1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/APFixedPoint.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/FixedPointBuilder.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/IntrinsicsPowerPC.h"
41 #include "llvm/IR/MatrixBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include <cstdarg>
44 
45 using namespace clang;
46 using namespace CodeGen;
47 using llvm::Value;
48 
49 //===----------------------------------------------------------------------===//
50 //                         Scalar Expression Emitter
51 //===----------------------------------------------------------------------===//
52 
53 namespace {
54 
55 /// Determine whether the given binary operation may overflow.
56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
58 /// the returned overflow check is precise. The returned value is 'true' for
59 /// all other opcodes, to be conservative.
60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
61                              BinaryOperator::Opcode Opcode, bool Signed,
62                              llvm::APInt &Result) {
63   // Assume overflow is possible, unless we can prove otherwise.
64   bool Overflow = true;
65   const auto &LHSAP = LHS->getValue();
66   const auto &RHSAP = RHS->getValue();
67   if (Opcode == BO_Add) {
68     if (Signed)
69       Result = LHSAP.sadd_ov(RHSAP, Overflow);
70     else
71       Result = LHSAP.uadd_ov(RHSAP, Overflow);
72   } else if (Opcode == BO_Sub) {
73     if (Signed)
74       Result = LHSAP.ssub_ov(RHSAP, Overflow);
75     else
76       Result = LHSAP.usub_ov(RHSAP, Overflow);
77   } else if (Opcode == BO_Mul) {
78     if (Signed)
79       Result = LHSAP.smul_ov(RHSAP, Overflow);
80     else
81       Result = LHSAP.umul_ov(RHSAP, Overflow);
82   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
83     if (Signed && !RHS->isZero())
84       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
85     else
86       return false;
87   }
88   return Overflow;
89 }
90 
91 struct BinOpInfo {
92   Value *LHS;
93   Value *RHS;
94   QualType Ty;  // Computation Type.
95   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
96   FPOptions FPFeatures;
97   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
98 
99   /// Check if the binop can result in integer overflow.
100   bool mayHaveIntegerOverflow() const {
101     // Without constant input, we can't rule out overflow.
102     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
103     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
104     if (!LHSCI || !RHSCI)
105       return true;
106 
107     llvm::APInt Result;
108     return ::mayHaveIntegerOverflow(
109         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
110   }
111 
112   /// Check if the binop computes a division or a remainder.
113   bool isDivremOp() const {
114     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
115            Opcode == BO_RemAssign;
116   }
117 
118   /// Check if the binop can result in an integer division by zero.
119   bool mayHaveIntegerDivisionByZero() const {
120     if (isDivremOp())
121       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
122         return CI->isZero();
123     return true;
124   }
125 
126   /// Check if the binop can result in a float division by zero.
127   bool mayHaveFloatDivisionByZero() const {
128     if (isDivremOp())
129       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
130         return CFP->isZero();
131     return true;
132   }
133 
134   /// Check if at least one operand is a fixed point type. In such cases, this
135   /// operation did not follow usual arithmetic conversion and both operands
136   /// might not be of the same type.
137   bool isFixedPointOp() const {
138     // We cannot simply check the result type since comparison operations return
139     // an int.
140     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
141       QualType LHSType = BinOp->getLHS()->getType();
142       QualType RHSType = BinOp->getRHS()->getType();
143       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
144     }
145     if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
146       return UnOp->getSubExpr()->getType()->isFixedPointType();
147     return false;
148   }
149 };
150 
151 static bool MustVisitNullValue(const Expr *E) {
152   // If a null pointer expression's type is the C++0x nullptr_t, then
153   // it's not necessarily a simple constant and it must be evaluated
154   // for its potential side effects.
155   return E->getType()->isNullPtrType();
156 }
157 
158 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
159 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
160                                                         const Expr *E) {
161   const Expr *Base = E->IgnoreImpCasts();
162   if (E == Base)
163     return llvm::None;
164 
165   QualType BaseTy = Base->getType();
166   if (!BaseTy->isPromotableIntegerType() ||
167       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
168     return llvm::None;
169 
170   return BaseTy;
171 }
172 
173 /// Check if \p E is a widened promoted integer.
174 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
175   return getUnwidenedIntegerType(Ctx, E).hasValue();
176 }
177 
178 /// Check if we can skip the overflow check for \p Op.
179 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
180   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
181          "Expected a unary or binary operator");
182 
183   // If the binop has constant inputs and we can prove there is no overflow,
184   // we can elide the overflow check.
185   if (!Op.mayHaveIntegerOverflow())
186     return true;
187 
188   // If a unary op has a widened operand, the op cannot overflow.
189   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
190     return !UO->canOverflow();
191 
192   // We usually don't need overflow checks for binops with widened operands.
193   // Multiplication with promoted unsigned operands is a special case.
194   const auto *BO = cast<BinaryOperator>(Op.E);
195   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
196   if (!OptionalLHSTy)
197     return false;
198 
199   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
200   if (!OptionalRHSTy)
201     return false;
202 
203   QualType LHSTy = *OptionalLHSTy;
204   QualType RHSTy = *OptionalRHSTy;
205 
206   // This is the simple case: binops without unsigned multiplication, and with
207   // widened operands. No overflow check is needed here.
208   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
209       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
210     return true;
211 
212   // For unsigned multiplication the overflow check can be elided if either one
213   // of the unpromoted types are less than half the size of the promoted type.
214   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
215   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
216          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
217 }
218 
219 class ScalarExprEmitter
220   : public StmtVisitor<ScalarExprEmitter, Value*> {
221   CodeGenFunction &CGF;
222   CGBuilderTy &Builder;
223   bool IgnoreResultAssign;
224   llvm::LLVMContext &VMContext;
225 public:
226 
227   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
228     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
229       VMContext(cgf.getLLVMContext()) {
230   }
231 
232   //===--------------------------------------------------------------------===//
233   //                               Utilities
234   //===--------------------------------------------------------------------===//
235 
236   bool TestAndClearIgnoreResultAssign() {
237     bool I = IgnoreResultAssign;
238     IgnoreResultAssign = false;
239     return I;
240   }
241 
242   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
243   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
244   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
245     return CGF.EmitCheckedLValue(E, TCK);
246   }
247 
248   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
249                       const BinOpInfo &Info);
250 
251   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
252     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
253   }
254 
255   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
256     const AlignValueAttr *AVAttr = nullptr;
257     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
258       const ValueDecl *VD = DRE->getDecl();
259 
260       if (VD->getType()->isReferenceType()) {
261         if (const auto *TTy =
262             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
263           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
264       } else {
265         // Assumptions for function parameters are emitted at the start of the
266         // function, so there is no need to repeat that here,
267         // unless the alignment-assumption sanitizer is enabled,
268         // then we prefer the assumption over alignment attribute
269         // on IR function param.
270         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
271           return;
272 
273         AVAttr = VD->getAttr<AlignValueAttr>();
274       }
275     }
276 
277     if (!AVAttr)
278       if (const auto *TTy =
279           dyn_cast<TypedefType>(E->getType()))
280         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
281 
282     if (!AVAttr)
283       return;
284 
285     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
286     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
287     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
288   }
289 
290   /// EmitLoadOfLValue - Given an expression with complex type that represents a
291   /// value l-value, this method emits the address of the l-value, then loads
292   /// and returns the result.
293   Value *EmitLoadOfLValue(const Expr *E) {
294     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
295                                 E->getExprLoc());
296 
297     EmitLValueAlignmentAssumption(E, V);
298     return V;
299   }
300 
301   /// EmitConversionToBool - Convert the specified expression value to a
302   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
303   Value *EmitConversionToBool(Value *Src, QualType DstTy);
304 
305   /// Emit a check that a conversion from a floating-point type does not
306   /// overflow.
307   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
308                                 Value *Src, QualType SrcType, QualType DstType,
309                                 llvm::Type *DstTy, SourceLocation Loc);
310 
311   /// Known implicit conversion check kinds.
312   /// Keep in sync with the enum of the same name in ubsan_handlers.h
313   enum ImplicitConversionCheckKind : unsigned char {
314     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
315     ICCK_UnsignedIntegerTruncation = 1,
316     ICCK_SignedIntegerTruncation = 2,
317     ICCK_IntegerSignChange = 3,
318     ICCK_SignedIntegerTruncationOrSignChange = 4,
319   };
320 
321   /// Emit a check that an [implicit] truncation of an integer  does not
322   /// discard any bits. It is not UB, so we use the value after truncation.
323   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
324                                   QualType DstType, SourceLocation Loc);
325 
326   /// Emit a check that an [implicit] conversion of an integer does not change
327   /// the sign of the value. It is not UB, so we use the value after conversion.
328   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
329   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
330                                   QualType DstType, SourceLocation Loc);
331 
332   /// Emit a conversion from the specified type to the specified destination
333   /// type, both of which are LLVM scalar types.
334   struct ScalarConversionOpts {
335     bool TreatBooleanAsSigned;
336     bool EmitImplicitIntegerTruncationChecks;
337     bool EmitImplicitIntegerSignChangeChecks;
338 
339     ScalarConversionOpts()
340         : TreatBooleanAsSigned(false),
341           EmitImplicitIntegerTruncationChecks(false),
342           EmitImplicitIntegerSignChangeChecks(false) {}
343 
344     ScalarConversionOpts(clang::SanitizerSet SanOpts)
345         : TreatBooleanAsSigned(false),
346           EmitImplicitIntegerTruncationChecks(
347               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
348           EmitImplicitIntegerSignChangeChecks(
349               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
350   };
351   Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
352                         llvm::Type *SrcTy, llvm::Type *DstTy,
353                         ScalarConversionOpts Opts);
354   Value *
355   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
356                        SourceLocation Loc,
357                        ScalarConversionOpts Opts = ScalarConversionOpts());
358 
359   /// Convert between either a fixed point and other fixed point or fixed point
360   /// and an integer.
361   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
362                                   SourceLocation Loc);
363 
364   /// Emit a conversion from the specified complex type to the specified
365   /// destination type, where the destination type is an LLVM scalar type.
366   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
367                                        QualType SrcTy, QualType DstTy,
368                                        SourceLocation Loc);
369 
370   /// EmitNullValue - Emit a value that corresponds to null for the given type.
371   Value *EmitNullValue(QualType Ty);
372 
373   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
374   Value *EmitFloatToBoolConversion(Value *V) {
375     // Compare against 0.0 for fp scalars.
376     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
377     return Builder.CreateFCmpUNE(V, Zero, "tobool");
378   }
379 
380   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
381   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
382     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
383 
384     return Builder.CreateICmpNE(V, Zero, "tobool");
385   }
386 
387   Value *EmitIntToBoolConversion(Value *V) {
388     // Because of the type rules of C, we often end up computing a
389     // logical value, then zero extending it to int, then wanting it
390     // as a logical value again.  Optimize this common case.
391     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
392       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
393         Value *Result = ZI->getOperand(0);
394         // If there aren't any more uses, zap the instruction to save space.
395         // Note that there can be more uses, for example if this
396         // is the result of an assignment.
397         if (ZI->use_empty())
398           ZI->eraseFromParent();
399         return Result;
400       }
401     }
402 
403     return Builder.CreateIsNotNull(V, "tobool");
404   }
405 
406   //===--------------------------------------------------------------------===//
407   //                            Visitor Methods
408   //===--------------------------------------------------------------------===//
409 
410   Value *Visit(Expr *E) {
411     ApplyDebugLocation DL(CGF, E);
412     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
413   }
414 
415   Value *VisitStmt(Stmt *S) {
416     S->dump(llvm::errs(), CGF.getContext());
417     llvm_unreachable("Stmt can't have complex result type!");
418   }
419   Value *VisitExpr(Expr *S);
420 
421   Value *VisitConstantExpr(ConstantExpr *E) {
422     if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
423       if (E->isGLValue())
424         return CGF.Builder.CreateLoad(Address(
425             Result, CGF.getContext().getTypeAlignInChars(E->getType())));
426       return Result;
427     }
428     return Visit(E->getSubExpr());
429   }
430   Value *VisitParenExpr(ParenExpr *PE) {
431     return Visit(PE->getSubExpr());
432   }
433   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
434     return Visit(E->getReplacement());
435   }
436   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
437     return Visit(GE->getResultExpr());
438   }
439   Value *VisitCoawaitExpr(CoawaitExpr *S) {
440     return CGF.EmitCoawaitExpr(*S).getScalarVal();
441   }
442   Value *VisitCoyieldExpr(CoyieldExpr *S) {
443     return CGF.EmitCoyieldExpr(*S).getScalarVal();
444   }
445   Value *VisitUnaryCoawait(const UnaryOperator *E) {
446     return Visit(E->getSubExpr());
447   }
448 
449   // Leaves.
450   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
451     return Builder.getInt(E->getValue());
452   }
453   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
454     return Builder.getInt(E->getValue());
455   }
456   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
457     return llvm::ConstantFP::get(VMContext, E->getValue());
458   }
459   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
460     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
461   }
462   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
463     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
464   }
465   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
466     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
467   }
468   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
469     return EmitNullValue(E->getType());
470   }
471   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
472     return EmitNullValue(E->getType());
473   }
474   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
475   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
476   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
477     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
478     return Builder.CreateBitCast(V, ConvertType(E->getType()));
479   }
480 
481   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
482     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
483   }
484 
485   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
486     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
487   }
488 
489   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
490     if (E->isGLValue())
491       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
492                               E->getExprLoc());
493 
494     // Otherwise, assume the mapping is the scalar directly.
495     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
496   }
497 
498   // l-values.
499   Value *VisitDeclRefExpr(DeclRefExpr *E) {
500     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
501       return CGF.emitScalarConstant(Constant, E);
502     return EmitLoadOfLValue(E);
503   }
504 
505   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
506     return CGF.EmitObjCSelectorExpr(E);
507   }
508   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
509     return CGF.EmitObjCProtocolExpr(E);
510   }
511   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
512     return EmitLoadOfLValue(E);
513   }
514   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
515     if (E->getMethodDecl() &&
516         E->getMethodDecl()->getReturnType()->isReferenceType())
517       return EmitLoadOfLValue(E);
518     return CGF.EmitObjCMessageExpr(E).getScalarVal();
519   }
520 
521   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
522     LValue LV = CGF.EmitObjCIsaExpr(E);
523     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
524     return V;
525   }
526 
527   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
528     VersionTuple Version = E->getVersion();
529 
530     // If we're checking for a platform older than our minimum deployment
531     // target, we can fold the check away.
532     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
533       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
534 
535     return CGF.EmitBuiltinAvailable(Version);
536   }
537 
538   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
539   Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
540   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
541   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
542   Value *VisitMemberExpr(MemberExpr *E);
543   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
544   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
545     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
546     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
547     // literals aren't l-values in C++. We do so simply because that's the
548     // cleanest way to handle compound literals in C++.
549     // See the discussion here: https://reviews.llvm.org/D64464
550     return EmitLoadOfLValue(E);
551   }
552 
553   Value *VisitInitListExpr(InitListExpr *E);
554 
555   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
556     assert(CGF.getArrayInitIndex() &&
557            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
558     return CGF.getArrayInitIndex();
559   }
560 
561   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
562     return EmitNullValue(E->getType());
563   }
564   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
565     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
566     return VisitCastExpr(E);
567   }
568   Value *VisitCastExpr(CastExpr *E);
569 
570   Value *VisitCallExpr(const CallExpr *E) {
571     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
572       return EmitLoadOfLValue(E);
573 
574     Value *V = CGF.EmitCallExpr(E).getScalarVal();
575 
576     EmitLValueAlignmentAssumption(E, V);
577     return V;
578   }
579 
580   Value *VisitStmtExpr(const StmtExpr *E);
581 
582   // Unary Operators.
583   Value *VisitUnaryPostDec(const UnaryOperator *E) {
584     LValue LV = EmitLValue(E->getSubExpr());
585     return EmitScalarPrePostIncDec(E, LV, false, false);
586   }
587   Value *VisitUnaryPostInc(const UnaryOperator *E) {
588     LValue LV = EmitLValue(E->getSubExpr());
589     return EmitScalarPrePostIncDec(E, LV, true, false);
590   }
591   Value *VisitUnaryPreDec(const UnaryOperator *E) {
592     LValue LV = EmitLValue(E->getSubExpr());
593     return EmitScalarPrePostIncDec(E, LV, false, true);
594   }
595   Value *VisitUnaryPreInc(const UnaryOperator *E) {
596     LValue LV = EmitLValue(E->getSubExpr());
597     return EmitScalarPrePostIncDec(E, LV, true, true);
598   }
599 
600   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
601                                                   llvm::Value *InVal,
602                                                   bool IsInc);
603 
604   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
605                                        bool isInc, bool isPre);
606 
607 
608   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
609     if (isa<MemberPointerType>(E->getType())) // never sugared
610       return CGF.CGM.getMemberPointerConstant(E);
611 
612     return EmitLValue(E->getSubExpr()).getPointer(CGF);
613   }
614   Value *VisitUnaryDeref(const UnaryOperator *E) {
615     if (E->getType()->isVoidType())
616       return Visit(E->getSubExpr()); // the actual value should be unused
617     return EmitLoadOfLValue(E);
618   }
619   Value *VisitUnaryPlus(const UnaryOperator *E) {
620     // This differs from gcc, though, most likely due to a bug in gcc.
621     TestAndClearIgnoreResultAssign();
622     return Visit(E->getSubExpr());
623   }
624   Value *VisitUnaryMinus    (const UnaryOperator *E);
625   Value *VisitUnaryNot      (const UnaryOperator *E);
626   Value *VisitUnaryLNot     (const UnaryOperator *E);
627   Value *VisitUnaryReal     (const UnaryOperator *E);
628   Value *VisitUnaryImag     (const UnaryOperator *E);
629   Value *VisitUnaryExtension(const UnaryOperator *E) {
630     return Visit(E->getSubExpr());
631   }
632 
633   // C++
634   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
635     return EmitLoadOfLValue(E);
636   }
637   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
638     auto &Ctx = CGF.getContext();
639     APValue Evaluated =
640         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
641     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
642                                              SLE->getType());
643   }
644 
645   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
646     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
647     return Visit(DAE->getExpr());
648   }
649   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
650     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
651     return Visit(DIE->getExpr());
652   }
653   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
654     return CGF.LoadCXXThis();
655   }
656 
657   Value *VisitExprWithCleanups(ExprWithCleanups *E);
658   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
659     return CGF.EmitCXXNewExpr(E);
660   }
661   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
662     CGF.EmitCXXDeleteExpr(E);
663     return nullptr;
664   }
665 
666   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
667     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
668   }
669 
670   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
671     return Builder.getInt1(E->isSatisfied());
672   }
673 
674   Value *VisitRequiresExpr(const RequiresExpr *E) {
675     return Builder.getInt1(E->isSatisfied());
676   }
677 
678   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
679     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
680   }
681 
682   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
683     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
684   }
685 
686   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
687     // C++ [expr.pseudo]p1:
688     //   The result shall only be used as the operand for the function call
689     //   operator (), and the result of such a call has type void. The only
690     //   effect is the evaluation of the postfix-expression before the dot or
691     //   arrow.
692     CGF.EmitScalarExpr(E->getBase());
693     return nullptr;
694   }
695 
696   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
697     return EmitNullValue(E->getType());
698   }
699 
700   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
701     CGF.EmitCXXThrowExpr(E);
702     return nullptr;
703   }
704 
705   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
706     return Builder.getInt1(E->getValue());
707   }
708 
709   // Binary Operators.
710   Value *EmitMul(const BinOpInfo &Ops) {
711     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
712       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
713       case LangOptions::SOB_Defined:
714         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
715       case LangOptions::SOB_Undefined:
716         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
717           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
718         LLVM_FALLTHROUGH;
719       case LangOptions::SOB_Trapping:
720         if (CanElideOverflowCheck(CGF.getContext(), Ops))
721           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
722         return EmitOverflowCheckedBinOp(Ops);
723       }
724     }
725 
726     if (Ops.Ty->isConstantMatrixType()) {
727       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
728       // We need to check the types of the operands of the operator to get the
729       // correct matrix dimensions.
730       auto *BO = cast<BinaryOperator>(Ops.E);
731       auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
732           BO->getLHS()->getType().getCanonicalType());
733       auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
734           BO->getRHS()->getType().getCanonicalType());
735       if (LHSMatTy && RHSMatTy)
736         return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
737                                        LHSMatTy->getNumColumns(),
738                                        RHSMatTy->getNumColumns());
739       return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
740     }
741 
742     if (Ops.Ty->isUnsignedIntegerType() &&
743         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
744         !CanElideOverflowCheck(CGF.getContext(), Ops))
745       return EmitOverflowCheckedBinOp(Ops);
746 
747     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
748       //  Preserve the old values
749       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
750       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
751     }
752     if (Ops.isFixedPointOp())
753       return EmitFixedPointBinOp(Ops);
754     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
755   }
756   /// Create a binary op that checks for overflow.
757   /// Currently only supports +, - and *.
758   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
759 
760   // Check for undefined division and modulus behaviors.
761   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
762                                                   llvm::Value *Zero,bool isDiv);
763   // Common helper for getting how wide LHS of shift is.
764   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
765 
766   // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
767   // non powers of two.
768   Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
769 
770   Value *EmitDiv(const BinOpInfo &Ops);
771   Value *EmitRem(const BinOpInfo &Ops);
772   Value *EmitAdd(const BinOpInfo &Ops);
773   Value *EmitSub(const BinOpInfo &Ops);
774   Value *EmitShl(const BinOpInfo &Ops);
775   Value *EmitShr(const BinOpInfo &Ops);
776   Value *EmitAnd(const BinOpInfo &Ops) {
777     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
778   }
779   Value *EmitXor(const BinOpInfo &Ops) {
780     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
781   }
782   Value *EmitOr (const BinOpInfo &Ops) {
783     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
784   }
785 
786   // Helper functions for fixed point binary operations.
787   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
788 
789   BinOpInfo EmitBinOps(const BinaryOperator *E);
790   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
791                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
792                                   Value *&Result);
793 
794   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
795                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
796 
797   // Binary operators and binary compound assignment operators.
798 #define HANDLEBINOP(OP) \
799   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
800     return Emit ## OP(EmitBinOps(E));                                      \
801   }                                                                        \
802   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
803     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
804   }
805   HANDLEBINOP(Mul)
806   HANDLEBINOP(Div)
807   HANDLEBINOP(Rem)
808   HANDLEBINOP(Add)
809   HANDLEBINOP(Sub)
810   HANDLEBINOP(Shl)
811   HANDLEBINOP(Shr)
812   HANDLEBINOP(And)
813   HANDLEBINOP(Xor)
814   HANDLEBINOP(Or)
815 #undef HANDLEBINOP
816 
817   // Comparisons.
818   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
819                      llvm::CmpInst::Predicate SICmpOpc,
820                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
821 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
822     Value *VisitBin##CODE(const BinaryOperator *E) { \
823       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
824                          llvm::FCmpInst::FP, SIG); }
825   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
826   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
827   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
828   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
829   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
830   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
831 #undef VISITCOMP
832 
833   Value *VisitBinAssign     (const BinaryOperator *E);
834 
835   Value *VisitBinLAnd       (const BinaryOperator *E);
836   Value *VisitBinLOr        (const BinaryOperator *E);
837   Value *VisitBinComma      (const BinaryOperator *E);
838 
839   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
840   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
841 
842   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
843     return Visit(E->getSemanticForm());
844   }
845 
846   // Other Operators.
847   Value *VisitBlockExpr(const BlockExpr *BE);
848   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
849   Value *VisitChooseExpr(ChooseExpr *CE);
850   Value *VisitVAArgExpr(VAArgExpr *VE);
851   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
852     return CGF.EmitObjCStringLiteral(E);
853   }
854   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
855     return CGF.EmitObjCBoxedExpr(E);
856   }
857   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
858     return CGF.EmitObjCArrayLiteral(E);
859   }
860   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
861     return CGF.EmitObjCDictionaryLiteral(E);
862   }
863   Value *VisitAsTypeExpr(AsTypeExpr *CE);
864   Value *VisitAtomicExpr(AtomicExpr *AE);
865 };
866 }  // end anonymous namespace.
867 
868 //===----------------------------------------------------------------------===//
869 //                                Utilities
870 //===----------------------------------------------------------------------===//
871 
872 /// EmitConversionToBool - Convert the specified expression value to a
873 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
874 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
875   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
876 
877   if (SrcType->isRealFloatingType())
878     return EmitFloatToBoolConversion(Src);
879 
880   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
881     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
882 
883   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
884          "Unknown scalar type to convert");
885 
886   if (isa<llvm::IntegerType>(Src->getType()))
887     return EmitIntToBoolConversion(Src);
888 
889   assert(isa<llvm::PointerType>(Src->getType()));
890   return EmitPointerToBoolConversion(Src, SrcType);
891 }
892 
893 void ScalarExprEmitter::EmitFloatConversionCheck(
894     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
895     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
896   assert(SrcType->isFloatingType() && "not a conversion from floating point");
897   if (!isa<llvm::IntegerType>(DstTy))
898     return;
899 
900   CodeGenFunction::SanitizerScope SanScope(&CGF);
901   using llvm::APFloat;
902   using llvm::APSInt;
903 
904   llvm::Value *Check = nullptr;
905   const llvm::fltSemantics &SrcSema =
906     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
907 
908   // Floating-point to integer. This has undefined behavior if the source is
909   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
910   // to an integer).
911   unsigned Width = CGF.getContext().getIntWidth(DstType);
912   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
913 
914   APSInt Min = APSInt::getMinValue(Width, Unsigned);
915   APFloat MinSrc(SrcSema, APFloat::uninitialized);
916   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
917       APFloat::opOverflow)
918     // Don't need an overflow check for lower bound. Just check for
919     // -Inf/NaN.
920     MinSrc = APFloat::getInf(SrcSema, true);
921   else
922     // Find the largest value which is too small to represent (before
923     // truncation toward zero).
924     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
925 
926   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
927   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
928   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
929       APFloat::opOverflow)
930     // Don't need an overflow check for upper bound. Just check for
931     // +Inf/NaN.
932     MaxSrc = APFloat::getInf(SrcSema, false);
933   else
934     // Find the smallest value which is too large to represent (before
935     // truncation toward zero).
936     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
937 
938   // If we're converting from __half, convert the range to float to match
939   // the type of src.
940   if (OrigSrcType->isHalfType()) {
941     const llvm::fltSemantics &Sema =
942       CGF.getContext().getFloatTypeSemantics(SrcType);
943     bool IsInexact;
944     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
945     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
946   }
947 
948   llvm::Value *GE =
949     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
950   llvm::Value *LE =
951     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
952   Check = Builder.CreateAnd(GE, LE);
953 
954   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
955                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
956                                   CGF.EmitCheckTypeDescriptor(DstType)};
957   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
958                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
959 }
960 
961 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
962 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
963 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
964                  std::pair<llvm::Value *, SanitizerMask>>
965 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
966                                  QualType DstType, CGBuilderTy &Builder) {
967   llvm::Type *SrcTy = Src->getType();
968   llvm::Type *DstTy = Dst->getType();
969   (void)DstTy; // Only used in assert()
970 
971   // This should be truncation of integral types.
972   assert(Src != Dst);
973   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
974   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
975          "non-integer llvm type");
976 
977   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
978   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
979 
980   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
981   // Else, it is a signed truncation.
982   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
983   SanitizerMask Mask;
984   if (!SrcSigned && !DstSigned) {
985     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
986     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
987   } else {
988     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
989     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
990   }
991 
992   llvm::Value *Check = nullptr;
993   // 1. Extend the truncated value back to the same width as the Src.
994   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
995   // 2. Equality-compare with the original source value
996   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
997   // If the comparison result is 'i1 false', then the truncation was lossy.
998   return std::make_pair(Kind, std::make_pair(Check, Mask));
999 }
1000 
1001 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1002     QualType SrcType, QualType DstType) {
1003   return SrcType->isIntegerType() && DstType->isIntegerType();
1004 }
1005 
1006 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1007                                                    Value *Dst, QualType DstType,
1008                                                    SourceLocation Loc) {
1009   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1010     return;
1011 
1012   // We only care about int->int conversions here.
1013   // We ignore conversions to/from pointer and/or bool.
1014   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1015                                                                        DstType))
1016     return;
1017 
1018   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1019   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1020   // This must be truncation. Else we do not care.
1021   if (SrcBits <= DstBits)
1022     return;
1023 
1024   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1025 
1026   // If the integer sign change sanitizer is enabled,
1027   // and we are truncating from larger unsigned type to smaller signed type,
1028   // let that next sanitizer deal with it.
1029   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1030   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1031   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1032       (!SrcSigned && DstSigned))
1033     return;
1034 
1035   CodeGenFunction::SanitizerScope SanScope(&CGF);
1036 
1037   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1038             std::pair<llvm::Value *, SanitizerMask>>
1039       Check =
1040           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1041   // If the comparison result is 'i1 false', then the truncation was lossy.
1042 
1043   // Do we care about this type of truncation?
1044   if (!CGF.SanOpts.has(Check.second.second))
1045     return;
1046 
1047   llvm::Constant *StaticArgs[] = {
1048       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1049       CGF.EmitCheckTypeDescriptor(DstType),
1050       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1051   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1052                 {Src, Dst});
1053 }
1054 
1055 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1056 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1057 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1058                  std::pair<llvm::Value *, SanitizerMask>>
1059 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1060                                  QualType DstType, CGBuilderTy &Builder) {
1061   llvm::Type *SrcTy = Src->getType();
1062   llvm::Type *DstTy = Dst->getType();
1063 
1064   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1065          "non-integer llvm type");
1066 
1067   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1068   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1069   (void)SrcSigned; // Only used in assert()
1070   (void)DstSigned; // Only used in assert()
1071   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1072   unsigned DstBits = DstTy->getScalarSizeInBits();
1073   (void)SrcBits; // Only used in assert()
1074   (void)DstBits; // Only used in assert()
1075 
1076   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1077          "either the widths should be different, or the signednesses.");
1078 
1079   // NOTE: zero value is considered to be non-negative.
1080   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1081                                        const char *Name) -> Value * {
1082     // Is this value a signed type?
1083     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1084     llvm::Type *VTy = V->getType();
1085     if (!VSigned) {
1086       // If the value is unsigned, then it is never negative.
1087       // FIXME: can we encounter non-scalar VTy here?
1088       return llvm::ConstantInt::getFalse(VTy->getContext());
1089     }
1090     // Get the zero of the same type with which we will be comparing.
1091     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1092     // %V.isnegative = icmp slt %V, 0
1093     // I.e is %V *strictly* less than zero, does it have negative value?
1094     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1095                               llvm::Twine(Name) + "." + V->getName() +
1096                                   ".negativitycheck");
1097   };
1098 
1099   // 1. Was the old Value negative?
1100   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1101   // 2. Is the new Value negative?
1102   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1103   // 3. Now, was the 'negativity status' preserved during the conversion?
1104   //    NOTE: conversion from negative to zero is considered to change the sign.
1105   //    (We want to get 'false' when the conversion changed the sign)
1106   //    So we should just equality-compare the negativity statuses.
1107   llvm::Value *Check = nullptr;
1108   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1109   // If the comparison result is 'false', then the conversion changed the sign.
1110   return std::make_pair(
1111       ScalarExprEmitter::ICCK_IntegerSignChange,
1112       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1113 }
1114 
1115 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1116                                                    Value *Dst, QualType DstType,
1117                                                    SourceLocation Loc) {
1118   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1119     return;
1120 
1121   llvm::Type *SrcTy = Src->getType();
1122   llvm::Type *DstTy = Dst->getType();
1123 
1124   // We only care about int->int conversions here.
1125   // We ignore conversions to/from pointer and/or bool.
1126   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1127                                                                        DstType))
1128     return;
1129 
1130   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1131   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1132   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1133   unsigned DstBits = DstTy->getScalarSizeInBits();
1134 
1135   // Now, we do not need to emit the check in *all* of the cases.
1136   // We can avoid emitting it in some obvious cases where it would have been
1137   // dropped by the opt passes (instcombine) always anyways.
1138   // If it's a cast between effectively the same type, no check.
1139   // NOTE: this is *not* equivalent to checking the canonical types.
1140   if (SrcSigned == DstSigned && SrcBits == DstBits)
1141     return;
1142   // At least one of the values needs to have signed type.
1143   // If both are unsigned, then obviously, neither of them can be negative.
1144   if (!SrcSigned && !DstSigned)
1145     return;
1146   // If the conversion is to *larger* *signed* type, then no check is needed.
1147   // Because either sign-extension happens (so the sign will remain),
1148   // or zero-extension will happen (the sign bit will be zero.)
1149   if ((DstBits > SrcBits) && DstSigned)
1150     return;
1151   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1152       (SrcBits > DstBits) && SrcSigned) {
1153     // If the signed integer truncation sanitizer is enabled,
1154     // and this is a truncation from signed type, then no check is needed.
1155     // Because here sign change check is interchangeable with truncation check.
1156     return;
1157   }
1158   // That's it. We can't rule out any more cases with the data we have.
1159 
1160   CodeGenFunction::SanitizerScope SanScope(&CGF);
1161 
1162   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1163             std::pair<llvm::Value *, SanitizerMask>>
1164       Check;
1165 
1166   // Each of these checks needs to return 'false' when an issue was detected.
1167   ImplicitConversionCheckKind CheckKind;
1168   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1169   // So we can 'and' all the checks together, and still get 'false',
1170   // if at least one of the checks detected an issue.
1171 
1172   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1173   CheckKind = Check.first;
1174   Checks.emplace_back(Check.second);
1175 
1176   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1177       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1178     // If the signed integer truncation sanitizer was enabled,
1179     // and we are truncating from larger unsigned type to smaller signed type,
1180     // let's handle the case we skipped in that check.
1181     Check =
1182         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1183     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1184     Checks.emplace_back(Check.second);
1185     // If the comparison result is 'i1 false', then the truncation was lossy.
1186   }
1187 
1188   llvm::Constant *StaticArgs[] = {
1189       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1190       CGF.EmitCheckTypeDescriptor(DstType),
1191       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1192   // EmitCheck() will 'and' all the checks together.
1193   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1194                 {Src, Dst});
1195 }
1196 
1197 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
1198                                          QualType DstType, llvm::Type *SrcTy,
1199                                          llvm::Type *DstTy,
1200                                          ScalarConversionOpts Opts) {
1201   if (isa<llvm::IntegerType>(SrcTy)) {
1202     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1203     if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1204       InputSigned = true;
1205     }
1206 
1207     if (isa<llvm::IntegerType>(DstTy))
1208       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1209     if (InputSigned)
1210       return Builder.CreateSIToFP(Src, DstTy, "conv");
1211     return Builder.CreateUIToFP(Src, DstTy, "conv");
1212   }
1213 
1214   if (isa<llvm::IntegerType>(DstTy)) {
1215     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1216     if (DstType->isSignedIntegerOrEnumerationType())
1217       return Builder.CreateFPToSI(Src, DstTy, "conv");
1218     return Builder.CreateFPToUI(Src, DstTy, "conv");
1219   }
1220 
1221   if (DstTy->getTypeID() < SrcTy->getTypeID())
1222     return Builder.CreateFPTrunc(Src, DstTy, "conv");
1223   return Builder.CreateFPExt(Src, DstTy, "conv");
1224 }
1225 
1226 /// Emit a conversion from the specified type to the specified destination type,
1227 /// both of which are LLVM scalar types.
1228 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1229                                                QualType DstType,
1230                                                SourceLocation Loc,
1231                                                ScalarConversionOpts Opts) {
1232   // All conversions involving fixed point types should be handled by the
1233   // EmitFixedPoint family functions. This is done to prevent bloating up this
1234   // function more, and although fixed point numbers are represented by
1235   // integers, we do not want to follow any logic that assumes they should be
1236   // treated as integers.
1237   // TODO(leonardchan): When necessary, add another if statement checking for
1238   // conversions to fixed point types from other types.
1239   if (SrcType->isFixedPointType()) {
1240     if (DstType->isBooleanType())
1241       // It is important that we check this before checking if the dest type is
1242       // an integer because booleans are technically integer types.
1243       // We do not need to check the padding bit on unsigned types if unsigned
1244       // padding is enabled because overflow into this bit is undefined
1245       // behavior.
1246       return Builder.CreateIsNotNull(Src, "tobool");
1247     if (DstType->isFixedPointType() || DstType->isIntegerType() ||
1248         DstType->isRealFloatingType())
1249       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1250 
1251     llvm_unreachable(
1252         "Unhandled scalar conversion from a fixed point type to another type.");
1253   } else if (DstType->isFixedPointType()) {
1254     if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
1255       // This also includes converting booleans and enums to fixed point types.
1256       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1257 
1258     llvm_unreachable(
1259         "Unhandled scalar conversion to a fixed point type from another type.");
1260   }
1261 
1262   QualType NoncanonicalSrcType = SrcType;
1263   QualType NoncanonicalDstType = DstType;
1264 
1265   SrcType = CGF.getContext().getCanonicalType(SrcType);
1266   DstType = CGF.getContext().getCanonicalType(DstType);
1267   if (SrcType == DstType) return Src;
1268 
1269   if (DstType->isVoidType()) return nullptr;
1270 
1271   llvm::Value *OrigSrc = Src;
1272   QualType OrigSrcType = SrcType;
1273   llvm::Type *SrcTy = Src->getType();
1274 
1275   // Handle conversions to bool first, they are special: comparisons against 0.
1276   if (DstType->isBooleanType())
1277     return EmitConversionToBool(Src, SrcType);
1278 
1279   llvm::Type *DstTy = ConvertType(DstType);
1280 
1281   // Cast from half through float if half isn't a native type.
1282   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1283     // Cast to FP using the intrinsic if the half type itself isn't supported.
1284     if (DstTy->isFloatingPointTy()) {
1285       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1286         return Builder.CreateCall(
1287             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1288             Src);
1289     } else {
1290       // Cast to other types through float, using either the intrinsic or FPExt,
1291       // depending on whether the half type itself is supported
1292       // (as opposed to operations on half, available with NativeHalfType).
1293       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1294         Src = Builder.CreateCall(
1295             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1296                                  CGF.CGM.FloatTy),
1297             Src);
1298       } else {
1299         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1300       }
1301       SrcType = CGF.getContext().FloatTy;
1302       SrcTy = CGF.FloatTy;
1303     }
1304   }
1305 
1306   // Ignore conversions like int -> uint.
1307   if (SrcTy == DstTy) {
1308     if (Opts.EmitImplicitIntegerSignChangeChecks)
1309       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1310                                  NoncanonicalDstType, Loc);
1311 
1312     return Src;
1313   }
1314 
1315   // Handle pointer conversions next: pointers can only be converted to/from
1316   // other pointers and integers. Check for pointer types in terms of LLVM, as
1317   // some native types (like Obj-C id) may map to a pointer type.
1318   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1319     // The source value may be an integer, or a pointer.
1320     if (isa<llvm::PointerType>(SrcTy))
1321       return Builder.CreateBitCast(Src, DstTy, "conv");
1322 
1323     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1324     // First, convert to the correct width so that we control the kind of
1325     // extension.
1326     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1327     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1328     llvm::Value* IntResult =
1329         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1330     // Then, cast to pointer.
1331     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1332   }
1333 
1334   if (isa<llvm::PointerType>(SrcTy)) {
1335     // Must be an ptr to int cast.
1336     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1337     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1338   }
1339 
1340   // A scalar can be splatted to an extended vector of the same element type
1341   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1342     // Sema should add casts to make sure that the source expression's type is
1343     // the same as the vector's element type (sans qualifiers)
1344     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1345                SrcType.getTypePtr() &&
1346            "Splatted expr doesn't match with vector element type?");
1347 
1348     // Splat the element across to all elements
1349     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1350     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1351   }
1352 
1353   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1354     // Allow bitcast from vector to integer/fp of the same size.
1355     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1356     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1357     if (SrcSize == DstSize)
1358       return Builder.CreateBitCast(Src, DstTy, "conv");
1359 
1360     // Conversions between vectors of different sizes are not allowed except
1361     // when vectors of half are involved. Operations on storage-only half
1362     // vectors require promoting half vector operands to float vectors and
1363     // truncating the result, which is either an int or float vector, to a
1364     // short or half vector.
1365 
1366     // Source and destination are both expected to be vectors.
1367     llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1368     llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1369     (void)DstElementTy;
1370 
1371     assert(((SrcElementTy->isIntegerTy() &&
1372              DstElementTy->isIntegerTy()) ||
1373             (SrcElementTy->isFloatingPointTy() &&
1374              DstElementTy->isFloatingPointTy())) &&
1375            "unexpected conversion between a floating-point vector and an "
1376            "integer vector");
1377 
1378     // Truncate an i32 vector to an i16 vector.
1379     if (SrcElementTy->isIntegerTy())
1380       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1381 
1382     // Truncate a float vector to a half vector.
1383     if (SrcSize > DstSize)
1384       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1385 
1386     // Promote a half vector to a float vector.
1387     return Builder.CreateFPExt(Src, DstTy, "conv");
1388   }
1389 
1390   // Finally, we have the arithmetic types: real int/float.
1391   Value *Res = nullptr;
1392   llvm::Type *ResTy = DstTy;
1393 
1394   // An overflowing conversion has undefined behavior if either the source type
1395   // or the destination type is a floating-point type. However, we consider the
1396   // range of representable values for all floating-point types to be
1397   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1398   // floating-point type.
1399   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1400       OrigSrcType->isFloatingType())
1401     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1402                              Loc);
1403 
1404   // Cast to half through float if half isn't a native type.
1405   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1406     // Make sure we cast in a single step if from another FP type.
1407     if (SrcTy->isFloatingPointTy()) {
1408       // Use the intrinsic if the half type itself isn't supported
1409       // (as opposed to operations on half, available with NativeHalfType).
1410       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1411         return Builder.CreateCall(
1412             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1413       // If the half type is supported, just use an fptrunc.
1414       return Builder.CreateFPTrunc(Src, DstTy);
1415     }
1416     DstTy = CGF.FloatTy;
1417   }
1418 
1419   Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1420 
1421   if (DstTy != ResTy) {
1422     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1423       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1424       Res = Builder.CreateCall(
1425         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1426         Res);
1427     } else {
1428       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1429     }
1430   }
1431 
1432   if (Opts.EmitImplicitIntegerTruncationChecks)
1433     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1434                                NoncanonicalDstType, Loc);
1435 
1436   if (Opts.EmitImplicitIntegerSignChangeChecks)
1437     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1438                                NoncanonicalDstType, Loc);
1439 
1440   return Res;
1441 }
1442 
1443 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1444                                                    QualType DstTy,
1445                                                    SourceLocation Loc) {
1446   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1447   llvm::Value *Result;
1448   if (SrcTy->isRealFloatingType())
1449     Result = FPBuilder.CreateFloatingToFixed(Src,
1450         CGF.getContext().getFixedPointSemantics(DstTy));
1451   else if (DstTy->isRealFloatingType())
1452     Result = FPBuilder.CreateFixedToFloating(Src,
1453         CGF.getContext().getFixedPointSemantics(SrcTy),
1454         ConvertType(DstTy));
1455   else {
1456     auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1457     auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1458 
1459     if (DstTy->isIntegerType())
1460       Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1461                                               DstFPSema.getWidth(),
1462                                               DstFPSema.isSigned());
1463     else if (SrcTy->isIntegerType())
1464       Result =  FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1465                                                DstFPSema);
1466     else
1467       Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1468   }
1469   return Result;
1470 }
1471 
1472 /// Emit a conversion from the specified complex type to the specified
1473 /// destination type, where the destination type is an LLVM scalar type.
1474 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1475     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1476     SourceLocation Loc) {
1477   // Get the source element type.
1478   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1479 
1480   // Handle conversions to bool first, they are special: comparisons against 0.
1481   if (DstTy->isBooleanType()) {
1482     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1483     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1484     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1485     return Builder.CreateOr(Src.first, Src.second, "tobool");
1486   }
1487 
1488   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1489   // the imaginary part of the complex value is discarded and the value of the
1490   // real part is converted according to the conversion rules for the
1491   // corresponding real type.
1492   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1493 }
1494 
1495 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1496   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1497 }
1498 
1499 /// Emit a sanitization check for the given "binary" operation (which
1500 /// might actually be a unary increment which has been lowered to a binary
1501 /// operation). The check passes if all values in \p Checks (which are \c i1),
1502 /// are \c true.
1503 void ScalarExprEmitter::EmitBinOpCheck(
1504     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1505   assert(CGF.IsSanitizerScope);
1506   SanitizerHandler Check;
1507   SmallVector<llvm::Constant *, 4> StaticData;
1508   SmallVector<llvm::Value *, 2> DynamicData;
1509 
1510   BinaryOperatorKind Opcode = Info.Opcode;
1511   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1512     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1513 
1514   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1515   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1516   if (UO && UO->getOpcode() == UO_Minus) {
1517     Check = SanitizerHandler::NegateOverflow;
1518     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1519     DynamicData.push_back(Info.RHS);
1520   } else {
1521     if (BinaryOperator::isShiftOp(Opcode)) {
1522       // Shift LHS negative or too large, or RHS out of bounds.
1523       Check = SanitizerHandler::ShiftOutOfBounds;
1524       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1525       StaticData.push_back(
1526         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1527       StaticData.push_back(
1528         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1529     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1530       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1531       Check = SanitizerHandler::DivremOverflow;
1532       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1533     } else {
1534       // Arithmetic overflow (+, -, *).
1535       switch (Opcode) {
1536       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1537       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1538       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1539       default: llvm_unreachable("unexpected opcode for bin op check");
1540       }
1541       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1542     }
1543     DynamicData.push_back(Info.LHS);
1544     DynamicData.push_back(Info.RHS);
1545   }
1546 
1547   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1548 }
1549 
1550 //===----------------------------------------------------------------------===//
1551 //                            Visitor Methods
1552 //===----------------------------------------------------------------------===//
1553 
1554 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1555   CGF.ErrorUnsupported(E, "scalar expression");
1556   if (E->getType()->isVoidType())
1557     return nullptr;
1558   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1559 }
1560 
1561 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1562   // Vector Mask Case
1563   if (E->getNumSubExprs() == 2) {
1564     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1565     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1566     Value *Mask;
1567 
1568     auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1569     unsigned LHSElts = LTy->getNumElements();
1570 
1571     Mask = RHS;
1572 
1573     auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1574 
1575     // Mask off the high bits of each shuffle index.
1576     Value *MaskBits =
1577         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1578     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1579 
1580     // newv = undef
1581     // mask = mask & maskbits
1582     // for each elt
1583     //   n = extract mask i
1584     //   x = extract val n
1585     //   newv = insert newv, x, i
1586     auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1587                                            MTy->getNumElements());
1588     Value* NewV = llvm::UndefValue::get(RTy);
1589     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1590       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1591       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1592 
1593       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1594       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1595     }
1596     return NewV;
1597   }
1598 
1599   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1600   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1601 
1602   SmallVector<int, 32> Indices;
1603   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1604     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1605     // Check for -1 and output it as undef in the IR.
1606     if (Idx.isSigned() && Idx.isAllOnesValue())
1607       Indices.push_back(-1);
1608     else
1609       Indices.push_back(Idx.getZExtValue());
1610   }
1611 
1612   return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1613 }
1614 
1615 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1616   QualType SrcType = E->getSrcExpr()->getType(),
1617            DstType = E->getType();
1618 
1619   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1620 
1621   SrcType = CGF.getContext().getCanonicalType(SrcType);
1622   DstType = CGF.getContext().getCanonicalType(DstType);
1623   if (SrcType == DstType) return Src;
1624 
1625   assert(SrcType->isVectorType() &&
1626          "ConvertVector source type must be a vector");
1627   assert(DstType->isVectorType() &&
1628          "ConvertVector destination type must be a vector");
1629 
1630   llvm::Type *SrcTy = Src->getType();
1631   llvm::Type *DstTy = ConvertType(DstType);
1632 
1633   // Ignore conversions like int -> uint.
1634   if (SrcTy == DstTy)
1635     return Src;
1636 
1637   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1638            DstEltType = DstType->castAs<VectorType>()->getElementType();
1639 
1640   assert(SrcTy->isVectorTy() &&
1641          "ConvertVector source IR type must be a vector");
1642   assert(DstTy->isVectorTy() &&
1643          "ConvertVector destination IR type must be a vector");
1644 
1645   llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1646              *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1647 
1648   if (DstEltType->isBooleanType()) {
1649     assert((SrcEltTy->isFloatingPointTy() ||
1650             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1651 
1652     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1653     if (SrcEltTy->isFloatingPointTy()) {
1654       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1655     } else {
1656       return Builder.CreateICmpNE(Src, Zero, "tobool");
1657     }
1658   }
1659 
1660   // We have the arithmetic types: real int/float.
1661   Value *Res = nullptr;
1662 
1663   if (isa<llvm::IntegerType>(SrcEltTy)) {
1664     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1665     if (isa<llvm::IntegerType>(DstEltTy))
1666       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1667     else if (InputSigned)
1668       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1669     else
1670       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1671   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1672     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1673     if (DstEltType->isSignedIntegerOrEnumerationType())
1674       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1675     else
1676       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1677   } else {
1678     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1679            "Unknown real conversion");
1680     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1681       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1682     else
1683       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1684   }
1685 
1686   return Res;
1687 }
1688 
1689 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1690   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1691     CGF.EmitIgnoredExpr(E->getBase());
1692     return CGF.emitScalarConstant(Constant, E);
1693   } else {
1694     Expr::EvalResult Result;
1695     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1696       llvm::APSInt Value = Result.Val.getInt();
1697       CGF.EmitIgnoredExpr(E->getBase());
1698       return Builder.getInt(Value);
1699     }
1700   }
1701 
1702   return EmitLoadOfLValue(E);
1703 }
1704 
1705 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1706   TestAndClearIgnoreResultAssign();
1707 
1708   // Emit subscript expressions in rvalue context's.  For most cases, this just
1709   // loads the lvalue formed by the subscript expr.  However, we have to be
1710   // careful, because the base of a vector subscript is occasionally an rvalue,
1711   // so we can't get it as an lvalue.
1712   if (!E->getBase()->getType()->isVectorType())
1713     return EmitLoadOfLValue(E);
1714 
1715   // Handle the vector case.  The base must be a vector, the index must be an
1716   // integer value.
1717   Value *Base = Visit(E->getBase());
1718   Value *Idx  = Visit(E->getIdx());
1719   QualType IdxTy = E->getIdx()->getType();
1720 
1721   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1722     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1723 
1724   return Builder.CreateExtractElement(Base, Idx, "vecext");
1725 }
1726 
1727 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1728   TestAndClearIgnoreResultAssign();
1729 
1730   // Handle the vector case.  The base must be a vector, the index must be an
1731   // integer value.
1732   Value *RowIdx = Visit(E->getRowIdx());
1733   Value *ColumnIdx = Visit(E->getColumnIdx());
1734   Value *Matrix = Visit(E->getBase());
1735 
1736   // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1737   llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
1738   return MB.CreateExtractElement(
1739       Matrix, RowIdx, ColumnIdx,
1740       E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows());
1741 }
1742 
1743 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1744                       unsigned Off) {
1745   int MV = SVI->getMaskValue(Idx);
1746   if (MV == -1)
1747     return -1;
1748   return Off + MV;
1749 }
1750 
1751 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1752   assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1753          "Index operand too large for shufflevector mask!");
1754   return C->getZExtValue();
1755 }
1756 
1757 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1758   bool Ignore = TestAndClearIgnoreResultAssign();
1759   (void)Ignore;
1760   assert (Ignore == false && "init list ignored");
1761   unsigned NumInitElements = E->getNumInits();
1762 
1763   if (E->hadArrayRangeDesignator())
1764     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1765 
1766   llvm::VectorType *VType =
1767     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1768 
1769   if (!VType) {
1770     if (NumInitElements == 0) {
1771       // C++11 value-initialization for the scalar.
1772       return EmitNullValue(E->getType());
1773     }
1774     // We have a scalar in braces. Just use the first element.
1775     return Visit(E->getInit(0));
1776   }
1777 
1778   unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
1779 
1780   // Loop over initializers collecting the Value for each, and remembering
1781   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1782   // us to fold the shuffle for the swizzle into the shuffle for the vector
1783   // initializer, since LLVM optimizers generally do not want to touch
1784   // shuffles.
1785   unsigned CurIdx = 0;
1786   bool VIsUndefShuffle = false;
1787   llvm::Value *V = llvm::UndefValue::get(VType);
1788   for (unsigned i = 0; i != NumInitElements; ++i) {
1789     Expr *IE = E->getInit(i);
1790     Value *Init = Visit(IE);
1791     SmallVector<int, 16> Args;
1792 
1793     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1794 
1795     // Handle scalar elements.  If the scalar initializer is actually one
1796     // element of a different vector of the same width, use shuffle instead of
1797     // extract+insert.
1798     if (!VVT) {
1799       if (isa<ExtVectorElementExpr>(IE)) {
1800         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1801 
1802         if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
1803                 ->getNumElements() == ResElts) {
1804           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1805           Value *LHS = nullptr, *RHS = nullptr;
1806           if (CurIdx == 0) {
1807             // insert into undef -> shuffle (src, undef)
1808             // shufflemask must use an i32
1809             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1810             Args.resize(ResElts, -1);
1811 
1812             LHS = EI->getVectorOperand();
1813             RHS = V;
1814             VIsUndefShuffle = true;
1815           } else if (VIsUndefShuffle) {
1816             // insert into undefshuffle && size match -> shuffle (v, src)
1817             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1818             for (unsigned j = 0; j != CurIdx; ++j)
1819               Args.push_back(getMaskElt(SVV, j, 0));
1820             Args.push_back(ResElts + C->getZExtValue());
1821             Args.resize(ResElts, -1);
1822 
1823             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1824             RHS = EI->getVectorOperand();
1825             VIsUndefShuffle = false;
1826           }
1827           if (!Args.empty()) {
1828             V = Builder.CreateShuffleVector(LHS, RHS, Args);
1829             ++CurIdx;
1830             continue;
1831           }
1832         }
1833       }
1834       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1835                                       "vecinit");
1836       VIsUndefShuffle = false;
1837       ++CurIdx;
1838       continue;
1839     }
1840 
1841     unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
1842 
1843     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1844     // input is the same width as the vector being constructed, generate an
1845     // optimized shuffle of the swizzle input into the result.
1846     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1847     if (isa<ExtVectorElementExpr>(IE)) {
1848       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1849       Value *SVOp = SVI->getOperand(0);
1850       auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
1851 
1852       if (OpTy->getNumElements() == ResElts) {
1853         for (unsigned j = 0; j != CurIdx; ++j) {
1854           // If the current vector initializer is a shuffle with undef, merge
1855           // this shuffle directly into it.
1856           if (VIsUndefShuffle) {
1857             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1858           } else {
1859             Args.push_back(j);
1860           }
1861         }
1862         for (unsigned j = 0, je = InitElts; j != je; ++j)
1863           Args.push_back(getMaskElt(SVI, j, Offset));
1864         Args.resize(ResElts, -1);
1865 
1866         if (VIsUndefShuffle)
1867           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1868 
1869         Init = SVOp;
1870       }
1871     }
1872 
1873     // Extend init to result vector length, and then shuffle its contribution
1874     // to the vector initializer into V.
1875     if (Args.empty()) {
1876       for (unsigned j = 0; j != InitElts; ++j)
1877         Args.push_back(j);
1878       Args.resize(ResElts, -1);
1879       Init = Builder.CreateShuffleVector(Init, Args, "vext");
1880 
1881       Args.clear();
1882       for (unsigned j = 0; j != CurIdx; ++j)
1883         Args.push_back(j);
1884       for (unsigned j = 0; j != InitElts; ++j)
1885         Args.push_back(j + Offset);
1886       Args.resize(ResElts, -1);
1887     }
1888 
1889     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1890     // merging subsequent shuffles into this one.
1891     if (CurIdx == 0)
1892       std::swap(V, Init);
1893     V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1894     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1895     CurIdx += InitElts;
1896   }
1897 
1898   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1899   // Emit remaining default initializers.
1900   llvm::Type *EltTy = VType->getElementType();
1901 
1902   // Emit remaining default initializers
1903   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1904     Value *Idx = Builder.getInt32(CurIdx);
1905     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1906     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1907   }
1908   return V;
1909 }
1910 
1911 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1912   const Expr *E = CE->getSubExpr();
1913 
1914   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1915     return false;
1916 
1917   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1918     // We always assume that 'this' is never null.
1919     return false;
1920   }
1921 
1922   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1923     // And that glvalue casts are never null.
1924     if (ICE->getValueKind() != VK_RValue)
1925       return false;
1926   }
1927 
1928   return true;
1929 }
1930 
1931 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1932 // have to handle a more broad range of conversions than explicit casts, as they
1933 // handle things like function to ptr-to-function decay etc.
1934 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1935   Expr *E = CE->getSubExpr();
1936   QualType DestTy = CE->getType();
1937   CastKind Kind = CE->getCastKind();
1938 
1939   // These cases are generally not written to ignore the result of
1940   // evaluating their sub-expressions, so we clear this now.
1941   bool Ignored = TestAndClearIgnoreResultAssign();
1942 
1943   // Since almost all cast kinds apply to scalars, this switch doesn't have
1944   // a default case, so the compiler will warn on a missing case.  The cases
1945   // are in the same order as in the CastKind enum.
1946   switch (Kind) {
1947   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1948   case CK_BuiltinFnToFnPtr:
1949     llvm_unreachable("builtin functions are handled elsewhere");
1950 
1951   case CK_LValueBitCast:
1952   case CK_ObjCObjectLValueCast: {
1953     Address Addr = EmitLValue(E).getAddress(CGF);
1954     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1955     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1956     return EmitLoadOfLValue(LV, CE->getExprLoc());
1957   }
1958 
1959   case CK_LValueToRValueBitCast: {
1960     LValue SourceLVal = CGF.EmitLValue(E);
1961     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
1962                                                 CGF.ConvertTypeForMem(DestTy));
1963     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
1964     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
1965     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
1966   }
1967 
1968   case CK_CPointerToObjCPointerCast:
1969   case CK_BlockPointerToObjCPointerCast:
1970   case CK_AnyPointerToBlockPointerCast:
1971   case CK_BitCast: {
1972     Value *Src = Visit(const_cast<Expr*>(E));
1973     llvm::Type *SrcTy = Src->getType();
1974     llvm::Type *DstTy = ConvertType(DestTy);
1975     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1976         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1977       llvm_unreachable("wrong cast for pointers in different address spaces"
1978                        "(must be an address space cast)!");
1979     }
1980 
1981     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1982       if (auto PT = DestTy->getAs<PointerType>())
1983         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1984                                       /*MayBeNull=*/true,
1985                                       CodeGenFunction::CFITCK_UnrelatedCast,
1986                                       CE->getBeginLoc());
1987     }
1988 
1989     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
1990       const QualType SrcType = E->getType();
1991 
1992       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
1993         // Casting to pointer that could carry dynamic information (provided by
1994         // invariant.group) requires launder.
1995         Src = Builder.CreateLaunderInvariantGroup(Src);
1996       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
1997         // Casting to pointer that does not carry dynamic information (provided
1998         // by invariant.group) requires stripping it.  Note that we don't do it
1999         // if the source could not be dynamic type and destination could be
2000         // dynamic because dynamic information is already laundered.  It is
2001         // because launder(strip(src)) == launder(src), so there is no need to
2002         // add extra strip before launder.
2003         Src = Builder.CreateStripInvariantGroup(Src);
2004       }
2005     }
2006 
2007     // Update heapallocsite metadata when there is an explicit pointer cast.
2008     if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2009       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
2010         QualType PointeeType = DestTy->getPointeeType();
2011         if (!PointeeType.isNull())
2012           CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2013                                                        CE->getExprLoc());
2014       }
2015     }
2016 
2017     // If Src is a fixed vector and Dst is a scalable vector, and both have the
2018     // same element type, use the llvm.experimental.vector.insert intrinsic to
2019     // perform the bitcast.
2020     if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
2021       if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
2022         if (FixedSrc->getElementType() == ScalableDst->getElementType()) {
2023           llvm::Value *UndefVec = llvm::UndefValue::get(DstTy);
2024           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2025           return Builder.CreateInsertVector(DstTy, UndefVec, Src, Zero,
2026                                             "castScalableSve");
2027         }
2028       }
2029     }
2030 
2031     // If Src is a scalable vector and Dst is a fixed vector, and both have the
2032     // same element type, use the llvm.experimental.vector.extract intrinsic to
2033     // perform the bitcast.
2034     if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
2035       if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) {
2036         if (ScalableSrc->getElementType() == FixedDst->getElementType()) {
2037           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2038           return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve");
2039         }
2040       }
2041     }
2042 
2043     // Perform VLAT <-> VLST bitcast through memory.
2044     // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics
2045     //       require the element types of the vectors to be the same, we
2046     //       need to keep this around for casting between predicates, or more
2047     //       generally for bitcasts between VLAT <-> VLST where the element
2048     //       types of the vectors are not the same, until we figure out a better
2049     //       way of doing these casts.
2050     if ((isa<llvm::FixedVectorType>(SrcTy) &&
2051          isa<llvm::ScalableVectorType>(DstTy)) ||
2052         (isa<llvm::ScalableVectorType>(SrcTy) &&
2053          isa<llvm::FixedVectorType>(DstTy))) {
2054       if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
2055         // Call expressions can't have a scalar return unless the return type
2056         // is a reference type so an lvalue can't be emitted. Create a temp
2057         // alloca to store the call, bitcast the address then load.
2058         QualType RetTy = CE->getCallReturnType(CGF.getContext());
2059         Address Addr =
2060             CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-call-rvalue");
2061         LValue LV = CGF.MakeAddrLValue(Addr, RetTy);
2062         CGF.EmitStoreOfScalar(Src, LV);
2063         Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy),
2064                                             "castFixedSve");
2065         LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2066         DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2067         return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2068       }
2069 
2070       Address Addr = EmitLValue(E).getAddress(CGF);
2071       Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2072       LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2073       DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2074       return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2075     }
2076 
2077     return Builder.CreateBitCast(Src, DstTy);
2078   }
2079   case CK_AddressSpaceConversion: {
2080     Expr::EvalResult Result;
2081     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2082         Result.Val.isNullPointer()) {
2083       // If E has side effect, it is emitted even if its final result is a
2084       // null pointer. In that case, a DCE pass should be able to
2085       // eliminate the useless instructions emitted during translating E.
2086       if (Result.HasSideEffects)
2087         Visit(E);
2088       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2089           ConvertType(DestTy)), DestTy);
2090     }
2091     // Since target may map different address spaces in AST to the same address
2092     // space, an address space conversion may end up as a bitcast.
2093     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2094         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2095         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2096   }
2097   case CK_AtomicToNonAtomic:
2098   case CK_NonAtomicToAtomic:
2099   case CK_NoOp:
2100   case CK_UserDefinedConversion:
2101     return Visit(const_cast<Expr*>(E));
2102 
2103   case CK_BaseToDerived: {
2104     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2105     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2106 
2107     Address Base = CGF.EmitPointerWithAlignment(E);
2108     Address Derived =
2109       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2110                                    CE->path_begin(), CE->path_end(),
2111                                    CGF.ShouldNullCheckClassCastValue(CE));
2112 
2113     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2114     // performed and the object is not of the derived type.
2115     if (CGF.sanitizePerformTypeCheck())
2116       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2117                         Derived.getPointer(), DestTy->getPointeeType());
2118 
2119     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2120       CGF.EmitVTablePtrCheckForCast(
2121           DestTy->getPointeeType(), Derived.getPointer(),
2122           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2123           CE->getBeginLoc());
2124 
2125     return Derived.getPointer();
2126   }
2127   case CK_UncheckedDerivedToBase:
2128   case CK_DerivedToBase: {
2129     // The EmitPointerWithAlignment path does this fine; just discard
2130     // the alignment.
2131     return CGF.EmitPointerWithAlignment(CE).getPointer();
2132   }
2133 
2134   case CK_Dynamic: {
2135     Address V = CGF.EmitPointerWithAlignment(E);
2136     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2137     return CGF.EmitDynamicCast(V, DCE);
2138   }
2139 
2140   case CK_ArrayToPointerDecay:
2141     return CGF.EmitArrayToPointerDecay(E).getPointer();
2142   case CK_FunctionToPointerDecay:
2143     return EmitLValue(E).getPointer(CGF);
2144 
2145   case CK_NullToPointer:
2146     if (MustVisitNullValue(E))
2147       CGF.EmitIgnoredExpr(E);
2148 
2149     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2150                               DestTy);
2151 
2152   case CK_NullToMemberPointer: {
2153     if (MustVisitNullValue(E))
2154       CGF.EmitIgnoredExpr(E);
2155 
2156     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2157     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2158   }
2159 
2160   case CK_ReinterpretMemberPointer:
2161   case CK_BaseToDerivedMemberPointer:
2162   case CK_DerivedToBaseMemberPointer: {
2163     Value *Src = Visit(E);
2164 
2165     // Note that the AST doesn't distinguish between checked and
2166     // unchecked member pointer conversions, so we always have to
2167     // implement checked conversions here.  This is inefficient when
2168     // actual control flow may be required in order to perform the
2169     // check, which it is for data member pointers (but not member
2170     // function pointers on Itanium and ARM).
2171     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2172   }
2173 
2174   case CK_ARCProduceObject:
2175     return CGF.EmitARCRetainScalarExpr(E);
2176   case CK_ARCConsumeObject:
2177     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2178   case CK_ARCReclaimReturnedObject:
2179     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2180   case CK_ARCExtendBlockObject:
2181     return CGF.EmitARCExtendBlockObject(E);
2182 
2183   case CK_CopyAndAutoreleaseBlockObject:
2184     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2185 
2186   case CK_FloatingRealToComplex:
2187   case CK_FloatingComplexCast:
2188   case CK_IntegralRealToComplex:
2189   case CK_IntegralComplexCast:
2190   case CK_IntegralComplexToFloatingComplex:
2191   case CK_FloatingComplexToIntegralComplex:
2192   case CK_ConstructorConversion:
2193   case CK_ToUnion:
2194     llvm_unreachable("scalar cast to non-scalar value");
2195 
2196   case CK_LValueToRValue:
2197     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2198     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2199     return Visit(const_cast<Expr*>(E));
2200 
2201   case CK_IntegralToPointer: {
2202     Value *Src = Visit(const_cast<Expr*>(E));
2203 
2204     // First, convert to the correct width so that we control the kind of
2205     // extension.
2206     auto DestLLVMTy = ConvertType(DestTy);
2207     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2208     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2209     llvm::Value* IntResult =
2210       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2211 
2212     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2213 
2214     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2215       // Going from integer to pointer that could be dynamic requires reloading
2216       // dynamic information from invariant.group.
2217       if (DestTy.mayBeDynamicClass())
2218         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2219     }
2220     return IntToPtr;
2221   }
2222   case CK_PointerToIntegral: {
2223     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2224     auto *PtrExpr = Visit(E);
2225 
2226     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2227       const QualType SrcType = E->getType();
2228 
2229       // Casting to integer requires stripping dynamic information as it does
2230       // not carries it.
2231       if (SrcType.mayBeDynamicClass())
2232         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2233     }
2234 
2235     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2236   }
2237   case CK_ToVoid: {
2238     CGF.EmitIgnoredExpr(E);
2239     return nullptr;
2240   }
2241   case CK_VectorSplat: {
2242     llvm::Type *DstTy = ConvertType(DestTy);
2243     Value *Elt = Visit(const_cast<Expr*>(E));
2244     // Splat the element across to all elements
2245     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
2246     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2247   }
2248 
2249   case CK_FixedPointCast:
2250     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2251                                 CE->getExprLoc());
2252 
2253   case CK_FixedPointToBoolean:
2254     assert(E->getType()->isFixedPointType() &&
2255            "Expected src type to be fixed point type");
2256     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2257     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2258                                 CE->getExprLoc());
2259 
2260   case CK_FixedPointToIntegral:
2261     assert(E->getType()->isFixedPointType() &&
2262            "Expected src type to be fixed point type");
2263     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2264     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2265                                 CE->getExprLoc());
2266 
2267   case CK_IntegralToFixedPoint:
2268     assert(E->getType()->isIntegerType() &&
2269            "Expected src type to be an integer");
2270     assert(DestTy->isFixedPointType() &&
2271            "Expected dest type to be fixed point type");
2272     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2273                                 CE->getExprLoc());
2274 
2275   case CK_IntegralCast: {
2276     ScalarConversionOpts Opts;
2277     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2278       if (!ICE->isPartOfExplicitCast())
2279         Opts = ScalarConversionOpts(CGF.SanOpts);
2280     }
2281     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2282                                 CE->getExprLoc(), Opts);
2283   }
2284   case CK_IntegralToFloating:
2285   case CK_FloatingToIntegral:
2286   case CK_FloatingCast:
2287   case CK_FixedPointToFloating:
2288   case CK_FloatingToFixedPoint: {
2289     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2290     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2291                                 CE->getExprLoc());
2292   }
2293   case CK_BooleanToSignedIntegral: {
2294     ScalarConversionOpts Opts;
2295     Opts.TreatBooleanAsSigned = true;
2296     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2297                                 CE->getExprLoc(), Opts);
2298   }
2299   case CK_IntegralToBoolean:
2300     return EmitIntToBoolConversion(Visit(E));
2301   case CK_PointerToBoolean:
2302     return EmitPointerToBoolConversion(Visit(E), E->getType());
2303   case CK_FloatingToBoolean: {
2304     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2305     return EmitFloatToBoolConversion(Visit(E));
2306   }
2307   case CK_MemberPointerToBoolean: {
2308     llvm::Value *MemPtr = Visit(E);
2309     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2310     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2311   }
2312 
2313   case CK_FloatingComplexToReal:
2314   case CK_IntegralComplexToReal:
2315     return CGF.EmitComplexExpr(E, false, true).first;
2316 
2317   case CK_FloatingComplexToBoolean:
2318   case CK_IntegralComplexToBoolean: {
2319     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2320 
2321     // TODO: kill this function off, inline appropriate case here
2322     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2323                                          CE->getExprLoc());
2324   }
2325 
2326   case CK_ZeroToOCLOpaqueType: {
2327     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2328             DestTy->isOCLIntelSubgroupAVCType()) &&
2329            "CK_ZeroToOCLEvent cast on non-event type");
2330     return llvm::Constant::getNullValue(ConvertType(DestTy));
2331   }
2332 
2333   case CK_IntToOCLSampler:
2334     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2335 
2336   } // end of switch
2337 
2338   llvm_unreachable("unknown scalar cast");
2339 }
2340 
2341 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2342   CodeGenFunction::StmtExprEvaluation eval(CGF);
2343   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2344                                            !E->getType()->isVoidType());
2345   if (!RetAlloca.isValid())
2346     return nullptr;
2347   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2348                               E->getExprLoc());
2349 }
2350 
2351 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2352   CodeGenFunction::RunCleanupsScope Scope(CGF);
2353   Value *V = Visit(E->getSubExpr());
2354   // Defend against dominance problems caused by jumps out of expression
2355   // evaluation through the shared cleanup block.
2356   Scope.ForceCleanup({&V});
2357   return V;
2358 }
2359 
2360 //===----------------------------------------------------------------------===//
2361 //                             Unary Operators
2362 //===----------------------------------------------------------------------===//
2363 
2364 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2365                                            llvm::Value *InVal, bool IsInc,
2366                                            FPOptions FPFeatures) {
2367   BinOpInfo BinOp;
2368   BinOp.LHS = InVal;
2369   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2370   BinOp.Ty = E->getType();
2371   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2372   BinOp.FPFeatures = FPFeatures;
2373   BinOp.E = E;
2374   return BinOp;
2375 }
2376 
2377 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2378     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2379   llvm::Value *Amount =
2380       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2381   StringRef Name = IsInc ? "inc" : "dec";
2382   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2383   case LangOptions::SOB_Defined:
2384     return Builder.CreateAdd(InVal, Amount, Name);
2385   case LangOptions::SOB_Undefined:
2386     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2387       return Builder.CreateNSWAdd(InVal, Amount, Name);
2388     LLVM_FALLTHROUGH;
2389   case LangOptions::SOB_Trapping:
2390     if (!E->canOverflow())
2391       return Builder.CreateNSWAdd(InVal, Amount, Name);
2392     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2393         E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2394   }
2395   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2396 }
2397 
2398 namespace {
2399 /// Handles check and update for lastprivate conditional variables.
2400 class OMPLastprivateConditionalUpdateRAII {
2401 private:
2402   CodeGenFunction &CGF;
2403   const UnaryOperator *E;
2404 
2405 public:
2406   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2407                                       const UnaryOperator *E)
2408       : CGF(CGF), E(E) {}
2409   ~OMPLastprivateConditionalUpdateRAII() {
2410     if (CGF.getLangOpts().OpenMP)
2411       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2412           CGF, E->getSubExpr());
2413   }
2414 };
2415 } // namespace
2416 
2417 llvm::Value *
2418 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2419                                            bool isInc, bool isPre) {
2420   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2421   QualType type = E->getSubExpr()->getType();
2422   llvm::PHINode *atomicPHI = nullptr;
2423   llvm::Value *value;
2424   llvm::Value *input;
2425 
2426   int amount = (isInc ? 1 : -1);
2427   bool isSubtraction = !isInc;
2428 
2429   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2430     type = atomicTy->getValueType();
2431     if (isInc && type->isBooleanType()) {
2432       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2433       if (isPre) {
2434         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2435             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2436         return Builder.getTrue();
2437       }
2438       // For atomic bool increment, we just store true and return it for
2439       // preincrement, do an atomic swap with true for postincrement
2440       return Builder.CreateAtomicRMW(
2441           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2442           llvm::AtomicOrdering::SequentiallyConsistent);
2443     }
2444     // Special case for atomic increment / decrement on integers, emit
2445     // atomicrmw instructions.  We skip this if we want to be doing overflow
2446     // checking, and fall into the slow path with the atomic cmpxchg loop.
2447     if (!type->isBooleanType() && type->isIntegerType() &&
2448         !(type->isUnsignedIntegerType() &&
2449           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2450         CGF.getLangOpts().getSignedOverflowBehavior() !=
2451             LangOptions::SOB_Trapping) {
2452       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2453         llvm::AtomicRMWInst::Sub;
2454       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2455         llvm::Instruction::Sub;
2456       llvm::Value *amt = CGF.EmitToMemory(
2457           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2458       llvm::Value *old =
2459           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2460                                   llvm::AtomicOrdering::SequentiallyConsistent);
2461       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2462     }
2463     value = EmitLoadOfLValue(LV, E->getExprLoc());
2464     input = value;
2465     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2466     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2467     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2468     value = CGF.EmitToMemory(value, type);
2469     Builder.CreateBr(opBB);
2470     Builder.SetInsertPoint(opBB);
2471     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2472     atomicPHI->addIncoming(value, startBB);
2473     value = atomicPHI;
2474   } else {
2475     value = EmitLoadOfLValue(LV, E->getExprLoc());
2476     input = value;
2477   }
2478 
2479   // Special case of integer increment that we have to check first: bool++.
2480   // Due to promotion rules, we get:
2481   //   bool++ -> bool = bool + 1
2482   //          -> bool = (int)bool + 1
2483   //          -> bool = ((int)bool + 1 != 0)
2484   // An interesting aspect of this is that increment is always true.
2485   // Decrement does not have this property.
2486   if (isInc && type->isBooleanType()) {
2487     value = Builder.getTrue();
2488 
2489   // Most common case by far: integer increment.
2490   } else if (type->isIntegerType()) {
2491     QualType promotedType;
2492     bool canPerformLossyDemotionCheck = false;
2493     if (type->isPromotableIntegerType()) {
2494       promotedType = CGF.getContext().getPromotedIntegerType(type);
2495       assert(promotedType != type && "Shouldn't promote to the same type.");
2496       canPerformLossyDemotionCheck = true;
2497       canPerformLossyDemotionCheck &=
2498           CGF.getContext().getCanonicalType(type) !=
2499           CGF.getContext().getCanonicalType(promotedType);
2500       canPerformLossyDemotionCheck &=
2501           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2502               type, promotedType);
2503       assert((!canPerformLossyDemotionCheck ||
2504               type->isSignedIntegerOrEnumerationType() ||
2505               promotedType->isSignedIntegerOrEnumerationType() ||
2506               ConvertType(type)->getScalarSizeInBits() ==
2507                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2508              "The following check expects that if we do promotion to different "
2509              "underlying canonical type, at least one of the types (either "
2510              "base or promoted) will be signed, or the bitwidths will match.");
2511     }
2512     if (CGF.SanOpts.hasOneOf(
2513             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2514         canPerformLossyDemotionCheck) {
2515       // While `x += 1` (for `x` with width less than int) is modeled as
2516       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2517       // ease; inc/dec with width less than int can't overflow because of
2518       // promotion rules, so we omit promotion+demotion, which means that we can
2519       // not catch lossy "demotion". Because we still want to catch these cases
2520       // when the sanitizer is enabled, we perform the promotion, then perform
2521       // the increment/decrement in the wider type, and finally
2522       // perform the demotion. This will catch lossy demotions.
2523 
2524       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2525       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2526       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2527       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2528       // emitted.
2529       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2530                                    ScalarConversionOpts(CGF.SanOpts));
2531 
2532       // Note that signed integer inc/dec with width less than int can't
2533       // overflow because of promotion rules; we're just eliding a few steps
2534       // here.
2535     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2536       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2537     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2538                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2539       value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2540           E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2541     } else {
2542       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2543       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2544     }
2545 
2546   // Next most common: pointer increment.
2547   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2548     QualType type = ptr->getPointeeType();
2549 
2550     // VLA types don't have constant size.
2551     if (const VariableArrayType *vla
2552           = CGF.getContext().getAsVariableArrayType(type)) {
2553       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2554       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2555       if (CGF.getLangOpts().isSignedOverflowDefined())
2556         value = Builder.CreateGEP(value, numElts, "vla.inc");
2557       else
2558         value = CGF.EmitCheckedInBoundsGEP(
2559             value, numElts, /*SignedIndices=*/false, isSubtraction,
2560             E->getExprLoc(), "vla.inc");
2561 
2562     // Arithmetic on function pointers (!) is just +-1.
2563     } else if (type->isFunctionType()) {
2564       llvm::Value *amt = Builder.getInt32(amount);
2565 
2566       value = CGF.EmitCastToVoidPtr(value);
2567       if (CGF.getLangOpts().isSignedOverflowDefined())
2568         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2569       else
2570         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2571                                            isSubtraction, E->getExprLoc(),
2572                                            "incdec.funcptr");
2573       value = Builder.CreateBitCast(value, input->getType());
2574 
2575     // For everything else, we can just do a simple increment.
2576     } else {
2577       llvm::Value *amt = Builder.getInt32(amount);
2578       if (CGF.getLangOpts().isSignedOverflowDefined())
2579         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2580       else
2581         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2582                                            isSubtraction, E->getExprLoc(),
2583                                            "incdec.ptr");
2584     }
2585 
2586   // Vector increment/decrement.
2587   } else if (type->isVectorType()) {
2588     if (type->hasIntegerRepresentation()) {
2589       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2590 
2591       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2592     } else {
2593       value = Builder.CreateFAdd(
2594                   value,
2595                   llvm::ConstantFP::get(value->getType(), amount),
2596                   isInc ? "inc" : "dec");
2597     }
2598 
2599   // Floating point.
2600   } else if (type->isRealFloatingType()) {
2601     // Add the inc/dec to the real part.
2602     llvm::Value *amt;
2603     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
2604 
2605     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2606       // Another special case: half FP increment should be done via float
2607       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2608         value = Builder.CreateCall(
2609             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2610                                  CGF.CGM.FloatTy),
2611             input, "incdec.conv");
2612       } else {
2613         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2614       }
2615     }
2616 
2617     if (value->getType()->isFloatTy())
2618       amt = llvm::ConstantFP::get(VMContext,
2619                                   llvm::APFloat(static_cast<float>(amount)));
2620     else if (value->getType()->isDoubleTy())
2621       amt = llvm::ConstantFP::get(VMContext,
2622                                   llvm::APFloat(static_cast<double>(amount)));
2623     else {
2624       // Remaining types are Half, LongDouble or __float128. Convert from float.
2625       llvm::APFloat F(static_cast<float>(amount));
2626       bool ignored;
2627       const llvm::fltSemantics *FS;
2628       // Don't use getFloatTypeSemantics because Half isn't
2629       // necessarily represented using the "half" LLVM type.
2630       if (value->getType()->isFP128Ty())
2631         FS = &CGF.getTarget().getFloat128Format();
2632       else if (value->getType()->isHalfTy())
2633         FS = &CGF.getTarget().getHalfFormat();
2634       else
2635         FS = &CGF.getTarget().getLongDoubleFormat();
2636       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2637       amt = llvm::ConstantFP::get(VMContext, F);
2638     }
2639     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2640 
2641     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2642       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2643         value = Builder.CreateCall(
2644             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2645                                  CGF.CGM.FloatTy),
2646             value, "incdec.conv");
2647       } else {
2648         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2649       }
2650     }
2651 
2652   // Fixed-point types.
2653   } else if (type->isFixedPointType()) {
2654     // Fixed-point types are tricky. In some cases, it isn't possible to
2655     // represent a 1 or a -1 in the type at all. Piggyback off of
2656     // EmitFixedPointBinOp to avoid having to reimplement saturation.
2657     BinOpInfo Info;
2658     Info.E = E;
2659     Info.Ty = E->getType();
2660     Info.Opcode = isInc ? BO_Add : BO_Sub;
2661     Info.LHS = value;
2662     Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2663     // If the type is signed, it's better to represent this as +(-1) or -(-1),
2664     // since -1 is guaranteed to be representable.
2665     if (type->isSignedFixedPointType()) {
2666       Info.Opcode = isInc ? BO_Sub : BO_Add;
2667       Info.RHS = Builder.CreateNeg(Info.RHS);
2668     }
2669     // Now, convert from our invented integer literal to the type of the unary
2670     // op. This will upscale and saturate if necessary. This value can become
2671     // undef in some cases.
2672     llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
2673     auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
2674     Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
2675     value = EmitFixedPointBinOp(Info);
2676 
2677   // Objective-C pointer types.
2678   } else {
2679     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2680     value = CGF.EmitCastToVoidPtr(value);
2681 
2682     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2683     if (!isInc) size = -size;
2684     llvm::Value *sizeValue =
2685       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2686 
2687     if (CGF.getLangOpts().isSignedOverflowDefined())
2688       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2689     else
2690       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2691                                          /*SignedIndices=*/false, isSubtraction,
2692                                          E->getExprLoc(), "incdec.objptr");
2693     value = Builder.CreateBitCast(value, input->getType());
2694   }
2695 
2696   if (atomicPHI) {
2697     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2698     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2699     auto Pair = CGF.EmitAtomicCompareExchange(
2700         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2701     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2702     llvm::Value *success = Pair.second;
2703     atomicPHI->addIncoming(old, curBlock);
2704     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2705     Builder.SetInsertPoint(contBB);
2706     return isPre ? value : input;
2707   }
2708 
2709   // Store the updated result through the lvalue.
2710   if (LV.isBitField())
2711     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2712   else
2713     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2714 
2715   // If this is a postinc, return the value read from memory, otherwise use the
2716   // updated value.
2717   return isPre ? value : input;
2718 }
2719 
2720 
2721 
2722 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2723   TestAndClearIgnoreResultAssign();
2724   Value *Op = Visit(E->getSubExpr());
2725 
2726   // Generate a unary FNeg for FP ops.
2727   if (Op->getType()->isFPOrFPVectorTy())
2728     return Builder.CreateFNeg(Op, "fneg");
2729 
2730   // Emit unary minus with EmitSub so we handle overflow cases etc.
2731   BinOpInfo BinOp;
2732   BinOp.RHS = Op;
2733   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2734   BinOp.Ty = E->getType();
2735   BinOp.Opcode = BO_Sub;
2736   BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2737   BinOp.E = E;
2738   return EmitSub(BinOp);
2739 }
2740 
2741 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2742   TestAndClearIgnoreResultAssign();
2743   Value *Op = Visit(E->getSubExpr());
2744   return Builder.CreateNot(Op, "neg");
2745 }
2746 
2747 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2748   // Perform vector logical not on comparison with zero vector.
2749   if (E->getType()->isVectorType() &&
2750       E->getType()->castAs<VectorType>()->getVectorKind() ==
2751           VectorType::GenericVector) {
2752     Value *Oper = Visit(E->getSubExpr());
2753     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2754     Value *Result;
2755     if (Oper->getType()->isFPOrFPVectorTy()) {
2756       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
2757           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2758       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2759     } else
2760       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2761     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2762   }
2763 
2764   // Compare operand to zero.
2765   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2766 
2767   // Invert value.
2768   // TODO: Could dynamically modify easy computations here.  For example, if
2769   // the operand is an icmp ne, turn into icmp eq.
2770   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2771 
2772   // ZExt result to the expr type.
2773   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2774 }
2775 
2776 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2777   // Try folding the offsetof to a constant.
2778   Expr::EvalResult EVResult;
2779   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2780     llvm::APSInt Value = EVResult.Val.getInt();
2781     return Builder.getInt(Value);
2782   }
2783 
2784   // Loop over the components of the offsetof to compute the value.
2785   unsigned n = E->getNumComponents();
2786   llvm::Type* ResultType = ConvertType(E->getType());
2787   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2788   QualType CurrentType = E->getTypeSourceInfo()->getType();
2789   for (unsigned i = 0; i != n; ++i) {
2790     OffsetOfNode ON = E->getComponent(i);
2791     llvm::Value *Offset = nullptr;
2792     switch (ON.getKind()) {
2793     case OffsetOfNode::Array: {
2794       // Compute the index
2795       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2796       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2797       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2798       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2799 
2800       // Save the element type
2801       CurrentType =
2802           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2803 
2804       // Compute the element size
2805       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2806           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2807 
2808       // Multiply out to compute the result
2809       Offset = Builder.CreateMul(Idx, ElemSize);
2810       break;
2811     }
2812 
2813     case OffsetOfNode::Field: {
2814       FieldDecl *MemberDecl = ON.getField();
2815       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2816       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2817 
2818       // Compute the index of the field in its parent.
2819       unsigned i = 0;
2820       // FIXME: It would be nice if we didn't have to loop here!
2821       for (RecordDecl::field_iterator Field = RD->field_begin(),
2822                                       FieldEnd = RD->field_end();
2823            Field != FieldEnd; ++Field, ++i) {
2824         if (*Field == MemberDecl)
2825           break;
2826       }
2827       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2828 
2829       // Compute the offset to the field
2830       int64_t OffsetInt = RL.getFieldOffset(i) /
2831                           CGF.getContext().getCharWidth();
2832       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2833 
2834       // Save the element type.
2835       CurrentType = MemberDecl->getType();
2836       break;
2837     }
2838 
2839     case OffsetOfNode::Identifier:
2840       llvm_unreachable("dependent __builtin_offsetof");
2841 
2842     case OffsetOfNode::Base: {
2843       if (ON.getBase()->isVirtual()) {
2844         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2845         continue;
2846       }
2847 
2848       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2849       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2850 
2851       // Save the element type.
2852       CurrentType = ON.getBase()->getType();
2853 
2854       // Compute the offset to the base.
2855       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2856       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2857       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2858       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2859       break;
2860     }
2861     }
2862     Result = Builder.CreateAdd(Result, Offset);
2863   }
2864   return Result;
2865 }
2866 
2867 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2868 /// argument of the sizeof expression as an integer.
2869 Value *
2870 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2871                               const UnaryExprOrTypeTraitExpr *E) {
2872   QualType TypeToSize = E->getTypeOfArgument();
2873   if (E->getKind() == UETT_SizeOf) {
2874     if (const VariableArrayType *VAT =
2875           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2876       if (E->isArgumentType()) {
2877         // sizeof(type) - make sure to emit the VLA size.
2878         CGF.EmitVariablyModifiedType(TypeToSize);
2879       } else {
2880         // C99 6.5.3.4p2: If the argument is an expression of type
2881         // VLA, it is evaluated.
2882         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2883       }
2884 
2885       auto VlaSize = CGF.getVLASize(VAT);
2886       llvm::Value *size = VlaSize.NumElts;
2887 
2888       // Scale the number of non-VLA elements by the non-VLA element size.
2889       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2890       if (!eltSize.isOne())
2891         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2892 
2893       return size;
2894     }
2895   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2896     auto Alignment =
2897         CGF.getContext()
2898             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2899                 E->getTypeOfArgument()->getPointeeType()))
2900             .getQuantity();
2901     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2902   }
2903 
2904   // If this isn't sizeof(vla), the result must be constant; use the constant
2905   // folding logic so we don't have to duplicate it here.
2906   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2907 }
2908 
2909 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2910   Expr *Op = E->getSubExpr();
2911   if (Op->getType()->isAnyComplexType()) {
2912     // If it's an l-value, load through the appropriate subobject l-value.
2913     // Note that we have to ask E because Op might be an l-value that
2914     // this won't work for, e.g. an Obj-C property.
2915     if (E->isGLValue())
2916       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2917                                   E->getExprLoc()).getScalarVal();
2918 
2919     // Otherwise, calculate and project.
2920     return CGF.EmitComplexExpr(Op, false, true).first;
2921   }
2922 
2923   return Visit(Op);
2924 }
2925 
2926 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2927   Expr *Op = E->getSubExpr();
2928   if (Op->getType()->isAnyComplexType()) {
2929     // If it's an l-value, load through the appropriate subobject l-value.
2930     // Note that we have to ask E because Op might be an l-value that
2931     // this won't work for, e.g. an Obj-C property.
2932     if (Op->isGLValue())
2933       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2934                                   E->getExprLoc()).getScalarVal();
2935 
2936     // Otherwise, calculate and project.
2937     return CGF.EmitComplexExpr(Op, true, false).second;
2938   }
2939 
2940   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2941   // effects are evaluated, but not the actual value.
2942   if (Op->isGLValue())
2943     CGF.EmitLValue(Op);
2944   else
2945     CGF.EmitScalarExpr(Op, true);
2946   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2947 }
2948 
2949 //===----------------------------------------------------------------------===//
2950 //                           Binary Operators
2951 //===----------------------------------------------------------------------===//
2952 
2953 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2954   TestAndClearIgnoreResultAssign();
2955   BinOpInfo Result;
2956   Result.LHS = Visit(E->getLHS());
2957   Result.RHS = Visit(E->getRHS());
2958   Result.Ty  = E->getType();
2959   Result.Opcode = E->getOpcode();
2960   Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2961   Result.E = E;
2962   return Result;
2963 }
2964 
2965 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2966                                               const CompoundAssignOperator *E,
2967                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2968                                                    Value *&Result) {
2969   QualType LHSTy = E->getLHS()->getType();
2970   BinOpInfo OpInfo;
2971 
2972   if (E->getComputationResultType()->isAnyComplexType())
2973     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2974 
2975   // Emit the RHS first.  __block variables need to have the rhs evaluated
2976   // first, plus this should improve codegen a little.
2977   OpInfo.RHS = Visit(E->getRHS());
2978   OpInfo.Ty = E->getComputationResultType();
2979   OpInfo.Opcode = E->getOpcode();
2980   OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2981   OpInfo.E = E;
2982   // Load/convert the LHS.
2983   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2984 
2985   llvm::PHINode *atomicPHI = nullptr;
2986   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2987     QualType type = atomicTy->getValueType();
2988     if (!type->isBooleanType() && type->isIntegerType() &&
2989         !(type->isUnsignedIntegerType() &&
2990           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2991         CGF.getLangOpts().getSignedOverflowBehavior() !=
2992             LangOptions::SOB_Trapping) {
2993       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
2994       llvm::Instruction::BinaryOps Op;
2995       switch (OpInfo.Opcode) {
2996         // We don't have atomicrmw operands for *, %, /, <<, >>
2997         case BO_MulAssign: case BO_DivAssign:
2998         case BO_RemAssign:
2999         case BO_ShlAssign:
3000         case BO_ShrAssign:
3001           break;
3002         case BO_AddAssign:
3003           AtomicOp = llvm::AtomicRMWInst::Add;
3004           Op = llvm::Instruction::Add;
3005           break;
3006         case BO_SubAssign:
3007           AtomicOp = llvm::AtomicRMWInst::Sub;
3008           Op = llvm::Instruction::Sub;
3009           break;
3010         case BO_AndAssign:
3011           AtomicOp = llvm::AtomicRMWInst::And;
3012           Op = llvm::Instruction::And;
3013           break;
3014         case BO_XorAssign:
3015           AtomicOp = llvm::AtomicRMWInst::Xor;
3016           Op = llvm::Instruction::Xor;
3017           break;
3018         case BO_OrAssign:
3019           AtomicOp = llvm::AtomicRMWInst::Or;
3020           Op = llvm::Instruction::Or;
3021           break;
3022         default:
3023           llvm_unreachable("Invalid compound assignment type");
3024       }
3025       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3026         llvm::Value *Amt = CGF.EmitToMemory(
3027             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3028                                  E->getExprLoc()),
3029             LHSTy);
3030         Value *OldVal = Builder.CreateAtomicRMW(
3031             AtomicOp, LHSLV.getPointer(CGF), Amt,
3032             llvm::AtomicOrdering::SequentiallyConsistent);
3033 
3034         // Since operation is atomic, the result type is guaranteed to be the
3035         // same as the input in LLVM terms.
3036         Result = Builder.CreateBinOp(Op, OldVal, Amt);
3037         return LHSLV;
3038       }
3039     }
3040     // FIXME: For floating point types, we should be saving and restoring the
3041     // floating point environment in the loop.
3042     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3043     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3044     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3045     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3046     Builder.CreateBr(opBB);
3047     Builder.SetInsertPoint(opBB);
3048     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3049     atomicPHI->addIncoming(OpInfo.LHS, startBB);
3050     OpInfo.LHS = atomicPHI;
3051   }
3052   else
3053     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3054 
3055   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3056   SourceLocation Loc = E->getExprLoc();
3057   OpInfo.LHS =
3058       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
3059 
3060   // Expand the binary operator.
3061   Result = (this->*Func)(OpInfo);
3062 
3063   // Convert the result back to the LHS type,
3064   // potentially with Implicit Conversion sanitizer check.
3065   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
3066                                 Loc, ScalarConversionOpts(CGF.SanOpts));
3067 
3068   if (atomicPHI) {
3069     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3070     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3071     auto Pair = CGF.EmitAtomicCompareExchange(
3072         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3073     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3074     llvm::Value *success = Pair.second;
3075     atomicPHI->addIncoming(old, curBlock);
3076     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3077     Builder.SetInsertPoint(contBB);
3078     return LHSLV;
3079   }
3080 
3081   // Store the result value into the LHS lvalue. Bit-fields are handled
3082   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3083   // 'An assignment expression has the value of the left operand after the
3084   // assignment...'.
3085   if (LHSLV.isBitField())
3086     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3087   else
3088     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3089 
3090   if (CGF.getLangOpts().OpenMP)
3091     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3092                                                                   E->getLHS());
3093   return LHSLV;
3094 }
3095 
3096 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3097                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3098   bool Ignore = TestAndClearIgnoreResultAssign();
3099   Value *RHS = nullptr;
3100   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3101 
3102   // If the result is clearly ignored, return now.
3103   if (Ignore)
3104     return nullptr;
3105 
3106   // The result of an assignment in C is the assigned r-value.
3107   if (!CGF.getLangOpts().CPlusPlus)
3108     return RHS;
3109 
3110   // If the lvalue is non-volatile, return the computed value of the assignment.
3111   if (!LHS.isVolatileQualified())
3112     return RHS;
3113 
3114   // Otherwise, reload the value.
3115   return EmitLoadOfLValue(LHS, E->getExprLoc());
3116 }
3117 
3118 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3119     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3120   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3121 
3122   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3123     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3124                                     SanitizerKind::IntegerDivideByZero));
3125   }
3126 
3127   const auto *BO = cast<BinaryOperator>(Ops.E);
3128   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3129       Ops.Ty->hasSignedIntegerRepresentation() &&
3130       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3131       Ops.mayHaveIntegerOverflow()) {
3132     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3133 
3134     llvm::Value *IntMin =
3135       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3136     llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
3137 
3138     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3139     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3140     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3141     Checks.push_back(
3142         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3143   }
3144 
3145   if (Checks.size() > 0)
3146     EmitBinOpCheck(Checks, Ops);
3147 }
3148 
3149 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3150   {
3151     CodeGenFunction::SanitizerScope SanScope(&CGF);
3152     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3153          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3154         Ops.Ty->isIntegerType() &&
3155         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3156       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3157       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3158     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3159                Ops.Ty->isRealFloatingType() &&
3160                Ops.mayHaveFloatDivisionByZero()) {
3161       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3162       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3163       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3164                      Ops);
3165     }
3166   }
3167 
3168   if (Ops.Ty->isConstantMatrixType()) {
3169     llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3170     // We need to check the types of the operands of the operator to get the
3171     // correct matrix dimensions.
3172     auto *BO = cast<BinaryOperator>(Ops.E);
3173     (void)BO;
3174     assert(
3175         isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
3176         "first operand must be a matrix");
3177     assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
3178            "second operand must be an arithmetic type");
3179     return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
3180                               Ops.Ty->hasUnsignedIntegerRepresentation());
3181   }
3182 
3183   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3184     llvm::Value *Val;
3185     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3186     Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3187     if (CGF.getLangOpts().OpenCL &&
3188         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
3189       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3190       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3191       // build option allows an application to specify that single precision
3192       // floating-point divide (x/y and 1/x) and sqrt used in the program
3193       // source are correctly rounded.
3194       llvm::Type *ValTy = Val->getType();
3195       if (ValTy->isFloatTy() ||
3196           (isa<llvm::VectorType>(ValTy) &&
3197            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3198         CGF.SetFPAccuracy(Val, 2.5);
3199     }
3200     return Val;
3201   }
3202   else if (Ops.isFixedPointOp())
3203     return EmitFixedPointBinOp(Ops);
3204   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3205     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3206   else
3207     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3208 }
3209 
3210 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3211   // Rem in C can't be a floating point type: C99 6.5.5p2.
3212   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3213        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3214       Ops.Ty->isIntegerType() &&
3215       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3216     CodeGenFunction::SanitizerScope SanScope(&CGF);
3217     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3218     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3219   }
3220 
3221   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3222     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3223   else
3224     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3225 }
3226 
3227 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3228   unsigned IID;
3229   unsigned OpID = 0;
3230   SanitizerHandler OverflowKind;
3231 
3232   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3233   switch (Ops.Opcode) {
3234   case BO_Add:
3235   case BO_AddAssign:
3236     OpID = 1;
3237     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3238                      llvm::Intrinsic::uadd_with_overflow;
3239     OverflowKind = SanitizerHandler::AddOverflow;
3240     break;
3241   case BO_Sub:
3242   case BO_SubAssign:
3243     OpID = 2;
3244     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3245                      llvm::Intrinsic::usub_with_overflow;
3246     OverflowKind = SanitizerHandler::SubOverflow;
3247     break;
3248   case BO_Mul:
3249   case BO_MulAssign:
3250     OpID = 3;
3251     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3252                      llvm::Intrinsic::umul_with_overflow;
3253     OverflowKind = SanitizerHandler::MulOverflow;
3254     break;
3255   default:
3256     llvm_unreachable("Unsupported operation for overflow detection");
3257   }
3258   OpID <<= 1;
3259   if (isSigned)
3260     OpID |= 1;
3261 
3262   CodeGenFunction::SanitizerScope SanScope(&CGF);
3263   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3264 
3265   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3266 
3267   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3268   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3269   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3270 
3271   // Handle overflow with llvm.trap if no custom handler has been specified.
3272   const std::string *handlerName =
3273     &CGF.getLangOpts().OverflowHandler;
3274   if (handlerName->empty()) {
3275     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3276     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3277     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3278       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3279       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3280                               : SanitizerKind::UnsignedIntegerOverflow;
3281       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3282     } else
3283       CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3284     return result;
3285   }
3286 
3287   // Branch in case of overflow.
3288   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3289   llvm::BasicBlock *continueBB =
3290       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3291   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3292 
3293   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3294 
3295   // If an overflow handler is set, then we want to call it and then use its
3296   // result, if it returns.
3297   Builder.SetInsertPoint(overflowBB);
3298 
3299   // Get the overflow handler.
3300   llvm::Type *Int8Ty = CGF.Int8Ty;
3301   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3302   llvm::FunctionType *handlerTy =
3303       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3304   llvm::FunctionCallee handler =
3305       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3306 
3307   // Sign extend the args to 64-bit, so that we can use the same handler for
3308   // all types of overflow.
3309   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3310   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3311 
3312   // Call the handler with the two arguments, the operation, and the size of
3313   // the result.
3314   llvm::Value *handlerArgs[] = {
3315     lhs,
3316     rhs,
3317     Builder.getInt8(OpID),
3318     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3319   };
3320   llvm::Value *handlerResult =
3321     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3322 
3323   // Truncate the result back to the desired size.
3324   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3325   Builder.CreateBr(continueBB);
3326 
3327   Builder.SetInsertPoint(continueBB);
3328   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3329   phi->addIncoming(result, initialBB);
3330   phi->addIncoming(handlerResult, overflowBB);
3331 
3332   return phi;
3333 }
3334 
3335 /// Emit pointer + index arithmetic.
3336 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3337                                     const BinOpInfo &op,
3338                                     bool isSubtraction) {
3339   // Must have binary (not unary) expr here.  Unary pointer
3340   // increment/decrement doesn't use this path.
3341   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3342 
3343   Value *pointer = op.LHS;
3344   Expr *pointerOperand = expr->getLHS();
3345   Value *index = op.RHS;
3346   Expr *indexOperand = expr->getRHS();
3347 
3348   // In a subtraction, the LHS is always the pointer.
3349   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3350     std::swap(pointer, index);
3351     std::swap(pointerOperand, indexOperand);
3352   }
3353 
3354   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3355 
3356   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3357   auto &DL = CGF.CGM.getDataLayout();
3358   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3359 
3360   // Some versions of glibc and gcc use idioms (particularly in their malloc
3361   // routines) that add a pointer-sized integer (known to be a pointer value)
3362   // to a null pointer in order to cast the value back to an integer or as
3363   // part of a pointer alignment algorithm.  This is undefined behavior, but
3364   // we'd like to be able to compile programs that use it.
3365   //
3366   // Normally, we'd generate a GEP with a null-pointer base here in response
3367   // to that code, but it's also UB to dereference a pointer created that
3368   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3369   // generate a direct cast of the integer value to a pointer.
3370   //
3371   // The idiom (p = nullptr + N) is not met if any of the following are true:
3372   //
3373   //   The operation is subtraction.
3374   //   The index is not pointer-sized.
3375   //   The pointer type is not byte-sized.
3376   //
3377   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3378                                                        op.Opcode,
3379                                                        expr->getLHS(),
3380                                                        expr->getRHS()))
3381     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3382 
3383   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3384     // Zero-extend or sign-extend the pointer value according to
3385     // whether the index is signed or not.
3386     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3387                                       "idx.ext");
3388   }
3389 
3390   // If this is subtraction, negate the index.
3391   if (isSubtraction)
3392     index = CGF.Builder.CreateNeg(index, "idx.neg");
3393 
3394   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3395     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3396                         /*Accessed*/ false);
3397 
3398   const PointerType *pointerType
3399     = pointerOperand->getType()->getAs<PointerType>();
3400   if (!pointerType) {
3401     QualType objectType = pointerOperand->getType()
3402                                         ->castAs<ObjCObjectPointerType>()
3403                                         ->getPointeeType();
3404     llvm::Value *objectSize
3405       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3406 
3407     index = CGF.Builder.CreateMul(index, objectSize);
3408 
3409     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3410     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3411     return CGF.Builder.CreateBitCast(result, pointer->getType());
3412   }
3413 
3414   QualType elementType = pointerType->getPointeeType();
3415   if (const VariableArrayType *vla
3416         = CGF.getContext().getAsVariableArrayType(elementType)) {
3417     // The element count here is the total number of non-VLA elements.
3418     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3419 
3420     // Effectively, the multiply by the VLA size is part of the GEP.
3421     // GEP indexes are signed, and scaling an index isn't permitted to
3422     // signed-overflow, so we use the same semantics for our explicit
3423     // multiply.  We suppress this if overflow is not undefined behavior.
3424     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3425       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3426       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3427     } else {
3428       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3429       pointer =
3430           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3431                                      op.E->getExprLoc(), "add.ptr");
3432     }
3433     return pointer;
3434   }
3435 
3436   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3437   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3438   // future proof.
3439   if (elementType->isVoidType() || elementType->isFunctionType()) {
3440     Value *result = CGF.EmitCastToVoidPtr(pointer);
3441     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3442     return CGF.Builder.CreateBitCast(result, pointer->getType());
3443   }
3444 
3445   if (CGF.getLangOpts().isSignedOverflowDefined())
3446     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3447 
3448   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3449                                     op.E->getExprLoc(), "add.ptr");
3450 }
3451 
3452 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3453 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3454 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3455 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3456 // efficient operations.
3457 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3458                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3459                            bool negMul, bool negAdd) {
3460   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3461 
3462   Value *MulOp0 = MulOp->getOperand(0);
3463   Value *MulOp1 = MulOp->getOperand(1);
3464   if (negMul)
3465     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3466   if (negAdd)
3467     Addend = Builder.CreateFNeg(Addend, "neg");
3468 
3469   Value *FMulAdd = nullptr;
3470   if (Builder.getIsFPConstrained()) {
3471     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3472            "Only constrained operation should be created when Builder is in FP "
3473            "constrained mode");
3474     FMulAdd = Builder.CreateConstrainedFPCall(
3475         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3476                              Addend->getType()),
3477         {MulOp0, MulOp1, Addend});
3478   } else {
3479     FMulAdd = Builder.CreateCall(
3480         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3481         {MulOp0, MulOp1, Addend});
3482   }
3483   MulOp->eraseFromParent();
3484 
3485   return FMulAdd;
3486 }
3487 
3488 // Check whether it would be legal to emit an fmuladd intrinsic call to
3489 // represent op and if so, build the fmuladd.
3490 //
3491 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3492 // Does NOT check the type of the operation - it's assumed that this function
3493 // will be called from contexts where it's known that the type is contractable.
3494 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3495                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3496                          bool isSub=false) {
3497 
3498   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3499           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3500          "Only fadd/fsub can be the root of an fmuladd.");
3501 
3502   // Check whether this op is marked as fusable.
3503   if (!op.FPFeatures.allowFPContractWithinStatement())
3504     return nullptr;
3505 
3506   // We have a potentially fusable op. Look for a mul on one of the operands.
3507   // Also, make sure that the mul result isn't used directly. In that case,
3508   // there's no point creating a muladd operation.
3509   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3510     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3511         LHSBinOp->use_empty())
3512       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3513   }
3514   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3515     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3516         RHSBinOp->use_empty())
3517       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3518   }
3519 
3520   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3521     if (LHSBinOp->getIntrinsicID() ==
3522             llvm::Intrinsic::experimental_constrained_fmul &&
3523         LHSBinOp->use_empty())
3524       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3525   }
3526   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3527     if (RHSBinOp->getIntrinsicID() ==
3528             llvm::Intrinsic::experimental_constrained_fmul &&
3529         RHSBinOp->use_empty())
3530       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3531   }
3532 
3533   return nullptr;
3534 }
3535 
3536 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3537   if (op.LHS->getType()->isPointerTy() ||
3538       op.RHS->getType()->isPointerTy())
3539     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3540 
3541   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3542     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3543     case LangOptions::SOB_Defined:
3544       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3545     case LangOptions::SOB_Undefined:
3546       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3547         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3548       LLVM_FALLTHROUGH;
3549     case LangOptions::SOB_Trapping:
3550       if (CanElideOverflowCheck(CGF.getContext(), op))
3551         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3552       return EmitOverflowCheckedBinOp(op);
3553     }
3554   }
3555 
3556   if (op.Ty->isConstantMatrixType()) {
3557     llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3558     return MB.CreateAdd(op.LHS, op.RHS);
3559   }
3560 
3561   if (op.Ty->isUnsignedIntegerType() &&
3562       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3563       !CanElideOverflowCheck(CGF.getContext(), op))
3564     return EmitOverflowCheckedBinOp(op);
3565 
3566   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3567     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3568     // Try to form an fmuladd.
3569     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3570       return FMulAdd;
3571 
3572     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3573   }
3574 
3575   if (op.isFixedPointOp())
3576     return EmitFixedPointBinOp(op);
3577 
3578   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3579 }
3580 
3581 /// The resulting value must be calculated with exact precision, so the operands
3582 /// may not be the same type.
3583 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3584   using llvm::APSInt;
3585   using llvm::ConstantInt;
3586 
3587   // This is either a binary operation where at least one of the operands is
3588   // a fixed-point type, or a unary operation where the operand is a fixed-point
3589   // type. The result type of a binary operation is determined by
3590   // Sema::handleFixedPointConversions().
3591   QualType ResultTy = op.Ty;
3592   QualType LHSTy, RHSTy;
3593   if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3594     RHSTy = BinOp->getRHS()->getType();
3595     if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3596       // For compound assignment, the effective type of the LHS at this point
3597       // is the computation LHS type, not the actual LHS type, and the final
3598       // result type is not the type of the expression but rather the
3599       // computation result type.
3600       LHSTy = CAO->getComputationLHSType();
3601       ResultTy = CAO->getComputationResultType();
3602     } else
3603       LHSTy = BinOp->getLHS()->getType();
3604   } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3605     LHSTy = UnOp->getSubExpr()->getType();
3606     RHSTy = UnOp->getSubExpr()->getType();
3607   }
3608   ASTContext &Ctx = CGF.getContext();
3609   Value *LHS = op.LHS;
3610   Value *RHS = op.RHS;
3611 
3612   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3613   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3614   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3615   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3616 
3617   // Perform the actual operation.
3618   Value *Result;
3619   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3620   switch (op.Opcode) {
3621   case BO_AddAssign:
3622   case BO_Add:
3623     Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
3624     break;
3625   case BO_SubAssign:
3626   case BO_Sub:
3627     Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
3628     break;
3629   case BO_MulAssign:
3630   case BO_Mul:
3631     Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
3632     break;
3633   case BO_DivAssign:
3634   case BO_Div:
3635     Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
3636     break;
3637   case BO_ShlAssign:
3638   case BO_Shl:
3639     Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
3640     break;
3641   case BO_ShrAssign:
3642   case BO_Shr:
3643     Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
3644     break;
3645   case BO_LT:
3646     return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3647   case BO_GT:
3648     return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3649   case BO_LE:
3650     return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3651   case BO_GE:
3652     return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3653   case BO_EQ:
3654     // For equality operations, we assume any padding bits on unsigned types are
3655     // zero'd out. They could be overwritten through non-saturating operations
3656     // that cause overflow, but this leads to undefined behavior.
3657     return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
3658   case BO_NE:
3659     return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3660   case BO_Cmp:
3661   case BO_LAnd:
3662   case BO_LOr:
3663     llvm_unreachable("Found unimplemented fixed point binary operation");
3664   case BO_PtrMemD:
3665   case BO_PtrMemI:
3666   case BO_Rem:
3667   case BO_Xor:
3668   case BO_And:
3669   case BO_Or:
3670   case BO_Assign:
3671   case BO_RemAssign:
3672   case BO_AndAssign:
3673   case BO_XorAssign:
3674   case BO_OrAssign:
3675   case BO_Comma:
3676     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3677   }
3678 
3679   bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
3680                  BinaryOperator::isShiftAssignOp(op.Opcode);
3681   // Convert to the result type.
3682   return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
3683                                                       : CommonFixedSema,
3684                                       ResultFixedSema);
3685 }
3686 
3687 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3688   // The LHS is always a pointer if either side is.
3689   if (!op.LHS->getType()->isPointerTy()) {
3690     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3691       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3692       case LangOptions::SOB_Defined:
3693         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3694       case LangOptions::SOB_Undefined:
3695         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3696           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3697         LLVM_FALLTHROUGH;
3698       case LangOptions::SOB_Trapping:
3699         if (CanElideOverflowCheck(CGF.getContext(), op))
3700           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3701         return EmitOverflowCheckedBinOp(op);
3702       }
3703     }
3704 
3705     if (op.Ty->isConstantMatrixType()) {
3706       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3707       return MB.CreateSub(op.LHS, op.RHS);
3708     }
3709 
3710     if (op.Ty->isUnsignedIntegerType() &&
3711         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3712         !CanElideOverflowCheck(CGF.getContext(), op))
3713       return EmitOverflowCheckedBinOp(op);
3714 
3715     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3716       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3717       // Try to form an fmuladd.
3718       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3719         return FMulAdd;
3720       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
3721     }
3722 
3723     if (op.isFixedPointOp())
3724       return EmitFixedPointBinOp(op);
3725 
3726     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3727   }
3728 
3729   // If the RHS is not a pointer, then we have normal pointer
3730   // arithmetic.
3731   if (!op.RHS->getType()->isPointerTy())
3732     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3733 
3734   // Otherwise, this is a pointer subtraction.
3735 
3736   // Do the raw subtraction part.
3737   llvm::Value *LHS
3738     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3739   llvm::Value *RHS
3740     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3741   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3742 
3743   // Okay, figure out the element size.
3744   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3745   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3746 
3747   llvm::Value *divisor = nullptr;
3748 
3749   // For a variable-length array, this is going to be non-constant.
3750   if (const VariableArrayType *vla
3751         = CGF.getContext().getAsVariableArrayType(elementType)) {
3752     auto VlaSize = CGF.getVLASize(vla);
3753     elementType = VlaSize.Type;
3754     divisor = VlaSize.NumElts;
3755 
3756     // Scale the number of non-VLA elements by the non-VLA element size.
3757     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3758     if (!eltSize.isOne())
3759       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3760 
3761   // For everything elese, we can just compute it, safe in the
3762   // assumption that Sema won't let anything through that we can't
3763   // safely compute the size of.
3764   } else {
3765     CharUnits elementSize;
3766     // Handle GCC extension for pointer arithmetic on void* and
3767     // function pointer types.
3768     if (elementType->isVoidType() || elementType->isFunctionType())
3769       elementSize = CharUnits::One();
3770     else
3771       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3772 
3773     // Don't even emit the divide for element size of 1.
3774     if (elementSize.isOne())
3775       return diffInChars;
3776 
3777     divisor = CGF.CGM.getSize(elementSize);
3778   }
3779 
3780   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3781   // pointer difference in C is only defined in the case where both operands
3782   // are pointing to elements of an array.
3783   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3784 }
3785 
3786 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3787   llvm::IntegerType *Ty;
3788   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3789     Ty = cast<llvm::IntegerType>(VT->getElementType());
3790   else
3791     Ty = cast<llvm::IntegerType>(LHS->getType());
3792   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3793 }
3794 
3795 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
3796                                               const Twine &Name) {
3797   llvm::IntegerType *Ty;
3798   if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3799     Ty = cast<llvm::IntegerType>(VT->getElementType());
3800   else
3801     Ty = cast<llvm::IntegerType>(LHS->getType());
3802 
3803   if (llvm::isPowerOf2_64(Ty->getBitWidth()))
3804         return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
3805 
3806   return Builder.CreateURem(
3807       RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
3808 }
3809 
3810 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3811   // TODO: This misses out on the sanitizer check below.
3812   if (Ops.isFixedPointOp())
3813     return EmitFixedPointBinOp(Ops);
3814 
3815   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3816   // RHS to the same size as the LHS.
3817   Value *RHS = Ops.RHS;
3818   if (Ops.LHS->getType() != RHS->getType())
3819     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3820 
3821   bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3822                             Ops.Ty->hasSignedIntegerRepresentation() &&
3823                             !CGF.getLangOpts().isSignedOverflowDefined() &&
3824                             !CGF.getLangOpts().CPlusPlus20;
3825   bool SanitizeUnsignedBase =
3826       CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
3827       Ops.Ty->hasUnsignedIntegerRepresentation();
3828   bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
3829   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3830   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3831   if (CGF.getLangOpts().OpenCL)
3832     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
3833   else if ((SanitizeBase || SanitizeExponent) &&
3834            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3835     CodeGenFunction::SanitizerScope SanScope(&CGF);
3836     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3837     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3838     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3839 
3840     if (SanitizeExponent) {
3841       Checks.push_back(
3842           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3843     }
3844 
3845     if (SanitizeBase) {
3846       // Check whether we are shifting any non-zero bits off the top of the
3847       // integer. We only emit this check if exponent is valid - otherwise
3848       // instructions below will have undefined behavior themselves.
3849       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3850       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3851       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3852       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3853       llvm::Value *PromotedWidthMinusOne =
3854           (RHS == Ops.RHS) ? WidthMinusOne
3855                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3856       CGF.EmitBlock(CheckShiftBase);
3857       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3858           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3859                                      /*NUW*/ true, /*NSW*/ true),
3860           "shl.check");
3861       if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
3862         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3863         // Under C++11's rules, shifting a 1 bit into the sign bit is
3864         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3865         // define signed left shifts, so we use the C99 and C++11 rules there).
3866         // Unsigned shifts can always shift into the top bit.
3867         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3868         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3869       }
3870       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3871       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3872       CGF.EmitBlock(Cont);
3873       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3874       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3875       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3876       Checks.push_back(std::make_pair(
3877           BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
3878                                         : SanitizerKind::UnsignedShiftBase));
3879     }
3880 
3881     assert(!Checks.empty());
3882     EmitBinOpCheck(Checks, Ops);
3883   }
3884 
3885   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3886 }
3887 
3888 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3889   // TODO: This misses out on the sanitizer check below.
3890   if (Ops.isFixedPointOp())
3891     return EmitFixedPointBinOp(Ops);
3892 
3893   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3894   // RHS to the same size as the LHS.
3895   Value *RHS = Ops.RHS;
3896   if (Ops.LHS->getType() != RHS->getType())
3897     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3898 
3899   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3900   if (CGF.getLangOpts().OpenCL)
3901     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
3902   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3903            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3904     CodeGenFunction::SanitizerScope SanScope(&CGF);
3905     llvm::Value *Valid =
3906         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3907     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3908   }
3909 
3910   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3911     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3912   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3913 }
3914 
3915 enum IntrinsicType { VCMPEQ, VCMPGT };
3916 // return corresponding comparison intrinsic for given vector type
3917 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3918                                         BuiltinType::Kind ElemKind) {
3919   switch (ElemKind) {
3920   default: llvm_unreachable("unexpected element type");
3921   case BuiltinType::Char_U:
3922   case BuiltinType::UChar:
3923     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3924                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3925   case BuiltinType::Char_S:
3926   case BuiltinType::SChar:
3927     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3928                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3929   case BuiltinType::UShort:
3930     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3931                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3932   case BuiltinType::Short:
3933     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3934                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3935   case BuiltinType::UInt:
3936     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3937                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3938   case BuiltinType::Int:
3939     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3940                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3941   case BuiltinType::ULong:
3942   case BuiltinType::ULongLong:
3943     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3944                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3945   case BuiltinType::Long:
3946   case BuiltinType::LongLong:
3947     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3948                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3949   case BuiltinType::Float:
3950     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3951                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3952   case BuiltinType::Double:
3953     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3954                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3955   case BuiltinType::UInt128:
3956     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
3957                           : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
3958   case BuiltinType::Int128:
3959     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
3960                           : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
3961   }
3962 }
3963 
3964 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3965                                       llvm::CmpInst::Predicate UICmpOpc,
3966                                       llvm::CmpInst::Predicate SICmpOpc,
3967                                       llvm::CmpInst::Predicate FCmpOpc,
3968                                       bool IsSignaling) {
3969   TestAndClearIgnoreResultAssign();
3970   Value *Result;
3971   QualType LHSTy = E->getLHS()->getType();
3972   QualType RHSTy = E->getRHS()->getType();
3973   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3974     assert(E->getOpcode() == BO_EQ ||
3975            E->getOpcode() == BO_NE);
3976     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3977     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3978     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3979                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3980   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3981     BinOpInfo BOInfo = EmitBinOps(E);
3982     Value *LHS = BOInfo.LHS;
3983     Value *RHS = BOInfo.RHS;
3984 
3985     // If AltiVec, the comparison results in a numeric type, so we use
3986     // intrinsics comparing vectors and giving 0 or 1 as a result
3987     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3988       // constants for mapping CR6 register bits to predicate result
3989       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3990 
3991       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3992 
3993       // in several cases vector arguments order will be reversed
3994       Value *FirstVecArg = LHS,
3995             *SecondVecArg = RHS;
3996 
3997       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
3998       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
3999 
4000       switch(E->getOpcode()) {
4001       default: llvm_unreachable("is not a comparison operation");
4002       case BO_EQ:
4003         CR6 = CR6_LT;
4004         ID = GetIntrinsic(VCMPEQ, ElementKind);
4005         break;
4006       case BO_NE:
4007         CR6 = CR6_EQ;
4008         ID = GetIntrinsic(VCMPEQ, ElementKind);
4009         break;
4010       case BO_LT:
4011         CR6 = CR6_LT;
4012         ID = GetIntrinsic(VCMPGT, ElementKind);
4013         std::swap(FirstVecArg, SecondVecArg);
4014         break;
4015       case BO_GT:
4016         CR6 = CR6_LT;
4017         ID = GetIntrinsic(VCMPGT, ElementKind);
4018         break;
4019       case BO_LE:
4020         if (ElementKind == BuiltinType::Float) {
4021           CR6 = CR6_LT;
4022           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4023           std::swap(FirstVecArg, SecondVecArg);
4024         }
4025         else {
4026           CR6 = CR6_EQ;
4027           ID = GetIntrinsic(VCMPGT, ElementKind);
4028         }
4029         break;
4030       case BO_GE:
4031         if (ElementKind == BuiltinType::Float) {
4032           CR6 = CR6_LT;
4033           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4034         }
4035         else {
4036           CR6 = CR6_EQ;
4037           ID = GetIntrinsic(VCMPGT, ElementKind);
4038           std::swap(FirstVecArg, SecondVecArg);
4039         }
4040         break;
4041       }
4042 
4043       Value *CR6Param = Builder.getInt32(CR6);
4044       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4045       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4046 
4047       // The result type of intrinsic may not be same as E->getType().
4048       // If E->getType() is not BoolTy, EmitScalarConversion will do the
4049       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4050       // do nothing, if ResultTy is not i1 at the same time, it will cause
4051       // crash later.
4052       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4053       if (ResultTy->getBitWidth() > 1 &&
4054           E->getType() == CGF.getContext().BoolTy)
4055         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4056       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4057                                   E->getExprLoc());
4058     }
4059 
4060     if (BOInfo.isFixedPointOp()) {
4061       Result = EmitFixedPointBinOp(BOInfo);
4062     } else if (LHS->getType()->isFPOrFPVectorTy()) {
4063       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4064       if (!IsSignaling)
4065         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4066       else
4067         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4068     } else if (LHSTy->hasSignedIntegerRepresentation()) {
4069       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4070     } else {
4071       // Unsigned integers and pointers.
4072 
4073       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4074           !isa<llvm::ConstantPointerNull>(LHS) &&
4075           !isa<llvm::ConstantPointerNull>(RHS)) {
4076 
4077         // Dynamic information is required to be stripped for comparisons,
4078         // because it could leak the dynamic information.  Based on comparisons
4079         // of pointers to dynamic objects, the optimizer can replace one pointer
4080         // with another, which might be incorrect in presence of invariant
4081         // groups. Comparison with null is safe because null does not carry any
4082         // dynamic information.
4083         if (LHSTy.mayBeDynamicClass())
4084           LHS = Builder.CreateStripInvariantGroup(LHS);
4085         if (RHSTy.mayBeDynamicClass())
4086           RHS = Builder.CreateStripInvariantGroup(RHS);
4087       }
4088 
4089       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4090     }
4091 
4092     // If this is a vector comparison, sign extend the result to the appropriate
4093     // vector integer type and return it (don't convert to bool).
4094     if (LHSTy->isVectorType())
4095       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4096 
4097   } else {
4098     // Complex Comparison: can only be an equality comparison.
4099     CodeGenFunction::ComplexPairTy LHS, RHS;
4100     QualType CETy;
4101     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4102       LHS = CGF.EmitComplexExpr(E->getLHS());
4103       CETy = CTy->getElementType();
4104     } else {
4105       LHS.first = Visit(E->getLHS());
4106       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4107       CETy = LHSTy;
4108     }
4109     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4110       RHS = CGF.EmitComplexExpr(E->getRHS());
4111       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4112                                                      CTy->getElementType()) &&
4113              "The element types must always match.");
4114       (void)CTy;
4115     } else {
4116       RHS.first = Visit(E->getRHS());
4117       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4118       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4119              "The element types must always match.");
4120     }
4121 
4122     Value *ResultR, *ResultI;
4123     if (CETy->isRealFloatingType()) {
4124       // As complex comparisons can only be equality comparisons, they
4125       // are never signaling comparisons.
4126       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4127       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4128     } else {
4129       // Complex comparisons can only be equality comparisons.  As such, signed
4130       // and unsigned opcodes are the same.
4131       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4132       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4133     }
4134 
4135     if (E->getOpcode() == BO_EQ) {
4136       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4137     } else {
4138       assert(E->getOpcode() == BO_NE &&
4139              "Complex comparison other than == or != ?");
4140       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4141     }
4142   }
4143 
4144   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4145                               E->getExprLoc());
4146 }
4147 
4148 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4149   bool Ignore = TestAndClearIgnoreResultAssign();
4150 
4151   Value *RHS;
4152   LValue LHS;
4153 
4154   switch (E->getLHS()->getType().getObjCLifetime()) {
4155   case Qualifiers::OCL_Strong:
4156     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4157     break;
4158 
4159   case Qualifiers::OCL_Autoreleasing:
4160     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4161     break;
4162 
4163   case Qualifiers::OCL_ExplicitNone:
4164     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4165     break;
4166 
4167   case Qualifiers::OCL_Weak:
4168     RHS = Visit(E->getRHS());
4169     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4170     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4171     break;
4172 
4173   case Qualifiers::OCL_None:
4174     // __block variables need to have the rhs evaluated first, plus
4175     // this should improve codegen just a little.
4176     RHS = Visit(E->getRHS());
4177     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4178 
4179     // Store the value into the LHS.  Bit-fields are handled specially
4180     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4181     // 'An assignment expression has the value of the left operand after
4182     // the assignment...'.
4183     if (LHS.isBitField()) {
4184       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4185     } else {
4186       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4187       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4188     }
4189   }
4190 
4191   // If the result is clearly ignored, return now.
4192   if (Ignore)
4193     return nullptr;
4194 
4195   // The result of an assignment in C is the assigned r-value.
4196   if (!CGF.getLangOpts().CPlusPlus)
4197     return RHS;
4198 
4199   // If the lvalue is non-volatile, return the computed value of the assignment.
4200   if (!LHS.isVolatileQualified())
4201     return RHS;
4202 
4203   // Otherwise, reload the value.
4204   return EmitLoadOfLValue(LHS, E->getExprLoc());
4205 }
4206 
4207 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4208   // Perform vector logical and on comparisons with zero vectors.
4209   if (E->getType()->isVectorType()) {
4210     CGF.incrementProfileCounter(E);
4211 
4212     Value *LHS = Visit(E->getLHS());
4213     Value *RHS = Visit(E->getRHS());
4214     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4215     if (LHS->getType()->isFPOrFPVectorTy()) {
4216       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4217           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4218       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4219       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4220     } else {
4221       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4222       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4223     }
4224     Value *And = Builder.CreateAnd(LHS, RHS);
4225     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4226   }
4227 
4228   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4229   llvm::Type *ResTy = ConvertType(E->getType());
4230 
4231   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4232   // If we have 1 && X, just emit X without inserting the control flow.
4233   bool LHSCondVal;
4234   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4235     if (LHSCondVal) { // If we have 1 && X, just emit X.
4236       CGF.incrementProfileCounter(E);
4237 
4238       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4239 
4240       // If we're generating for profiling or coverage, generate a branch to a
4241       // block that increments the RHS counter needed to track branch condition
4242       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4243       // "FalseBlock" after the increment is done.
4244       if (InstrumentRegions &&
4245           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4246         llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
4247         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4248         Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
4249         CGF.EmitBlock(RHSBlockCnt);
4250         CGF.incrementProfileCounter(E->getRHS());
4251         CGF.EmitBranch(FBlock);
4252         CGF.EmitBlock(FBlock);
4253       }
4254 
4255       // ZExt result to int or bool.
4256       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4257     }
4258 
4259     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4260     if (!CGF.ContainsLabel(E->getRHS()))
4261       return llvm::Constant::getNullValue(ResTy);
4262   }
4263 
4264   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4265   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4266 
4267   CodeGenFunction::ConditionalEvaluation eval(CGF);
4268 
4269   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4270   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4271                            CGF.getProfileCount(E->getRHS()));
4272 
4273   // Any edges into the ContBlock are now from an (indeterminate number of)
4274   // edges from this first condition.  All of these values will be false.  Start
4275   // setting up the PHI node in the Cont Block for this.
4276   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4277                                             "", ContBlock);
4278   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4279        PI != PE; ++PI)
4280     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4281 
4282   eval.begin(CGF);
4283   CGF.EmitBlock(RHSBlock);
4284   CGF.incrementProfileCounter(E);
4285   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4286   eval.end(CGF);
4287 
4288   // Reaquire the RHS block, as there may be subblocks inserted.
4289   RHSBlock = Builder.GetInsertBlock();
4290 
4291   // If we're generating for profiling or coverage, generate a branch on the
4292   // RHS to a block that increments the RHS true counter needed to track branch
4293   // condition coverage.
4294   if (InstrumentRegions &&
4295       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4296     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4297     Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
4298     CGF.EmitBlock(RHSBlockCnt);
4299     CGF.incrementProfileCounter(E->getRHS());
4300     CGF.EmitBranch(ContBlock);
4301     PN->addIncoming(RHSCond, RHSBlockCnt);
4302   }
4303 
4304   // Emit an unconditional branch from this block to ContBlock.
4305   {
4306     // There is no need to emit line number for unconditional branch.
4307     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4308     CGF.EmitBlock(ContBlock);
4309   }
4310   // Insert an entry into the phi node for the edge with the value of RHSCond.
4311   PN->addIncoming(RHSCond, RHSBlock);
4312 
4313   // Artificial location to preserve the scope information
4314   {
4315     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4316     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4317   }
4318 
4319   // ZExt result to int.
4320   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4321 }
4322 
4323 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4324   // Perform vector logical or on comparisons with zero vectors.
4325   if (E->getType()->isVectorType()) {
4326     CGF.incrementProfileCounter(E);
4327 
4328     Value *LHS = Visit(E->getLHS());
4329     Value *RHS = Visit(E->getRHS());
4330     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4331     if (LHS->getType()->isFPOrFPVectorTy()) {
4332       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4333           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4334       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4335       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4336     } else {
4337       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4338       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4339     }
4340     Value *Or = Builder.CreateOr(LHS, RHS);
4341     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4342   }
4343 
4344   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4345   llvm::Type *ResTy = ConvertType(E->getType());
4346 
4347   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4348   // If we have 0 || X, just emit X without inserting the control flow.
4349   bool LHSCondVal;
4350   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4351     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4352       CGF.incrementProfileCounter(E);
4353 
4354       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4355 
4356       // If we're generating for profiling or coverage, generate a branch to a
4357       // block that increments the RHS counter need to track branch condition
4358       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4359       // "FalseBlock" after the increment is done.
4360       if (InstrumentRegions &&
4361           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4362         llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
4363         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4364         Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
4365         CGF.EmitBlock(RHSBlockCnt);
4366         CGF.incrementProfileCounter(E->getRHS());
4367         CGF.EmitBranch(FBlock);
4368         CGF.EmitBlock(FBlock);
4369       }
4370 
4371       // ZExt result to int or bool.
4372       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4373     }
4374 
4375     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4376     if (!CGF.ContainsLabel(E->getRHS()))
4377       return llvm::ConstantInt::get(ResTy, 1);
4378   }
4379 
4380   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4381   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4382 
4383   CodeGenFunction::ConditionalEvaluation eval(CGF);
4384 
4385   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4386   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4387                            CGF.getCurrentProfileCount() -
4388                                CGF.getProfileCount(E->getRHS()));
4389 
4390   // Any edges into the ContBlock are now from an (indeterminate number of)
4391   // edges from this first condition.  All of these values will be true.  Start
4392   // setting up the PHI node in the Cont Block for this.
4393   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4394                                             "", ContBlock);
4395   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4396        PI != PE; ++PI)
4397     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4398 
4399   eval.begin(CGF);
4400 
4401   // Emit the RHS condition as a bool value.
4402   CGF.EmitBlock(RHSBlock);
4403   CGF.incrementProfileCounter(E);
4404   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4405 
4406   eval.end(CGF);
4407 
4408   // Reaquire the RHS block, as there may be subblocks inserted.
4409   RHSBlock = Builder.GetInsertBlock();
4410 
4411   // If we're generating for profiling or coverage, generate a branch on the
4412   // RHS to a block that increments the RHS true counter needed to track branch
4413   // condition coverage.
4414   if (InstrumentRegions &&
4415       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4416     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4417     Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
4418     CGF.EmitBlock(RHSBlockCnt);
4419     CGF.incrementProfileCounter(E->getRHS());
4420     CGF.EmitBranch(ContBlock);
4421     PN->addIncoming(RHSCond, RHSBlockCnt);
4422   }
4423 
4424   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4425   // into the phi node for the edge with the value of RHSCond.
4426   CGF.EmitBlock(ContBlock);
4427   PN->addIncoming(RHSCond, RHSBlock);
4428 
4429   // ZExt result to int.
4430   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4431 }
4432 
4433 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4434   CGF.EmitIgnoredExpr(E->getLHS());
4435   CGF.EnsureInsertPoint();
4436   return Visit(E->getRHS());
4437 }
4438 
4439 //===----------------------------------------------------------------------===//
4440 //                             Other Operators
4441 //===----------------------------------------------------------------------===//
4442 
4443 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4444 /// expression is cheap enough and side-effect-free enough to evaluate
4445 /// unconditionally instead of conditionally.  This is used to convert control
4446 /// flow into selects in some cases.
4447 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4448                                                    CodeGenFunction &CGF) {
4449   // Anything that is an integer or floating point constant is fine.
4450   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4451 
4452   // Even non-volatile automatic variables can't be evaluated unconditionally.
4453   // Referencing a thread_local may cause non-trivial initialization work to
4454   // occur. If we're inside a lambda and one of the variables is from the scope
4455   // outside the lambda, that function may have returned already. Reading its
4456   // locals is a bad idea. Also, these reads may introduce races there didn't
4457   // exist in the source-level program.
4458 }
4459 
4460 
4461 Value *ScalarExprEmitter::
4462 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4463   TestAndClearIgnoreResultAssign();
4464 
4465   // Bind the common expression if necessary.
4466   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4467 
4468   Expr *condExpr = E->getCond();
4469   Expr *lhsExpr = E->getTrueExpr();
4470   Expr *rhsExpr = E->getFalseExpr();
4471 
4472   // If the condition constant folds and can be elided, try to avoid emitting
4473   // the condition and the dead arm.
4474   bool CondExprBool;
4475   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4476     Expr *live = lhsExpr, *dead = rhsExpr;
4477     if (!CondExprBool) std::swap(live, dead);
4478 
4479     // If the dead side doesn't have labels we need, just emit the Live part.
4480     if (!CGF.ContainsLabel(dead)) {
4481       if (CondExprBool)
4482         CGF.incrementProfileCounter(E);
4483       Value *Result = Visit(live);
4484 
4485       // If the live part is a throw expression, it acts like it has a void
4486       // type, so evaluating it returns a null Value*.  However, a conditional
4487       // with non-void type must return a non-null Value*.
4488       if (!Result && !E->getType()->isVoidType())
4489         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4490 
4491       return Result;
4492     }
4493   }
4494 
4495   // OpenCL: If the condition is a vector, we can treat this condition like
4496   // the select function.
4497   if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4498       condExpr->getType()->isExtVectorType()) {
4499     CGF.incrementProfileCounter(E);
4500 
4501     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4502     llvm::Value *LHS = Visit(lhsExpr);
4503     llvm::Value *RHS = Visit(rhsExpr);
4504 
4505     llvm::Type *condType = ConvertType(condExpr->getType());
4506     auto *vecTy = cast<llvm::FixedVectorType>(condType);
4507 
4508     unsigned numElem = vecTy->getNumElements();
4509     llvm::Type *elemType = vecTy->getElementType();
4510 
4511     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4512     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4513     llvm::Value *tmp = Builder.CreateSExt(
4514         TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4515     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4516 
4517     // Cast float to int to perform ANDs if necessary.
4518     llvm::Value *RHSTmp = RHS;
4519     llvm::Value *LHSTmp = LHS;
4520     bool wasCast = false;
4521     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4522     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4523       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4524       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4525       wasCast = true;
4526     }
4527 
4528     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4529     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4530     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4531     if (wasCast)
4532       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4533 
4534     return tmp5;
4535   }
4536 
4537   if (condExpr->getType()->isVectorType()) {
4538     CGF.incrementProfileCounter(E);
4539 
4540     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4541     llvm::Value *LHS = Visit(lhsExpr);
4542     llvm::Value *RHS = Visit(rhsExpr);
4543 
4544     llvm::Type *CondType = ConvertType(condExpr->getType());
4545     auto *VecTy = cast<llvm::VectorType>(CondType);
4546     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4547 
4548     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4549     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4550   }
4551 
4552   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4553   // select instead of as control flow.  We can only do this if it is cheap and
4554   // safe to evaluate the LHS and RHS unconditionally.
4555   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4556       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4557     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4558     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4559 
4560     CGF.incrementProfileCounter(E, StepV);
4561 
4562     llvm::Value *LHS = Visit(lhsExpr);
4563     llvm::Value *RHS = Visit(rhsExpr);
4564     if (!LHS) {
4565       // If the conditional has void type, make sure we return a null Value*.
4566       assert(!RHS && "LHS and RHS types must match");
4567       return nullptr;
4568     }
4569     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4570   }
4571 
4572   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4573   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4574   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4575 
4576   CodeGenFunction::ConditionalEvaluation eval(CGF);
4577   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4578                            CGF.getProfileCount(lhsExpr));
4579 
4580   CGF.EmitBlock(LHSBlock);
4581   CGF.incrementProfileCounter(E);
4582   eval.begin(CGF);
4583   Value *LHS = Visit(lhsExpr);
4584   eval.end(CGF);
4585 
4586   LHSBlock = Builder.GetInsertBlock();
4587   Builder.CreateBr(ContBlock);
4588 
4589   CGF.EmitBlock(RHSBlock);
4590   eval.begin(CGF);
4591   Value *RHS = Visit(rhsExpr);
4592   eval.end(CGF);
4593 
4594   RHSBlock = Builder.GetInsertBlock();
4595   CGF.EmitBlock(ContBlock);
4596 
4597   // If the LHS or RHS is a throw expression, it will be legitimately null.
4598   if (!LHS)
4599     return RHS;
4600   if (!RHS)
4601     return LHS;
4602 
4603   // Create a PHI node for the real part.
4604   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4605   PN->addIncoming(LHS, LHSBlock);
4606   PN->addIncoming(RHS, RHSBlock);
4607   return PN;
4608 }
4609 
4610 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4611   return Visit(E->getChosenSubExpr());
4612 }
4613 
4614 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4615   QualType Ty = VE->getType();
4616 
4617   if (Ty->isVariablyModifiedType())
4618     CGF.EmitVariablyModifiedType(Ty);
4619 
4620   Address ArgValue = Address::invalid();
4621   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4622 
4623   llvm::Type *ArgTy = ConvertType(VE->getType());
4624 
4625   // If EmitVAArg fails, emit an error.
4626   if (!ArgPtr.isValid()) {
4627     CGF.ErrorUnsupported(VE, "va_arg expression");
4628     return llvm::UndefValue::get(ArgTy);
4629   }
4630 
4631   // FIXME Volatility.
4632   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4633 
4634   // If EmitVAArg promoted the type, we must truncate it.
4635   if (ArgTy != Val->getType()) {
4636     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4637       Val = Builder.CreateIntToPtr(Val, ArgTy);
4638     else
4639       Val = Builder.CreateTrunc(Val, ArgTy);
4640   }
4641 
4642   return Val;
4643 }
4644 
4645 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4646   return CGF.EmitBlockLiteral(block);
4647 }
4648 
4649 // Convert a vec3 to vec4, or vice versa.
4650 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4651                                  Value *Src, unsigned NumElementsDst) {
4652   static constexpr int Mask[] = {0, 1, 2, -1};
4653   return Builder.CreateShuffleVector(Src,
4654                                      llvm::makeArrayRef(Mask, NumElementsDst));
4655 }
4656 
4657 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4658 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4659 // but could be scalar or vectors of different lengths, and either can be
4660 // pointer.
4661 // There are 4 cases:
4662 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4663 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4664 // 3. pointer -> non-pointer
4665 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4666 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4667 // 4. non-pointer -> pointer
4668 //   a) intptr_t -> pointer       : needs 1 inttoptr
4669 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4670 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4671 // allow casting directly between pointer types and non-integer non-pointer
4672 // types.
4673 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4674                                            const llvm::DataLayout &DL,
4675                                            Value *Src, llvm::Type *DstTy,
4676                                            StringRef Name = "") {
4677   auto SrcTy = Src->getType();
4678 
4679   // Case 1.
4680   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4681     return Builder.CreateBitCast(Src, DstTy, Name);
4682 
4683   // Case 2.
4684   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4685     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4686 
4687   // Case 3.
4688   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4689     // Case 3b.
4690     if (!DstTy->isIntegerTy())
4691       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4692     // Cases 3a and 3b.
4693     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4694   }
4695 
4696   // Case 4b.
4697   if (!SrcTy->isIntegerTy())
4698     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4699   // Cases 4a and 4b.
4700   return Builder.CreateIntToPtr(Src, DstTy, Name);
4701 }
4702 
4703 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4704   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4705   llvm::Type *DstTy = ConvertType(E->getType());
4706 
4707   llvm::Type *SrcTy = Src->getType();
4708   unsigned NumElementsSrc =
4709       isa<llvm::VectorType>(SrcTy)
4710           ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
4711           : 0;
4712   unsigned NumElementsDst =
4713       isa<llvm::VectorType>(DstTy)
4714           ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
4715           : 0;
4716 
4717   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4718   // vector to get a vec4, then a bitcast if the target type is different.
4719   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4720     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4721 
4722     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4723       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4724                                          DstTy);
4725     }
4726 
4727     Src->setName("astype");
4728     return Src;
4729   }
4730 
4731   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4732   // to vec4 if the original type is not vec4, then a shuffle vector to
4733   // get a vec3.
4734   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4735     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4736       auto *Vec4Ty = llvm::FixedVectorType::get(
4737           cast<llvm::VectorType>(DstTy)->getElementType(), 4);
4738       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4739                                          Vec4Ty);
4740     }
4741 
4742     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4743     Src->setName("astype");
4744     return Src;
4745   }
4746 
4747   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4748                                       Src, DstTy, "astype");
4749 }
4750 
4751 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4752   return CGF.EmitAtomicExpr(E).getScalarVal();
4753 }
4754 
4755 //===----------------------------------------------------------------------===//
4756 //                         Entry Point into this File
4757 //===----------------------------------------------------------------------===//
4758 
4759 /// Emit the computation of the specified expression of scalar type, ignoring
4760 /// the result.
4761 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4762   assert(E && hasScalarEvaluationKind(E->getType()) &&
4763          "Invalid scalar expression to emit");
4764 
4765   return ScalarExprEmitter(*this, IgnoreResultAssign)
4766       .Visit(const_cast<Expr *>(E));
4767 }
4768 
4769 /// Emit a conversion from the specified type to the specified destination type,
4770 /// both of which are LLVM scalar types.
4771 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4772                                              QualType DstTy,
4773                                              SourceLocation Loc) {
4774   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4775          "Invalid scalar expression to emit");
4776   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4777 }
4778 
4779 /// Emit a conversion from the specified complex type to the specified
4780 /// destination type, where the destination type is an LLVM scalar type.
4781 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4782                                                       QualType SrcTy,
4783                                                       QualType DstTy,
4784                                                       SourceLocation Loc) {
4785   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4786          "Invalid complex -> scalar conversion");
4787   return ScalarExprEmitter(*this)
4788       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4789 }
4790 
4791 
4792 llvm::Value *CodeGenFunction::
4793 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4794                         bool isInc, bool isPre) {
4795   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4796 }
4797 
4798 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4799   // object->isa or (*object).isa
4800   // Generate code as for: *(Class*)object
4801 
4802   Expr *BaseExpr = E->getBase();
4803   Address Addr = Address::invalid();
4804   if (BaseExpr->isRValue()) {
4805     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4806   } else {
4807     Addr = EmitLValue(BaseExpr).getAddress(*this);
4808   }
4809 
4810   // Cast the address to Class*.
4811   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4812   return MakeAddrLValue(Addr, E->getType());
4813 }
4814 
4815 
4816 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4817                                             const CompoundAssignOperator *E) {
4818   ScalarExprEmitter Scalar(*this);
4819   Value *Result = nullptr;
4820   switch (E->getOpcode()) {
4821 #define COMPOUND_OP(Op)                                                       \
4822     case BO_##Op##Assign:                                                     \
4823       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4824                                              Result)
4825   COMPOUND_OP(Mul);
4826   COMPOUND_OP(Div);
4827   COMPOUND_OP(Rem);
4828   COMPOUND_OP(Add);
4829   COMPOUND_OP(Sub);
4830   COMPOUND_OP(Shl);
4831   COMPOUND_OP(Shr);
4832   COMPOUND_OP(And);
4833   COMPOUND_OP(Xor);
4834   COMPOUND_OP(Or);
4835 #undef COMPOUND_OP
4836 
4837   case BO_PtrMemD:
4838   case BO_PtrMemI:
4839   case BO_Mul:
4840   case BO_Div:
4841   case BO_Rem:
4842   case BO_Add:
4843   case BO_Sub:
4844   case BO_Shl:
4845   case BO_Shr:
4846   case BO_LT:
4847   case BO_GT:
4848   case BO_LE:
4849   case BO_GE:
4850   case BO_EQ:
4851   case BO_NE:
4852   case BO_Cmp:
4853   case BO_And:
4854   case BO_Xor:
4855   case BO_Or:
4856   case BO_LAnd:
4857   case BO_LOr:
4858   case BO_Assign:
4859   case BO_Comma:
4860     llvm_unreachable("Not valid compound assignment operators");
4861   }
4862 
4863   llvm_unreachable("Unhandled compound assignment operator");
4864 }
4865 
4866 struct GEPOffsetAndOverflow {
4867   // The total (signed) byte offset for the GEP.
4868   llvm::Value *TotalOffset;
4869   // The offset overflow flag - true if the total offset overflows.
4870   llvm::Value *OffsetOverflows;
4871 };
4872 
4873 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4874 /// and compute the total offset it applies from it's base pointer BasePtr.
4875 /// Returns offset in bytes and a boolean flag whether an overflow happened
4876 /// during evaluation.
4877 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4878                                                  llvm::LLVMContext &VMContext,
4879                                                  CodeGenModule &CGM,
4880                                                  CGBuilderTy &Builder) {
4881   const auto &DL = CGM.getDataLayout();
4882 
4883   // The total (signed) byte offset for the GEP.
4884   llvm::Value *TotalOffset = nullptr;
4885 
4886   // Was the GEP already reduced to a constant?
4887   if (isa<llvm::Constant>(GEPVal)) {
4888     // Compute the offset by casting both pointers to integers and subtracting:
4889     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4890     Value *BasePtr_int =
4891         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4892     Value *GEPVal_int =
4893         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4894     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4895     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4896   }
4897 
4898   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4899   assert(GEP->getPointerOperand() == BasePtr &&
4900          "BasePtr must be the the base of the GEP.");
4901   assert(GEP->isInBounds() && "Expected inbounds GEP");
4902 
4903   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4904 
4905   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4906   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4907   auto *SAddIntrinsic =
4908       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4909   auto *SMulIntrinsic =
4910       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4911 
4912   // The offset overflow flag - true if the total offset overflows.
4913   llvm::Value *OffsetOverflows = Builder.getFalse();
4914 
4915   /// Return the result of the given binary operation.
4916   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4917                   llvm::Value *RHS) -> llvm::Value * {
4918     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4919 
4920     // If the operands are constants, return a constant result.
4921     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4922       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4923         llvm::APInt N;
4924         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4925                                                   /*Signed=*/true, N);
4926         if (HasOverflow)
4927           OffsetOverflows = Builder.getTrue();
4928         return llvm::ConstantInt::get(VMContext, N);
4929       }
4930     }
4931 
4932     // Otherwise, compute the result with checked arithmetic.
4933     auto *ResultAndOverflow = Builder.CreateCall(
4934         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4935     OffsetOverflows = Builder.CreateOr(
4936         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4937     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4938   };
4939 
4940   // Determine the total byte offset by looking at each GEP operand.
4941   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4942        GTI != GTE; ++GTI) {
4943     llvm::Value *LocalOffset;
4944     auto *Index = GTI.getOperand();
4945     // Compute the local offset contributed by this indexing step:
4946     if (auto *STy = GTI.getStructTypeOrNull()) {
4947       // For struct indexing, the local offset is the byte position of the
4948       // specified field.
4949       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4950       LocalOffset = llvm::ConstantInt::get(
4951           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4952     } else {
4953       // Otherwise this is array-like indexing. The local offset is the index
4954       // multiplied by the element size.
4955       auto *ElementSize = llvm::ConstantInt::get(
4956           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4957       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4958       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4959     }
4960 
4961     // If this is the first offset, set it as the total offset. Otherwise, add
4962     // the local offset into the running total.
4963     if (!TotalOffset || TotalOffset == Zero)
4964       TotalOffset = LocalOffset;
4965     else
4966       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4967   }
4968 
4969   return {TotalOffset, OffsetOverflows};
4970 }
4971 
4972 Value *
4973 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
4974                                         bool SignedIndices, bool IsSubtraction,
4975                                         SourceLocation Loc, const Twine &Name) {
4976   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4977 
4978   // If the pointer overflow sanitizer isn't enabled, do nothing.
4979   if (!SanOpts.has(SanitizerKind::PointerOverflow))
4980     return GEPVal;
4981 
4982   llvm::Type *PtrTy = Ptr->getType();
4983 
4984   // Perform nullptr-and-offset check unless the nullptr is defined.
4985   bool PerformNullCheck = !NullPointerIsDefined(
4986       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
4987   // Check for overflows unless the GEP got constant-folded,
4988   // and only in the default address space
4989   bool PerformOverflowCheck =
4990       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
4991 
4992   if (!(PerformNullCheck || PerformOverflowCheck))
4993     return GEPVal;
4994 
4995   const auto &DL = CGM.getDataLayout();
4996 
4997   SanitizerScope SanScope(this);
4998   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
4999 
5000   GEPOffsetAndOverflow EvaluatedGEP =
5001       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
5002 
5003   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
5004           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
5005          "If the offset got constant-folded, we don't expect that there was an "
5006          "overflow.");
5007 
5008   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5009 
5010   // Common case: if the total offset is zero, and we are using C++ semantics,
5011   // where nullptr+0 is defined, don't emit a check.
5012   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
5013     return GEPVal;
5014 
5015   // Now that we've computed the total offset, add it to the base pointer (with
5016   // wrapping semantics).
5017   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
5018   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
5019 
5020   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
5021 
5022   if (PerformNullCheck) {
5023     // In C++, if the base pointer evaluates to a null pointer value,
5024     // the only valid  pointer this inbounds GEP can produce is also
5025     // a null pointer, so the offset must also evaluate to zero.
5026     // Likewise, if we have non-zero base pointer, we can not get null pointer
5027     // as a result, so the offset can not be -intptr_t(BasePtr).
5028     // In other words, both pointers are either null, or both are non-null,
5029     // or the behaviour is undefined.
5030     //
5031     // C, however, is more strict in this regard, and gives more
5032     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
5033     // So both the input to the 'gep inbounds' AND the output must not be null.
5034     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
5035     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
5036     auto *Valid =
5037         CGM.getLangOpts().CPlusPlus
5038             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
5039             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
5040     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
5041   }
5042 
5043   if (PerformOverflowCheck) {
5044     // The GEP is valid if:
5045     // 1) The total offset doesn't overflow, and
5046     // 2) The sign of the difference between the computed address and the base
5047     // pointer matches the sign of the total offset.
5048     llvm::Value *ValidGEP;
5049     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
5050     if (SignedIndices) {
5051       // GEP is computed as `unsigned base + signed offset`, therefore:
5052       // * If offset was positive, then the computed pointer can not be
5053       //   [unsigned] less than the base pointer, unless it overflowed.
5054       // * If offset was negative, then the computed pointer can not be
5055       //   [unsigned] greater than the bas pointere, unless it overflowed.
5056       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5057       auto *PosOrZeroOffset =
5058           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
5059       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
5060       ValidGEP =
5061           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
5062     } else if (!IsSubtraction) {
5063       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
5064       // computed pointer can not be [unsigned] less than base pointer,
5065       // unless there was an overflow.
5066       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5067       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5068     } else {
5069       // GEP is computed as `unsigned base - unsigned offset`, therefore the
5070       // computed pointer can not be [unsigned] greater than base pointer,
5071       // unless there was an overflow.
5072       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5073       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5074     }
5075     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5076     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
5077   }
5078 
5079   assert(!Checks.empty() && "Should have produced some checks.");
5080 
5081   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5082   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5083   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5084   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5085 
5086   return GEPVal;
5087 }
5088