen a little.
2130   OpInfo.RHS = Visit(E->getRHS());
2131   OpInfo.Ty = E->getComputationResultType();
2132   OpInfo.Opcode = E->getOpcode();
2133   OpInfo.FPContractable = false;
2134   OpInfo.E = E;
2135   // Load/convert the LHS.
2136   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2137 
2138   llvm::PHINode *atomicPHI = nullptr;
2139   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2140     QualType type = atomicTy->getValueType();
2141     if (!type->isBooleanType() && type->isIntegerType() &&
2142         !(type->isUnsignedIntegerType() &&
2143           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2144         CGF.getLangOpts().getSignedOverflowBehavior() !=
2145             LangOptions::SOB_Trapping) {
2146       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2147       switch (OpInfo.Opcode) {
2148         // We don't have atomicrmw operands for *, %, /, <<, >>
2149         case BO_MulAssign: case BO_DivAssign:
2150         case BO_RemAssign:
2151         case BO_ShlAssign:
2152         case BO_ShrAssign:
2153           break;
2154         case BO_AddAssign:
2155           aop = llvm::AtomicRMWInst::Add;
2156           break;
2157         case BO_SubAssign:
2158           aop = llvm::AtomicRMWInst::Sub;
2159           break;
2160         case BO_AndAssign:
2161           aop = llvm::AtomicRMWInst::And;
2162           break;
2163         case BO_XorAssign:
2164           aop = llvm::AtomicRMWInst::Xor;
2165           break;
2166         case BO_OrAssign:
2167           aop = llvm::AtomicRMWInst::Or;
2168           break;
2169         default:
2170           llvm_unreachable("Invalid compound assignment type");
2171       }
2172       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2173         llvm::Value *amt = CGF.EmitToMemory(
2174             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2175                                  E->getExprLoc()),
2176             LHSTy);
2177         Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt,
2178             llvm::SequentiallyConsistent);
2179         return LHSLV;
2180       }
2181     }
2182     // FIXME: For floating point types, we should be saving and restoring the
2183     // floating point environment in the loop.
2184     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2185     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2186     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2187     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2188     Builder.CreateBr(opBB);
2189     Builder.SetInsertPoint(opBB);
2190     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2191     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2192     OpInfo.LHS = atomicPHI;
2193   }
2194   else
2195     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2196 
2197   SourceLocation Loc = E->getExprLoc();
2198   OpInfo.LHS =
2199       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2200 
2201   // Expand the binary operator.
2202   Result = (this->*Func)(OpInfo);
2203 
2204   // Convert the result back to the LHS type.
2205   Result =
2206       EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2207 
2208   if (atomicPHI) {
2209     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2210     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2211     auto Pair = CGF.EmitAtomicCompareExchange(
2212         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2213     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2214     llvm::Value *success = Pair.second;
2215     atomicPHI->addIncoming(old, opBB);
2216     Builder.CreateCondBr(success, contBB, opBB);
2217     Builder.SetInsertPoint(contBB);
2218     return LHSLV;
2219   }
2220 
2221   // Store the result value into the LHS lvalue. Bit-fields are handled
2222   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2223   // 'An assignment expression has the value of the left operand after the
2224   // assignment...'.
2225   if (LHSLV.isBitField())
2226     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2227   else
2228     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2229 
2230   return LHSLV;
2231 }
2232 
2233 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2234                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2235   bool Ignore = TestAndClearIgnoreResultAssign();
2236   Value *RHS;
2237   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2238 
2239   // If the result is clearly ignored, return now.
2240   if (Ignore)
2241     return nullptr;
2242 
2243   // The result of an assignment in C is the assigned r-value.
2244   if (!CGF.getLangOpts().CPlusPlus)
2245     return RHS;
2246 
2247   // If the lvalue is non-volatile, return the computed value of the assignment.
2248   if (!LHS.isVolatileQualified())
2249     return RHS;
2250 
2251   // Otherwise, reload the value.
2252   return EmitLoadOfLValue(LHS, E->getExprLoc());
2253 }
2254 
2255 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2256     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2257   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2258 
2259   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2260     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2261                                     SanitizerKind::IntegerDivideByZero));
2262   }
2263 
2264   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2265       Ops.Ty->hasSignedIntegerRepresentation()) {
2266     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2267 
2268     llvm::Value *IntMin =
2269       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2270     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2271 
2272     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2273     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2274     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2275     Checks.push_back(
2276         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2277   }
2278 
2279   if (Checks.size() > 0)
2280     EmitBinOpCheck(Checks, Ops);
2281 }
2282 
2283 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2284   {
2285     CodeGenFunction::SanitizerScope SanScope(&CGF);
2286     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2287          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2288         Ops.Ty->isIntegerType()) {
2289       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2290       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2291     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2292                Ops.Ty->isRealFloatingType()) {
2293       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2294       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2295       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2296                      Ops);
2297     }
2298   }
2299 
2300   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2301     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2302     if (CGF.getLangOpts().OpenCL) {
2303       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
2304       llvm::Type *ValTy = Val->getType();
2305       if (ValTy->isFloatTy() ||
2306           (isa<llvm::VectorType>(ValTy) &&
2307            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2308         CGF.SetFPAccuracy(Val, 2.5);
2309     }
2310     return Val;
2311   }
2312   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2313     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2314   else
2315     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2316 }
2317 
2318 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2319   // Rem in C can't be a floating point type: C99 6.5.5p2.
2320   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2321     CodeGenFunction::SanitizerScope SanScope(&CGF);
2322     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2323 
2324     if (Ops.Ty->isIntegerType())
2325       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2326   }
2327 
2328   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2329     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2330   else
2331     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2332 }
2333 
2334 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2335   unsigned IID;
2336   unsigned OpID = 0;
2337 
2338   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2339   switch (Ops.Opcode) {
2340   case BO_Add:
2341   case BO_AddAssign:
2342     OpID = 1;
2343     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2344                      llvm::Intrinsic::uadd_with_overflow;
2345     break;
2346   case BO_Sub:
2347   case BO_SubAssign:
2348     OpID = 2;
2349     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2350                      llvm::Intrinsic::usub_with_overflow;
2351     break;
2352   case BO_Mul:
2353   case BO_MulAssign:
2354     OpID = 3;
2355     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2356                      llvm::Intrinsic::umul_with_overflow;
2357     break;
2358   default:
2359     llvm_unreachable("Unsupported operation for overflow detection");
2360   }
2361   OpID <<= 1;
2362   if (isSigned)
2363     OpID |= 1;
2364 
2365   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2366 
2367   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2368 
2369   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2370   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2371   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2372 
2373   // Handle overflow with llvm.trap if no custom handler has been specified.
2374   const std::string *handlerName =
2375     &CGF.getLangOpts().OverflowHandler;
2376   if (handlerName->empty()) {
2377     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2378     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2379     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2380       CodeGenFunction::SanitizerScope SanScope(&CGF);
2381       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2382       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2383                               : SanitizerKind::UnsignedIntegerOverflow;
2384       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2385     } else
2386       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2387     return result;
2388   }
2389 
2390   // Branch in case of overflow.
2391   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2392   llvm::Function::iterator insertPt = initialBB;
2393   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2394                                                       std::next(insertPt));
2395   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2396 
2397   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2398 
2399   // If an overflow handler is set, then we want to call it and then use its
2400   // result, if it returns.
2401   Builder.SetInsertPoint(overflowBB);
2402 
2403   // Get the overflow handler.
2404   llvm::Type *Int8Ty = CGF.Int8Ty;
2405   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2406   llvm::FunctionType *handlerTy =
2407       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2408   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2409 
2410   // Sign extend the args to 64-bit, so that we can use the same handler for
2411   // all types of overflow.
2412   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2413   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2414 
2415   // Call the handler with the two arguments, the operation, and the size of
2416   // the result.
2417   llvm::Value *handlerArgs[] = {
2418     lhs,
2419     rhs,
2420     Builder.getInt8(OpID),
2421     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2422   };
2423   llvm::Value *handlerResult =
2424     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2425 
2426   // Truncate the result back to the desired size.
2427   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2428   Builder.CreateBr(continueBB);
2429 
2430   Builder.SetInsertPoint(continueBB);
2431   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2432   phi->addIncoming(result, initialBB);
2433   phi->addIncoming(handlerResult, overflowBB);
2434 
2435   return phi;
2436 }
2437 
2438 /// Emit pointer + index arithmetic.
2439 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2440                                     const BinOpInfo &op,
2441                                     bool isSubtraction) {
2442   // Must have binary (not unary) expr here.  Unary pointer
2443   // increment/decrement doesn't use this path.
2444   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2445 
2446   Value *pointer = op.LHS;
2447   Expr *pointerOperand = expr->getLHS();
2448   Value *index = op.RHS;
2449   Expr *indexOperand = expr->getRHS();
2450 
2451   // In a subtraction, the LHS is always the pointer.
2452   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2453     std::swap(pointer, index);
2454     std::swap(pointerOperand, indexOperand);
2455   }
2456 
2457   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2458   if (width != CGF.PointerWidthInBits) {
2459     // Zero-extend or sign-extend the pointer value according to
2460     // whether the index is signed or not.
2461     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2462     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2463                                       "idx.ext");
2464   }
2465 
2466   // If this is subtraction, negate the index.
2467   if (isSubtraction)
2468     index = CGF.Builder.CreateNeg(index, "idx.neg");
2469 
2470   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2471     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2472                         /*Accessed*/ false);
2473 
2474   const PointerType *pointerType
2475     = pointerOperand->getType()->getAs<PointerType>();
2476   if (!pointerType) {
2477     QualType objectType = pointerOperand->getType()
2478                                         ->castAs<ObjCObjectPointerType>()
2479                                         ->getPointeeType();
2480     llvm::Value *objectSize
2481       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2482 
2483     index = CGF.Builder.CreateMul(index, objectSize);
2484 
2485     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2486     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2487     return CGF.Builder.CreateBitCast(result, pointer->getType());
2488   }
2489 
2490   QualType elementType = pointerType->getPointeeType();
2491   if (const VariableArrayType *vla
2492         = CGF.getContext().getAsVariableArrayType(elementType)) {
2493     // The element count here is the total number of non-VLA elements.
2494     llvm::Value *numElements = CGF.getVLASize(vla).first;
2495 
2496     // Effectively, the multiply by the VLA size is part of the GEP.
2497     // GEP indexes are signed, and scaling an index isn't permitted to
2498     // signed-overflow, so we use the same semantics for our explicit
2499     // multiply.  We suppress this if overflow is not undefined behavior.
2500     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2501       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2502       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2503     } else {
2504       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2505       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2506     }
2507     return pointer;
2508   }
2509 
2510   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2511   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2512   // future proof.
2513   if (elementType->isVoidType() || elementType->isFunctionType()) {
2514     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2515     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2516     return CGF.Builder.CreateBitCast(result, pointer->getType());
2517   }
2518 
2519   if (CGF.getLangOpts().isSignedOverflowDefined())
2520     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2521 
2522   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2523 }
2524 
2525 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2526 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2527 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2528 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2529 // efficient operations.
2530 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2531                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2532                            bool negMul, bool negAdd) {
2533   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2534 
2535   Value *MulOp0 = MulOp->getOperand(0);
2536   Value *MulOp1 = MulOp->getOperand(1);
2537   if (negMul) {
2538     MulOp0 =
2539       Builder.CreateFSub(
2540         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2541         "neg");
2542   } else if (negAdd) {
2543     Addend =
2544       Builder.CreateFSub(
2545         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2546         "neg");
2547   }
2548 
2549   Value *FMulAdd = Builder.CreateCall(
2550       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2551       {MulOp0, MulOp1, Addend});
2552    MulOp->eraseFromParent();
2553 
2554    return FMulAdd;
2555 }
2556 
2557 // Check whether it would be legal to emit an fmuladd intrinsic call to
2558 // represent op and if so, build the fmuladd.
2559 //
2560 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2561 // Does NOT check the type of the operation - it's assumed that this function
2562 // will be called from contexts where it's known that the type is contractable.
2563 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2564                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2565                          bool isSub=false) {
2566 
2567   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2568           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2569          "Only fadd/fsub can be the root of an fmuladd.");
2570 
2571   // Check whether this op is marked as fusable.
2572   if (!op.FPContractable)
2573     return nullptr;
2574 
2575   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2576   // either disabled, or handled entirely by the LLVM backend).
2577   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2578     return nullptr;
2579 
2580   // We have a potentially fusable op. Look for a mul on one of the operands.
2581   if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2582     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2583       assert(LHSBinOp->getNumUses() == 0 &&
2584              "Operations with multiple uses shouldn't be contracted.");
2585       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2586     }
2587   } else if (llvm::BinaryOperator* RHSBinOp =
2588                dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2589     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2590       assert(RHSBinOp->getNumUses() == 0 &&
2591              "Operations with multiple uses shouldn't be contracted.");
2592       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2593     }
2594   }
2595 
2596   return nullptr;
2597 }
2598 
2599 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2600   if (op.LHS->getType()->isPointerTy() ||
2601       op.RHS->getType()->isPointerTy())
2602     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2603 
2604   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2605     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2606     case LangOptions::SOB_Defined:
2607       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2608     case LangOptions::SOB_Undefined:
2609       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2610         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2611       // Fall through.
2612     case LangOptions::SOB_Trapping:
2613       return EmitOverflowCheckedBinOp(op);
2614     }
2615   }
2616 
2617   if (op.Ty->isUnsignedIntegerType() &&
2618       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2619     return EmitOverflowCheckedBinOp(op);
2620 
2621   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2622     // Try to form an fmuladd.
2623     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2624       return FMulAdd;
2625 
2626     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2627   }
2628 
2629   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2630 }
2631 
2632 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2633   // The LHS is always a pointer if either side is.
2634   if (!op.LHS->getType()->isPointerTy()) {
2635     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2636       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2637       case LangOptions::SOB_Defined:
2638         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2639       case LangOptions::SOB_Undefined:
2640         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2641           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2642         // Fall through.
2643       case LangOptions::SOB_Trapping:
2644         return EmitOverflowCheckedBinOp(op);
2645       }
2646     }
2647 
2648     if (op.Ty->isUnsignedIntegerType() &&
2649         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2650       return EmitOverflowCheckedBinOp(op);
2651 
2652     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2653       // Try to form an fmuladd.
2654       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2655         return FMulAdd;
2656       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2657     }
2658 
2659     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2660   }
2661 
2662   // If the RHS is not a pointer, then we have normal pointer
2663   // arithmetic.
2664   if (!op.RHS->getType()->isPointerTy())
2665     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2666 
2667   // Otherwise, this is a pointer subtraction.
2668 
2669   // Do the raw subtraction part.
2670   llvm::Value *LHS
2671     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2672   llvm::Value *RHS
2673     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2674   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2675 
2676   // Okay, figure out the element size.
2677   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2678   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2679 
2680   llvm::Value *divisor = nullptr;
2681 
2682   // For a variable-length array, this is going to be non-constant.
2683   if (const VariableArrayType *vla
2684         = CGF.getContext().getAsVariableArrayType(elementType)) {
2685     llvm::Value *numElements;
2686     std::tie(numElements, elementType) = CGF.getVLASize(vla);
2687 
2688     divisor = numElements;
2689 
2690     // Scale the number of non-VLA elements by the non-VLA element size.
2691     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2692     if (!eltSize.isOne())
2693       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2694 
2695   // For everything elese, we can just compute it, safe in the
2696   // assumption that Sema won't let anything through that we can't
2697   // safely compute the size of.
2698   } else {
2699     CharUnits elementSize;
2700     // Handle GCC extension for pointer arithmetic on void* and
2701     // function pointer types.
2702     if (elementType->isVoidType() || elementType->isFunctionType())
2703       elementSize = CharUnits::One();
2704     else
2705       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2706 
2707     // Don't even emit the divide for element size of 1.
2708     if (elementSize.isOne())
2709       return diffInChars;
2710 
2711     divisor = CGF.CGM.getSize(elementSize);
2712   }
2713 
2714   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2715   // pointer difference in C is only defined in the case where both operands
2716   // are pointing to elements of an array.
2717   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2718 }
2719 
2720 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2721   llvm::IntegerType *Ty;
2722   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2723     Ty = cast<llvm::IntegerType>(VT->getElementType());
2724   else
2725     Ty = cast<llvm::IntegerType>(LHS->getType());
2726   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2727 }
2728 
2729 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2730   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2731   // RHS to the same size as the LHS.
2732   Value *RHS = Ops.RHS;
2733   if (Ops.LHS->getType() != RHS->getType())
2734     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2735 
2736   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
2737                       Ops.Ty->hasSignedIntegerRepresentation();
2738   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
2739   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2740   if (CGF.getLangOpts().OpenCL)
2741     RHS =
2742         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2743   else if ((SanitizeBase || SanitizeExponent) &&
2744            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2745     CodeGenFunction::SanitizerScope SanScope(&CGF);
2746     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
2747     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2748     llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
2749 
2750     if (SanitizeExponent) {
2751       Checks.push_back(
2752           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
2753     }
2754 
2755     if (SanitizeBase) {
2756       // Check whether we are shifting any non-zero bits off the top of the
2757       // integer. We only emit this check if exponent is valid - otherwise
2758       // instructions below will have undefined behavior themselves.
2759       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2760       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2761       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
2762       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
2763       CGF.EmitBlock(CheckShiftBase);
2764       llvm::Value *BitsShiftedOff =
2765         Builder.CreateLShr(Ops.LHS,
2766                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2767                                              /*NUW*/true, /*NSW*/true),
2768                            "shl.check");
2769       if (CGF.getLangOpts().CPlusPlus) {
2770         // In C99, we are not permitted to shift a 1 bit into the sign bit.
2771         // Under C++11's rules, shifting a 1 bit into the sign bit is
2772         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2773         // define signed left shifts, so we use the C99 and C++11 rules there).
2774         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2775         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2776       }
2777       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2778       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2779       CGF.EmitBlock(Cont);
2780       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
2781       BaseCheck->addIncoming(Builder.getTrue(), Orig);
2782       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
2783       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
2784     }
2785 
2786     assert(!Checks.empty());
2787     EmitBinOpCheck(Checks, Ops);
2788   }
2789 
2790   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2791 }
2792 
2793 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2794   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2795   // RHS to the same size as the LHS.
2796   Value *RHS = Ops.RHS;
2797   if (Ops.LHS->getType() != RHS->getType())
2798     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2799 
2800   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2801   if (CGF.getLangOpts().OpenCL)
2802     RHS =
2803         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2804   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
2805            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2806     CodeGenFunction::SanitizerScope SanScope(&CGF);
2807     llvm::Value *Valid =
2808         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
2809     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
2810   }
2811 
2812   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2813     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2814   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2815 }
2816 
2817 enum IntrinsicType { VCMPEQ, VCMPGT };
2818 // return corresponding comparison intrinsic for given vector type
2819 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2820                                         BuiltinType::Kind ElemKind) {
2821   switch (ElemKind) {
2822   default: llvm_unreachable("unexpected element type");
2823   case BuiltinType::Char_U:
2824   case BuiltinType::UChar:
2825     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2826                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2827   case BuiltinType::Char_S:
2828   case BuiltinType::SChar:
2829     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2830                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2831   case BuiltinType::UShort:
2832     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2833                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2834   case BuiltinType::Short:
2835     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2836                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2837   case BuiltinType::UInt:
2838   case BuiltinType::ULong:
2839     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2840                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2841   case BuiltinType::Int:
2842   case BuiltinType::Long:
2843     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2844                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2845   case BuiltinType::Float:
2846     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2847                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2848   }
2849 }
2850 
2851 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2852                                       unsigned SICmpOpc, unsigned FCmpOpc) {
2853   TestAndClearIgnoreResultAssign();
2854   Value *Result;
2855   QualType LHSTy = E->getLHS()->getType();
2856   QualType RHSTy = E->getRHS()->getType();
2857   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2858     assert(E->getOpcode() == BO_EQ ||
2859            E->getOpcode() == BO_NE);
2860     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2861     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2862     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2863                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2864   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
2865     Value *LHS = Visit(E->getLHS());
2866     Value *RHS = Visit(E->getRHS());
2867 
2868     // If AltiVec, the comparison results in a numeric type, so we use
2869     // intrinsics comparing vectors and giving 0 or 1 as a result
2870     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2871       // constants for mapping CR6 register bits to predicate result
2872       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2873 
2874       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2875 
2876       // in several cases vector arguments order will be reversed
2877       Value *FirstVecArg = LHS,
2878             *SecondVecArg = RHS;
2879 
2880       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2881       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2882       BuiltinType::Kind ElementKind = BTy->getKind();
2883 
2884       switch(E->getOpcode()) {
2885       default: llvm_unreachable("is not a comparison operation");
2886       case BO_EQ:
2887         CR6 = CR6_LT;
2888         ID = GetIntrinsic(VCMPEQ, ElementKind);
2889         break;
2890       case BO_NE:
2891         CR6 = CR6_EQ;
2892         ID = GetIntrinsic(VCMPEQ, ElementKind);
2893         break;
2894       case BO_LT:
2895         CR6 = CR6_LT;
2896         ID = GetIntrinsic(VCMPGT, ElementKind);
2897         std::swap(FirstVecArg, SecondVecArg);
2898         break;
2899       case BO_GT:
2900         CR6 = CR6_LT;
2901         ID = GetIntrinsic(VCMPGT, ElementKind);
2902         break;
2903       case BO_LE:
2904         if (ElementKind == BuiltinType::Float) {
2905           CR6 = CR6_LT;
2906           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2907           std::swap(FirstVecArg, SecondVecArg);
2908         }
2909         else {
2910           CR6 = CR6_EQ;
2911           ID = GetIntrinsic(VCMPGT, ElementKind);
2912         }
2913         break;
2914       case BO_GE:
2915         if (ElementKind == BuiltinType::Float) {
2916           CR6 = CR6_LT;
2917           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2918         }
2919         else {
2920           CR6 = CR6_EQ;
2921           ID = GetIntrinsic(VCMPGT, ElementKind);
2922           std::swap(FirstVecArg, SecondVecArg);
2923         }
2924         break;
2925       }
2926 
2927       Value *CR6Param = Builder.getInt32(CR6);
2928       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2929       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
2930       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2931                                   E->getExprLoc());
2932     }
2933 
2934     if (LHS->getType()->isFPOrFPVectorTy()) {
2935       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2936                                   LHS, RHS, "cmp");
2937     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2938       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2939                                   LHS, RHS, "cmp");
2940     } else {
2941       // Unsigned integers and pointers.
2942       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2943                                   LHS, RHS, "cmp");
2944     }
2945 
2946     // If this is a vector comparison, sign extend the result to the appropriate
2947     // vector integer type and return it (don't convert to bool).
2948     if (LHSTy->isVectorType())
2949       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2950 
2951   } else {
2952     // Complex Comparison: can only be an equality comparison.
2953     CodeGenFunction::ComplexPairTy LHS, RHS;
2954     QualType CETy;
2955     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
2956       LHS = CGF.EmitComplexExpr(E->getLHS());
2957       CETy = CTy->getElementType();
2958     } else {
2959       LHS.first = Visit(E->getLHS());
2960       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
2961       CETy = LHSTy;
2962     }
2963     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
2964       RHS = CGF.EmitComplexExpr(E->getRHS());
2965       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
2966                                                      CTy->getElementType()) &&
2967              "The element types must always match.");
2968       (void)CTy;
2969     } else {
2970       RHS.first = Visit(E->getRHS());
2971       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
2972       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
2973              "The element types must always match.");
2974     }
2975 
2976     Value *ResultR, *ResultI;
2977     if (CETy->isRealFloatingType()) {
2978       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2979                                    LHS.first, RHS.first, "cmp.r");
2980       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2981                                    LHS.second, RHS.second, "cmp.i");
2982     } else {
2983       // Complex comparisons can only be equality comparisons.  As such, signed
2984       // and unsigned opcodes are the same.
2985       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2986                                    LHS.first, RHS.first, "cmp.r");
2987       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2988                                    LHS.second, RHS.second, "cmp.i");
2989     }
2990 
2991     if (E->getOpcode() == BO_EQ) {
2992       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2993     } else {
2994       assert(E->getOpcode() == BO_NE &&
2995              "Complex comparison other than == or != ?");
2996       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2997     }
2998   }
2999 
3000   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3001                               E->getExprLoc());
3002 }
3003 
3004 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3005   bool Ignore = TestAndClearIgnoreResultAssign();
3006 
3007   Value *RHS;
3008   LValue LHS;
3009 
3010   switch (E->getLHS()->getType().getObjCLifetime()) {
3011   case Qualifiers::OCL_Strong:
3012     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3013     break;
3014 
3015   case Qualifiers::OCL_Autoreleasing:
3016     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3017     break;
3018 
3019   case Qualifiers::OCL_Weak:
3020     RHS = Visit(E->getRHS());
3021     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3022     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3023     break;
3024 
3025   // No reason to do any of these differently.
3026   case Qualifiers::OCL_None:
3027   case Qualifiers::OCL_ExplicitNone:
3028     // __block variables need to have the rhs evaluated first, plus
3029     // this should improve codegen just a little.
3030     RHS = Visit(E->getRHS());
3031     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3032 
3033     // Store the value into the LHS.  Bit-fields are handled specially
3034     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3035     // 'An assignment expression has the value of the left operand after
3036     // the assignment...'.
3037     if (LHS.isBitField())
3038       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3039     else
3040       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3041   }
3042 
3043   // If the result is clearly ignored, return now.
3044   if (Ignore)
3045     return nullptr;
3046 
3047   // The result of an assignment in C is the assigned r-value.
3048   if (!CGF.getLangOpts().CPlusPlus)
3049     return RHS;
3050 
3051   // If the lvalue is non-volatile, return the computed value of the assignment.
3052   if (!LHS.isVolatileQualified())
3053     return RHS;
3054 
3055   // Otherwise, reload the value.
3056   return EmitLoadOfLValue(LHS, E->getExprLoc());
3057 }
3058 
3059 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3060   // Perform vector logical and on comparisons with zero vectors.
3061   if (E->getType()->isVectorType()) {
3062     CGF.incrementProfileCounter(E);
3063 
3064     Value *LHS = Visit(E->getLHS());
3065     Value *RHS = Visit(E->getRHS());
3066     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3067     if (LHS->getType()->isFPOrFPVectorTy()) {
3068       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3069       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3070     } else {
3071       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3072       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3073     }
3074     Value *And = Builder.CreateAnd(LHS, RHS);
3075     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3076   }
3077 
3078   llvm::Type *ResTy = ConvertType(E->getType());
3079 
3080   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3081   // If we have 1 && X, just emit X without inserting the control flow.
3082   bool LHSCondVal;
3083   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3084     if (LHSCondVal) { // If we have 1 && X, just emit X.
3085       CGF.incrementProfileCounter(E);
3086 
3087       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3088       // ZExt result to int or bool.
3089       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3090     }
3091 
3092     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3093     if (!CGF.ContainsLabel(E->getRHS()))
3094       return llvm::Constant::getNullValue(ResTy);
3095   }
3096 
3097   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3098   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3099 
3100   CodeGenFunction::ConditionalEvaluation eval(CGF);
3101 
3102   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3103   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3104                            CGF.getProfileCount(E->getRHS()));
3105 
3106   // Any edges into the ContBlock are now from an (indeterminate number of)
3107   // edges from this first condition.  All of these values will be false.  Start
3108   // setting up the PHI node in the Cont Block for this.
3109   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3110                                             "", ContBlock);
3111   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3112        PI != PE; ++PI)
3113     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3114 
3115   eval.begin(CGF);
3116   CGF.EmitBlock(RHSBlock);
3117   CGF.incrementProfileCounter(E);
3118   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3119   eval.end(CGF);
3120 
3121   // Reaquire the RHS block, as there may be subblocks inserted.
3122   RHSBlock = Builder.GetInsertBlock();
3123 
3124   // Emit an unconditional branch from this block to ContBlock.
3125   {
3126     // There is no need to emit line number for unconditional branch.
3127     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3128     CGF.EmitBlock(ContBlock);
3129   }
3130   // Insert an entry into the phi node for the edge with the value of RHSCond.
3131   PN->addIncoming(RHSCond, RHSBlock);
3132 
3133   // ZExt result to int.
3134   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3135 }
3136 
3137 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3138   // Perform vector logical or on comparisons with zero vectors.
3139   if (E->getType()->isVectorType()) {
3140     CGF.incrementProfileCounter(E);
3141 
3142     Value *LHS = Visit(E->getLHS());
3143     Value *RHS = Visit(E->getRHS());
3144     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3145     if (LHS->getType()->isFPOrFPVectorTy()) {
3146       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3147       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3148     } else {
3149       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3150       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3151     }
3152     Value *Or = Builder.CreateOr(LHS, RHS);
3153     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3154   }
3155 
3156   llvm::Type *ResTy = ConvertType(E->getType());
3157 
3158   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3159   // If we have 0 || X, just emit X without inserting the control flow.
3160   bool LHSCondVal;
3161   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3162     if (!LHSCondVal) { // If we have 0 || X, just emit X.
3163       CGF.incrementProfileCounter(E);
3164 
3165       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3166       // ZExt result to int or bool.
3167       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3168     }
3169 
3170     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3171     if (!CGF.ContainsLabel(E->getRHS()))
3172       return llvm::ConstantInt::get(ResTy, 1);
3173   }
3174 
3175   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3176   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3177 
3178   CodeGenFunction::ConditionalEvaluation eval(CGF);
3179 
3180   // Branch on the LHS first.  If it is true, go to the success (cont) block.
3181   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3182                            CGF.getCurrentProfileCount() -
3183                                CGF.getProfileCount(E->getRHS()));
3184 
3185   // Any edges into the ContBlock are now from an (indeterminate number of)
3186   // edges from this first condition.  All of these values will be true.  Start
3187   // setting up the PHI node in the Cont Block for this.
3188   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3189                                             "", ContBlock);
3190   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3191        PI != PE; ++PI)
3192     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3193 
3194   eval.begin(CGF);
3195 
3196   // Emit the RHS condition as a bool value.
3197   CGF.EmitBlock(RHSBlock);
3198   CGF.incrementProfileCounter(E);
3199   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3200 
3201   eval.end(CGF);
3202 
3203   // Reaquire the RHS block, as there may be subblocks inserted.
3204   RHSBlock = Builder.GetInsertBlock();
3205 
3206   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3207   // into the phi node for the edge with the value of RHSCond.
3208   CGF.EmitBlock(ContBlock);
3209   PN->addIncoming(RHSCond, RHSBlock);
3210 
3211   // ZExt result to int.
3212   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3213 }
3214 
3215 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3216   CGF.EmitIgnoredExpr(E->getLHS());
3217   CGF.EnsureInsertPoint();
3218   return Visit(E->getRHS());
3219 }
3220 
3221 //===----------------------------------------------------------------------===//
3222 //                             Other Operators
3223 //===----------------------------------------------------------------------===//
3224 
3225 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3226 /// expression is cheap enough and side-effect-free enough to evaluate
3227 /// unconditionally instead of conditionally.  This is used to convert control
3228 /// flow into selects in some cases.
3229 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3230                                                    CodeGenFunction &CGF) {
3231   // Anything that is an integer or floating point constant is fine.
3232   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3233 
3234   // Even non-volatile automatic variables can't be evaluated unconditionally.
3235   // Referencing a thread_local may cause non-trivial initialization work to
3236   // occur. If we're inside a lambda and one of the variables is from the scope
3237   // outside the lambda, that function may have returned already. Reading its
3238   // locals is a bad idea. Also, these reads may introduce races there didn't
3239   // exist in the source-level program.
3240 }
3241 
3242 
3243 Value *ScalarExprEmitter::
3244 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3245   TestAndClearIgnoreResultAssign();
3246 
3247   // Bind the common expression if necessary.
3248   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3249 
3250   Expr *condExpr = E->getCond();
3251   Expr *lhsExpr = E->getTrueExpr();
3252   Expr *rhsExpr = E->getFalseExpr();
3253 
3254   // If the condition constant folds and can be elided, try to avoid emitting
3255   // the condition and the dead arm.
3256   bool CondExprBool;
3257   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3258     Expr *live = lhsExpr, *dead = rhsExpr;
3259     if (!CondExprBool) std::swap(live, dead);
3260 
3261     // If the dead side doesn't have labels we need, just emit the Live part.
3262     if (!CGF.ContainsLabel(dead)) {
3263       if (CondExprBool)
3264         CGF.incrementProfileCounter(E);
3265       Value *Result = Visit(live);
3266 
3267       // If the live part is a throw expression, it acts like it has a void
3268       // type, so evaluating it returns a null Value*.  However, a conditional
3269       // with non-void type must return a non-null Value*.
3270       if (!Result && !E->getType()->isVoidType())
3271         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3272 
3273       return Result;
3274     }
3275   }
3276 
3277   // OpenCL: If the condition is a vector, we can treat this condition like
3278   // the select function.
3279   if (CGF.getLangOpts().OpenCL
3280       && condExpr->getType()->isVectorType()) {
3281     CGF.incrementProfileCounter(E);
3282 
3283     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3284     llvm::Value *LHS = Visit(lhsExpr);
3285     llvm::Value *RHS = Visit(rhsExpr);
3286 
3287     llvm::Type *condType = ConvertType(condExpr->getType());
3288     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3289 
3290     unsigned numElem = vecTy->getNumElements();
3291     llvm::Type *elemType = vecTy->getElementType();
3292 
3293     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3294     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3295     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3296                                           llvm::VectorType::get(elemType,
3297                                                                 numElem),
3298                                           "sext");
3299     llvm::Value *tmp2 = Builder.CreateNot(tmp);
3300 
3301     // Cast float to int to perform ANDs if necessary.
3302     llvm::Value *RHSTmp = RHS;
3303     llvm::Value *LHSTmp = LHS;
3304     bool wasCast = false;
3305     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3306     if (rhsVTy->getElementType()->isFloatingPointTy()) {
3307       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3308       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3309       wasCast = true;
3310     }
3311 
3312     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3313     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3314     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3315     if (wasCast)
3316       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3317 
3318     return tmp5;
3319   }
3320 
3321   // If this is a really simple expression (like x ? 4 : 5), emit this as a
3322   // select instead of as control flow.  We can only do this if it is cheap and
3323   // safe to evaluate the LHS and RHS unconditionally.
3324   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3325       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3326     CGF.incrementProfileCounter(E);
3327 
3328     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3329     llvm::Value *LHS = Visit(lhsExpr);
3330     llvm::Value *RHS = Visit(rhsExpr);
3331     if (!LHS) {
3332       // If the conditional has void type, make sure we return a null Value*.
3333       assert(!RHS && "LHS and RHS types must match");
3334       return nullptr;
3335     }
3336     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3337   }
3338 
3339   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3340   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3341   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3342 
3343   CodeGenFunction::ConditionalEvaluation eval(CGF);
3344   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3345                            CGF.getProfileCount(lhsExpr));
3346 
3347   CGF.EmitBlock(LHSBlock);
3348   CGF.incrementProfileCounter(E);
3349   eval.begin(CGF);
3350   Value *LHS = Visit(lhsExpr);
3351   eval.end(CGF);
3352 
3353   LHSBlock = Builder.GetInsertBlock();
3354   Builder.CreateBr(ContBlock);
3355 
3356   CGF.EmitBlock(RHSBlock);
3357   eval.begin(CGF);
3358   Value *RHS = Visit(rhsExpr);
3359   eval.end(CGF);
3360 
3361   RHSBlock = Builder.GetInsertBlock();
3362   CGF.EmitBlock(ContBlock);
3363 
3364   // If the LHS or RHS is a throw expression, it will be legitimately null.
3365   if (!LHS)
3366     return RHS;
3367   if (!RHS)
3368     return LHS;
3369 
3370   // Create a PHI node for the real part.
3371   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3372   PN->addIncoming(LHS, LHSBlock);
3373   PN->addIncoming(RHS, RHSBlock);
3374   return PN;
3375 }
3376 
3377 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3378   return Visit(E->getChosenSubExpr());
3379 }
3380 
3381 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3382   QualType Ty = VE->getType();
3383 
3384   if (Ty->isVariablyModifiedType())
3385     CGF.EmitVariablyModifiedType(Ty);
3386 
3387   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
3388   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
3389   llvm::Type *ArgTy = ConvertType(VE->getType());
3390 
3391   // If EmitVAArg fails, we fall back to the LLVM instruction.
3392   if (!ArgPtr)
3393     return Builder.CreateVAArg(ArgValue, ArgTy);
3394 
3395   // FIXME Volatility.
3396   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3397 
3398   // If EmitVAArg promoted the type, we must truncate it.
3399   if (ArgTy != Val->getType()) {
3400     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3401       Val = Builder.CreateIntToPtr(Val, ArgTy);
3402     else
3403       Val = Builder.CreateTrunc(Val, ArgTy);
3404   }
3405 
3406   return Val;
3407 }
3408 
3409 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3410   return CGF.EmitBlockLiteral(block);
3411 }
3412 
3413 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3414   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3415   llvm::Type *DstTy = ConvertType(E->getType());
3416 
3417   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
3418   // a shuffle vector instead of a bitcast.
3419   llvm::Type *SrcTy = Src->getType();
3420   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
3421     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
3422     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
3423     if ((numElementsDst == 3 && numElementsSrc == 4)
3424         || (numElementsDst == 4 && numElementsSrc == 3)) {
3425 
3426 
3427       // In the case of going from int4->float3, a bitcast is needed before
3428       // doing a shuffle.
3429       llvm::Type *srcElemTy =
3430       cast<llvm::VectorType>(SrcTy)->getElementType();
3431       llvm::Type *dstElemTy =
3432       cast<llvm::VectorType>(DstTy)->getElementType();
3433 
3434       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
3435           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
3436         // Create a float type of the same size as the source or destination.
3437         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
3438                                                                  numElementsSrc);
3439 
3440         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
3441       }
3442 
3443       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3444 
3445       SmallVector<llvm::Constant*, 3> Args;
3446       Args.push_back(Builder.getInt32(0));
3447       Args.push_back(Builder.getInt32(1));
3448       Args.push_back(Builder.getInt32(2));
3449 
3450       if (numElementsDst == 4)
3451         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3452 
3453       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3454 
3455       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
3456     }
3457   }
3458 
3459   return Builder.CreateBitCast(Src, DstTy, "astype");
3460 }
3461 
3462 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3463   return CGF.EmitAtomicExpr(E).getScalarVal();
3464 }
3465 
3466 //===----------------------------------------------------------------------===//
3467 //                         Entry Point into this File
3468 //===----------------------------------------------------------------------===//
3469 
3470 /// Emit the computation of the specified expression of scalar type, ignoring
3471 /// the result.
3472 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3473   assert(E && hasScalarEvaluationKind(E->getType()) &&
3474          "Invalid scalar expression to emit");
3475 
3476   return ScalarExprEmitter(*this, IgnoreResultAssign)
3477       .Visit(const_cast<Expr *>(E));
3478 }
3479 
3480 /// Emit a conversion from the specified type to the specified destination type,
3481 /// both of which are LLVM scalar types.
3482 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3483                                              QualType DstTy,
3484                                              SourceLocation Loc) {
3485   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3486          "Invalid scalar expression to emit");
3487   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
3488 }
3489 
3490 /// Emit a conversion from the specified complex type to the specified
3491 /// destination type, where the destination type is an LLVM scalar type.
3492 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3493                                                       QualType SrcTy,
3494                                                       QualType DstTy,
3495                                                       SourceLocation Loc) {
3496   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3497          "Invalid complex -> scalar conversion");
3498   return ScalarExprEmitter(*this)
3499       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
3500 }
3501 
3502 
3503 llvm::Value *CodeGenFunction::
3504 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3505                         bool isInc, bool isPre) {
3506   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3507 }
3508 
3509 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3510   llvm::Value *V;
3511   // object->isa or (*object).isa
3512   // Generate code as for: *(Class*)object
3513   // build Class* type
3514   llvm::Type *ClassPtrTy = ConvertType(E->getType());
3515 
3516   Expr *BaseExpr = E->getBase();
3517   if (BaseExpr->isRValue()) {
3518     V = CreateMemTemp(E->getType(), "resval");
3519     llvm::Value *Src = EmitScalarExpr(BaseExpr);
3520     Builder.CreateStore(Src, V);
3521     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
3522       MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc());
3523   } else {
3524     if (E->isArrow())
3525       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
3526     else
3527       V = EmitLValue(BaseExpr).getAddress();
3528   }
3529 
3530   // build Class* type
3531   ClassPtrTy = ClassPtrTy->getPointerTo();
3532   V = Builder.CreateBitCast(V, ClassPtrTy);
3533   return MakeNaturalAlignAddrLValue(V, E->getType());
3534 }
3535 
3536 
3537 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3538                                             const CompoundAssignOperator *E) {
3539   ScalarExprEmitter Scalar(*this);
3540   Value *Result = nullptr;
3541   switch (E->getOpcode()) {
3542 #define COMPOUND_OP(Op)                                                       \
3543     case BO_##Op##Assign:                                                     \
3544       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3545                                              Result)
3546   COMPOUND_OP(Mul);
3547   COMPOUND_OP(Div);
3548   COMPOUND_OP(Rem);
3549   COMPOUND_OP(Add);
3550   COMPOUND_OP(Sub);
3551   COMPOUND_OP(Shl);
3552   COMPOUND_OP(Shr);
3553   COMPOUND_OP(And);
3554   COMPOUND_OP(Xor);
3555   COMPOUND_OP(Or);
3556 #undef COMPOUND_OP
3557 
3558   case BO_PtrMemD:
3559   case BO_PtrMemI:
3560   case BO_Mul:
3561   case BO_Div:
3562   case BO_Rem:
3563   case BO_Add:
3564   case BO_Sub:
3565   case BO_Shl:
3566   case BO_Shr:
3567   case BO_LT:
3568   case BO_GT:
3569   case BO_LE:
3570   case BO_GE:
3571   case BO_EQ:
3572   case BO_NE:
3573   case BO_And:
3574   case BO_Xor:
3575   case BO_Or:
3576   case BO_LAnd:
3577   case BO_LOr:
3578   case BO_Assign:
3579   case BO_Comma:
3580     llvm_unreachable("Not valid compound assignment operators");
3581   }
3582 
3583   llvm_unreachable("Unhandled compound assignment operator");
3584 }
3585