1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCleanup.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CGOpenMPRuntime.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "ConstantEmitter.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "clang/Basic/FixedPoint.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "llvm/ADT/Optional.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/GetElementPtrTypeIterator.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/IntrinsicsPowerPC.h" 40 #include "llvm/IR/Module.h" 41 #include <cstdarg> 42 43 using namespace clang; 44 using namespace CodeGen; 45 using llvm::Value; 46 47 //===----------------------------------------------------------------------===// 48 // Scalar Expression Emitter 49 //===----------------------------------------------------------------------===// 50 51 namespace { 52 53 /// Determine whether the given binary operation may overflow. 54 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 55 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 56 /// the returned overflow check is precise. The returned value is 'true' for 57 /// all other opcodes, to be conservative. 58 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 59 BinaryOperator::Opcode Opcode, bool Signed, 60 llvm::APInt &Result) { 61 // Assume overflow is possible, unless we can prove otherwise. 62 bool Overflow = true; 63 const auto &LHSAP = LHS->getValue(); 64 const auto &RHSAP = RHS->getValue(); 65 if (Opcode == BO_Add) { 66 if (Signed) 67 Result = LHSAP.sadd_ov(RHSAP, Overflow); 68 else 69 Result = LHSAP.uadd_ov(RHSAP, Overflow); 70 } else if (Opcode == BO_Sub) { 71 if (Signed) 72 Result = LHSAP.ssub_ov(RHSAP, Overflow); 73 else 74 Result = LHSAP.usub_ov(RHSAP, Overflow); 75 } else if (Opcode == BO_Mul) { 76 if (Signed) 77 Result = LHSAP.smul_ov(RHSAP, Overflow); 78 else 79 Result = LHSAP.umul_ov(RHSAP, Overflow); 80 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 81 if (Signed && !RHS->isZero()) 82 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 83 else 84 return false; 85 } 86 return Overflow; 87 } 88 89 struct BinOpInfo { 90 Value *LHS; 91 Value *RHS; 92 QualType Ty; // Computation Type. 93 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 94 FPOptions FPFeatures; 95 const Expr *E; // Entire expr, for error unsupported. May not be binop. 96 97 /// Check if the binop can result in integer overflow. 98 bool mayHaveIntegerOverflow() const { 99 // Without constant input, we can't rule out overflow. 100 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 101 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 102 if (!LHSCI || !RHSCI) 103 return true; 104 105 llvm::APInt Result; 106 return ::mayHaveIntegerOverflow( 107 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 108 } 109 110 /// Check if the binop computes a division or a remainder. 111 bool isDivremOp() const { 112 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 113 Opcode == BO_RemAssign; 114 } 115 116 /// Check if the binop can result in an integer division by zero. 117 bool mayHaveIntegerDivisionByZero() const { 118 if (isDivremOp()) 119 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 120 return CI->isZero(); 121 return true; 122 } 123 124 /// Check if the binop can result in a float division by zero. 125 bool mayHaveFloatDivisionByZero() const { 126 if (isDivremOp()) 127 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 128 return CFP->isZero(); 129 return true; 130 } 131 132 /// Check if either operand is a fixed point type or integer type, with at 133 /// least one being a fixed point type. In any case, this 134 /// operation did not follow usual arithmetic conversion and both operands may 135 /// not be the same. 136 bool isFixedPointBinOp() const { 137 // We cannot simply check the result type since comparison operations return 138 // an int. 139 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { 140 QualType LHSType = BinOp->getLHS()->getType(); 141 QualType RHSType = BinOp->getRHS()->getType(); 142 return LHSType->isFixedPointType() || RHSType->isFixedPointType(); 143 } 144 return false; 145 } 146 }; 147 148 static bool MustVisitNullValue(const Expr *E) { 149 // If a null pointer expression's type is the C++0x nullptr_t, then 150 // it's not necessarily a simple constant and it must be evaluated 151 // for its potential side effects. 152 return E->getType()->isNullPtrType(); 153 } 154 155 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 156 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 157 const Expr *E) { 158 const Expr *Base = E->IgnoreImpCasts(); 159 if (E == Base) 160 return llvm::None; 161 162 QualType BaseTy = Base->getType(); 163 if (!BaseTy->isPromotableIntegerType() || 164 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 165 return llvm::None; 166 167 return BaseTy; 168 } 169 170 /// Check if \p E is a widened promoted integer. 171 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 172 return getUnwidenedIntegerType(Ctx, E).hasValue(); 173 } 174 175 /// Check if we can skip the overflow check for \p Op. 176 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 177 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 178 "Expected a unary or binary operator"); 179 180 // If the binop has constant inputs and we can prove there is no overflow, 181 // we can elide the overflow check. 182 if (!Op.mayHaveIntegerOverflow()) 183 return true; 184 185 // If a unary op has a widened operand, the op cannot overflow. 186 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 187 return !UO->canOverflow(); 188 189 // We usually don't need overflow checks for binops with widened operands. 190 // Multiplication with promoted unsigned operands is a special case. 191 const auto *BO = cast<BinaryOperator>(Op.E); 192 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 193 if (!OptionalLHSTy) 194 return false; 195 196 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 197 if (!OptionalRHSTy) 198 return false; 199 200 QualType LHSTy = *OptionalLHSTy; 201 QualType RHSTy = *OptionalRHSTy; 202 203 // This is the simple case: binops without unsigned multiplication, and with 204 // widened operands. No overflow check is needed here. 205 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 206 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 207 return true; 208 209 // For unsigned multiplication the overflow check can be elided if either one 210 // of the unpromoted types are less than half the size of the promoted type. 211 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 212 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 213 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 214 } 215 216 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions. 217 static void updateFastMathFlags(llvm::FastMathFlags &FMF, 218 FPOptions FPFeatures) { 219 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 220 } 221 222 /// Propagate fast-math flags from \p Op to the instruction in \p V. 223 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) { 224 if (auto *I = dyn_cast<llvm::Instruction>(V)) { 225 llvm::FastMathFlags FMF = I->getFastMathFlags(); 226 updateFastMathFlags(FMF, Op.FPFeatures); 227 I->setFastMathFlags(FMF); 228 } 229 return V; 230 } 231 232 class ScalarExprEmitter 233 : public StmtVisitor<ScalarExprEmitter, Value*> { 234 CodeGenFunction &CGF; 235 CGBuilderTy &Builder; 236 bool IgnoreResultAssign; 237 llvm::LLVMContext &VMContext; 238 public: 239 240 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 241 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 242 VMContext(cgf.getLLVMContext()) { 243 } 244 245 //===--------------------------------------------------------------------===// 246 // Utilities 247 //===--------------------------------------------------------------------===// 248 249 bool TestAndClearIgnoreResultAssign() { 250 bool I = IgnoreResultAssign; 251 IgnoreResultAssign = false; 252 return I; 253 } 254 255 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 256 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 257 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 258 return CGF.EmitCheckedLValue(E, TCK); 259 } 260 261 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 262 const BinOpInfo &Info); 263 264 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 265 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 266 } 267 268 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 269 const AlignValueAttr *AVAttr = nullptr; 270 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 271 const ValueDecl *VD = DRE->getDecl(); 272 273 if (VD->getType()->isReferenceType()) { 274 if (const auto *TTy = 275 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 276 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 277 } else { 278 // Assumptions for function parameters are emitted at the start of the 279 // function, so there is no need to repeat that here, 280 // unless the alignment-assumption sanitizer is enabled, 281 // then we prefer the assumption over alignment attribute 282 // on IR function param. 283 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) 284 return; 285 286 AVAttr = VD->getAttr<AlignValueAttr>(); 287 } 288 } 289 290 if (!AVAttr) 291 if (const auto *TTy = 292 dyn_cast<TypedefType>(E->getType())) 293 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 294 295 if (!AVAttr) 296 return; 297 298 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 299 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 300 CGF.EmitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI); 301 } 302 303 /// EmitLoadOfLValue - Given an expression with complex type that represents a 304 /// value l-value, this method emits the address of the l-value, then loads 305 /// and returns the result. 306 Value *EmitLoadOfLValue(const Expr *E) { 307 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 308 E->getExprLoc()); 309 310 EmitLValueAlignmentAssumption(E, V); 311 return V; 312 } 313 314 /// EmitConversionToBool - Convert the specified expression value to a 315 /// boolean (i1) truth value. This is equivalent to "Val != 0". 316 Value *EmitConversionToBool(Value *Src, QualType DstTy); 317 318 /// Emit a check that a conversion from a floating-point type does not 319 /// overflow. 320 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 321 Value *Src, QualType SrcType, QualType DstType, 322 llvm::Type *DstTy, SourceLocation Loc); 323 324 /// Known implicit conversion check kinds. 325 /// Keep in sync with the enum of the same name in ubsan_handlers.h 326 enum ImplicitConversionCheckKind : unsigned char { 327 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 328 ICCK_UnsignedIntegerTruncation = 1, 329 ICCK_SignedIntegerTruncation = 2, 330 ICCK_IntegerSignChange = 3, 331 ICCK_SignedIntegerTruncationOrSignChange = 4, 332 }; 333 334 /// Emit a check that an [implicit] truncation of an integer does not 335 /// discard any bits. It is not UB, so we use the value after truncation. 336 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 337 QualType DstType, SourceLocation Loc); 338 339 /// Emit a check that an [implicit] conversion of an integer does not change 340 /// the sign of the value. It is not UB, so we use the value after conversion. 341 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 342 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 343 QualType DstType, SourceLocation Loc); 344 345 /// Emit a conversion from the specified type to the specified destination 346 /// type, both of which are LLVM scalar types. 347 struct ScalarConversionOpts { 348 bool TreatBooleanAsSigned; 349 bool EmitImplicitIntegerTruncationChecks; 350 bool EmitImplicitIntegerSignChangeChecks; 351 352 ScalarConversionOpts() 353 : TreatBooleanAsSigned(false), 354 EmitImplicitIntegerTruncationChecks(false), 355 EmitImplicitIntegerSignChangeChecks(false) {} 356 357 ScalarConversionOpts(clang::SanitizerSet SanOpts) 358 : TreatBooleanAsSigned(false), 359 EmitImplicitIntegerTruncationChecks( 360 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 361 EmitImplicitIntegerSignChangeChecks( 362 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 363 }; 364 Value * 365 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 366 SourceLocation Loc, 367 ScalarConversionOpts Opts = ScalarConversionOpts()); 368 369 /// Convert between either a fixed point and other fixed point or fixed point 370 /// and an integer. 371 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 372 SourceLocation Loc); 373 Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema, 374 FixedPointSemantics &DstFixedSema, 375 SourceLocation Loc, 376 bool DstIsInteger = false); 377 378 /// Emit a conversion from the specified complex type to the specified 379 /// destination type, where the destination type is an LLVM scalar type. 380 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 381 QualType SrcTy, QualType DstTy, 382 SourceLocation Loc); 383 384 /// EmitNullValue - Emit a value that corresponds to null for the given type. 385 Value *EmitNullValue(QualType Ty); 386 387 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 388 Value *EmitFloatToBoolConversion(Value *V) { 389 // Compare against 0.0 for fp scalars. 390 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 391 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 392 } 393 394 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 395 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 396 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 397 398 return Builder.CreateICmpNE(V, Zero, "tobool"); 399 } 400 401 Value *EmitIntToBoolConversion(Value *V) { 402 // Because of the type rules of C, we often end up computing a 403 // logical value, then zero extending it to int, then wanting it 404 // as a logical value again. Optimize this common case. 405 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 406 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 407 Value *Result = ZI->getOperand(0); 408 // If there aren't any more uses, zap the instruction to save space. 409 // Note that there can be more uses, for example if this 410 // is the result of an assignment. 411 if (ZI->use_empty()) 412 ZI->eraseFromParent(); 413 return Result; 414 } 415 } 416 417 return Builder.CreateIsNotNull(V, "tobool"); 418 } 419 420 //===--------------------------------------------------------------------===// 421 // Visitor Methods 422 //===--------------------------------------------------------------------===// 423 424 Value *Visit(Expr *E) { 425 ApplyDebugLocation DL(CGF, E); 426 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 427 } 428 429 Value *VisitStmt(Stmt *S) { 430 S->dump(CGF.getContext().getSourceManager()); 431 llvm_unreachable("Stmt can't have complex result type!"); 432 } 433 Value *VisitExpr(Expr *S); 434 435 Value *VisitConstantExpr(ConstantExpr *E) { 436 return Visit(E->getSubExpr()); 437 } 438 Value *VisitParenExpr(ParenExpr *PE) { 439 return Visit(PE->getSubExpr()); 440 } 441 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 442 return Visit(E->getReplacement()); 443 } 444 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 445 return Visit(GE->getResultExpr()); 446 } 447 Value *VisitCoawaitExpr(CoawaitExpr *S) { 448 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 449 } 450 Value *VisitCoyieldExpr(CoyieldExpr *S) { 451 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 452 } 453 Value *VisitUnaryCoawait(const UnaryOperator *E) { 454 return Visit(E->getSubExpr()); 455 } 456 457 // Leaves. 458 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 459 return Builder.getInt(E->getValue()); 460 } 461 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 462 return Builder.getInt(E->getValue()); 463 } 464 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 465 return llvm::ConstantFP::get(VMContext, E->getValue()); 466 } 467 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 468 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 469 } 470 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 471 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 472 } 473 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 474 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 475 } 476 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 477 return EmitNullValue(E->getType()); 478 } 479 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 480 return EmitNullValue(E->getType()); 481 } 482 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 483 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 484 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 485 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 486 return Builder.CreateBitCast(V, ConvertType(E->getType())); 487 } 488 489 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 490 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 491 } 492 493 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 494 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 495 } 496 497 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 498 if (E->isGLValue()) 499 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 500 E->getExprLoc()); 501 502 // Otherwise, assume the mapping is the scalar directly. 503 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 504 } 505 506 // l-values. 507 Value *VisitDeclRefExpr(DeclRefExpr *E) { 508 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 509 return CGF.emitScalarConstant(Constant, E); 510 return EmitLoadOfLValue(E); 511 } 512 513 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 514 return CGF.EmitObjCSelectorExpr(E); 515 } 516 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 517 return CGF.EmitObjCProtocolExpr(E); 518 } 519 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 520 return EmitLoadOfLValue(E); 521 } 522 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 523 if (E->getMethodDecl() && 524 E->getMethodDecl()->getReturnType()->isReferenceType()) 525 return EmitLoadOfLValue(E); 526 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 527 } 528 529 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 530 LValue LV = CGF.EmitObjCIsaExpr(E); 531 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 532 return V; 533 } 534 535 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 536 VersionTuple Version = E->getVersion(); 537 538 // If we're checking for a platform older than our minimum deployment 539 // target, we can fold the check away. 540 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 541 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 542 543 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 544 llvm::Value *Args[] = { 545 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), 546 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), 547 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), 548 }; 549 550 return CGF.EmitBuiltinAvailable(Args); 551 } 552 553 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 554 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 555 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 556 Value *VisitMemberExpr(MemberExpr *E); 557 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 558 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 559 return EmitLoadOfLValue(E); 560 } 561 562 Value *VisitInitListExpr(InitListExpr *E); 563 564 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 565 assert(CGF.getArrayInitIndex() && 566 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 567 return CGF.getArrayInitIndex(); 568 } 569 570 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 571 return EmitNullValue(E->getType()); 572 } 573 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 574 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 575 return VisitCastExpr(E); 576 } 577 Value *VisitCastExpr(CastExpr *E); 578 579 Value *VisitCallExpr(const CallExpr *E) { 580 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 581 return EmitLoadOfLValue(E); 582 583 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 584 585 EmitLValueAlignmentAssumption(E, V); 586 return V; 587 } 588 589 Value *VisitStmtExpr(const StmtExpr *E); 590 591 // Unary Operators. 592 Value *VisitUnaryPostDec(const UnaryOperator *E) { 593 LValue LV = EmitLValue(E->getSubExpr()); 594 return EmitScalarPrePostIncDec(E, LV, false, false); 595 } 596 Value *VisitUnaryPostInc(const UnaryOperator *E) { 597 LValue LV = EmitLValue(E->getSubExpr()); 598 return EmitScalarPrePostIncDec(E, LV, true, false); 599 } 600 Value *VisitUnaryPreDec(const UnaryOperator *E) { 601 LValue LV = EmitLValue(E->getSubExpr()); 602 return EmitScalarPrePostIncDec(E, LV, false, true); 603 } 604 Value *VisitUnaryPreInc(const UnaryOperator *E) { 605 LValue LV = EmitLValue(E->getSubExpr()); 606 return EmitScalarPrePostIncDec(E, LV, true, true); 607 } 608 609 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 610 llvm::Value *InVal, 611 bool IsInc); 612 613 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 614 bool isInc, bool isPre); 615 616 617 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 618 if (isa<MemberPointerType>(E->getType())) // never sugared 619 return CGF.CGM.getMemberPointerConstant(E); 620 621 return EmitLValue(E->getSubExpr()).getPointer(CGF); 622 } 623 Value *VisitUnaryDeref(const UnaryOperator *E) { 624 if (E->getType()->isVoidType()) 625 return Visit(E->getSubExpr()); // the actual value should be unused 626 return EmitLoadOfLValue(E); 627 } 628 Value *VisitUnaryPlus(const UnaryOperator *E) { 629 // This differs from gcc, though, most likely due to a bug in gcc. 630 TestAndClearIgnoreResultAssign(); 631 return Visit(E->getSubExpr()); 632 } 633 Value *VisitUnaryMinus (const UnaryOperator *E); 634 Value *VisitUnaryNot (const UnaryOperator *E); 635 Value *VisitUnaryLNot (const UnaryOperator *E); 636 Value *VisitUnaryReal (const UnaryOperator *E); 637 Value *VisitUnaryImag (const UnaryOperator *E); 638 Value *VisitUnaryExtension(const UnaryOperator *E) { 639 return Visit(E->getSubExpr()); 640 } 641 642 // C++ 643 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 644 return EmitLoadOfLValue(E); 645 } 646 Value *VisitSourceLocExpr(SourceLocExpr *SLE) { 647 auto &Ctx = CGF.getContext(); 648 APValue Evaluated = 649 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr()); 650 return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated, 651 SLE->getType()); 652 } 653 654 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 655 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 656 return Visit(DAE->getExpr()); 657 } 658 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 659 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 660 return Visit(DIE->getExpr()); 661 } 662 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 663 return CGF.LoadCXXThis(); 664 } 665 666 Value *VisitExprWithCleanups(ExprWithCleanups *E); 667 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 668 return CGF.EmitCXXNewExpr(E); 669 } 670 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 671 CGF.EmitCXXDeleteExpr(E); 672 return nullptr; 673 } 674 675 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 676 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 677 } 678 679 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) { 680 return Builder.getInt1(E->isSatisfied()); 681 } 682 683 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 684 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 685 } 686 687 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 688 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 689 } 690 691 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 692 // C++ [expr.pseudo]p1: 693 // The result shall only be used as the operand for the function call 694 // operator (), and the result of such a call has type void. The only 695 // effect is the evaluation of the postfix-expression before the dot or 696 // arrow. 697 CGF.EmitScalarExpr(E->getBase()); 698 return nullptr; 699 } 700 701 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 702 return EmitNullValue(E->getType()); 703 } 704 705 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 706 CGF.EmitCXXThrowExpr(E); 707 return nullptr; 708 } 709 710 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 711 return Builder.getInt1(E->getValue()); 712 } 713 714 // Binary Operators. 715 Value *EmitMul(const BinOpInfo &Ops) { 716 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 717 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 718 case LangOptions::SOB_Defined: 719 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 720 case LangOptions::SOB_Undefined: 721 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 722 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 723 LLVM_FALLTHROUGH; 724 case LangOptions::SOB_Trapping: 725 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 726 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 727 return EmitOverflowCheckedBinOp(Ops); 728 } 729 } 730 731 if (Ops.Ty->isUnsignedIntegerType() && 732 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 733 !CanElideOverflowCheck(CGF.getContext(), Ops)) 734 return EmitOverflowCheckedBinOp(Ops); 735 736 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 737 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 738 return propagateFMFlags(V, Ops); 739 } 740 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 741 } 742 /// Create a binary op that checks for overflow. 743 /// Currently only supports +, - and *. 744 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 745 746 // Check for undefined division and modulus behaviors. 747 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 748 llvm::Value *Zero,bool isDiv); 749 // Common helper for getting how wide LHS of shift is. 750 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 751 Value *EmitDiv(const BinOpInfo &Ops); 752 Value *EmitRem(const BinOpInfo &Ops); 753 Value *EmitAdd(const BinOpInfo &Ops); 754 Value *EmitSub(const BinOpInfo &Ops); 755 Value *EmitShl(const BinOpInfo &Ops); 756 Value *EmitShr(const BinOpInfo &Ops); 757 Value *EmitAnd(const BinOpInfo &Ops) { 758 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 759 } 760 Value *EmitXor(const BinOpInfo &Ops) { 761 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 762 } 763 Value *EmitOr (const BinOpInfo &Ops) { 764 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 765 } 766 767 // Helper functions for fixed point binary operations. 768 Value *EmitFixedPointBinOp(const BinOpInfo &Ops); 769 770 BinOpInfo EmitBinOps(const BinaryOperator *E); 771 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 772 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 773 Value *&Result); 774 775 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 776 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 777 778 // Binary operators and binary compound assignment operators. 779 #define HANDLEBINOP(OP) \ 780 Value *VisitBin ## OP(const BinaryOperator *E) { \ 781 return Emit ## OP(EmitBinOps(E)); \ 782 } \ 783 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 784 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 785 } 786 HANDLEBINOP(Mul) 787 HANDLEBINOP(Div) 788 HANDLEBINOP(Rem) 789 HANDLEBINOP(Add) 790 HANDLEBINOP(Sub) 791 HANDLEBINOP(Shl) 792 HANDLEBINOP(Shr) 793 HANDLEBINOP(And) 794 HANDLEBINOP(Xor) 795 HANDLEBINOP(Or) 796 #undef HANDLEBINOP 797 798 // Comparisons. 799 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 800 llvm::CmpInst::Predicate SICmpOpc, 801 llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling); 802 #define VISITCOMP(CODE, UI, SI, FP, SIG) \ 803 Value *VisitBin##CODE(const BinaryOperator *E) { \ 804 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 805 llvm::FCmpInst::FP, SIG); } 806 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true) 807 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true) 808 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true) 809 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true) 810 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false) 811 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false) 812 #undef VISITCOMP 813 814 Value *VisitBinAssign (const BinaryOperator *E); 815 816 Value *VisitBinLAnd (const BinaryOperator *E); 817 Value *VisitBinLOr (const BinaryOperator *E); 818 Value *VisitBinComma (const BinaryOperator *E); 819 820 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 821 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 822 823 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 824 return Visit(E->getSemanticForm()); 825 } 826 827 // Other Operators. 828 Value *VisitBlockExpr(const BlockExpr *BE); 829 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 830 Value *VisitChooseExpr(ChooseExpr *CE); 831 Value *VisitVAArgExpr(VAArgExpr *VE); 832 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 833 return CGF.EmitObjCStringLiteral(E); 834 } 835 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 836 return CGF.EmitObjCBoxedExpr(E); 837 } 838 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 839 return CGF.EmitObjCArrayLiteral(E); 840 } 841 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 842 return CGF.EmitObjCDictionaryLiteral(E); 843 } 844 Value *VisitAsTypeExpr(AsTypeExpr *CE); 845 Value *VisitAtomicExpr(AtomicExpr *AE); 846 }; 847 } // end anonymous namespace. 848 849 //===----------------------------------------------------------------------===// 850 // Utilities 851 //===----------------------------------------------------------------------===// 852 853 /// EmitConversionToBool - Convert the specified expression value to a 854 /// boolean (i1) truth value. This is equivalent to "Val != 0". 855 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 856 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 857 858 if (SrcType->isRealFloatingType()) 859 return EmitFloatToBoolConversion(Src); 860 861 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 862 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 863 864 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 865 "Unknown scalar type to convert"); 866 867 if (isa<llvm::IntegerType>(Src->getType())) 868 return EmitIntToBoolConversion(Src); 869 870 assert(isa<llvm::PointerType>(Src->getType())); 871 return EmitPointerToBoolConversion(Src, SrcType); 872 } 873 874 void ScalarExprEmitter::EmitFloatConversionCheck( 875 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 876 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 877 assert(SrcType->isFloatingType() && "not a conversion from floating point"); 878 if (!isa<llvm::IntegerType>(DstTy)) 879 return; 880 881 CodeGenFunction::SanitizerScope SanScope(&CGF); 882 using llvm::APFloat; 883 using llvm::APSInt; 884 885 llvm::Value *Check = nullptr; 886 const llvm::fltSemantics &SrcSema = 887 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 888 889 // Floating-point to integer. This has undefined behavior if the source is 890 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 891 // to an integer). 892 unsigned Width = CGF.getContext().getIntWidth(DstType); 893 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 894 895 APSInt Min = APSInt::getMinValue(Width, Unsigned); 896 APFloat MinSrc(SrcSema, APFloat::uninitialized); 897 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 898 APFloat::opOverflow) 899 // Don't need an overflow check for lower bound. Just check for 900 // -Inf/NaN. 901 MinSrc = APFloat::getInf(SrcSema, true); 902 else 903 // Find the largest value which is too small to represent (before 904 // truncation toward zero). 905 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 906 907 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 908 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 909 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 910 APFloat::opOverflow) 911 // Don't need an overflow check for upper bound. Just check for 912 // +Inf/NaN. 913 MaxSrc = APFloat::getInf(SrcSema, false); 914 else 915 // Find the smallest value which is too large to represent (before 916 // truncation toward zero). 917 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 918 919 // If we're converting from __half, convert the range to float to match 920 // the type of src. 921 if (OrigSrcType->isHalfType()) { 922 const llvm::fltSemantics &Sema = 923 CGF.getContext().getFloatTypeSemantics(SrcType); 924 bool IsInexact; 925 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 926 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 927 } 928 929 llvm::Value *GE = 930 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 931 llvm::Value *LE = 932 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 933 Check = Builder.CreateAnd(GE, LE); 934 935 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 936 CGF.EmitCheckTypeDescriptor(OrigSrcType), 937 CGF.EmitCheckTypeDescriptor(DstType)}; 938 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 939 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 940 } 941 942 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 943 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 944 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 945 std::pair<llvm::Value *, SanitizerMask>> 946 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 947 QualType DstType, CGBuilderTy &Builder) { 948 llvm::Type *SrcTy = Src->getType(); 949 llvm::Type *DstTy = Dst->getType(); 950 (void)DstTy; // Only used in assert() 951 952 // This should be truncation of integral types. 953 assert(Src != Dst); 954 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 955 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 956 "non-integer llvm type"); 957 958 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 959 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 960 961 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 962 // Else, it is a signed truncation. 963 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 964 SanitizerMask Mask; 965 if (!SrcSigned && !DstSigned) { 966 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 967 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 968 } else { 969 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 970 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 971 } 972 973 llvm::Value *Check = nullptr; 974 // 1. Extend the truncated value back to the same width as the Src. 975 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 976 // 2. Equality-compare with the original source value 977 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 978 // If the comparison result is 'i1 false', then the truncation was lossy. 979 return std::make_pair(Kind, std::make_pair(Check, Mask)); 980 } 981 982 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 983 QualType SrcType, QualType DstType) { 984 return SrcType->isIntegerType() && DstType->isIntegerType(); 985 } 986 987 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 988 Value *Dst, QualType DstType, 989 SourceLocation Loc) { 990 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 991 return; 992 993 // We only care about int->int conversions here. 994 // We ignore conversions to/from pointer and/or bool. 995 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 996 DstType)) 997 return; 998 999 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 1000 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 1001 // This must be truncation. Else we do not care. 1002 if (SrcBits <= DstBits) 1003 return; 1004 1005 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 1006 1007 // If the integer sign change sanitizer is enabled, 1008 // and we are truncating from larger unsigned type to smaller signed type, 1009 // let that next sanitizer deal with it. 1010 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1011 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1012 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 1013 (!SrcSigned && DstSigned)) 1014 return; 1015 1016 CodeGenFunction::SanitizerScope SanScope(&CGF); 1017 1018 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1019 std::pair<llvm::Value *, SanitizerMask>> 1020 Check = 1021 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1022 // If the comparison result is 'i1 false', then the truncation was lossy. 1023 1024 // Do we care about this type of truncation? 1025 if (!CGF.SanOpts.has(Check.second.second)) 1026 return; 1027 1028 llvm::Constant *StaticArgs[] = { 1029 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1030 CGF.EmitCheckTypeDescriptor(DstType), 1031 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1032 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1033 {Src, Dst}); 1034 } 1035 1036 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1037 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1038 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1039 std::pair<llvm::Value *, SanitizerMask>> 1040 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1041 QualType DstType, CGBuilderTy &Builder) { 1042 llvm::Type *SrcTy = Src->getType(); 1043 llvm::Type *DstTy = Dst->getType(); 1044 1045 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1046 "non-integer llvm type"); 1047 1048 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1049 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1050 (void)SrcSigned; // Only used in assert() 1051 (void)DstSigned; // Only used in assert() 1052 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1053 unsigned DstBits = DstTy->getScalarSizeInBits(); 1054 (void)SrcBits; // Only used in assert() 1055 (void)DstBits; // Only used in assert() 1056 1057 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1058 "either the widths should be different, or the signednesses."); 1059 1060 // NOTE: zero value is considered to be non-negative. 1061 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1062 const char *Name) -> Value * { 1063 // Is this value a signed type? 1064 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1065 llvm::Type *VTy = V->getType(); 1066 if (!VSigned) { 1067 // If the value is unsigned, then it is never negative. 1068 // FIXME: can we encounter non-scalar VTy here? 1069 return llvm::ConstantInt::getFalse(VTy->getContext()); 1070 } 1071 // Get the zero of the same type with which we will be comparing. 1072 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1073 // %V.isnegative = icmp slt %V, 0 1074 // I.e is %V *strictly* less than zero, does it have negative value? 1075 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1076 llvm::Twine(Name) + "." + V->getName() + 1077 ".negativitycheck"); 1078 }; 1079 1080 // 1. Was the old Value negative? 1081 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1082 // 2. Is the new Value negative? 1083 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1084 // 3. Now, was the 'negativity status' preserved during the conversion? 1085 // NOTE: conversion from negative to zero is considered to change the sign. 1086 // (We want to get 'false' when the conversion changed the sign) 1087 // So we should just equality-compare the negativity statuses. 1088 llvm::Value *Check = nullptr; 1089 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1090 // If the comparison result is 'false', then the conversion changed the sign. 1091 return std::make_pair( 1092 ScalarExprEmitter::ICCK_IntegerSignChange, 1093 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1094 } 1095 1096 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1097 Value *Dst, QualType DstType, 1098 SourceLocation Loc) { 1099 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1100 return; 1101 1102 llvm::Type *SrcTy = Src->getType(); 1103 llvm::Type *DstTy = Dst->getType(); 1104 1105 // We only care about int->int conversions here. 1106 // We ignore conversions to/from pointer and/or bool. 1107 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1108 DstType)) 1109 return; 1110 1111 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1112 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1113 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1114 unsigned DstBits = DstTy->getScalarSizeInBits(); 1115 1116 // Now, we do not need to emit the check in *all* of the cases. 1117 // We can avoid emitting it in some obvious cases where it would have been 1118 // dropped by the opt passes (instcombine) always anyways. 1119 // If it's a cast between effectively the same type, no check. 1120 // NOTE: this is *not* equivalent to checking the canonical types. 1121 if (SrcSigned == DstSigned && SrcBits == DstBits) 1122 return; 1123 // At least one of the values needs to have signed type. 1124 // If both are unsigned, then obviously, neither of them can be negative. 1125 if (!SrcSigned && !DstSigned) 1126 return; 1127 // If the conversion is to *larger* *signed* type, then no check is needed. 1128 // Because either sign-extension happens (so the sign will remain), 1129 // or zero-extension will happen (the sign bit will be zero.) 1130 if ((DstBits > SrcBits) && DstSigned) 1131 return; 1132 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1133 (SrcBits > DstBits) && SrcSigned) { 1134 // If the signed integer truncation sanitizer is enabled, 1135 // and this is a truncation from signed type, then no check is needed. 1136 // Because here sign change check is interchangeable with truncation check. 1137 return; 1138 } 1139 // That's it. We can't rule out any more cases with the data we have. 1140 1141 CodeGenFunction::SanitizerScope SanScope(&CGF); 1142 1143 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1144 std::pair<llvm::Value *, SanitizerMask>> 1145 Check; 1146 1147 // Each of these checks needs to return 'false' when an issue was detected. 1148 ImplicitConversionCheckKind CheckKind; 1149 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1150 // So we can 'and' all the checks together, and still get 'false', 1151 // if at least one of the checks detected an issue. 1152 1153 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1154 CheckKind = Check.first; 1155 Checks.emplace_back(Check.second); 1156 1157 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1158 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1159 // If the signed integer truncation sanitizer was enabled, 1160 // and we are truncating from larger unsigned type to smaller signed type, 1161 // let's handle the case we skipped in that check. 1162 Check = 1163 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1164 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1165 Checks.emplace_back(Check.second); 1166 // If the comparison result is 'i1 false', then the truncation was lossy. 1167 } 1168 1169 llvm::Constant *StaticArgs[] = { 1170 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1171 CGF.EmitCheckTypeDescriptor(DstType), 1172 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1173 // EmitCheck() will 'and' all the checks together. 1174 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1175 {Src, Dst}); 1176 } 1177 1178 /// Emit a conversion from the specified type to the specified destination type, 1179 /// both of which are LLVM scalar types. 1180 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1181 QualType DstType, 1182 SourceLocation Loc, 1183 ScalarConversionOpts Opts) { 1184 // All conversions involving fixed point types should be handled by the 1185 // EmitFixedPoint family functions. This is done to prevent bloating up this 1186 // function more, and although fixed point numbers are represented by 1187 // integers, we do not want to follow any logic that assumes they should be 1188 // treated as integers. 1189 // TODO(leonardchan): When necessary, add another if statement checking for 1190 // conversions to fixed point types from other types. 1191 if (SrcType->isFixedPointType()) { 1192 if (DstType->isBooleanType()) 1193 // It is important that we check this before checking if the dest type is 1194 // an integer because booleans are technically integer types. 1195 // We do not need to check the padding bit on unsigned types if unsigned 1196 // padding is enabled because overflow into this bit is undefined 1197 // behavior. 1198 return Builder.CreateIsNotNull(Src, "tobool"); 1199 if (DstType->isFixedPointType() || DstType->isIntegerType()) 1200 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1201 1202 llvm_unreachable( 1203 "Unhandled scalar conversion from a fixed point type to another type."); 1204 } else if (DstType->isFixedPointType()) { 1205 if (SrcType->isIntegerType()) 1206 // This also includes converting booleans and enums to fixed point types. 1207 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1208 1209 llvm_unreachable( 1210 "Unhandled scalar conversion to a fixed point type from another type."); 1211 } 1212 1213 QualType NoncanonicalSrcType = SrcType; 1214 QualType NoncanonicalDstType = DstType; 1215 1216 SrcType = CGF.getContext().getCanonicalType(SrcType); 1217 DstType = CGF.getContext().getCanonicalType(DstType); 1218 if (SrcType == DstType) return Src; 1219 1220 if (DstType->isVoidType()) return nullptr; 1221 1222 llvm::Value *OrigSrc = Src; 1223 QualType OrigSrcType = SrcType; 1224 llvm::Type *SrcTy = Src->getType(); 1225 1226 // Handle conversions to bool first, they are special: comparisons against 0. 1227 if (DstType->isBooleanType()) 1228 return EmitConversionToBool(Src, SrcType); 1229 1230 llvm::Type *DstTy = ConvertType(DstType); 1231 1232 // Cast from half through float if half isn't a native type. 1233 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1234 // Cast to FP using the intrinsic if the half type itself isn't supported. 1235 if (DstTy->isFloatingPointTy()) { 1236 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1237 return Builder.CreateCall( 1238 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1239 Src); 1240 } else { 1241 // Cast to other types through float, using either the intrinsic or FPExt, 1242 // depending on whether the half type itself is supported 1243 // (as opposed to operations on half, available with NativeHalfType). 1244 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1245 Src = Builder.CreateCall( 1246 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1247 CGF.CGM.FloatTy), 1248 Src); 1249 } else { 1250 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1251 } 1252 SrcType = CGF.getContext().FloatTy; 1253 SrcTy = CGF.FloatTy; 1254 } 1255 } 1256 1257 // Ignore conversions like int -> uint. 1258 if (SrcTy == DstTy) { 1259 if (Opts.EmitImplicitIntegerSignChangeChecks) 1260 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1261 NoncanonicalDstType, Loc); 1262 1263 return Src; 1264 } 1265 1266 // Handle pointer conversions next: pointers can only be converted to/from 1267 // other pointers and integers. Check for pointer types in terms of LLVM, as 1268 // some native types (like Obj-C id) may map to a pointer type. 1269 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1270 // The source value may be an integer, or a pointer. 1271 if (isa<llvm::PointerType>(SrcTy)) 1272 return Builder.CreateBitCast(Src, DstTy, "conv"); 1273 1274 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1275 // First, convert to the correct width so that we control the kind of 1276 // extension. 1277 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1278 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1279 llvm::Value* IntResult = 1280 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1281 // Then, cast to pointer. 1282 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1283 } 1284 1285 if (isa<llvm::PointerType>(SrcTy)) { 1286 // Must be an ptr to int cast. 1287 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1288 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1289 } 1290 1291 // A scalar can be splatted to an extended vector of the same element type 1292 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1293 // Sema should add casts to make sure that the source expression's type is 1294 // the same as the vector's element type (sans qualifiers) 1295 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1296 SrcType.getTypePtr() && 1297 "Splatted expr doesn't match with vector element type?"); 1298 1299 // Splat the element across to all elements 1300 unsigned NumElements = DstTy->getVectorNumElements(); 1301 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1302 } 1303 1304 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1305 // Allow bitcast from vector to integer/fp of the same size. 1306 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1307 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1308 if (SrcSize == DstSize) 1309 return Builder.CreateBitCast(Src, DstTy, "conv"); 1310 1311 // Conversions between vectors of different sizes are not allowed except 1312 // when vectors of half are involved. Operations on storage-only half 1313 // vectors require promoting half vector operands to float vectors and 1314 // truncating the result, which is either an int or float vector, to a 1315 // short or half vector. 1316 1317 // Source and destination are both expected to be vectors. 1318 llvm::Type *SrcElementTy = SrcTy->getVectorElementType(); 1319 llvm::Type *DstElementTy = DstTy->getVectorElementType(); 1320 (void)DstElementTy; 1321 1322 assert(((SrcElementTy->isIntegerTy() && 1323 DstElementTy->isIntegerTy()) || 1324 (SrcElementTy->isFloatingPointTy() && 1325 DstElementTy->isFloatingPointTy())) && 1326 "unexpected conversion between a floating-point vector and an " 1327 "integer vector"); 1328 1329 // Truncate an i32 vector to an i16 vector. 1330 if (SrcElementTy->isIntegerTy()) 1331 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1332 1333 // Truncate a float vector to a half vector. 1334 if (SrcSize > DstSize) 1335 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1336 1337 // Promote a half vector to a float vector. 1338 return Builder.CreateFPExt(Src, DstTy, "conv"); 1339 } 1340 1341 // Finally, we have the arithmetic types: real int/float. 1342 Value *Res = nullptr; 1343 llvm::Type *ResTy = DstTy; 1344 1345 // An overflowing conversion has undefined behavior if either the source type 1346 // or the destination type is a floating-point type. However, we consider the 1347 // range of representable values for all floating-point types to be 1348 // [-inf,+inf], so no overflow can ever happen when the destination type is a 1349 // floating-point type. 1350 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1351 OrigSrcType->isFloatingType()) 1352 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1353 Loc); 1354 1355 // Cast to half through float if half isn't a native type. 1356 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1357 // Make sure we cast in a single step if from another FP type. 1358 if (SrcTy->isFloatingPointTy()) { 1359 // Use the intrinsic if the half type itself isn't supported 1360 // (as opposed to operations on half, available with NativeHalfType). 1361 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1362 return Builder.CreateCall( 1363 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1364 // If the half type is supported, just use an fptrunc. 1365 return Builder.CreateFPTrunc(Src, DstTy); 1366 } 1367 DstTy = CGF.FloatTy; 1368 } 1369 1370 if (isa<llvm::IntegerType>(SrcTy)) { 1371 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1372 if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1373 InputSigned = true; 1374 } 1375 if (isa<llvm::IntegerType>(DstTy)) 1376 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1377 else if (InputSigned) 1378 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1379 else 1380 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1381 } else if (isa<llvm::IntegerType>(DstTy)) { 1382 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1383 if (DstType->isSignedIntegerOrEnumerationType()) 1384 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1385 else 1386 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1387 } else { 1388 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1389 "Unknown real conversion"); 1390 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1391 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1392 else 1393 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1394 } 1395 1396 if (DstTy != ResTy) { 1397 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1398 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1399 Res = Builder.CreateCall( 1400 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1401 Res); 1402 } else { 1403 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1404 } 1405 } 1406 1407 if (Opts.EmitImplicitIntegerTruncationChecks) 1408 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1409 NoncanonicalDstType, Loc); 1410 1411 if (Opts.EmitImplicitIntegerSignChangeChecks) 1412 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1413 NoncanonicalDstType, Loc); 1414 1415 return Res; 1416 } 1417 1418 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1419 QualType DstTy, 1420 SourceLocation Loc) { 1421 FixedPointSemantics SrcFPSema = 1422 CGF.getContext().getFixedPointSemantics(SrcTy); 1423 FixedPointSemantics DstFPSema = 1424 CGF.getContext().getFixedPointSemantics(DstTy); 1425 return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc, 1426 DstTy->isIntegerType()); 1427 } 1428 1429 Value *ScalarExprEmitter::EmitFixedPointConversion( 1430 Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema, 1431 SourceLocation Loc, bool DstIsInteger) { 1432 using llvm::APInt; 1433 using llvm::ConstantInt; 1434 using llvm::Value; 1435 1436 unsigned SrcWidth = SrcFPSema.getWidth(); 1437 unsigned DstWidth = DstFPSema.getWidth(); 1438 unsigned SrcScale = SrcFPSema.getScale(); 1439 unsigned DstScale = DstFPSema.getScale(); 1440 bool SrcIsSigned = SrcFPSema.isSigned(); 1441 bool DstIsSigned = DstFPSema.isSigned(); 1442 1443 llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth); 1444 1445 Value *Result = Src; 1446 unsigned ResultWidth = SrcWidth; 1447 1448 // Downscale. 1449 if (DstScale < SrcScale) { 1450 // When converting to integers, we round towards zero. For negative numbers, 1451 // right shifting rounds towards negative infinity. In this case, we can 1452 // just round up before shifting. 1453 if (DstIsInteger && SrcIsSigned) { 1454 Value *Zero = llvm::Constant::getNullValue(Result->getType()); 1455 Value *IsNegative = Builder.CreateICmpSLT(Result, Zero); 1456 Value *LowBits = ConstantInt::get( 1457 CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale)); 1458 Value *Rounded = Builder.CreateAdd(Result, LowBits); 1459 Result = Builder.CreateSelect(IsNegative, Rounded, Result); 1460 } 1461 1462 Result = SrcIsSigned 1463 ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") 1464 : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale"); 1465 } 1466 1467 if (!DstFPSema.isSaturated()) { 1468 // Resize. 1469 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1470 1471 // Upscale. 1472 if (DstScale > SrcScale) 1473 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1474 } else { 1475 // Adjust the number of fractional bits. 1476 if (DstScale > SrcScale) { 1477 // Compare to DstWidth to prevent resizing twice. 1478 ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth); 1479 llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth); 1480 Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize"); 1481 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1482 } 1483 1484 // Handle saturation. 1485 bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits(); 1486 if (LessIntBits) { 1487 Value *Max = ConstantInt::get( 1488 CGF.getLLVMContext(), 1489 APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1490 Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max) 1491 : Builder.CreateICmpUGT(Result, Max); 1492 Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax"); 1493 } 1494 // Cannot overflow min to dest type if src is unsigned since all fixed 1495 // point types can cover the unsigned min of 0. 1496 if (SrcIsSigned && (LessIntBits || !DstIsSigned)) { 1497 Value *Min = ConstantInt::get( 1498 CGF.getLLVMContext(), 1499 APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1500 Value *TooLow = Builder.CreateICmpSLT(Result, Min); 1501 Result = Builder.CreateSelect(TooLow, Min, Result, "satmin"); 1502 } 1503 1504 // Resize the integer part to get the final destination size. 1505 if (ResultWidth != DstWidth) 1506 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1507 } 1508 return Result; 1509 } 1510 1511 /// Emit a conversion from the specified complex type to the specified 1512 /// destination type, where the destination type is an LLVM scalar type. 1513 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1514 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1515 SourceLocation Loc) { 1516 // Get the source element type. 1517 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1518 1519 // Handle conversions to bool first, they are special: comparisons against 0. 1520 if (DstTy->isBooleanType()) { 1521 // Complex != 0 -> (Real != 0) | (Imag != 0) 1522 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1523 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1524 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1525 } 1526 1527 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1528 // the imaginary part of the complex value is discarded and the value of the 1529 // real part is converted according to the conversion rules for the 1530 // corresponding real type. 1531 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1532 } 1533 1534 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1535 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1536 } 1537 1538 /// Emit a sanitization check for the given "binary" operation (which 1539 /// might actually be a unary increment which has been lowered to a binary 1540 /// operation). The check passes if all values in \p Checks (which are \c i1), 1541 /// are \c true. 1542 void ScalarExprEmitter::EmitBinOpCheck( 1543 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1544 assert(CGF.IsSanitizerScope); 1545 SanitizerHandler Check; 1546 SmallVector<llvm::Constant *, 4> StaticData; 1547 SmallVector<llvm::Value *, 2> DynamicData; 1548 1549 BinaryOperatorKind Opcode = Info.Opcode; 1550 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1551 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1552 1553 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1554 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1555 if (UO && UO->getOpcode() == UO_Minus) { 1556 Check = SanitizerHandler::NegateOverflow; 1557 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1558 DynamicData.push_back(Info.RHS); 1559 } else { 1560 if (BinaryOperator::isShiftOp(Opcode)) { 1561 // Shift LHS negative or too large, or RHS out of bounds. 1562 Check = SanitizerHandler::ShiftOutOfBounds; 1563 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1564 StaticData.push_back( 1565 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1566 StaticData.push_back( 1567 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1568 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1569 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1570 Check = SanitizerHandler::DivremOverflow; 1571 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1572 } else { 1573 // Arithmetic overflow (+, -, *). 1574 switch (Opcode) { 1575 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1576 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1577 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1578 default: llvm_unreachable("unexpected opcode for bin op check"); 1579 } 1580 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1581 } 1582 DynamicData.push_back(Info.LHS); 1583 DynamicData.push_back(Info.RHS); 1584 } 1585 1586 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1587 } 1588 1589 //===----------------------------------------------------------------------===// 1590 // Visitor Methods 1591 //===----------------------------------------------------------------------===// 1592 1593 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1594 CGF.ErrorUnsupported(E, "scalar expression"); 1595 if (E->getType()->isVoidType()) 1596 return nullptr; 1597 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1598 } 1599 1600 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1601 // Vector Mask Case 1602 if (E->getNumSubExprs() == 2) { 1603 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1604 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1605 Value *Mask; 1606 1607 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 1608 unsigned LHSElts = LTy->getNumElements(); 1609 1610 Mask = RHS; 1611 1612 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1613 1614 // Mask off the high bits of each shuffle index. 1615 Value *MaskBits = 1616 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1617 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1618 1619 // newv = undef 1620 // mask = mask & maskbits 1621 // for each elt 1622 // n = extract mask i 1623 // x = extract val n 1624 // newv = insert newv, x, i 1625 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1626 MTy->getNumElements()); 1627 Value* NewV = llvm::UndefValue::get(RTy); 1628 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1629 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1630 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1631 1632 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1633 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1634 } 1635 return NewV; 1636 } 1637 1638 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1639 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1640 1641 SmallVector<llvm::Constant*, 32> indices; 1642 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1643 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1644 // Check for -1 and output it as undef in the IR. 1645 if (Idx.isSigned() && Idx.isAllOnesValue()) 1646 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1647 else 1648 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1649 } 1650 1651 Value *SV = llvm::ConstantVector::get(indices); 1652 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1653 } 1654 1655 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1656 QualType SrcType = E->getSrcExpr()->getType(), 1657 DstType = E->getType(); 1658 1659 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1660 1661 SrcType = CGF.getContext().getCanonicalType(SrcType); 1662 DstType = CGF.getContext().getCanonicalType(DstType); 1663 if (SrcType == DstType) return Src; 1664 1665 assert(SrcType->isVectorType() && 1666 "ConvertVector source type must be a vector"); 1667 assert(DstType->isVectorType() && 1668 "ConvertVector destination type must be a vector"); 1669 1670 llvm::Type *SrcTy = Src->getType(); 1671 llvm::Type *DstTy = ConvertType(DstType); 1672 1673 // Ignore conversions like int -> uint. 1674 if (SrcTy == DstTy) 1675 return Src; 1676 1677 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(), 1678 DstEltType = DstType->castAs<VectorType>()->getElementType(); 1679 1680 assert(SrcTy->isVectorTy() && 1681 "ConvertVector source IR type must be a vector"); 1682 assert(DstTy->isVectorTy() && 1683 "ConvertVector destination IR type must be a vector"); 1684 1685 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1686 *DstEltTy = DstTy->getVectorElementType(); 1687 1688 if (DstEltType->isBooleanType()) { 1689 assert((SrcEltTy->isFloatingPointTy() || 1690 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1691 1692 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1693 if (SrcEltTy->isFloatingPointTy()) { 1694 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1695 } else { 1696 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1697 } 1698 } 1699 1700 // We have the arithmetic types: real int/float. 1701 Value *Res = nullptr; 1702 1703 if (isa<llvm::IntegerType>(SrcEltTy)) { 1704 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1705 if (isa<llvm::IntegerType>(DstEltTy)) 1706 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1707 else if (InputSigned) 1708 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1709 else 1710 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1711 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1712 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1713 if (DstEltType->isSignedIntegerOrEnumerationType()) 1714 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1715 else 1716 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1717 } else { 1718 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1719 "Unknown real conversion"); 1720 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1721 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1722 else 1723 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1724 } 1725 1726 return Res; 1727 } 1728 1729 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1730 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1731 CGF.EmitIgnoredExpr(E->getBase()); 1732 return CGF.emitScalarConstant(Constant, E); 1733 } else { 1734 Expr::EvalResult Result; 1735 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1736 llvm::APSInt Value = Result.Val.getInt(); 1737 CGF.EmitIgnoredExpr(E->getBase()); 1738 return Builder.getInt(Value); 1739 } 1740 } 1741 1742 return EmitLoadOfLValue(E); 1743 } 1744 1745 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1746 TestAndClearIgnoreResultAssign(); 1747 1748 // Emit subscript expressions in rvalue context's. For most cases, this just 1749 // loads the lvalue formed by the subscript expr. However, we have to be 1750 // careful, because the base of a vector subscript is occasionally an rvalue, 1751 // so we can't get it as an lvalue. 1752 if (!E->getBase()->getType()->isVectorType()) 1753 return EmitLoadOfLValue(E); 1754 1755 // Handle the vector case. The base must be a vector, the index must be an 1756 // integer value. 1757 Value *Base = Visit(E->getBase()); 1758 Value *Idx = Visit(E->getIdx()); 1759 QualType IdxTy = E->getIdx()->getType(); 1760 1761 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1762 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1763 1764 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1765 } 1766 1767 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1768 unsigned Off, llvm::Type *I32Ty) { 1769 int MV = SVI->getMaskValue(Idx); 1770 if (MV == -1) 1771 return llvm::UndefValue::get(I32Ty); 1772 return llvm::ConstantInt::get(I32Ty, Off+MV); 1773 } 1774 1775 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1776 if (C->getBitWidth() != 32) { 1777 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1778 C->getZExtValue()) && 1779 "Index operand too large for shufflevector mask!"); 1780 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1781 } 1782 return C; 1783 } 1784 1785 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1786 bool Ignore = TestAndClearIgnoreResultAssign(); 1787 (void)Ignore; 1788 assert (Ignore == false && "init list ignored"); 1789 unsigned NumInitElements = E->getNumInits(); 1790 1791 if (E->hadArrayRangeDesignator()) 1792 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1793 1794 llvm::VectorType *VType = 1795 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1796 1797 if (!VType) { 1798 if (NumInitElements == 0) { 1799 // C++11 value-initialization for the scalar. 1800 return EmitNullValue(E->getType()); 1801 } 1802 // We have a scalar in braces. Just use the first element. 1803 return Visit(E->getInit(0)); 1804 } 1805 1806 unsigned ResElts = VType->getNumElements(); 1807 1808 // Loop over initializers collecting the Value for each, and remembering 1809 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1810 // us to fold the shuffle for the swizzle into the shuffle for the vector 1811 // initializer, since LLVM optimizers generally do not want to touch 1812 // shuffles. 1813 unsigned CurIdx = 0; 1814 bool VIsUndefShuffle = false; 1815 llvm::Value *V = llvm::UndefValue::get(VType); 1816 for (unsigned i = 0; i != NumInitElements; ++i) { 1817 Expr *IE = E->getInit(i); 1818 Value *Init = Visit(IE); 1819 SmallVector<llvm::Constant*, 16> Args; 1820 1821 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1822 1823 // Handle scalar elements. If the scalar initializer is actually one 1824 // element of a different vector of the same width, use shuffle instead of 1825 // extract+insert. 1826 if (!VVT) { 1827 if (isa<ExtVectorElementExpr>(IE)) { 1828 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1829 1830 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1831 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1832 Value *LHS = nullptr, *RHS = nullptr; 1833 if (CurIdx == 0) { 1834 // insert into undef -> shuffle (src, undef) 1835 // shufflemask must use an i32 1836 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1837 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1838 1839 LHS = EI->getVectorOperand(); 1840 RHS = V; 1841 VIsUndefShuffle = true; 1842 } else if (VIsUndefShuffle) { 1843 // insert into undefshuffle && size match -> shuffle (v, src) 1844 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1845 for (unsigned j = 0; j != CurIdx; ++j) 1846 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1847 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1848 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1849 1850 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1851 RHS = EI->getVectorOperand(); 1852 VIsUndefShuffle = false; 1853 } 1854 if (!Args.empty()) { 1855 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1856 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1857 ++CurIdx; 1858 continue; 1859 } 1860 } 1861 } 1862 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1863 "vecinit"); 1864 VIsUndefShuffle = false; 1865 ++CurIdx; 1866 continue; 1867 } 1868 1869 unsigned InitElts = VVT->getNumElements(); 1870 1871 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1872 // input is the same width as the vector being constructed, generate an 1873 // optimized shuffle of the swizzle input into the result. 1874 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1875 if (isa<ExtVectorElementExpr>(IE)) { 1876 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1877 Value *SVOp = SVI->getOperand(0); 1878 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1879 1880 if (OpTy->getNumElements() == ResElts) { 1881 for (unsigned j = 0; j != CurIdx; ++j) { 1882 // If the current vector initializer is a shuffle with undef, merge 1883 // this shuffle directly into it. 1884 if (VIsUndefShuffle) { 1885 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1886 CGF.Int32Ty)); 1887 } else { 1888 Args.push_back(Builder.getInt32(j)); 1889 } 1890 } 1891 for (unsigned j = 0, je = InitElts; j != je; ++j) 1892 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1893 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1894 1895 if (VIsUndefShuffle) 1896 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1897 1898 Init = SVOp; 1899 } 1900 } 1901 1902 // Extend init to result vector length, and then shuffle its contribution 1903 // to the vector initializer into V. 1904 if (Args.empty()) { 1905 for (unsigned j = 0; j != InitElts; ++j) 1906 Args.push_back(Builder.getInt32(j)); 1907 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1908 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1909 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1910 Mask, "vext"); 1911 1912 Args.clear(); 1913 for (unsigned j = 0; j != CurIdx; ++j) 1914 Args.push_back(Builder.getInt32(j)); 1915 for (unsigned j = 0; j != InitElts; ++j) 1916 Args.push_back(Builder.getInt32(j+Offset)); 1917 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1918 } 1919 1920 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1921 // merging subsequent shuffles into this one. 1922 if (CurIdx == 0) 1923 std::swap(V, Init); 1924 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1925 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1926 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1927 CurIdx += InitElts; 1928 } 1929 1930 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1931 // Emit remaining default initializers. 1932 llvm::Type *EltTy = VType->getElementType(); 1933 1934 // Emit remaining default initializers 1935 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1936 Value *Idx = Builder.getInt32(CurIdx); 1937 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1938 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1939 } 1940 return V; 1941 } 1942 1943 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1944 const Expr *E = CE->getSubExpr(); 1945 1946 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1947 return false; 1948 1949 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1950 // We always assume that 'this' is never null. 1951 return false; 1952 } 1953 1954 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1955 // And that glvalue casts are never null. 1956 if (ICE->getValueKind() != VK_RValue) 1957 return false; 1958 } 1959 1960 return true; 1961 } 1962 1963 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1964 // have to handle a more broad range of conversions than explicit casts, as they 1965 // handle things like function to ptr-to-function decay etc. 1966 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1967 Expr *E = CE->getSubExpr(); 1968 QualType DestTy = CE->getType(); 1969 CastKind Kind = CE->getCastKind(); 1970 1971 // These cases are generally not written to ignore the result of 1972 // evaluating their sub-expressions, so we clear this now. 1973 bool Ignored = TestAndClearIgnoreResultAssign(); 1974 1975 // Since almost all cast kinds apply to scalars, this switch doesn't have 1976 // a default case, so the compiler will warn on a missing case. The cases 1977 // are in the same order as in the CastKind enum. 1978 switch (Kind) { 1979 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1980 case CK_BuiltinFnToFnPtr: 1981 llvm_unreachable("builtin functions are handled elsewhere"); 1982 1983 case CK_LValueBitCast: 1984 case CK_ObjCObjectLValueCast: { 1985 Address Addr = EmitLValue(E).getAddress(CGF); 1986 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1987 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1988 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1989 } 1990 1991 case CK_LValueToRValueBitCast: { 1992 LValue SourceLVal = CGF.EmitLValue(E); 1993 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF), 1994 CGF.ConvertTypeForMem(DestTy)); 1995 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 1996 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 1997 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 1998 } 1999 2000 case CK_CPointerToObjCPointerCast: 2001 case CK_BlockPointerToObjCPointerCast: 2002 case CK_AnyPointerToBlockPointerCast: 2003 case CK_BitCast: { 2004 Value *Src = Visit(const_cast<Expr*>(E)); 2005 llvm::Type *SrcTy = Src->getType(); 2006 llvm::Type *DstTy = ConvertType(DestTy); 2007 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 2008 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 2009 llvm_unreachable("wrong cast for pointers in different address spaces" 2010 "(must be an address space cast)!"); 2011 } 2012 2013 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 2014 if (auto PT = DestTy->getAs<PointerType>()) 2015 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 2016 /*MayBeNull=*/true, 2017 CodeGenFunction::CFITCK_UnrelatedCast, 2018 CE->getBeginLoc()); 2019 } 2020 2021 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2022 const QualType SrcType = E->getType(); 2023 2024 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 2025 // Casting to pointer that could carry dynamic information (provided by 2026 // invariant.group) requires launder. 2027 Src = Builder.CreateLaunderInvariantGroup(Src); 2028 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 2029 // Casting to pointer that does not carry dynamic information (provided 2030 // by invariant.group) requires stripping it. Note that we don't do it 2031 // if the source could not be dynamic type and destination could be 2032 // dynamic because dynamic information is already laundered. It is 2033 // because launder(strip(src)) == launder(src), so there is no need to 2034 // add extra strip before launder. 2035 Src = Builder.CreateStripInvariantGroup(Src); 2036 } 2037 } 2038 2039 // Update heapallocsite metadata when there is an explicit cast. 2040 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src)) 2041 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) 2042 CGF.getDebugInfo()-> 2043 addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc()); 2044 2045 return Builder.CreateBitCast(Src, DstTy); 2046 } 2047 case CK_AddressSpaceConversion: { 2048 Expr::EvalResult Result; 2049 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2050 Result.Val.isNullPointer()) { 2051 // If E has side effect, it is emitted even if its final result is a 2052 // null pointer. In that case, a DCE pass should be able to 2053 // eliminate the useless instructions emitted during translating E. 2054 if (Result.HasSideEffects) 2055 Visit(E); 2056 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2057 ConvertType(DestTy)), DestTy); 2058 } 2059 // Since target may map different address spaces in AST to the same address 2060 // space, an address space conversion may end up as a bitcast. 2061 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2062 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2063 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2064 } 2065 case CK_AtomicToNonAtomic: 2066 case CK_NonAtomicToAtomic: 2067 case CK_NoOp: 2068 case CK_UserDefinedConversion: 2069 return Visit(const_cast<Expr*>(E)); 2070 2071 case CK_BaseToDerived: { 2072 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2073 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2074 2075 Address Base = CGF.EmitPointerWithAlignment(E); 2076 Address Derived = 2077 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2078 CE->path_begin(), CE->path_end(), 2079 CGF.ShouldNullCheckClassCastValue(CE)); 2080 2081 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2082 // performed and the object is not of the derived type. 2083 if (CGF.sanitizePerformTypeCheck()) 2084 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2085 Derived.getPointer(), DestTy->getPointeeType()); 2086 2087 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2088 CGF.EmitVTablePtrCheckForCast( 2089 DestTy->getPointeeType(), Derived.getPointer(), 2090 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 2091 CE->getBeginLoc()); 2092 2093 return Derived.getPointer(); 2094 } 2095 case CK_UncheckedDerivedToBase: 2096 case CK_DerivedToBase: { 2097 // The EmitPointerWithAlignment path does this fine; just discard 2098 // the alignment. 2099 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2100 } 2101 2102 case CK_Dynamic: { 2103 Address V = CGF.EmitPointerWithAlignment(E); 2104 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2105 return CGF.EmitDynamicCast(V, DCE); 2106 } 2107 2108 case CK_ArrayToPointerDecay: 2109 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2110 case CK_FunctionToPointerDecay: 2111 return EmitLValue(E).getPointer(CGF); 2112 2113 case CK_NullToPointer: 2114 if (MustVisitNullValue(E)) 2115 CGF.EmitIgnoredExpr(E); 2116 2117 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2118 DestTy); 2119 2120 case CK_NullToMemberPointer: { 2121 if (MustVisitNullValue(E)) 2122 CGF.EmitIgnoredExpr(E); 2123 2124 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2125 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2126 } 2127 2128 case CK_ReinterpretMemberPointer: 2129 case CK_BaseToDerivedMemberPointer: 2130 case CK_DerivedToBaseMemberPointer: { 2131 Value *Src = Visit(E); 2132 2133 // Note that the AST doesn't distinguish between checked and 2134 // unchecked member pointer conversions, so we always have to 2135 // implement checked conversions here. This is inefficient when 2136 // actual control flow may be required in order to perform the 2137 // check, which it is for data member pointers (but not member 2138 // function pointers on Itanium and ARM). 2139 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2140 } 2141 2142 case CK_ARCProduceObject: 2143 return CGF.EmitARCRetainScalarExpr(E); 2144 case CK_ARCConsumeObject: 2145 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2146 case CK_ARCReclaimReturnedObject: 2147 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2148 case CK_ARCExtendBlockObject: 2149 return CGF.EmitARCExtendBlockObject(E); 2150 2151 case CK_CopyAndAutoreleaseBlockObject: 2152 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2153 2154 case CK_FloatingRealToComplex: 2155 case CK_FloatingComplexCast: 2156 case CK_IntegralRealToComplex: 2157 case CK_IntegralComplexCast: 2158 case CK_IntegralComplexToFloatingComplex: 2159 case CK_FloatingComplexToIntegralComplex: 2160 case CK_ConstructorConversion: 2161 case CK_ToUnion: 2162 llvm_unreachable("scalar cast to non-scalar value"); 2163 2164 case CK_LValueToRValue: 2165 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2166 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2167 return Visit(const_cast<Expr*>(E)); 2168 2169 case CK_IntegralToPointer: { 2170 Value *Src = Visit(const_cast<Expr*>(E)); 2171 2172 // First, convert to the correct width so that we control the kind of 2173 // extension. 2174 auto DestLLVMTy = ConvertType(DestTy); 2175 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2176 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2177 llvm::Value* IntResult = 2178 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2179 2180 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2181 2182 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2183 // Going from integer to pointer that could be dynamic requires reloading 2184 // dynamic information from invariant.group. 2185 if (DestTy.mayBeDynamicClass()) 2186 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2187 } 2188 return IntToPtr; 2189 } 2190 case CK_PointerToIntegral: { 2191 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2192 auto *PtrExpr = Visit(E); 2193 2194 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2195 const QualType SrcType = E->getType(); 2196 2197 // Casting to integer requires stripping dynamic information as it does 2198 // not carries it. 2199 if (SrcType.mayBeDynamicClass()) 2200 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2201 } 2202 2203 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2204 } 2205 case CK_ToVoid: { 2206 CGF.EmitIgnoredExpr(E); 2207 return nullptr; 2208 } 2209 case CK_VectorSplat: { 2210 llvm::Type *DstTy = ConvertType(DestTy); 2211 Value *Elt = Visit(const_cast<Expr*>(E)); 2212 // Splat the element across to all elements 2213 unsigned NumElements = DstTy->getVectorNumElements(); 2214 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2215 } 2216 2217 case CK_FixedPointCast: 2218 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2219 CE->getExprLoc()); 2220 2221 case CK_FixedPointToBoolean: 2222 assert(E->getType()->isFixedPointType() && 2223 "Expected src type to be fixed point type"); 2224 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2225 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2226 CE->getExprLoc()); 2227 2228 case CK_FixedPointToIntegral: 2229 assert(E->getType()->isFixedPointType() && 2230 "Expected src type to be fixed point type"); 2231 assert(DestTy->isIntegerType() && "Expected dest type to be an integer"); 2232 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2233 CE->getExprLoc()); 2234 2235 case CK_IntegralToFixedPoint: 2236 assert(E->getType()->isIntegerType() && 2237 "Expected src type to be an integer"); 2238 assert(DestTy->isFixedPointType() && 2239 "Expected dest type to be fixed point type"); 2240 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2241 CE->getExprLoc()); 2242 2243 case CK_IntegralCast: { 2244 ScalarConversionOpts Opts; 2245 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2246 if (!ICE->isPartOfExplicitCast()) 2247 Opts = ScalarConversionOpts(CGF.SanOpts); 2248 } 2249 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2250 CE->getExprLoc(), Opts); 2251 } 2252 case CK_IntegralToFloating: 2253 case CK_FloatingToIntegral: 2254 case CK_FloatingCast: 2255 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2256 CE->getExprLoc()); 2257 case CK_BooleanToSignedIntegral: { 2258 ScalarConversionOpts Opts; 2259 Opts.TreatBooleanAsSigned = true; 2260 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2261 CE->getExprLoc(), Opts); 2262 } 2263 case CK_IntegralToBoolean: 2264 return EmitIntToBoolConversion(Visit(E)); 2265 case CK_PointerToBoolean: 2266 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2267 case CK_FloatingToBoolean: 2268 return EmitFloatToBoolConversion(Visit(E)); 2269 case CK_MemberPointerToBoolean: { 2270 llvm::Value *MemPtr = Visit(E); 2271 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2272 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2273 } 2274 2275 case CK_FloatingComplexToReal: 2276 case CK_IntegralComplexToReal: 2277 return CGF.EmitComplexExpr(E, false, true).first; 2278 2279 case CK_FloatingComplexToBoolean: 2280 case CK_IntegralComplexToBoolean: { 2281 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2282 2283 // TODO: kill this function off, inline appropriate case here 2284 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2285 CE->getExprLoc()); 2286 } 2287 2288 case CK_ZeroToOCLOpaqueType: { 2289 assert((DestTy->isEventT() || DestTy->isQueueT() || 2290 DestTy->isOCLIntelSubgroupAVCType()) && 2291 "CK_ZeroToOCLEvent cast on non-event type"); 2292 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2293 } 2294 2295 case CK_IntToOCLSampler: 2296 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2297 2298 } // end of switch 2299 2300 llvm_unreachable("unknown scalar cast"); 2301 } 2302 2303 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2304 CodeGenFunction::StmtExprEvaluation eval(CGF); 2305 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2306 !E->getType()->isVoidType()); 2307 if (!RetAlloca.isValid()) 2308 return nullptr; 2309 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2310 E->getExprLoc()); 2311 } 2312 2313 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2314 CGF.enterFullExpression(E); 2315 CodeGenFunction::RunCleanupsScope Scope(CGF); 2316 Value *V = Visit(E->getSubExpr()); 2317 // Defend against dominance problems caused by jumps out of expression 2318 // evaluation through the shared cleanup block. 2319 Scope.ForceCleanup({&V}); 2320 return V; 2321 } 2322 2323 //===----------------------------------------------------------------------===// 2324 // Unary Operators 2325 //===----------------------------------------------------------------------===// 2326 2327 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2328 llvm::Value *InVal, bool IsInc) { 2329 BinOpInfo BinOp; 2330 BinOp.LHS = InVal; 2331 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2332 BinOp.Ty = E->getType(); 2333 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2334 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2335 BinOp.E = E; 2336 return BinOp; 2337 } 2338 2339 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2340 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2341 llvm::Value *Amount = 2342 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2343 StringRef Name = IsInc ? "inc" : "dec"; 2344 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2345 case LangOptions::SOB_Defined: 2346 return Builder.CreateAdd(InVal, Amount, Name); 2347 case LangOptions::SOB_Undefined: 2348 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2349 return Builder.CreateNSWAdd(InVal, Amount, Name); 2350 LLVM_FALLTHROUGH; 2351 case LangOptions::SOB_Trapping: 2352 if (!E->canOverflow()) 2353 return Builder.CreateNSWAdd(InVal, Amount, Name); 2354 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 2355 } 2356 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2357 } 2358 2359 namespace { 2360 /// Handles check and update for lastprivate conditional variables. 2361 class OMPLastprivateConditionalUpdateRAII { 2362 private: 2363 CodeGenFunction &CGF; 2364 const UnaryOperator *E; 2365 2366 public: 2367 OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF, 2368 const UnaryOperator *E) 2369 : CGF(CGF), E(E) {} 2370 ~OMPLastprivateConditionalUpdateRAII() { 2371 if (CGF.getLangOpts().OpenMP) 2372 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional( 2373 CGF, E->getSubExpr()); 2374 } 2375 }; 2376 } // namespace 2377 2378 llvm::Value * 2379 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2380 bool isInc, bool isPre) { 2381 OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E); 2382 QualType type = E->getSubExpr()->getType(); 2383 llvm::PHINode *atomicPHI = nullptr; 2384 llvm::Value *value; 2385 llvm::Value *input; 2386 2387 int amount = (isInc ? 1 : -1); 2388 bool isSubtraction = !isInc; 2389 2390 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2391 type = atomicTy->getValueType(); 2392 if (isInc && type->isBooleanType()) { 2393 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2394 if (isPre) { 2395 Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified()) 2396 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2397 return Builder.getTrue(); 2398 } 2399 // For atomic bool increment, we just store true and return it for 2400 // preincrement, do an atomic swap with true for postincrement 2401 return Builder.CreateAtomicRMW( 2402 llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True, 2403 llvm::AtomicOrdering::SequentiallyConsistent); 2404 } 2405 // Special case for atomic increment / decrement on integers, emit 2406 // atomicrmw instructions. We skip this if we want to be doing overflow 2407 // checking, and fall into the slow path with the atomic cmpxchg loop. 2408 if (!type->isBooleanType() && type->isIntegerType() && 2409 !(type->isUnsignedIntegerType() && 2410 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2411 CGF.getLangOpts().getSignedOverflowBehavior() != 2412 LangOptions::SOB_Trapping) { 2413 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2414 llvm::AtomicRMWInst::Sub; 2415 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2416 llvm::Instruction::Sub; 2417 llvm::Value *amt = CGF.EmitToMemory( 2418 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2419 llvm::Value *old = 2420 Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt, 2421 llvm::AtomicOrdering::SequentiallyConsistent); 2422 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2423 } 2424 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2425 input = value; 2426 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2427 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2428 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2429 value = CGF.EmitToMemory(value, type); 2430 Builder.CreateBr(opBB); 2431 Builder.SetInsertPoint(opBB); 2432 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2433 atomicPHI->addIncoming(value, startBB); 2434 value = atomicPHI; 2435 } else { 2436 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2437 input = value; 2438 } 2439 2440 // Special case of integer increment that we have to check first: bool++. 2441 // Due to promotion rules, we get: 2442 // bool++ -> bool = bool + 1 2443 // -> bool = (int)bool + 1 2444 // -> bool = ((int)bool + 1 != 0) 2445 // An interesting aspect of this is that increment is always true. 2446 // Decrement does not have this property. 2447 if (isInc && type->isBooleanType()) { 2448 value = Builder.getTrue(); 2449 2450 // Most common case by far: integer increment. 2451 } else if (type->isIntegerType()) { 2452 QualType promotedType; 2453 bool canPerformLossyDemotionCheck = false; 2454 if (type->isPromotableIntegerType()) { 2455 promotedType = CGF.getContext().getPromotedIntegerType(type); 2456 assert(promotedType != type && "Shouldn't promote to the same type."); 2457 canPerformLossyDemotionCheck = true; 2458 canPerformLossyDemotionCheck &= 2459 CGF.getContext().getCanonicalType(type) != 2460 CGF.getContext().getCanonicalType(promotedType); 2461 canPerformLossyDemotionCheck &= 2462 PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 2463 type, promotedType); 2464 assert((!canPerformLossyDemotionCheck || 2465 type->isSignedIntegerOrEnumerationType() || 2466 promotedType->isSignedIntegerOrEnumerationType() || 2467 ConvertType(type)->getScalarSizeInBits() == 2468 ConvertType(promotedType)->getScalarSizeInBits()) && 2469 "The following check expects that if we do promotion to different " 2470 "underlying canonical type, at least one of the types (either " 2471 "base or promoted) will be signed, or the bitwidths will match."); 2472 } 2473 if (CGF.SanOpts.hasOneOf( 2474 SanitizerKind::ImplicitIntegerArithmeticValueChange) && 2475 canPerformLossyDemotionCheck) { 2476 // While `x += 1` (for `x` with width less than int) is modeled as 2477 // promotion+arithmetics+demotion, and we can catch lossy demotion with 2478 // ease; inc/dec with width less than int can't overflow because of 2479 // promotion rules, so we omit promotion+demotion, which means that we can 2480 // not catch lossy "demotion". Because we still want to catch these cases 2481 // when the sanitizer is enabled, we perform the promotion, then perform 2482 // the increment/decrement in the wider type, and finally 2483 // perform the demotion. This will catch lossy demotions. 2484 2485 value = EmitScalarConversion(value, type, promotedType, E->getExprLoc()); 2486 Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2487 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2488 // Do pass non-default ScalarConversionOpts so that sanitizer check is 2489 // emitted. 2490 value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(), 2491 ScalarConversionOpts(CGF.SanOpts)); 2492 2493 // Note that signed integer inc/dec with width less than int can't 2494 // overflow because of promotion rules; we're just eliding a few steps 2495 // here. 2496 } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2497 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2498 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2499 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2500 value = 2501 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 2502 } else { 2503 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2504 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2505 } 2506 2507 // Next most common: pointer increment. 2508 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2509 QualType type = ptr->getPointeeType(); 2510 2511 // VLA types don't have constant size. 2512 if (const VariableArrayType *vla 2513 = CGF.getContext().getAsVariableArrayType(type)) { 2514 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2515 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2516 if (CGF.getLangOpts().isSignedOverflowDefined()) 2517 value = Builder.CreateGEP(value, numElts, "vla.inc"); 2518 else 2519 value = CGF.EmitCheckedInBoundsGEP( 2520 value, numElts, /*SignedIndices=*/false, isSubtraction, 2521 E->getExprLoc(), "vla.inc"); 2522 2523 // Arithmetic on function pointers (!) is just +-1. 2524 } else if (type->isFunctionType()) { 2525 llvm::Value *amt = Builder.getInt32(amount); 2526 2527 value = CGF.EmitCastToVoidPtr(value); 2528 if (CGF.getLangOpts().isSignedOverflowDefined()) 2529 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 2530 else 2531 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2532 isSubtraction, E->getExprLoc(), 2533 "incdec.funcptr"); 2534 value = Builder.CreateBitCast(value, input->getType()); 2535 2536 // For everything else, we can just do a simple increment. 2537 } else { 2538 llvm::Value *amt = Builder.getInt32(amount); 2539 if (CGF.getLangOpts().isSignedOverflowDefined()) 2540 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 2541 else 2542 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2543 isSubtraction, E->getExprLoc(), 2544 "incdec.ptr"); 2545 } 2546 2547 // Vector increment/decrement. 2548 } else if (type->isVectorType()) { 2549 if (type->hasIntegerRepresentation()) { 2550 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2551 2552 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2553 } else { 2554 value = Builder.CreateFAdd( 2555 value, 2556 llvm::ConstantFP::get(value->getType(), amount), 2557 isInc ? "inc" : "dec"); 2558 } 2559 2560 // Floating point. 2561 } else if (type->isRealFloatingType()) { 2562 // Add the inc/dec to the real part. 2563 llvm::Value *amt; 2564 2565 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2566 // Another special case: half FP increment should be done via float 2567 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2568 value = Builder.CreateCall( 2569 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2570 CGF.CGM.FloatTy), 2571 input, "incdec.conv"); 2572 } else { 2573 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2574 } 2575 } 2576 2577 if (value->getType()->isFloatTy()) 2578 amt = llvm::ConstantFP::get(VMContext, 2579 llvm::APFloat(static_cast<float>(amount))); 2580 else if (value->getType()->isDoubleTy()) 2581 amt = llvm::ConstantFP::get(VMContext, 2582 llvm::APFloat(static_cast<double>(amount))); 2583 else { 2584 // Remaining types are Half, LongDouble or __float128. Convert from float. 2585 llvm::APFloat F(static_cast<float>(amount)); 2586 bool ignored; 2587 const llvm::fltSemantics *FS; 2588 // Don't use getFloatTypeSemantics because Half isn't 2589 // necessarily represented using the "half" LLVM type. 2590 if (value->getType()->isFP128Ty()) 2591 FS = &CGF.getTarget().getFloat128Format(); 2592 else if (value->getType()->isHalfTy()) 2593 FS = &CGF.getTarget().getHalfFormat(); 2594 else 2595 FS = &CGF.getTarget().getLongDoubleFormat(); 2596 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2597 amt = llvm::ConstantFP::get(VMContext, F); 2598 } 2599 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2600 2601 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2602 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2603 value = Builder.CreateCall( 2604 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2605 CGF.CGM.FloatTy), 2606 value, "incdec.conv"); 2607 } else { 2608 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2609 } 2610 } 2611 2612 // Objective-C pointer types. 2613 } else { 2614 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2615 value = CGF.EmitCastToVoidPtr(value); 2616 2617 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2618 if (!isInc) size = -size; 2619 llvm::Value *sizeValue = 2620 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2621 2622 if (CGF.getLangOpts().isSignedOverflowDefined()) 2623 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2624 else 2625 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2626 /*SignedIndices=*/false, isSubtraction, 2627 E->getExprLoc(), "incdec.objptr"); 2628 value = Builder.CreateBitCast(value, input->getType()); 2629 } 2630 2631 if (atomicPHI) { 2632 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2633 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2634 auto Pair = CGF.EmitAtomicCompareExchange( 2635 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2636 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2637 llvm::Value *success = Pair.second; 2638 atomicPHI->addIncoming(old, curBlock); 2639 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2640 Builder.SetInsertPoint(contBB); 2641 return isPre ? value : input; 2642 } 2643 2644 // Store the updated result through the lvalue. 2645 if (LV.isBitField()) 2646 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2647 else 2648 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2649 2650 // If this is a postinc, return the value read from memory, otherwise use the 2651 // updated value. 2652 return isPre ? value : input; 2653 } 2654 2655 2656 2657 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2658 TestAndClearIgnoreResultAssign(); 2659 Value *Op = Visit(E->getSubExpr()); 2660 2661 // Generate a unary FNeg for FP ops. 2662 if (Op->getType()->isFPOrFPVectorTy()) 2663 return Builder.CreateFNeg(Op, "fneg"); 2664 2665 // Emit unary minus with EmitSub so we handle overflow cases etc. 2666 BinOpInfo BinOp; 2667 BinOp.RHS = Op; 2668 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2669 BinOp.Ty = E->getType(); 2670 BinOp.Opcode = BO_Sub; 2671 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2672 BinOp.E = E; 2673 return EmitSub(BinOp); 2674 } 2675 2676 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2677 TestAndClearIgnoreResultAssign(); 2678 Value *Op = Visit(E->getSubExpr()); 2679 return Builder.CreateNot(Op, "neg"); 2680 } 2681 2682 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2683 // Perform vector logical not on comparison with zero vector. 2684 if (E->getType()->isExtVectorType()) { 2685 Value *Oper = Visit(E->getSubExpr()); 2686 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2687 Value *Result; 2688 if (Oper->getType()->isFPOrFPVectorTy()) 2689 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2690 else 2691 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2692 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2693 } 2694 2695 // Compare operand to zero. 2696 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2697 2698 // Invert value. 2699 // TODO: Could dynamically modify easy computations here. For example, if 2700 // the operand is an icmp ne, turn into icmp eq. 2701 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2702 2703 // ZExt result to the expr type. 2704 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2705 } 2706 2707 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2708 // Try folding the offsetof to a constant. 2709 Expr::EvalResult EVResult; 2710 if (E->EvaluateAsInt(EVResult, CGF.getContext())) { 2711 llvm::APSInt Value = EVResult.Val.getInt(); 2712 return Builder.getInt(Value); 2713 } 2714 2715 // Loop over the components of the offsetof to compute the value. 2716 unsigned n = E->getNumComponents(); 2717 llvm::Type* ResultType = ConvertType(E->getType()); 2718 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2719 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2720 for (unsigned i = 0; i != n; ++i) { 2721 OffsetOfNode ON = E->getComponent(i); 2722 llvm::Value *Offset = nullptr; 2723 switch (ON.getKind()) { 2724 case OffsetOfNode::Array: { 2725 // Compute the index 2726 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2727 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2728 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2729 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2730 2731 // Save the element type 2732 CurrentType = 2733 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2734 2735 // Compute the element size 2736 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2737 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2738 2739 // Multiply out to compute the result 2740 Offset = Builder.CreateMul(Idx, ElemSize); 2741 break; 2742 } 2743 2744 case OffsetOfNode::Field: { 2745 FieldDecl *MemberDecl = ON.getField(); 2746 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2747 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2748 2749 // Compute the index of the field in its parent. 2750 unsigned i = 0; 2751 // FIXME: It would be nice if we didn't have to loop here! 2752 for (RecordDecl::field_iterator Field = RD->field_begin(), 2753 FieldEnd = RD->field_end(); 2754 Field != FieldEnd; ++Field, ++i) { 2755 if (*Field == MemberDecl) 2756 break; 2757 } 2758 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2759 2760 // Compute the offset to the field 2761 int64_t OffsetInt = RL.getFieldOffset(i) / 2762 CGF.getContext().getCharWidth(); 2763 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2764 2765 // Save the element type. 2766 CurrentType = MemberDecl->getType(); 2767 break; 2768 } 2769 2770 case OffsetOfNode::Identifier: 2771 llvm_unreachable("dependent __builtin_offsetof"); 2772 2773 case OffsetOfNode::Base: { 2774 if (ON.getBase()->isVirtual()) { 2775 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2776 continue; 2777 } 2778 2779 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2780 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2781 2782 // Save the element type. 2783 CurrentType = ON.getBase()->getType(); 2784 2785 // Compute the offset to the base. 2786 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2787 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2788 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2789 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2790 break; 2791 } 2792 } 2793 Result = Builder.CreateAdd(Result, Offset); 2794 } 2795 return Result; 2796 } 2797 2798 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2799 /// argument of the sizeof expression as an integer. 2800 Value * 2801 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2802 const UnaryExprOrTypeTraitExpr *E) { 2803 QualType TypeToSize = E->getTypeOfArgument(); 2804 if (E->getKind() == UETT_SizeOf) { 2805 if (const VariableArrayType *VAT = 2806 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2807 if (E->isArgumentType()) { 2808 // sizeof(type) - make sure to emit the VLA size. 2809 CGF.EmitVariablyModifiedType(TypeToSize); 2810 } else { 2811 // C99 6.5.3.4p2: If the argument is an expression of type 2812 // VLA, it is evaluated. 2813 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2814 } 2815 2816 auto VlaSize = CGF.getVLASize(VAT); 2817 llvm::Value *size = VlaSize.NumElts; 2818 2819 // Scale the number of non-VLA elements by the non-VLA element size. 2820 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2821 if (!eltSize.isOne()) 2822 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2823 2824 return size; 2825 } 2826 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2827 auto Alignment = 2828 CGF.getContext() 2829 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2830 E->getTypeOfArgument()->getPointeeType())) 2831 .getQuantity(); 2832 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2833 } 2834 2835 // If this isn't sizeof(vla), the result must be constant; use the constant 2836 // folding logic so we don't have to duplicate it here. 2837 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2838 } 2839 2840 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2841 Expr *Op = E->getSubExpr(); 2842 if (Op->getType()->isAnyComplexType()) { 2843 // If it's an l-value, load through the appropriate subobject l-value. 2844 // Note that we have to ask E because Op might be an l-value that 2845 // this won't work for, e.g. an Obj-C property. 2846 if (E->isGLValue()) 2847 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2848 E->getExprLoc()).getScalarVal(); 2849 2850 // Otherwise, calculate and project. 2851 return CGF.EmitComplexExpr(Op, false, true).first; 2852 } 2853 2854 return Visit(Op); 2855 } 2856 2857 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2858 Expr *Op = E->getSubExpr(); 2859 if (Op->getType()->isAnyComplexType()) { 2860 // If it's an l-value, load through the appropriate subobject l-value. 2861 // Note that we have to ask E because Op might be an l-value that 2862 // this won't work for, e.g. an Obj-C property. 2863 if (Op->isGLValue()) 2864 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2865 E->getExprLoc()).getScalarVal(); 2866 2867 // Otherwise, calculate and project. 2868 return CGF.EmitComplexExpr(Op, true, false).second; 2869 } 2870 2871 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2872 // effects are evaluated, but not the actual value. 2873 if (Op->isGLValue()) 2874 CGF.EmitLValue(Op); 2875 else 2876 CGF.EmitScalarExpr(Op, true); 2877 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2878 } 2879 2880 //===----------------------------------------------------------------------===// 2881 // Binary Operators 2882 //===----------------------------------------------------------------------===// 2883 2884 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2885 TestAndClearIgnoreResultAssign(); 2886 BinOpInfo Result; 2887 Result.LHS = Visit(E->getLHS()); 2888 Result.RHS = Visit(E->getRHS()); 2889 Result.Ty = E->getType(); 2890 Result.Opcode = E->getOpcode(); 2891 Result.FPFeatures = E->getFPFeatures(); 2892 Result.E = E; 2893 return Result; 2894 } 2895 2896 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2897 const CompoundAssignOperator *E, 2898 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2899 Value *&Result) { 2900 QualType LHSTy = E->getLHS()->getType(); 2901 BinOpInfo OpInfo; 2902 2903 if (E->getComputationResultType()->isAnyComplexType()) 2904 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2905 2906 // Emit the RHS first. __block variables need to have the rhs evaluated 2907 // first, plus this should improve codegen a little. 2908 OpInfo.RHS = Visit(E->getRHS()); 2909 OpInfo.Ty = E->getComputationResultType(); 2910 OpInfo.Opcode = E->getOpcode(); 2911 OpInfo.FPFeatures = E->getFPFeatures(); 2912 OpInfo.E = E; 2913 // Load/convert the LHS. 2914 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2915 2916 llvm::PHINode *atomicPHI = nullptr; 2917 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2918 QualType type = atomicTy->getValueType(); 2919 if (!type->isBooleanType() && type->isIntegerType() && 2920 !(type->isUnsignedIntegerType() && 2921 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2922 CGF.getLangOpts().getSignedOverflowBehavior() != 2923 LangOptions::SOB_Trapping) { 2924 llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP; 2925 llvm::Instruction::BinaryOps Op; 2926 switch (OpInfo.Opcode) { 2927 // We don't have atomicrmw operands for *, %, /, <<, >> 2928 case BO_MulAssign: case BO_DivAssign: 2929 case BO_RemAssign: 2930 case BO_ShlAssign: 2931 case BO_ShrAssign: 2932 break; 2933 case BO_AddAssign: 2934 AtomicOp = llvm::AtomicRMWInst::Add; 2935 Op = llvm::Instruction::Add; 2936 break; 2937 case BO_SubAssign: 2938 AtomicOp = llvm::AtomicRMWInst::Sub; 2939 Op = llvm::Instruction::Sub; 2940 break; 2941 case BO_AndAssign: 2942 AtomicOp = llvm::AtomicRMWInst::And; 2943 Op = llvm::Instruction::And; 2944 break; 2945 case BO_XorAssign: 2946 AtomicOp = llvm::AtomicRMWInst::Xor; 2947 Op = llvm::Instruction::Xor; 2948 break; 2949 case BO_OrAssign: 2950 AtomicOp = llvm::AtomicRMWInst::Or; 2951 Op = llvm::Instruction::Or; 2952 break; 2953 default: 2954 llvm_unreachable("Invalid compound assignment type"); 2955 } 2956 if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) { 2957 llvm::Value *Amt = CGF.EmitToMemory( 2958 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2959 E->getExprLoc()), 2960 LHSTy); 2961 Value *OldVal = Builder.CreateAtomicRMW( 2962 AtomicOp, LHSLV.getPointer(CGF), Amt, 2963 llvm::AtomicOrdering::SequentiallyConsistent); 2964 2965 // Since operation is atomic, the result type is guaranteed to be the 2966 // same as the input in LLVM terms. 2967 Result = Builder.CreateBinOp(Op, OldVal, Amt); 2968 return LHSLV; 2969 } 2970 } 2971 // FIXME: For floating point types, we should be saving and restoring the 2972 // floating point environment in the loop. 2973 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2974 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2975 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2976 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2977 Builder.CreateBr(opBB); 2978 Builder.SetInsertPoint(opBB); 2979 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2980 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2981 OpInfo.LHS = atomicPHI; 2982 } 2983 else 2984 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2985 2986 SourceLocation Loc = E->getExprLoc(); 2987 OpInfo.LHS = 2988 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2989 2990 // Expand the binary operator. 2991 Result = (this->*Func)(OpInfo); 2992 2993 // Convert the result back to the LHS type, 2994 // potentially with Implicit Conversion sanitizer check. 2995 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, 2996 Loc, ScalarConversionOpts(CGF.SanOpts)); 2997 2998 if (atomicPHI) { 2999 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 3000 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 3001 auto Pair = CGF.EmitAtomicCompareExchange( 3002 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 3003 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 3004 llvm::Value *success = Pair.second; 3005 atomicPHI->addIncoming(old, curBlock); 3006 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 3007 Builder.SetInsertPoint(contBB); 3008 return LHSLV; 3009 } 3010 3011 // Store the result value into the LHS lvalue. Bit-fields are handled 3012 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 3013 // 'An assignment expression has the value of the left operand after the 3014 // assignment...'. 3015 if (LHSLV.isBitField()) 3016 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 3017 else 3018 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 3019 3020 if (CGF.getLangOpts().OpenMP) 3021 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, 3022 E->getLHS()); 3023 return LHSLV; 3024 } 3025 3026 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 3027 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 3028 bool Ignore = TestAndClearIgnoreResultAssign(); 3029 Value *RHS = nullptr; 3030 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 3031 3032 // If the result is clearly ignored, return now. 3033 if (Ignore) 3034 return nullptr; 3035 3036 // The result of an assignment in C is the assigned r-value. 3037 if (!CGF.getLangOpts().CPlusPlus) 3038 return RHS; 3039 3040 // If the lvalue is non-volatile, return the computed value of the assignment. 3041 if (!LHS.isVolatileQualified()) 3042 return RHS; 3043 3044 // Otherwise, reload the value. 3045 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3046 } 3047 3048 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 3049 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 3050 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 3051 3052 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 3053 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 3054 SanitizerKind::IntegerDivideByZero)); 3055 } 3056 3057 const auto *BO = cast<BinaryOperator>(Ops.E); 3058 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 3059 Ops.Ty->hasSignedIntegerRepresentation() && 3060 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 3061 Ops.mayHaveIntegerOverflow()) { 3062 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 3063 3064 llvm::Value *IntMin = 3065 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 3066 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 3067 3068 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 3069 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 3070 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 3071 Checks.push_back( 3072 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 3073 } 3074 3075 if (Checks.size() > 0) 3076 EmitBinOpCheck(Checks, Ops); 3077 } 3078 3079 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 3080 { 3081 CodeGenFunction::SanitizerScope SanScope(&CGF); 3082 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3083 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3084 Ops.Ty->isIntegerType() && 3085 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3086 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3087 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 3088 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 3089 Ops.Ty->isRealFloatingType() && 3090 Ops.mayHaveFloatDivisionByZero()) { 3091 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3092 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 3093 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 3094 Ops); 3095 } 3096 } 3097 3098 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 3099 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 3100 if (CGF.getLangOpts().OpenCL && 3101 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 3102 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 3103 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 3104 // build option allows an application to specify that single precision 3105 // floating-point divide (x/y and 1/x) and sqrt used in the program 3106 // source are correctly rounded. 3107 llvm::Type *ValTy = Val->getType(); 3108 if (ValTy->isFloatTy() || 3109 (isa<llvm::VectorType>(ValTy) && 3110 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 3111 CGF.SetFPAccuracy(Val, 2.5); 3112 } 3113 return Val; 3114 } 3115 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3116 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 3117 else 3118 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 3119 } 3120 3121 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 3122 // Rem in C can't be a floating point type: C99 6.5.5p2. 3123 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3124 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3125 Ops.Ty->isIntegerType() && 3126 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3127 CodeGenFunction::SanitizerScope SanScope(&CGF); 3128 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3129 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3130 } 3131 3132 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3133 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3134 else 3135 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3136 } 3137 3138 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3139 unsigned IID; 3140 unsigned OpID = 0; 3141 3142 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3143 switch (Ops.Opcode) { 3144 case BO_Add: 3145 case BO_AddAssign: 3146 OpID = 1; 3147 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3148 llvm::Intrinsic::uadd_with_overflow; 3149 break; 3150 case BO_Sub: 3151 case BO_SubAssign: 3152 OpID = 2; 3153 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3154 llvm::Intrinsic::usub_with_overflow; 3155 break; 3156 case BO_Mul: 3157 case BO_MulAssign: 3158 OpID = 3; 3159 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3160 llvm::Intrinsic::umul_with_overflow; 3161 break; 3162 default: 3163 llvm_unreachable("Unsupported operation for overflow detection"); 3164 } 3165 OpID <<= 1; 3166 if (isSigned) 3167 OpID |= 1; 3168 3169 CodeGenFunction::SanitizerScope SanScope(&CGF); 3170 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3171 3172 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3173 3174 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3175 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3176 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3177 3178 // Handle overflow with llvm.trap if no custom handler has been specified. 3179 const std::string *handlerName = 3180 &CGF.getLangOpts().OverflowHandler; 3181 if (handlerName->empty()) { 3182 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3183 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3184 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3185 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3186 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3187 : SanitizerKind::UnsignedIntegerOverflow; 3188 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3189 } else 3190 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 3191 return result; 3192 } 3193 3194 // Branch in case of overflow. 3195 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3196 llvm::BasicBlock *continueBB = 3197 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3198 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3199 3200 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3201 3202 // If an overflow handler is set, then we want to call it and then use its 3203 // result, if it returns. 3204 Builder.SetInsertPoint(overflowBB); 3205 3206 // Get the overflow handler. 3207 llvm::Type *Int8Ty = CGF.Int8Ty; 3208 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3209 llvm::FunctionType *handlerTy = 3210 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3211 llvm::FunctionCallee handler = 3212 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3213 3214 // Sign extend the args to 64-bit, so that we can use the same handler for 3215 // all types of overflow. 3216 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3217 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3218 3219 // Call the handler with the two arguments, the operation, and the size of 3220 // the result. 3221 llvm::Value *handlerArgs[] = { 3222 lhs, 3223 rhs, 3224 Builder.getInt8(OpID), 3225 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3226 }; 3227 llvm::Value *handlerResult = 3228 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3229 3230 // Truncate the result back to the desired size. 3231 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3232 Builder.CreateBr(continueBB); 3233 3234 Builder.SetInsertPoint(continueBB); 3235 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3236 phi->addIncoming(result, initialBB); 3237 phi->addIncoming(handlerResult, overflowBB); 3238 3239 return phi; 3240 } 3241 3242 /// Emit pointer + index arithmetic. 3243 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3244 const BinOpInfo &op, 3245 bool isSubtraction) { 3246 // Must have binary (not unary) expr here. Unary pointer 3247 // increment/decrement doesn't use this path. 3248 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3249 3250 Value *pointer = op.LHS; 3251 Expr *pointerOperand = expr->getLHS(); 3252 Value *index = op.RHS; 3253 Expr *indexOperand = expr->getRHS(); 3254 3255 // In a subtraction, the LHS is always the pointer. 3256 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3257 std::swap(pointer, index); 3258 std::swap(pointerOperand, indexOperand); 3259 } 3260 3261 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3262 3263 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3264 auto &DL = CGF.CGM.getDataLayout(); 3265 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3266 3267 // Some versions of glibc and gcc use idioms (particularly in their malloc 3268 // routines) that add a pointer-sized integer (known to be a pointer value) 3269 // to a null pointer in order to cast the value back to an integer or as 3270 // part of a pointer alignment algorithm. This is undefined behavior, but 3271 // we'd like to be able to compile programs that use it. 3272 // 3273 // Normally, we'd generate a GEP with a null-pointer base here in response 3274 // to that code, but it's also UB to dereference a pointer created that 3275 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3276 // generate a direct cast of the integer value to a pointer. 3277 // 3278 // The idiom (p = nullptr + N) is not met if any of the following are true: 3279 // 3280 // The operation is subtraction. 3281 // The index is not pointer-sized. 3282 // The pointer type is not byte-sized. 3283 // 3284 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3285 op.Opcode, 3286 expr->getLHS(), 3287 expr->getRHS())) 3288 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3289 3290 if (width != DL.getIndexTypeSizeInBits(PtrTy)) { 3291 // Zero-extend or sign-extend the pointer value according to 3292 // whether the index is signed or not. 3293 index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned, 3294 "idx.ext"); 3295 } 3296 3297 // If this is subtraction, negate the index. 3298 if (isSubtraction) 3299 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3300 3301 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3302 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3303 /*Accessed*/ false); 3304 3305 const PointerType *pointerType 3306 = pointerOperand->getType()->getAs<PointerType>(); 3307 if (!pointerType) { 3308 QualType objectType = pointerOperand->getType() 3309 ->castAs<ObjCObjectPointerType>() 3310 ->getPointeeType(); 3311 llvm::Value *objectSize 3312 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3313 3314 index = CGF.Builder.CreateMul(index, objectSize); 3315 3316 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3317 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3318 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3319 } 3320 3321 QualType elementType = pointerType->getPointeeType(); 3322 if (const VariableArrayType *vla 3323 = CGF.getContext().getAsVariableArrayType(elementType)) { 3324 // The element count here is the total number of non-VLA elements. 3325 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3326 3327 // Effectively, the multiply by the VLA size is part of the GEP. 3328 // GEP indexes are signed, and scaling an index isn't permitted to 3329 // signed-overflow, so we use the same semantics for our explicit 3330 // multiply. We suppress this if overflow is not undefined behavior. 3331 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3332 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3333 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3334 } else { 3335 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3336 pointer = 3337 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3338 op.E->getExprLoc(), "add.ptr"); 3339 } 3340 return pointer; 3341 } 3342 3343 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3344 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3345 // future proof. 3346 if (elementType->isVoidType() || elementType->isFunctionType()) { 3347 Value *result = CGF.EmitCastToVoidPtr(pointer); 3348 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3349 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3350 } 3351 3352 if (CGF.getLangOpts().isSignedOverflowDefined()) 3353 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3354 3355 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3356 op.E->getExprLoc(), "add.ptr"); 3357 } 3358 3359 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3360 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3361 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3362 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3363 // efficient operations. 3364 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 3365 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3366 bool negMul, bool negAdd) { 3367 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3368 3369 Value *MulOp0 = MulOp->getOperand(0); 3370 Value *MulOp1 = MulOp->getOperand(1); 3371 if (negMul) 3372 MulOp0 = Builder.CreateFNeg(MulOp0, "neg"); 3373 if (negAdd) 3374 Addend = Builder.CreateFNeg(Addend, "neg"); 3375 3376 Value *FMulAdd = Builder.CreateCall( 3377 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3378 {MulOp0, MulOp1, Addend}); 3379 MulOp->eraseFromParent(); 3380 3381 return FMulAdd; 3382 } 3383 3384 // Check whether it would be legal to emit an fmuladd intrinsic call to 3385 // represent op and if so, build the fmuladd. 3386 // 3387 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3388 // Does NOT check the type of the operation - it's assumed that this function 3389 // will be called from contexts where it's known that the type is contractable. 3390 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3391 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3392 bool isSub=false) { 3393 3394 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3395 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3396 "Only fadd/fsub can be the root of an fmuladd."); 3397 3398 // Check whether this op is marked as fusable. 3399 if (!op.FPFeatures.allowFPContractWithinStatement()) 3400 return nullptr; 3401 3402 // We have a potentially fusable op. Look for a mul on one of the operands. 3403 // Also, make sure that the mul result isn't used directly. In that case, 3404 // there's no point creating a muladd operation. 3405 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3406 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3407 LHSBinOp->use_empty()) 3408 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3409 } 3410 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3411 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3412 RHSBinOp->use_empty()) 3413 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3414 } 3415 3416 return nullptr; 3417 } 3418 3419 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3420 if (op.LHS->getType()->isPointerTy() || 3421 op.RHS->getType()->isPointerTy()) 3422 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3423 3424 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3425 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3426 case LangOptions::SOB_Defined: 3427 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3428 case LangOptions::SOB_Undefined: 3429 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3430 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3431 LLVM_FALLTHROUGH; 3432 case LangOptions::SOB_Trapping: 3433 if (CanElideOverflowCheck(CGF.getContext(), op)) 3434 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3435 return EmitOverflowCheckedBinOp(op); 3436 } 3437 } 3438 3439 if (op.Ty->isUnsignedIntegerType() && 3440 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3441 !CanElideOverflowCheck(CGF.getContext(), op)) 3442 return EmitOverflowCheckedBinOp(op); 3443 3444 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3445 // Try to form an fmuladd. 3446 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3447 return FMulAdd; 3448 3449 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3450 return propagateFMFlags(V, op); 3451 } 3452 3453 if (op.isFixedPointBinOp()) 3454 return EmitFixedPointBinOp(op); 3455 3456 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3457 } 3458 3459 /// The resulting value must be calculated with exact precision, so the operands 3460 /// may not be the same type. 3461 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { 3462 using llvm::APSInt; 3463 using llvm::ConstantInt; 3464 3465 const auto *BinOp = cast<BinaryOperator>(op.E); 3466 3467 // The result is a fixed point type and at least one of the operands is fixed 3468 // point while the other is either fixed point or an int. This resulting type 3469 // should be determined by Sema::handleFixedPointConversions(). 3470 QualType ResultTy = op.Ty; 3471 QualType LHSTy = BinOp->getLHS()->getType(); 3472 QualType RHSTy = BinOp->getRHS()->getType(); 3473 ASTContext &Ctx = CGF.getContext(); 3474 Value *LHS = op.LHS; 3475 Value *RHS = op.RHS; 3476 3477 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); 3478 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); 3479 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); 3480 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); 3481 3482 // Convert the operands to the full precision type. 3483 Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema, 3484 BinOp->getExprLoc()); 3485 Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema, 3486 BinOp->getExprLoc()); 3487 3488 // Perform the actual addition. 3489 Value *Result; 3490 switch (BinOp->getOpcode()) { 3491 case BO_Add: { 3492 if (ResultFixedSema.isSaturated()) { 3493 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned() 3494 ? llvm::Intrinsic::sadd_sat 3495 : llvm::Intrinsic::uadd_sat; 3496 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3497 } else { 3498 Result = Builder.CreateAdd(FullLHS, FullRHS); 3499 } 3500 break; 3501 } 3502 case BO_Sub: { 3503 if (ResultFixedSema.isSaturated()) { 3504 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned() 3505 ? llvm::Intrinsic::ssub_sat 3506 : llvm::Intrinsic::usub_sat; 3507 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3508 } else { 3509 Result = Builder.CreateSub(FullLHS, FullRHS); 3510 } 3511 break; 3512 } 3513 case BO_LT: 3514 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS) 3515 : Builder.CreateICmpULT(FullLHS, FullRHS); 3516 case BO_GT: 3517 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS) 3518 : Builder.CreateICmpUGT(FullLHS, FullRHS); 3519 case BO_LE: 3520 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS) 3521 : Builder.CreateICmpULE(FullLHS, FullRHS); 3522 case BO_GE: 3523 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS) 3524 : Builder.CreateICmpUGE(FullLHS, FullRHS); 3525 case BO_EQ: 3526 // For equality operations, we assume any padding bits on unsigned types are 3527 // zero'd out. They could be overwritten through non-saturating operations 3528 // that cause overflow, but this leads to undefined behavior. 3529 return Builder.CreateICmpEQ(FullLHS, FullRHS); 3530 case BO_NE: 3531 return Builder.CreateICmpNE(FullLHS, FullRHS); 3532 case BO_Mul: 3533 case BO_Div: 3534 case BO_Shl: 3535 case BO_Shr: 3536 case BO_Cmp: 3537 case BO_LAnd: 3538 case BO_LOr: 3539 case BO_MulAssign: 3540 case BO_DivAssign: 3541 case BO_AddAssign: 3542 case BO_SubAssign: 3543 case BO_ShlAssign: 3544 case BO_ShrAssign: 3545 llvm_unreachable("Found unimplemented fixed point binary operation"); 3546 case BO_PtrMemD: 3547 case BO_PtrMemI: 3548 case BO_Rem: 3549 case BO_Xor: 3550 case BO_And: 3551 case BO_Or: 3552 case BO_Assign: 3553 case BO_RemAssign: 3554 case BO_AndAssign: 3555 case BO_XorAssign: 3556 case BO_OrAssign: 3557 case BO_Comma: 3558 llvm_unreachable("Found unsupported binary operation for fixed point types."); 3559 } 3560 3561 // Convert to the result type. 3562 return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema, 3563 BinOp->getExprLoc()); 3564 } 3565 3566 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3567 // The LHS is always a pointer if either side is. 3568 if (!op.LHS->getType()->isPointerTy()) { 3569 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3570 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3571 case LangOptions::SOB_Defined: 3572 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3573 case LangOptions::SOB_Undefined: 3574 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3575 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3576 LLVM_FALLTHROUGH; 3577 case LangOptions::SOB_Trapping: 3578 if (CanElideOverflowCheck(CGF.getContext(), op)) 3579 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3580 return EmitOverflowCheckedBinOp(op); 3581 } 3582 } 3583 3584 if (op.Ty->isUnsignedIntegerType() && 3585 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3586 !CanElideOverflowCheck(CGF.getContext(), op)) 3587 return EmitOverflowCheckedBinOp(op); 3588 3589 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3590 // Try to form an fmuladd. 3591 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3592 return FMulAdd; 3593 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3594 return propagateFMFlags(V, op); 3595 } 3596 3597 if (op.isFixedPointBinOp()) 3598 return EmitFixedPointBinOp(op); 3599 3600 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3601 } 3602 3603 // If the RHS is not a pointer, then we have normal pointer 3604 // arithmetic. 3605 if (!op.RHS->getType()->isPointerTy()) 3606 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3607 3608 // Otherwise, this is a pointer subtraction. 3609 3610 // Do the raw subtraction part. 3611 llvm::Value *LHS 3612 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3613 llvm::Value *RHS 3614 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3615 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3616 3617 // Okay, figure out the element size. 3618 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3619 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3620 3621 llvm::Value *divisor = nullptr; 3622 3623 // For a variable-length array, this is going to be non-constant. 3624 if (const VariableArrayType *vla 3625 = CGF.getContext().getAsVariableArrayType(elementType)) { 3626 auto VlaSize = CGF.getVLASize(vla); 3627 elementType = VlaSize.Type; 3628 divisor = VlaSize.NumElts; 3629 3630 // Scale the number of non-VLA elements by the non-VLA element size. 3631 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3632 if (!eltSize.isOne()) 3633 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3634 3635 // For everything elese, we can just compute it, safe in the 3636 // assumption that Sema won't let anything through that we can't 3637 // safely compute the size of. 3638 } else { 3639 CharUnits elementSize; 3640 // Handle GCC extension for pointer arithmetic on void* and 3641 // function pointer types. 3642 if (elementType->isVoidType() || elementType->isFunctionType()) 3643 elementSize = CharUnits::One(); 3644 else 3645 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3646 3647 // Don't even emit the divide for element size of 1. 3648 if (elementSize.isOne()) 3649 return diffInChars; 3650 3651 divisor = CGF.CGM.getSize(elementSize); 3652 } 3653 3654 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3655 // pointer difference in C is only defined in the case where both operands 3656 // are pointing to elements of an array. 3657 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3658 } 3659 3660 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3661 llvm::IntegerType *Ty; 3662 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3663 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3664 else 3665 Ty = cast<llvm::IntegerType>(LHS->getType()); 3666 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3667 } 3668 3669 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3670 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3671 // RHS to the same size as the LHS. 3672 Value *RHS = Ops.RHS; 3673 if (Ops.LHS->getType() != RHS->getType()) 3674 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3675 3676 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3677 Ops.Ty->hasSignedIntegerRepresentation() && 3678 !CGF.getLangOpts().isSignedOverflowDefined() && 3679 !CGF.getLangOpts().CPlusPlus2a; 3680 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3681 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3682 if (CGF.getLangOpts().OpenCL) 3683 RHS = 3684 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 3685 else if ((SanitizeBase || SanitizeExponent) && 3686 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3687 CodeGenFunction::SanitizerScope SanScope(&CGF); 3688 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3689 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3690 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3691 3692 if (SanitizeExponent) { 3693 Checks.push_back( 3694 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3695 } 3696 3697 if (SanitizeBase) { 3698 // Check whether we are shifting any non-zero bits off the top of the 3699 // integer. We only emit this check if exponent is valid - otherwise 3700 // instructions below will have undefined behavior themselves. 3701 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3702 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3703 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3704 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3705 llvm::Value *PromotedWidthMinusOne = 3706 (RHS == Ops.RHS) ? WidthMinusOne 3707 : GetWidthMinusOneValue(Ops.LHS, RHS); 3708 CGF.EmitBlock(CheckShiftBase); 3709 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3710 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3711 /*NUW*/ true, /*NSW*/ true), 3712 "shl.check"); 3713 if (CGF.getLangOpts().CPlusPlus) { 3714 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3715 // Under C++11's rules, shifting a 1 bit into the sign bit is 3716 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3717 // define signed left shifts, so we use the C99 and C++11 rules there). 3718 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3719 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3720 } 3721 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3722 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3723 CGF.EmitBlock(Cont); 3724 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3725 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3726 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3727 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 3728 } 3729 3730 assert(!Checks.empty()); 3731 EmitBinOpCheck(Checks, Ops); 3732 } 3733 3734 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3735 } 3736 3737 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3738 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3739 // RHS to the same size as the LHS. 3740 Value *RHS = Ops.RHS; 3741 if (Ops.LHS->getType() != RHS->getType()) 3742 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3743 3744 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3745 if (CGF.getLangOpts().OpenCL) 3746 RHS = 3747 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 3748 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3749 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3750 CodeGenFunction::SanitizerScope SanScope(&CGF); 3751 llvm::Value *Valid = 3752 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3753 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3754 } 3755 3756 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3757 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3758 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3759 } 3760 3761 enum IntrinsicType { VCMPEQ, VCMPGT }; 3762 // return corresponding comparison intrinsic for given vector type 3763 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3764 BuiltinType::Kind ElemKind) { 3765 switch (ElemKind) { 3766 default: llvm_unreachable("unexpected element type"); 3767 case BuiltinType::Char_U: 3768 case BuiltinType::UChar: 3769 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3770 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3771 case BuiltinType::Char_S: 3772 case BuiltinType::SChar: 3773 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3774 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3775 case BuiltinType::UShort: 3776 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3777 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3778 case BuiltinType::Short: 3779 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3780 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3781 case BuiltinType::UInt: 3782 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3783 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3784 case BuiltinType::Int: 3785 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3786 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3787 case BuiltinType::ULong: 3788 case BuiltinType::ULongLong: 3789 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3790 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 3791 case BuiltinType::Long: 3792 case BuiltinType::LongLong: 3793 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3794 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 3795 case BuiltinType::Float: 3796 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3797 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3798 case BuiltinType::Double: 3799 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 3800 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 3801 } 3802 } 3803 3804 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3805 llvm::CmpInst::Predicate UICmpOpc, 3806 llvm::CmpInst::Predicate SICmpOpc, 3807 llvm::CmpInst::Predicate FCmpOpc, 3808 bool IsSignaling) { 3809 TestAndClearIgnoreResultAssign(); 3810 Value *Result; 3811 QualType LHSTy = E->getLHS()->getType(); 3812 QualType RHSTy = E->getRHS()->getType(); 3813 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3814 assert(E->getOpcode() == BO_EQ || 3815 E->getOpcode() == BO_NE); 3816 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3817 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3818 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3819 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3820 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3821 BinOpInfo BOInfo = EmitBinOps(E); 3822 Value *LHS = BOInfo.LHS; 3823 Value *RHS = BOInfo.RHS; 3824 3825 // If AltiVec, the comparison results in a numeric type, so we use 3826 // intrinsics comparing vectors and giving 0 or 1 as a result 3827 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3828 // constants for mapping CR6 register bits to predicate result 3829 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3830 3831 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3832 3833 // in several cases vector arguments order will be reversed 3834 Value *FirstVecArg = LHS, 3835 *SecondVecArg = RHS; 3836 3837 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType(); 3838 BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind(); 3839 3840 switch(E->getOpcode()) { 3841 default: llvm_unreachable("is not a comparison operation"); 3842 case BO_EQ: 3843 CR6 = CR6_LT; 3844 ID = GetIntrinsic(VCMPEQ, ElementKind); 3845 break; 3846 case BO_NE: 3847 CR6 = CR6_EQ; 3848 ID = GetIntrinsic(VCMPEQ, ElementKind); 3849 break; 3850 case BO_LT: 3851 CR6 = CR6_LT; 3852 ID = GetIntrinsic(VCMPGT, ElementKind); 3853 std::swap(FirstVecArg, SecondVecArg); 3854 break; 3855 case BO_GT: 3856 CR6 = CR6_LT; 3857 ID = GetIntrinsic(VCMPGT, ElementKind); 3858 break; 3859 case BO_LE: 3860 if (ElementKind == BuiltinType::Float) { 3861 CR6 = CR6_LT; 3862 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3863 std::swap(FirstVecArg, SecondVecArg); 3864 } 3865 else { 3866 CR6 = CR6_EQ; 3867 ID = GetIntrinsic(VCMPGT, ElementKind); 3868 } 3869 break; 3870 case BO_GE: 3871 if (ElementKind == BuiltinType::Float) { 3872 CR6 = CR6_LT; 3873 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3874 } 3875 else { 3876 CR6 = CR6_EQ; 3877 ID = GetIntrinsic(VCMPGT, ElementKind); 3878 std::swap(FirstVecArg, SecondVecArg); 3879 } 3880 break; 3881 } 3882 3883 Value *CR6Param = Builder.getInt32(CR6); 3884 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 3885 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 3886 3887 // The result type of intrinsic may not be same as E->getType(). 3888 // If E->getType() is not BoolTy, EmitScalarConversion will do the 3889 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 3890 // do nothing, if ResultTy is not i1 at the same time, it will cause 3891 // crash later. 3892 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 3893 if (ResultTy->getBitWidth() > 1 && 3894 E->getType() == CGF.getContext().BoolTy) 3895 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 3896 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3897 E->getExprLoc()); 3898 } 3899 3900 if (BOInfo.isFixedPointBinOp()) { 3901 Result = EmitFixedPointBinOp(BOInfo); 3902 } else if (LHS->getType()->isFPOrFPVectorTy()) { 3903 if (!IsSignaling) 3904 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 3905 else 3906 Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp"); 3907 } else if (LHSTy->hasSignedIntegerRepresentation()) { 3908 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 3909 } else { 3910 // Unsigned integers and pointers. 3911 3912 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 3913 !isa<llvm::ConstantPointerNull>(LHS) && 3914 !isa<llvm::ConstantPointerNull>(RHS)) { 3915 3916 // Dynamic information is required to be stripped for comparisons, 3917 // because it could leak the dynamic information. Based on comparisons 3918 // of pointers to dynamic objects, the optimizer can replace one pointer 3919 // with another, which might be incorrect in presence of invariant 3920 // groups. Comparison with null is safe because null does not carry any 3921 // dynamic information. 3922 if (LHSTy.mayBeDynamicClass()) 3923 LHS = Builder.CreateStripInvariantGroup(LHS); 3924 if (RHSTy.mayBeDynamicClass()) 3925 RHS = Builder.CreateStripInvariantGroup(RHS); 3926 } 3927 3928 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 3929 } 3930 3931 // If this is a vector comparison, sign extend the result to the appropriate 3932 // vector integer type and return it (don't convert to bool). 3933 if (LHSTy->isVectorType()) 3934 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 3935 3936 } else { 3937 // Complex Comparison: can only be an equality comparison. 3938 CodeGenFunction::ComplexPairTy LHS, RHS; 3939 QualType CETy; 3940 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 3941 LHS = CGF.EmitComplexExpr(E->getLHS()); 3942 CETy = CTy->getElementType(); 3943 } else { 3944 LHS.first = Visit(E->getLHS()); 3945 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 3946 CETy = LHSTy; 3947 } 3948 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 3949 RHS = CGF.EmitComplexExpr(E->getRHS()); 3950 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 3951 CTy->getElementType()) && 3952 "The element types must always match."); 3953 (void)CTy; 3954 } else { 3955 RHS.first = Visit(E->getRHS()); 3956 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 3957 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 3958 "The element types must always match."); 3959 } 3960 3961 Value *ResultR, *ResultI; 3962 if (CETy->isRealFloatingType()) { 3963 // As complex comparisons can only be equality comparisons, they 3964 // are never signaling comparisons. 3965 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 3966 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 3967 } else { 3968 // Complex comparisons can only be equality comparisons. As such, signed 3969 // and unsigned opcodes are the same. 3970 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 3971 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 3972 } 3973 3974 if (E->getOpcode() == BO_EQ) { 3975 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 3976 } else { 3977 assert(E->getOpcode() == BO_NE && 3978 "Complex comparison other than == or != ?"); 3979 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 3980 } 3981 } 3982 3983 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3984 E->getExprLoc()); 3985 } 3986 3987 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 3988 bool Ignore = TestAndClearIgnoreResultAssign(); 3989 3990 Value *RHS; 3991 LValue LHS; 3992 3993 switch (E->getLHS()->getType().getObjCLifetime()) { 3994 case Qualifiers::OCL_Strong: 3995 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 3996 break; 3997 3998 case Qualifiers::OCL_Autoreleasing: 3999 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 4000 break; 4001 4002 case Qualifiers::OCL_ExplicitNone: 4003 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 4004 break; 4005 4006 case Qualifiers::OCL_Weak: 4007 RHS = Visit(E->getRHS()); 4008 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4009 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore); 4010 break; 4011 4012 case Qualifiers::OCL_None: 4013 // __block variables need to have the rhs evaluated first, plus 4014 // this should improve codegen just a little. 4015 RHS = Visit(E->getRHS()); 4016 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4017 4018 // Store the value into the LHS. Bit-fields are handled specially 4019 // because the result is altered by the store, i.e., [C99 6.5.16p1] 4020 // 'An assignment expression has the value of the left operand after 4021 // the assignment...'. 4022 if (LHS.isBitField()) { 4023 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 4024 } else { 4025 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 4026 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 4027 } 4028 } 4029 4030 // If the result is clearly ignored, return now. 4031 if (Ignore) 4032 return nullptr; 4033 4034 // The result of an assignment in C is the assigned r-value. 4035 if (!CGF.getLangOpts().CPlusPlus) 4036 return RHS; 4037 4038 // If the lvalue is non-volatile, return the computed value of the assignment. 4039 if (!LHS.isVolatileQualified()) 4040 return RHS; 4041 4042 // Otherwise, reload the value. 4043 return EmitLoadOfLValue(LHS, E->getExprLoc()); 4044 } 4045 4046 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 4047 // Perform vector logical and on comparisons with zero vectors. 4048 if (E->getType()->isVectorType()) { 4049 CGF.incrementProfileCounter(E); 4050 4051 Value *LHS = Visit(E->getLHS()); 4052 Value *RHS = Visit(E->getRHS()); 4053 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4054 if (LHS->getType()->isFPOrFPVectorTy()) { 4055 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4056 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4057 } else { 4058 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4059 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4060 } 4061 Value *And = Builder.CreateAnd(LHS, RHS); 4062 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 4063 } 4064 4065 llvm::Type *ResTy = ConvertType(E->getType()); 4066 4067 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 4068 // If we have 1 && X, just emit X without inserting the control flow. 4069 bool LHSCondVal; 4070 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4071 if (LHSCondVal) { // If we have 1 && X, just emit X. 4072 CGF.incrementProfileCounter(E); 4073 4074 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4075 // ZExt result to int or bool. 4076 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 4077 } 4078 4079 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 4080 if (!CGF.ContainsLabel(E->getRHS())) 4081 return llvm::Constant::getNullValue(ResTy); 4082 } 4083 4084 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 4085 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 4086 4087 CodeGenFunction::ConditionalEvaluation eval(CGF); 4088 4089 // Branch on the LHS first. If it is false, go to the failure (cont) block. 4090 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 4091 CGF.getProfileCount(E->getRHS())); 4092 4093 // Any edges into the ContBlock are now from an (indeterminate number of) 4094 // edges from this first condition. All of these values will be false. Start 4095 // setting up the PHI node in the Cont Block for this. 4096 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4097 "", ContBlock); 4098 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4099 PI != PE; ++PI) 4100 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 4101 4102 eval.begin(CGF); 4103 CGF.EmitBlock(RHSBlock); 4104 CGF.incrementProfileCounter(E); 4105 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4106 eval.end(CGF); 4107 4108 // Reaquire the RHS block, as there may be subblocks inserted. 4109 RHSBlock = Builder.GetInsertBlock(); 4110 4111 // Emit an unconditional branch from this block to ContBlock. 4112 { 4113 // There is no need to emit line number for unconditional branch. 4114 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4115 CGF.EmitBlock(ContBlock); 4116 } 4117 // Insert an entry into the phi node for the edge with the value of RHSCond. 4118 PN->addIncoming(RHSCond, RHSBlock); 4119 4120 // Artificial location to preserve the scope information 4121 { 4122 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 4123 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 4124 } 4125 4126 // ZExt result to int. 4127 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 4128 } 4129 4130 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 4131 // Perform vector logical or on comparisons with zero vectors. 4132 if (E->getType()->isVectorType()) { 4133 CGF.incrementProfileCounter(E); 4134 4135 Value *LHS = Visit(E->getLHS()); 4136 Value *RHS = Visit(E->getRHS()); 4137 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4138 if (LHS->getType()->isFPOrFPVectorTy()) { 4139 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4140 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4141 } else { 4142 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4143 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4144 } 4145 Value *Or = Builder.CreateOr(LHS, RHS); 4146 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 4147 } 4148 4149 llvm::Type *ResTy = ConvertType(E->getType()); 4150 4151 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 4152 // If we have 0 || X, just emit X without inserting the control flow. 4153 bool LHSCondVal; 4154 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4155 if (!LHSCondVal) { // If we have 0 || X, just emit X. 4156 CGF.incrementProfileCounter(E); 4157 4158 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4159 // ZExt result to int or bool. 4160 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 4161 } 4162 4163 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 4164 if (!CGF.ContainsLabel(E->getRHS())) 4165 return llvm::ConstantInt::get(ResTy, 1); 4166 } 4167 4168 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 4169 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 4170 4171 CodeGenFunction::ConditionalEvaluation eval(CGF); 4172 4173 // Branch on the LHS first. If it is true, go to the success (cont) block. 4174 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 4175 CGF.getCurrentProfileCount() - 4176 CGF.getProfileCount(E->getRHS())); 4177 4178 // Any edges into the ContBlock are now from an (indeterminate number of) 4179 // edges from this first condition. All of these values will be true. Start 4180 // setting up the PHI node in the Cont Block for this. 4181 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4182 "", ContBlock); 4183 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4184 PI != PE; ++PI) 4185 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 4186 4187 eval.begin(CGF); 4188 4189 // Emit the RHS condition as a bool value. 4190 CGF.EmitBlock(RHSBlock); 4191 CGF.incrementProfileCounter(E); 4192 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4193 4194 eval.end(CGF); 4195 4196 // Reaquire the RHS block, as there may be subblocks inserted. 4197 RHSBlock = Builder.GetInsertBlock(); 4198 4199 // Emit an unconditional branch from this block to ContBlock. Insert an entry 4200 // into the phi node for the edge with the value of RHSCond. 4201 CGF.EmitBlock(ContBlock); 4202 PN->addIncoming(RHSCond, RHSBlock); 4203 4204 // ZExt result to int. 4205 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 4206 } 4207 4208 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 4209 CGF.EmitIgnoredExpr(E->getLHS()); 4210 CGF.EnsureInsertPoint(); 4211 return Visit(E->getRHS()); 4212 } 4213 4214 //===----------------------------------------------------------------------===// 4215 // Other Operators 4216 //===----------------------------------------------------------------------===// 4217 4218 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 4219 /// expression is cheap enough and side-effect-free enough to evaluate 4220 /// unconditionally instead of conditionally. This is used to convert control 4221 /// flow into selects in some cases. 4222 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 4223 CodeGenFunction &CGF) { 4224 // Anything that is an integer or floating point constant is fine. 4225 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 4226 4227 // Even non-volatile automatic variables can't be evaluated unconditionally. 4228 // Referencing a thread_local may cause non-trivial initialization work to 4229 // occur. If we're inside a lambda and one of the variables is from the scope 4230 // outside the lambda, that function may have returned already. Reading its 4231 // locals is a bad idea. Also, these reads may introduce races there didn't 4232 // exist in the source-level program. 4233 } 4234 4235 4236 Value *ScalarExprEmitter:: 4237 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 4238 TestAndClearIgnoreResultAssign(); 4239 4240 // Bind the common expression if necessary. 4241 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4242 4243 Expr *condExpr = E->getCond(); 4244 Expr *lhsExpr = E->getTrueExpr(); 4245 Expr *rhsExpr = E->getFalseExpr(); 4246 4247 // If the condition constant folds and can be elided, try to avoid emitting 4248 // the condition and the dead arm. 4249 bool CondExprBool; 4250 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4251 Expr *live = lhsExpr, *dead = rhsExpr; 4252 if (!CondExprBool) std::swap(live, dead); 4253 4254 // If the dead side doesn't have labels we need, just emit the Live part. 4255 if (!CGF.ContainsLabel(dead)) { 4256 if (CondExprBool) 4257 CGF.incrementProfileCounter(E); 4258 Value *Result = Visit(live); 4259 4260 // If the live part is a throw expression, it acts like it has a void 4261 // type, so evaluating it returns a null Value*. However, a conditional 4262 // with non-void type must return a non-null Value*. 4263 if (!Result && !E->getType()->isVoidType()) 4264 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4265 4266 return Result; 4267 } 4268 } 4269 4270 // OpenCL: If the condition is a vector, we can treat this condition like 4271 // the select function. 4272 if (CGF.getLangOpts().OpenCL 4273 && condExpr->getType()->isVectorType()) { 4274 CGF.incrementProfileCounter(E); 4275 4276 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4277 llvm::Value *LHS = Visit(lhsExpr); 4278 llvm::Value *RHS = Visit(rhsExpr); 4279 4280 llvm::Type *condType = ConvertType(condExpr->getType()); 4281 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 4282 4283 unsigned numElem = vecTy->getNumElements(); 4284 llvm::Type *elemType = vecTy->getElementType(); 4285 4286 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4287 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4288 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 4289 llvm::VectorType::get(elemType, 4290 numElem), 4291 "sext"); 4292 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4293 4294 // Cast float to int to perform ANDs if necessary. 4295 llvm::Value *RHSTmp = RHS; 4296 llvm::Value *LHSTmp = LHS; 4297 bool wasCast = false; 4298 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4299 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4300 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4301 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4302 wasCast = true; 4303 } 4304 4305 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4306 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4307 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4308 if (wasCast) 4309 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4310 4311 return tmp5; 4312 } 4313 4314 if (condExpr->getType()->isVectorType()) { 4315 CGF.incrementProfileCounter(E); 4316 4317 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4318 llvm::Value *LHS = Visit(lhsExpr); 4319 llvm::Value *RHS = Visit(rhsExpr); 4320 4321 llvm::Type *CondType = ConvertType(condExpr->getType()); 4322 auto *VecTy = cast<llvm::VectorType>(CondType); 4323 llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy); 4324 4325 CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond"); 4326 return Builder.CreateSelect(CondV, LHS, RHS, "vector_select"); 4327 } 4328 4329 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4330 // select instead of as control flow. We can only do this if it is cheap and 4331 // safe to evaluate the LHS and RHS unconditionally. 4332 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4333 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4334 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4335 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4336 4337 CGF.incrementProfileCounter(E, StepV); 4338 4339 llvm::Value *LHS = Visit(lhsExpr); 4340 llvm::Value *RHS = Visit(rhsExpr); 4341 if (!LHS) { 4342 // If the conditional has void type, make sure we return a null Value*. 4343 assert(!RHS && "LHS and RHS types must match"); 4344 return nullptr; 4345 } 4346 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4347 } 4348 4349 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4350 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4351 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4352 4353 CodeGenFunction::ConditionalEvaluation eval(CGF); 4354 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4355 CGF.getProfileCount(lhsExpr)); 4356 4357 CGF.EmitBlock(LHSBlock); 4358 CGF.incrementProfileCounter(E); 4359 eval.begin(CGF); 4360 Value *LHS = Visit(lhsExpr); 4361 eval.end(CGF); 4362 4363 LHSBlock = Builder.GetInsertBlock(); 4364 Builder.CreateBr(ContBlock); 4365 4366 CGF.EmitBlock(RHSBlock); 4367 eval.begin(CGF); 4368 Value *RHS = Visit(rhsExpr); 4369 eval.end(CGF); 4370 4371 RHSBlock = Builder.GetInsertBlock(); 4372 CGF.EmitBlock(ContBlock); 4373 4374 // If the LHS or RHS is a throw expression, it will be legitimately null. 4375 if (!LHS) 4376 return RHS; 4377 if (!RHS) 4378 return LHS; 4379 4380 // Create a PHI node for the real part. 4381 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4382 PN->addIncoming(LHS, LHSBlock); 4383 PN->addIncoming(RHS, RHSBlock); 4384 return PN; 4385 } 4386 4387 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4388 return Visit(E->getChosenSubExpr()); 4389 } 4390 4391 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4392 QualType Ty = VE->getType(); 4393 4394 if (Ty->isVariablyModifiedType()) 4395 CGF.EmitVariablyModifiedType(Ty); 4396 4397 Address ArgValue = Address::invalid(); 4398 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4399 4400 llvm::Type *ArgTy = ConvertType(VE->getType()); 4401 4402 // If EmitVAArg fails, emit an error. 4403 if (!ArgPtr.isValid()) { 4404 CGF.ErrorUnsupported(VE, "va_arg expression"); 4405 return llvm::UndefValue::get(ArgTy); 4406 } 4407 4408 // FIXME Volatility. 4409 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4410 4411 // If EmitVAArg promoted the type, we must truncate it. 4412 if (ArgTy != Val->getType()) { 4413 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4414 Val = Builder.CreateIntToPtr(Val, ArgTy); 4415 else 4416 Val = Builder.CreateTrunc(Val, ArgTy); 4417 } 4418 4419 return Val; 4420 } 4421 4422 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4423 return CGF.EmitBlockLiteral(block); 4424 } 4425 4426 // Convert a vec3 to vec4, or vice versa. 4427 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4428 Value *Src, unsigned NumElementsDst) { 4429 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 4430 SmallVector<llvm::Constant*, 4> Args; 4431 Args.push_back(Builder.getInt32(0)); 4432 Args.push_back(Builder.getInt32(1)); 4433 Args.push_back(Builder.getInt32(2)); 4434 if (NumElementsDst == 4) 4435 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 4436 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 4437 return Builder.CreateShuffleVector(Src, UnV, Mask); 4438 } 4439 4440 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4441 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4442 // but could be scalar or vectors of different lengths, and either can be 4443 // pointer. 4444 // There are 4 cases: 4445 // 1. non-pointer -> non-pointer : needs 1 bitcast 4446 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4447 // 3. pointer -> non-pointer 4448 // a) pointer -> intptr_t : needs 1 ptrtoint 4449 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4450 // 4. non-pointer -> pointer 4451 // a) intptr_t -> pointer : needs 1 inttoptr 4452 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4453 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4454 // allow casting directly between pointer types and non-integer non-pointer 4455 // types. 4456 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4457 const llvm::DataLayout &DL, 4458 Value *Src, llvm::Type *DstTy, 4459 StringRef Name = "") { 4460 auto SrcTy = Src->getType(); 4461 4462 // Case 1. 4463 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4464 return Builder.CreateBitCast(Src, DstTy, Name); 4465 4466 // Case 2. 4467 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4468 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4469 4470 // Case 3. 4471 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4472 // Case 3b. 4473 if (!DstTy->isIntegerTy()) 4474 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4475 // Cases 3a and 3b. 4476 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4477 } 4478 4479 // Case 4b. 4480 if (!SrcTy->isIntegerTy()) 4481 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4482 // Cases 4a and 4b. 4483 return Builder.CreateIntToPtr(Src, DstTy, Name); 4484 } 4485 4486 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4487 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4488 llvm::Type *DstTy = ConvertType(E->getType()); 4489 4490 llvm::Type *SrcTy = Src->getType(); 4491 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 4492 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 4493 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 4494 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 4495 4496 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4497 // vector to get a vec4, then a bitcast if the target type is different. 4498 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4499 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4500 4501 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4502 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4503 DstTy); 4504 } 4505 4506 Src->setName("astype"); 4507 return Src; 4508 } 4509 4510 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4511 // to vec4 if the original type is not vec4, then a shuffle vector to 4512 // get a vec3. 4513 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4514 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4515 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 4516 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4517 Vec4Ty); 4518 } 4519 4520 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4521 Src->setName("astype"); 4522 return Src; 4523 } 4524 4525 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4526 Src, DstTy, "astype"); 4527 } 4528 4529 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4530 return CGF.EmitAtomicExpr(E).getScalarVal(); 4531 } 4532 4533 //===----------------------------------------------------------------------===// 4534 // Entry Point into this File 4535 //===----------------------------------------------------------------------===// 4536 4537 /// Emit the computation of the specified expression of scalar type, ignoring 4538 /// the result. 4539 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4540 assert(E && hasScalarEvaluationKind(E->getType()) && 4541 "Invalid scalar expression to emit"); 4542 4543 return ScalarExprEmitter(*this, IgnoreResultAssign) 4544 .Visit(const_cast<Expr *>(E)); 4545 } 4546 4547 /// Emit a conversion from the specified type to the specified destination type, 4548 /// both of which are LLVM scalar types. 4549 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4550 QualType DstTy, 4551 SourceLocation Loc) { 4552 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4553 "Invalid scalar expression to emit"); 4554 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4555 } 4556 4557 /// Emit a conversion from the specified complex type to the specified 4558 /// destination type, where the destination type is an LLVM scalar type. 4559 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4560 QualType SrcTy, 4561 QualType DstTy, 4562 SourceLocation Loc) { 4563 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4564 "Invalid complex -> scalar conversion"); 4565 return ScalarExprEmitter(*this) 4566 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4567 } 4568 4569 4570 llvm::Value *CodeGenFunction:: 4571 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4572 bool isInc, bool isPre) { 4573 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4574 } 4575 4576 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4577 // object->isa or (*object).isa 4578 // Generate code as for: *(Class*)object 4579 4580 Expr *BaseExpr = E->getBase(); 4581 Address Addr = Address::invalid(); 4582 if (BaseExpr->isRValue()) { 4583 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4584 } else { 4585 Addr = EmitLValue(BaseExpr).getAddress(*this); 4586 } 4587 4588 // Cast the address to Class*. 4589 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4590 return MakeAddrLValue(Addr, E->getType()); 4591 } 4592 4593 4594 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4595 const CompoundAssignOperator *E) { 4596 ScalarExprEmitter Scalar(*this); 4597 Value *Result = nullptr; 4598 switch (E->getOpcode()) { 4599 #define COMPOUND_OP(Op) \ 4600 case BO_##Op##Assign: \ 4601 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4602 Result) 4603 COMPOUND_OP(Mul); 4604 COMPOUND_OP(Div); 4605 COMPOUND_OP(Rem); 4606 COMPOUND_OP(Add); 4607 COMPOUND_OP(Sub); 4608 COMPOUND_OP(Shl); 4609 COMPOUND_OP(Shr); 4610 COMPOUND_OP(And); 4611 COMPOUND_OP(Xor); 4612 COMPOUND_OP(Or); 4613 #undef COMPOUND_OP 4614 4615 case BO_PtrMemD: 4616 case BO_PtrMemI: 4617 case BO_Mul: 4618 case BO_Div: 4619 case BO_Rem: 4620 case BO_Add: 4621 case BO_Sub: 4622 case BO_Shl: 4623 case BO_Shr: 4624 case BO_LT: 4625 case BO_GT: 4626 case BO_LE: 4627 case BO_GE: 4628 case BO_EQ: 4629 case BO_NE: 4630 case BO_Cmp: 4631 case BO_And: 4632 case BO_Xor: 4633 case BO_Or: 4634 case BO_LAnd: 4635 case BO_LOr: 4636 case BO_Assign: 4637 case BO_Comma: 4638 llvm_unreachable("Not valid compound assignment operators"); 4639 } 4640 4641 llvm_unreachable("Unhandled compound assignment operator"); 4642 } 4643 4644 struct GEPOffsetAndOverflow { 4645 // The total (signed) byte offset for the GEP. 4646 llvm::Value *TotalOffset; 4647 // The offset overflow flag - true if the total offset overflows. 4648 llvm::Value *OffsetOverflows; 4649 }; 4650 4651 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant, 4652 /// and compute the total offset it applies from it's base pointer BasePtr. 4653 /// Returns offset in bytes and a boolean flag whether an overflow happened 4654 /// during evaluation. 4655 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal, 4656 llvm::LLVMContext &VMContext, 4657 CodeGenModule &CGM, 4658 CGBuilderTy Builder) { 4659 const auto &DL = CGM.getDataLayout(); 4660 4661 // The total (signed) byte offset for the GEP. 4662 llvm::Value *TotalOffset = nullptr; 4663 4664 // Was the GEP already reduced to a constant? 4665 if (isa<llvm::Constant>(GEPVal)) { 4666 // Compute the offset by casting both pointers to integers and subtracting: 4667 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr) 4668 Value *BasePtr_int = 4669 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType())); 4670 Value *GEPVal_int = 4671 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType())); 4672 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int); 4673 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()}; 4674 } 4675 4676 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4677 assert(GEP->getPointerOperand() == BasePtr && 4678 "BasePtr must be the the base of the GEP."); 4679 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4680 4681 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4682 4683 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4684 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4685 auto *SAddIntrinsic = 4686 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4687 auto *SMulIntrinsic = 4688 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4689 4690 // The offset overflow flag - true if the total offset overflows. 4691 llvm::Value *OffsetOverflows = Builder.getFalse(); 4692 4693 /// Return the result of the given binary operation. 4694 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 4695 llvm::Value *RHS) -> llvm::Value * { 4696 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 4697 4698 // If the operands are constants, return a constant result. 4699 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 4700 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 4701 llvm::APInt N; 4702 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 4703 /*Signed=*/true, N); 4704 if (HasOverflow) 4705 OffsetOverflows = Builder.getTrue(); 4706 return llvm::ConstantInt::get(VMContext, N); 4707 } 4708 } 4709 4710 // Otherwise, compute the result with checked arithmetic. 4711 auto *ResultAndOverflow = Builder.CreateCall( 4712 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 4713 OffsetOverflows = Builder.CreateOr( 4714 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 4715 return Builder.CreateExtractValue(ResultAndOverflow, 0); 4716 }; 4717 4718 // Determine the total byte offset by looking at each GEP operand. 4719 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 4720 GTI != GTE; ++GTI) { 4721 llvm::Value *LocalOffset; 4722 auto *Index = GTI.getOperand(); 4723 // Compute the local offset contributed by this indexing step: 4724 if (auto *STy = GTI.getStructTypeOrNull()) { 4725 // For struct indexing, the local offset is the byte position of the 4726 // specified field. 4727 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 4728 LocalOffset = llvm::ConstantInt::get( 4729 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 4730 } else { 4731 // Otherwise this is array-like indexing. The local offset is the index 4732 // multiplied by the element size. 4733 auto *ElementSize = llvm::ConstantInt::get( 4734 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 4735 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 4736 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 4737 } 4738 4739 // If this is the first offset, set it as the total offset. Otherwise, add 4740 // the local offset into the running total. 4741 if (!TotalOffset || TotalOffset == Zero) 4742 TotalOffset = LocalOffset; 4743 else 4744 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 4745 } 4746 4747 return {TotalOffset, OffsetOverflows}; 4748 } 4749 4750 Value * 4751 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList, 4752 bool SignedIndices, bool IsSubtraction, 4753 SourceLocation Loc, const Twine &Name) { 4754 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 4755 4756 // If the pointer overflow sanitizer isn't enabled, do nothing. 4757 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 4758 return GEPVal; 4759 4760 llvm::Type *PtrTy = Ptr->getType(); 4761 4762 // Perform nullptr-and-offset check unless the nullptr is defined. 4763 bool PerformNullCheck = !NullPointerIsDefined( 4764 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace()); 4765 // Check for overflows unless the GEP got constant-folded, 4766 // and only in the default address space 4767 bool PerformOverflowCheck = 4768 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0; 4769 4770 if (!(PerformNullCheck || PerformOverflowCheck)) 4771 return GEPVal; 4772 4773 const auto &DL = CGM.getDataLayout(); 4774 4775 SanitizerScope SanScope(this); 4776 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy); 4777 4778 GEPOffsetAndOverflow EvaluatedGEP = 4779 EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder); 4780 4781 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || 4782 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && 4783 "If the offset got constant-folded, we don't expect that there was an " 4784 "overflow."); 4785 4786 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4787 4788 // Common case: if the total offset is zero, and we are using C++ semantics, 4789 // where nullptr+0 is defined, don't emit a check. 4790 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus) 4791 return GEPVal; 4792 4793 // Now that we've computed the total offset, add it to the base pointer (with 4794 // wrapping semantics). 4795 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy); 4796 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset); 4797 4798 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 4799 4800 if (PerformNullCheck) { 4801 // In C++, if the base pointer evaluates to a null pointer value, 4802 // the only valid pointer this inbounds GEP can produce is also 4803 // a null pointer, so the offset must also evaluate to zero. 4804 // Likewise, if we have non-zero base pointer, we can not get null pointer 4805 // as a result, so the offset can not be -intptr_t(BasePtr). 4806 // In other words, both pointers are either null, or both are non-null, 4807 // or the behaviour is undefined. 4808 // 4809 // C, however, is more strict in this regard, and gives more 4810 // optimization opportunities: in C, additionally, nullptr+0 is undefined. 4811 // So both the input to the 'gep inbounds' AND the output must not be null. 4812 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr); 4813 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP); 4814 auto *Valid = 4815 CGM.getLangOpts().CPlusPlus 4816 ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr) 4817 : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr); 4818 Checks.emplace_back(Valid, SanitizerKind::PointerOverflow); 4819 } 4820 4821 if (PerformOverflowCheck) { 4822 // The GEP is valid if: 4823 // 1) The total offset doesn't overflow, and 4824 // 2) The sign of the difference between the computed address and the base 4825 // pointer matches the sign of the total offset. 4826 llvm::Value *ValidGEP; 4827 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows); 4828 if (SignedIndices) { 4829 // GEP is computed as `unsigned base + signed offset`, therefore: 4830 // * If offset was positive, then the computed pointer can not be 4831 // [unsigned] less than the base pointer, unless it overflowed. 4832 // * If offset was negative, then the computed pointer can not be 4833 // [unsigned] greater than the bas pointere, unless it overflowed. 4834 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4835 auto *PosOrZeroOffset = 4836 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero); 4837 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 4838 ValidGEP = 4839 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid); 4840 } else if (!IsSubtraction) { 4841 // GEP is computed as `unsigned base + unsigned offset`, therefore the 4842 // computed pointer can not be [unsigned] less than base pointer, 4843 // unless there was an overflow. 4844 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`. 4845 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4846 } else { 4847 // GEP is computed as `unsigned base - unsigned offset`, therefore the 4848 // computed pointer can not be [unsigned] greater than base pointer, 4849 // unless there was an overflow. 4850 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`. 4851 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr); 4852 } 4853 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow); 4854 Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow); 4855 } 4856 4857 assert(!Checks.empty() && "Should have produced some checks."); 4858 4859 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 4860 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 4861 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 4862 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 4863 4864 return GEPVal; 4865 } 4866