1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/FixedPoint.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GetElementPtrTypeIterator.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/IntrinsicsPowerPC.h"
40 #include "llvm/IR/Module.h"
41 #include <cstdarg>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 using llvm::Value;
46 
47 //===----------------------------------------------------------------------===//
48 //                         Scalar Expression Emitter
49 //===----------------------------------------------------------------------===//
50 
51 namespace {
52 
53 /// Determine whether the given binary operation may overflow.
54 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
55 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
56 /// the returned overflow check is precise. The returned value is 'true' for
57 /// all other opcodes, to be conservative.
58 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
59                              BinaryOperator::Opcode Opcode, bool Signed,
60                              llvm::APInt &Result) {
61   // Assume overflow is possible, unless we can prove otherwise.
62   bool Overflow = true;
63   const auto &LHSAP = LHS->getValue();
64   const auto &RHSAP = RHS->getValue();
65   if (Opcode == BO_Add) {
66     if (Signed)
67       Result = LHSAP.sadd_ov(RHSAP, Overflow);
68     else
69       Result = LHSAP.uadd_ov(RHSAP, Overflow);
70   } else if (Opcode == BO_Sub) {
71     if (Signed)
72       Result = LHSAP.ssub_ov(RHSAP, Overflow);
73     else
74       Result = LHSAP.usub_ov(RHSAP, Overflow);
75   } else if (Opcode == BO_Mul) {
76     if (Signed)
77       Result = LHSAP.smul_ov(RHSAP, Overflow);
78     else
79       Result = LHSAP.umul_ov(RHSAP, Overflow);
80   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
81     if (Signed && !RHS->isZero())
82       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
83     else
84       return false;
85   }
86   return Overflow;
87 }
88 
89 struct BinOpInfo {
90   Value *LHS;
91   Value *RHS;
92   QualType Ty;  // Computation Type.
93   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
94   FPOptions FPFeatures;
95   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
96 
97   /// Check if the binop can result in integer overflow.
98   bool mayHaveIntegerOverflow() const {
99     // Without constant input, we can't rule out overflow.
100     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
101     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
102     if (!LHSCI || !RHSCI)
103       return true;
104 
105     llvm::APInt Result;
106     return ::mayHaveIntegerOverflow(
107         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
108   }
109 
110   /// Check if the binop computes a division or a remainder.
111   bool isDivremOp() const {
112     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
113            Opcode == BO_RemAssign;
114   }
115 
116   /// Check if the binop can result in an integer division by zero.
117   bool mayHaveIntegerDivisionByZero() const {
118     if (isDivremOp())
119       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
120         return CI->isZero();
121     return true;
122   }
123 
124   /// Check if the binop can result in a float division by zero.
125   bool mayHaveFloatDivisionByZero() const {
126     if (isDivremOp())
127       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
128         return CFP->isZero();
129     return true;
130   }
131 
132   /// Check if either operand is a fixed point type or integer type, with at
133   /// least one being a fixed point type. In any case, this
134   /// operation did not follow usual arithmetic conversion and both operands may
135   /// not be the same.
136   bool isFixedPointBinOp() const {
137     // We cannot simply check the result type since comparison operations return
138     // an int.
139     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
140       QualType LHSType = BinOp->getLHS()->getType();
141       QualType RHSType = BinOp->getRHS()->getType();
142       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
143     }
144     return false;
145   }
146 };
147 
148 static bool MustVisitNullValue(const Expr *E) {
149   // If a null pointer expression's type is the C++0x nullptr_t, then
150   // it's not necessarily a simple constant and it must be evaluated
151   // for its potential side effects.
152   return E->getType()->isNullPtrType();
153 }
154 
155 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
156 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
157                                                         const Expr *E) {
158   const Expr *Base = E->IgnoreImpCasts();
159   if (E == Base)
160     return llvm::None;
161 
162   QualType BaseTy = Base->getType();
163   if (!BaseTy->isPromotableIntegerType() ||
164       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
165     return llvm::None;
166 
167   return BaseTy;
168 }
169 
170 /// Check if \p E is a widened promoted integer.
171 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
172   return getUnwidenedIntegerType(Ctx, E).hasValue();
173 }
174 
175 /// Check if we can skip the overflow check for \p Op.
176 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
177   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
178          "Expected a unary or binary operator");
179 
180   // If the binop has constant inputs and we can prove there is no overflow,
181   // we can elide the overflow check.
182   if (!Op.mayHaveIntegerOverflow())
183     return true;
184 
185   // If a unary op has a widened operand, the op cannot overflow.
186   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
187     return !UO->canOverflow();
188 
189   // We usually don't need overflow checks for binops with widened operands.
190   // Multiplication with promoted unsigned operands is a special case.
191   const auto *BO = cast<BinaryOperator>(Op.E);
192   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
193   if (!OptionalLHSTy)
194     return false;
195 
196   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
197   if (!OptionalRHSTy)
198     return false;
199 
200   QualType LHSTy = *OptionalLHSTy;
201   QualType RHSTy = *OptionalRHSTy;
202 
203   // This is the simple case: binops without unsigned multiplication, and with
204   // widened operands. No overflow check is needed here.
205   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
206       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
207     return true;
208 
209   // For unsigned multiplication the overflow check can be elided if either one
210   // of the unpromoted types are less than half the size of the promoted type.
211   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
212   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
213          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
214 }
215 
216 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
217 static void updateFastMathFlags(llvm::FastMathFlags &FMF,
218                                 FPOptions FPFeatures) {
219   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
220 }
221 
222 /// Propagate fast-math flags from \p Op to the instruction in \p V.
223 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
224   if (auto *I = dyn_cast<llvm::Instruction>(V)) {
225     llvm::FastMathFlags FMF = I->getFastMathFlags();
226     updateFastMathFlags(FMF, Op.FPFeatures);
227     I->setFastMathFlags(FMF);
228   }
229   return V;
230 }
231 
232 class ScalarExprEmitter
233   : public StmtVisitor<ScalarExprEmitter, Value*> {
234   CodeGenFunction &CGF;
235   CGBuilderTy &Builder;
236   bool IgnoreResultAssign;
237   llvm::LLVMContext &VMContext;
238 public:
239 
240   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
241     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
242       VMContext(cgf.getLLVMContext()) {
243   }
244 
245   //===--------------------------------------------------------------------===//
246   //                               Utilities
247   //===--------------------------------------------------------------------===//
248 
249   bool TestAndClearIgnoreResultAssign() {
250     bool I = IgnoreResultAssign;
251     IgnoreResultAssign = false;
252     return I;
253   }
254 
255   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
256   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
257   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
258     return CGF.EmitCheckedLValue(E, TCK);
259   }
260 
261   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
262                       const BinOpInfo &Info);
263 
264   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
265     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
266   }
267 
268   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
269     const AlignValueAttr *AVAttr = nullptr;
270     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
271       const ValueDecl *VD = DRE->getDecl();
272 
273       if (VD->getType()->isReferenceType()) {
274         if (const auto *TTy =
275             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
276           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
277       } else {
278         // Assumptions for function parameters are emitted at the start of the
279         // function, so there is no need to repeat that here,
280         // unless the alignment-assumption sanitizer is enabled,
281         // then we prefer the assumption over alignment attribute
282         // on IR function param.
283         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
284           return;
285 
286         AVAttr = VD->getAttr<AlignValueAttr>();
287       }
288     }
289 
290     if (!AVAttr)
291       if (const auto *TTy =
292           dyn_cast<TypedefType>(E->getType()))
293         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
294 
295     if (!AVAttr)
296       return;
297 
298     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
299     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
300     CGF.EmitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
301   }
302 
303   /// EmitLoadOfLValue - Given an expression with complex type that represents a
304   /// value l-value, this method emits the address of the l-value, then loads
305   /// and returns the result.
306   Value *EmitLoadOfLValue(const Expr *E) {
307     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
308                                 E->getExprLoc());
309 
310     EmitLValueAlignmentAssumption(E, V);
311     return V;
312   }
313 
314   /// EmitConversionToBool - Convert the specified expression value to a
315   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
316   Value *EmitConversionToBool(Value *Src, QualType DstTy);
317 
318   /// Emit a check that a conversion from a floating-point type does not
319   /// overflow.
320   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
321                                 Value *Src, QualType SrcType, QualType DstType,
322                                 llvm::Type *DstTy, SourceLocation Loc);
323 
324   /// Known implicit conversion check kinds.
325   /// Keep in sync with the enum of the same name in ubsan_handlers.h
326   enum ImplicitConversionCheckKind : unsigned char {
327     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
328     ICCK_UnsignedIntegerTruncation = 1,
329     ICCK_SignedIntegerTruncation = 2,
330     ICCK_IntegerSignChange = 3,
331     ICCK_SignedIntegerTruncationOrSignChange = 4,
332   };
333 
334   /// Emit a check that an [implicit] truncation of an integer  does not
335   /// discard any bits. It is not UB, so we use the value after truncation.
336   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
337                                   QualType DstType, SourceLocation Loc);
338 
339   /// Emit a check that an [implicit] conversion of an integer does not change
340   /// the sign of the value. It is not UB, so we use the value after conversion.
341   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
342   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
343                                   QualType DstType, SourceLocation Loc);
344 
345   /// Emit a conversion from the specified type to the specified destination
346   /// type, both of which are LLVM scalar types.
347   struct ScalarConversionOpts {
348     bool TreatBooleanAsSigned;
349     bool EmitImplicitIntegerTruncationChecks;
350     bool EmitImplicitIntegerSignChangeChecks;
351 
352     ScalarConversionOpts()
353         : TreatBooleanAsSigned(false),
354           EmitImplicitIntegerTruncationChecks(false),
355           EmitImplicitIntegerSignChangeChecks(false) {}
356 
357     ScalarConversionOpts(clang::SanitizerSet SanOpts)
358         : TreatBooleanAsSigned(false),
359           EmitImplicitIntegerTruncationChecks(
360               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
361           EmitImplicitIntegerSignChangeChecks(
362               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
363   };
364   Value *
365   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
366                        SourceLocation Loc,
367                        ScalarConversionOpts Opts = ScalarConversionOpts());
368 
369   /// Convert between either a fixed point and other fixed point or fixed point
370   /// and an integer.
371   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
372                                   SourceLocation Loc);
373   Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema,
374                                   FixedPointSemantics &DstFixedSema,
375                                   SourceLocation Loc,
376                                   bool DstIsInteger = false);
377 
378   /// Emit a conversion from the specified complex type to the specified
379   /// destination type, where the destination type is an LLVM scalar type.
380   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
381                                        QualType SrcTy, QualType DstTy,
382                                        SourceLocation Loc);
383 
384   /// EmitNullValue - Emit a value that corresponds to null for the given type.
385   Value *EmitNullValue(QualType Ty);
386 
387   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
388   Value *EmitFloatToBoolConversion(Value *V) {
389     // Compare against 0.0 for fp scalars.
390     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
391     return Builder.CreateFCmpUNE(V, Zero, "tobool");
392   }
393 
394   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
395   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
396     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
397 
398     return Builder.CreateICmpNE(V, Zero, "tobool");
399   }
400 
401   Value *EmitIntToBoolConversion(Value *V) {
402     // Because of the type rules of C, we often end up computing a
403     // logical value, then zero extending it to int, then wanting it
404     // as a logical value again.  Optimize this common case.
405     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
406       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
407         Value *Result = ZI->getOperand(0);
408         // If there aren't any more uses, zap the instruction to save space.
409         // Note that there can be more uses, for example if this
410         // is the result of an assignment.
411         if (ZI->use_empty())
412           ZI->eraseFromParent();
413         return Result;
414       }
415     }
416 
417     return Builder.CreateIsNotNull(V, "tobool");
418   }
419 
420   //===--------------------------------------------------------------------===//
421   //                            Visitor Methods
422   //===--------------------------------------------------------------------===//
423 
424   Value *Visit(Expr *E) {
425     ApplyDebugLocation DL(CGF, E);
426     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
427   }
428 
429   Value *VisitStmt(Stmt *S) {
430     S->dump(CGF.getContext().getSourceManager());
431     llvm_unreachable("Stmt can't have complex result type!");
432   }
433   Value *VisitExpr(Expr *S);
434 
435   Value *VisitConstantExpr(ConstantExpr *E) {
436     return Visit(E->getSubExpr());
437   }
438   Value *VisitParenExpr(ParenExpr *PE) {
439     return Visit(PE->getSubExpr());
440   }
441   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
442     return Visit(E->getReplacement());
443   }
444   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
445     return Visit(GE->getResultExpr());
446   }
447   Value *VisitCoawaitExpr(CoawaitExpr *S) {
448     return CGF.EmitCoawaitExpr(*S).getScalarVal();
449   }
450   Value *VisitCoyieldExpr(CoyieldExpr *S) {
451     return CGF.EmitCoyieldExpr(*S).getScalarVal();
452   }
453   Value *VisitUnaryCoawait(const UnaryOperator *E) {
454     return Visit(E->getSubExpr());
455   }
456 
457   // Leaves.
458   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
459     return Builder.getInt(E->getValue());
460   }
461   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
462     return Builder.getInt(E->getValue());
463   }
464   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
465     return llvm::ConstantFP::get(VMContext, E->getValue());
466   }
467   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
468     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
469   }
470   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
471     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
472   }
473   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
474     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
475   }
476   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
477     return EmitNullValue(E->getType());
478   }
479   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
480     return EmitNullValue(E->getType());
481   }
482   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
483   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
484   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
485     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
486     return Builder.CreateBitCast(V, ConvertType(E->getType()));
487   }
488 
489   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
490     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
491   }
492 
493   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
494     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
495   }
496 
497   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
498     if (E->isGLValue())
499       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
500                               E->getExprLoc());
501 
502     // Otherwise, assume the mapping is the scalar directly.
503     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
504   }
505 
506   // l-values.
507   Value *VisitDeclRefExpr(DeclRefExpr *E) {
508     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
509       return CGF.emitScalarConstant(Constant, E);
510     return EmitLoadOfLValue(E);
511   }
512 
513   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
514     return CGF.EmitObjCSelectorExpr(E);
515   }
516   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
517     return CGF.EmitObjCProtocolExpr(E);
518   }
519   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
520     return EmitLoadOfLValue(E);
521   }
522   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
523     if (E->getMethodDecl() &&
524         E->getMethodDecl()->getReturnType()->isReferenceType())
525       return EmitLoadOfLValue(E);
526     return CGF.EmitObjCMessageExpr(E).getScalarVal();
527   }
528 
529   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
530     LValue LV = CGF.EmitObjCIsaExpr(E);
531     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
532     return V;
533   }
534 
535   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
536     VersionTuple Version = E->getVersion();
537 
538     // If we're checking for a platform older than our minimum deployment
539     // target, we can fold the check away.
540     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
541       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
542 
543     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
544     llvm::Value *Args[] = {
545         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
546         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
547         llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
548     };
549 
550     return CGF.EmitBuiltinAvailable(Args);
551   }
552 
553   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
554   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
555   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
556   Value *VisitMemberExpr(MemberExpr *E);
557   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
558   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
559     return EmitLoadOfLValue(E);
560   }
561 
562   Value *VisitInitListExpr(InitListExpr *E);
563 
564   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
565     assert(CGF.getArrayInitIndex() &&
566            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
567     return CGF.getArrayInitIndex();
568   }
569 
570   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
571     return EmitNullValue(E->getType());
572   }
573   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
574     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
575     return VisitCastExpr(E);
576   }
577   Value *VisitCastExpr(CastExpr *E);
578 
579   Value *VisitCallExpr(const CallExpr *E) {
580     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
581       return EmitLoadOfLValue(E);
582 
583     Value *V = CGF.EmitCallExpr(E).getScalarVal();
584 
585     EmitLValueAlignmentAssumption(E, V);
586     return V;
587   }
588 
589   Value *VisitStmtExpr(const StmtExpr *E);
590 
591   // Unary Operators.
592   Value *VisitUnaryPostDec(const UnaryOperator *E) {
593     LValue LV = EmitLValue(E->getSubExpr());
594     return EmitScalarPrePostIncDec(E, LV, false, false);
595   }
596   Value *VisitUnaryPostInc(const UnaryOperator *E) {
597     LValue LV = EmitLValue(E->getSubExpr());
598     return EmitScalarPrePostIncDec(E, LV, true, false);
599   }
600   Value *VisitUnaryPreDec(const UnaryOperator *E) {
601     LValue LV = EmitLValue(E->getSubExpr());
602     return EmitScalarPrePostIncDec(E, LV, false, true);
603   }
604   Value *VisitUnaryPreInc(const UnaryOperator *E) {
605     LValue LV = EmitLValue(E->getSubExpr());
606     return EmitScalarPrePostIncDec(E, LV, true, true);
607   }
608 
609   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
610                                                   llvm::Value *InVal,
611                                                   bool IsInc);
612 
613   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
614                                        bool isInc, bool isPre);
615 
616 
617   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
618     if (isa<MemberPointerType>(E->getType())) // never sugared
619       return CGF.CGM.getMemberPointerConstant(E);
620 
621     return EmitLValue(E->getSubExpr()).getPointer(CGF);
622   }
623   Value *VisitUnaryDeref(const UnaryOperator *E) {
624     if (E->getType()->isVoidType())
625       return Visit(E->getSubExpr()); // the actual value should be unused
626     return EmitLoadOfLValue(E);
627   }
628   Value *VisitUnaryPlus(const UnaryOperator *E) {
629     // This differs from gcc, though, most likely due to a bug in gcc.
630     TestAndClearIgnoreResultAssign();
631     return Visit(E->getSubExpr());
632   }
633   Value *VisitUnaryMinus    (const UnaryOperator *E);
634   Value *VisitUnaryNot      (const UnaryOperator *E);
635   Value *VisitUnaryLNot     (const UnaryOperator *E);
636   Value *VisitUnaryReal     (const UnaryOperator *E);
637   Value *VisitUnaryImag     (const UnaryOperator *E);
638   Value *VisitUnaryExtension(const UnaryOperator *E) {
639     return Visit(E->getSubExpr());
640   }
641 
642   // C++
643   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
644     return EmitLoadOfLValue(E);
645   }
646   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
647     auto &Ctx = CGF.getContext();
648     APValue Evaluated =
649         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
650     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
651                                              SLE->getType());
652   }
653 
654   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
655     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
656     return Visit(DAE->getExpr());
657   }
658   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
659     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
660     return Visit(DIE->getExpr());
661   }
662   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
663     return CGF.LoadCXXThis();
664   }
665 
666   Value *VisitExprWithCleanups(ExprWithCleanups *E);
667   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
668     return CGF.EmitCXXNewExpr(E);
669   }
670   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
671     CGF.EmitCXXDeleteExpr(E);
672     return nullptr;
673   }
674 
675   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
676     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
677   }
678 
679   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
680     return Builder.getInt1(E->isSatisfied());
681   }
682 
683   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
684     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
685   }
686 
687   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
688     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
689   }
690 
691   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
692     // C++ [expr.pseudo]p1:
693     //   The result shall only be used as the operand for the function call
694     //   operator (), and the result of such a call has type void. The only
695     //   effect is the evaluation of the postfix-expression before the dot or
696     //   arrow.
697     CGF.EmitScalarExpr(E->getBase());
698     return nullptr;
699   }
700 
701   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
702     return EmitNullValue(E->getType());
703   }
704 
705   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
706     CGF.EmitCXXThrowExpr(E);
707     return nullptr;
708   }
709 
710   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
711     return Builder.getInt1(E->getValue());
712   }
713 
714   // Binary Operators.
715   Value *EmitMul(const BinOpInfo &Ops) {
716     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
717       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
718       case LangOptions::SOB_Defined:
719         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
720       case LangOptions::SOB_Undefined:
721         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
722           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
723         LLVM_FALLTHROUGH;
724       case LangOptions::SOB_Trapping:
725         if (CanElideOverflowCheck(CGF.getContext(), Ops))
726           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
727         return EmitOverflowCheckedBinOp(Ops);
728       }
729     }
730 
731     if (Ops.Ty->isUnsignedIntegerType() &&
732         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
733         !CanElideOverflowCheck(CGF.getContext(), Ops))
734       return EmitOverflowCheckedBinOp(Ops);
735 
736     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
737       Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
738       return propagateFMFlags(V, Ops);
739     }
740     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
741   }
742   /// Create a binary op that checks for overflow.
743   /// Currently only supports +, - and *.
744   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
745 
746   // Check for undefined division and modulus behaviors.
747   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
748                                                   llvm::Value *Zero,bool isDiv);
749   // Common helper for getting how wide LHS of shift is.
750   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
751   Value *EmitDiv(const BinOpInfo &Ops);
752   Value *EmitRem(const BinOpInfo &Ops);
753   Value *EmitAdd(const BinOpInfo &Ops);
754   Value *EmitSub(const BinOpInfo &Ops);
755   Value *EmitShl(const BinOpInfo &Ops);
756   Value *EmitShr(const BinOpInfo &Ops);
757   Value *EmitAnd(const BinOpInfo &Ops) {
758     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
759   }
760   Value *EmitXor(const BinOpInfo &Ops) {
761     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
762   }
763   Value *EmitOr (const BinOpInfo &Ops) {
764     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
765   }
766 
767   // Helper functions for fixed point binary operations.
768   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
769 
770   BinOpInfo EmitBinOps(const BinaryOperator *E);
771   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
772                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
773                                   Value *&Result);
774 
775   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
776                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
777 
778   // Binary operators and binary compound assignment operators.
779 #define HANDLEBINOP(OP) \
780   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
781     return Emit ## OP(EmitBinOps(E));                                      \
782   }                                                                        \
783   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
784     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
785   }
786   HANDLEBINOP(Mul)
787   HANDLEBINOP(Div)
788   HANDLEBINOP(Rem)
789   HANDLEBINOP(Add)
790   HANDLEBINOP(Sub)
791   HANDLEBINOP(Shl)
792   HANDLEBINOP(Shr)
793   HANDLEBINOP(And)
794   HANDLEBINOP(Xor)
795   HANDLEBINOP(Or)
796 #undef HANDLEBINOP
797 
798   // Comparisons.
799   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
800                      llvm::CmpInst::Predicate SICmpOpc,
801                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
802 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
803     Value *VisitBin##CODE(const BinaryOperator *E) { \
804       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
805                          llvm::FCmpInst::FP, SIG); }
806   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
807   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
808   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
809   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
810   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
811   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
812 #undef VISITCOMP
813 
814   Value *VisitBinAssign     (const BinaryOperator *E);
815 
816   Value *VisitBinLAnd       (const BinaryOperator *E);
817   Value *VisitBinLOr        (const BinaryOperator *E);
818   Value *VisitBinComma      (const BinaryOperator *E);
819 
820   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
821   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
822 
823   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
824     return Visit(E->getSemanticForm());
825   }
826 
827   // Other Operators.
828   Value *VisitBlockExpr(const BlockExpr *BE);
829   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
830   Value *VisitChooseExpr(ChooseExpr *CE);
831   Value *VisitVAArgExpr(VAArgExpr *VE);
832   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
833     return CGF.EmitObjCStringLiteral(E);
834   }
835   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
836     return CGF.EmitObjCBoxedExpr(E);
837   }
838   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
839     return CGF.EmitObjCArrayLiteral(E);
840   }
841   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
842     return CGF.EmitObjCDictionaryLiteral(E);
843   }
844   Value *VisitAsTypeExpr(AsTypeExpr *CE);
845   Value *VisitAtomicExpr(AtomicExpr *AE);
846 };
847 }  // end anonymous namespace.
848 
849 //===----------------------------------------------------------------------===//
850 //                                Utilities
851 //===----------------------------------------------------------------------===//
852 
853 /// EmitConversionToBool - Convert the specified expression value to a
854 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
855 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
856   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
857 
858   if (SrcType->isRealFloatingType())
859     return EmitFloatToBoolConversion(Src);
860 
861   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
862     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
863 
864   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
865          "Unknown scalar type to convert");
866 
867   if (isa<llvm::IntegerType>(Src->getType()))
868     return EmitIntToBoolConversion(Src);
869 
870   assert(isa<llvm::PointerType>(Src->getType()));
871   return EmitPointerToBoolConversion(Src, SrcType);
872 }
873 
874 void ScalarExprEmitter::EmitFloatConversionCheck(
875     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
876     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
877   assert(SrcType->isFloatingType() && "not a conversion from floating point");
878   if (!isa<llvm::IntegerType>(DstTy))
879     return;
880 
881   CodeGenFunction::SanitizerScope SanScope(&CGF);
882   using llvm::APFloat;
883   using llvm::APSInt;
884 
885   llvm::Value *Check = nullptr;
886   const llvm::fltSemantics &SrcSema =
887     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
888 
889   // Floating-point to integer. This has undefined behavior if the source is
890   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
891   // to an integer).
892   unsigned Width = CGF.getContext().getIntWidth(DstType);
893   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
894 
895   APSInt Min = APSInt::getMinValue(Width, Unsigned);
896   APFloat MinSrc(SrcSema, APFloat::uninitialized);
897   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
898       APFloat::opOverflow)
899     // Don't need an overflow check for lower bound. Just check for
900     // -Inf/NaN.
901     MinSrc = APFloat::getInf(SrcSema, true);
902   else
903     // Find the largest value which is too small to represent (before
904     // truncation toward zero).
905     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
906 
907   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
908   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
909   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
910       APFloat::opOverflow)
911     // Don't need an overflow check for upper bound. Just check for
912     // +Inf/NaN.
913     MaxSrc = APFloat::getInf(SrcSema, false);
914   else
915     // Find the smallest value which is too large to represent (before
916     // truncation toward zero).
917     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
918 
919   // If we're converting from __half, convert the range to float to match
920   // the type of src.
921   if (OrigSrcType->isHalfType()) {
922     const llvm::fltSemantics &Sema =
923       CGF.getContext().getFloatTypeSemantics(SrcType);
924     bool IsInexact;
925     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
926     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
927   }
928 
929   llvm::Value *GE =
930     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
931   llvm::Value *LE =
932     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
933   Check = Builder.CreateAnd(GE, LE);
934 
935   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
936                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
937                                   CGF.EmitCheckTypeDescriptor(DstType)};
938   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
939                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
940 }
941 
942 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
943 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
944 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
945                  std::pair<llvm::Value *, SanitizerMask>>
946 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
947                                  QualType DstType, CGBuilderTy &Builder) {
948   llvm::Type *SrcTy = Src->getType();
949   llvm::Type *DstTy = Dst->getType();
950   (void)DstTy; // Only used in assert()
951 
952   // This should be truncation of integral types.
953   assert(Src != Dst);
954   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
955   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
956          "non-integer llvm type");
957 
958   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
959   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
960 
961   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
962   // Else, it is a signed truncation.
963   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
964   SanitizerMask Mask;
965   if (!SrcSigned && !DstSigned) {
966     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
967     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
968   } else {
969     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
970     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
971   }
972 
973   llvm::Value *Check = nullptr;
974   // 1. Extend the truncated value back to the same width as the Src.
975   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
976   // 2. Equality-compare with the original source value
977   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
978   // If the comparison result is 'i1 false', then the truncation was lossy.
979   return std::make_pair(Kind, std::make_pair(Check, Mask));
980 }
981 
982 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
983     QualType SrcType, QualType DstType) {
984   return SrcType->isIntegerType() && DstType->isIntegerType();
985 }
986 
987 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
988                                                    Value *Dst, QualType DstType,
989                                                    SourceLocation Loc) {
990   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
991     return;
992 
993   // We only care about int->int conversions here.
994   // We ignore conversions to/from pointer and/or bool.
995   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
996                                                                        DstType))
997     return;
998 
999   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1000   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1001   // This must be truncation. Else we do not care.
1002   if (SrcBits <= DstBits)
1003     return;
1004 
1005   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1006 
1007   // If the integer sign change sanitizer is enabled,
1008   // and we are truncating from larger unsigned type to smaller signed type,
1009   // let that next sanitizer deal with it.
1010   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1011   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1012   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1013       (!SrcSigned && DstSigned))
1014     return;
1015 
1016   CodeGenFunction::SanitizerScope SanScope(&CGF);
1017 
1018   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1019             std::pair<llvm::Value *, SanitizerMask>>
1020       Check =
1021           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1022   // If the comparison result is 'i1 false', then the truncation was lossy.
1023 
1024   // Do we care about this type of truncation?
1025   if (!CGF.SanOpts.has(Check.second.second))
1026     return;
1027 
1028   llvm::Constant *StaticArgs[] = {
1029       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1030       CGF.EmitCheckTypeDescriptor(DstType),
1031       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1032   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1033                 {Src, Dst});
1034 }
1035 
1036 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1037 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1038 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1039                  std::pair<llvm::Value *, SanitizerMask>>
1040 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1041                                  QualType DstType, CGBuilderTy &Builder) {
1042   llvm::Type *SrcTy = Src->getType();
1043   llvm::Type *DstTy = Dst->getType();
1044 
1045   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1046          "non-integer llvm type");
1047 
1048   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1049   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1050   (void)SrcSigned; // Only used in assert()
1051   (void)DstSigned; // Only used in assert()
1052   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1053   unsigned DstBits = DstTy->getScalarSizeInBits();
1054   (void)SrcBits; // Only used in assert()
1055   (void)DstBits; // Only used in assert()
1056 
1057   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1058          "either the widths should be different, or the signednesses.");
1059 
1060   // NOTE: zero value is considered to be non-negative.
1061   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1062                                        const char *Name) -> Value * {
1063     // Is this value a signed type?
1064     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1065     llvm::Type *VTy = V->getType();
1066     if (!VSigned) {
1067       // If the value is unsigned, then it is never negative.
1068       // FIXME: can we encounter non-scalar VTy here?
1069       return llvm::ConstantInt::getFalse(VTy->getContext());
1070     }
1071     // Get the zero of the same type with which we will be comparing.
1072     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1073     // %V.isnegative = icmp slt %V, 0
1074     // I.e is %V *strictly* less than zero, does it have negative value?
1075     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1076                               llvm::Twine(Name) + "." + V->getName() +
1077                                   ".negativitycheck");
1078   };
1079 
1080   // 1. Was the old Value negative?
1081   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1082   // 2. Is the new Value negative?
1083   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1084   // 3. Now, was the 'negativity status' preserved during the conversion?
1085   //    NOTE: conversion from negative to zero is considered to change the sign.
1086   //    (We want to get 'false' when the conversion changed the sign)
1087   //    So we should just equality-compare the negativity statuses.
1088   llvm::Value *Check = nullptr;
1089   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1090   // If the comparison result is 'false', then the conversion changed the sign.
1091   return std::make_pair(
1092       ScalarExprEmitter::ICCK_IntegerSignChange,
1093       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1094 }
1095 
1096 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1097                                                    Value *Dst, QualType DstType,
1098                                                    SourceLocation Loc) {
1099   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1100     return;
1101 
1102   llvm::Type *SrcTy = Src->getType();
1103   llvm::Type *DstTy = Dst->getType();
1104 
1105   // We only care about int->int conversions here.
1106   // We ignore conversions to/from pointer and/or bool.
1107   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1108                                                                        DstType))
1109     return;
1110 
1111   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1112   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1113   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1114   unsigned DstBits = DstTy->getScalarSizeInBits();
1115 
1116   // Now, we do not need to emit the check in *all* of the cases.
1117   // We can avoid emitting it in some obvious cases where it would have been
1118   // dropped by the opt passes (instcombine) always anyways.
1119   // If it's a cast between effectively the same type, no check.
1120   // NOTE: this is *not* equivalent to checking the canonical types.
1121   if (SrcSigned == DstSigned && SrcBits == DstBits)
1122     return;
1123   // At least one of the values needs to have signed type.
1124   // If both are unsigned, then obviously, neither of them can be negative.
1125   if (!SrcSigned && !DstSigned)
1126     return;
1127   // If the conversion is to *larger* *signed* type, then no check is needed.
1128   // Because either sign-extension happens (so the sign will remain),
1129   // or zero-extension will happen (the sign bit will be zero.)
1130   if ((DstBits > SrcBits) && DstSigned)
1131     return;
1132   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1133       (SrcBits > DstBits) && SrcSigned) {
1134     // If the signed integer truncation sanitizer is enabled,
1135     // and this is a truncation from signed type, then no check is needed.
1136     // Because here sign change check is interchangeable with truncation check.
1137     return;
1138   }
1139   // That's it. We can't rule out any more cases with the data we have.
1140 
1141   CodeGenFunction::SanitizerScope SanScope(&CGF);
1142 
1143   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1144             std::pair<llvm::Value *, SanitizerMask>>
1145       Check;
1146 
1147   // Each of these checks needs to return 'false' when an issue was detected.
1148   ImplicitConversionCheckKind CheckKind;
1149   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1150   // So we can 'and' all the checks together, and still get 'false',
1151   // if at least one of the checks detected an issue.
1152 
1153   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1154   CheckKind = Check.first;
1155   Checks.emplace_back(Check.second);
1156 
1157   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1158       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1159     // If the signed integer truncation sanitizer was enabled,
1160     // and we are truncating from larger unsigned type to smaller signed type,
1161     // let's handle the case we skipped in that check.
1162     Check =
1163         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1164     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1165     Checks.emplace_back(Check.second);
1166     // If the comparison result is 'i1 false', then the truncation was lossy.
1167   }
1168 
1169   llvm::Constant *StaticArgs[] = {
1170       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1171       CGF.EmitCheckTypeDescriptor(DstType),
1172       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1173   // EmitCheck() will 'and' all the checks together.
1174   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1175                 {Src, Dst});
1176 }
1177 
1178 /// Emit a conversion from the specified type to the specified destination type,
1179 /// both of which are LLVM scalar types.
1180 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1181                                                QualType DstType,
1182                                                SourceLocation Loc,
1183                                                ScalarConversionOpts Opts) {
1184   // All conversions involving fixed point types should be handled by the
1185   // EmitFixedPoint family functions. This is done to prevent bloating up this
1186   // function more, and although fixed point numbers are represented by
1187   // integers, we do not want to follow any logic that assumes they should be
1188   // treated as integers.
1189   // TODO(leonardchan): When necessary, add another if statement checking for
1190   // conversions to fixed point types from other types.
1191   if (SrcType->isFixedPointType()) {
1192     if (DstType->isBooleanType())
1193       // It is important that we check this before checking if the dest type is
1194       // an integer because booleans are technically integer types.
1195       // We do not need to check the padding bit on unsigned types if unsigned
1196       // padding is enabled because overflow into this bit is undefined
1197       // behavior.
1198       return Builder.CreateIsNotNull(Src, "tobool");
1199     if (DstType->isFixedPointType() || DstType->isIntegerType())
1200       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1201 
1202     llvm_unreachable(
1203         "Unhandled scalar conversion from a fixed point type to another type.");
1204   } else if (DstType->isFixedPointType()) {
1205     if (SrcType->isIntegerType())
1206       // This also includes converting booleans and enums to fixed point types.
1207       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1208 
1209     llvm_unreachable(
1210         "Unhandled scalar conversion to a fixed point type from another type.");
1211   }
1212 
1213   QualType NoncanonicalSrcType = SrcType;
1214   QualType NoncanonicalDstType = DstType;
1215 
1216   SrcType = CGF.getContext().getCanonicalType(SrcType);
1217   DstType = CGF.getContext().getCanonicalType(DstType);
1218   if (SrcType == DstType) return Src;
1219 
1220   if (DstType->isVoidType()) return nullptr;
1221 
1222   llvm::Value *OrigSrc = Src;
1223   QualType OrigSrcType = SrcType;
1224   llvm::Type *SrcTy = Src->getType();
1225 
1226   // Handle conversions to bool first, they are special: comparisons against 0.
1227   if (DstType->isBooleanType())
1228     return EmitConversionToBool(Src, SrcType);
1229 
1230   llvm::Type *DstTy = ConvertType(DstType);
1231 
1232   // Cast from half through float if half isn't a native type.
1233   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1234     // Cast to FP using the intrinsic if the half type itself isn't supported.
1235     if (DstTy->isFloatingPointTy()) {
1236       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1237         return Builder.CreateCall(
1238             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1239             Src);
1240     } else {
1241       // Cast to other types through float, using either the intrinsic or FPExt,
1242       // depending on whether the half type itself is supported
1243       // (as opposed to operations on half, available with NativeHalfType).
1244       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1245         Src = Builder.CreateCall(
1246             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1247                                  CGF.CGM.FloatTy),
1248             Src);
1249       } else {
1250         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1251       }
1252       SrcType = CGF.getContext().FloatTy;
1253       SrcTy = CGF.FloatTy;
1254     }
1255   }
1256 
1257   // Ignore conversions like int -> uint.
1258   if (SrcTy == DstTy) {
1259     if (Opts.EmitImplicitIntegerSignChangeChecks)
1260       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1261                                  NoncanonicalDstType, Loc);
1262 
1263     return Src;
1264   }
1265 
1266   // Handle pointer conversions next: pointers can only be converted to/from
1267   // other pointers and integers. Check for pointer types in terms of LLVM, as
1268   // some native types (like Obj-C id) may map to a pointer type.
1269   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1270     // The source value may be an integer, or a pointer.
1271     if (isa<llvm::PointerType>(SrcTy))
1272       return Builder.CreateBitCast(Src, DstTy, "conv");
1273 
1274     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1275     // First, convert to the correct width so that we control the kind of
1276     // extension.
1277     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1278     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1279     llvm::Value* IntResult =
1280         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1281     // Then, cast to pointer.
1282     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1283   }
1284 
1285   if (isa<llvm::PointerType>(SrcTy)) {
1286     // Must be an ptr to int cast.
1287     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1288     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1289   }
1290 
1291   // A scalar can be splatted to an extended vector of the same element type
1292   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1293     // Sema should add casts to make sure that the source expression's type is
1294     // the same as the vector's element type (sans qualifiers)
1295     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1296                SrcType.getTypePtr() &&
1297            "Splatted expr doesn't match with vector element type?");
1298 
1299     // Splat the element across to all elements
1300     unsigned NumElements = DstTy->getVectorNumElements();
1301     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1302   }
1303 
1304   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1305     // Allow bitcast from vector to integer/fp of the same size.
1306     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1307     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1308     if (SrcSize == DstSize)
1309       return Builder.CreateBitCast(Src, DstTy, "conv");
1310 
1311     // Conversions between vectors of different sizes are not allowed except
1312     // when vectors of half are involved. Operations on storage-only half
1313     // vectors require promoting half vector operands to float vectors and
1314     // truncating the result, which is either an int or float vector, to a
1315     // short or half vector.
1316 
1317     // Source and destination are both expected to be vectors.
1318     llvm::Type *SrcElementTy = SrcTy->getVectorElementType();
1319     llvm::Type *DstElementTy = DstTy->getVectorElementType();
1320     (void)DstElementTy;
1321 
1322     assert(((SrcElementTy->isIntegerTy() &&
1323              DstElementTy->isIntegerTy()) ||
1324             (SrcElementTy->isFloatingPointTy() &&
1325              DstElementTy->isFloatingPointTy())) &&
1326            "unexpected conversion between a floating-point vector and an "
1327            "integer vector");
1328 
1329     // Truncate an i32 vector to an i16 vector.
1330     if (SrcElementTy->isIntegerTy())
1331       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1332 
1333     // Truncate a float vector to a half vector.
1334     if (SrcSize > DstSize)
1335       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1336 
1337     // Promote a half vector to a float vector.
1338     return Builder.CreateFPExt(Src, DstTy, "conv");
1339   }
1340 
1341   // Finally, we have the arithmetic types: real int/float.
1342   Value *Res = nullptr;
1343   llvm::Type *ResTy = DstTy;
1344 
1345   // An overflowing conversion has undefined behavior if either the source type
1346   // or the destination type is a floating-point type. However, we consider the
1347   // range of representable values for all floating-point types to be
1348   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1349   // floating-point type.
1350   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1351       OrigSrcType->isFloatingType())
1352     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1353                              Loc);
1354 
1355   // Cast to half through float if half isn't a native type.
1356   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1357     // Make sure we cast in a single step if from another FP type.
1358     if (SrcTy->isFloatingPointTy()) {
1359       // Use the intrinsic if the half type itself isn't supported
1360       // (as opposed to operations on half, available with NativeHalfType).
1361       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1362         return Builder.CreateCall(
1363             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1364       // If the half type is supported, just use an fptrunc.
1365       return Builder.CreateFPTrunc(Src, DstTy);
1366     }
1367     DstTy = CGF.FloatTy;
1368   }
1369 
1370   if (isa<llvm::IntegerType>(SrcTy)) {
1371     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1372     if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1373       InputSigned = true;
1374     }
1375     if (isa<llvm::IntegerType>(DstTy))
1376       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1377     else if (InputSigned)
1378       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1379     else
1380       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1381   } else if (isa<llvm::IntegerType>(DstTy)) {
1382     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1383     if (DstType->isSignedIntegerOrEnumerationType())
1384       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1385     else
1386       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1387   } else {
1388     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1389            "Unknown real conversion");
1390     if (DstTy->getTypeID() < SrcTy->getTypeID())
1391       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1392     else
1393       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1394   }
1395 
1396   if (DstTy != ResTy) {
1397     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1398       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1399       Res = Builder.CreateCall(
1400         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1401         Res);
1402     } else {
1403       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1404     }
1405   }
1406 
1407   if (Opts.EmitImplicitIntegerTruncationChecks)
1408     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1409                                NoncanonicalDstType, Loc);
1410 
1411   if (Opts.EmitImplicitIntegerSignChangeChecks)
1412     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1413                                NoncanonicalDstType, Loc);
1414 
1415   return Res;
1416 }
1417 
1418 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1419                                                    QualType DstTy,
1420                                                    SourceLocation Loc) {
1421   FixedPointSemantics SrcFPSema =
1422       CGF.getContext().getFixedPointSemantics(SrcTy);
1423   FixedPointSemantics DstFPSema =
1424       CGF.getContext().getFixedPointSemantics(DstTy);
1425   return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc,
1426                                   DstTy->isIntegerType());
1427 }
1428 
1429 Value *ScalarExprEmitter::EmitFixedPointConversion(
1430     Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema,
1431     SourceLocation Loc, bool DstIsInteger) {
1432   using llvm::APInt;
1433   using llvm::ConstantInt;
1434   using llvm::Value;
1435 
1436   unsigned SrcWidth = SrcFPSema.getWidth();
1437   unsigned DstWidth = DstFPSema.getWidth();
1438   unsigned SrcScale = SrcFPSema.getScale();
1439   unsigned DstScale = DstFPSema.getScale();
1440   bool SrcIsSigned = SrcFPSema.isSigned();
1441   bool DstIsSigned = DstFPSema.isSigned();
1442 
1443   llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth);
1444 
1445   Value *Result = Src;
1446   unsigned ResultWidth = SrcWidth;
1447 
1448   // Downscale.
1449   if (DstScale < SrcScale) {
1450     // When converting to integers, we round towards zero. For negative numbers,
1451     // right shifting rounds towards negative infinity. In this case, we can
1452     // just round up before shifting.
1453     if (DstIsInteger && SrcIsSigned) {
1454       Value *Zero = llvm::Constant::getNullValue(Result->getType());
1455       Value *IsNegative = Builder.CreateICmpSLT(Result, Zero);
1456       Value *LowBits = ConstantInt::get(
1457           CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale));
1458       Value *Rounded = Builder.CreateAdd(Result, LowBits);
1459       Result = Builder.CreateSelect(IsNegative, Rounded, Result);
1460     }
1461 
1462     Result = SrcIsSigned
1463                  ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale")
1464                  : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale");
1465   }
1466 
1467   if (!DstFPSema.isSaturated()) {
1468     // Resize.
1469     Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1470 
1471     // Upscale.
1472     if (DstScale > SrcScale)
1473       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1474   } else {
1475     // Adjust the number of fractional bits.
1476     if (DstScale > SrcScale) {
1477       // Compare to DstWidth to prevent resizing twice.
1478       ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth);
1479       llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth);
1480       Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize");
1481       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1482     }
1483 
1484     // Handle saturation.
1485     bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits();
1486     if (LessIntBits) {
1487       Value *Max = ConstantInt::get(
1488           CGF.getLLVMContext(),
1489           APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth));
1490       Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max)
1491                                    : Builder.CreateICmpUGT(Result, Max);
1492       Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax");
1493     }
1494     // Cannot overflow min to dest type if src is unsigned since all fixed
1495     // point types can cover the unsigned min of 0.
1496     if (SrcIsSigned && (LessIntBits || !DstIsSigned)) {
1497       Value *Min = ConstantInt::get(
1498           CGF.getLLVMContext(),
1499           APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth));
1500       Value *TooLow = Builder.CreateICmpSLT(Result, Min);
1501       Result = Builder.CreateSelect(TooLow, Min, Result, "satmin");
1502     }
1503 
1504     // Resize the integer part to get the final destination size.
1505     if (ResultWidth != DstWidth)
1506       Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1507   }
1508   return Result;
1509 }
1510 
1511 /// Emit a conversion from the specified complex type to the specified
1512 /// destination type, where the destination type is an LLVM scalar type.
1513 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1514     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1515     SourceLocation Loc) {
1516   // Get the source element type.
1517   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1518 
1519   // Handle conversions to bool first, they are special: comparisons against 0.
1520   if (DstTy->isBooleanType()) {
1521     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1522     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1523     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1524     return Builder.CreateOr(Src.first, Src.second, "tobool");
1525   }
1526 
1527   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1528   // the imaginary part of the complex value is discarded and the value of the
1529   // real part is converted according to the conversion rules for the
1530   // corresponding real type.
1531   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1532 }
1533 
1534 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1535   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1536 }
1537 
1538 /// Emit a sanitization check for the given "binary" operation (which
1539 /// might actually be a unary increment which has been lowered to a binary
1540 /// operation). The check passes if all values in \p Checks (which are \c i1),
1541 /// are \c true.
1542 void ScalarExprEmitter::EmitBinOpCheck(
1543     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1544   assert(CGF.IsSanitizerScope);
1545   SanitizerHandler Check;
1546   SmallVector<llvm::Constant *, 4> StaticData;
1547   SmallVector<llvm::Value *, 2> DynamicData;
1548 
1549   BinaryOperatorKind Opcode = Info.Opcode;
1550   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1551     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1552 
1553   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1554   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1555   if (UO && UO->getOpcode() == UO_Minus) {
1556     Check = SanitizerHandler::NegateOverflow;
1557     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1558     DynamicData.push_back(Info.RHS);
1559   } else {
1560     if (BinaryOperator::isShiftOp(Opcode)) {
1561       // Shift LHS negative or too large, or RHS out of bounds.
1562       Check = SanitizerHandler::ShiftOutOfBounds;
1563       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1564       StaticData.push_back(
1565         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1566       StaticData.push_back(
1567         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1568     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1569       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1570       Check = SanitizerHandler::DivremOverflow;
1571       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1572     } else {
1573       // Arithmetic overflow (+, -, *).
1574       switch (Opcode) {
1575       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1576       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1577       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1578       default: llvm_unreachable("unexpected opcode for bin op check");
1579       }
1580       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1581     }
1582     DynamicData.push_back(Info.LHS);
1583     DynamicData.push_back(Info.RHS);
1584   }
1585 
1586   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1587 }
1588 
1589 //===----------------------------------------------------------------------===//
1590 //                            Visitor Methods
1591 //===----------------------------------------------------------------------===//
1592 
1593 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1594   CGF.ErrorUnsupported(E, "scalar expression");
1595   if (E->getType()->isVoidType())
1596     return nullptr;
1597   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1598 }
1599 
1600 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1601   // Vector Mask Case
1602   if (E->getNumSubExprs() == 2) {
1603     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1604     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1605     Value *Mask;
1606 
1607     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1608     unsigned LHSElts = LTy->getNumElements();
1609 
1610     Mask = RHS;
1611 
1612     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1613 
1614     // Mask off the high bits of each shuffle index.
1615     Value *MaskBits =
1616         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1617     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1618 
1619     // newv = undef
1620     // mask = mask & maskbits
1621     // for each elt
1622     //   n = extract mask i
1623     //   x = extract val n
1624     //   newv = insert newv, x, i
1625     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1626                                                   MTy->getNumElements());
1627     Value* NewV = llvm::UndefValue::get(RTy);
1628     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1629       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1630       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1631 
1632       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1633       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1634     }
1635     return NewV;
1636   }
1637 
1638   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1639   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1640 
1641   SmallVector<llvm::Constant*, 32> indices;
1642   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1643     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1644     // Check for -1 and output it as undef in the IR.
1645     if (Idx.isSigned() && Idx.isAllOnesValue())
1646       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1647     else
1648       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1649   }
1650 
1651   Value *SV = llvm::ConstantVector::get(indices);
1652   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1653 }
1654 
1655 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1656   QualType SrcType = E->getSrcExpr()->getType(),
1657            DstType = E->getType();
1658 
1659   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1660 
1661   SrcType = CGF.getContext().getCanonicalType(SrcType);
1662   DstType = CGF.getContext().getCanonicalType(DstType);
1663   if (SrcType == DstType) return Src;
1664 
1665   assert(SrcType->isVectorType() &&
1666          "ConvertVector source type must be a vector");
1667   assert(DstType->isVectorType() &&
1668          "ConvertVector destination type must be a vector");
1669 
1670   llvm::Type *SrcTy = Src->getType();
1671   llvm::Type *DstTy = ConvertType(DstType);
1672 
1673   // Ignore conversions like int -> uint.
1674   if (SrcTy == DstTy)
1675     return Src;
1676 
1677   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1678            DstEltType = DstType->castAs<VectorType>()->getElementType();
1679 
1680   assert(SrcTy->isVectorTy() &&
1681          "ConvertVector source IR type must be a vector");
1682   assert(DstTy->isVectorTy() &&
1683          "ConvertVector destination IR type must be a vector");
1684 
1685   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1686              *DstEltTy = DstTy->getVectorElementType();
1687 
1688   if (DstEltType->isBooleanType()) {
1689     assert((SrcEltTy->isFloatingPointTy() ||
1690             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1691 
1692     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1693     if (SrcEltTy->isFloatingPointTy()) {
1694       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1695     } else {
1696       return Builder.CreateICmpNE(Src, Zero, "tobool");
1697     }
1698   }
1699 
1700   // We have the arithmetic types: real int/float.
1701   Value *Res = nullptr;
1702 
1703   if (isa<llvm::IntegerType>(SrcEltTy)) {
1704     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1705     if (isa<llvm::IntegerType>(DstEltTy))
1706       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1707     else if (InputSigned)
1708       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1709     else
1710       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1711   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1712     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1713     if (DstEltType->isSignedIntegerOrEnumerationType())
1714       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1715     else
1716       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1717   } else {
1718     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1719            "Unknown real conversion");
1720     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1721       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1722     else
1723       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1724   }
1725 
1726   return Res;
1727 }
1728 
1729 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1730   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1731     CGF.EmitIgnoredExpr(E->getBase());
1732     return CGF.emitScalarConstant(Constant, E);
1733   } else {
1734     Expr::EvalResult Result;
1735     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1736       llvm::APSInt Value = Result.Val.getInt();
1737       CGF.EmitIgnoredExpr(E->getBase());
1738       return Builder.getInt(Value);
1739     }
1740   }
1741 
1742   return EmitLoadOfLValue(E);
1743 }
1744 
1745 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1746   TestAndClearIgnoreResultAssign();
1747 
1748   // Emit subscript expressions in rvalue context's.  For most cases, this just
1749   // loads the lvalue formed by the subscript expr.  However, we have to be
1750   // careful, because the base of a vector subscript is occasionally an rvalue,
1751   // so we can't get it as an lvalue.
1752   if (!E->getBase()->getType()->isVectorType())
1753     return EmitLoadOfLValue(E);
1754 
1755   // Handle the vector case.  The base must be a vector, the index must be an
1756   // integer value.
1757   Value *Base = Visit(E->getBase());
1758   Value *Idx  = Visit(E->getIdx());
1759   QualType IdxTy = E->getIdx()->getType();
1760 
1761   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1762     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1763 
1764   return Builder.CreateExtractElement(Base, Idx, "vecext");
1765 }
1766 
1767 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1768                                   unsigned Off, llvm::Type *I32Ty) {
1769   int MV = SVI->getMaskValue(Idx);
1770   if (MV == -1)
1771     return llvm::UndefValue::get(I32Ty);
1772   return llvm::ConstantInt::get(I32Ty, Off+MV);
1773 }
1774 
1775 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1776   if (C->getBitWidth() != 32) {
1777       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1778                                                     C->getZExtValue()) &&
1779              "Index operand too large for shufflevector mask!");
1780       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1781   }
1782   return C;
1783 }
1784 
1785 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1786   bool Ignore = TestAndClearIgnoreResultAssign();
1787   (void)Ignore;
1788   assert (Ignore == false && "init list ignored");
1789   unsigned NumInitElements = E->getNumInits();
1790 
1791   if (E->hadArrayRangeDesignator())
1792     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1793 
1794   llvm::VectorType *VType =
1795     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1796 
1797   if (!VType) {
1798     if (NumInitElements == 0) {
1799       // C++11 value-initialization for the scalar.
1800       return EmitNullValue(E->getType());
1801     }
1802     // We have a scalar in braces. Just use the first element.
1803     return Visit(E->getInit(0));
1804   }
1805 
1806   unsigned ResElts = VType->getNumElements();
1807 
1808   // Loop over initializers collecting the Value for each, and remembering
1809   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1810   // us to fold the shuffle for the swizzle into the shuffle for the vector
1811   // initializer, since LLVM optimizers generally do not want to touch
1812   // shuffles.
1813   unsigned CurIdx = 0;
1814   bool VIsUndefShuffle = false;
1815   llvm::Value *V = llvm::UndefValue::get(VType);
1816   for (unsigned i = 0; i != NumInitElements; ++i) {
1817     Expr *IE = E->getInit(i);
1818     Value *Init = Visit(IE);
1819     SmallVector<llvm::Constant*, 16> Args;
1820 
1821     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1822 
1823     // Handle scalar elements.  If the scalar initializer is actually one
1824     // element of a different vector of the same width, use shuffle instead of
1825     // extract+insert.
1826     if (!VVT) {
1827       if (isa<ExtVectorElementExpr>(IE)) {
1828         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1829 
1830         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1831           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1832           Value *LHS = nullptr, *RHS = nullptr;
1833           if (CurIdx == 0) {
1834             // insert into undef -> shuffle (src, undef)
1835             // shufflemask must use an i32
1836             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1837             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1838 
1839             LHS = EI->getVectorOperand();
1840             RHS = V;
1841             VIsUndefShuffle = true;
1842           } else if (VIsUndefShuffle) {
1843             // insert into undefshuffle && size match -> shuffle (v, src)
1844             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1845             for (unsigned j = 0; j != CurIdx; ++j)
1846               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1847             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1848             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1849 
1850             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1851             RHS = EI->getVectorOperand();
1852             VIsUndefShuffle = false;
1853           }
1854           if (!Args.empty()) {
1855             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1856             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1857             ++CurIdx;
1858             continue;
1859           }
1860         }
1861       }
1862       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1863                                       "vecinit");
1864       VIsUndefShuffle = false;
1865       ++CurIdx;
1866       continue;
1867     }
1868 
1869     unsigned InitElts = VVT->getNumElements();
1870 
1871     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1872     // input is the same width as the vector being constructed, generate an
1873     // optimized shuffle of the swizzle input into the result.
1874     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1875     if (isa<ExtVectorElementExpr>(IE)) {
1876       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1877       Value *SVOp = SVI->getOperand(0);
1878       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1879 
1880       if (OpTy->getNumElements() == ResElts) {
1881         for (unsigned j = 0; j != CurIdx; ++j) {
1882           // If the current vector initializer is a shuffle with undef, merge
1883           // this shuffle directly into it.
1884           if (VIsUndefShuffle) {
1885             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1886                                       CGF.Int32Ty));
1887           } else {
1888             Args.push_back(Builder.getInt32(j));
1889           }
1890         }
1891         for (unsigned j = 0, je = InitElts; j != je; ++j)
1892           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1893         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1894 
1895         if (VIsUndefShuffle)
1896           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1897 
1898         Init = SVOp;
1899       }
1900     }
1901 
1902     // Extend init to result vector length, and then shuffle its contribution
1903     // to the vector initializer into V.
1904     if (Args.empty()) {
1905       for (unsigned j = 0; j != InitElts; ++j)
1906         Args.push_back(Builder.getInt32(j));
1907       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1908       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1909       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1910                                          Mask, "vext");
1911 
1912       Args.clear();
1913       for (unsigned j = 0; j != CurIdx; ++j)
1914         Args.push_back(Builder.getInt32(j));
1915       for (unsigned j = 0; j != InitElts; ++j)
1916         Args.push_back(Builder.getInt32(j+Offset));
1917       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1918     }
1919 
1920     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1921     // merging subsequent shuffles into this one.
1922     if (CurIdx == 0)
1923       std::swap(V, Init);
1924     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1925     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1926     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1927     CurIdx += InitElts;
1928   }
1929 
1930   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1931   // Emit remaining default initializers.
1932   llvm::Type *EltTy = VType->getElementType();
1933 
1934   // Emit remaining default initializers
1935   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1936     Value *Idx = Builder.getInt32(CurIdx);
1937     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1938     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1939   }
1940   return V;
1941 }
1942 
1943 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1944   const Expr *E = CE->getSubExpr();
1945 
1946   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1947     return false;
1948 
1949   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1950     // We always assume that 'this' is never null.
1951     return false;
1952   }
1953 
1954   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1955     // And that glvalue casts are never null.
1956     if (ICE->getValueKind() != VK_RValue)
1957       return false;
1958   }
1959 
1960   return true;
1961 }
1962 
1963 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1964 // have to handle a more broad range of conversions than explicit casts, as they
1965 // handle things like function to ptr-to-function decay etc.
1966 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1967   Expr *E = CE->getSubExpr();
1968   QualType DestTy = CE->getType();
1969   CastKind Kind = CE->getCastKind();
1970 
1971   // These cases are generally not written to ignore the result of
1972   // evaluating their sub-expressions, so we clear this now.
1973   bool Ignored = TestAndClearIgnoreResultAssign();
1974 
1975   // Since almost all cast kinds apply to scalars, this switch doesn't have
1976   // a default case, so the compiler will warn on a missing case.  The cases
1977   // are in the same order as in the CastKind enum.
1978   switch (Kind) {
1979   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1980   case CK_BuiltinFnToFnPtr:
1981     llvm_unreachable("builtin functions are handled elsewhere");
1982 
1983   case CK_LValueBitCast:
1984   case CK_ObjCObjectLValueCast: {
1985     Address Addr = EmitLValue(E).getAddress(CGF);
1986     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1987     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1988     return EmitLoadOfLValue(LV, CE->getExprLoc());
1989   }
1990 
1991   case CK_LValueToRValueBitCast: {
1992     LValue SourceLVal = CGF.EmitLValue(E);
1993     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
1994                                                 CGF.ConvertTypeForMem(DestTy));
1995     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
1996     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
1997     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
1998   }
1999 
2000   case CK_CPointerToObjCPointerCast:
2001   case CK_BlockPointerToObjCPointerCast:
2002   case CK_AnyPointerToBlockPointerCast:
2003   case CK_BitCast: {
2004     Value *Src = Visit(const_cast<Expr*>(E));
2005     llvm::Type *SrcTy = Src->getType();
2006     llvm::Type *DstTy = ConvertType(DestTy);
2007     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2008         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2009       llvm_unreachable("wrong cast for pointers in different address spaces"
2010                        "(must be an address space cast)!");
2011     }
2012 
2013     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2014       if (auto PT = DestTy->getAs<PointerType>())
2015         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
2016                                       /*MayBeNull=*/true,
2017                                       CodeGenFunction::CFITCK_UnrelatedCast,
2018                                       CE->getBeginLoc());
2019     }
2020 
2021     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2022       const QualType SrcType = E->getType();
2023 
2024       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2025         // Casting to pointer that could carry dynamic information (provided by
2026         // invariant.group) requires launder.
2027         Src = Builder.CreateLaunderInvariantGroup(Src);
2028       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2029         // Casting to pointer that does not carry dynamic information (provided
2030         // by invariant.group) requires stripping it.  Note that we don't do it
2031         // if the source could not be dynamic type and destination could be
2032         // dynamic because dynamic information is already laundered.  It is
2033         // because launder(strip(src)) == launder(src), so there is no need to
2034         // add extra strip before launder.
2035         Src = Builder.CreateStripInvariantGroup(Src);
2036       }
2037     }
2038 
2039     // Update heapallocsite metadata when there is an explicit cast.
2040     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src))
2041       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE))
2042           CGF.getDebugInfo()->
2043               addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc());
2044 
2045     return Builder.CreateBitCast(Src, DstTy);
2046   }
2047   case CK_AddressSpaceConversion: {
2048     Expr::EvalResult Result;
2049     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2050         Result.Val.isNullPointer()) {
2051       // If E has side effect, it is emitted even if its final result is a
2052       // null pointer. In that case, a DCE pass should be able to
2053       // eliminate the useless instructions emitted during translating E.
2054       if (Result.HasSideEffects)
2055         Visit(E);
2056       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2057           ConvertType(DestTy)), DestTy);
2058     }
2059     // Since target may map different address spaces in AST to the same address
2060     // space, an address space conversion may end up as a bitcast.
2061     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2062         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2063         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2064   }
2065   case CK_AtomicToNonAtomic:
2066   case CK_NonAtomicToAtomic:
2067   case CK_NoOp:
2068   case CK_UserDefinedConversion:
2069     return Visit(const_cast<Expr*>(E));
2070 
2071   case CK_BaseToDerived: {
2072     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2073     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2074 
2075     Address Base = CGF.EmitPointerWithAlignment(E);
2076     Address Derived =
2077       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2078                                    CE->path_begin(), CE->path_end(),
2079                                    CGF.ShouldNullCheckClassCastValue(CE));
2080 
2081     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2082     // performed and the object is not of the derived type.
2083     if (CGF.sanitizePerformTypeCheck())
2084       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2085                         Derived.getPointer(), DestTy->getPointeeType());
2086 
2087     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2088       CGF.EmitVTablePtrCheckForCast(
2089           DestTy->getPointeeType(), Derived.getPointer(),
2090           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2091           CE->getBeginLoc());
2092 
2093     return Derived.getPointer();
2094   }
2095   case CK_UncheckedDerivedToBase:
2096   case CK_DerivedToBase: {
2097     // The EmitPointerWithAlignment path does this fine; just discard
2098     // the alignment.
2099     return CGF.EmitPointerWithAlignment(CE).getPointer();
2100   }
2101 
2102   case CK_Dynamic: {
2103     Address V = CGF.EmitPointerWithAlignment(E);
2104     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2105     return CGF.EmitDynamicCast(V, DCE);
2106   }
2107 
2108   case CK_ArrayToPointerDecay:
2109     return CGF.EmitArrayToPointerDecay(E).getPointer();
2110   case CK_FunctionToPointerDecay:
2111     return EmitLValue(E).getPointer(CGF);
2112 
2113   case CK_NullToPointer:
2114     if (MustVisitNullValue(E))
2115       CGF.EmitIgnoredExpr(E);
2116 
2117     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2118                               DestTy);
2119 
2120   case CK_NullToMemberPointer: {
2121     if (MustVisitNullValue(E))
2122       CGF.EmitIgnoredExpr(E);
2123 
2124     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2125     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2126   }
2127 
2128   case CK_ReinterpretMemberPointer:
2129   case CK_BaseToDerivedMemberPointer:
2130   case CK_DerivedToBaseMemberPointer: {
2131     Value *Src = Visit(E);
2132 
2133     // Note that the AST doesn't distinguish between checked and
2134     // unchecked member pointer conversions, so we always have to
2135     // implement checked conversions here.  This is inefficient when
2136     // actual control flow may be required in order to perform the
2137     // check, which it is for data member pointers (but not member
2138     // function pointers on Itanium and ARM).
2139     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2140   }
2141 
2142   case CK_ARCProduceObject:
2143     return CGF.EmitARCRetainScalarExpr(E);
2144   case CK_ARCConsumeObject:
2145     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2146   case CK_ARCReclaimReturnedObject:
2147     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2148   case CK_ARCExtendBlockObject:
2149     return CGF.EmitARCExtendBlockObject(E);
2150 
2151   case CK_CopyAndAutoreleaseBlockObject:
2152     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2153 
2154   case CK_FloatingRealToComplex:
2155   case CK_FloatingComplexCast:
2156   case CK_IntegralRealToComplex:
2157   case CK_IntegralComplexCast:
2158   case CK_IntegralComplexToFloatingComplex:
2159   case CK_FloatingComplexToIntegralComplex:
2160   case CK_ConstructorConversion:
2161   case CK_ToUnion:
2162     llvm_unreachable("scalar cast to non-scalar value");
2163 
2164   case CK_LValueToRValue:
2165     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2166     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2167     return Visit(const_cast<Expr*>(E));
2168 
2169   case CK_IntegralToPointer: {
2170     Value *Src = Visit(const_cast<Expr*>(E));
2171 
2172     // First, convert to the correct width so that we control the kind of
2173     // extension.
2174     auto DestLLVMTy = ConvertType(DestTy);
2175     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2176     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2177     llvm::Value* IntResult =
2178       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2179 
2180     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2181 
2182     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2183       // Going from integer to pointer that could be dynamic requires reloading
2184       // dynamic information from invariant.group.
2185       if (DestTy.mayBeDynamicClass())
2186         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2187     }
2188     return IntToPtr;
2189   }
2190   case CK_PointerToIntegral: {
2191     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2192     auto *PtrExpr = Visit(E);
2193 
2194     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2195       const QualType SrcType = E->getType();
2196 
2197       // Casting to integer requires stripping dynamic information as it does
2198       // not carries it.
2199       if (SrcType.mayBeDynamicClass())
2200         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2201     }
2202 
2203     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2204   }
2205   case CK_ToVoid: {
2206     CGF.EmitIgnoredExpr(E);
2207     return nullptr;
2208   }
2209   case CK_VectorSplat: {
2210     llvm::Type *DstTy = ConvertType(DestTy);
2211     Value *Elt = Visit(const_cast<Expr*>(E));
2212     // Splat the element across to all elements
2213     unsigned NumElements = DstTy->getVectorNumElements();
2214     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2215   }
2216 
2217   case CK_FixedPointCast:
2218     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2219                                 CE->getExprLoc());
2220 
2221   case CK_FixedPointToBoolean:
2222     assert(E->getType()->isFixedPointType() &&
2223            "Expected src type to be fixed point type");
2224     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2225     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2226                                 CE->getExprLoc());
2227 
2228   case CK_FixedPointToIntegral:
2229     assert(E->getType()->isFixedPointType() &&
2230            "Expected src type to be fixed point type");
2231     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2232     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2233                                 CE->getExprLoc());
2234 
2235   case CK_IntegralToFixedPoint:
2236     assert(E->getType()->isIntegerType() &&
2237            "Expected src type to be an integer");
2238     assert(DestTy->isFixedPointType() &&
2239            "Expected dest type to be fixed point type");
2240     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2241                                 CE->getExprLoc());
2242 
2243   case CK_IntegralCast: {
2244     ScalarConversionOpts Opts;
2245     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2246       if (!ICE->isPartOfExplicitCast())
2247         Opts = ScalarConversionOpts(CGF.SanOpts);
2248     }
2249     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2250                                 CE->getExprLoc(), Opts);
2251   }
2252   case CK_IntegralToFloating:
2253   case CK_FloatingToIntegral:
2254   case CK_FloatingCast:
2255     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2256                                 CE->getExprLoc());
2257   case CK_BooleanToSignedIntegral: {
2258     ScalarConversionOpts Opts;
2259     Opts.TreatBooleanAsSigned = true;
2260     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2261                                 CE->getExprLoc(), Opts);
2262   }
2263   case CK_IntegralToBoolean:
2264     return EmitIntToBoolConversion(Visit(E));
2265   case CK_PointerToBoolean:
2266     return EmitPointerToBoolConversion(Visit(E), E->getType());
2267   case CK_FloatingToBoolean:
2268     return EmitFloatToBoolConversion(Visit(E));
2269   case CK_MemberPointerToBoolean: {
2270     llvm::Value *MemPtr = Visit(E);
2271     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2272     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2273   }
2274 
2275   case CK_FloatingComplexToReal:
2276   case CK_IntegralComplexToReal:
2277     return CGF.EmitComplexExpr(E, false, true).first;
2278 
2279   case CK_FloatingComplexToBoolean:
2280   case CK_IntegralComplexToBoolean: {
2281     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2282 
2283     // TODO: kill this function off, inline appropriate case here
2284     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2285                                          CE->getExprLoc());
2286   }
2287 
2288   case CK_ZeroToOCLOpaqueType: {
2289     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2290             DestTy->isOCLIntelSubgroupAVCType()) &&
2291            "CK_ZeroToOCLEvent cast on non-event type");
2292     return llvm::Constant::getNullValue(ConvertType(DestTy));
2293   }
2294 
2295   case CK_IntToOCLSampler:
2296     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2297 
2298   } // end of switch
2299 
2300   llvm_unreachable("unknown scalar cast");
2301 }
2302 
2303 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2304   CodeGenFunction::StmtExprEvaluation eval(CGF);
2305   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2306                                            !E->getType()->isVoidType());
2307   if (!RetAlloca.isValid())
2308     return nullptr;
2309   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2310                               E->getExprLoc());
2311 }
2312 
2313 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2314   CGF.enterFullExpression(E);
2315   CodeGenFunction::RunCleanupsScope Scope(CGF);
2316   Value *V = Visit(E->getSubExpr());
2317   // Defend against dominance problems caused by jumps out of expression
2318   // evaluation through the shared cleanup block.
2319   Scope.ForceCleanup({&V});
2320   return V;
2321 }
2322 
2323 //===----------------------------------------------------------------------===//
2324 //                             Unary Operators
2325 //===----------------------------------------------------------------------===//
2326 
2327 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2328                                            llvm::Value *InVal, bool IsInc) {
2329   BinOpInfo BinOp;
2330   BinOp.LHS = InVal;
2331   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2332   BinOp.Ty = E->getType();
2333   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2334   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2335   BinOp.E = E;
2336   return BinOp;
2337 }
2338 
2339 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2340     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2341   llvm::Value *Amount =
2342       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2343   StringRef Name = IsInc ? "inc" : "dec";
2344   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2345   case LangOptions::SOB_Defined:
2346     return Builder.CreateAdd(InVal, Amount, Name);
2347   case LangOptions::SOB_Undefined:
2348     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2349       return Builder.CreateNSWAdd(InVal, Amount, Name);
2350     LLVM_FALLTHROUGH;
2351   case LangOptions::SOB_Trapping:
2352     if (!E->canOverflow())
2353       return Builder.CreateNSWAdd(InVal, Amount, Name);
2354     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
2355   }
2356   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2357 }
2358 
2359 namespace {
2360 /// Handles check and update for lastprivate conditional variables.
2361 class OMPLastprivateConditionalUpdateRAII {
2362 private:
2363   CodeGenFunction &CGF;
2364   const UnaryOperator *E;
2365 
2366 public:
2367   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2368                                       const UnaryOperator *E)
2369       : CGF(CGF), E(E) {}
2370   ~OMPLastprivateConditionalUpdateRAII() {
2371     if (CGF.getLangOpts().OpenMP)
2372       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2373           CGF, E->getSubExpr());
2374   }
2375 };
2376 } // namespace
2377 
2378 llvm::Value *
2379 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2380                                            bool isInc, bool isPre) {
2381   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2382   QualType type = E->getSubExpr()->getType();
2383   llvm::PHINode *atomicPHI = nullptr;
2384   llvm::Value *value;
2385   llvm::Value *input;
2386 
2387   int amount = (isInc ? 1 : -1);
2388   bool isSubtraction = !isInc;
2389 
2390   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2391     type = atomicTy->getValueType();
2392     if (isInc && type->isBooleanType()) {
2393       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2394       if (isPre) {
2395         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2396             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2397         return Builder.getTrue();
2398       }
2399       // For atomic bool increment, we just store true and return it for
2400       // preincrement, do an atomic swap with true for postincrement
2401       return Builder.CreateAtomicRMW(
2402           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2403           llvm::AtomicOrdering::SequentiallyConsistent);
2404     }
2405     // Special case for atomic increment / decrement on integers, emit
2406     // atomicrmw instructions.  We skip this if we want to be doing overflow
2407     // checking, and fall into the slow path with the atomic cmpxchg loop.
2408     if (!type->isBooleanType() && type->isIntegerType() &&
2409         !(type->isUnsignedIntegerType() &&
2410           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2411         CGF.getLangOpts().getSignedOverflowBehavior() !=
2412             LangOptions::SOB_Trapping) {
2413       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2414         llvm::AtomicRMWInst::Sub;
2415       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2416         llvm::Instruction::Sub;
2417       llvm::Value *amt = CGF.EmitToMemory(
2418           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2419       llvm::Value *old =
2420           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2421                                   llvm::AtomicOrdering::SequentiallyConsistent);
2422       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2423     }
2424     value = EmitLoadOfLValue(LV, E->getExprLoc());
2425     input = value;
2426     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2427     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2428     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2429     value = CGF.EmitToMemory(value, type);
2430     Builder.CreateBr(opBB);
2431     Builder.SetInsertPoint(opBB);
2432     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2433     atomicPHI->addIncoming(value, startBB);
2434     value = atomicPHI;
2435   } else {
2436     value = EmitLoadOfLValue(LV, E->getExprLoc());
2437     input = value;
2438   }
2439 
2440   // Special case of integer increment that we have to check first: bool++.
2441   // Due to promotion rules, we get:
2442   //   bool++ -> bool = bool + 1
2443   //          -> bool = (int)bool + 1
2444   //          -> bool = ((int)bool + 1 != 0)
2445   // An interesting aspect of this is that increment is always true.
2446   // Decrement does not have this property.
2447   if (isInc && type->isBooleanType()) {
2448     value = Builder.getTrue();
2449 
2450   // Most common case by far: integer increment.
2451   } else if (type->isIntegerType()) {
2452     QualType promotedType;
2453     bool canPerformLossyDemotionCheck = false;
2454     if (type->isPromotableIntegerType()) {
2455       promotedType = CGF.getContext().getPromotedIntegerType(type);
2456       assert(promotedType != type && "Shouldn't promote to the same type.");
2457       canPerformLossyDemotionCheck = true;
2458       canPerformLossyDemotionCheck &=
2459           CGF.getContext().getCanonicalType(type) !=
2460           CGF.getContext().getCanonicalType(promotedType);
2461       canPerformLossyDemotionCheck &=
2462           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2463               type, promotedType);
2464       assert((!canPerformLossyDemotionCheck ||
2465               type->isSignedIntegerOrEnumerationType() ||
2466               promotedType->isSignedIntegerOrEnumerationType() ||
2467               ConvertType(type)->getScalarSizeInBits() ==
2468                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2469              "The following check expects that if we do promotion to different "
2470              "underlying canonical type, at least one of the types (either "
2471              "base or promoted) will be signed, or the bitwidths will match.");
2472     }
2473     if (CGF.SanOpts.hasOneOf(
2474             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2475         canPerformLossyDemotionCheck) {
2476       // While `x += 1` (for `x` with width less than int) is modeled as
2477       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2478       // ease; inc/dec with width less than int can't overflow because of
2479       // promotion rules, so we omit promotion+demotion, which means that we can
2480       // not catch lossy "demotion". Because we still want to catch these cases
2481       // when the sanitizer is enabled, we perform the promotion, then perform
2482       // the increment/decrement in the wider type, and finally
2483       // perform the demotion. This will catch lossy demotions.
2484 
2485       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2486       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2487       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2488       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2489       // emitted.
2490       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2491                                    ScalarConversionOpts(CGF.SanOpts));
2492 
2493       // Note that signed integer inc/dec with width less than int can't
2494       // overflow because of promotion rules; we're just eliding a few steps
2495       // here.
2496     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2497       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2498     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2499                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2500       value =
2501           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
2502     } else {
2503       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2504       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2505     }
2506 
2507   // Next most common: pointer increment.
2508   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2509     QualType type = ptr->getPointeeType();
2510 
2511     // VLA types don't have constant size.
2512     if (const VariableArrayType *vla
2513           = CGF.getContext().getAsVariableArrayType(type)) {
2514       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2515       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2516       if (CGF.getLangOpts().isSignedOverflowDefined())
2517         value = Builder.CreateGEP(value, numElts, "vla.inc");
2518       else
2519         value = CGF.EmitCheckedInBoundsGEP(
2520             value, numElts, /*SignedIndices=*/false, isSubtraction,
2521             E->getExprLoc(), "vla.inc");
2522 
2523     // Arithmetic on function pointers (!) is just +-1.
2524     } else if (type->isFunctionType()) {
2525       llvm::Value *amt = Builder.getInt32(amount);
2526 
2527       value = CGF.EmitCastToVoidPtr(value);
2528       if (CGF.getLangOpts().isSignedOverflowDefined())
2529         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2530       else
2531         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2532                                            isSubtraction, E->getExprLoc(),
2533                                            "incdec.funcptr");
2534       value = Builder.CreateBitCast(value, input->getType());
2535 
2536     // For everything else, we can just do a simple increment.
2537     } else {
2538       llvm::Value *amt = Builder.getInt32(amount);
2539       if (CGF.getLangOpts().isSignedOverflowDefined())
2540         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2541       else
2542         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2543                                            isSubtraction, E->getExprLoc(),
2544                                            "incdec.ptr");
2545     }
2546 
2547   // Vector increment/decrement.
2548   } else if (type->isVectorType()) {
2549     if (type->hasIntegerRepresentation()) {
2550       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2551 
2552       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2553     } else {
2554       value = Builder.CreateFAdd(
2555                   value,
2556                   llvm::ConstantFP::get(value->getType(), amount),
2557                   isInc ? "inc" : "dec");
2558     }
2559 
2560   // Floating point.
2561   } else if (type->isRealFloatingType()) {
2562     // Add the inc/dec to the real part.
2563     llvm::Value *amt;
2564 
2565     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2566       // Another special case: half FP increment should be done via float
2567       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2568         value = Builder.CreateCall(
2569             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2570                                  CGF.CGM.FloatTy),
2571             input, "incdec.conv");
2572       } else {
2573         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2574       }
2575     }
2576 
2577     if (value->getType()->isFloatTy())
2578       amt = llvm::ConstantFP::get(VMContext,
2579                                   llvm::APFloat(static_cast<float>(amount)));
2580     else if (value->getType()->isDoubleTy())
2581       amt = llvm::ConstantFP::get(VMContext,
2582                                   llvm::APFloat(static_cast<double>(amount)));
2583     else {
2584       // Remaining types are Half, LongDouble or __float128. Convert from float.
2585       llvm::APFloat F(static_cast<float>(amount));
2586       bool ignored;
2587       const llvm::fltSemantics *FS;
2588       // Don't use getFloatTypeSemantics because Half isn't
2589       // necessarily represented using the "half" LLVM type.
2590       if (value->getType()->isFP128Ty())
2591         FS = &CGF.getTarget().getFloat128Format();
2592       else if (value->getType()->isHalfTy())
2593         FS = &CGF.getTarget().getHalfFormat();
2594       else
2595         FS = &CGF.getTarget().getLongDoubleFormat();
2596       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2597       amt = llvm::ConstantFP::get(VMContext, F);
2598     }
2599     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2600 
2601     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2602       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2603         value = Builder.CreateCall(
2604             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2605                                  CGF.CGM.FloatTy),
2606             value, "incdec.conv");
2607       } else {
2608         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2609       }
2610     }
2611 
2612   // Objective-C pointer types.
2613   } else {
2614     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2615     value = CGF.EmitCastToVoidPtr(value);
2616 
2617     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2618     if (!isInc) size = -size;
2619     llvm::Value *sizeValue =
2620       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2621 
2622     if (CGF.getLangOpts().isSignedOverflowDefined())
2623       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2624     else
2625       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2626                                          /*SignedIndices=*/false, isSubtraction,
2627                                          E->getExprLoc(), "incdec.objptr");
2628     value = Builder.CreateBitCast(value, input->getType());
2629   }
2630 
2631   if (atomicPHI) {
2632     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2633     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2634     auto Pair = CGF.EmitAtomicCompareExchange(
2635         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2636     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2637     llvm::Value *success = Pair.second;
2638     atomicPHI->addIncoming(old, curBlock);
2639     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2640     Builder.SetInsertPoint(contBB);
2641     return isPre ? value : input;
2642   }
2643 
2644   // Store the updated result through the lvalue.
2645   if (LV.isBitField())
2646     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2647   else
2648     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2649 
2650   // If this is a postinc, return the value read from memory, otherwise use the
2651   // updated value.
2652   return isPre ? value : input;
2653 }
2654 
2655 
2656 
2657 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2658   TestAndClearIgnoreResultAssign();
2659   Value *Op = Visit(E->getSubExpr());
2660 
2661   // Generate a unary FNeg for FP ops.
2662   if (Op->getType()->isFPOrFPVectorTy())
2663     return Builder.CreateFNeg(Op, "fneg");
2664 
2665   // Emit unary minus with EmitSub so we handle overflow cases etc.
2666   BinOpInfo BinOp;
2667   BinOp.RHS = Op;
2668   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2669   BinOp.Ty = E->getType();
2670   BinOp.Opcode = BO_Sub;
2671   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2672   BinOp.E = E;
2673   return EmitSub(BinOp);
2674 }
2675 
2676 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2677   TestAndClearIgnoreResultAssign();
2678   Value *Op = Visit(E->getSubExpr());
2679   return Builder.CreateNot(Op, "neg");
2680 }
2681 
2682 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2683   // Perform vector logical not on comparison with zero vector.
2684   if (E->getType()->isExtVectorType()) {
2685     Value *Oper = Visit(E->getSubExpr());
2686     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2687     Value *Result;
2688     if (Oper->getType()->isFPOrFPVectorTy())
2689       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2690     else
2691       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2692     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2693   }
2694 
2695   // Compare operand to zero.
2696   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2697 
2698   // Invert value.
2699   // TODO: Could dynamically modify easy computations here.  For example, if
2700   // the operand is an icmp ne, turn into icmp eq.
2701   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2702 
2703   // ZExt result to the expr type.
2704   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2705 }
2706 
2707 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2708   // Try folding the offsetof to a constant.
2709   Expr::EvalResult EVResult;
2710   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2711     llvm::APSInt Value = EVResult.Val.getInt();
2712     return Builder.getInt(Value);
2713   }
2714 
2715   // Loop over the components of the offsetof to compute the value.
2716   unsigned n = E->getNumComponents();
2717   llvm::Type* ResultType = ConvertType(E->getType());
2718   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2719   QualType CurrentType = E->getTypeSourceInfo()->getType();
2720   for (unsigned i = 0; i != n; ++i) {
2721     OffsetOfNode ON = E->getComponent(i);
2722     llvm::Value *Offset = nullptr;
2723     switch (ON.getKind()) {
2724     case OffsetOfNode::Array: {
2725       // Compute the index
2726       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2727       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2728       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2729       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2730 
2731       // Save the element type
2732       CurrentType =
2733           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2734 
2735       // Compute the element size
2736       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2737           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2738 
2739       // Multiply out to compute the result
2740       Offset = Builder.CreateMul(Idx, ElemSize);
2741       break;
2742     }
2743 
2744     case OffsetOfNode::Field: {
2745       FieldDecl *MemberDecl = ON.getField();
2746       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2747       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2748 
2749       // Compute the index of the field in its parent.
2750       unsigned i = 0;
2751       // FIXME: It would be nice if we didn't have to loop here!
2752       for (RecordDecl::field_iterator Field = RD->field_begin(),
2753                                       FieldEnd = RD->field_end();
2754            Field != FieldEnd; ++Field, ++i) {
2755         if (*Field == MemberDecl)
2756           break;
2757       }
2758       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2759 
2760       // Compute the offset to the field
2761       int64_t OffsetInt = RL.getFieldOffset(i) /
2762                           CGF.getContext().getCharWidth();
2763       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2764 
2765       // Save the element type.
2766       CurrentType = MemberDecl->getType();
2767       break;
2768     }
2769 
2770     case OffsetOfNode::Identifier:
2771       llvm_unreachable("dependent __builtin_offsetof");
2772 
2773     case OffsetOfNode::Base: {
2774       if (ON.getBase()->isVirtual()) {
2775         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2776         continue;
2777       }
2778 
2779       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2780       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2781 
2782       // Save the element type.
2783       CurrentType = ON.getBase()->getType();
2784 
2785       // Compute the offset to the base.
2786       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2787       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2788       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2789       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2790       break;
2791     }
2792     }
2793     Result = Builder.CreateAdd(Result, Offset);
2794   }
2795   return Result;
2796 }
2797 
2798 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2799 /// argument of the sizeof expression as an integer.
2800 Value *
2801 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2802                               const UnaryExprOrTypeTraitExpr *E) {
2803   QualType TypeToSize = E->getTypeOfArgument();
2804   if (E->getKind() == UETT_SizeOf) {
2805     if (const VariableArrayType *VAT =
2806           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2807       if (E->isArgumentType()) {
2808         // sizeof(type) - make sure to emit the VLA size.
2809         CGF.EmitVariablyModifiedType(TypeToSize);
2810       } else {
2811         // C99 6.5.3.4p2: If the argument is an expression of type
2812         // VLA, it is evaluated.
2813         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2814       }
2815 
2816       auto VlaSize = CGF.getVLASize(VAT);
2817       llvm::Value *size = VlaSize.NumElts;
2818 
2819       // Scale the number of non-VLA elements by the non-VLA element size.
2820       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2821       if (!eltSize.isOne())
2822         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2823 
2824       return size;
2825     }
2826   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2827     auto Alignment =
2828         CGF.getContext()
2829             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2830                 E->getTypeOfArgument()->getPointeeType()))
2831             .getQuantity();
2832     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2833   }
2834 
2835   // If this isn't sizeof(vla), the result must be constant; use the constant
2836   // folding logic so we don't have to duplicate it here.
2837   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2838 }
2839 
2840 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2841   Expr *Op = E->getSubExpr();
2842   if (Op->getType()->isAnyComplexType()) {
2843     // If it's an l-value, load through the appropriate subobject l-value.
2844     // Note that we have to ask E because Op might be an l-value that
2845     // this won't work for, e.g. an Obj-C property.
2846     if (E->isGLValue())
2847       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2848                                   E->getExprLoc()).getScalarVal();
2849 
2850     // Otherwise, calculate and project.
2851     return CGF.EmitComplexExpr(Op, false, true).first;
2852   }
2853 
2854   return Visit(Op);
2855 }
2856 
2857 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2858   Expr *Op = E->getSubExpr();
2859   if (Op->getType()->isAnyComplexType()) {
2860     // If it's an l-value, load through the appropriate subobject l-value.
2861     // Note that we have to ask E because Op might be an l-value that
2862     // this won't work for, e.g. an Obj-C property.
2863     if (Op->isGLValue())
2864       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2865                                   E->getExprLoc()).getScalarVal();
2866 
2867     // Otherwise, calculate and project.
2868     return CGF.EmitComplexExpr(Op, true, false).second;
2869   }
2870 
2871   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2872   // effects are evaluated, but not the actual value.
2873   if (Op->isGLValue())
2874     CGF.EmitLValue(Op);
2875   else
2876     CGF.EmitScalarExpr(Op, true);
2877   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2878 }
2879 
2880 //===----------------------------------------------------------------------===//
2881 //                           Binary Operators
2882 //===----------------------------------------------------------------------===//
2883 
2884 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2885   TestAndClearIgnoreResultAssign();
2886   BinOpInfo Result;
2887   Result.LHS = Visit(E->getLHS());
2888   Result.RHS = Visit(E->getRHS());
2889   Result.Ty  = E->getType();
2890   Result.Opcode = E->getOpcode();
2891   Result.FPFeatures = E->getFPFeatures();
2892   Result.E = E;
2893   return Result;
2894 }
2895 
2896 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2897                                               const CompoundAssignOperator *E,
2898                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2899                                                    Value *&Result) {
2900   QualType LHSTy = E->getLHS()->getType();
2901   BinOpInfo OpInfo;
2902 
2903   if (E->getComputationResultType()->isAnyComplexType())
2904     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2905 
2906   // Emit the RHS first.  __block variables need to have the rhs evaluated
2907   // first, plus this should improve codegen a little.
2908   OpInfo.RHS = Visit(E->getRHS());
2909   OpInfo.Ty = E->getComputationResultType();
2910   OpInfo.Opcode = E->getOpcode();
2911   OpInfo.FPFeatures = E->getFPFeatures();
2912   OpInfo.E = E;
2913   // Load/convert the LHS.
2914   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2915 
2916   llvm::PHINode *atomicPHI = nullptr;
2917   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2918     QualType type = atomicTy->getValueType();
2919     if (!type->isBooleanType() && type->isIntegerType() &&
2920         !(type->isUnsignedIntegerType() &&
2921           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2922         CGF.getLangOpts().getSignedOverflowBehavior() !=
2923             LangOptions::SOB_Trapping) {
2924       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
2925       llvm::Instruction::BinaryOps Op;
2926       switch (OpInfo.Opcode) {
2927         // We don't have atomicrmw operands for *, %, /, <<, >>
2928         case BO_MulAssign: case BO_DivAssign:
2929         case BO_RemAssign:
2930         case BO_ShlAssign:
2931         case BO_ShrAssign:
2932           break;
2933         case BO_AddAssign:
2934           AtomicOp = llvm::AtomicRMWInst::Add;
2935           Op = llvm::Instruction::Add;
2936           break;
2937         case BO_SubAssign:
2938           AtomicOp = llvm::AtomicRMWInst::Sub;
2939           Op = llvm::Instruction::Sub;
2940           break;
2941         case BO_AndAssign:
2942           AtomicOp = llvm::AtomicRMWInst::And;
2943           Op = llvm::Instruction::And;
2944           break;
2945         case BO_XorAssign:
2946           AtomicOp = llvm::AtomicRMWInst::Xor;
2947           Op = llvm::Instruction::Xor;
2948           break;
2949         case BO_OrAssign:
2950           AtomicOp = llvm::AtomicRMWInst::Or;
2951           Op = llvm::Instruction::Or;
2952           break;
2953         default:
2954           llvm_unreachable("Invalid compound assignment type");
2955       }
2956       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
2957         llvm::Value *Amt = CGF.EmitToMemory(
2958             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2959                                  E->getExprLoc()),
2960             LHSTy);
2961         Value *OldVal = Builder.CreateAtomicRMW(
2962             AtomicOp, LHSLV.getPointer(CGF), Amt,
2963             llvm::AtomicOrdering::SequentiallyConsistent);
2964 
2965         // Since operation is atomic, the result type is guaranteed to be the
2966         // same as the input in LLVM terms.
2967         Result = Builder.CreateBinOp(Op, OldVal, Amt);
2968         return LHSLV;
2969       }
2970     }
2971     // FIXME: For floating point types, we should be saving and restoring the
2972     // floating point environment in the loop.
2973     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2974     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2975     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2976     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2977     Builder.CreateBr(opBB);
2978     Builder.SetInsertPoint(opBB);
2979     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2980     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2981     OpInfo.LHS = atomicPHI;
2982   }
2983   else
2984     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2985 
2986   SourceLocation Loc = E->getExprLoc();
2987   OpInfo.LHS =
2988       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2989 
2990   // Expand the binary operator.
2991   Result = (this->*Func)(OpInfo);
2992 
2993   // Convert the result back to the LHS type,
2994   // potentially with Implicit Conversion sanitizer check.
2995   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
2996                                 Loc, ScalarConversionOpts(CGF.SanOpts));
2997 
2998   if (atomicPHI) {
2999     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3000     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3001     auto Pair = CGF.EmitAtomicCompareExchange(
3002         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3003     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3004     llvm::Value *success = Pair.second;
3005     atomicPHI->addIncoming(old, curBlock);
3006     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3007     Builder.SetInsertPoint(contBB);
3008     return LHSLV;
3009   }
3010 
3011   // Store the result value into the LHS lvalue. Bit-fields are handled
3012   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3013   // 'An assignment expression has the value of the left operand after the
3014   // assignment...'.
3015   if (LHSLV.isBitField())
3016     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3017   else
3018     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3019 
3020   if (CGF.getLangOpts().OpenMP)
3021     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3022                                                                   E->getLHS());
3023   return LHSLV;
3024 }
3025 
3026 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3027                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3028   bool Ignore = TestAndClearIgnoreResultAssign();
3029   Value *RHS = nullptr;
3030   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3031 
3032   // If the result is clearly ignored, return now.
3033   if (Ignore)
3034     return nullptr;
3035 
3036   // The result of an assignment in C is the assigned r-value.
3037   if (!CGF.getLangOpts().CPlusPlus)
3038     return RHS;
3039 
3040   // If the lvalue is non-volatile, return the computed value of the assignment.
3041   if (!LHS.isVolatileQualified())
3042     return RHS;
3043 
3044   // Otherwise, reload the value.
3045   return EmitLoadOfLValue(LHS, E->getExprLoc());
3046 }
3047 
3048 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3049     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3050   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3051 
3052   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3053     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3054                                     SanitizerKind::IntegerDivideByZero));
3055   }
3056 
3057   const auto *BO = cast<BinaryOperator>(Ops.E);
3058   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3059       Ops.Ty->hasSignedIntegerRepresentation() &&
3060       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3061       Ops.mayHaveIntegerOverflow()) {
3062     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3063 
3064     llvm::Value *IntMin =
3065       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3066     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
3067 
3068     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3069     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3070     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3071     Checks.push_back(
3072         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3073   }
3074 
3075   if (Checks.size() > 0)
3076     EmitBinOpCheck(Checks, Ops);
3077 }
3078 
3079 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3080   {
3081     CodeGenFunction::SanitizerScope SanScope(&CGF);
3082     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3083          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3084         Ops.Ty->isIntegerType() &&
3085         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3086       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3087       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3088     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3089                Ops.Ty->isRealFloatingType() &&
3090                Ops.mayHaveFloatDivisionByZero()) {
3091       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3092       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3093       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3094                      Ops);
3095     }
3096   }
3097 
3098   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3099     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3100     if (CGF.getLangOpts().OpenCL &&
3101         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
3102       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3103       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3104       // build option allows an application to specify that single precision
3105       // floating-point divide (x/y and 1/x) and sqrt used in the program
3106       // source are correctly rounded.
3107       llvm::Type *ValTy = Val->getType();
3108       if (ValTy->isFloatTy() ||
3109           (isa<llvm::VectorType>(ValTy) &&
3110            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3111         CGF.SetFPAccuracy(Val, 2.5);
3112     }
3113     return Val;
3114   }
3115   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3116     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3117   else
3118     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3119 }
3120 
3121 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3122   // Rem in C can't be a floating point type: C99 6.5.5p2.
3123   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3124        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3125       Ops.Ty->isIntegerType() &&
3126       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3127     CodeGenFunction::SanitizerScope SanScope(&CGF);
3128     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3129     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3130   }
3131 
3132   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3133     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3134   else
3135     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3136 }
3137 
3138 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3139   unsigned IID;
3140   unsigned OpID = 0;
3141 
3142   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3143   switch (Ops.Opcode) {
3144   case BO_Add:
3145   case BO_AddAssign:
3146     OpID = 1;
3147     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3148                      llvm::Intrinsic::uadd_with_overflow;
3149     break;
3150   case BO_Sub:
3151   case BO_SubAssign:
3152     OpID = 2;
3153     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3154                      llvm::Intrinsic::usub_with_overflow;
3155     break;
3156   case BO_Mul:
3157   case BO_MulAssign:
3158     OpID = 3;
3159     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3160                      llvm::Intrinsic::umul_with_overflow;
3161     break;
3162   default:
3163     llvm_unreachable("Unsupported operation for overflow detection");
3164   }
3165   OpID <<= 1;
3166   if (isSigned)
3167     OpID |= 1;
3168 
3169   CodeGenFunction::SanitizerScope SanScope(&CGF);
3170   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3171 
3172   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3173 
3174   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3175   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3176   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3177 
3178   // Handle overflow with llvm.trap if no custom handler has been specified.
3179   const std::string *handlerName =
3180     &CGF.getLangOpts().OverflowHandler;
3181   if (handlerName->empty()) {
3182     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3183     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3184     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3185       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3186       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3187                               : SanitizerKind::UnsignedIntegerOverflow;
3188       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3189     } else
3190       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
3191     return result;
3192   }
3193 
3194   // Branch in case of overflow.
3195   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3196   llvm::BasicBlock *continueBB =
3197       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3198   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3199 
3200   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3201 
3202   // If an overflow handler is set, then we want to call it and then use its
3203   // result, if it returns.
3204   Builder.SetInsertPoint(overflowBB);
3205 
3206   // Get the overflow handler.
3207   llvm::Type *Int8Ty = CGF.Int8Ty;
3208   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3209   llvm::FunctionType *handlerTy =
3210       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3211   llvm::FunctionCallee handler =
3212       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3213 
3214   // Sign extend the args to 64-bit, so that we can use the same handler for
3215   // all types of overflow.
3216   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3217   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3218 
3219   // Call the handler with the two arguments, the operation, and the size of
3220   // the result.
3221   llvm::Value *handlerArgs[] = {
3222     lhs,
3223     rhs,
3224     Builder.getInt8(OpID),
3225     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3226   };
3227   llvm::Value *handlerResult =
3228     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3229 
3230   // Truncate the result back to the desired size.
3231   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3232   Builder.CreateBr(continueBB);
3233 
3234   Builder.SetInsertPoint(continueBB);
3235   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3236   phi->addIncoming(result, initialBB);
3237   phi->addIncoming(handlerResult, overflowBB);
3238 
3239   return phi;
3240 }
3241 
3242 /// Emit pointer + index arithmetic.
3243 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3244                                     const BinOpInfo &op,
3245                                     bool isSubtraction) {
3246   // Must have binary (not unary) expr here.  Unary pointer
3247   // increment/decrement doesn't use this path.
3248   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3249 
3250   Value *pointer = op.LHS;
3251   Expr *pointerOperand = expr->getLHS();
3252   Value *index = op.RHS;
3253   Expr *indexOperand = expr->getRHS();
3254 
3255   // In a subtraction, the LHS is always the pointer.
3256   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3257     std::swap(pointer, index);
3258     std::swap(pointerOperand, indexOperand);
3259   }
3260 
3261   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3262 
3263   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3264   auto &DL = CGF.CGM.getDataLayout();
3265   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3266 
3267   // Some versions of glibc and gcc use idioms (particularly in their malloc
3268   // routines) that add a pointer-sized integer (known to be a pointer value)
3269   // to a null pointer in order to cast the value back to an integer or as
3270   // part of a pointer alignment algorithm.  This is undefined behavior, but
3271   // we'd like to be able to compile programs that use it.
3272   //
3273   // Normally, we'd generate a GEP with a null-pointer base here in response
3274   // to that code, but it's also UB to dereference a pointer created that
3275   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3276   // generate a direct cast of the integer value to a pointer.
3277   //
3278   // The idiom (p = nullptr + N) is not met if any of the following are true:
3279   //
3280   //   The operation is subtraction.
3281   //   The index is not pointer-sized.
3282   //   The pointer type is not byte-sized.
3283   //
3284   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3285                                                        op.Opcode,
3286                                                        expr->getLHS(),
3287                                                        expr->getRHS()))
3288     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3289 
3290   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3291     // Zero-extend or sign-extend the pointer value according to
3292     // whether the index is signed or not.
3293     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3294                                       "idx.ext");
3295   }
3296 
3297   // If this is subtraction, negate the index.
3298   if (isSubtraction)
3299     index = CGF.Builder.CreateNeg(index, "idx.neg");
3300 
3301   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3302     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3303                         /*Accessed*/ false);
3304 
3305   const PointerType *pointerType
3306     = pointerOperand->getType()->getAs<PointerType>();
3307   if (!pointerType) {
3308     QualType objectType = pointerOperand->getType()
3309                                         ->castAs<ObjCObjectPointerType>()
3310                                         ->getPointeeType();
3311     llvm::Value *objectSize
3312       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3313 
3314     index = CGF.Builder.CreateMul(index, objectSize);
3315 
3316     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3317     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3318     return CGF.Builder.CreateBitCast(result, pointer->getType());
3319   }
3320 
3321   QualType elementType = pointerType->getPointeeType();
3322   if (const VariableArrayType *vla
3323         = CGF.getContext().getAsVariableArrayType(elementType)) {
3324     // The element count here is the total number of non-VLA elements.
3325     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3326 
3327     // Effectively, the multiply by the VLA size is part of the GEP.
3328     // GEP indexes are signed, and scaling an index isn't permitted to
3329     // signed-overflow, so we use the same semantics for our explicit
3330     // multiply.  We suppress this if overflow is not undefined behavior.
3331     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3332       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3333       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3334     } else {
3335       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3336       pointer =
3337           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3338                                      op.E->getExprLoc(), "add.ptr");
3339     }
3340     return pointer;
3341   }
3342 
3343   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3344   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3345   // future proof.
3346   if (elementType->isVoidType() || elementType->isFunctionType()) {
3347     Value *result = CGF.EmitCastToVoidPtr(pointer);
3348     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3349     return CGF.Builder.CreateBitCast(result, pointer->getType());
3350   }
3351 
3352   if (CGF.getLangOpts().isSignedOverflowDefined())
3353     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3354 
3355   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3356                                     op.E->getExprLoc(), "add.ptr");
3357 }
3358 
3359 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3360 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3361 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3362 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3363 // efficient operations.
3364 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
3365                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3366                            bool negMul, bool negAdd) {
3367   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3368 
3369   Value *MulOp0 = MulOp->getOperand(0);
3370   Value *MulOp1 = MulOp->getOperand(1);
3371   if (negMul)
3372     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3373   if (negAdd)
3374     Addend = Builder.CreateFNeg(Addend, "neg");
3375 
3376   Value *FMulAdd = Builder.CreateCall(
3377       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3378       {MulOp0, MulOp1, Addend});
3379    MulOp->eraseFromParent();
3380 
3381    return FMulAdd;
3382 }
3383 
3384 // Check whether it would be legal to emit an fmuladd intrinsic call to
3385 // represent op and if so, build the fmuladd.
3386 //
3387 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3388 // Does NOT check the type of the operation - it's assumed that this function
3389 // will be called from contexts where it's known that the type is contractable.
3390 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3391                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3392                          bool isSub=false) {
3393 
3394   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3395           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3396          "Only fadd/fsub can be the root of an fmuladd.");
3397 
3398   // Check whether this op is marked as fusable.
3399   if (!op.FPFeatures.allowFPContractWithinStatement())
3400     return nullptr;
3401 
3402   // We have a potentially fusable op. Look for a mul on one of the operands.
3403   // Also, make sure that the mul result isn't used directly. In that case,
3404   // there's no point creating a muladd operation.
3405   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3406     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3407         LHSBinOp->use_empty())
3408       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3409   }
3410   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3411     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3412         RHSBinOp->use_empty())
3413       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3414   }
3415 
3416   return nullptr;
3417 }
3418 
3419 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3420   if (op.LHS->getType()->isPointerTy() ||
3421       op.RHS->getType()->isPointerTy())
3422     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3423 
3424   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3425     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3426     case LangOptions::SOB_Defined:
3427       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3428     case LangOptions::SOB_Undefined:
3429       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3430         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3431       LLVM_FALLTHROUGH;
3432     case LangOptions::SOB_Trapping:
3433       if (CanElideOverflowCheck(CGF.getContext(), op))
3434         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3435       return EmitOverflowCheckedBinOp(op);
3436     }
3437   }
3438 
3439   if (op.Ty->isUnsignedIntegerType() &&
3440       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3441       !CanElideOverflowCheck(CGF.getContext(), op))
3442     return EmitOverflowCheckedBinOp(op);
3443 
3444   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3445     // Try to form an fmuladd.
3446     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3447       return FMulAdd;
3448 
3449     Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
3450     return propagateFMFlags(V, op);
3451   }
3452 
3453   if (op.isFixedPointBinOp())
3454     return EmitFixedPointBinOp(op);
3455 
3456   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3457 }
3458 
3459 /// The resulting value must be calculated with exact precision, so the operands
3460 /// may not be the same type.
3461 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3462   using llvm::APSInt;
3463   using llvm::ConstantInt;
3464 
3465   const auto *BinOp = cast<BinaryOperator>(op.E);
3466 
3467   // The result is a fixed point type and at least one of the operands is fixed
3468   // point while the other is either fixed point or an int. This resulting type
3469   // should be determined by Sema::handleFixedPointConversions().
3470   QualType ResultTy = op.Ty;
3471   QualType LHSTy = BinOp->getLHS()->getType();
3472   QualType RHSTy = BinOp->getRHS()->getType();
3473   ASTContext &Ctx = CGF.getContext();
3474   Value *LHS = op.LHS;
3475   Value *RHS = op.RHS;
3476 
3477   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3478   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3479   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3480   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3481 
3482   // Convert the operands to the full precision type.
3483   Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema,
3484                                             BinOp->getExprLoc());
3485   Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema,
3486                                             BinOp->getExprLoc());
3487 
3488   // Perform the actual addition.
3489   Value *Result;
3490   switch (BinOp->getOpcode()) {
3491   case BO_Add: {
3492     if (ResultFixedSema.isSaturated()) {
3493       llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3494                                     ? llvm::Intrinsic::sadd_sat
3495                                     : llvm::Intrinsic::uadd_sat;
3496       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3497     } else {
3498       Result = Builder.CreateAdd(FullLHS, FullRHS);
3499     }
3500     break;
3501   }
3502   case BO_Sub: {
3503     if (ResultFixedSema.isSaturated()) {
3504       llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3505                                     ? llvm::Intrinsic::ssub_sat
3506                                     : llvm::Intrinsic::usub_sat;
3507       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3508     } else {
3509       Result = Builder.CreateSub(FullLHS, FullRHS);
3510     }
3511     break;
3512   }
3513   case BO_LT:
3514     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS)
3515                                       : Builder.CreateICmpULT(FullLHS, FullRHS);
3516   case BO_GT:
3517     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS)
3518                                       : Builder.CreateICmpUGT(FullLHS, FullRHS);
3519   case BO_LE:
3520     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS)
3521                                       : Builder.CreateICmpULE(FullLHS, FullRHS);
3522   case BO_GE:
3523     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS)
3524                                       : Builder.CreateICmpUGE(FullLHS, FullRHS);
3525   case BO_EQ:
3526     // For equality operations, we assume any padding bits on unsigned types are
3527     // zero'd out. They could be overwritten through non-saturating operations
3528     // that cause overflow, but this leads to undefined behavior.
3529     return Builder.CreateICmpEQ(FullLHS, FullRHS);
3530   case BO_NE:
3531     return Builder.CreateICmpNE(FullLHS, FullRHS);
3532   case BO_Mul:
3533   case BO_Div:
3534   case BO_Shl:
3535   case BO_Shr:
3536   case BO_Cmp:
3537   case BO_LAnd:
3538   case BO_LOr:
3539   case BO_MulAssign:
3540   case BO_DivAssign:
3541   case BO_AddAssign:
3542   case BO_SubAssign:
3543   case BO_ShlAssign:
3544   case BO_ShrAssign:
3545     llvm_unreachable("Found unimplemented fixed point binary operation");
3546   case BO_PtrMemD:
3547   case BO_PtrMemI:
3548   case BO_Rem:
3549   case BO_Xor:
3550   case BO_And:
3551   case BO_Or:
3552   case BO_Assign:
3553   case BO_RemAssign:
3554   case BO_AndAssign:
3555   case BO_XorAssign:
3556   case BO_OrAssign:
3557   case BO_Comma:
3558     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3559   }
3560 
3561   // Convert to the result type.
3562   return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema,
3563                                   BinOp->getExprLoc());
3564 }
3565 
3566 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3567   // The LHS is always a pointer if either side is.
3568   if (!op.LHS->getType()->isPointerTy()) {
3569     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3570       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3571       case LangOptions::SOB_Defined:
3572         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3573       case LangOptions::SOB_Undefined:
3574         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3575           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3576         LLVM_FALLTHROUGH;
3577       case LangOptions::SOB_Trapping:
3578         if (CanElideOverflowCheck(CGF.getContext(), op))
3579           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3580         return EmitOverflowCheckedBinOp(op);
3581       }
3582     }
3583 
3584     if (op.Ty->isUnsignedIntegerType() &&
3585         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3586         !CanElideOverflowCheck(CGF.getContext(), op))
3587       return EmitOverflowCheckedBinOp(op);
3588 
3589     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3590       // Try to form an fmuladd.
3591       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3592         return FMulAdd;
3593       Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
3594       return propagateFMFlags(V, op);
3595     }
3596 
3597     if (op.isFixedPointBinOp())
3598       return EmitFixedPointBinOp(op);
3599 
3600     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3601   }
3602 
3603   // If the RHS is not a pointer, then we have normal pointer
3604   // arithmetic.
3605   if (!op.RHS->getType()->isPointerTy())
3606     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3607 
3608   // Otherwise, this is a pointer subtraction.
3609 
3610   // Do the raw subtraction part.
3611   llvm::Value *LHS
3612     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3613   llvm::Value *RHS
3614     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3615   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3616 
3617   // Okay, figure out the element size.
3618   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3619   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3620 
3621   llvm::Value *divisor = nullptr;
3622 
3623   // For a variable-length array, this is going to be non-constant.
3624   if (const VariableArrayType *vla
3625         = CGF.getContext().getAsVariableArrayType(elementType)) {
3626     auto VlaSize = CGF.getVLASize(vla);
3627     elementType = VlaSize.Type;
3628     divisor = VlaSize.NumElts;
3629 
3630     // Scale the number of non-VLA elements by the non-VLA element size.
3631     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3632     if (!eltSize.isOne())
3633       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3634 
3635   // For everything elese, we can just compute it, safe in the
3636   // assumption that Sema won't let anything through that we can't
3637   // safely compute the size of.
3638   } else {
3639     CharUnits elementSize;
3640     // Handle GCC extension for pointer arithmetic on void* and
3641     // function pointer types.
3642     if (elementType->isVoidType() || elementType->isFunctionType())
3643       elementSize = CharUnits::One();
3644     else
3645       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3646 
3647     // Don't even emit the divide for element size of 1.
3648     if (elementSize.isOne())
3649       return diffInChars;
3650 
3651     divisor = CGF.CGM.getSize(elementSize);
3652   }
3653 
3654   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3655   // pointer difference in C is only defined in the case where both operands
3656   // are pointing to elements of an array.
3657   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3658 }
3659 
3660 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3661   llvm::IntegerType *Ty;
3662   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3663     Ty = cast<llvm::IntegerType>(VT->getElementType());
3664   else
3665     Ty = cast<llvm::IntegerType>(LHS->getType());
3666   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3667 }
3668 
3669 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3670   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3671   // RHS to the same size as the LHS.
3672   Value *RHS = Ops.RHS;
3673   if (Ops.LHS->getType() != RHS->getType())
3674     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3675 
3676   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3677                       Ops.Ty->hasSignedIntegerRepresentation() &&
3678                       !CGF.getLangOpts().isSignedOverflowDefined() &&
3679                       !CGF.getLangOpts().CPlusPlus2a;
3680   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3681   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3682   if (CGF.getLangOpts().OpenCL)
3683     RHS =
3684         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
3685   else if ((SanitizeBase || SanitizeExponent) &&
3686            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3687     CodeGenFunction::SanitizerScope SanScope(&CGF);
3688     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3689     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3690     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3691 
3692     if (SanitizeExponent) {
3693       Checks.push_back(
3694           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3695     }
3696 
3697     if (SanitizeBase) {
3698       // Check whether we are shifting any non-zero bits off the top of the
3699       // integer. We only emit this check if exponent is valid - otherwise
3700       // instructions below will have undefined behavior themselves.
3701       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3702       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3703       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3704       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3705       llvm::Value *PromotedWidthMinusOne =
3706           (RHS == Ops.RHS) ? WidthMinusOne
3707                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3708       CGF.EmitBlock(CheckShiftBase);
3709       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3710           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3711                                      /*NUW*/ true, /*NSW*/ true),
3712           "shl.check");
3713       if (CGF.getLangOpts().CPlusPlus) {
3714         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3715         // Under C++11's rules, shifting a 1 bit into the sign bit is
3716         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3717         // define signed left shifts, so we use the C99 and C++11 rules there).
3718         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3719         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3720       }
3721       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3722       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3723       CGF.EmitBlock(Cont);
3724       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3725       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3726       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3727       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3728     }
3729 
3730     assert(!Checks.empty());
3731     EmitBinOpCheck(Checks, Ops);
3732   }
3733 
3734   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3735 }
3736 
3737 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3738   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3739   // RHS to the same size as the LHS.
3740   Value *RHS = Ops.RHS;
3741   if (Ops.LHS->getType() != RHS->getType())
3742     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3743 
3744   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3745   if (CGF.getLangOpts().OpenCL)
3746     RHS =
3747         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
3748   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3749            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3750     CodeGenFunction::SanitizerScope SanScope(&CGF);
3751     llvm::Value *Valid =
3752         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3753     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3754   }
3755 
3756   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3757     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3758   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3759 }
3760 
3761 enum IntrinsicType { VCMPEQ, VCMPGT };
3762 // return corresponding comparison intrinsic for given vector type
3763 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3764                                         BuiltinType::Kind ElemKind) {
3765   switch (ElemKind) {
3766   default: llvm_unreachable("unexpected element type");
3767   case BuiltinType::Char_U:
3768   case BuiltinType::UChar:
3769     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3770                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3771   case BuiltinType::Char_S:
3772   case BuiltinType::SChar:
3773     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3774                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3775   case BuiltinType::UShort:
3776     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3777                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3778   case BuiltinType::Short:
3779     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3780                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3781   case BuiltinType::UInt:
3782     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3783                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3784   case BuiltinType::Int:
3785     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3786                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3787   case BuiltinType::ULong:
3788   case BuiltinType::ULongLong:
3789     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3790                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3791   case BuiltinType::Long:
3792   case BuiltinType::LongLong:
3793     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3794                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3795   case BuiltinType::Float:
3796     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3797                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3798   case BuiltinType::Double:
3799     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3800                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3801   }
3802 }
3803 
3804 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3805                                       llvm::CmpInst::Predicate UICmpOpc,
3806                                       llvm::CmpInst::Predicate SICmpOpc,
3807                                       llvm::CmpInst::Predicate FCmpOpc,
3808                                       bool IsSignaling) {
3809   TestAndClearIgnoreResultAssign();
3810   Value *Result;
3811   QualType LHSTy = E->getLHS()->getType();
3812   QualType RHSTy = E->getRHS()->getType();
3813   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3814     assert(E->getOpcode() == BO_EQ ||
3815            E->getOpcode() == BO_NE);
3816     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3817     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3818     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3819                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3820   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3821     BinOpInfo BOInfo = EmitBinOps(E);
3822     Value *LHS = BOInfo.LHS;
3823     Value *RHS = BOInfo.RHS;
3824 
3825     // If AltiVec, the comparison results in a numeric type, so we use
3826     // intrinsics comparing vectors and giving 0 or 1 as a result
3827     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3828       // constants for mapping CR6 register bits to predicate result
3829       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3830 
3831       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3832 
3833       // in several cases vector arguments order will be reversed
3834       Value *FirstVecArg = LHS,
3835             *SecondVecArg = RHS;
3836 
3837       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
3838       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
3839 
3840       switch(E->getOpcode()) {
3841       default: llvm_unreachable("is not a comparison operation");
3842       case BO_EQ:
3843         CR6 = CR6_LT;
3844         ID = GetIntrinsic(VCMPEQ, ElementKind);
3845         break;
3846       case BO_NE:
3847         CR6 = CR6_EQ;
3848         ID = GetIntrinsic(VCMPEQ, ElementKind);
3849         break;
3850       case BO_LT:
3851         CR6 = CR6_LT;
3852         ID = GetIntrinsic(VCMPGT, ElementKind);
3853         std::swap(FirstVecArg, SecondVecArg);
3854         break;
3855       case BO_GT:
3856         CR6 = CR6_LT;
3857         ID = GetIntrinsic(VCMPGT, ElementKind);
3858         break;
3859       case BO_LE:
3860         if (ElementKind == BuiltinType::Float) {
3861           CR6 = CR6_LT;
3862           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3863           std::swap(FirstVecArg, SecondVecArg);
3864         }
3865         else {
3866           CR6 = CR6_EQ;
3867           ID = GetIntrinsic(VCMPGT, ElementKind);
3868         }
3869         break;
3870       case BO_GE:
3871         if (ElementKind == BuiltinType::Float) {
3872           CR6 = CR6_LT;
3873           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3874         }
3875         else {
3876           CR6 = CR6_EQ;
3877           ID = GetIntrinsic(VCMPGT, ElementKind);
3878           std::swap(FirstVecArg, SecondVecArg);
3879         }
3880         break;
3881       }
3882 
3883       Value *CR6Param = Builder.getInt32(CR6);
3884       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3885       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3886 
3887       // The result type of intrinsic may not be same as E->getType().
3888       // If E->getType() is not BoolTy, EmitScalarConversion will do the
3889       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3890       // do nothing, if ResultTy is not i1 at the same time, it will cause
3891       // crash later.
3892       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3893       if (ResultTy->getBitWidth() > 1 &&
3894           E->getType() == CGF.getContext().BoolTy)
3895         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3896       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3897                                   E->getExprLoc());
3898     }
3899 
3900     if (BOInfo.isFixedPointBinOp()) {
3901       Result = EmitFixedPointBinOp(BOInfo);
3902     } else if (LHS->getType()->isFPOrFPVectorTy()) {
3903       if (!IsSignaling)
3904         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3905       else
3906         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
3907     } else if (LHSTy->hasSignedIntegerRepresentation()) {
3908       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3909     } else {
3910       // Unsigned integers and pointers.
3911 
3912       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
3913           !isa<llvm::ConstantPointerNull>(LHS) &&
3914           !isa<llvm::ConstantPointerNull>(RHS)) {
3915 
3916         // Dynamic information is required to be stripped for comparisons,
3917         // because it could leak the dynamic information.  Based on comparisons
3918         // of pointers to dynamic objects, the optimizer can replace one pointer
3919         // with another, which might be incorrect in presence of invariant
3920         // groups. Comparison with null is safe because null does not carry any
3921         // dynamic information.
3922         if (LHSTy.mayBeDynamicClass())
3923           LHS = Builder.CreateStripInvariantGroup(LHS);
3924         if (RHSTy.mayBeDynamicClass())
3925           RHS = Builder.CreateStripInvariantGroup(RHS);
3926       }
3927 
3928       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3929     }
3930 
3931     // If this is a vector comparison, sign extend the result to the appropriate
3932     // vector integer type and return it (don't convert to bool).
3933     if (LHSTy->isVectorType())
3934       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3935 
3936   } else {
3937     // Complex Comparison: can only be an equality comparison.
3938     CodeGenFunction::ComplexPairTy LHS, RHS;
3939     QualType CETy;
3940     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3941       LHS = CGF.EmitComplexExpr(E->getLHS());
3942       CETy = CTy->getElementType();
3943     } else {
3944       LHS.first = Visit(E->getLHS());
3945       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3946       CETy = LHSTy;
3947     }
3948     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3949       RHS = CGF.EmitComplexExpr(E->getRHS());
3950       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
3951                                                      CTy->getElementType()) &&
3952              "The element types must always match.");
3953       (void)CTy;
3954     } else {
3955       RHS.first = Visit(E->getRHS());
3956       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
3957       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
3958              "The element types must always match.");
3959     }
3960 
3961     Value *ResultR, *ResultI;
3962     if (CETy->isRealFloatingType()) {
3963       // As complex comparisons can only be equality comparisons, they
3964       // are never signaling comparisons.
3965       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
3966       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
3967     } else {
3968       // Complex comparisons can only be equality comparisons.  As such, signed
3969       // and unsigned opcodes are the same.
3970       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
3971       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
3972     }
3973 
3974     if (E->getOpcode() == BO_EQ) {
3975       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
3976     } else {
3977       assert(E->getOpcode() == BO_NE &&
3978              "Complex comparison other than == or != ?");
3979       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
3980     }
3981   }
3982 
3983   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3984                               E->getExprLoc());
3985 }
3986 
3987 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3988   bool Ignore = TestAndClearIgnoreResultAssign();
3989 
3990   Value *RHS;
3991   LValue LHS;
3992 
3993   switch (E->getLHS()->getType().getObjCLifetime()) {
3994   case Qualifiers::OCL_Strong:
3995     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3996     break;
3997 
3998   case Qualifiers::OCL_Autoreleasing:
3999     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4000     break;
4001 
4002   case Qualifiers::OCL_ExplicitNone:
4003     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4004     break;
4005 
4006   case Qualifiers::OCL_Weak:
4007     RHS = Visit(E->getRHS());
4008     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4009     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4010     break;
4011 
4012   case Qualifiers::OCL_None:
4013     // __block variables need to have the rhs evaluated first, plus
4014     // this should improve codegen just a little.
4015     RHS = Visit(E->getRHS());
4016     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4017 
4018     // Store the value into the LHS.  Bit-fields are handled specially
4019     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4020     // 'An assignment expression has the value of the left operand after
4021     // the assignment...'.
4022     if (LHS.isBitField()) {
4023       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4024     } else {
4025       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4026       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4027     }
4028   }
4029 
4030   // If the result is clearly ignored, return now.
4031   if (Ignore)
4032     return nullptr;
4033 
4034   // The result of an assignment in C is the assigned r-value.
4035   if (!CGF.getLangOpts().CPlusPlus)
4036     return RHS;
4037 
4038   // If the lvalue is non-volatile, return the computed value of the assignment.
4039   if (!LHS.isVolatileQualified())
4040     return RHS;
4041 
4042   // Otherwise, reload the value.
4043   return EmitLoadOfLValue(LHS, E->getExprLoc());
4044 }
4045 
4046 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4047   // Perform vector logical and on comparisons with zero vectors.
4048   if (E->getType()->isVectorType()) {
4049     CGF.incrementProfileCounter(E);
4050 
4051     Value *LHS = Visit(E->getLHS());
4052     Value *RHS = Visit(E->getRHS());
4053     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4054     if (LHS->getType()->isFPOrFPVectorTy()) {
4055       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4056       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4057     } else {
4058       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4059       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4060     }
4061     Value *And = Builder.CreateAnd(LHS, RHS);
4062     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4063   }
4064 
4065   llvm::Type *ResTy = ConvertType(E->getType());
4066 
4067   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4068   // If we have 1 && X, just emit X without inserting the control flow.
4069   bool LHSCondVal;
4070   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4071     if (LHSCondVal) { // If we have 1 && X, just emit X.
4072       CGF.incrementProfileCounter(E);
4073 
4074       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4075       // ZExt result to int or bool.
4076       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4077     }
4078 
4079     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4080     if (!CGF.ContainsLabel(E->getRHS()))
4081       return llvm::Constant::getNullValue(ResTy);
4082   }
4083 
4084   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4085   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4086 
4087   CodeGenFunction::ConditionalEvaluation eval(CGF);
4088 
4089   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4090   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4091                            CGF.getProfileCount(E->getRHS()));
4092 
4093   // Any edges into the ContBlock are now from an (indeterminate number of)
4094   // edges from this first condition.  All of these values will be false.  Start
4095   // setting up the PHI node in the Cont Block for this.
4096   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4097                                             "", ContBlock);
4098   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4099        PI != PE; ++PI)
4100     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4101 
4102   eval.begin(CGF);
4103   CGF.EmitBlock(RHSBlock);
4104   CGF.incrementProfileCounter(E);
4105   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4106   eval.end(CGF);
4107 
4108   // Reaquire the RHS block, as there may be subblocks inserted.
4109   RHSBlock = Builder.GetInsertBlock();
4110 
4111   // Emit an unconditional branch from this block to ContBlock.
4112   {
4113     // There is no need to emit line number for unconditional branch.
4114     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4115     CGF.EmitBlock(ContBlock);
4116   }
4117   // Insert an entry into the phi node for the edge with the value of RHSCond.
4118   PN->addIncoming(RHSCond, RHSBlock);
4119 
4120   // Artificial location to preserve the scope information
4121   {
4122     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4123     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4124   }
4125 
4126   // ZExt result to int.
4127   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4128 }
4129 
4130 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4131   // Perform vector logical or on comparisons with zero vectors.
4132   if (E->getType()->isVectorType()) {
4133     CGF.incrementProfileCounter(E);
4134 
4135     Value *LHS = Visit(E->getLHS());
4136     Value *RHS = Visit(E->getRHS());
4137     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4138     if (LHS->getType()->isFPOrFPVectorTy()) {
4139       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4140       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4141     } else {
4142       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4143       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4144     }
4145     Value *Or = Builder.CreateOr(LHS, RHS);
4146     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4147   }
4148 
4149   llvm::Type *ResTy = ConvertType(E->getType());
4150 
4151   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4152   // If we have 0 || X, just emit X without inserting the control flow.
4153   bool LHSCondVal;
4154   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4155     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4156       CGF.incrementProfileCounter(E);
4157 
4158       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4159       // ZExt result to int or bool.
4160       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4161     }
4162 
4163     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4164     if (!CGF.ContainsLabel(E->getRHS()))
4165       return llvm::ConstantInt::get(ResTy, 1);
4166   }
4167 
4168   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4169   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4170 
4171   CodeGenFunction::ConditionalEvaluation eval(CGF);
4172 
4173   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4174   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4175                            CGF.getCurrentProfileCount() -
4176                                CGF.getProfileCount(E->getRHS()));
4177 
4178   // Any edges into the ContBlock are now from an (indeterminate number of)
4179   // edges from this first condition.  All of these values will be true.  Start
4180   // setting up the PHI node in the Cont Block for this.
4181   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4182                                             "", ContBlock);
4183   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4184        PI != PE; ++PI)
4185     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4186 
4187   eval.begin(CGF);
4188 
4189   // Emit the RHS condition as a bool value.
4190   CGF.EmitBlock(RHSBlock);
4191   CGF.incrementProfileCounter(E);
4192   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4193 
4194   eval.end(CGF);
4195 
4196   // Reaquire the RHS block, as there may be subblocks inserted.
4197   RHSBlock = Builder.GetInsertBlock();
4198 
4199   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4200   // into the phi node for the edge with the value of RHSCond.
4201   CGF.EmitBlock(ContBlock);
4202   PN->addIncoming(RHSCond, RHSBlock);
4203 
4204   // ZExt result to int.
4205   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4206 }
4207 
4208 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4209   CGF.EmitIgnoredExpr(E->getLHS());
4210   CGF.EnsureInsertPoint();
4211   return Visit(E->getRHS());
4212 }
4213 
4214 //===----------------------------------------------------------------------===//
4215 //                             Other Operators
4216 //===----------------------------------------------------------------------===//
4217 
4218 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4219 /// expression is cheap enough and side-effect-free enough to evaluate
4220 /// unconditionally instead of conditionally.  This is used to convert control
4221 /// flow into selects in some cases.
4222 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4223                                                    CodeGenFunction &CGF) {
4224   // Anything that is an integer or floating point constant is fine.
4225   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4226 
4227   // Even non-volatile automatic variables can't be evaluated unconditionally.
4228   // Referencing a thread_local may cause non-trivial initialization work to
4229   // occur. If we're inside a lambda and one of the variables is from the scope
4230   // outside the lambda, that function may have returned already. Reading its
4231   // locals is a bad idea. Also, these reads may introduce races there didn't
4232   // exist in the source-level program.
4233 }
4234 
4235 
4236 Value *ScalarExprEmitter::
4237 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4238   TestAndClearIgnoreResultAssign();
4239 
4240   // Bind the common expression if necessary.
4241   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4242 
4243   Expr *condExpr = E->getCond();
4244   Expr *lhsExpr = E->getTrueExpr();
4245   Expr *rhsExpr = E->getFalseExpr();
4246 
4247   // If the condition constant folds and can be elided, try to avoid emitting
4248   // the condition and the dead arm.
4249   bool CondExprBool;
4250   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4251     Expr *live = lhsExpr, *dead = rhsExpr;
4252     if (!CondExprBool) std::swap(live, dead);
4253 
4254     // If the dead side doesn't have labels we need, just emit the Live part.
4255     if (!CGF.ContainsLabel(dead)) {
4256       if (CondExprBool)
4257         CGF.incrementProfileCounter(E);
4258       Value *Result = Visit(live);
4259 
4260       // If the live part is a throw expression, it acts like it has a void
4261       // type, so evaluating it returns a null Value*.  However, a conditional
4262       // with non-void type must return a non-null Value*.
4263       if (!Result && !E->getType()->isVoidType())
4264         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4265 
4266       return Result;
4267     }
4268   }
4269 
4270   // OpenCL: If the condition is a vector, we can treat this condition like
4271   // the select function.
4272   if (CGF.getLangOpts().OpenCL
4273       && condExpr->getType()->isVectorType()) {
4274     CGF.incrementProfileCounter(E);
4275 
4276     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4277     llvm::Value *LHS = Visit(lhsExpr);
4278     llvm::Value *RHS = Visit(rhsExpr);
4279 
4280     llvm::Type *condType = ConvertType(condExpr->getType());
4281     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
4282 
4283     unsigned numElem = vecTy->getNumElements();
4284     llvm::Type *elemType = vecTy->getElementType();
4285 
4286     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4287     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4288     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
4289                                           llvm::VectorType::get(elemType,
4290                                                                 numElem),
4291                                           "sext");
4292     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4293 
4294     // Cast float to int to perform ANDs if necessary.
4295     llvm::Value *RHSTmp = RHS;
4296     llvm::Value *LHSTmp = LHS;
4297     bool wasCast = false;
4298     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4299     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4300       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4301       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4302       wasCast = true;
4303     }
4304 
4305     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4306     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4307     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4308     if (wasCast)
4309       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4310 
4311     return tmp5;
4312   }
4313 
4314   if (condExpr->getType()->isVectorType()) {
4315     CGF.incrementProfileCounter(E);
4316 
4317     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4318     llvm::Value *LHS = Visit(lhsExpr);
4319     llvm::Value *RHS = Visit(rhsExpr);
4320 
4321     llvm::Type *CondType = ConvertType(condExpr->getType());
4322     auto *VecTy = cast<llvm::VectorType>(CondType);
4323     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4324 
4325     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4326     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4327   }
4328 
4329   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4330   // select instead of as control flow.  We can only do this if it is cheap and
4331   // safe to evaluate the LHS and RHS unconditionally.
4332   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4333       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4334     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4335     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4336 
4337     CGF.incrementProfileCounter(E, StepV);
4338 
4339     llvm::Value *LHS = Visit(lhsExpr);
4340     llvm::Value *RHS = Visit(rhsExpr);
4341     if (!LHS) {
4342       // If the conditional has void type, make sure we return a null Value*.
4343       assert(!RHS && "LHS and RHS types must match");
4344       return nullptr;
4345     }
4346     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4347   }
4348 
4349   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4350   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4351   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4352 
4353   CodeGenFunction::ConditionalEvaluation eval(CGF);
4354   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4355                            CGF.getProfileCount(lhsExpr));
4356 
4357   CGF.EmitBlock(LHSBlock);
4358   CGF.incrementProfileCounter(E);
4359   eval.begin(CGF);
4360   Value *LHS = Visit(lhsExpr);
4361   eval.end(CGF);
4362 
4363   LHSBlock = Builder.GetInsertBlock();
4364   Builder.CreateBr(ContBlock);
4365 
4366   CGF.EmitBlock(RHSBlock);
4367   eval.begin(CGF);
4368   Value *RHS = Visit(rhsExpr);
4369   eval.end(CGF);
4370 
4371   RHSBlock = Builder.GetInsertBlock();
4372   CGF.EmitBlock(ContBlock);
4373 
4374   // If the LHS or RHS is a throw expression, it will be legitimately null.
4375   if (!LHS)
4376     return RHS;
4377   if (!RHS)
4378     return LHS;
4379 
4380   // Create a PHI node for the real part.
4381   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4382   PN->addIncoming(LHS, LHSBlock);
4383   PN->addIncoming(RHS, RHSBlock);
4384   return PN;
4385 }
4386 
4387 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4388   return Visit(E->getChosenSubExpr());
4389 }
4390 
4391 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4392   QualType Ty = VE->getType();
4393 
4394   if (Ty->isVariablyModifiedType())
4395     CGF.EmitVariablyModifiedType(Ty);
4396 
4397   Address ArgValue = Address::invalid();
4398   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4399 
4400   llvm::Type *ArgTy = ConvertType(VE->getType());
4401 
4402   // If EmitVAArg fails, emit an error.
4403   if (!ArgPtr.isValid()) {
4404     CGF.ErrorUnsupported(VE, "va_arg expression");
4405     return llvm::UndefValue::get(ArgTy);
4406   }
4407 
4408   // FIXME Volatility.
4409   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4410 
4411   // If EmitVAArg promoted the type, we must truncate it.
4412   if (ArgTy != Val->getType()) {
4413     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4414       Val = Builder.CreateIntToPtr(Val, ArgTy);
4415     else
4416       Val = Builder.CreateTrunc(Val, ArgTy);
4417   }
4418 
4419   return Val;
4420 }
4421 
4422 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4423   return CGF.EmitBlockLiteral(block);
4424 }
4425 
4426 // Convert a vec3 to vec4, or vice versa.
4427 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4428                                  Value *Src, unsigned NumElementsDst) {
4429   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
4430   SmallVector<llvm::Constant*, 4> Args;
4431   Args.push_back(Builder.getInt32(0));
4432   Args.push_back(Builder.getInt32(1));
4433   Args.push_back(Builder.getInt32(2));
4434   if (NumElementsDst == 4)
4435     Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
4436   llvm::Constant *Mask = llvm::ConstantVector::get(Args);
4437   return Builder.CreateShuffleVector(Src, UnV, Mask);
4438 }
4439 
4440 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4441 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4442 // but could be scalar or vectors of different lengths, and either can be
4443 // pointer.
4444 // There are 4 cases:
4445 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4446 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4447 // 3. pointer -> non-pointer
4448 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4449 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4450 // 4. non-pointer -> pointer
4451 //   a) intptr_t -> pointer       : needs 1 inttoptr
4452 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4453 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4454 // allow casting directly between pointer types and non-integer non-pointer
4455 // types.
4456 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4457                                            const llvm::DataLayout &DL,
4458                                            Value *Src, llvm::Type *DstTy,
4459                                            StringRef Name = "") {
4460   auto SrcTy = Src->getType();
4461 
4462   // Case 1.
4463   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4464     return Builder.CreateBitCast(Src, DstTy, Name);
4465 
4466   // Case 2.
4467   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4468     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4469 
4470   // Case 3.
4471   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4472     // Case 3b.
4473     if (!DstTy->isIntegerTy())
4474       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4475     // Cases 3a and 3b.
4476     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4477   }
4478 
4479   // Case 4b.
4480   if (!SrcTy->isIntegerTy())
4481     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4482   // Cases 4a and 4b.
4483   return Builder.CreateIntToPtr(Src, DstTy, Name);
4484 }
4485 
4486 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4487   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4488   llvm::Type *DstTy = ConvertType(E->getType());
4489 
4490   llvm::Type *SrcTy = Src->getType();
4491   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
4492     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
4493   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
4494     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
4495 
4496   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4497   // vector to get a vec4, then a bitcast if the target type is different.
4498   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4499     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4500 
4501     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4502       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4503                                          DstTy);
4504     }
4505 
4506     Src->setName("astype");
4507     return Src;
4508   }
4509 
4510   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4511   // to vec4 if the original type is not vec4, then a shuffle vector to
4512   // get a vec3.
4513   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4514     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4515       auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
4516       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4517                                          Vec4Ty);
4518     }
4519 
4520     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4521     Src->setName("astype");
4522     return Src;
4523   }
4524 
4525   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4526                                       Src, DstTy, "astype");
4527 }
4528 
4529 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4530   return CGF.EmitAtomicExpr(E).getScalarVal();
4531 }
4532 
4533 //===----------------------------------------------------------------------===//
4534 //                         Entry Point into this File
4535 //===----------------------------------------------------------------------===//
4536 
4537 /// Emit the computation of the specified expression of scalar type, ignoring
4538 /// the result.
4539 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4540   assert(E && hasScalarEvaluationKind(E->getType()) &&
4541          "Invalid scalar expression to emit");
4542 
4543   return ScalarExprEmitter(*this, IgnoreResultAssign)
4544       .Visit(const_cast<Expr *>(E));
4545 }
4546 
4547 /// Emit a conversion from the specified type to the specified destination type,
4548 /// both of which are LLVM scalar types.
4549 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4550                                              QualType DstTy,
4551                                              SourceLocation Loc) {
4552   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4553          "Invalid scalar expression to emit");
4554   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4555 }
4556 
4557 /// Emit a conversion from the specified complex type to the specified
4558 /// destination type, where the destination type is an LLVM scalar type.
4559 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4560                                                       QualType SrcTy,
4561                                                       QualType DstTy,
4562                                                       SourceLocation Loc) {
4563   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4564          "Invalid complex -> scalar conversion");
4565   return ScalarExprEmitter(*this)
4566       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4567 }
4568 
4569 
4570 llvm::Value *CodeGenFunction::
4571 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4572                         bool isInc, bool isPre) {
4573   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4574 }
4575 
4576 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4577   // object->isa or (*object).isa
4578   // Generate code as for: *(Class*)object
4579 
4580   Expr *BaseExpr = E->getBase();
4581   Address Addr = Address::invalid();
4582   if (BaseExpr->isRValue()) {
4583     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4584   } else {
4585     Addr = EmitLValue(BaseExpr).getAddress(*this);
4586   }
4587 
4588   // Cast the address to Class*.
4589   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4590   return MakeAddrLValue(Addr, E->getType());
4591 }
4592 
4593 
4594 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4595                                             const CompoundAssignOperator *E) {
4596   ScalarExprEmitter Scalar(*this);
4597   Value *Result = nullptr;
4598   switch (E->getOpcode()) {
4599 #define COMPOUND_OP(Op)                                                       \
4600     case BO_##Op##Assign:                                                     \
4601       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4602                                              Result)
4603   COMPOUND_OP(Mul);
4604   COMPOUND_OP(Div);
4605   COMPOUND_OP(Rem);
4606   COMPOUND_OP(Add);
4607   COMPOUND_OP(Sub);
4608   COMPOUND_OP(Shl);
4609   COMPOUND_OP(Shr);
4610   COMPOUND_OP(And);
4611   COMPOUND_OP(Xor);
4612   COMPOUND_OP(Or);
4613 #undef COMPOUND_OP
4614 
4615   case BO_PtrMemD:
4616   case BO_PtrMemI:
4617   case BO_Mul:
4618   case BO_Div:
4619   case BO_Rem:
4620   case BO_Add:
4621   case BO_Sub:
4622   case BO_Shl:
4623   case BO_Shr:
4624   case BO_LT:
4625   case BO_GT:
4626   case BO_LE:
4627   case BO_GE:
4628   case BO_EQ:
4629   case BO_NE:
4630   case BO_Cmp:
4631   case BO_And:
4632   case BO_Xor:
4633   case BO_Or:
4634   case BO_LAnd:
4635   case BO_LOr:
4636   case BO_Assign:
4637   case BO_Comma:
4638     llvm_unreachable("Not valid compound assignment operators");
4639   }
4640 
4641   llvm_unreachable("Unhandled compound assignment operator");
4642 }
4643 
4644 struct GEPOffsetAndOverflow {
4645   // The total (signed) byte offset for the GEP.
4646   llvm::Value *TotalOffset;
4647   // The offset overflow flag - true if the total offset overflows.
4648   llvm::Value *OffsetOverflows;
4649 };
4650 
4651 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4652 /// and compute the total offset it applies from it's base pointer BasePtr.
4653 /// Returns offset in bytes and a boolean flag whether an overflow happened
4654 /// during evaluation.
4655 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4656                                                  llvm::LLVMContext &VMContext,
4657                                                  CodeGenModule &CGM,
4658                                                  CGBuilderTy Builder) {
4659   const auto &DL = CGM.getDataLayout();
4660 
4661   // The total (signed) byte offset for the GEP.
4662   llvm::Value *TotalOffset = nullptr;
4663 
4664   // Was the GEP already reduced to a constant?
4665   if (isa<llvm::Constant>(GEPVal)) {
4666     // Compute the offset by casting both pointers to integers and subtracting:
4667     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4668     Value *BasePtr_int =
4669         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4670     Value *GEPVal_int =
4671         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4672     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4673     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4674   }
4675 
4676   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4677   assert(GEP->getPointerOperand() == BasePtr &&
4678          "BasePtr must be the the base of the GEP.");
4679   assert(GEP->isInBounds() && "Expected inbounds GEP");
4680 
4681   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4682 
4683   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4684   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4685   auto *SAddIntrinsic =
4686       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4687   auto *SMulIntrinsic =
4688       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4689 
4690   // The offset overflow flag - true if the total offset overflows.
4691   llvm::Value *OffsetOverflows = Builder.getFalse();
4692 
4693   /// Return the result of the given binary operation.
4694   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4695                   llvm::Value *RHS) -> llvm::Value * {
4696     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4697 
4698     // If the operands are constants, return a constant result.
4699     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4700       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4701         llvm::APInt N;
4702         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4703                                                   /*Signed=*/true, N);
4704         if (HasOverflow)
4705           OffsetOverflows = Builder.getTrue();
4706         return llvm::ConstantInt::get(VMContext, N);
4707       }
4708     }
4709 
4710     // Otherwise, compute the result with checked arithmetic.
4711     auto *ResultAndOverflow = Builder.CreateCall(
4712         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4713     OffsetOverflows = Builder.CreateOr(
4714         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4715     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4716   };
4717 
4718   // Determine the total byte offset by looking at each GEP operand.
4719   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4720        GTI != GTE; ++GTI) {
4721     llvm::Value *LocalOffset;
4722     auto *Index = GTI.getOperand();
4723     // Compute the local offset contributed by this indexing step:
4724     if (auto *STy = GTI.getStructTypeOrNull()) {
4725       // For struct indexing, the local offset is the byte position of the
4726       // specified field.
4727       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4728       LocalOffset = llvm::ConstantInt::get(
4729           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4730     } else {
4731       // Otherwise this is array-like indexing. The local offset is the index
4732       // multiplied by the element size.
4733       auto *ElementSize = llvm::ConstantInt::get(
4734           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4735       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4736       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4737     }
4738 
4739     // If this is the first offset, set it as the total offset. Otherwise, add
4740     // the local offset into the running total.
4741     if (!TotalOffset || TotalOffset == Zero)
4742       TotalOffset = LocalOffset;
4743     else
4744       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4745   }
4746 
4747   return {TotalOffset, OffsetOverflows};
4748 }
4749 
4750 Value *
4751 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
4752                                         bool SignedIndices, bool IsSubtraction,
4753                                         SourceLocation Loc, const Twine &Name) {
4754   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4755 
4756   // If the pointer overflow sanitizer isn't enabled, do nothing.
4757   if (!SanOpts.has(SanitizerKind::PointerOverflow))
4758     return GEPVal;
4759 
4760   llvm::Type *PtrTy = Ptr->getType();
4761 
4762   // Perform nullptr-and-offset check unless the nullptr is defined.
4763   bool PerformNullCheck = !NullPointerIsDefined(
4764       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
4765   // Check for overflows unless the GEP got constant-folded,
4766   // and only in the default address space
4767   bool PerformOverflowCheck =
4768       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
4769 
4770   if (!(PerformNullCheck || PerformOverflowCheck))
4771     return GEPVal;
4772 
4773   const auto &DL = CGM.getDataLayout();
4774 
4775   SanitizerScope SanScope(this);
4776   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
4777 
4778   GEPOffsetAndOverflow EvaluatedGEP =
4779       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
4780 
4781   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
4782           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
4783          "If the offset got constant-folded, we don't expect that there was an "
4784          "overflow.");
4785 
4786   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4787 
4788   // Common case: if the total offset is zero, and we are using C++ semantics,
4789   // where nullptr+0 is defined, don't emit a check.
4790   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
4791     return GEPVal;
4792 
4793   // Now that we've computed the total offset, add it to the base pointer (with
4794   // wrapping semantics).
4795   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
4796   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
4797 
4798   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
4799 
4800   if (PerformNullCheck) {
4801     // In C++, if the base pointer evaluates to a null pointer value,
4802     // the only valid  pointer this inbounds GEP can produce is also
4803     // a null pointer, so the offset must also evaluate to zero.
4804     // Likewise, if we have non-zero base pointer, we can not get null pointer
4805     // as a result, so the offset can not be -intptr_t(BasePtr).
4806     // In other words, both pointers are either null, or both are non-null,
4807     // or the behaviour is undefined.
4808     //
4809     // C, however, is more strict in this regard, and gives more
4810     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
4811     // So both the input to the 'gep inbounds' AND the output must not be null.
4812     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
4813     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
4814     auto *Valid =
4815         CGM.getLangOpts().CPlusPlus
4816             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
4817             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
4818     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
4819   }
4820 
4821   if (PerformOverflowCheck) {
4822     // The GEP is valid if:
4823     // 1) The total offset doesn't overflow, and
4824     // 2) The sign of the difference between the computed address and the base
4825     // pointer matches the sign of the total offset.
4826     llvm::Value *ValidGEP;
4827     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
4828     if (SignedIndices) {
4829       // GEP is computed as `unsigned base + signed offset`, therefore:
4830       // * If offset was positive, then the computed pointer can not be
4831       //   [unsigned] less than the base pointer, unless it overflowed.
4832       // * If offset was negative, then the computed pointer can not be
4833       //   [unsigned] greater than the bas pointere, unless it overflowed.
4834       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4835       auto *PosOrZeroOffset =
4836           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
4837       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4838       ValidGEP =
4839           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
4840     } else if (!IsSubtraction) {
4841       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
4842       // computed pointer can not be [unsigned] less than base pointer,
4843       // unless there was an overflow.
4844       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
4845       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4846     } else {
4847       // GEP is computed as `unsigned base - unsigned offset`, therefore the
4848       // computed pointer can not be [unsigned] greater than base pointer,
4849       // unless there was an overflow.
4850       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
4851       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4852     }
4853     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
4854     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
4855   }
4856 
4857   assert(!Checks.empty() && "Should have produced some checks.");
4858 
4859   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4860   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4861   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4862   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4863 
4864   return GEPVal;
4865 }
4866