1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "CodeGenFunction.h" 16 #include "CGCXXABI.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenModule.h" 19 #include "CGDebugInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtVisitor.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "llvm/Constants.h" 26 #include "llvm/Function.h" 27 #include "llvm/GlobalVariable.h" 28 #include "llvm/Intrinsics.h" 29 #include "llvm/Module.h" 30 #include "llvm/Support/CFG.h" 31 #include "llvm/Target/TargetData.h" 32 #include <cstdarg> 33 34 using namespace clang; 35 using namespace CodeGen; 36 using llvm::Value; 37 38 //===----------------------------------------------------------------------===// 39 // Scalar Expression Emitter 40 //===----------------------------------------------------------------------===// 41 42 namespace { 43 struct BinOpInfo { 44 Value *LHS; 45 Value *RHS; 46 QualType Ty; // Computation Type. 47 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 48 const Expr *E; // Entire expr, for error unsupported. May not be binop. 49 }; 50 51 static bool MustVisitNullValue(const Expr *E) { 52 // If a null pointer expression's type is the C++0x nullptr_t, then 53 // it's not necessarily a simple constant and it must be evaluated 54 // for its potential side effects. 55 return E->getType()->isNullPtrType(); 56 } 57 58 class ScalarExprEmitter 59 : public StmtVisitor<ScalarExprEmitter, Value*> { 60 CodeGenFunction &CGF; 61 CGBuilderTy &Builder; 62 bool IgnoreResultAssign; 63 llvm::LLVMContext &VMContext; 64 public: 65 66 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 67 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 68 VMContext(cgf.getLLVMContext()) { 69 } 70 71 //===--------------------------------------------------------------------===// 72 // Utilities 73 //===--------------------------------------------------------------------===// 74 75 bool TestAndClearIgnoreResultAssign() { 76 bool I = IgnoreResultAssign; 77 IgnoreResultAssign = false; 78 return I; 79 } 80 81 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 82 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 83 LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); } 84 85 Value *EmitLoadOfLValue(LValue LV) { 86 return CGF.EmitLoadOfLValue(LV).getScalarVal(); 87 } 88 89 /// EmitLoadOfLValue - Given an expression with complex type that represents a 90 /// value l-value, this method emits the address of the l-value, then loads 91 /// and returns the result. 92 Value *EmitLoadOfLValue(const Expr *E) { 93 return EmitLoadOfLValue(EmitCheckedLValue(E)); 94 } 95 96 /// EmitConversionToBool - Convert the specified expression value to a 97 /// boolean (i1) truth value. This is equivalent to "Val != 0". 98 Value *EmitConversionToBool(Value *Src, QualType DstTy); 99 100 /// EmitScalarConversion - Emit a conversion from the specified type to the 101 /// specified destination type, both of which are LLVM scalar types. 102 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy); 103 104 /// EmitComplexToScalarConversion - Emit a conversion from the specified 105 /// complex type to the specified destination type, where the destination type 106 /// is an LLVM scalar type. 107 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 108 QualType SrcTy, QualType DstTy); 109 110 /// EmitNullValue - Emit a value that corresponds to null for the given type. 111 Value *EmitNullValue(QualType Ty); 112 113 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 114 Value *EmitFloatToBoolConversion(Value *V) { 115 // Compare against 0.0 for fp scalars. 116 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 117 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 118 } 119 120 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 121 Value *EmitPointerToBoolConversion(Value *V) { 122 Value *Zero = llvm::ConstantPointerNull::get( 123 cast<llvm::PointerType>(V->getType())); 124 return Builder.CreateICmpNE(V, Zero, "tobool"); 125 } 126 127 Value *EmitIntToBoolConversion(Value *V) { 128 // Because of the type rules of C, we often end up computing a 129 // logical value, then zero extending it to int, then wanting it 130 // as a logical value again. Optimize this common case. 131 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 132 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 133 Value *Result = ZI->getOperand(0); 134 // If there aren't any more uses, zap the instruction to save space. 135 // Note that there can be more uses, for example if this 136 // is the result of an assignment. 137 if (ZI->use_empty()) 138 ZI->eraseFromParent(); 139 return Result; 140 } 141 } 142 143 return Builder.CreateIsNotNull(V, "tobool"); 144 } 145 146 //===--------------------------------------------------------------------===// 147 // Visitor Methods 148 //===--------------------------------------------------------------------===// 149 150 Value *Visit(Expr *E) { 151 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 152 } 153 154 Value *VisitStmt(Stmt *S) { 155 S->dump(CGF.getContext().getSourceManager()); 156 llvm_unreachable("Stmt can't have complex result type!"); 157 } 158 Value *VisitExpr(Expr *S); 159 160 Value *VisitParenExpr(ParenExpr *PE) { 161 return Visit(PE->getSubExpr()); 162 } 163 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 164 return Visit(E->getReplacement()); 165 } 166 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 167 return Visit(GE->getResultExpr()); 168 } 169 170 // Leaves. 171 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 172 return Builder.getInt(E->getValue()); 173 } 174 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 175 return llvm::ConstantFP::get(VMContext, E->getValue()); 176 } 177 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 178 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 179 } 180 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 181 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 182 } 183 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 184 return EmitNullValue(E->getType()); 185 } 186 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 187 return EmitNullValue(E->getType()); 188 } 189 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 190 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 191 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 192 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 193 return Builder.CreateBitCast(V, ConvertType(E->getType())); 194 } 195 196 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 197 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 198 } 199 200 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 201 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 202 } 203 204 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 205 if (E->isGLValue()) 206 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E)); 207 208 // Otherwise, assume the mapping is the scalar directly. 209 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 210 } 211 212 // l-values. 213 Value *VisitDeclRefExpr(DeclRefExpr *E) { 214 Expr::EvalResult Result; 215 if (!E->EvaluateAsRValue(Result, CGF.getContext())) 216 return EmitLoadOfLValue(E); 217 218 assert(!Result.HasSideEffects && "Constant declref with side-effect?!"); 219 220 llvm::Constant *C; 221 if (Result.Val.isInt()) 222 C = Builder.getInt(Result.Val.getInt()); 223 else if (Result.Val.isFloat()) 224 C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat()); 225 else 226 return EmitLoadOfLValue(E); 227 228 // Make sure we emit a debug reference to the global variable. 229 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) { 230 if (!CGF.getContext().DeclMustBeEmitted(VD)) 231 CGF.EmitDeclRefExprDbgValue(E, C); 232 } else if (isa<EnumConstantDecl>(E->getDecl())) { 233 CGF.EmitDeclRefExprDbgValue(E, C); 234 } 235 236 return C; 237 } 238 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 239 return CGF.EmitObjCSelectorExpr(E); 240 } 241 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 242 return CGF.EmitObjCProtocolExpr(E); 243 } 244 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 245 return EmitLoadOfLValue(E); 246 } 247 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 248 if (E->getMethodDecl() && 249 E->getMethodDecl()->getResultType()->isReferenceType()) 250 return EmitLoadOfLValue(E); 251 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 252 } 253 254 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 255 LValue LV = CGF.EmitObjCIsaExpr(E); 256 Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal(); 257 return V; 258 } 259 260 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 261 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 262 Value *VisitMemberExpr(MemberExpr *E); 263 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 264 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 265 return EmitLoadOfLValue(E); 266 } 267 268 Value *VisitInitListExpr(InitListExpr *E); 269 270 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 271 return CGF.CGM.EmitNullConstant(E->getType()); 272 } 273 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 274 if (E->getType()->isVariablyModifiedType()) 275 CGF.EmitVariablyModifiedType(E->getType()); 276 return VisitCastExpr(E); 277 } 278 Value *VisitCastExpr(CastExpr *E); 279 280 Value *VisitCallExpr(const CallExpr *E) { 281 if (E->getCallReturnType()->isReferenceType()) 282 return EmitLoadOfLValue(E); 283 284 return CGF.EmitCallExpr(E).getScalarVal(); 285 } 286 287 Value *VisitStmtExpr(const StmtExpr *E); 288 289 Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E); 290 291 // Unary Operators. 292 Value *VisitUnaryPostDec(const UnaryOperator *E) { 293 LValue LV = EmitLValue(E->getSubExpr()); 294 return EmitScalarPrePostIncDec(E, LV, false, false); 295 } 296 Value *VisitUnaryPostInc(const UnaryOperator *E) { 297 LValue LV = EmitLValue(E->getSubExpr()); 298 return EmitScalarPrePostIncDec(E, LV, true, false); 299 } 300 Value *VisitUnaryPreDec(const UnaryOperator *E) { 301 LValue LV = EmitLValue(E->getSubExpr()); 302 return EmitScalarPrePostIncDec(E, LV, false, true); 303 } 304 Value *VisitUnaryPreInc(const UnaryOperator *E) { 305 LValue LV = EmitLValue(E->getSubExpr()); 306 return EmitScalarPrePostIncDec(E, LV, true, true); 307 } 308 309 llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 310 llvm::Value *InVal, 311 llvm::Value *NextVal, 312 bool IsInc); 313 314 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 315 bool isInc, bool isPre); 316 317 318 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 319 if (isa<MemberPointerType>(E->getType())) // never sugared 320 return CGF.CGM.getMemberPointerConstant(E); 321 322 return EmitLValue(E->getSubExpr()).getAddress(); 323 } 324 Value *VisitUnaryDeref(const UnaryOperator *E) { 325 if (E->getType()->isVoidType()) 326 return Visit(E->getSubExpr()); // the actual value should be unused 327 return EmitLoadOfLValue(E); 328 } 329 Value *VisitUnaryPlus(const UnaryOperator *E) { 330 // This differs from gcc, though, most likely due to a bug in gcc. 331 TestAndClearIgnoreResultAssign(); 332 return Visit(E->getSubExpr()); 333 } 334 Value *VisitUnaryMinus (const UnaryOperator *E); 335 Value *VisitUnaryNot (const UnaryOperator *E); 336 Value *VisitUnaryLNot (const UnaryOperator *E); 337 Value *VisitUnaryReal (const UnaryOperator *E); 338 Value *VisitUnaryImag (const UnaryOperator *E); 339 Value *VisitUnaryExtension(const UnaryOperator *E) { 340 return Visit(E->getSubExpr()); 341 } 342 343 // C++ 344 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 345 return EmitLoadOfLValue(E); 346 } 347 348 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 349 return Visit(DAE->getExpr()); 350 } 351 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 352 return CGF.LoadCXXThis(); 353 } 354 355 Value *VisitExprWithCleanups(ExprWithCleanups *E) { 356 CGF.enterFullExpression(E); 357 CodeGenFunction::RunCleanupsScope Scope(CGF); 358 return Visit(E->getSubExpr()); 359 } 360 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 361 return CGF.EmitCXXNewExpr(E); 362 } 363 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 364 CGF.EmitCXXDeleteExpr(E); 365 return 0; 366 } 367 Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) { 368 return Builder.getInt1(E->getValue()); 369 } 370 371 Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) { 372 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 373 } 374 375 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 376 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 377 } 378 379 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 380 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 381 } 382 383 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 384 // C++ [expr.pseudo]p1: 385 // The result shall only be used as the operand for the function call 386 // operator (), and the result of such a call has type void. The only 387 // effect is the evaluation of the postfix-expression before the dot or 388 // arrow. 389 CGF.EmitScalarExpr(E->getBase()); 390 return 0; 391 } 392 393 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 394 return EmitNullValue(E->getType()); 395 } 396 397 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 398 CGF.EmitCXXThrowExpr(E); 399 return 0; 400 } 401 402 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 403 return Builder.getInt1(E->getValue()); 404 } 405 406 // Binary Operators. 407 Value *EmitMul(const BinOpInfo &Ops) { 408 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 409 switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) { 410 case LangOptions::SOB_Undefined: 411 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 412 case LangOptions::SOB_Defined: 413 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 414 case LangOptions::SOB_Trapping: 415 return EmitOverflowCheckedBinOp(Ops); 416 } 417 } 418 419 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 420 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 421 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 422 } 423 bool isTrapvOverflowBehavior() { 424 return CGF.getContext().getLangOptions().getSignedOverflowBehavior() 425 == LangOptions::SOB_Trapping; 426 } 427 /// Create a binary op that checks for overflow. 428 /// Currently only supports +, - and *. 429 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 430 // Emit the overflow BB when -ftrapv option is activated. 431 void EmitOverflowBB(llvm::BasicBlock *overflowBB) { 432 Builder.SetInsertPoint(overflowBB); 433 llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap); 434 Builder.CreateCall(Trap); 435 Builder.CreateUnreachable(); 436 } 437 // Check for undefined division and modulus behaviors. 438 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 439 llvm::Value *Zero,bool isDiv); 440 Value *EmitDiv(const BinOpInfo &Ops); 441 Value *EmitRem(const BinOpInfo &Ops); 442 Value *EmitAdd(const BinOpInfo &Ops); 443 Value *EmitSub(const BinOpInfo &Ops); 444 Value *EmitShl(const BinOpInfo &Ops); 445 Value *EmitShr(const BinOpInfo &Ops); 446 Value *EmitAnd(const BinOpInfo &Ops) { 447 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 448 } 449 Value *EmitXor(const BinOpInfo &Ops) { 450 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 451 } 452 Value *EmitOr (const BinOpInfo &Ops) { 453 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 454 } 455 456 BinOpInfo EmitBinOps(const BinaryOperator *E); 457 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 458 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 459 Value *&Result); 460 461 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 462 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 463 464 // Binary operators and binary compound assignment operators. 465 #define HANDLEBINOP(OP) \ 466 Value *VisitBin ## OP(const BinaryOperator *E) { \ 467 return Emit ## OP(EmitBinOps(E)); \ 468 } \ 469 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 470 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 471 } 472 HANDLEBINOP(Mul) 473 HANDLEBINOP(Div) 474 HANDLEBINOP(Rem) 475 HANDLEBINOP(Add) 476 HANDLEBINOP(Sub) 477 HANDLEBINOP(Shl) 478 HANDLEBINOP(Shr) 479 HANDLEBINOP(And) 480 HANDLEBINOP(Xor) 481 HANDLEBINOP(Or) 482 #undef HANDLEBINOP 483 484 // Comparisons. 485 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, 486 unsigned SICmpOpc, unsigned FCmpOpc); 487 #define VISITCOMP(CODE, UI, SI, FP) \ 488 Value *VisitBin##CODE(const BinaryOperator *E) { \ 489 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 490 llvm::FCmpInst::FP); } 491 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 492 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 493 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 494 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 495 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 496 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 497 #undef VISITCOMP 498 499 Value *VisitBinAssign (const BinaryOperator *E); 500 501 Value *VisitBinLAnd (const BinaryOperator *E); 502 Value *VisitBinLOr (const BinaryOperator *E); 503 Value *VisitBinComma (const BinaryOperator *E); 504 505 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 506 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 507 508 // Other Operators. 509 Value *VisitBlockExpr(const BlockExpr *BE); 510 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 511 Value *VisitChooseExpr(ChooseExpr *CE); 512 Value *VisitVAArgExpr(VAArgExpr *VE); 513 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 514 return CGF.EmitObjCStringLiteral(E); 515 } 516 Value *VisitAsTypeExpr(AsTypeExpr *CE); 517 Value *VisitAtomicExpr(AtomicExpr *AE); 518 }; 519 } // end anonymous namespace. 520 521 //===----------------------------------------------------------------------===// 522 // Utilities 523 //===----------------------------------------------------------------------===// 524 525 /// EmitConversionToBool - Convert the specified expression value to a 526 /// boolean (i1) truth value. This is equivalent to "Val != 0". 527 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 528 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 529 530 if (SrcType->isRealFloatingType()) 531 return EmitFloatToBoolConversion(Src); 532 533 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 534 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 535 536 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 537 "Unknown scalar type to convert"); 538 539 if (isa<llvm::IntegerType>(Src->getType())) 540 return EmitIntToBoolConversion(Src); 541 542 assert(isa<llvm::PointerType>(Src->getType())); 543 return EmitPointerToBoolConversion(Src); 544 } 545 546 /// EmitScalarConversion - Emit a conversion from the specified type to the 547 /// specified destination type, both of which are LLVM scalar types. 548 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 549 QualType DstType) { 550 SrcType = CGF.getContext().getCanonicalType(SrcType); 551 DstType = CGF.getContext().getCanonicalType(DstType); 552 if (SrcType == DstType) return Src; 553 554 if (DstType->isVoidType()) return 0; 555 556 llvm::Type *SrcTy = Src->getType(); 557 558 // Floating casts might be a bit special: if we're doing casts to / from half 559 // FP, we should go via special intrinsics. 560 if (SrcType->isHalfType()) { 561 Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src); 562 SrcType = CGF.getContext().FloatTy; 563 SrcTy = llvm::Type::getFloatTy(VMContext); 564 } 565 566 // Handle conversions to bool first, they are special: comparisons against 0. 567 if (DstType->isBooleanType()) 568 return EmitConversionToBool(Src, SrcType); 569 570 llvm::Type *DstTy = ConvertType(DstType); 571 572 // Ignore conversions like int -> uint. 573 if (SrcTy == DstTy) 574 return Src; 575 576 // Handle pointer conversions next: pointers can only be converted to/from 577 // other pointers and integers. Check for pointer types in terms of LLVM, as 578 // some native types (like Obj-C id) may map to a pointer type. 579 if (isa<llvm::PointerType>(DstTy)) { 580 // The source value may be an integer, or a pointer. 581 if (isa<llvm::PointerType>(SrcTy)) 582 return Builder.CreateBitCast(Src, DstTy, "conv"); 583 584 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 585 // First, convert to the correct width so that we control the kind of 586 // extension. 587 llvm::Type *MiddleTy = CGF.IntPtrTy; 588 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 589 llvm::Value* IntResult = 590 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 591 // Then, cast to pointer. 592 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 593 } 594 595 if (isa<llvm::PointerType>(SrcTy)) { 596 // Must be an ptr to int cast. 597 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 598 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 599 } 600 601 // A scalar can be splatted to an extended vector of the same element type 602 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 603 // Cast the scalar to element type 604 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType(); 605 llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy); 606 607 // Insert the element in element zero of an undef vector 608 llvm::Value *UnV = llvm::UndefValue::get(DstTy); 609 llvm::Value *Idx = Builder.getInt32(0); 610 UnV = Builder.CreateInsertElement(UnV, Elt, Idx); 611 612 // Splat the element across to all elements 613 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 614 llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements, 615 Builder.getInt32(0)); 616 llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat"); 617 return Yay; 618 } 619 620 // Allow bitcast from vector to integer/fp of the same size. 621 if (isa<llvm::VectorType>(SrcTy) || 622 isa<llvm::VectorType>(DstTy)) 623 return Builder.CreateBitCast(Src, DstTy, "conv"); 624 625 // Finally, we have the arithmetic types: real int/float. 626 Value *Res = NULL; 627 llvm::Type *ResTy = DstTy; 628 629 // Cast to half via float 630 if (DstType->isHalfType()) 631 DstTy = llvm::Type::getFloatTy(VMContext); 632 633 if (isa<llvm::IntegerType>(SrcTy)) { 634 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 635 if (isa<llvm::IntegerType>(DstTy)) 636 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 637 else if (InputSigned) 638 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 639 else 640 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 641 } else if (isa<llvm::IntegerType>(DstTy)) { 642 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 643 if (DstType->isSignedIntegerOrEnumerationType()) 644 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 645 else 646 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 647 } else { 648 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 649 "Unknown real conversion"); 650 if (DstTy->getTypeID() < SrcTy->getTypeID()) 651 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 652 else 653 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 654 } 655 656 if (DstTy != ResTy) { 657 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 658 Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res); 659 } 660 661 return Res; 662 } 663 664 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 665 /// type to the specified destination type, where the destination type is an 666 /// LLVM scalar type. 667 Value *ScalarExprEmitter:: 668 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 669 QualType SrcTy, QualType DstTy) { 670 // Get the source element type. 671 SrcTy = SrcTy->getAs<ComplexType>()->getElementType(); 672 673 // Handle conversions to bool first, they are special: comparisons against 0. 674 if (DstTy->isBooleanType()) { 675 // Complex != 0 -> (Real != 0) | (Imag != 0) 676 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy); 677 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy); 678 return Builder.CreateOr(Src.first, Src.second, "tobool"); 679 } 680 681 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 682 // the imaginary part of the complex value is discarded and the value of the 683 // real part is converted according to the conversion rules for the 684 // corresponding real type. 685 return EmitScalarConversion(Src.first, SrcTy, DstTy); 686 } 687 688 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 689 if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) 690 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 691 692 return llvm::Constant::getNullValue(ConvertType(Ty)); 693 } 694 695 //===----------------------------------------------------------------------===// 696 // Visitor Methods 697 //===----------------------------------------------------------------------===// 698 699 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 700 CGF.ErrorUnsupported(E, "scalar expression"); 701 if (E->getType()->isVoidType()) 702 return 0; 703 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 704 } 705 706 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 707 // Vector Mask Case 708 if (E->getNumSubExprs() == 2 || 709 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) { 710 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 711 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 712 Value *Mask; 713 714 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 715 unsigned LHSElts = LTy->getNumElements(); 716 717 if (E->getNumSubExprs() == 3) { 718 Mask = CGF.EmitScalarExpr(E->getExpr(2)); 719 720 // Shuffle LHS & RHS into one input vector. 721 SmallVector<llvm::Constant*, 32> concat; 722 for (unsigned i = 0; i != LHSElts; ++i) { 723 concat.push_back(Builder.getInt32(2*i)); 724 concat.push_back(Builder.getInt32(2*i+1)); 725 } 726 727 Value* CV = llvm::ConstantVector::get(concat); 728 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat"); 729 LHSElts *= 2; 730 } else { 731 Mask = RHS; 732 } 733 734 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 735 llvm::Constant* EltMask; 736 737 // Treat vec3 like vec4. 738 if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) 739 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 740 (1 << llvm::Log2_32(LHSElts+2))-1); 741 else if ((LHSElts == 3) && (E->getNumSubExprs() == 2)) 742 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 743 (1 << llvm::Log2_32(LHSElts+1))-1); 744 else 745 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 746 (1 << llvm::Log2_32(LHSElts))-1); 747 748 // Mask off the high bits of each shuffle index. 749 Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(), 750 EltMask); 751 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 752 753 // newv = undef 754 // mask = mask & maskbits 755 // for each elt 756 // n = extract mask i 757 // x = extract val n 758 // newv = insert newv, x, i 759 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 760 MTy->getNumElements()); 761 Value* NewV = llvm::UndefValue::get(RTy); 762 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 763 Value *Indx = Builder.getInt32(i); 764 Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx"); 765 Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext"); 766 767 // Handle vec3 special since the index will be off by one for the RHS. 768 if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) { 769 Value *cmpIndx, *newIndx; 770 cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3), 771 "cmp_shuf_idx"); 772 newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj"); 773 Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx"); 774 } 775 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 776 NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins"); 777 } 778 return NewV; 779 } 780 781 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 782 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 783 784 // Handle vec3 special since the index will be off by one for the RHS. 785 llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType()); 786 SmallVector<llvm::Constant*, 32> indices; 787 for (unsigned i = 2; i < E->getNumSubExprs(); i++) { 788 unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 789 if (VTy->getNumElements() == 3 && Idx > 3) 790 Idx -= 1; 791 indices.push_back(Builder.getInt32(Idx)); 792 } 793 794 Value *SV = llvm::ConstantVector::get(indices); 795 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 796 } 797 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 798 llvm::APSInt Value; 799 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 800 if (E->isArrow()) 801 CGF.EmitScalarExpr(E->getBase()); 802 else 803 EmitLValue(E->getBase()); 804 return Builder.getInt(Value); 805 } 806 807 // Emit debug info for aggregate now, if it was delayed to reduce 808 // debug info size. 809 CGDebugInfo *DI = CGF.getDebugInfo(); 810 if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) { 811 QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType(); 812 if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) 813 if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl())) 814 DI->getOrCreateRecordType(PTy->getPointeeType(), 815 M->getParent()->getLocation()); 816 } 817 return EmitLoadOfLValue(E); 818 } 819 820 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 821 TestAndClearIgnoreResultAssign(); 822 823 // Emit subscript expressions in rvalue context's. For most cases, this just 824 // loads the lvalue formed by the subscript expr. However, we have to be 825 // careful, because the base of a vector subscript is occasionally an rvalue, 826 // so we can't get it as an lvalue. 827 if (!E->getBase()->getType()->isVectorType()) 828 return EmitLoadOfLValue(E); 829 830 // Handle the vector case. The base must be a vector, the index must be an 831 // integer value. 832 Value *Base = Visit(E->getBase()); 833 Value *Idx = Visit(E->getIdx()); 834 bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType(); 835 Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast"); 836 return Builder.CreateExtractElement(Base, Idx, "vecext"); 837 } 838 839 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 840 unsigned Off, llvm::Type *I32Ty) { 841 int MV = SVI->getMaskValue(Idx); 842 if (MV == -1) 843 return llvm::UndefValue::get(I32Ty); 844 return llvm::ConstantInt::get(I32Ty, Off+MV); 845 } 846 847 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 848 bool Ignore = TestAndClearIgnoreResultAssign(); 849 (void)Ignore; 850 assert (Ignore == false && "init list ignored"); 851 unsigned NumInitElements = E->getNumInits(); 852 853 if (E->hadArrayRangeDesignator()) 854 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 855 856 llvm::VectorType *VType = 857 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 858 859 if (!VType) { 860 if (NumInitElements == 0) { 861 // C++11 value-initialization for the scalar. 862 return EmitNullValue(E->getType()); 863 } 864 // We have a scalar in braces. Just use the first element. 865 return Visit(E->getInit(0)); 866 } 867 868 unsigned ResElts = VType->getNumElements(); 869 870 // Loop over initializers collecting the Value for each, and remembering 871 // whether the source was swizzle (ExtVectorElementExpr). This will allow 872 // us to fold the shuffle for the swizzle into the shuffle for the vector 873 // initializer, since LLVM optimizers generally do not want to touch 874 // shuffles. 875 unsigned CurIdx = 0; 876 bool VIsUndefShuffle = false; 877 llvm::Value *V = llvm::UndefValue::get(VType); 878 for (unsigned i = 0; i != NumInitElements; ++i) { 879 Expr *IE = E->getInit(i); 880 Value *Init = Visit(IE); 881 SmallVector<llvm::Constant*, 16> Args; 882 883 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 884 885 // Handle scalar elements. If the scalar initializer is actually one 886 // element of a different vector of the same width, use shuffle instead of 887 // extract+insert. 888 if (!VVT) { 889 if (isa<ExtVectorElementExpr>(IE)) { 890 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 891 892 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 893 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 894 Value *LHS = 0, *RHS = 0; 895 if (CurIdx == 0) { 896 // insert into undef -> shuffle (src, undef) 897 Args.push_back(C); 898 for (unsigned j = 1; j != ResElts; ++j) 899 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 900 901 LHS = EI->getVectorOperand(); 902 RHS = V; 903 VIsUndefShuffle = true; 904 } else if (VIsUndefShuffle) { 905 // insert into undefshuffle && size match -> shuffle (v, src) 906 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 907 for (unsigned j = 0; j != CurIdx; ++j) 908 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 909 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 910 for (unsigned j = CurIdx + 1; j != ResElts; ++j) 911 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 912 913 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 914 RHS = EI->getVectorOperand(); 915 VIsUndefShuffle = false; 916 } 917 if (!Args.empty()) { 918 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 919 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 920 ++CurIdx; 921 continue; 922 } 923 } 924 } 925 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 926 "vecinit"); 927 VIsUndefShuffle = false; 928 ++CurIdx; 929 continue; 930 } 931 932 unsigned InitElts = VVT->getNumElements(); 933 934 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 935 // input is the same width as the vector being constructed, generate an 936 // optimized shuffle of the swizzle input into the result. 937 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 938 if (isa<ExtVectorElementExpr>(IE)) { 939 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 940 Value *SVOp = SVI->getOperand(0); 941 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 942 943 if (OpTy->getNumElements() == ResElts) { 944 for (unsigned j = 0; j != CurIdx; ++j) { 945 // If the current vector initializer is a shuffle with undef, merge 946 // this shuffle directly into it. 947 if (VIsUndefShuffle) { 948 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 949 CGF.Int32Ty)); 950 } else { 951 Args.push_back(Builder.getInt32(j)); 952 } 953 } 954 for (unsigned j = 0, je = InitElts; j != je; ++j) 955 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 956 for (unsigned j = CurIdx + InitElts; j != ResElts; ++j) 957 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 958 959 if (VIsUndefShuffle) 960 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 961 962 Init = SVOp; 963 } 964 } 965 966 // Extend init to result vector length, and then shuffle its contribution 967 // to the vector initializer into V. 968 if (Args.empty()) { 969 for (unsigned j = 0; j != InitElts; ++j) 970 Args.push_back(Builder.getInt32(j)); 971 for (unsigned j = InitElts; j != ResElts; ++j) 972 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 973 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 974 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 975 Mask, "vext"); 976 977 Args.clear(); 978 for (unsigned j = 0; j != CurIdx; ++j) 979 Args.push_back(Builder.getInt32(j)); 980 for (unsigned j = 0; j != InitElts; ++j) 981 Args.push_back(Builder.getInt32(j+Offset)); 982 for (unsigned j = CurIdx + InitElts; j != ResElts; ++j) 983 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 984 } 985 986 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 987 // merging subsequent shuffles into this one. 988 if (CurIdx == 0) 989 std::swap(V, Init); 990 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 991 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 992 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 993 CurIdx += InitElts; 994 } 995 996 // FIXME: evaluate codegen vs. shuffling against constant null vector. 997 // Emit remaining default initializers. 998 llvm::Type *EltTy = VType->getElementType(); 999 1000 // Emit remaining default initializers 1001 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1002 Value *Idx = Builder.getInt32(CurIdx); 1003 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1004 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1005 } 1006 return V; 1007 } 1008 1009 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) { 1010 const Expr *E = CE->getSubExpr(); 1011 1012 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1013 return false; 1014 1015 if (isa<CXXThisExpr>(E)) { 1016 // We always assume that 'this' is never null. 1017 return false; 1018 } 1019 1020 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1021 // And that glvalue casts are never null. 1022 if (ICE->getValueKind() != VK_RValue) 1023 return false; 1024 } 1025 1026 return true; 1027 } 1028 1029 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1030 // have to handle a more broad range of conversions than explicit casts, as they 1031 // handle things like function to ptr-to-function decay etc. 1032 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1033 Expr *E = CE->getSubExpr(); 1034 QualType DestTy = CE->getType(); 1035 CastKind Kind = CE->getCastKind(); 1036 1037 if (!DestTy->isVoidType()) 1038 TestAndClearIgnoreResultAssign(); 1039 1040 // Since almost all cast kinds apply to scalars, this switch doesn't have 1041 // a default case, so the compiler will warn on a missing case. The cases 1042 // are in the same order as in the CastKind enum. 1043 switch (Kind) { 1044 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1045 1046 case CK_LValueBitCast: 1047 case CK_ObjCObjectLValueCast: { 1048 Value *V = EmitLValue(E).getAddress(); 1049 V = Builder.CreateBitCast(V, 1050 ConvertType(CGF.getContext().getPointerType(DestTy))); 1051 return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy)); 1052 } 1053 1054 case CK_CPointerToObjCPointerCast: 1055 case CK_BlockPointerToObjCPointerCast: 1056 case CK_AnyPointerToBlockPointerCast: 1057 case CK_BitCast: { 1058 Value *Src = Visit(const_cast<Expr*>(E)); 1059 return Builder.CreateBitCast(Src, ConvertType(DestTy)); 1060 } 1061 case CK_AtomicToNonAtomic: 1062 case CK_NonAtomicToAtomic: 1063 case CK_NoOp: 1064 case CK_UserDefinedConversion: 1065 return Visit(const_cast<Expr*>(E)); 1066 1067 case CK_BaseToDerived: { 1068 const CXXRecordDecl *DerivedClassDecl = 1069 DestTy->getCXXRecordDeclForPointerType(); 1070 1071 return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl, 1072 CE->path_begin(), CE->path_end(), 1073 ShouldNullCheckClassCastValue(CE)); 1074 } 1075 case CK_UncheckedDerivedToBase: 1076 case CK_DerivedToBase: { 1077 const RecordType *DerivedClassTy = 1078 E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>(); 1079 CXXRecordDecl *DerivedClassDecl = 1080 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 1081 1082 return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl, 1083 CE->path_begin(), CE->path_end(), 1084 ShouldNullCheckClassCastValue(CE)); 1085 } 1086 case CK_Dynamic: { 1087 Value *V = Visit(const_cast<Expr*>(E)); 1088 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1089 return CGF.EmitDynamicCast(V, DCE); 1090 } 1091 1092 case CK_ArrayToPointerDecay: { 1093 assert(E->getType()->isArrayType() && 1094 "Array to pointer decay must have array source type!"); 1095 1096 Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays. 1097 1098 // Note that VLA pointers are always decayed, so we don't need to do 1099 // anything here. 1100 if (!E->getType()->isVariableArrayType()) { 1101 assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer"); 1102 assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType()) 1103 ->getElementType()) && 1104 "Expected pointer to array"); 1105 V = Builder.CreateStructGEP(V, 0, "arraydecay"); 1106 } 1107 1108 // Make sure the array decay ends up being the right type. This matters if 1109 // the array type was of an incomplete type. 1110 return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType())); 1111 } 1112 case CK_FunctionToPointerDecay: 1113 return EmitLValue(E).getAddress(); 1114 1115 case CK_NullToPointer: 1116 if (MustVisitNullValue(E)) 1117 (void) Visit(E); 1118 1119 return llvm::ConstantPointerNull::get( 1120 cast<llvm::PointerType>(ConvertType(DestTy))); 1121 1122 case CK_NullToMemberPointer: { 1123 if (MustVisitNullValue(E)) 1124 (void) Visit(E); 1125 1126 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1127 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1128 } 1129 1130 case CK_BaseToDerivedMemberPointer: 1131 case CK_DerivedToBaseMemberPointer: { 1132 Value *Src = Visit(E); 1133 1134 // Note that the AST doesn't distinguish between checked and 1135 // unchecked member pointer conversions, so we always have to 1136 // implement checked conversions here. This is inefficient when 1137 // actual control flow may be required in order to perform the 1138 // check, which it is for data member pointers (but not member 1139 // function pointers on Itanium and ARM). 1140 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1141 } 1142 1143 case CK_ARCProduceObject: 1144 return CGF.EmitARCRetainScalarExpr(E); 1145 case CK_ARCConsumeObject: 1146 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1147 case CK_ARCReclaimReturnedObject: { 1148 llvm::Value *value = Visit(E); 1149 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 1150 return CGF.EmitObjCConsumeObject(E->getType(), value); 1151 } 1152 case CK_ARCExtendBlockObject: 1153 return CGF.EmitARCExtendBlockObject(E); 1154 1155 case CK_FloatingRealToComplex: 1156 case CK_FloatingComplexCast: 1157 case CK_IntegralRealToComplex: 1158 case CK_IntegralComplexCast: 1159 case CK_IntegralComplexToFloatingComplex: 1160 case CK_FloatingComplexToIntegralComplex: 1161 case CK_ConstructorConversion: 1162 case CK_ToUnion: 1163 llvm_unreachable("scalar cast to non-scalar value"); 1164 1165 case CK_LValueToRValue: 1166 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1167 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1168 return Visit(const_cast<Expr*>(E)); 1169 1170 case CK_IntegralToPointer: { 1171 Value *Src = Visit(const_cast<Expr*>(E)); 1172 1173 // First, convert to the correct width so that we control the kind of 1174 // extension. 1175 llvm::Type *MiddleTy = CGF.IntPtrTy; 1176 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1177 llvm::Value* IntResult = 1178 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1179 1180 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); 1181 } 1182 case CK_PointerToIntegral: 1183 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1184 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1185 1186 case CK_ToVoid: { 1187 CGF.EmitIgnoredExpr(E); 1188 return 0; 1189 } 1190 case CK_VectorSplat: { 1191 llvm::Type *DstTy = ConvertType(DestTy); 1192 Value *Elt = Visit(const_cast<Expr*>(E)); 1193 1194 // Insert the element in element zero of an undef vector 1195 llvm::Value *UnV = llvm::UndefValue::get(DstTy); 1196 llvm::Value *Idx = Builder.getInt32(0); 1197 UnV = Builder.CreateInsertElement(UnV, Elt, Idx); 1198 1199 // Splat the element across to all elements 1200 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 1201 llvm::Constant *Zero = Builder.getInt32(0); 1202 llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements, Zero); 1203 llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat"); 1204 return Yay; 1205 } 1206 1207 case CK_IntegralCast: 1208 case CK_IntegralToFloating: 1209 case CK_FloatingToIntegral: 1210 case CK_FloatingCast: 1211 return EmitScalarConversion(Visit(E), E->getType(), DestTy); 1212 case CK_IntegralToBoolean: 1213 return EmitIntToBoolConversion(Visit(E)); 1214 case CK_PointerToBoolean: 1215 return EmitPointerToBoolConversion(Visit(E)); 1216 case CK_FloatingToBoolean: 1217 return EmitFloatToBoolConversion(Visit(E)); 1218 case CK_MemberPointerToBoolean: { 1219 llvm::Value *MemPtr = Visit(E); 1220 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1221 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1222 } 1223 1224 case CK_FloatingComplexToReal: 1225 case CK_IntegralComplexToReal: 1226 return CGF.EmitComplexExpr(E, false, true).first; 1227 1228 case CK_FloatingComplexToBoolean: 1229 case CK_IntegralComplexToBoolean: { 1230 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1231 1232 // TODO: kill this function off, inline appropriate case here 1233 return EmitComplexToScalarConversion(V, E->getType(), DestTy); 1234 } 1235 1236 } 1237 1238 llvm_unreachable("unknown scalar cast"); 1239 } 1240 1241 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1242 CodeGenFunction::StmtExprEvaluation eval(CGF); 1243 return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType()) 1244 .getScalarVal(); 1245 } 1246 1247 Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 1248 LValue LV = CGF.EmitBlockDeclRefLValue(E); 1249 return CGF.EmitLoadOfLValue(LV).getScalarVal(); 1250 } 1251 1252 //===----------------------------------------------------------------------===// 1253 // Unary Operators 1254 //===----------------------------------------------------------------------===// 1255 1256 llvm::Value *ScalarExprEmitter:: 1257 EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 1258 llvm::Value *InVal, 1259 llvm::Value *NextVal, bool IsInc) { 1260 switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) { 1261 case LangOptions::SOB_Undefined: 1262 return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1263 case LangOptions::SOB_Defined: 1264 return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1265 case LangOptions::SOB_Trapping: 1266 BinOpInfo BinOp; 1267 BinOp.LHS = InVal; 1268 BinOp.RHS = NextVal; 1269 BinOp.Ty = E->getType(); 1270 BinOp.Opcode = BO_Add; 1271 BinOp.E = E; 1272 return EmitOverflowCheckedBinOp(BinOp); 1273 } 1274 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1275 } 1276 1277 llvm::Value * 1278 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1279 bool isInc, bool isPre) { 1280 1281 QualType type = E->getSubExpr()->getType(); 1282 llvm::Value *value = EmitLoadOfLValue(LV); 1283 llvm::Value *input = value; 1284 llvm::PHINode *atomicPHI = 0; 1285 1286 int amount = (isInc ? 1 : -1); 1287 1288 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1289 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1290 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1291 Builder.CreateBr(opBB); 1292 Builder.SetInsertPoint(opBB); 1293 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1294 atomicPHI->addIncoming(value, startBB); 1295 type = atomicTy->getValueType(); 1296 value = atomicPHI; 1297 } 1298 1299 // Special case of integer increment that we have to check first: bool++. 1300 // Due to promotion rules, we get: 1301 // bool++ -> bool = bool + 1 1302 // -> bool = (int)bool + 1 1303 // -> bool = ((int)bool + 1 != 0) 1304 // An interesting aspect of this is that increment is always true. 1305 // Decrement does not have this property. 1306 if (isInc && type->isBooleanType()) { 1307 value = Builder.getTrue(); 1308 1309 // Most common case by far: integer increment. 1310 } else if (type->isIntegerType()) { 1311 1312 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1313 1314 // Note that signed integer inc/dec with width less than int can't 1315 // overflow because of promotion rules; we're just eliding a few steps here. 1316 if (type->isSignedIntegerOrEnumerationType() && 1317 value->getType()->getPrimitiveSizeInBits() >= 1318 CGF.IntTy->getBitWidth()) 1319 value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc); 1320 else 1321 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1322 1323 // Next most common: pointer increment. 1324 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1325 QualType type = ptr->getPointeeType(); 1326 1327 // VLA types don't have constant size. 1328 if (const VariableArrayType *vla 1329 = CGF.getContext().getAsVariableArrayType(type)) { 1330 llvm::Value *numElts = CGF.getVLASize(vla).first; 1331 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1332 if (CGF.getContext().getLangOptions().isSignedOverflowDefined()) 1333 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1334 else 1335 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); 1336 1337 // Arithmetic on function pointers (!) is just +-1. 1338 } else if (type->isFunctionType()) { 1339 llvm::Value *amt = Builder.getInt32(amount); 1340 1341 value = CGF.EmitCastToVoidPtr(value); 1342 if (CGF.getContext().getLangOptions().isSignedOverflowDefined()) 1343 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1344 else 1345 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1346 value = Builder.CreateBitCast(value, input->getType()); 1347 1348 // For everything else, we can just do a simple increment. 1349 } else { 1350 llvm::Value *amt = Builder.getInt32(amount); 1351 if (CGF.getContext().getLangOptions().isSignedOverflowDefined()) 1352 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1353 else 1354 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1355 } 1356 1357 // Vector increment/decrement. 1358 } else if (type->isVectorType()) { 1359 if (type->hasIntegerRepresentation()) { 1360 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1361 1362 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1363 } else { 1364 value = Builder.CreateFAdd( 1365 value, 1366 llvm::ConstantFP::get(value->getType(), amount), 1367 isInc ? "inc" : "dec"); 1368 } 1369 1370 // Floating point. 1371 } else if (type->isRealFloatingType()) { 1372 // Add the inc/dec to the real part. 1373 llvm::Value *amt; 1374 1375 if (type->isHalfType()) { 1376 // Another special case: half FP increment should be done via float 1377 value = 1378 Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), 1379 input); 1380 } 1381 1382 if (value->getType()->isFloatTy()) 1383 amt = llvm::ConstantFP::get(VMContext, 1384 llvm::APFloat(static_cast<float>(amount))); 1385 else if (value->getType()->isDoubleTy()) 1386 amt = llvm::ConstantFP::get(VMContext, 1387 llvm::APFloat(static_cast<double>(amount))); 1388 else { 1389 llvm::APFloat F(static_cast<float>(amount)); 1390 bool ignored; 1391 F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero, 1392 &ignored); 1393 amt = llvm::ConstantFP::get(VMContext, F); 1394 } 1395 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 1396 1397 if (type->isHalfType()) 1398 value = 1399 Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), 1400 value); 1401 1402 // Objective-C pointer types. 1403 } else { 1404 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 1405 value = CGF.EmitCastToVoidPtr(value); 1406 1407 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 1408 if (!isInc) size = -size; 1409 llvm::Value *sizeValue = 1410 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 1411 1412 if (CGF.getContext().getLangOptions().isSignedOverflowDefined()) 1413 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 1414 else 1415 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 1416 value = Builder.CreateBitCast(value, input->getType()); 1417 } 1418 1419 if (atomicPHI) { 1420 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1421 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1422 llvm::Value *old = Builder.CreateAtomicCmpXchg(LV.getAddress(), atomicPHI, 1423 value, llvm::SequentiallyConsistent); 1424 atomicPHI->addIncoming(old, opBB); 1425 llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI); 1426 Builder.CreateCondBr(success, contBB, opBB); 1427 Builder.SetInsertPoint(contBB); 1428 return isPre ? value : input; 1429 } 1430 1431 // Store the updated result through the lvalue. 1432 if (LV.isBitField()) 1433 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 1434 else 1435 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 1436 1437 // If this is a postinc, return the value read from memory, otherwise use the 1438 // updated value. 1439 return isPre ? value : input; 1440 } 1441 1442 1443 1444 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1445 TestAndClearIgnoreResultAssign(); 1446 // Emit unary minus with EmitSub so we handle overflow cases etc. 1447 BinOpInfo BinOp; 1448 BinOp.RHS = Visit(E->getSubExpr()); 1449 1450 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 1451 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 1452 else 1453 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 1454 BinOp.Ty = E->getType(); 1455 BinOp.Opcode = BO_Sub; 1456 BinOp.E = E; 1457 return EmitSub(BinOp); 1458 } 1459 1460 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1461 TestAndClearIgnoreResultAssign(); 1462 Value *Op = Visit(E->getSubExpr()); 1463 return Builder.CreateNot(Op, "neg"); 1464 } 1465 1466 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1467 1468 // Perform vector logical not on comparison with zero vector. 1469 if (E->getType()->isExtVectorType()) { 1470 Value *Oper = Visit(E->getSubExpr()); 1471 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 1472 Value *Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 1473 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 1474 } 1475 1476 // Compare operand to zero. 1477 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1478 1479 // Invert value. 1480 // TODO: Could dynamically modify easy computations here. For example, if 1481 // the operand is an icmp ne, turn into icmp eq. 1482 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1483 1484 // ZExt result to the expr type. 1485 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1486 } 1487 1488 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 1489 // Try folding the offsetof to a constant. 1490 llvm::APSInt Value; 1491 if (E->EvaluateAsInt(Value, CGF.getContext())) 1492 return Builder.getInt(Value); 1493 1494 // Loop over the components of the offsetof to compute the value. 1495 unsigned n = E->getNumComponents(); 1496 llvm::Type* ResultType = ConvertType(E->getType()); 1497 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 1498 QualType CurrentType = E->getTypeSourceInfo()->getType(); 1499 for (unsigned i = 0; i != n; ++i) { 1500 OffsetOfExpr::OffsetOfNode ON = E->getComponent(i); 1501 llvm::Value *Offset = 0; 1502 switch (ON.getKind()) { 1503 case OffsetOfExpr::OffsetOfNode::Array: { 1504 // Compute the index 1505 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 1506 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 1507 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 1508 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 1509 1510 // Save the element type 1511 CurrentType = 1512 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 1513 1514 // Compute the element size 1515 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 1516 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 1517 1518 // Multiply out to compute the result 1519 Offset = Builder.CreateMul(Idx, ElemSize); 1520 break; 1521 } 1522 1523 case OffsetOfExpr::OffsetOfNode::Field: { 1524 FieldDecl *MemberDecl = ON.getField(); 1525 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1526 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1527 1528 // Compute the index of the field in its parent. 1529 unsigned i = 0; 1530 // FIXME: It would be nice if we didn't have to loop here! 1531 for (RecordDecl::field_iterator Field = RD->field_begin(), 1532 FieldEnd = RD->field_end(); 1533 Field != FieldEnd; (void)++Field, ++i) { 1534 if (*Field == MemberDecl) 1535 break; 1536 } 1537 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 1538 1539 // Compute the offset to the field 1540 int64_t OffsetInt = RL.getFieldOffset(i) / 1541 CGF.getContext().getCharWidth(); 1542 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1543 1544 // Save the element type. 1545 CurrentType = MemberDecl->getType(); 1546 break; 1547 } 1548 1549 case OffsetOfExpr::OffsetOfNode::Identifier: 1550 llvm_unreachable("dependent __builtin_offsetof"); 1551 1552 case OffsetOfExpr::OffsetOfNode::Base: { 1553 if (ON.getBase()->isVirtual()) { 1554 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 1555 continue; 1556 } 1557 1558 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1559 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1560 1561 // Save the element type. 1562 CurrentType = ON.getBase()->getType(); 1563 1564 // Compute the offset to the base. 1565 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 1566 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 1567 int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) / 1568 CGF.getContext().getCharWidth(); 1569 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1570 break; 1571 } 1572 } 1573 Result = Builder.CreateAdd(Result, Offset); 1574 } 1575 return Result; 1576 } 1577 1578 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 1579 /// argument of the sizeof expression as an integer. 1580 Value * 1581 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 1582 const UnaryExprOrTypeTraitExpr *E) { 1583 QualType TypeToSize = E->getTypeOfArgument(); 1584 if (E->getKind() == UETT_SizeOf) { 1585 if (const VariableArrayType *VAT = 1586 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 1587 if (E->isArgumentType()) { 1588 // sizeof(type) - make sure to emit the VLA size. 1589 CGF.EmitVariablyModifiedType(TypeToSize); 1590 } else { 1591 // C99 6.5.3.4p2: If the argument is an expression of type 1592 // VLA, it is evaluated. 1593 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 1594 } 1595 1596 QualType eltType; 1597 llvm::Value *numElts; 1598 llvm::tie(numElts, eltType) = CGF.getVLASize(VAT); 1599 1600 llvm::Value *size = numElts; 1601 1602 // Scale the number of non-VLA elements by the non-VLA element size. 1603 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 1604 if (!eltSize.isOne()) 1605 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 1606 1607 return size; 1608 } 1609 } 1610 1611 // If this isn't sizeof(vla), the result must be constant; use the constant 1612 // folding logic so we don't have to duplicate it here. 1613 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 1614 } 1615 1616 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 1617 Expr *Op = E->getSubExpr(); 1618 if (Op->getType()->isAnyComplexType()) { 1619 // If it's an l-value, load through the appropriate subobject l-value. 1620 // Note that we have to ask E because Op might be an l-value that 1621 // this won't work for, e.g. an Obj-C property. 1622 if (E->isGLValue()) 1623 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal(); 1624 1625 // Otherwise, calculate and project. 1626 return CGF.EmitComplexExpr(Op, false, true).first; 1627 } 1628 1629 return Visit(Op); 1630 } 1631 1632 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 1633 Expr *Op = E->getSubExpr(); 1634 if (Op->getType()->isAnyComplexType()) { 1635 // If it's an l-value, load through the appropriate subobject l-value. 1636 // Note that we have to ask E because Op might be an l-value that 1637 // this won't work for, e.g. an Obj-C property. 1638 if (Op->isGLValue()) 1639 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal(); 1640 1641 // Otherwise, calculate and project. 1642 return CGF.EmitComplexExpr(Op, true, false).second; 1643 } 1644 1645 // __imag on a scalar returns zero. Emit the subexpr to ensure side 1646 // effects are evaluated, but not the actual value. 1647 CGF.EmitScalarExpr(Op, true); 1648 return llvm::Constant::getNullValue(ConvertType(E->getType())); 1649 } 1650 1651 //===----------------------------------------------------------------------===// 1652 // Binary Operators 1653 //===----------------------------------------------------------------------===// 1654 1655 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 1656 TestAndClearIgnoreResultAssign(); 1657 BinOpInfo Result; 1658 Result.LHS = Visit(E->getLHS()); 1659 Result.RHS = Visit(E->getRHS()); 1660 Result.Ty = E->getType(); 1661 Result.Opcode = E->getOpcode(); 1662 Result.E = E; 1663 return Result; 1664 } 1665 1666 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 1667 const CompoundAssignOperator *E, 1668 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 1669 Value *&Result) { 1670 QualType LHSTy = E->getLHS()->getType(); 1671 BinOpInfo OpInfo; 1672 1673 if (E->getComputationResultType()->isAnyComplexType()) { 1674 // This needs to go through the complex expression emitter, but it's a tad 1675 // complicated to do that... I'm leaving it out for now. (Note that we do 1676 // actually need the imaginary part of the RHS for multiplication and 1677 // division.) 1678 CGF.ErrorUnsupported(E, "complex compound assignment"); 1679 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1680 return LValue(); 1681 } 1682 1683 // Emit the RHS first. __block variables need to have the rhs evaluated 1684 // first, plus this should improve codegen a little. 1685 OpInfo.RHS = Visit(E->getRHS()); 1686 OpInfo.Ty = E->getComputationResultType(); 1687 OpInfo.Opcode = E->getOpcode(); 1688 OpInfo.E = E; 1689 // Load/convert the LHS. 1690 LValue LHSLV = EmitCheckedLValue(E->getLHS()); 1691 OpInfo.LHS = EmitLoadOfLValue(LHSLV); 1692 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, 1693 E->getComputationLHSType()); 1694 1695 llvm::PHINode *atomicPHI = 0; 1696 if (const AtomicType *atomicTy = OpInfo.Ty->getAs<AtomicType>()) { 1697 // FIXME: For floating point types, we should be saving and restoring the 1698 // floating point environment in the loop. 1699 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1700 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1701 Builder.CreateBr(opBB); 1702 Builder.SetInsertPoint(opBB); 1703 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 1704 atomicPHI->addIncoming(OpInfo.LHS, startBB); 1705 OpInfo.Ty = atomicTy->getValueType(); 1706 OpInfo.LHS = atomicPHI; 1707 } 1708 1709 // Expand the binary operator. 1710 Result = (this->*Func)(OpInfo); 1711 1712 // Convert the result back to the LHS type. 1713 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy); 1714 1715 if (atomicPHI) { 1716 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1717 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1718 llvm::Value *old = Builder.CreateAtomicCmpXchg(LHSLV.getAddress(), atomicPHI, 1719 Result, llvm::SequentiallyConsistent); 1720 atomicPHI->addIncoming(old, opBB); 1721 llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI); 1722 Builder.CreateCondBr(success, contBB, opBB); 1723 Builder.SetInsertPoint(contBB); 1724 return LHSLV; 1725 } 1726 1727 // Store the result value into the LHS lvalue. Bit-fields are handled 1728 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 1729 // 'An assignment expression has the value of the left operand after the 1730 // assignment...'. 1731 if (LHSLV.isBitField()) 1732 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 1733 else 1734 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 1735 1736 return LHSLV; 1737 } 1738 1739 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 1740 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 1741 bool Ignore = TestAndClearIgnoreResultAssign(); 1742 Value *RHS; 1743 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 1744 1745 // If the result is clearly ignored, return now. 1746 if (Ignore) 1747 return 0; 1748 1749 // The result of an assignment in C is the assigned r-value. 1750 if (!CGF.getContext().getLangOptions().CPlusPlus) 1751 return RHS; 1752 1753 // If the lvalue is non-volatile, return the computed value of the assignment. 1754 if (!LHS.isVolatileQualified()) 1755 return RHS; 1756 1757 // Otherwise, reload the value. 1758 return EmitLoadOfLValue(LHS); 1759 } 1760 1761 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 1762 const BinOpInfo &Ops, 1763 llvm::Value *Zero, bool isDiv) { 1764 llvm::Function::iterator insertPt = Builder.GetInsertBlock(); 1765 llvm::BasicBlock *contBB = 1766 CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn, 1767 llvm::next(insertPt)); 1768 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 1769 1770 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 1771 1772 if (Ops.Ty->hasSignedIntegerRepresentation()) { 1773 llvm::Value *IntMin = 1774 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 1775 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 1776 1777 llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero); 1778 llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin); 1779 llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne); 1780 llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and"); 1781 Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"), 1782 overflowBB, contBB); 1783 } else { 1784 CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero), 1785 overflowBB, contBB); 1786 } 1787 EmitOverflowBB(overflowBB); 1788 Builder.SetInsertPoint(contBB); 1789 } 1790 1791 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 1792 if (isTrapvOverflowBehavior()) { 1793 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 1794 1795 if (Ops.Ty->isIntegerType()) 1796 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 1797 else if (Ops.Ty->isRealFloatingType()) { 1798 llvm::Function::iterator insertPt = Builder.GetInsertBlock(); 1799 llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn, 1800 llvm::next(insertPt)); 1801 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", 1802 CGF.CurFn); 1803 CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero), 1804 overflowBB, DivCont); 1805 EmitOverflowBB(overflowBB); 1806 Builder.SetInsertPoint(DivCont); 1807 } 1808 } 1809 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 1810 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 1811 if (CGF.getContext().getLangOptions().OpenCL) { 1812 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp 1813 llvm::Type *ValTy = Val->getType(); 1814 if (ValTy->isFloatTy() || 1815 (isa<llvm::VectorType>(ValTy) && 1816 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 1817 CGF.SetFPAccuracy(Val, 5, 2); 1818 } 1819 return Val; 1820 } 1821 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 1822 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 1823 else 1824 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 1825 } 1826 1827 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 1828 // Rem in C can't be a floating point type: C99 6.5.5p2. 1829 if (isTrapvOverflowBehavior()) { 1830 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 1831 1832 if (Ops.Ty->isIntegerType()) 1833 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 1834 } 1835 1836 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 1837 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 1838 else 1839 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 1840 } 1841 1842 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 1843 unsigned IID; 1844 unsigned OpID = 0; 1845 1846 switch (Ops.Opcode) { 1847 case BO_Add: 1848 case BO_AddAssign: 1849 OpID = 1; 1850 IID = llvm::Intrinsic::sadd_with_overflow; 1851 break; 1852 case BO_Sub: 1853 case BO_SubAssign: 1854 OpID = 2; 1855 IID = llvm::Intrinsic::ssub_with_overflow; 1856 break; 1857 case BO_Mul: 1858 case BO_MulAssign: 1859 OpID = 3; 1860 IID = llvm::Intrinsic::smul_with_overflow; 1861 break; 1862 default: 1863 llvm_unreachable("Unsupported operation for overflow detection"); 1864 } 1865 OpID <<= 1; 1866 OpID |= 1; 1867 1868 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 1869 1870 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 1871 1872 Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS); 1873 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 1874 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 1875 1876 // Branch in case of overflow. 1877 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 1878 llvm::Function::iterator insertPt = initialBB; 1879 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn, 1880 llvm::next(insertPt)); 1881 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 1882 1883 Builder.CreateCondBr(overflow, overflowBB, continueBB); 1884 1885 // Handle overflow with llvm.trap. 1886 const std::string *handlerName = 1887 &CGF.getContext().getLangOptions().OverflowHandler; 1888 if (handlerName->empty()) { 1889 EmitOverflowBB(overflowBB); 1890 Builder.SetInsertPoint(continueBB); 1891 return result; 1892 } 1893 1894 // If an overflow handler is set, then we want to call it and then use its 1895 // result, if it returns. 1896 Builder.SetInsertPoint(overflowBB); 1897 1898 // Get the overflow handler. 1899 llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext); 1900 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 1901 llvm::FunctionType *handlerTy = 1902 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 1903 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 1904 1905 // Sign extend the args to 64-bit, so that we can use the same handler for 1906 // all types of overflow. 1907 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 1908 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 1909 1910 // Call the handler with the two arguments, the operation, and the size of 1911 // the result. 1912 llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs, 1913 Builder.getInt8(OpID), 1914 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())); 1915 1916 // Truncate the result back to the desired size. 1917 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 1918 Builder.CreateBr(continueBB); 1919 1920 Builder.SetInsertPoint(continueBB); 1921 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 1922 phi->addIncoming(result, initialBB); 1923 phi->addIncoming(handlerResult, overflowBB); 1924 1925 return phi; 1926 } 1927 1928 /// Emit pointer + index arithmetic. 1929 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 1930 const BinOpInfo &op, 1931 bool isSubtraction) { 1932 // Must have binary (not unary) expr here. Unary pointer 1933 // increment/decrement doesn't use this path. 1934 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 1935 1936 Value *pointer = op.LHS; 1937 Expr *pointerOperand = expr->getLHS(); 1938 Value *index = op.RHS; 1939 Expr *indexOperand = expr->getRHS(); 1940 1941 // In a subtraction, the LHS is always the pointer. 1942 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 1943 std::swap(pointer, index); 1944 std::swap(pointerOperand, indexOperand); 1945 } 1946 1947 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 1948 if (width != CGF.PointerWidthInBits) { 1949 // Zero-extend or sign-extend the pointer value according to 1950 // whether the index is signed or not. 1951 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 1952 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned, 1953 "idx.ext"); 1954 } 1955 1956 // If this is subtraction, negate the index. 1957 if (isSubtraction) 1958 index = CGF.Builder.CreateNeg(index, "idx.neg"); 1959 1960 const PointerType *pointerType 1961 = pointerOperand->getType()->getAs<PointerType>(); 1962 if (!pointerType) { 1963 QualType objectType = pointerOperand->getType() 1964 ->castAs<ObjCObjectPointerType>() 1965 ->getPointeeType(); 1966 llvm::Value *objectSize 1967 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 1968 1969 index = CGF.Builder.CreateMul(index, objectSize); 1970 1971 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 1972 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 1973 return CGF.Builder.CreateBitCast(result, pointer->getType()); 1974 } 1975 1976 QualType elementType = pointerType->getPointeeType(); 1977 if (const VariableArrayType *vla 1978 = CGF.getContext().getAsVariableArrayType(elementType)) { 1979 // The element count here is the total number of non-VLA elements. 1980 llvm::Value *numElements = CGF.getVLASize(vla).first; 1981 1982 // Effectively, the multiply by the VLA size is part of the GEP. 1983 // GEP indexes are signed, and scaling an index isn't permitted to 1984 // signed-overflow, so we use the same semantics for our explicit 1985 // multiply. We suppress this if overflow is not undefined behavior. 1986 if (CGF.getLangOptions().isSignedOverflowDefined()) { 1987 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 1988 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 1989 } else { 1990 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 1991 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 1992 } 1993 return pointer; 1994 } 1995 1996 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 1997 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 1998 // future proof. 1999 if (elementType->isVoidType() || elementType->isFunctionType()) { 2000 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2001 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2002 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2003 } 2004 2005 if (CGF.getLangOptions().isSignedOverflowDefined()) 2006 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2007 2008 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2009 } 2010 2011 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2012 if (op.LHS->getType()->isPointerTy() || 2013 op.RHS->getType()->isPointerTy()) 2014 return emitPointerArithmetic(CGF, op, /*subtraction*/ false); 2015 2016 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2017 switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) { 2018 case LangOptions::SOB_Undefined: 2019 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2020 case LangOptions::SOB_Defined: 2021 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2022 case LangOptions::SOB_Trapping: 2023 return EmitOverflowCheckedBinOp(op); 2024 } 2025 } 2026 2027 if (op.LHS->getType()->isFPOrFPVectorTy()) 2028 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2029 2030 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2031 } 2032 2033 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2034 // The LHS is always a pointer if either side is. 2035 if (!op.LHS->getType()->isPointerTy()) { 2036 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2037 switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) { 2038 case LangOptions::SOB_Undefined: 2039 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2040 case LangOptions::SOB_Defined: 2041 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2042 case LangOptions::SOB_Trapping: 2043 return EmitOverflowCheckedBinOp(op); 2044 } 2045 } 2046 2047 if (op.LHS->getType()->isFPOrFPVectorTy()) 2048 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2049 2050 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2051 } 2052 2053 // If the RHS is not a pointer, then we have normal pointer 2054 // arithmetic. 2055 if (!op.RHS->getType()->isPointerTy()) 2056 return emitPointerArithmetic(CGF, op, /*subtraction*/ true); 2057 2058 // Otherwise, this is a pointer subtraction. 2059 2060 // Do the raw subtraction part. 2061 llvm::Value *LHS 2062 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2063 llvm::Value *RHS 2064 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2065 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2066 2067 // Okay, figure out the element size. 2068 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2069 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2070 2071 llvm::Value *divisor = 0; 2072 2073 // For a variable-length array, this is going to be non-constant. 2074 if (const VariableArrayType *vla 2075 = CGF.getContext().getAsVariableArrayType(elementType)) { 2076 llvm::Value *numElements; 2077 llvm::tie(numElements, elementType) = CGF.getVLASize(vla); 2078 2079 divisor = numElements; 2080 2081 // Scale the number of non-VLA elements by the non-VLA element size. 2082 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2083 if (!eltSize.isOne()) 2084 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2085 2086 // For everything elese, we can just compute it, safe in the 2087 // assumption that Sema won't let anything through that we can't 2088 // safely compute the size of. 2089 } else { 2090 CharUnits elementSize; 2091 // Handle GCC extension for pointer arithmetic on void* and 2092 // function pointer types. 2093 if (elementType->isVoidType() || elementType->isFunctionType()) 2094 elementSize = CharUnits::One(); 2095 else 2096 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2097 2098 // Don't even emit the divide for element size of 1. 2099 if (elementSize.isOne()) 2100 return diffInChars; 2101 2102 divisor = CGF.CGM.getSize(elementSize); 2103 } 2104 2105 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2106 // pointer difference in C is only defined in the case where both operands 2107 // are pointing to elements of an array. 2108 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2109 } 2110 2111 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2112 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2113 // RHS to the same size as the LHS. 2114 Value *RHS = Ops.RHS; 2115 if (Ops.LHS->getType() != RHS->getType()) 2116 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2117 2118 if (CGF.CatchUndefined 2119 && isa<llvm::IntegerType>(Ops.LHS->getType())) { 2120 unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth(); 2121 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2122 CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS, 2123 llvm::ConstantInt::get(RHS->getType(), Width)), 2124 Cont, CGF.getTrapBB()); 2125 CGF.EmitBlock(Cont); 2126 } 2127 2128 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2129 } 2130 2131 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2132 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2133 // RHS to the same size as the LHS. 2134 Value *RHS = Ops.RHS; 2135 if (Ops.LHS->getType() != RHS->getType()) 2136 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2137 2138 if (CGF.CatchUndefined 2139 && isa<llvm::IntegerType>(Ops.LHS->getType())) { 2140 unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth(); 2141 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2142 CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS, 2143 llvm::ConstantInt::get(RHS->getType(), Width)), 2144 Cont, CGF.getTrapBB()); 2145 CGF.EmitBlock(Cont); 2146 } 2147 2148 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2149 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 2150 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 2151 } 2152 2153 enum IntrinsicType { VCMPEQ, VCMPGT }; 2154 // return corresponding comparison intrinsic for given vector type 2155 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 2156 BuiltinType::Kind ElemKind) { 2157 switch (ElemKind) { 2158 default: llvm_unreachable("unexpected element type"); 2159 case BuiltinType::Char_U: 2160 case BuiltinType::UChar: 2161 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2162 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 2163 case BuiltinType::Char_S: 2164 case BuiltinType::SChar: 2165 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2166 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 2167 case BuiltinType::UShort: 2168 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2169 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 2170 case BuiltinType::Short: 2171 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2172 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 2173 case BuiltinType::UInt: 2174 case BuiltinType::ULong: 2175 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2176 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 2177 case BuiltinType::Int: 2178 case BuiltinType::Long: 2179 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2180 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 2181 case BuiltinType::Float: 2182 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 2183 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 2184 } 2185 } 2186 2187 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, 2188 unsigned SICmpOpc, unsigned FCmpOpc) { 2189 TestAndClearIgnoreResultAssign(); 2190 Value *Result; 2191 QualType LHSTy = E->getLHS()->getType(); 2192 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 2193 assert(E->getOpcode() == BO_EQ || 2194 E->getOpcode() == BO_NE); 2195 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 2196 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 2197 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 2198 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 2199 } else if (!LHSTy->isAnyComplexType()) { 2200 Value *LHS = Visit(E->getLHS()); 2201 Value *RHS = Visit(E->getRHS()); 2202 2203 // If AltiVec, the comparison results in a numeric type, so we use 2204 // intrinsics comparing vectors and giving 0 or 1 as a result 2205 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 2206 // constants for mapping CR6 register bits to predicate result 2207 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 2208 2209 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 2210 2211 // in several cases vector arguments order will be reversed 2212 Value *FirstVecArg = LHS, 2213 *SecondVecArg = RHS; 2214 2215 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 2216 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 2217 BuiltinType::Kind ElementKind = BTy->getKind(); 2218 2219 switch(E->getOpcode()) { 2220 default: llvm_unreachable("is not a comparison operation"); 2221 case BO_EQ: 2222 CR6 = CR6_LT; 2223 ID = GetIntrinsic(VCMPEQ, ElementKind); 2224 break; 2225 case BO_NE: 2226 CR6 = CR6_EQ; 2227 ID = GetIntrinsic(VCMPEQ, ElementKind); 2228 break; 2229 case BO_LT: 2230 CR6 = CR6_LT; 2231 ID = GetIntrinsic(VCMPGT, ElementKind); 2232 std::swap(FirstVecArg, SecondVecArg); 2233 break; 2234 case BO_GT: 2235 CR6 = CR6_LT; 2236 ID = GetIntrinsic(VCMPGT, ElementKind); 2237 break; 2238 case BO_LE: 2239 if (ElementKind == BuiltinType::Float) { 2240 CR6 = CR6_LT; 2241 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2242 std::swap(FirstVecArg, SecondVecArg); 2243 } 2244 else { 2245 CR6 = CR6_EQ; 2246 ID = GetIntrinsic(VCMPGT, ElementKind); 2247 } 2248 break; 2249 case BO_GE: 2250 if (ElementKind == BuiltinType::Float) { 2251 CR6 = CR6_LT; 2252 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2253 } 2254 else { 2255 CR6 = CR6_EQ; 2256 ID = GetIntrinsic(VCMPGT, ElementKind); 2257 std::swap(FirstVecArg, SecondVecArg); 2258 } 2259 break; 2260 } 2261 2262 Value *CR6Param = Builder.getInt32(CR6); 2263 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 2264 Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, ""); 2265 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2266 } 2267 2268 if (LHS->getType()->isFPOrFPVectorTy()) { 2269 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc, 2270 LHS, RHS, "cmp"); 2271 } else if (LHSTy->hasSignedIntegerRepresentation()) { 2272 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, 2273 LHS, RHS, "cmp"); 2274 } else { 2275 // Unsigned integers and pointers. 2276 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2277 LHS, RHS, "cmp"); 2278 } 2279 2280 // If this is a vector comparison, sign extend the result to the appropriate 2281 // vector integer type and return it (don't convert to bool). 2282 if (LHSTy->isVectorType()) 2283 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2284 2285 } else { 2286 // Complex Comparison: can only be an equality comparison. 2287 CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS()); 2288 CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS()); 2289 2290 QualType CETy = LHSTy->getAs<ComplexType>()->getElementType(); 2291 2292 Value *ResultR, *ResultI; 2293 if (CETy->isRealFloatingType()) { 2294 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2295 LHS.first, RHS.first, "cmp.r"); 2296 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2297 LHS.second, RHS.second, "cmp.i"); 2298 } else { 2299 // Complex comparisons can only be equality comparisons. As such, signed 2300 // and unsigned opcodes are the same. 2301 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2302 LHS.first, RHS.first, "cmp.r"); 2303 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2304 LHS.second, RHS.second, "cmp.i"); 2305 } 2306 2307 if (E->getOpcode() == BO_EQ) { 2308 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 2309 } else { 2310 assert(E->getOpcode() == BO_NE && 2311 "Complex comparison other than == or != ?"); 2312 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 2313 } 2314 } 2315 2316 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2317 } 2318 2319 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 2320 bool Ignore = TestAndClearIgnoreResultAssign(); 2321 2322 Value *RHS; 2323 LValue LHS; 2324 2325 switch (E->getLHS()->getType().getObjCLifetime()) { 2326 case Qualifiers::OCL_Strong: 2327 llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 2328 break; 2329 2330 case Qualifiers::OCL_Autoreleasing: 2331 llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E); 2332 break; 2333 2334 case Qualifiers::OCL_Weak: 2335 RHS = Visit(E->getRHS()); 2336 LHS = EmitCheckedLValue(E->getLHS()); 2337 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 2338 break; 2339 2340 // No reason to do any of these differently. 2341 case Qualifiers::OCL_None: 2342 case Qualifiers::OCL_ExplicitNone: 2343 // __block variables need to have the rhs evaluated first, plus 2344 // this should improve codegen just a little. 2345 RHS = Visit(E->getRHS()); 2346 LHS = EmitCheckedLValue(E->getLHS()); 2347 2348 // Store the value into the LHS. Bit-fields are handled specially 2349 // because the result is altered by the store, i.e., [C99 6.5.16p1] 2350 // 'An assignment expression has the value of the left operand after 2351 // the assignment...'. 2352 if (LHS.isBitField()) 2353 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 2354 else 2355 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 2356 } 2357 2358 // If the result is clearly ignored, return now. 2359 if (Ignore) 2360 return 0; 2361 2362 // The result of an assignment in C is the assigned r-value. 2363 if (!CGF.getContext().getLangOptions().CPlusPlus) 2364 return RHS; 2365 2366 // If the lvalue is non-volatile, return the computed value of the assignment. 2367 if (!LHS.isVolatileQualified()) 2368 return RHS; 2369 2370 // Otherwise, reload the value. 2371 return EmitLoadOfLValue(LHS); 2372 } 2373 2374 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 2375 2376 // Perform vector logical and on comparisons with zero vectors. 2377 if (E->getType()->isVectorType()) { 2378 Value *LHS = Visit(E->getLHS()); 2379 Value *RHS = Visit(E->getRHS()); 2380 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 2381 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 2382 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 2383 Value *And = Builder.CreateAnd(LHS, RHS); 2384 return Builder.CreateSExt(And, Zero->getType(), "sext"); 2385 } 2386 2387 llvm::Type *ResTy = ConvertType(E->getType()); 2388 2389 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 2390 // If we have 1 && X, just emit X without inserting the control flow. 2391 bool LHSCondVal; 2392 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 2393 if (LHSCondVal) { // If we have 1 && X, just emit X. 2394 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2395 // ZExt result to int or bool. 2396 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 2397 } 2398 2399 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 2400 if (!CGF.ContainsLabel(E->getRHS())) 2401 return llvm::Constant::getNullValue(ResTy); 2402 } 2403 2404 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 2405 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 2406 2407 CodeGenFunction::ConditionalEvaluation eval(CGF); 2408 2409 // Branch on the LHS first. If it is false, go to the failure (cont) block. 2410 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock); 2411 2412 // Any edges into the ContBlock are now from an (indeterminate number of) 2413 // edges from this first condition. All of these values will be false. Start 2414 // setting up the PHI node in the Cont Block for this. 2415 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 2416 "", ContBlock); 2417 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 2418 PI != PE; ++PI) 2419 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 2420 2421 eval.begin(CGF); 2422 CGF.EmitBlock(RHSBlock); 2423 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2424 eval.end(CGF); 2425 2426 // Reaquire the RHS block, as there may be subblocks inserted. 2427 RHSBlock = Builder.GetInsertBlock(); 2428 2429 // Emit an unconditional branch from this block to ContBlock. Insert an entry 2430 // into the phi node for the edge with the value of RHSCond. 2431 if (CGF.getDebugInfo()) 2432 // There is no need to emit line number for unconditional branch. 2433 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 2434 CGF.EmitBlock(ContBlock); 2435 PN->addIncoming(RHSCond, RHSBlock); 2436 2437 // ZExt result to int. 2438 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 2439 } 2440 2441 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 2442 2443 // Perform vector logical or on comparisons with zero vectors. 2444 if (E->getType()->isVectorType()) { 2445 Value *LHS = Visit(E->getLHS()); 2446 Value *RHS = Visit(E->getRHS()); 2447 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 2448 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 2449 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 2450 Value *Or = Builder.CreateOr(LHS, RHS); 2451 return Builder.CreateSExt(Or, Zero->getType(), "sext"); 2452 } 2453 2454 llvm::Type *ResTy = ConvertType(E->getType()); 2455 2456 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 2457 // If we have 0 || X, just emit X without inserting the control flow. 2458 bool LHSCondVal; 2459 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 2460 if (!LHSCondVal) { // If we have 0 || X, just emit X. 2461 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2462 // ZExt result to int or bool. 2463 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 2464 } 2465 2466 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 2467 if (!CGF.ContainsLabel(E->getRHS())) 2468 return llvm::ConstantInt::get(ResTy, 1); 2469 } 2470 2471 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 2472 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 2473 2474 CodeGenFunction::ConditionalEvaluation eval(CGF); 2475 2476 // Branch on the LHS first. If it is true, go to the success (cont) block. 2477 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock); 2478 2479 // Any edges into the ContBlock are now from an (indeterminate number of) 2480 // edges from this first condition. All of these values will be true. Start 2481 // setting up the PHI node in the Cont Block for this. 2482 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 2483 "", ContBlock); 2484 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 2485 PI != PE; ++PI) 2486 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 2487 2488 eval.begin(CGF); 2489 2490 // Emit the RHS condition as a bool value. 2491 CGF.EmitBlock(RHSBlock); 2492 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2493 2494 eval.end(CGF); 2495 2496 // Reaquire the RHS block, as there may be subblocks inserted. 2497 RHSBlock = Builder.GetInsertBlock(); 2498 2499 // Emit an unconditional branch from this block to ContBlock. Insert an entry 2500 // into the phi node for the edge with the value of RHSCond. 2501 CGF.EmitBlock(ContBlock); 2502 PN->addIncoming(RHSCond, RHSBlock); 2503 2504 // ZExt result to int. 2505 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 2506 } 2507 2508 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 2509 CGF.EmitIgnoredExpr(E->getLHS()); 2510 CGF.EnsureInsertPoint(); 2511 return Visit(E->getRHS()); 2512 } 2513 2514 //===----------------------------------------------------------------------===// 2515 // Other Operators 2516 //===----------------------------------------------------------------------===// 2517 2518 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 2519 /// expression is cheap enough and side-effect-free enough to evaluate 2520 /// unconditionally instead of conditionally. This is used to convert control 2521 /// flow into selects in some cases. 2522 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 2523 CodeGenFunction &CGF) { 2524 E = E->IgnoreParens(); 2525 2526 // Anything that is an integer or floating point constant is fine. 2527 if (E->isConstantInitializer(CGF.getContext(), false)) 2528 return true; 2529 2530 // Non-volatile automatic variables too, to get "cond ? X : Y" where 2531 // X and Y are local variables. 2532 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 2533 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) 2534 if (VD->hasLocalStorage() && !(CGF.getContext() 2535 .getCanonicalType(VD->getType()) 2536 .isVolatileQualified())) 2537 return true; 2538 2539 return false; 2540 } 2541 2542 2543 Value *ScalarExprEmitter:: 2544 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 2545 TestAndClearIgnoreResultAssign(); 2546 2547 // Bind the common expression if necessary. 2548 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 2549 2550 Expr *condExpr = E->getCond(); 2551 Expr *lhsExpr = E->getTrueExpr(); 2552 Expr *rhsExpr = E->getFalseExpr(); 2553 2554 // If the condition constant folds and can be elided, try to avoid emitting 2555 // the condition and the dead arm. 2556 bool CondExprBool; 2557 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2558 Expr *live = lhsExpr, *dead = rhsExpr; 2559 if (!CondExprBool) std::swap(live, dead); 2560 2561 // If the dead side doesn't have labels we need, just emit the Live part. 2562 if (!CGF.ContainsLabel(dead)) { 2563 Value *Result = Visit(live); 2564 2565 // If the live part is a throw expression, it acts like it has a void 2566 // type, so evaluating it returns a null Value*. However, a conditional 2567 // with non-void type must return a non-null Value*. 2568 if (!Result && !E->getType()->isVoidType()) 2569 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 2570 2571 return Result; 2572 } 2573 } 2574 2575 // OpenCL: If the condition is a vector, we can treat this condition like 2576 // the select function. 2577 if (CGF.getContext().getLangOptions().OpenCL 2578 && condExpr->getType()->isVectorType()) { 2579 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 2580 llvm::Value *LHS = Visit(lhsExpr); 2581 llvm::Value *RHS = Visit(rhsExpr); 2582 2583 llvm::Type *condType = ConvertType(condExpr->getType()); 2584 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 2585 2586 unsigned numElem = vecTy->getNumElements(); 2587 llvm::Type *elemType = vecTy->getElementType(); 2588 2589 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 2590 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 2591 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 2592 llvm::VectorType::get(elemType, 2593 numElem), 2594 "sext"); 2595 llvm::Value *tmp2 = Builder.CreateNot(tmp); 2596 2597 // Cast float to int to perform ANDs if necessary. 2598 llvm::Value *RHSTmp = RHS; 2599 llvm::Value *LHSTmp = LHS; 2600 bool wasCast = false; 2601 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 2602 if (rhsVTy->getElementType()->isFloatTy()) { 2603 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 2604 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 2605 wasCast = true; 2606 } 2607 2608 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 2609 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 2610 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 2611 if (wasCast) 2612 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 2613 2614 return tmp5; 2615 } 2616 2617 // If this is a really simple expression (like x ? 4 : 5), emit this as a 2618 // select instead of as control flow. We can only do this if it is cheap and 2619 // safe to evaluate the LHS and RHS unconditionally. 2620 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 2621 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 2622 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 2623 llvm::Value *LHS = Visit(lhsExpr); 2624 llvm::Value *RHS = Visit(rhsExpr); 2625 if (!LHS) { 2626 // If the conditional has void type, make sure we return a null Value*. 2627 assert(!RHS && "LHS and RHS types must match"); 2628 return 0; 2629 } 2630 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 2631 } 2632 2633 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 2634 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 2635 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 2636 2637 CodeGenFunction::ConditionalEvaluation eval(CGF); 2638 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock); 2639 2640 CGF.EmitBlock(LHSBlock); 2641 eval.begin(CGF); 2642 Value *LHS = Visit(lhsExpr); 2643 eval.end(CGF); 2644 2645 LHSBlock = Builder.GetInsertBlock(); 2646 Builder.CreateBr(ContBlock); 2647 2648 CGF.EmitBlock(RHSBlock); 2649 eval.begin(CGF); 2650 Value *RHS = Visit(rhsExpr); 2651 eval.end(CGF); 2652 2653 RHSBlock = Builder.GetInsertBlock(); 2654 CGF.EmitBlock(ContBlock); 2655 2656 // If the LHS or RHS is a throw expression, it will be legitimately null. 2657 if (!LHS) 2658 return RHS; 2659 if (!RHS) 2660 return LHS; 2661 2662 // Create a PHI node for the real part. 2663 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 2664 PN->addIncoming(LHS, LHSBlock); 2665 PN->addIncoming(RHS, RHSBlock); 2666 return PN; 2667 } 2668 2669 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 2670 return Visit(E->getChosenSubExpr(CGF.getContext())); 2671 } 2672 2673 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 2674 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 2675 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 2676 2677 // If EmitVAArg fails, we fall back to the LLVM instruction. 2678 if (!ArgPtr) 2679 return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType())); 2680 2681 // FIXME Volatility. 2682 return Builder.CreateLoad(ArgPtr); 2683 } 2684 2685 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 2686 return CGF.EmitBlockLiteral(block); 2687 } 2688 2689 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 2690 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 2691 llvm::Type *DstTy = ConvertType(E->getType()); 2692 2693 // Going from vec4->vec3 or vec3->vec4 is a special case and requires 2694 // a shuffle vector instead of a bitcast. 2695 llvm::Type *SrcTy = Src->getType(); 2696 if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) { 2697 unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements(); 2698 unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements(); 2699 if ((numElementsDst == 3 && numElementsSrc == 4) 2700 || (numElementsDst == 4 && numElementsSrc == 3)) { 2701 2702 2703 // In the case of going from int4->float3, a bitcast is needed before 2704 // doing a shuffle. 2705 llvm::Type *srcElemTy = 2706 cast<llvm::VectorType>(SrcTy)->getElementType(); 2707 llvm::Type *dstElemTy = 2708 cast<llvm::VectorType>(DstTy)->getElementType(); 2709 2710 if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy()) 2711 || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) { 2712 // Create a float type of the same size as the source or destination. 2713 llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy, 2714 numElementsSrc); 2715 2716 Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast"); 2717 } 2718 2719 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 2720 2721 SmallVector<llvm::Constant*, 3> Args; 2722 Args.push_back(Builder.getInt32(0)); 2723 Args.push_back(Builder.getInt32(1)); 2724 Args.push_back(Builder.getInt32(2)); 2725 2726 if (numElementsDst == 4) 2727 Args.push_back(llvm::UndefValue::get( 2728 llvm::Type::getInt32Ty(CGF.getLLVMContext()))); 2729 2730 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 2731 2732 return Builder.CreateShuffleVector(Src, UnV, Mask, "astype"); 2733 } 2734 } 2735 2736 return Builder.CreateBitCast(Src, DstTy, "astype"); 2737 } 2738 2739 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 2740 return CGF.EmitAtomicExpr(E).getScalarVal(); 2741 } 2742 2743 //===----------------------------------------------------------------------===// 2744 // Entry Point into this File 2745 //===----------------------------------------------------------------------===// 2746 2747 /// EmitScalarExpr - Emit the computation of the specified expression of scalar 2748 /// type, ignoring the result. 2749 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 2750 assert(E && !hasAggregateLLVMType(E->getType()) && 2751 "Invalid scalar expression to emit"); 2752 2753 if (isa<CXXDefaultArgExpr>(E)) 2754 disableDebugInfo(); 2755 Value *V = ScalarExprEmitter(*this, IgnoreResultAssign) 2756 .Visit(const_cast<Expr*>(E)); 2757 if (isa<CXXDefaultArgExpr>(E)) 2758 enableDebugInfo(); 2759 return V; 2760 } 2761 2762 /// EmitScalarConversion - Emit a conversion from the specified type to the 2763 /// specified destination type, both of which are LLVM scalar types. 2764 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 2765 QualType DstTy) { 2766 assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) && 2767 "Invalid scalar expression to emit"); 2768 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy); 2769 } 2770 2771 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 2772 /// type to the specified destination type, where the destination type is an 2773 /// LLVM scalar type. 2774 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 2775 QualType SrcTy, 2776 QualType DstTy) { 2777 assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) && 2778 "Invalid complex -> scalar conversion"); 2779 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy, 2780 DstTy); 2781 } 2782 2783 2784 llvm::Value *CodeGenFunction:: 2785 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2786 bool isInc, bool isPre) { 2787 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 2788 } 2789 2790 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 2791 llvm::Value *V; 2792 // object->isa or (*object).isa 2793 // Generate code as for: *(Class*)object 2794 // build Class* type 2795 llvm::Type *ClassPtrTy = ConvertType(E->getType()); 2796 2797 Expr *BaseExpr = E->getBase(); 2798 if (BaseExpr->isRValue()) { 2799 V = CreateMemTemp(E->getType(), "resval"); 2800 llvm::Value *Src = EmitScalarExpr(BaseExpr); 2801 Builder.CreateStore(Src, V); 2802 V = ScalarExprEmitter(*this).EmitLoadOfLValue( 2803 MakeNaturalAlignAddrLValue(V, E->getType())); 2804 } else { 2805 if (E->isArrow()) 2806 V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr); 2807 else 2808 V = EmitLValue(BaseExpr).getAddress(); 2809 } 2810 2811 // build Class* type 2812 ClassPtrTy = ClassPtrTy->getPointerTo(); 2813 V = Builder.CreateBitCast(V, ClassPtrTy); 2814 return MakeNaturalAlignAddrLValue(V, E->getType()); 2815 } 2816 2817 2818 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 2819 const CompoundAssignOperator *E) { 2820 ScalarExprEmitter Scalar(*this); 2821 Value *Result = 0; 2822 switch (E->getOpcode()) { 2823 #define COMPOUND_OP(Op) \ 2824 case BO_##Op##Assign: \ 2825 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 2826 Result) 2827 COMPOUND_OP(Mul); 2828 COMPOUND_OP(Div); 2829 COMPOUND_OP(Rem); 2830 COMPOUND_OP(Add); 2831 COMPOUND_OP(Sub); 2832 COMPOUND_OP(Shl); 2833 COMPOUND_OP(Shr); 2834 COMPOUND_OP(And); 2835 COMPOUND_OP(Xor); 2836 COMPOUND_OP(Or); 2837 #undef COMPOUND_OP 2838 2839 case BO_PtrMemD: 2840 case BO_PtrMemI: 2841 case BO_Mul: 2842 case BO_Div: 2843 case BO_Rem: 2844 case BO_Add: 2845 case BO_Sub: 2846 case BO_Shl: 2847 case BO_Shr: 2848 case BO_LT: 2849 case BO_GT: 2850 case BO_LE: 2851 case BO_GE: 2852 case BO_EQ: 2853 case BO_NE: 2854 case BO_And: 2855 case BO_Xor: 2856 case BO_Or: 2857 case BO_LAnd: 2858 case BO_LOr: 2859 case BO_Assign: 2860 case BO_Comma: 2861 llvm_unreachable("Not valid compound assignment operators"); 2862 } 2863 2864 llvm_unreachable("Unhandled compound assignment operator"); 2865 } 2866