1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCleanup.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CodeGenFunction.h" 18 #include "CodeGenModule.h" 19 #include "ConstantEmitter.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtVisitor.h" 26 #include "clang/Basic/CodeGenOptions.h" 27 #include "clang/Basic/FixedPoint.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "llvm/ADT/Optional.h" 30 #include "llvm/IR/CFG.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/Module.h" 38 #include <cstdarg> 39 40 using namespace clang; 41 using namespace CodeGen; 42 using llvm::Value; 43 44 //===----------------------------------------------------------------------===// 45 // Scalar Expression Emitter 46 //===----------------------------------------------------------------------===// 47 48 namespace { 49 50 /// Determine whether the given binary operation may overflow. 51 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 52 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 53 /// the returned overflow check is precise. The returned value is 'true' for 54 /// all other opcodes, to be conservative. 55 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 56 BinaryOperator::Opcode Opcode, bool Signed, 57 llvm::APInt &Result) { 58 // Assume overflow is possible, unless we can prove otherwise. 59 bool Overflow = true; 60 const auto &LHSAP = LHS->getValue(); 61 const auto &RHSAP = RHS->getValue(); 62 if (Opcode == BO_Add) { 63 if (Signed) 64 Result = LHSAP.sadd_ov(RHSAP, Overflow); 65 else 66 Result = LHSAP.uadd_ov(RHSAP, Overflow); 67 } else if (Opcode == BO_Sub) { 68 if (Signed) 69 Result = LHSAP.ssub_ov(RHSAP, Overflow); 70 else 71 Result = LHSAP.usub_ov(RHSAP, Overflow); 72 } else if (Opcode == BO_Mul) { 73 if (Signed) 74 Result = LHSAP.smul_ov(RHSAP, Overflow); 75 else 76 Result = LHSAP.umul_ov(RHSAP, Overflow); 77 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 78 if (Signed && !RHS->isZero()) 79 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 80 else 81 return false; 82 } 83 return Overflow; 84 } 85 86 struct BinOpInfo { 87 Value *LHS; 88 Value *RHS; 89 QualType Ty; // Computation Type. 90 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 91 FPOptions FPFeatures; 92 const Expr *E; // Entire expr, for error unsupported. May not be binop. 93 94 /// Check if the binop can result in integer overflow. 95 bool mayHaveIntegerOverflow() const { 96 // Without constant input, we can't rule out overflow. 97 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 98 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 99 if (!LHSCI || !RHSCI) 100 return true; 101 102 llvm::APInt Result; 103 return ::mayHaveIntegerOverflow( 104 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 105 } 106 107 /// Check if the binop computes a division or a remainder. 108 bool isDivremOp() const { 109 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 110 Opcode == BO_RemAssign; 111 } 112 113 /// Check if the binop can result in an integer division by zero. 114 bool mayHaveIntegerDivisionByZero() const { 115 if (isDivremOp()) 116 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 117 return CI->isZero(); 118 return true; 119 } 120 121 /// Check if the binop can result in a float division by zero. 122 bool mayHaveFloatDivisionByZero() const { 123 if (isDivremOp()) 124 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 125 return CFP->isZero(); 126 return true; 127 } 128 129 /// Check if either operand is a fixed point type or integer type, with at 130 /// least one being a fixed point type. In any case, this 131 /// operation did not follow usual arithmetic conversion and both operands may 132 /// not be the same. 133 bool isFixedPointBinOp() const { 134 // We cannot simply check the result type since comparison operations return 135 // an int. 136 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { 137 QualType LHSType = BinOp->getLHS()->getType(); 138 QualType RHSType = BinOp->getRHS()->getType(); 139 return LHSType->isFixedPointType() || RHSType->isFixedPointType(); 140 } 141 return false; 142 } 143 }; 144 145 static bool MustVisitNullValue(const Expr *E) { 146 // If a null pointer expression's type is the C++0x nullptr_t, then 147 // it's not necessarily a simple constant and it must be evaluated 148 // for its potential side effects. 149 return E->getType()->isNullPtrType(); 150 } 151 152 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 153 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 154 const Expr *E) { 155 const Expr *Base = E->IgnoreImpCasts(); 156 if (E == Base) 157 return llvm::None; 158 159 QualType BaseTy = Base->getType(); 160 if (!BaseTy->isPromotableIntegerType() || 161 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 162 return llvm::None; 163 164 return BaseTy; 165 } 166 167 /// Check if \p E is a widened promoted integer. 168 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 169 return getUnwidenedIntegerType(Ctx, E).hasValue(); 170 } 171 172 /// Check if we can skip the overflow check for \p Op. 173 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 174 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 175 "Expected a unary or binary operator"); 176 177 // If the binop has constant inputs and we can prove there is no overflow, 178 // we can elide the overflow check. 179 if (!Op.mayHaveIntegerOverflow()) 180 return true; 181 182 // If a unary op has a widened operand, the op cannot overflow. 183 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 184 return !UO->canOverflow(); 185 186 // We usually don't need overflow checks for binops with widened operands. 187 // Multiplication with promoted unsigned operands is a special case. 188 const auto *BO = cast<BinaryOperator>(Op.E); 189 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 190 if (!OptionalLHSTy) 191 return false; 192 193 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 194 if (!OptionalRHSTy) 195 return false; 196 197 QualType LHSTy = *OptionalLHSTy; 198 QualType RHSTy = *OptionalRHSTy; 199 200 // This is the simple case: binops without unsigned multiplication, and with 201 // widened operands. No overflow check is needed here. 202 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 203 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 204 return true; 205 206 // For unsigned multiplication the overflow check can be elided if either one 207 // of the unpromoted types are less than half the size of the promoted type. 208 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 209 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 210 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 211 } 212 213 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions. 214 static void updateFastMathFlags(llvm::FastMathFlags &FMF, 215 FPOptions FPFeatures) { 216 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 217 } 218 219 /// Propagate fast-math flags from \p Op to the instruction in \p V. 220 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) { 221 if (auto *I = dyn_cast<llvm::Instruction>(V)) { 222 llvm::FastMathFlags FMF = I->getFastMathFlags(); 223 updateFastMathFlags(FMF, Op.FPFeatures); 224 I->setFastMathFlags(FMF); 225 } 226 return V; 227 } 228 229 class ScalarExprEmitter 230 : public StmtVisitor<ScalarExprEmitter, Value*> { 231 CodeGenFunction &CGF; 232 CGBuilderTy &Builder; 233 bool IgnoreResultAssign; 234 llvm::LLVMContext &VMContext; 235 public: 236 237 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 238 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 239 VMContext(cgf.getLLVMContext()) { 240 } 241 242 //===--------------------------------------------------------------------===// 243 // Utilities 244 //===--------------------------------------------------------------------===// 245 246 bool TestAndClearIgnoreResultAssign() { 247 bool I = IgnoreResultAssign; 248 IgnoreResultAssign = false; 249 return I; 250 } 251 252 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 253 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 254 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 255 return CGF.EmitCheckedLValue(E, TCK); 256 } 257 258 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 259 const BinOpInfo &Info); 260 261 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 262 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 263 } 264 265 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 266 const AlignValueAttr *AVAttr = nullptr; 267 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 268 const ValueDecl *VD = DRE->getDecl(); 269 270 if (VD->getType()->isReferenceType()) { 271 if (const auto *TTy = 272 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 273 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 274 } else { 275 // Assumptions for function parameters are emitted at the start of the 276 // function, so there is no need to repeat that here, 277 // unless the alignment-assumption sanitizer is enabled, 278 // then we prefer the assumption over alignment attribute 279 // on IR function param. 280 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) 281 return; 282 283 AVAttr = VD->getAttr<AlignValueAttr>(); 284 } 285 } 286 287 if (!AVAttr) 288 if (const auto *TTy = 289 dyn_cast<TypedefType>(E->getType())) 290 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 291 292 if (!AVAttr) 293 return; 294 295 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 296 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 297 CGF.EmitAlignmentAssumption(V, E, AVAttr->getLocation(), 298 AlignmentCI->getZExtValue()); 299 } 300 301 /// EmitLoadOfLValue - Given an expression with complex type that represents a 302 /// value l-value, this method emits the address of the l-value, then loads 303 /// and returns the result. 304 Value *EmitLoadOfLValue(const Expr *E) { 305 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 306 E->getExprLoc()); 307 308 EmitLValueAlignmentAssumption(E, V); 309 return V; 310 } 311 312 /// EmitConversionToBool - Convert the specified expression value to a 313 /// boolean (i1) truth value. This is equivalent to "Val != 0". 314 Value *EmitConversionToBool(Value *Src, QualType DstTy); 315 316 /// Emit a check that a conversion from a floating-point type does not 317 /// overflow. 318 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 319 Value *Src, QualType SrcType, QualType DstType, 320 llvm::Type *DstTy, SourceLocation Loc); 321 322 /// Known implicit conversion check kinds. 323 /// Keep in sync with the enum of the same name in ubsan_handlers.h 324 enum ImplicitConversionCheckKind : unsigned char { 325 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 326 ICCK_UnsignedIntegerTruncation = 1, 327 ICCK_SignedIntegerTruncation = 2, 328 ICCK_IntegerSignChange = 3, 329 ICCK_SignedIntegerTruncationOrSignChange = 4, 330 }; 331 332 /// Emit a check that an [implicit] truncation of an integer does not 333 /// discard any bits. It is not UB, so we use the value after truncation. 334 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 335 QualType DstType, SourceLocation Loc); 336 337 /// Emit a check that an [implicit] conversion of an integer does not change 338 /// the sign of the value. It is not UB, so we use the value after conversion. 339 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 340 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 341 QualType DstType, SourceLocation Loc); 342 343 /// Emit a conversion from the specified type to the specified destination 344 /// type, both of which are LLVM scalar types. 345 struct ScalarConversionOpts { 346 bool TreatBooleanAsSigned; 347 bool EmitImplicitIntegerTruncationChecks; 348 bool EmitImplicitIntegerSignChangeChecks; 349 350 ScalarConversionOpts() 351 : TreatBooleanAsSigned(false), 352 EmitImplicitIntegerTruncationChecks(false), 353 EmitImplicitIntegerSignChangeChecks(false) {} 354 355 ScalarConversionOpts(clang::SanitizerSet SanOpts) 356 : TreatBooleanAsSigned(false), 357 EmitImplicitIntegerTruncationChecks( 358 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 359 EmitImplicitIntegerSignChangeChecks( 360 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 361 }; 362 Value * 363 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 364 SourceLocation Loc, 365 ScalarConversionOpts Opts = ScalarConversionOpts()); 366 367 /// Convert between either a fixed point and other fixed point or fixed point 368 /// and an integer. 369 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 370 SourceLocation Loc); 371 Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema, 372 FixedPointSemantics &DstFixedSema, 373 SourceLocation Loc, 374 bool DstIsInteger = false); 375 376 /// Emit a conversion from the specified complex type to the specified 377 /// destination type, where the destination type is an LLVM scalar type. 378 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 379 QualType SrcTy, QualType DstTy, 380 SourceLocation Loc); 381 382 /// EmitNullValue - Emit a value that corresponds to null for the given type. 383 Value *EmitNullValue(QualType Ty); 384 385 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 386 Value *EmitFloatToBoolConversion(Value *V) { 387 // Compare against 0.0 for fp scalars. 388 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 389 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 390 } 391 392 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 393 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 394 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 395 396 return Builder.CreateICmpNE(V, Zero, "tobool"); 397 } 398 399 Value *EmitIntToBoolConversion(Value *V) { 400 // Because of the type rules of C, we often end up computing a 401 // logical value, then zero extending it to int, then wanting it 402 // as a logical value again. Optimize this common case. 403 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 404 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 405 Value *Result = ZI->getOperand(0); 406 // If there aren't any more uses, zap the instruction to save space. 407 // Note that there can be more uses, for example if this 408 // is the result of an assignment. 409 if (ZI->use_empty()) 410 ZI->eraseFromParent(); 411 return Result; 412 } 413 } 414 415 return Builder.CreateIsNotNull(V, "tobool"); 416 } 417 418 //===--------------------------------------------------------------------===// 419 // Visitor Methods 420 //===--------------------------------------------------------------------===// 421 422 Value *Visit(Expr *E) { 423 ApplyDebugLocation DL(CGF, E); 424 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 425 } 426 427 Value *VisitStmt(Stmt *S) { 428 S->dump(CGF.getContext().getSourceManager()); 429 llvm_unreachable("Stmt can't have complex result type!"); 430 } 431 Value *VisitExpr(Expr *S); 432 433 Value *VisitConstantExpr(ConstantExpr *E) { 434 return Visit(E->getSubExpr()); 435 } 436 Value *VisitParenExpr(ParenExpr *PE) { 437 return Visit(PE->getSubExpr()); 438 } 439 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 440 return Visit(E->getReplacement()); 441 } 442 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 443 return Visit(GE->getResultExpr()); 444 } 445 Value *VisitCoawaitExpr(CoawaitExpr *S) { 446 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 447 } 448 Value *VisitCoyieldExpr(CoyieldExpr *S) { 449 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 450 } 451 Value *VisitUnaryCoawait(const UnaryOperator *E) { 452 return Visit(E->getSubExpr()); 453 } 454 455 // Leaves. 456 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 457 return Builder.getInt(E->getValue()); 458 } 459 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 460 return Builder.getInt(E->getValue()); 461 } 462 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 463 return llvm::ConstantFP::get(VMContext, E->getValue()); 464 } 465 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 466 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 467 } 468 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 469 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 470 } 471 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 472 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 473 } 474 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 475 return EmitNullValue(E->getType()); 476 } 477 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 478 return EmitNullValue(E->getType()); 479 } 480 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 481 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 482 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 483 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 484 return Builder.CreateBitCast(V, ConvertType(E->getType())); 485 } 486 487 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 488 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 489 } 490 491 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 492 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 493 } 494 495 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 496 if (E->isGLValue()) 497 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 498 E->getExprLoc()); 499 500 // Otherwise, assume the mapping is the scalar directly. 501 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 502 } 503 504 // l-values. 505 Value *VisitDeclRefExpr(DeclRefExpr *E) { 506 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 507 return CGF.emitScalarConstant(Constant, E); 508 return EmitLoadOfLValue(E); 509 } 510 511 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 512 return CGF.EmitObjCSelectorExpr(E); 513 } 514 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 515 return CGF.EmitObjCProtocolExpr(E); 516 } 517 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 518 return EmitLoadOfLValue(E); 519 } 520 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 521 if (E->getMethodDecl() && 522 E->getMethodDecl()->getReturnType()->isReferenceType()) 523 return EmitLoadOfLValue(E); 524 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 525 } 526 527 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 528 LValue LV = CGF.EmitObjCIsaExpr(E); 529 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 530 return V; 531 } 532 533 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 534 VersionTuple Version = E->getVersion(); 535 536 // If we're checking for a platform older than our minimum deployment 537 // target, we can fold the check away. 538 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 539 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 540 541 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 542 llvm::Value *Args[] = { 543 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), 544 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), 545 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), 546 }; 547 548 return CGF.EmitBuiltinAvailable(Args); 549 } 550 551 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 552 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 553 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 554 Value *VisitMemberExpr(MemberExpr *E); 555 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 556 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 557 return EmitLoadOfLValue(E); 558 } 559 560 Value *VisitInitListExpr(InitListExpr *E); 561 562 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 563 assert(CGF.getArrayInitIndex() && 564 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 565 return CGF.getArrayInitIndex(); 566 } 567 568 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 569 return EmitNullValue(E->getType()); 570 } 571 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 572 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 573 return VisitCastExpr(E); 574 } 575 Value *VisitCastExpr(CastExpr *E); 576 577 Value *VisitCallExpr(const CallExpr *E) { 578 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 579 return EmitLoadOfLValue(E); 580 581 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 582 583 EmitLValueAlignmentAssumption(E, V); 584 return V; 585 } 586 587 Value *VisitStmtExpr(const StmtExpr *E); 588 589 // Unary Operators. 590 Value *VisitUnaryPostDec(const UnaryOperator *E) { 591 LValue LV = EmitLValue(E->getSubExpr()); 592 return EmitScalarPrePostIncDec(E, LV, false, false); 593 } 594 Value *VisitUnaryPostInc(const UnaryOperator *E) { 595 LValue LV = EmitLValue(E->getSubExpr()); 596 return EmitScalarPrePostIncDec(E, LV, true, false); 597 } 598 Value *VisitUnaryPreDec(const UnaryOperator *E) { 599 LValue LV = EmitLValue(E->getSubExpr()); 600 return EmitScalarPrePostIncDec(E, LV, false, true); 601 } 602 Value *VisitUnaryPreInc(const UnaryOperator *E) { 603 LValue LV = EmitLValue(E->getSubExpr()); 604 return EmitScalarPrePostIncDec(E, LV, true, true); 605 } 606 607 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 608 llvm::Value *InVal, 609 bool IsInc); 610 611 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 612 bool isInc, bool isPre); 613 614 615 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 616 if (isa<MemberPointerType>(E->getType())) // never sugared 617 return CGF.CGM.getMemberPointerConstant(E); 618 619 return EmitLValue(E->getSubExpr()).getPointer(); 620 } 621 Value *VisitUnaryDeref(const UnaryOperator *E) { 622 if (E->getType()->isVoidType()) 623 return Visit(E->getSubExpr()); // the actual value should be unused 624 return EmitLoadOfLValue(E); 625 } 626 Value *VisitUnaryPlus(const UnaryOperator *E) { 627 // This differs from gcc, though, most likely due to a bug in gcc. 628 TestAndClearIgnoreResultAssign(); 629 return Visit(E->getSubExpr()); 630 } 631 Value *VisitUnaryMinus (const UnaryOperator *E); 632 Value *VisitUnaryNot (const UnaryOperator *E); 633 Value *VisitUnaryLNot (const UnaryOperator *E); 634 Value *VisitUnaryReal (const UnaryOperator *E); 635 Value *VisitUnaryImag (const UnaryOperator *E); 636 Value *VisitUnaryExtension(const UnaryOperator *E) { 637 return Visit(E->getSubExpr()); 638 } 639 640 // C++ 641 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 642 return EmitLoadOfLValue(E); 643 } 644 Value *VisitSourceLocExpr(SourceLocExpr *SLE) { 645 auto &Ctx = CGF.getContext(); 646 APValue Evaluated = 647 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr()); 648 return ConstantEmitter(CGF.CGM, &CGF) 649 .emitAbstract(SLE->getLocation(), Evaluated, SLE->getType()); 650 } 651 652 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 653 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 654 return Visit(DAE->getExpr()); 655 } 656 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 657 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 658 return Visit(DIE->getExpr()); 659 } 660 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 661 return CGF.LoadCXXThis(); 662 } 663 664 Value *VisitExprWithCleanups(ExprWithCleanups *E); 665 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 666 return CGF.EmitCXXNewExpr(E); 667 } 668 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 669 CGF.EmitCXXDeleteExpr(E); 670 return nullptr; 671 } 672 673 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 674 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 675 } 676 677 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 678 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 679 } 680 681 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 682 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 683 } 684 685 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 686 // C++ [expr.pseudo]p1: 687 // The result shall only be used as the operand for the function call 688 // operator (), and the result of such a call has type void. The only 689 // effect is the evaluation of the postfix-expression before the dot or 690 // arrow. 691 CGF.EmitScalarExpr(E->getBase()); 692 return nullptr; 693 } 694 695 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 696 return EmitNullValue(E->getType()); 697 } 698 699 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 700 CGF.EmitCXXThrowExpr(E); 701 return nullptr; 702 } 703 704 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 705 return Builder.getInt1(E->getValue()); 706 } 707 708 // Binary Operators. 709 Value *EmitMul(const BinOpInfo &Ops) { 710 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 711 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 712 case LangOptions::SOB_Defined: 713 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 714 case LangOptions::SOB_Undefined: 715 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 716 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 717 LLVM_FALLTHROUGH; 718 case LangOptions::SOB_Trapping: 719 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 720 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 721 return EmitOverflowCheckedBinOp(Ops); 722 } 723 } 724 725 if (Ops.Ty->isUnsignedIntegerType() && 726 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 727 !CanElideOverflowCheck(CGF.getContext(), Ops)) 728 return EmitOverflowCheckedBinOp(Ops); 729 730 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 731 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 732 return propagateFMFlags(V, Ops); 733 } 734 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 735 } 736 /// Create a binary op that checks for overflow. 737 /// Currently only supports +, - and *. 738 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 739 740 // Check for undefined division and modulus behaviors. 741 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 742 llvm::Value *Zero,bool isDiv); 743 // Common helper for getting how wide LHS of shift is. 744 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 745 Value *EmitDiv(const BinOpInfo &Ops); 746 Value *EmitRem(const BinOpInfo &Ops); 747 Value *EmitAdd(const BinOpInfo &Ops); 748 Value *EmitSub(const BinOpInfo &Ops); 749 Value *EmitShl(const BinOpInfo &Ops); 750 Value *EmitShr(const BinOpInfo &Ops); 751 Value *EmitAnd(const BinOpInfo &Ops) { 752 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 753 } 754 Value *EmitXor(const BinOpInfo &Ops) { 755 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 756 } 757 Value *EmitOr (const BinOpInfo &Ops) { 758 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 759 } 760 761 // Helper functions for fixed point binary operations. 762 Value *EmitFixedPointBinOp(const BinOpInfo &Ops); 763 764 BinOpInfo EmitBinOps(const BinaryOperator *E); 765 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 766 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 767 Value *&Result); 768 769 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 770 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 771 772 // Binary operators and binary compound assignment operators. 773 #define HANDLEBINOP(OP) \ 774 Value *VisitBin ## OP(const BinaryOperator *E) { \ 775 return Emit ## OP(EmitBinOps(E)); \ 776 } \ 777 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 778 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 779 } 780 HANDLEBINOP(Mul) 781 HANDLEBINOP(Div) 782 HANDLEBINOP(Rem) 783 HANDLEBINOP(Add) 784 HANDLEBINOP(Sub) 785 HANDLEBINOP(Shl) 786 HANDLEBINOP(Shr) 787 HANDLEBINOP(And) 788 HANDLEBINOP(Xor) 789 HANDLEBINOP(Or) 790 #undef HANDLEBINOP 791 792 // Comparisons. 793 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 794 llvm::CmpInst::Predicate SICmpOpc, 795 llvm::CmpInst::Predicate FCmpOpc); 796 #define VISITCOMP(CODE, UI, SI, FP) \ 797 Value *VisitBin##CODE(const BinaryOperator *E) { \ 798 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 799 llvm::FCmpInst::FP); } 800 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 801 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 802 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 803 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 804 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 805 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 806 #undef VISITCOMP 807 808 Value *VisitBinAssign (const BinaryOperator *E); 809 810 Value *VisitBinLAnd (const BinaryOperator *E); 811 Value *VisitBinLOr (const BinaryOperator *E); 812 Value *VisitBinComma (const BinaryOperator *E); 813 814 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 815 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 816 817 // Other Operators. 818 Value *VisitBlockExpr(const BlockExpr *BE); 819 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 820 Value *VisitChooseExpr(ChooseExpr *CE); 821 Value *VisitVAArgExpr(VAArgExpr *VE); 822 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 823 return CGF.EmitObjCStringLiteral(E); 824 } 825 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 826 return CGF.EmitObjCBoxedExpr(E); 827 } 828 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 829 return CGF.EmitObjCArrayLiteral(E); 830 } 831 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 832 return CGF.EmitObjCDictionaryLiteral(E); 833 } 834 Value *VisitAsTypeExpr(AsTypeExpr *CE); 835 Value *VisitAtomicExpr(AtomicExpr *AE); 836 }; 837 } // end anonymous namespace. 838 839 //===----------------------------------------------------------------------===// 840 // Utilities 841 //===----------------------------------------------------------------------===// 842 843 /// EmitConversionToBool - Convert the specified expression value to a 844 /// boolean (i1) truth value. This is equivalent to "Val != 0". 845 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 846 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 847 848 if (SrcType->isRealFloatingType()) 849 return EmitFloatToBoolConversion(Src); 850 851 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 852 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 853 854 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 855 "Unknown scalar type to convert"); 856 857 if (isa<llvm::IntegerType>(Src->getType())) 858 return EmitIntToBoolConversion(Src); 859 860 assert(isa<llvm::PointerType>(Src->getType())); 861 return EmitPointerToBoolConversion(Src, SrcType); 862 } 863 864 void ScalarExprEmitter::EmitFloatConversionCheck( 865 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 866 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 867 assert(SrcType->isFloatingType() && "not a conversion from floating point"); 868 if (!isa<llvm::IntegerType>(DstTy)) 869 return; 870 871 CodeGenFunction::SanitizerScope SanScope(&CGF); 872 using llvm::APFloat; 873 using llvm::APSInt; 874 875 llvm::Value *Check = nullptr; 876 const llvm::fltSemantics &SrcSema = 877 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 878 879 // Floating-point to integer. This has undefined behavior if the source is 880 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 881 // to an integer). 882 unsigned Width = CGF.getContext().getIntWidth(DstType); 883 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 884 885 APSInt Min = APSInt::getMinValue(Width, Unsigned); 886 APFloat MinSrc(SrcSema, APFloat::uninitialized); 887 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 888 APFloat::opOverflow) 889 // Don't need an overflow check for lower bound. Just check for 890 // -Inf/NaN. 891 MinSrc = APFloat::getInf(SrcSema, true); 892 else 893 // Find the largest value which is too small to represent (before 894 // truncation toward zero). 895 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 896 897 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 898 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 899 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 900 APFloat::opOverflow) 901 // Don't need an overflow check for upper bound. Just check for 902 // +Inf/NaN. 903 MaxSrc = APFloat::getInf(SrcSema, false); 904 else 905 // Find the smallest value which is too large to represent (before 906 // truncation toward zero). 907 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 908 909 // If we're converting from __half, convert the range to float to match 910 // the type of src. 911 if (OrigSrcType->isHalfType()) { 912 const llvm::fltSemantics &Sema = 913 CGF.getContext().getFloatTypeSemantics(SrcType); 914 bool IsInexact; 915 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 916 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 917 } 918 919 llvm::Value *GE = 920 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 921 llvm::Value *LE = 922 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 923 Check = Builder.CreateAnd(GE, LE); 924 925 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 926 CGF.EmitCheckTypeDescriptor(OrigSrcType), 927 CGF.EmitCheckTypeDescriptor(DstType)}; 928 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 929 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 930 } 931 932 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 933 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 934 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 935 std::pair<llvm::Value *, SanitizerMask>> 936 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 937 QualType DstType, CGBuilderTy &Builder) { 938 llvm::Type *SrcTy = Src->getType(); 939 llvm::Type *DstTy = Dst->getType(); 940 (void)DstTy; // Only used in assert() 941 942 // This should be truncation of integral types. 943 assert(Src != Dst); 944 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 945 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 946 "non-integer llvm type"); 947 948 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 949 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 950 951 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 952 // Else, it is a signed truncation. 953 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 954 SanitizerMask Mask; 955 if (!SrcSigned && !DstSigned) { 956 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 957 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 958 } else { 959 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 960 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 961 } 962 963 llvm::Value *Check = nullptr; 964 // 1. Extend the truncated value back to the same width as the Src. 965 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 966 // 2. Equality-compare with the original source value 967 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 968 // If the comparison result is 'i1 false', then the truncation was lossy. 969 return std::make_pair(Kind, std::make_pair(Check, Mask)); 970 } 971 972 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 973 Value *Dst, QualType DstType, 974 SourceLocation Loc) { 975 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 976 return; 977 978 // We only care about int->int conversions here. 979 // We ignore conversions to/from pointer and/or bool. 980 if (!(SrcType->isIntegerType() && DstType->isIntegerType())) 981 return; 982 983 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 984 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 985 // This must be truncation. Else we do not care. 986 if (SrcBits <= DstBits) 987 return; 988 989 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 990 991 // If the integer sign change sanitizer is enabled, 992 // and we are truncating from larger unsigned type to smaller signed type, 993 // let that next sanitizer deal with it. 994 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 995 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 996 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 997 (!SrcSigned && DstSigned)) 998 return; 999 1000 CodeGenFunction::SanitizerScope SanScope(&CGF); 1001 1002 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1003 std::pair<llvm::Value *, SanitizerMask>> 1004 Check = 1005 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1006 // If the comparison result is 'i1 false', then the truncation was lossy. 1007 1008 // Do we care about this type of truncation? 1009 if (!CGF.SanOpts.has(Check.second.second)) 1010 return; 1011 1012 llvm::Constant *StaticArgs[] = { 1013 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1014 CGF.EmitCheckTypeDescriptor(DstType), 1015 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1016 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1017 {Src, Dst}); 1018 } 1019 1020 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1021 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1022 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1023 std::pair<llvm::Value *, SanitizerMask>> 1024 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1025 QualType DstType, CGBuilderTy &Builder) { 1026 llvm::Type *SrcTy = Src->getType(); 1027 llvm::Type *DstTy = Dst->getType(); 1028 1029 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1030 "non-integer llvm type"); 1031 1032 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1033 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1034 (void)SrcSigned; // Only used in assert() 1035 (void)DstSigned; // Only used in assert() 1036 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1037 unsigned DstBits = DstTy->getScalarSizeInBits(); 1038 (void)SrcBits; // Only used in assert() 1039 (void)DstBits; // Only used in assert() 1040 1041 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1042 "either the widths should be different, or the signednesses."); 1043 1044 // NOTE: zero value is considered to be non-negative. 1045 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1046 const char *Name) -> Value * { 1047 // Is this value a signed type? 1048 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1049 llvm::Type *VTy = V->getType(); 1050 if (!VSigned) { 1051 // If the value is unsigned, then it is never negative. 1052 // FIXME: can we encounter non-scalar VTy here? 1053 return llvm::ConstantInt::getFalse(VTy->getContext()); 1054 } 1055 // Get the zero of the same type with which we will be comparing. 1056 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1057 // %V.isnegative = icmp slt %V, 0 1058 // I.e is %V *strictly* less than zero, does it have negative value? 1059 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1060 llvm::Twine(Name) + "." + V->getName() + 1061 ".negativitycheck"); 1062 }; 1063 1064 // 1. Was the old Value negative? 1065 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1066 // 2. Is the new Value negative? 1067 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1068 // 3. Now, was the 'negativity status' preserved during the conversion? 1069 // NOTE: conversion from negative to zero is considered to change the sign. 1070 // (We want to get 'false' when the conversion changed the sign) 1071 // So we should just equality-compare the negativity statuses. 1072 llvm::Value *Check = nullptr; 1073 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1074 // If the comparison result is 'false', then the conversion changed the sign. 1075 return std::make_pair( 1076 ScalarExprEmitter::ICCK_IntegerSignChange, 1077 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1078 } 1079 1080 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1081 Value *Dst, QualType DstType, 1082 SourceLocation Loc) { 1083 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1084 return; 1085 1086 llvm::Type *SrcTy = Src->getType(); 1087 llvm::Type *DstTy = Dst->getType(); 1088 1089 // We only care about int->int conversions here. 1090 // We ignore conversions to/from pointer and/or bool. 1091 if (!(SrcType->isIntegerType() && DstType->isIntegerType())) 1092 return; 1093 1094 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1095 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1096 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1097 unsigned DstBits = DstTy->getScalarSizeInBits(); 1098 1099 // Now, we do not need to emit the check in *all* of the cases. 1100 // We can avoid emitting it in some obvious cases where it would have been 1101 // dropped by the opt passes (instcombine) always anyways. 1102 // If it's a cast between effectively the same type, no check. 1103 // NOTE: this is *not* equivalent to checking the canonical types. 1104 if (SrcSigned == DstSigned && SrcBits == DstBits) 1105 return; 1106 // At least one of the values needs to have signed type. 1107 // If both are unsigned, then obviously, neither of them can be negative. 1108 if (!SrcSigned && !DstSigned) 1109 return; 1110 // If the conversion is to *larger* *signed* type, then no check is needed. 1111 // Because either sign-extension happens (so the sign will remain), 1112 // or zero-extension will happen (the sign bit will be zero.) 1113 if ((DstBits > SrcBits) && DstSigned) 1114 return; 1115 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1116 (SrcBits > DstBits) && SrcSigned) { 1117 // If the signed integer truncation sanitizer is enabled, 1118 // and this is a truncation from signed type, then no check is needed. 1119 // Because here sign change check is interchangeable with truncation check. 1120 return; 1121 } 1122 // That's it. We can't rule out any more cases with the data we have. 1123 1124 CodeGenFunction::SanitizerScope SanScope(&CGF); 1125 1126 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1127 std::pair<llvm::Value *, SanitizerMask>> 1128 Check; 1129 1130 // Each of these checks needs to return 'false' when an issue was detected. 1131 ImplicitConversionCheckKind CheckKind; 1132 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1133 // So we can 'and' all the checks together, and still get 'false', 1134 // if at least one of the checks detected an issue. 1135 1136 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1137 CheckKind = Check.first; 1138 Checks.emplace_back(Check.second); 1139 1140 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1141 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1142 // If the signed integer truncation sanitizer was enabled, 1143 // and we are truncating from larger unsigned type to smaller signed type, 1144 // let's handle the case we skipped in that check. 1145 Check = 1146 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1147 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1148 Checks.emplace_back(Check.second); 1149 // If the comparison result is 'i1 false', then the truncation was lossy. 1150 } 1151 1152 llvm::Constant *StaticArgs[] = { 1153 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1154 CGF.EmitCheckTypeDescriptor(DstType), 1155 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1156 // EmitCheck() will 'and' all the checks together. 1157 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1158 {Src, Dst}); 1159 } 1160 1161 /// Emit a conversion from the specified type to the specified destination type, 1162 /// both of which are LLVM scalar types. 1163 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1164 QualType DstType, 1165 SourceLocation Loc, 1166 ScalarConversionOpts Opts) { 1167 // All conversions involving fixed point types should be handled by the 1168 // EmitFixedPoint family functions. This is done to prevent bloating up this 1169 // function more, and although fixed point numbers are represented by 1170 // integers, we do not want to follow any logic that assumes they should be 1171 // treated as integers. 1172 // TODO(leonardchan): When necessary, add another if statement checking for 1173 // conversions to fixed point types from other types. 1174 if (SrcType->isFixedPointType()) { 1175 if (DstType->isBooleanType()) 1176 // It is important that we check this before checking if the dest type is 1177 // an integer because booleans are technically integer types. 1178 // We do not need to check the padding bit on unsigned types if unsigned 1179 // padding is enabled because overflow into this bit is undefined 1180 // behavior. 1181 return Builder.CreateIsNotNull(Src, "tobool"); 1182 if (DstType->isFixedPointType() || DstType->isIntegerType()) 1183 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1184 1185 llvm_unreachable( 1186 "Unhandled scalar conversion from a fixed point type to another type."); 1187 } else if (DstType->isFixedPointType()) { 1188 if (SrcType->isIntegerType()) 1189 // This also includes converting booleans and enums to fixed point types. 1190 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1191 1192 llvm_unreachable( 1193 "Unhandled scalar conversion to a fixed point type from another type."); 1194 } 1195 1196 QualType NoncanonicalSrcType = SrcType; 1197 QualType NoncanonicalDstType = DstType; 1198 1199 SrcType = CGF.getContext().getCanonicalType(SrcType); 1200 DstType = CGF.getContext().getCanonicalType(DstType); 1201 if (SrcType == DstType) return Src; 1202 1203 if (DstType->isVoidType()) return nullptr; 1204 1205 llvm::Value *OrigSrc = Src; 1206 QualType OrigSrcType = SrcType; 1207 llvm::Type *SrcTy = Src->getType(); 1208 1209 // Handle conversions to bool first, they are special: comparisons against 0. 1210 if (DstType->isBooleanType()) 1211 return EmitConversionToBool(Src, SrcType); 1212 1213 llvm::Type *DstTy = ConvertType(DstType); 1214 1215 // Cast from half through float if half isn't a native type. 1216 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1217 // Cast to FP using the intrinsic if the half type itself isn't supported. 1218 if (DstTy->isFloatingPointTy()) { 1219 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1220 return Builder.CreateCall( 1221 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1222 Src); 1223 } else { 1224 // Cast to other types through float, using either the intrinsic or FPExt, 1225 // depending on whether the half type itself is supported 1226 // (as opposed to operations on half, available with NativeHalfType). 1227 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1228 Src = Builder.CreateCall( 1229 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1230 CGF.CGM.FloatTy), 1231 Src); 1232 } else { 1233 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1234 } 1235 SrcType = CGF.getContext().FloatTy; 1236 SrcTy = CGF.FloatTy; 1237 } 1238 } 1239 1240 // Ignore conversions like int -> uint. 1241 if (SrcTy == DstTy) { 1242 if (Opts.EmitImplicitIntegerSignChangeChecks) 1243 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1244 NoncanonicalDstType, Loc); 1245 1246 return Src; 1247 } 1248 1249 // Handle pointer conversions next: pointers can only be converted to/from 1250 // other pointers and integers. Check for pointer types in terms of LLVM, as 1251 // some native types (like Obj-C id) may map to a pointer type. 1252 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1253 // The source value may be an integer, or a pointer. 1254 if (isa<llvm::PointerType>(SrcTy)) 1255 return Builder.CreateBitCast(Src, DstTy, "conv"); 1256 1257 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1258 // First, convert to the correct width so that we control the kind of 1259 // extension. 1260 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1261 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1262 llvm::Value* IntResult = 1263 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1264 // Then, cast to pointer. 1265 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1266 } 1267 1268 if (isa<llvm::PointerType>(SrcTy)) { 1269 // Must be an ptr to int cast. 1270 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1271 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1272 } 1273 1274 // A scalar can be splatted to an extended vector of the same element type 1275 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1276 // Sema should add casts to make sure that the source expression's type is 1277 // the same as the vector's element type (sans qualifiers) 1278 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1279 SrcType.getTypePtr() && 1280 "Splatted expr doesn't match with vector element type?"); 1281 1282 // Splat the element across to all elements 1283 unsigned NumElements = DstTy->getVectorNumElements(); 1284 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1285 } 1286 1287 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1288 // Allow bitcast from vector to integer/fp of the same size. 1289 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1290 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1291 if (SrcSize == DstSize) 1292 return Builder.CreateBitCast(Src, DstTy, "conv"); 1293 1294 // Conversions between vectors of different sizes are not allowed except 1295 // when vectors of half are involved. Operations on storage-only half 1296 // vectors require promoting half vector operands to float vectors and 1297 // truncating the result, which is either an int or float vector, to a 1298 // short or half vector. 1299 1300 // Source and destination are both expected to be vectors. 1301 llvm::Type *SrcElementTy = SrcTy->getVectorElementType(); 1302 llvm::Type *DstElementTy = DstTy->getVectorElementType(); 1303 (void)DstElementTy; 1304 1305 assert(((SrcElementTy->isIntegerTy() && 1306 DstElementTy->isIntegerTy()) || 1307 (SrcElementTy->isFloatingPointTy() && 1308 DstElementTy->isFloatingPointTy())) && 1309 "unexpected conversion between a floating-point vector and an " 1310 "integer vector"); 1311 1312 // Truncate an i32 vector to an i16 vector. 1313 if (SrcElementTy->isIntegerTy()) 1314 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1315 1316 // Truncate a float vector to a half vector. 1317 if (SrcSize > DstSize) 1318 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1319 1320 // Promote a half vector to a float vector. 1321 return Builder.CreateFPExt(Src, DstTy, "conv"); 1322 } 1323 1324 // Finally, we have the arithmetic types: real int/float. 1325 Value *Res = nullptr; 1326 llvm::Type *ResTy = DstTy; 1327 1328 // An overflowing conversion has undefined behavior if either the source type 1329 // or the destination type is a floating-point type. However, we consider the 1330 // range of representable values for all floating-point types to be 1331 // [-inf,+inf], so no overflow can ever happen when the destination type is a 1332 // floating-point type. 1333 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1334 OrigSrcType->isFloatingType()) 1335 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1336 Loc); 1337 1338 // Cast to half through float if half isn't a native type. 1339 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1340 // Make sure we cast in a single step if from another FP type. 1341 if (SrcTy->isFloatingPointTy()) { 1342 // Use the intrinsic if the half type itself isn't supported 1343 // (as opposed to operations on half, available with NativeHalfType). 1344 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1345 return Builder.CreateCall( 1346 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1347 // If the half type is supported, just use an fptrunc. 1348 return Builder.CreateFPTrunc(Src, DstTy); 1349 } 1350 DstTy = CGF.FloatTy; 1351 } 1352 1353 if (isa<llvm::IntegerType>(SrcTy)) { 1354 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1355 if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1356 InputSigned = true; 1357 } 1358 if (isa<llvm::IntegerType>(DstTy)) 1359 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1360 else if (InputSigned) 1361 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1362 else 1363 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1364 } else if (isa<llvm::IntegerType>(DstTy)) { 1365 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1366 if (DstType->isSignedIntegerOrEnumerationType()) 1367 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1368 else 1369 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1370 } else { 1371 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1372 "Unknown real conversion"); 1373 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1374 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1375 else 1376 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1377 } 1378 1379 if (DstTy != ResTy) { 1380 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1381 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1382 Res = Builder.CreateCall( 1383 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1384 Res); 1385 } else { 1386 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1387 } 1388 } 1389 1390 if (Opts.EmitImplicitIntegerTruncationChecks) 1391 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1392 NoncanonicalDstType, Loc); 1393 1394 if (Opts.EmitImplicitIntegerSignChangeChecks) 1395 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1396 NoncanonicalDstType, Loc); 1397 1398 return Res; 1399 } 1400 1401 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1402 QualType DstTy, 1403 SourceLocation Loc) { 1404 FixedPointSemantics SrcFPSema = 1405 CGF.getContext().getFixedPointSemantics(SrcTy); 1406 FixedPointSemantics DstFPSema = 1407 CGF.getContext().getFixedPointSemantics(DstTy); 1408 return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc, 1409 DstTy->isIntegerType()); 1410 } 1411 1412 Value *ScalarExprEmitter::EmitFixedPointConversion( 1413 Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema, 1414 SourceLocation Loc, bool DstIsInteger) { 1415 using llvm::APInt; 1416 using llvm::ConstantInt; 1417 using llvm::Value; 1418 1419 unsigned SrcWidth = SrcFPSema.getWidth(); 1420 unsigned DstWidth = DstFPSema.getWidth(); 1421 unsigned SrcScale = SrcFPSema.getScale(); 1422 unsigned DstScale = DstFPSema.getScale(); 1423 bool SrcIsSigned = SrcFPSema.isSigned(); 1424 bool DstIsSigned = DstFPSema.isSigned(); 1425 1426 llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth); 1427 1428 Value *Result = Src; 1429 unsigned ResultWidth = SrcWidth; 1430 1431 // Downscale. 1432 if (DstScale < SrcScale) { 1433 // When converting to integers, we round towards zero. For negative numbers, 1434 // right shifting rounds towards negative infinity. In this case, we can 1435 // just round up before shifting. 1436 if (DstIsInteger && SrcIsSigned) { 1437 Value *Zero = llvm::Constant::getNullValue(Result->getType()); 1438 Value *IsNegative = Builder.CreateICmpSLT(Result, Zero); 1439 Value *LowBits = ConstantInt::get( 1440 CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale)); 1441 Value *Rounded = Builder.CreateAdd(Result, LowBits); 1442 Result = Builder.CreateSelect(IsNegative, Rounded, Result); 1443 } 1444 1445 Result = SrcIsSigned 1446 ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") 1447 : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale"); 1448 } 1449 1450 if (!DstFPSema.isSaturated()) { 1451 // Resize. 1452 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1453 1454 // Upscale. 1455 if (DstScale > SrcScale) 1456 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1457 } else { 1458 // Adjust the number of fractional bits. 1459 if (DstScale > SrcScale) { 1460 // Compare to DstWidth to prevent resizing twice. 1461 ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth); 1462 llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth); 1463 Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize"); 1464 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1465 } 1466 1467 // Handle saturation. 1468 bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits(); 1469 if (LessIntBits) { 1470 Value *Max = ConstantInt::get( 1471 CGF.getLLVMContext(), 1472 APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1473 Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max) 1474 : Builder.CreateICmpUGT(Result, Max); 1475 Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax"); 1476 } 1477 // Cannot overflow min to dest type if src is unsigned since all fixed 1478 // point types can cover the unsigned min of 0. 1479 if (SrcIsSigned && (LessIntBits || !DstIsSigned)) { 1480 Value *Min = ConstantInt::get( 1481 CGF.getLLVMContext(), 1482 APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1483 Value *TooLow = Builder.CreateICmpSLT(Result, Min); 1484 Result = Builder.CreateSelect(TooLow, Min, Result, "satmin"); 1485 } 1486 1487 // Resize the integer part to get the final destination size. 1488 if (ResultWidth != DstWidth) 1489 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1490 } 1491 return Result; 1492 } 1493 1494 /// Emit a conversion from the specified complex type to the specified 1495 /// destination type, where the destination type is an LLVM scalar type. 1496 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1497 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1498 SourceLocation Loc) { 1499 // Get the source element type. 1500 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1501 1502 // Handle conversions to bool first, they are special: comparisons against 0. 1503 if (DstTy->isBooleanType()) { 1504 // Complex != 0 -> (Real != 0) | (Imag != 0) 1505 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1506 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1507 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1508 } 1509 1510 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1511 // the imaginary part of the complex value is discarded and the value of the 1512 // real part is converted according to the conversion rules for the 1513 // corresponding real type. 1514 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1515 } 1516 1517 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1518 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1519 } 1520 1521 /// Emit a sanitization check for the given "binary" operation (which 1522 /// might actually be a unary increment which has been lowered to a binary 1523 /// operation). The check passes if all values in \p Checks (which are \c i1), 1524 /// are \c true. 1525 void ScalarExprEmitter::EmitBinOpCheck( 1526 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1527 assert(CGF.IsSanitizerScope); 1528 SanitizerHandler Check; 1529 SmallVector<llvm::Constant *, 4> StaticData; 1530 SmallVector<llvm::Value *, 2> DynamicData; 1531 1532 BinaryOperatorKind Opcode = Info.Opcode; 1533 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1534 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1535 1536 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1537 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1538 if (UO && UO->getOpcode() == UO_Minus) { 1539 Check = SanitizerHandler::NegateOverflow; 1540 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1541 DynamicData.push_back(Info.RHS); 1542 } else { 1543 if (BinaryOperator::isShiftOp(Opcode)) { 1544 // Shift LHS negative or too large, or RHS out of bounds. 1545 Check = SanitizerHandler::ShiftOutOfBounds; 1546 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1547 StaticData.push_back( 1548 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1549 StaticData.push_back( 1550 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1551 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1552 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1553 Check = SanitizerHandler::DivremOverflow; 1554 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1555 } else { 1556 // Arithmetic overflow (+, -, *). 1557 switch (Opcode) { 1558 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1559 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1560 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1561 default: llvm_unreachable("unexpected opcode for bin op check"); 1562 } 1563 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1564 } 1565 DynamicData.push_back(Info.LHS); 1566 DynamicData.push_back(Info.RHS); 1567 } 1568 1569 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1570 } 1571 1572 //===----------------------------------------------------------------------===// 1573 // Visitor Methods 1574 //===----------------------------------------------------------------------===// 1575 1576 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1577 CGF.ErrorUnsupported(E, "scalar expression"); 1578 if (E->getType()->isVoidType()) 1579 return nullptr; 1580 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1581 } 1582 1583 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1584 // Vector Mask Case 1585 if (E->getNumSubExprs() == 2) { 1586 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1587 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1588 Value *Mask; 1589 1590 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 1591 unsigned LHSElts = LTy->getNumElements(); 1592 1593 Mask = RHS; 1594 1595 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1596 1597 // Mask off the high bits of each shuffle index. 1598 Value *MaskBits = 1599 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1600 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1601 1602 // newv = undef 1603 // mask = mask & maskbits 1604 // for each elt 1605 // n = extract mask i 1606 // x = extract val n 1607 // newv = insert newv, x, i 1608 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1609 MTy->getNumElements()); 1610 Value* NewV = llvm::UndefValue::get(RTy); 1611 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1612 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1613 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1614 1615 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1616 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1617 } 1618 return NewV; 1619 } 1620 1621 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1622 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1623 1624 SmallVector<llvm::Constant*, 32> indices; 1625 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1626 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1627 // Check for -1 and output it as undef in the IR. 1628 if (Idx.isSigned() && Idx.isAllOnesValue()) 1629 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1630 else 1631 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1632 } 1633 1634 Value *SV = llvm::ConstantVector::get(indices); 1635 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1636 } 1637 1638 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1639 QualType SrcType = E->getSrcExpr()->getType(), 1640 DstType = E->getType(); 1641 1642 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1643 1644 SrcType = CGF.getContext().getCanonicalType(SrcType); 1645 DstType = CGF.getContext().getCanonicalType(DstType); 1646 if (SrcType == DstType) return Src; 1647 1648 assert(SrcType->isVectorType() && 1649 "ConvertVector source type must be a vector"); 1650 assert(DstType->isVectorType() && 1651 "ConvertVector destination type must be a vector"); 1652 1653 llvm::Type *SrcTy = Src->getType(); 1654 llvm::Type *DstTy = ConvertType(DstType); 1655 1656 // Ignore conversions like int -> uint. 1657 if (SrcTy == DstTy) 1658 return Src; 1659 1660 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(), 1661 DstEltType = DstType->castAs<VectorType>()->getElementType(); 1662 1663 assert(SrcTy->isVectorTy() && 1664 "ConvertVector source IR type must be a vector"); 1665 assert(DstTy->isVectorTy() && 1666 "ConvertVector destination IR type must be a vector"); 1667 1668 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1669 *DstEltTy = DstTy->getVectorElementType(); 1670 1671 if (DstEltType->isBooleanType()) { 1672 assert((SrcEltTy->isFloatingPointTy() || 1673 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1674 1675 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1676 if (SrcEltTy->isFloatingPointTy()) { 1677 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1678 } else { 1679 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1680 } 1681 } 1682 1683 // We have the arithmetic types: real int/float. 1684 Value *Res = nullptr; 1685 1686 if (isa<llvm::IntegerType>(SrcEltTy)) { 1687 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1688 if (isa<llvm::IntegerType>(DstEltTy)) 1689 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1690 else if (InputSigned) 1691 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1692 else 1693 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1694 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1695 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1696 if (DstEltType->isSignedIntegerOrEnumerationType()) 1697 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1698 else 1699 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1700 } else { 1701 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1702 "Unknown real conversion"); 1703 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1704 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1705 else 1706 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1707 } 1708 1709 return Res; 1710 } 1711 1712 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1713 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1714 CGF.EmitIgnoredExpr(E->getBase()); 1715 return CGF.emitScalarConstant(Constant, E); 1716 } else { 1717 Expr::EvalResult Result; 1718 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1719 llvm::APSInt Value = Result.Val.getInt(); 1720 CGF.EmitIgnoredExpr(E->getBase()); 1721 return Builder.getInt(Value); 1722 } 1723 } 1724 1725 return EmitLoadOfLValue(E); 1726 } 1727 1728 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1729 TestAndClearIgnoreResultAssign(); 1730 1731 // Emit subscript expressions in rvalue context's. For most cases, this just 1732 // loads the lvalue formed by the subscript expr. However, we have to be 1733 // careful, because the base of a vector subscript is occasionally an rvalue, 1734 // so we can't get it as an lvalue. 1735 if (!E->getBase()->getType()->isVectorType()) 1736 return EmitLoadOfLValue(E); 1737 1738 // Handle the vector case. The base must be a vector, the index must be an 1739 // integer value. 1740 Value *Base = Visit(E->getBase()); 1741 Value *Idx = Visit(E->getIdx()); 1742 QualType IdxTy = E->getIdx()->getType(); 1743 1744 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1745 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1746 1747 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1748 } 1749 1750 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1751 unsigned Off, llvm::Type *I32Ty) { 1752 int MV = SVI->getMaskValue(Idx); 1753 if (MV == -1) 1754 return llvm::UndefValue::get(I32Ty); 1755 return llvm::ConstantInt::get(I32Ty, Off+MV); 1756 } 1757 1758 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1759 if (C->getBitWidth() != 32) { 1760 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1761 C->getZExtValue()) && 1762 "Index operand too large for shufflevector mask!"); 1763 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1764 } 1765 return C; 1766 } 1767 1768 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1769 bool Ignore = TestAndClearIgnoreResultAssign(); 1770 (void)Ignore; 1771 assert (Ignore == false && "init list ignored"); 1772 unsigned NumInitElements = E->getNumInits(); 1773 1774 if (E->hadArrayRangeDesignator()) 1775 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1776 1777 llvm::VectorType *VType = 1778 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1779 1780 if (!VType) { 1781 if (NumInitElements == 0) { 1782 // C++11 value-initialization for the scalar. 1783 return EmitNullValue(E->getType()); 1784 } 1785 // We have a scalar in braces. Just use the first element. 1786 return Visit(E->getInit(0)); 1787 } 1788 1789 unsigned ResElts = VType->getNumElements(); 1790 1791 // Loop over initializers collecting the Value for each, and remembering 1792 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1793 // us to fold the shuffle for the swizzle into the shuffle for the vector 1794 // initializer, since LLVM optimizers generally do not want to touch 1795 // shuffles. 1796 unsigned CurIdx = 0; 1797 bool VIsUndefShuffle = false; 1798 llvm::Value *V = llvm::UndefValue::get(VType); 1799 for (unsigned i = 0; i != NumInitElements; ++i) { 1800 Expr *IE = E->getInit(i); 1801 Value *Init = Visit(IE); 1802 SmallVector<llvm::Constant*, 16> Args; 1803 1804 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1805 1806 // Handle scalar elements. If the scalar initializer is actually one 1807 // element of a different vector of the same width, use shuffle instead of 1808 // extract+insert. 1809 if (!VVT) { 1810 if (isa<ExtVectorElementExpr>(IE)) { 1811 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1812 1813 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1814 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1815 Value *LHS = nullptr, *RHS = nullptr; 1816 if (CurIdx == 0) { 1817 // insert into undef -> shuffle (src, undef) 1818 // shufflemask must use an i32 1819 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1820 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1821 1822 LHS = EI->getVectorOperand(); 1823 RHS = V; 1824 VIsUndefShuffle = true; 1825 } else if (VIsUndefShuffle) { 1826 // insert into undefshuffle && size match -> shuffle (v, src) 1827 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1828 for (unsigned j = 0; j != CurIdx; ++j) 1829 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1830 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1831 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1832 1833 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1834 RHS = EI->getVectorOperand(); 1835 VIsUndefShuffle = false; 1836 } 1837 if (!Args.empty()) { 1838 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1839 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1840 ++CurIdx; 1841 continue; 1842 } 1843 } 1844 } 1845 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1846 "vecinit"); 1847 VIsUndefShuffle = false; 1848 ++CurIdx; 1849 continue; 1850 } 1851 1852 unsigned InitElts = VVT->getNumElements(); 1853 1854 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1855 // input is the same width as the vector being constructed, generate an 1856 // optimized shuffle of the swizzle input into the result. 1857 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1858 if (isa<ExtVectorElementExpr>(IE)) { 1859 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1860 Value *SVOp = SVI->getOperand(0); 1861 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1862 1863 if (OpTy->getNumElements() == ResElts) { 1864 for (unsigned j = 0; j != CurIdx; ++j) { 1865 // If the current vector initializer is a shuffle with undef, merge 1866 // this shuffle directly into it. 1867 if (VIsUndefShuffle) { 1868 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1869 CGF.Int32Ty)); 1870 } else { 1871 Args.push_back(Builder.getInt32(j)); 1872 } 1873 } 1874 for (unsigned j = 0, je = InitElts; j != je; ++j) 1875 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1876 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1877 1878 if (VIsUndefShuffle) 1879 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1880 1881 Init = SVOp; 1882 } 1883 } 1884 1885 // Extend init to result vector length, and then shuffle its contribution 1886 // to the vector initializer into V. 1887 if (Args.empty()) { 1888 for (unsigned j = 0; j != InitElts; ++j) 1889 Args.push_back(Builder.getInt32(j)); 1890 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1891 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1892 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1893 Mask, "vext"); 1894 1895 Args.clear(); 1896 for (unsigned j = 0; j != CurIdx; ++j) 1897 Args.push_back(Builder.getInt32(j)); 1898 for (unsigned j = 0; j != InitElts; ++j) 1899 Args.push_back(Builder.getInt32(j+Offset)); 1900 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1901 } 1902 1903 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1904 // merging subsequent shuffles into this one. 1905 if (CurIdx == 0) 1906 std::swap(V, Init); 1907 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1908 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1909 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1910 CurIdx += InitElts; 1911 } 1912 1913 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1914 // Emit remaining default initializers. 1915 llvm::Type *EltTy = VType->getElementType(); 1916 1917 // Emit remaining default initializers 1918 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1919 Value *Idx = Builder.getInt32(CurIdx); 1920 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1921 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1922 } 1923 return V; 1924 } 1925 1926 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1927 const Expr *E = CE->getSubExpr(); 1928 1929 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1930 return false; 1931 1932 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1933 // We always assume that 'this' is never null. 1934 return false; 1935 } 1936 1937 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1938 // And that glvalue casts are never null. 1939 if (ICE->getValueKind() != VK_RValue) 1940 return false; 1941 } 1942 1943 return true; 1944 } 1945 1946 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1947 // have to handle a more broad range of conversions than explicit casts, as they 1948 // handle things like function to ptr-to-function decay etc. 1949 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1950 Expr *E = CE->getSubExpr(); 1951 QualType DestTy = CE->getType(); 1952 CastKind Kind = CE->getCastKind(); 1953 1954 // These cases are generally not written to ignore the result of 1955 // evaluating their sub-expressions, so we clear this now. 1956 bool Ignored = TestAndClearIgnoreResultAssign(); 1957 1958 // Since almost all cast kinds apply to scalars, this switch doesn't have 1959 // a default case, so the compiler will warn on a missing case. The cases 1960 // are in the same order as in the CastKind enum. 1961 switch (Kind) { 1962 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1963 case CK_BuiltinFnToFnPtr: 1964 llvm_unreachable("builtin functions are handled elsewhere"); 1965 1966 case CK_LValueBitCast: 1967 case CK_ObjCObjectLValueCast: { 1968 Address Addr = EmitLValue(E).getAddress(); 1969 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1970 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1971 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1972 } 1973 1974 case CK_LValueToRValueBitCast: { 1975 LValue SourceLVal = CGF.EmitLValue(E); 1976 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(), 1977 CGF.ConvertTypeForMem(DestTy)); 1978 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 1979 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 1980 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 1981 } 1982 1983 case CK_CPointerToObjCPointerCast: 1984 case CK_BlockPointerToObjCPointerCast: 1985 case CK_AnyPointerToBlockPointerCast: 1986 case CK_BitCast: { 1987 Value *Src = Visit(const_cast<Expr*>(E)); 1988 llvm::Type *SrcTy = Src->getType(); 1989 llvm::Type *DstTy = ConvertType(DestTy); 1990 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1991 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1992 llvm_unreachable("wrong cast for pointers in different address spaces" 1993 "(must be an address space cast)!"); 1994 } 1995 1996 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1997 if (auto PT = DestTy->getAs<PointerType>()) 1998 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1999 /*MayBeNull=*/true, 2000 CodeGenFunction::CFITCK_UnrelatedCast, 2001 CE->getBeginLoc()); 2002 } 2003 2004 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2005 const QualType SrcType = E->getType(); 2006 2007 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 2008 // Casting to pointer that could carry dynamic information (provided by 2009 // invariant.group) requires launder. 2010 Src = Builder.CreateLaunderInvariantGroup(Src); 2011 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 2012 // Casting to pointer that does not carry dynamic information (provided 2013 // by invariant.group) requires stripping it. Note that we don't do it 2014 // if the source could not be dynamic type and destination could be 2015 // dynamic because dynamic information is already laundered. It is 2016 // because launder(strip(src)) == launder(src), so there is no need to 2017 // add extra strip before launder. 2018 Src = Builder.CreateStripInvariantGroup(Src); 2019 } 2020 } 2021 2022 // Update heapallocsite metadata when there is an explicit cast. 2023 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src)) 2024 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) 2025 CGF.getDebugInfo()-> 2026 addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc()); 2027 2028 return Builder.CreateBitCast(Src, DstTy); 2029 } 2030 case CK_AddressSpaceConversion: { 2031 Expr::EvalResult Result; 2032 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2033 Result.Val.isNullPointer()) { 2034 // If E has side effect, it is emitted even if its final result is a 2035 // null pointer. In that case, a DCE pass should be able to 2036 // eliminate the useless instructions emitted during translating E. 2037 if (Result.HasSideEffects) 2038 Visit(E); 2039 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2040 ConvertType(DestTy)), DestTy); 2041 } 2042 // Since target may map different address spaces in AST to the same address 2043 // space, an address space conversion may end up as a bitcast. 2044 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2045 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2046 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2047 } 2048 case CK_AtomicToNonAtomic: 2049 case CK_NonAtomicToAtomic: 2050 case CK_NoOp: 2051 case CK_UserDefinedConversion: 2052 return Visit(const_cast<Expr*>(E)); 2053 2054 case CK_BaseToDerived: { 2055 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2056 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2057 2058 Address Base = CGF.EmitPointerWithAlignment(E); 2059 Address Derived = 2060 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2061 CE->path_begin(), CE->path_end(), 2062 CGF.ShouldNullCheckClassCastValue(CE)); 2063 2064 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2065 // performed and the object is not of the derived type. 2066 if (CGF.sanitizePerformTypeCheck()) 2067 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2068 Derived.getPointer(), DestTy->getPointeeType()); 2069 2070 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2071 CGF.EmitVTablePtrCheckForCast( 2072 DestTy->getPointeeType(), Derived.getPointer(), 2073 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 2074 CE->getBeginLoc()); 2075 2076 return Derived.getPointer(); 2077 } 2078 case CK_UncheckedDerivedToBase: 2079 case CK_DerivedToBase: { 2080 // The EmitPointerWithAlignment path does this fine; just discard 2081 // the alignment. 2082 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2083 } 2084 2085 case CK_Dynamic: { 2086 Address V = CGF.EmitPointerWithAlignment(E); 2087 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2088 return CGF.EmitDynamicCast(V, DCE); 2089 } 2090 2091 case CK_ArrayToPointerDecay: 2092 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2093 case CK_FunctionToPointerDecay: 2094 return EmitLValue(E).getPointer(); 2095 2096 case CK_NullToPointer: 2097 if (MustVisitNullValue(E)) 2098 CGF.EmitIgnoredExpr(E); 2099 2100 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2101 DestTy); 2102 2103 case CK_NullToMemberPointer: { 2104 if (MustVisitNullValue(E)) 2105 CGF.EmitIgnoredExpr(E); 2106 2107 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2108 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2109 } 2110 2111 case CK_ReinterpretMemberPointer: 2112 case CK_BaseToDerivedMemberPointer: 2113 case CK_DerivedToBaseMemberPointer: { 2114 Value *Src = Visit(E); 2115 2116 // Note that the AST doesn't distinguish between checked and 2117 // unchecked member pointer conversions, so we always have to 2118 // implement checked conversions here. This is inefficient when 2119 // actual control flow may be required in order to perform the 2120 // check, which it is for data member pointers (but not member 2121 // function pointers on Itanium and ARM). 2122 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2123 } 2124 2125 case CK_ARCProduceObject: 2126 return CGF.EmitARCRetainScalarExpr(E); 2127 case CK_ARCConsumeObject: 2128 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2129 case CK_ARCReclaimReturnedObject: 2130 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2131 case CK_ARCExtendBlockObject: 2132 return CGF.EmitARCExtendBlockObject(E); 2133 2134 case CK_CopyAndAutoreleaseBlockObject: 2135 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2136 2137 case CK_FloatingRealToComplex: 2138 case CK_FloatingComplexCast: 2139 case CK_IntegralRealToComplex: 2140 case CK_IntegralComplexCast: 2141 case CK_IntegralComplexToFloatingComplex: 2142 case CK_FloatingComplexToIntegralComplex: 2143 case CK_ConstructorConversion: 2144 case CK_ToUnion: 2145 llvm_unreachable("scalar cast to non-scalar value"); 2146 2147 case CK_LValueToRValue: 2148 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2149 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2150 return Visit(const_cast<Expr*>(E)); 2151 2152 case CK_IntegralToPointer: { 2153 Value *Src = Visit(const_cast<Expr*>(E)); 2154 2155 // First, convert to the correct width so that we control the kind of 2156 // extension. 2157 auto DestLLVMTy = ConvertType(DestTy); 2158 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2159 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2160 llvm::Value* IntResult = 2161 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2162 2163 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2164 2165 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2166 // Going from integer to pointer that could be dynamic requires reloading 2167 // dynamic information from invariant.group. 2168 if (DestTy.mayBeDynamicClass()) 2169 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2170 } 2171 return IntToPtr; 2172 } 2173 case CK_PointerToIntegral: { 2174 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2175 auto *PtrExpr = Visit(E); 2176 2177 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2178 const QualType SrcType = E->getType(); 2179 2180 // Casting to integer requires stripping dynamic information as it does 2181 // not carries it. 2182 if (SrcType.mayBeDynamicClass()) 2183 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2184 } 2185 2186 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2187 } 2188 case CK_ToVoid: { 2189 CGF.EmitIgnoredExpr(E); 2190 return nullptr; 2191 } 2192 case CK_VectorSplat: { 2193 llvm::Type *DstTy = ConvertType(DestTy); 2194 Value *Elt = Visit(const_cast<Expr*>(E)); 2195 // Splat the element across to all elements 2196 unsigned NumElements = DstTy->getVectorNumElements(); 2197 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2198 } 2199 2200 case CK_FixedPointCast: 2201 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2202 CE->getExprLoc()); 2203 2204 case CK_FixedPointToBoolean: 2205 assert(E->getType()->isFixedPointType() && 2206 "Expected src type to be fixed point type"); 2207 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2208 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2209 CE->getExprLoc()); 2210 2211 case CK_FixedPointToIntegral: 2212 assert(E->getType()->isFixedPointType() && 2213 "Expected src type to be fixed point type"); 2214 assert(DestTy->isIntegerType() && "Expected dest type to be an integer"); 2215 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2216 CE->getExprLoc()); 2217 2218 case CK_IntegralToFixedPoint: 2219 assert(E->getType()->isIntegerType() && 2220 "Expected src type to be an integer"); 2221 assert(DestTy->isFixedPointType() && 2222 "Expected dest type to be fixed point type"); 2223 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2224 CE->getExprLoc()); 2225 2226 case CK_IntegralCast: { 2227 ScalarConversionOpts Opts; 2228 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2229 if (!ICE->isPartOfExplicitCast()) 2230 Opts = ScalarConversionOpts(CGF.SanOpts); 2231 } 2232 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2233 CE->getExprLoc(), Opts); 2234 } 2235 case CK_IntegralToFloating: 2236 case CK_FloatingToIntegral: 2237 case CK_FloatingCast: 2238 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2239 CE->getExprLoc()); 2240 case CK_BooleanToSignedIntegral: { 2241 ScalarConversionOpts Opts; 2242 Opts.TreatBooleanAsSigned = true; 2243 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2244 CE->getExprLoc(), Opts); 2245 } 2246 case CK_IntegralToBoolean: 2247 return EmitIntToBoolConversion(Visit(E)); 2248 case CK_PointerToBoolean: 2249 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2250 case CK_FloatingToBoolean: 2251 return EmitFloatToBoolConversion(Visit(E)); 2252 case CK_MemberPointerToBoolean: { 2253 llvm::Value *MemPtr = Visit(E); 2254 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2255 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2256 } 2257 2258 case CK_FloatingComplexToReal: 2259 case CK_IntegralComplexToReal: 2260 return CGF.EmitComplexExpr(E, false, true).first; 2261 2262 case CK_FloatingComplexToBoolean: 2263 case CK_IntegralComplexToBoolean: { 2264 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2265 2266 // TODO: kill this function off, inline appropriate case here 2267 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2268 CE->getExprLoc()); 2269 } 2270 2271 case CK_ZeroToOCLOpaqueType: { 2272 assert((DestTy->isEventT() || DestTy->isQueueT() || 2273 DestTy->isOCLIntelSubgroupAVCType()) && 2274 "CK_ZeroToOCLEvent cast on non-event type"); 2275 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2276 } 2277 2278 case CK_IntToOCLSampler: 2279 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2280 2281 } // end of switch 2282 2283 llvm_unreachable("unknown scalar cast"); 2284 } 2285 2286 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2287 CodeGenFunction::StmtExprEvaluation eval(CGF); 2288 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2289 !E->getType()->isVoidType()); 2290 if (!RetAlloca.isValid()) 2291 return nullptr; 2292 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2293 E->getExprLoc()); 2294 } 2295 2296 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2297 CGF.enterFullExpression(E); 2298 CodeGenFunction::RunCleanupsScope Scope(CGF); 2299 Value *V = Visit(E->getSubExpr()); 2300 // Defend against dominance problems caused by jumps out of expression 2301 // evaluation through the shared cleanup block. 2302 Scope.ForceCleanup({&V}); 2303 return V; 2304 } 2305 2306 //===----------------------------------------------------------------------===// 2307 // Unary Operators 2308 //===----------------------------------------------------------------------===// 2309 2310 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2311 llvm::Value *InVal, bool IsInc) { 2312 BinOpInfo BinOp; 2313 BinOp.LHS = InVal; 2314 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2315 BinOp.Ty = E->getType(); 2316 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2317 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2318 BinOp.E = E; 2319 return BinOp; 2320 } 2321 2322 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2323 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2324 llvm::Value *Amount = 2325 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2326 StringRef Name = IsInc ? "inc" : "dec"; 2327 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2328 case LangOptions::SOB_Defined: 2329 return Builder.CreateAdd(InVal, Amount, Name); 2330 case LangOptions::SOB_Undefined: 2331 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2332 return Builder.CreateNSWAdd(InVal, Amount, Name); 2333 LLVM_FALLTHROUGH; 2334 case LangOptions::SOB_Trapping: 2335 if (!E->canOverflow()) 2336 return Builder.CreateNSWAdd(InVal, Amount, Name); 2337 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 2338 } 2339 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2340 } 2341 2342 llvm::Value * 2343 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2344 bool isInc, bool isPre) { 2345 2346 QualType type = E->getSubExpr()->getType(); 2347 llvm::PHINode *atomicPHI = nullptr; 2348 llvm::Value *value; 2349 llvm::Value *input; 2350 2351 int amount = (isInc ? 1 : -1); 2352 bool isSubtraction = !isInc; 2353 2354 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2355 type = atomicTy->getValueType(); 2356 if (isInc && type->isBooleanType()) { 2357 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2358 if (isPre) { 2359 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 2360 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2361 return Builder.getTrue(); 2362 } 2363 // For atomic bool increment, we just store true and return it for 2364 // preincrement, do an atomic swap with true for postincrement 2365 return Builder.CreateAtomicRMW( 2366 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, 2367 llvm::AtomicOrdering::SequentiallyConsistent); 2368 } 2369 // Special case for atomic increment / decrement on integers, emit 2370 // atomicrmw instructions. We skip this if we want to be doing overflow 2371 // checking, and fall into the slow path with the atomic cmpxchg loop. 2372 if (!type->isBooleanType() && type->isIntegerType() && 2373 !(type->isUnsignedIntegerType() && 2374 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2375 CGF.getLangOpts().getSignedOverflowBehavior() != 2376 LangOptions::SOB_Trapping) { 2377 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2378 llvm::AtomicRMWInst::Sub; 2379 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2380 llvm::Instruction::Sub; 2381 llvm::Value *amt = CGF.EmitToMemory( 2382 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2383 llvm::Value *old = Builder.CreateAtomicRMW(aop, 2384 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); 2385 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2386 } 2387 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2388 input = value; 2389 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2390 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2391 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2392 value = CGF.EmitToMemory(value, type); 2393 Builder.CreateBr(opBB); 2394 Builder.SetInsertPoint(opBB); 2395 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2396 atomicPHI->addIncoming(value, startBB); 2397 value = atomicPHI; 2398 } else { 2399 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2400 input = value; 2401 } 2402 2403 // Special case of integer increment that we have to check first: bool++. 2404 // Due to promotion rules, we get: 2405 // bool++ -> bool = bool + 1 2406 // -> bool = (int)bool + 1 2407 // -> bool = ((int)bool + 1 != 0) 2408 // An interesting aspect of this is that increment is always true. 2409 // Decrement does not have this property. 2410 if (isInc && type->isBooleanType()) { 2411 value = Builder.getTrue(); 2412 2413 // Most common case by far: integer increment. 2414 } else if (type->isIntegerType()) { 2415 // Note that signed integer inc/dec with width less than int can't 2416 // overflow because of promotion rules; we're just eliding a few steps here. 2417 if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2418 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2419 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2420 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2421 value = 2422 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 2423 } else { 2424 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2425 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2426 } 2427 2428 // Next most common: pointer increment. 2429 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2430 QualType type = ptr->getPointeeType(); 2431 2432 // VLA types don't have constant size. 2433 if (const VariableArrayType *vla 2434 = CGF.getContext().getAsVariableArrayType(type)) { 2435 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2436 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2437 if (CGF.getLangOpts().isSignedOverflowDefined()) 2438 value = Builder.CreateGEP(value, numElts, "vla.inc"); 2439 else 2440 value = CGF.EmitCheckedInBoundsGEP( 2441 value, numElts, /*SignedIndices=*/false, isSubtraction, 2442 E->getExprLoc(), "vla.inc"); 2443 2444 // Arithmetic on function pointers (!) is just +-1. 2445 } else if (type->isFunctionType()) { 2446 llvm::Value *amt = Builder.getInt32(amount); 2447 2448 value = CGF.EmitCastToVoidPtr(value); 2449 if (CGF.getLangOpts().isSignedOverflowDefined()) 2450 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 2451 else 2452 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2453 isSubtraction, E->getExprLoc(), 2454 "incdec.funcptr"); 2455 value = Builder.CreateBitCast(value, input->getType()); 2456 2457 // For everything else, we can just do a simple increment. 2458 } else { 2459 llvm::Value *amt = Builder.getInt32(amount); 2460 if (CGF.getLangOpts().isSignedOverflowDefined()) 2461 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 2462 else 2463 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2464 isSubtraction, E->getExprLoc(), 2465 "incdec.ptr"); 2466 } 2467 2468 // Vector increment/decrement. 2469 } else if (type->isVectorType()) { 2470 if (type->hasIntegerRepresentation()) { 2471 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2472 2473 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2474 } else { 2475 value = Builder.CreateFAdd( 2476 value, 2477 llvm::ConstantFP::get(value->getType(), amount), 2478 isInc ? "inc" : "dec"); 2479 } 2480 2481 // Floating point. 2482 } else if (type->isRealFloatingType()) { 2483 // Add the inc/dec to the real part. 2484 llvm::Value *amt; 2485 2486 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2487 // Another special case: half FP increment should be done via float 2488 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2489 value = Builder.CreateCall( 2490 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2491 CGF.CGM.FloatTy), 2492 input, "incdec.conv"); 2493 } else { 2494 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2495 } 2496 } 2497 2498 if (value->getType()->isFloatTy()) 2499 amt = llvm::ConstantFP::get(VMContext, 2500 llvm::APFloat(static_cast<float>(amount))); 2501 else if (value->getType()->isDoubleTy()) 2502 amt = llvm::ConstantFP::get(VMContext, 2503 llvm::APFloat(static_cast<double>(amount))); 2504 else { 2505 // Remaining types are Half, LongDouble or __float128. Convert from float. 2506 llvm::APFloat F(static_cast<float>(amount)); 2507 bool ignored; 2508 const llvm::fltSemantics *FS; 2509 // Don't use getFloatTypeSemantics because Half isn't 2510 // necessarily represented using the "half" LLVM type. 2511 if (value->getType()->isFP128Ty()) 2512 FS = &CGF.getTarget().getFloat128Format(); 2513 else if (value->getType()->isHalfTy()) 2514 FS = &CGF.getTarget().getHalfFormat(); 2515 else 2516 FS = &CGF.getTarget().getLongDoubleFormat(); 2517 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2518 amt = llvm::ConstantFP::get(VMContext, F); 2519 } 2520 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2521 2522 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2523 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2524 value = Builder.CreateCall( 2525 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2526 CGF.CGM.FloatTy), 2527 value, "incdec.conv"); 2528 } else { 2529 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2530 } 2531 } 2532 2533 // Objective-C pointer types. 2534 } else { 2535 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2536 value = CGF.EmitCastToVoidPtr(value); 2537 2538 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2539 if (!isInc) size = -size; 2540 llvm::Value *sizeValue = 2541 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2542 2543 if (CGF.getLangOpts().isSignedOverflowDefined()) 2544 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2545 else 2546 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2547 /*SignedIndices=*/false, isSubtraction, 2548 E->getExprLoc(), "incdec.objptr"); 2549 value = Builder.CreateBitCast(value, input->getType()); 2550 } 2551 2552 if (atomicPHI) { 2553 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2554 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2555 auto Pair = CGF.EmitAtomicCompareExchange( 2556 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2557 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2558 llvm::Value *success = Pair.second; 2559 atomicPHI->addIncoming(old, curBlock); 2560 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2561 Builder.SetInsertPoint(contBB); 2562 return isPre ? value : input; 2563 } 2564 2565 // Store the updated result through the lvalue. 2566 if (LV.isBitField()) 2567 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2568 else 2569 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2570 2571 // If this is a postinc, return the value read from memory, otherwise use the 2572 // updated value. 2573 return isPre ? value : input; 2574 } 2575 2576 2577 2578 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2579 TestAndClearIgnoreResultAssign(); 2580 Value *Op = Visit(E->getSubExpr()); 2581 2582 // Generate a unary FNeg for FP ops. 2583 if (Op->getType()->isFPOrFPVectorTy()) 2584 return Builder.CreateFNeg(Op, "fneg"); 2585 2586 // Emit unary minus with EmitSub so we handle overflow cases etc. 2587 BinOpInfo BinOp; 2588 BinOp.RHS = Op; 2589 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2590 BinOp.Ty = E->getType(); 2591 BinOp.Opcode = BO_Sub; 2592 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2593 BinOp.E = E; 2594 return EmitSub(BinOp); 2595 } 2596 2597 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2598 TestAndClearIgnoreResultAssign(); 2599 Value *Op = Visit(E->getSubExpr()); 2600 return Builder.CreateNot(Op, "neg"); 2601 } 2602 2603 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2604 // Perform vector logical not on comparison with zero vector. 2605 if (E->getType()->isExtVectorType()) { 2606 Value *Oper = Visit(E->getSubExpr()); 2607 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2608 Value *Result; 2609 if (Oper->getType()->isFPOrFPVectorTy()) 2610 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2611 else 2612 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2613 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2614 } 2615 2616 // Compare operand to zero. 2617 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2618 2619 // Invert value. 2620 // TODO: Could dynamically modify easy computations here. For example, if 2621 // the operand is an icmp ne, turn into icmp eq. 2622 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2623 2624 // ZExt result to the expr type. 2625 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2626 } 2627 2628 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2629 // Try folding the offsetof to a constant. 2630 Expr::EvalResult EVResult; 2631 if (E->EvaluateAsInt(EVResult, CGF.getContext())) { 2632 llvm::APSInt Value = EVResult.Val.getInt(); 2633 return Builder.getInt(Value); 2634 } 2635 2636 // Loop over the components of the offsetof to compute the value. 2637 unsigned n = E->getNumComponents(); 2638 llvm::Type* ResultType = ConvertType(E->getType()); 2639 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2640 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2641 for (unsigned i = 0; i != n; ++i) { 2642 OffsetOfNode ON = E->getComponent(i); 2643 llvm::Value *Offset = nullptr; 2644 switch (ON.getKind()) { 2645 case OffsetOfNode::Array: { 2646 // Compute the index 2647 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2648 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2649 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2650 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2651 2652 // Save the element type 2653 CurrentType = 2654 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2655 2656 // Compute the element size 2657 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2658 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2659 2660 // Multiply out to compute the result 2661 Offset = Builder.CreateMul(Idx, ElemSize); 2662 break; 2663 } 2664 2665 case OffsetOfNode::Field: { 2666 FieldDecl *MemberDecl = ON.getField(); 2667 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2668 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2669 2670 // Compute the index of the field in its parent. 2671 unsigned i = 0; 2672 // FIXME: It would be nice if we didn't have to loop here! 2673 for (RecordDecl::field_iterator Field = RD->field_begin(), 2674 FieldEnd = RD->field_end(); 2675 Field != FieldEnd; ++Field, ++i) { 2676 if (*Field == MemberDecl) 2677 break; 2678 } 2679 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2680 2681 // Compute the offset to the field 2682 int64_t OffsetInt = RL.getFieldOffset(i) / 2683 CGF.getContext().getCharWidth(); 2684 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2685 2686 // Save the element type. 2687 CurrentType = MemberDecl->getType(); 2688 break; 2689 } 2690 2691 case OffsetOfNode::Identifier: 2692 llvm_unreachable("dependent __builtin_offsetof"); 2693 2694 case OffsetOfNode::Base: { 2695 if (ON.getBase()->isVirtual()) { 2696 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2697 continue; 2698 } 2699 2700 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2701 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2702 2703 // Save the element type. 2704 CurrentType = ON.getBase()->getType(); 2705 2706 // Compute the offset to the base. 2707 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2708 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2709 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2710 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2711 break; 2712 } 2713 } 2714 Result = Builder.CreateAdd(Result, Offset); 2715 } 2716 return Result; 2717 } 2718 2719 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2720 /// argument of the sizeof expression as an integer. 2721 Value * 2722 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2723 const UnaryExprOrTypeTraitExpr *E) { 2724 QualType TypeToSize = E->getTypeOfArgument(); 2725 if (E->getKind() == UETT_SizeOf) { 2726 if (const VariableArrayType *VAT = 2727 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2728 if (E->isArgumentType()) { 2729 // sizeof(type) - make sure to emit the VLA size. 2730 CGF.EmitVariablyModifiedType(TypeToSize); 2731 } else { 2732 // C99 6.5.3.4p2: If the argument is an expression of type 2733 // VLA, it is evaluated. 2734 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2735 } 2736 2737 auto VlaSize = CGF.getVLASize(VAT); 2738 llvm::Value *size = VlaSize.NumElts; 2739 2740 // Scale the number of non-VLA elements by the non-VLA element size. 2741 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2742 if (!eltSize.isOne()) 2743 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2744 2745 return size; 2746 } 2747 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2748 auto Alignment = 2749 CGF.getContext() 2750 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2751 E->getTypeOfArgument()->getPointeeType())) 2752 .getQuantity(); 2753 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2754 } 2755 2756 // If this isn't sizeof(vla), the result must be constant; use the constant 2757 // folding logic so we don't have to duplicate it here. 2758 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2759 } 2760 2761 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2762 Expr *Op = E->getSubExpr(); 2763 if (Op->getType()->isAnyComplexType()) { 2764 // If it's an l-value, load through the appropriate subobject l-value. 2765 // Note that we have to ask E because Op might be an l-value that 2766 // this won't work for, e.g. an Obj-C property. 2767 if (E->isGLValue()) 2768 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2769 E->getExprLoc()).getScalarVal(); 2770 2771 // Otherwise, calculate and project. 2772 return CGF.EmitComplexExpr(Op, false, true).first; 2773 } 2774 2775 return Visit(Op); 2776 } 2777 2778 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2779 Expr *Op = E->getSubExpr(); 2780 if (Op->getType()->isAnyComplexType()) { 2781 // If it's an l-value, load through the appropriate subobject l-value. 2782 // Note that we have to ask E because Op might be an l-value that 2783 // this won't work for, e.g. an Obj-C property. 2784 if (Op->isGLValue()) 2785 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2786 E->getExprLoc()).getScalarVal(); 2787 2788 // Otherwise, calculate and project. 2789 return CGF.EmitComplexExpr(Op, true, false).second; 2790 } 2791 2792 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2793 // effects are evaluated, but not the actual value. 2794 if (Op->isGLValue()) 2795 CGF.EmitLValue(Op); 2796 else 2797 CGF.EmitScalarExpr(Op, true); 2798 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2799 } 2800 2801 //===----------------------------------------------------------------------===// 2802 // Binary Operators 2803 //===----------------------------------------------------------------------===// 2804 2805 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2806 TestAndClearIgnoreResultAssign(); 2807 BinOpInfo Result; 2808 Result.LHS = Visit(E->getLHS()); 2809 Result.RHS = Visit(E->getRHS()); 2810 Result.Ty = E->getType(); 2811 Result.Opcode = E->getOpcode(); 2812 Result.FPFeatures = E->getFPFeatures(); 2813 Result.E = E; 2814 return Result; 2815 } 2816 2817 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2818 const CompoundAssignOperator *E, 2819 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2820 Value *&Result) { 2821 QualType LHSTy = E->getLHS()->getType(); 2822 BinOpInfo OpInfo; 2823 2824 if (E->getComputationResultType()->isAnyComplexType()) 2825 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2826 2827 // Emit the RHS first. __block variables need to have the rhs evaluated 2828 // first, plus this should improve codegen a little. 2829 OpInfo.RHS = Visit(E->getRHS()); 2830 OpInfo.Ty = E->getComputationResultType(); 2831 OpInfo.Opcode = E->getOpcode(); 2832 OpInfo.FPFeatures = E->getFPFeatures(); 2833 OpInfo.E = E; 2834 // Load/convert the LHS. 2835 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2836 2837 llvm::PHINode *atomicPHI = nullptr; 2838 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2839 QualType type = atomicTy->getValueType(); 2840 if (!type->isBooleanType() && type->isIntegerType() && 2841 !(type->isUnsignedIntegerType() && 2842 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2843 CGF.getLangOpts().getSignedOverflowBehavior() != 2844 LangOptions::SOB_Trapping) { 2845 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2846 switch (OpInfo.Opcode) { 2847 // We don't have atomicrmw operands for *, %, /, <<, >> 2848 case BO_MulAssign: case BO_DivAssign: 2849 case BO_RemAssign: 2850 case BO_ShlAssign: 2851 case BO_ShrAssign: 2852 break; 2853 case BO_AddAssign: 2854 aop = llvm::AtomicRMWInst::Add; 2855 break; 2856 case BO_SubAssign: 2857 aop = llvm::AtomicRMWInst::Sub; 2858 break; 2859 case BO_AndAssign: 2860 aop = llvm::AtomicRMWInst::And; 2861 break; 2862 case BO_XorAssign: 2863 aop = llvm::AtomicRMWInst::Xor; 2864 break; 2865 case BO_OrAssign: 2866 aop = llvm::AtomicRMWInst::Or; 2867 break; 2868 default: 2869 llvm_unreachable("Invalid compound assignment type"); 2870 } 2871 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2872 llvm::Value *amt = CGF.EmitToMemory( 2873 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2874 E->getExprLoc()), 2875 LHSTy); 2876 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2877 llvm::AtomicOrdering::SequentiallyConsistent); 2878 return LHSLV; 2879 } 2880 } 2881 // FIXME: For floating point types, we should be saving and restoring the 2882 // floating point environment in the loop. 2883 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2884 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2885 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2886 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2887 Builder.CreateBr(opBB); 2888 Builder.SetInsertPoint(opBB); 2889 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2890 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2891 OpInfo.LHS = atomicPHI; 2892 } 2893 else 2894 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2895 2896 SourceLocation Loc = E->getExprLoc(); 2897 OpInfo.LHS = 2898 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2899 2900 // Expand the binary operator. 2901 Result = (this->*Func)(OpInfo); 2902 2903 // Convert the result back to the LHS type, 2904 // potentially with Implicit Conversion sanitizer check. 2905 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, 2906 Loc, ScalarConversionOpts(CGF.SanOpts)); 2907 2908 if (atomicPHI) { 2909 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2910 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2911 auto Pair = CGF.EmitAtomicCompareExchange( 2912 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2913 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2914 llvm::Value *success = Pair.second; 2915 atomicPHI->addIncoming(old, curBlock); 2916 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2917 Builder.SetInsertPoint(contBB); 2918 return LHSLV; 2919 } 2920 2921 // Store the result value into the LHS lvalue. Bit-fields are handled 2922 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2923 // 'An assignment expression has the value of the left operand after the 2924 // assignment...'. 2925 if (LHSLV.isBitField()) 2926 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2927 else 2928 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2929 2930 return LHSLV; 2931 } 2932 2933 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2934 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2935 bool Ignore = TestAndClearIgnoreResultAssign(); 2936 Value *RHS = nullptr; 2937 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2938 2939 // If the result is clearly ignored, return now. 2940 if (Ignore) 2941 return nullptr; 2942 2943 // The result of an assignment in C is the assigned r-value. 2944 if (!CGF.getLangOpts().CPlusPlus) 2945 return RHS; 2946 2947 // If the lvalue is non-volatile, return the computed value of the assignment. 2948 if (!LHS.isVolatileQualified()) 2949 return RHS; 2950 2951 // Otherwise, reload the value. 2952 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2953 } 2954 2955 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2956 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2957 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2958 2959 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2960 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2961 SanitizerKind::IntegerDivideByZero)); 2962 } 2963 2964 const auto *BO = cast<BinaryOperator>(Ops.E); 2965 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2966 Ops.Ty->hasSignedIntegerRepresentation() && 2967 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 2968 Ops.mayHaveIntegerOverflow()) { 2969 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2970 2971 llvm::Value *IntMin = 2972 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2973 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2974 2975 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2976 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2977 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2978 Checks.push_back( 2979 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2980 } 2981 2982 if (Checks.size() > 0) 2983 EmitBinOpCheck(Checks, Ops); 2984 } 2985 2986 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2987 { 2988 CodeGenFunction::SanitizerScope SanScope(&CGF); 2989 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2990 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2991 Ops.Ty->isIntegerType() && 2992 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 2993 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2994 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2995 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2996 Ops.Ty->isRealFloatingType() && 2997 Ops.mayHaveFloatDivisionByZero()) { 2998 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2999 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 3000 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 3001 Ops); 3002 } 3003 } 3004 3005 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 3006 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 3007 if (CGF.getLangOpts().OpenCL && 3008 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 3009 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 3010 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 3011 // build option allows an application to specify that single precision 3012 // floating-point divide (x/y and 1/x) and sqrt used in the program 3013 // source are correctly rounded. 3014 llvm::Type *ValTy = Val->getType(); 3015 if (ValTy->isFloatTy() || 3016 (isa<llvm::VectorType>(ValTy) && 3017 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 3018 CGF.SetFPAccuracy(Val, 2.5); 3019 } 3020 return Val; 3021 } 3022 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3023 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 3024 else 3025 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 3026 } 3027 3028 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 3029 // Rem in C can't be a floating point type: C99 6.5.5p2. 3030 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3031 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3032 Ops.Ty->isIntegerType() && 3033 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3034 CodeGenFunction::SanitizerScope SanScope(&CGF); 3035 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3036 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3037 } 3038 3039 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3040 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3041 else 3042 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3043 } 3044 3045 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3046 unsigned IID; 3047 unsigned OpID = 0; 3048 3049 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3050 switch (Ops.Opcode) { 3051 case BO_Add: 3052 case BO_AddAssign: 3053 OpID = 1; 3054 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3055 llvm::Intrinsic::uadd_with_overflow; 3056 break; 3057 case BO_Sub: 3058 case BO_SubAssign: 3059 OpID = 2; 3060 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3061 llvm::Intrinsic::usub_with_overflow; 3062 break; 3063 case BO_Mul: 3064 case BO_MulAssign: 3065 OpID = 3; 3066 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3067 llvm::Intrinsic::umul_with_overflow; 3068 break; 3069 default: 3070 llvm_unreachable("Unsupported operation for overflow detection"); 3071 } 3072 OpID <<= 1; 3073 if (isSigned) 3074 OpID |= 1; 3075 3076 CodeGenFunction::SanitizerScope SanScope(&CGF); 3077 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3078 3079 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3080 3081 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3082 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3083 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3084 3085 // Handle overflow with llvm.trap if no custom handler has been specified. 3086 const std::string *handlerName = 3087 &CGF.getLangOpts().OverflowHandler; 3088 if (handlerName->empty()) { 3089 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3090 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3091 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3092 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3093 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3094 : SanitizerKind::UnsignedIntegerOverflow; 3095 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3096 } else 3097 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 3098 return result; 3099 } 3100 3101 // Branch in case of overflow. 3102 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3103 llvm::BasicBlock *continueBB = 3104 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3105 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3106 3107 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3108 3109 // If an overflow handler is set, then we want to call it and then use its 3110 // result, if it returns. 3111 Builder.SetInsertPoint(overflowBB); 3112 3113 // Get the overflow handler. 3114 llvm::Type *Int8Ty = CGF.Int8Ty; 3115 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3116 llvm::FunctionType *handlerTy = 3117 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3118 llvm::FunctionCallee handler = 3119 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3120 3121 // Sign extend the args to 64-bit, so that we can use the same handler for 3122 // all types of overflow. 3123 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3124 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3125 3126 // Call the handler with the two arguments, the operation, and the size of 3127 // the result. 3128 llvm::Value *handlerArgs[] = { 3129 lhs, 3130 rhs, 3131 Builder.getInt8(OpID), 3132 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3133 }; 3134 llvm::Value *handlerResult = 3135 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3136 3137 // Truncate the result back to the desired size. 3138 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3139 Builder.CreateBr(continueBB); 3140 3141 Builder.SetInsertPoint(continueBB); 3142 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3143 phi->addIncoming(result, initialBB); 3144 phi->addIncoming(handlerResult, overflowBB); 3145 3146 return phi; 3147 } 3148 3149 /// Emit pointer + index arithmetic. 3150 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3151 const BinOpInfo &op, 3152 bool isSubtraction) { 3153 // Must have binary (not unary) expr here. Unary pointer 3154 // increment/decrement doesn't use this path. 3155 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3156 3157 Value *pointer = op.LHS; 3158 Expr *pointerOperand = expr->getLHS(); 3159 Value *index = op.RHS; 3160 Expr *indexOperand = expr->getRHS(); 3161 3162 // In a subtraction, the LHS is always the pointer. 3163 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3164 std::swap(pointer, index); 3165 std::swap(pointerOperand, indexOperand); 3166 } 3167 3168 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3169 3170 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3171 auto &DL = CGF.CGM.getDataLayout(); 3172 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3173 3174 // Some versions of glibc and gcc use idioms (particularly in their malloc 3175 // routines) that add a pointer-sized integer (known to be a pointer value) 3176 // to a null pointer in order to cast the value back to an integer or as 3177 // part of a pointer alignment algorithm. This is undefined behavior, but 3178 // we'd like to be able to compile programs that use it. 3179 // 3180 // Normally, we'd generate a GEP with a null-pointer base here in response 3181 // to that code, but it's also UB to dereference a pointer created that 3182 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3183 // generate a direct cast of the integer value to a pointer. 3184 // 3185 // The idiom (p = nullptr + N) is not met if any of the following are true: 3186 // 3187 // The operation is subtraction. 3188 // The index is not pointer-sized. 3189 // The pointer type is not byte-sized. 3190 // 3191 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3192 op.Opcode, 3193 expr->getLHS(), 3194 expr->getRHS())) 3195 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3196 3197 if (width != DL.getTypeSizeInBits(PtrTy)) { 3198 // Zero-extend or sign-extend the pointer value according to 3199 // whether the index is signed or not. 3200 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned, 3201 "idx.ext"); 3202 } 3203 3204 // If this is subtraction, negate the index. 3205 if (isSubtraction) 3206 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3207 3208 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3209 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3210 /*Accessed*/ false); 3211 3212 const PointerType *pointerType 3213 = pointerOperand->getType()->getAs<PointerType>(); 3214 if (!pointerType) { 3215 QualType objectType = pointerOperand->getType() 3216 ->castAs<ObjCObjectPointerType>() 3217 ->getPointeeType(); 3218 llvm::Value *objectSize 3219 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3220 3221 index = CGF.Builder.CreateMul(index, objectSize); 3222 3223 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3224 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3225 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3226 } 3227 3228 QualType elementType = pointerType->getPointeeType(); 3229 if (const VariableArrayType *vla 3230 = CGF.getContext().getAsVariableArrayType(elementType)) { 3231 // The element count here is the total number of non-VLA elements. 3232 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3233 3234 // Effectively, the multiply by the VLA size is part of the GEP. 3235 // GEP indexes are signed, and scaling an index isn't permitted to 3236 // signed-overflow, so we use the same semantics for our explicit 3237 // multiply. We suppress this if overflow is not undefined behavior. 3238 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3239 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3240 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3241 } else { 3242 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3243 pointer = 3244 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3245 op.E->getExprLoc(), "add.ptr"); 3246 } 3247 return pointer; 3248 } 3249 3250 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3251 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3252 // future proof. 3253 if (elementType->isVoidType() || elementType->isFunctionType()) { 3254 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3255 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3256 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3257 } 3258 3259 if (CGF.getLangOpts().isSignedOverflowDefined()) 3260 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3261 3262 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3263 op.E->getExprLoc(), "add.ptr"); 3264 } 3265 3266 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3267 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3268 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3269 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3270 // efficient operations. 3271 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 3272 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3273 bool negMul, bool negAdd) { 3274 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3275 3276 Value *MulOp0 = MulOp->getOperand(0); 3277 Value *MulOp1 = MulOp->getOperand(1); 3278 if (negMul) { 3279 MulOp0 = 3280 Builder.CreateFSub( 3281 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 3282 "neg"); 3283 } else if (negAdd) { 3284 Addend = 3285 Builder.CreateFSub( 3286 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 3287 "neg"); 3288 } 3289 3290 Value *FMulAdd = Builder.CreateCall( 3291 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3292 {MulOp0, MulOp1, Addend}); 3293 MulOp->eraseFromParent(); 3294 3295 return FMulAdd; 3296 } 3297 3298 // Check whether it would be legal to emit an fmuladd intrinsic call to 3299 // represent op and if so, build the fmuladd. 3300 // 3301 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3302 // Does NOT check the type of the operation - it's assumed that this function 3303 // will be called from contexts where it's known that the type is contractable. 3304 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3305 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3306 bool isSub=false) { 3307 3308 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3309 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3310 "Only fadd/fsub can be the root of an fmuladd."); 3311 3312 // Check whether this op is marked as fusable. 3313 if (!op.FPFeatures.allowFPContractWithinStatement()) 3314 return nullptr; 3315 3316 // We have a potentially fusable op. Look for a mul on one of the operands. 3317 // Also, make sure that the mul result isn't used directly. In that case, 3318 // there's no point creating a muladd operation. 3319 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3320 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3321 LHSBinOp->use_empty()) 3322 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3323 } 3324 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3325 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3326 RHSBinOp->use_empty()) 3327 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3328 } 3329 3330 return nullptr; 3331 } 3332 3333 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3334 if (op.LHS->getType()->isPointerTy() || 3335 op.RHS->getType()->isPointerTy()) 3336 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3337 3338 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3339 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3340 case LangOptions::SOB_Defined: 3341 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3342 case LangOptions::SOB_Undefined: 3343 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3344 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3345 LLVM_FALLTHROUGH; 3346 case LangOptions::SOB_Trapping: 3347 if (CanElideOverflowCheck(CGF.getContext(), op)) 3348 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3349 return EmitOverflowCheckedBinOp(op); 3350 } 3351 } 3352 3353 if (op.Ty->isUnsignedIntegerType() && 3354 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3355 !CanElideOverflowCheck(CGF.getContext(), op)) 3356 return EmitOverflowCheckedBinOp(op); 3357 3358 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3359 // Try to form an fmuladd. 3360 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3361 return FMulAdd; 3362 3363 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3364 return propagateFMFlags(V, op); 3365 } 3366 3367 if (op.isFixedPointBinOp()) 3368 return EmitFixedPointBinOp(op); 3369 3370 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3371 } 3372 3373 /// The resulting value must be calculated with exact precision, so the operands 3374 /// may not be the same type. 3375 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { 3376 using llvm::APSInt; 3377 using llvm::ConstantInt; 3378 3379 const auto *BinOp = cast<BinaryOperator>(op.E); 3380 3381 // The result is a fixed point type and at least one of the operands is fixed 3382 // point while the other is either fixed point or an int. This resulting type 3383 // should be determined by Sema::handleFixedPointConversions(). 3384 QualType ResultTy = op.Ty; 3385 QualType LHSTy = BinOp->getLHS()->getType(); 3386 QualType RHSTy = BinOp->getRHS()->getType(); 3387 ASTContext &Ctx = CGF.getContext(); 3388 Value *LHS = op.LHS; 3389 Value *RHS = op.RHS; 3390 3391 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); 3392 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); 3393 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); 3394 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); 3395 3396 // Convert the operands to the full precision type. 3397 Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema, 3398 BinOp->getExprLoc()); 3399 Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema, 3400 BinOp->getExprLoc()); 3401 3402 // Perform the actual addition. 3403 Value *Result; 3404 switch (BinOp->getOpcode()) { 3405 case BO_Add: { 3406 if (ResultFixedSema.isSaturated()) { 3407 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned() 3408 ? llvm::Intrinsic::sadd_sat 3409 : llvm::Intrinsic::uadd_sat; 3410 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3411 } else { 3412 Result = Builder.CreateAdd(FullLHS, FullRHS); 3413 } 3414 break; 3415 } 3416 case BO_Sub: { 3417 if (ResultFixedSema.isSaturated()) { 3418 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned() 3419 ? llvm::Intrinsic::ssub_sat 3420 : llvm::Intrinsic::usub_sat; 3421 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3422 } else { 3423 Result = Builder.CreateSub(FullLHS, FullRHS); 3424 } 3425 break; 3426 } 3427 case BO_LT: 3428 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS) 3429 : Builder.CreateICmpULT(FullLHS, FullRHS); 3430 case BO_GT: 3431 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS) 3432 : Builder.CreateICmpUGT(FullLHS, FullRHS); 3433 case BO_LE: 3434 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS) 3435 : Builder.CreateICmpULE(FullLHS, FullRHS); 3436 case BO_GE: 3437 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS) 3438 : Builder.CreateICmpUGE(FullLHS, FullRHS); 3439 case BO_EQ: 3440 // For equality operations, we assume any padding bits on unsigned types are 3441 // zero'd out. They could be overwritten through non-saturating operations 3442 // that cause overflow, but this leads to undefined behavior. 3443 return Builder.CreateICmpEQ(FullLHS, FullRHS); 3444 case BO_NE: 3445 return Builder.CreateICmpNE(FullLHS, FullRHS); 3446 case BO_Mul: 3447 case BO_Div: 3448 case BO_Shl: 3449 case BO_Shr: 3450 case BO_Cmp: 3451 case BO_LAnd: 3452 case BO_LOr: 3453 case BO_MulAssign: 3454 case BO_DivAssign: 3455 case BO_AddAssign: 3456 case BO_SubAssign: 3457 case BO_ShlAssign: 3458 case BO_ShrAssign: 3459 llvm_unreachable("Found unimplemented fixed point binary operation"); 3460 case BO_PtrMemD: 3461 case BO_PtrMemI: 3462 case BO_Rem: 3463 case BO_Xor: 3464 case BO_And: 3465 case BO_Or: 3466 case BO_Assign: 3467 case BO_RemAssign: 3468 case BO_AndAssign: 3469 case BO_XorAssign: 3470 case BO_OrAssign: 3471 case BO_Comma: 3472 llvm_unreachable("Found unsupported binary operation for fixed point types."); 3473 } 3474 3475 // Convert to the result type. 3476 return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema, 3477 BinOp->getExprLoc()); 3478 } 3479 3480 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3481 // The LHS is always a pointer if either side is. 3482 if (!op.LHS->getType()->isPointerTy()) { 3483 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3484 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3485 case LangOptions::SOB_Defined: 3486 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3487 case LangOptions::SOB_Undefined: 3488 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3489 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3490 LLVM_FALLTHROUGH; 3491 case LangOptions::SOB_Trapping: 3492 if (CanElideOverflowCheck(CGF.getContext(), op)) 3493 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3494 return EmitOverflowCheckedBinOp(op); 3495 } 3496 } 3497 3498 if (op.Ty->isUnsignedIntegerType() && 3499 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3500 !CanElideOverflowCheck(CGF.getContext(), op)) 3501 return EmitOverflowCheckedBinOp(op); 3502 3503 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3504 // Try to form an fmuladd. 3505 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3506 return FMulAdd; 3507 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3508 return propagateFMFlags(V, op); 3509 } 3510 3511 if (op.isFixedPointBinOp()) 3512 return EmitFixedPointBinOp(op); 3513 3514 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3515 } 3516 3517 // If the RHS is not a pointer, then we have normal pointer 3518 // arithmetic. 3519 if (!op.RHS->getType()->isPointerTy()) 3520 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3521 3522 // Otherwise, this is a pointer subtraction. 3523 3524 // Do the raw subtraction part. 3525 llvm::Value *LHS 3526 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3527 llvm::Value *RHS 3528 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3529 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3530 3531 // Okay, figure out the element size. 3532 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3533 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3534 3535 llvm::Value *divisor = nullptr; 3536 3537 // For a variable-length array, this is going to be non-constant. 3538 if (const VariableArrayType *vla 3539 = CGF.getContext().getAsVariableArrayType(elementType)) { 3540 auto VlaSize = CGF.getVLASize(vla); 3541 elementType = VlaSize.Type; 3542 divisor = VlaSize.NumElts; 3543 3544 // Scale the number of non-VLA elements by the non-VLA element size. 3545 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3546 if (!eltSize.isOne()) 3547 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3548 3549 // For everything elese, we can just compute it, safe in the 3550 // assumption that Sema won't let anything through that we can't 3551 // safely compute the size of. 3552 } else { 3553 CharUnits elementSize; 3554 // Handle GCC extension for pointer arithmetic on void* and 3555 // function pointer types. 3556 if (elementType->isVoidType() || elementType->isFunctionType()) 3557 elementSize = CharUnits::One(); 3558 else 3559 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3560 3561 // Don't even emit the divide for element size of 1. 3562 if (elementSize.isOne()) 3563 return diffInChars; 3564 3565 divisor = CGF.CGM.getSize(elementSize); 3566 } 3567 3568 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3569 // pointer difference in C is only defined in the case where both operands 3570 // are pointing to elements of an array. 3571 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3572 } 3573 3574 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3575 llvm::IntegerType *Ty; 3576 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3577 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3578 else 3579 Ty = cast<llvm::IntegerType>(LHS->getType()); 3580 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3581 } 3582 3583 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3584 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3585 // RHS to the same size as the LHS. 3586 Value *RHS = Ops.RHS; 3587 if (Ops.LHS->getType() != RHS->getType()) 3588 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3589 3590 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3591 Ops.Ty->hasSignedIntegerRepresentation() && 3592 !CGF.getLangOpts().isSignedOverflowDefined() && 3593 !CGF.getLangOpts().CPlusPlus2a; 3594 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3595 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3596 if (CGF.getLangOpts().OpenCL) 3597 RHS = 3598 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 3599 else if ((SanitizeBase || SanitizeExponent) && 3600 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3601 CodeGenFunction::SanitizerScope SanScope(&CGF); 3602 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3603 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3604 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3605 3606 if (SanitizeExponent) { 3607 Checks.push_back( 3608 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3609 } 3610 3611 if (SanitizeBase) { 3612 // Check whether we are shifting any non-zero bits off the top of the 3613 // integer. We only emit this check if exponent is valid - otherwise 3614 // instructions below will have undefined behavior themselves. 3615 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3616 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3617 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3618 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3619 llvm::Value *PromotedWidthMinusOne = 3620 (RHS == Ops.RHS) ? WidthMinusOne 3621 : GetWidthMinusOneValue(Ops.LHS, RHS); 3622 CGF.EmitBlock(CheckShiftBase); 3623 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3624 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3625 /*NUW*/ true, /*NSW*/ true), 3626 "shl.check"); 3627 if (CGF.getLangOpts().CPlusPlus) { 3628 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3629 // Under C++11's rules, shifting a 1 bit into the sign bit is 3630 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3631 // define signed left shifts, so we use the C99 and C++11 rules there). 3632 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3633 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3634 } 3635 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3636 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3637 CGF.EmitBlock(Cont); 3638 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3639 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3640 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3641 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 3642 } 3643 3644 assert(!Checks.empty()); 3645 EmitBinOpCheck(Checks, Ops); 3646 } 3647 3648 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3649 } 3650 3651 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3652 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3653 // RHS to the same size as the LHS. 3654 Value *RHS = Ops.RHS; 3655 if (Ops.LHS->getType() != RHS->getType()) 3656 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3657 3658 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3659 if (CGF.getLangOpts().OpenCL) 3660 RHS = 3661 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 3662 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3663 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3664 CodeGenFunction::SanitizerScope SanScope(&CGF); 3665 llvm::Value *Valid = 3666 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3667 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3668 } 3669 3670 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3671 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3672 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3673 } 3674 3675 enum IntrinsicType { VCMPEQ, VCMPGT }; 3676 // return corresponding comparison intrinsic for given vector type 3677 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3678 BuiltinType::Kind ElemKind) { 3679 switch (ElemKind) { 3680 default: llvm_unreachable("unexpected element type"); 3681 case BuiltinType::Char_U: 3682 case BuiltinType::UChar: 3683 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3684 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3685 case BuiltinType::Char_S: 3686 case BuiltinType::SChar: 3687 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3688 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3689 case BuiltinType::UShort: 3690 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3691 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3692 case BuiltinType::Short: 3693 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3694 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3695 case BuiltinType::UInt: 3696 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3697 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3698 case BuiltinType::Int: 3699 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3700 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3701 case BuiltinType::ULong: 3702 case BuiltinType::ULongLong: 3703 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3704 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 3705 case BuiltinType::Long: 3706 case BuiltinType::LongLong: 3707 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3708 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 3709 case BuiltinType::Float: 3710 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3711 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3712 case BuiltinType::Double: 3713 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 3714 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 3715 } 3716 } 3717 3718 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3719 llvm::CmpInst::Predicate UICmpOpc, 3720 llvm::CmpInst::Predicate SICmpOpc, 3721 llvm::CmpInst::Predicate FCmpOpc) { 3722 TestAndClearIgnoreResultAssign(); 3723 Value *Result; 3724 QualType LHSTy = E->getLHS()->getType(); 3725 QualType RHSTy = E->getRHS()->getType(); 3726 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3727 assert(E->getOpcode() == BO_EQ || 3728 E->getOpcode() == BO_NE); 3729 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3730 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3731 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3732 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3733 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3734 BinOpInfo BOInfo = EmitBinOps(E); 3735 Value *LHS = BOInfo.LHS; 3736 Value *RHS = BOInfo.RHS; 3737 3738 // If AltiVec, the comparison results in a numeric type, so we use 3739 // intrinsics comparing vectors and giving 0 or 1 as a result 3740 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3741 // constants for mapping CR6 register bits to predicate result 3742 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3743 3744 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3745 3746 // in several cases vector arguments order will be reversed 3747 Value *FirstVecArg = LHS, 3748 *SecondVecArg = RHS; 3749 3750 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType(); 3751 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 3752 BuiltinType::Kind ElementKind = BTy->getKind(); 3753 3754 switch(E->getOpcode()) { 3755 default: llvm_unreachable("is not a comparison operation"); 3756 case BO_EQ: 3757 CR6 = CR6_LT; 3758 ID = GetIntrinsic(VCMPEQ, ElementKind); 3759 break; 3760 case BO_NE: 3761 CR6 = CR6_EQ; 3762 ID = GetIntrinsic(VCMPEQ, ElementKind); 3763 break; 3764 case BO_LT: 3765 CR6 = CR6_LT; 3766 ID = GetIntrinsic(VCMPGT, ElementKind); 3767 std::swap(FirstVecArg, SecondVecArg); 3768 break; 3769 case BO_GT: 3770 CR6 = CR6_LT; 3771 ID = GetIntrinsic(VCMPGT, ElementKind); 3772 break; 3773 case BO_LE: 3774 if (ElementKind == BuiltinType::Float) { 3775 CR6 = CR6_LT; 3776 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3777 std::swap(FirstVecArg, SecondVecArg); 3778 } 3779 else { 3780 CR6 = CR6_EQ; 3781 ID = GetIntrinsic(VCMPGT, ElementKind); 3782 } 3783 break; 3784 case BO_GE: 3785 if (ElementKind == BuiltinType::Float) { 3786 CR6 = CR6_LT; 3787 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3788 } 3789 else { 3790 CR6 = CR6_EQ; 3791 ID = GetIntrinsic(VCMPGT, ElementKind); 3792 std::swap(FirstVecArg, SecondVecArg); 3793 } 3794 break; 3795 } 3796 3797 Value *CR6Param = Builder.getInt32(CR6); 3798 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 3799 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 3800 3801 // The result type of intrinsic may not be same as E->getType(). 3802 // If E->getType() is not BoolTy, EmitScalarConversion will do the 3803 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 3804 // do nothing, if ResultTy is not i1 at the same time, it will cause 3805 // crash later. 3806 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 3807 if (ResultTy->getBitWidth() > 1 && 3808 E->getType() == CGF.getContext().BoolTy) 3809 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 3810 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3811 E->getExprLoc()); 3812 } 3813 3814 if (BOInfo.isFixedPointBinOp()) { 3815 Result = EmitFixedPointBinOp(BOInfo); 3816 } else if (LHS->getType()->isFPOrFPVectorTy()) { 3817 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 3818 } else if (LHSTy->hasSignedIntegerRepresentation()) { 3819 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 3820 } else { 3821 // Unsigned integers and pointers. 3822 3823 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 3824 !isa<llvm::ConstantPointerNull>(LHS) && 3825 !isa<llvm::ConstantPointerNull>(RHS)) { 3826 3827 // Dynamic information is required to be stripped for comparisons, 3828 // because it could leak the dynamic information. Based on comparisons 3829 // of pointers to dynamic objects, the optimizer can replace one pointer 3830 // with another, which might be incorrect in presence of invariant 3831 // groups. Comparison with null is safe because null does not carry any 3832 // dynamic information. 3833 if (LHSTy.mayBeDynamicClass()) 3834 LHS = Builder.CreateStripInvariantGroup(LHS); 3835 if (RHSTy.mayBeDynamicClass()) 3836 RHS = Builder.CreateStripInvariantGroup(RHS); 3837 } 3838 3839 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 3840 } 3841 3842 // If this is a vector comparison, sign extend the result to the appropriate 3843 // vector integer type and return it (don't convert to bool). 3844 if (LHSTy->isVectorType()) 3845 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 3846 3847 } else { 3848 // Complex Comparison: can only be an equality comparison. 3849 CodeGenFunction::ComplexPairTy LHS, RHS; 3850 QualType CETy; 3851 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 3852 LHS = CGF.EmitComplexExpr(E->getLHS()); 3853 CETy = CTy->getElementType(); 3854 } else { 3855 LHS.first = Visit(E->getLHS()); 3856 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 3857 CETy = LHSTy; 3858 } 3859 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 3860 RHS = CGF.EmitComplexExpr(E->getRHS()); 3861 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 3862 CTy->getElementType()) && 3863 "The element types must always match."); 3864 (void)CTy; 3865 } else { 3866 RHS.first = Visit(E->getRHS()); 3867 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 3868 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 3869 "The element types must always match."); 3870 } 3871 3872 Value *ResultR, *ResultI; 3873 if (CETy->isRealFloatingType()) { 3874 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 3875 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 3876 } else { 3877 // Complex comparisons can only be equality comparisons. As such, signed 3878 // and unsigned opcodes are the same. 3879 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 3880 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 3881 } 3882 3883 if (E->getOpcode() == BO_EQ) { 3884 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 3885 } else { 3886 assert(E->getOpcode() == BO_NE && 3887 "Complex comparison other than == or != ?"); 3888 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 3889 } 3890 } 3891 3892 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3893 E->getExprLoc()); 3894 } 3895 3896 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 3897 bool Ignore = TestAndClearIgnoreResultAssign(); 3898 3899 Value *RHS; 3900 LValue LHS; 3901 3902 switch (E->getLHS()->getType().getObjCLifetime()) { 3903 case Qualifiers::OCL_Strong: 3904 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 3905 break; 3906 3907 case Qualifiers::OCL_Autoreleasing: 3908 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3909 break; 3910 3911 case Qualifiers::OCL_ExplicitNone: 3912 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 3913 break; 3914 3915 case Qualifiers::OCL_Weak: 3916 RHS = Visit(E->getRHS()); 3917 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3918 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3919 break; 3920 3921 case Qualifiers::OCL_None: 3922 // __block variables need to have the rhs evaluated first, plus 3923 // this should improve codegen just a little. 3924 RHS = Visit(E->getRHS()); 3925 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3926 3927 // Store the value into the LHS. Bit-fields are handled specially 3928 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3929 // 'An assignment expression has the value of the left operand after 3930 // the assignment...'. 3931 if (LHS.isBitField()) { 3932 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3933 } else { 3934 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 3935 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3936 } 3937 } 3938 3939 // If the result is clearly ignored, return now. 3940 if (Ignore) 3941 return nullptr; 3942 3943 // The result of an assignment in C is the assigned r-value. 3944 if (!CGF.getLangOpts().CPlusPlus) 3945 return RHS; 3946 3947 // If the lvalue is non-volatile, return the computed value of the assignment. 3948 if (!LHS.isVolatileQualified()) 3949 return RHS; 3950 3951 // Otherwise, reload the value. 3952 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3953 } 3954 3955 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3956 // Perform vector logical and on comparisons with zero vectors. 3957 if (E->getType()->isVectorType()) { 3958 CGF.incrementProfileCounter(E); 3959 3960 Value *LHS = Visit(E->getLHS()); 3961 Value *RHS = Visit(E->getRHS()); 3962 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3963 if (LHS->getType()->isFPOrFPVectorTy()) { 3964 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3965 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3966 } else { 3967 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3968 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3969 } 3970 Value *And = Builder.CreateAnd(LHS, RHS); 3971 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3972 } 3973 3974 llvm::Type *ResTy = ConvertType(E->getType()); 3975 3976 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3977 // If we have 1 && X, just emit X without inserting the control flow. 3978 bool LHSCondVal; 3979 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3980 if (LHSCondVal) { // If we have 1 && X, just emit X. 3981 CGF.incrementProfileCounter(E); 3982 3983 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3984 // ZExt result to int or bool. 3985 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3986 } 3987 3988 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3989 if (!CGF.ContainsLabel(E->getRHS())) 3990 return llvm::Constant::getNullValue(ResTy); 3991 } 3992 3993 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3994 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3995 3996 CodeGenFunction::ConditionalEvaluation eval(CGF); 3997 3998 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3999 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 4000 CGF.getProfileCount(E->getRHS())); 4001 4002 // Any edges into the ContBlock are now from an (indeterminate number of) 4003 // edges from this first condition. All of these values will be false. Start 4004 // setting up the PHI node in the Cont Block for this. 4005 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4006 "", ContBlock); 4007 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4008 PI != PE; ++PI) 4009 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 4010 4011 eval.begin(CGF); 4012 CGF.EmitBlock(RHSBlock); 4013 CGF.incrementProfileCounter(E); 4014 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4015 eval.end(CGF); 4016 4017 // Reaquire the RHS block, as there may be subblocks inserted. 4018 RHSBlock = Builder.GetInsertBlock(); 4019 4020 // Emit an unconditional branch from this block to ContBlock. 4021 { 4022 // There is no need to emit line number for unconditional branch. 4023 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4024 CGF.EmitBlock(ContBlock); 4025 } 4026 // Insert an entry into the phi node for the edge with the value of RHSCond. 4027 PN->addIncoming(RHSCond, RHSBlock); 4028 4029 // Artificial location to preserve the scope information 4030 { 4031 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 4032 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 4033 } 4034 4035 // ZExt result to int. 4036 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 4037 } 4038 4039 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 4040 // Perform vector logical or on comparisons with zero vectors. 4041 if (E->getType()->isVectorType()) { 4042 CGF.incrementProfileCounter(E); 4043 4044 Value *LHS = Visit(E->getLHS()); 4045 Value *RHS = Visit(E->getRHS()); 4046 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4047 if (LHS->getType()->isFPOrFPVectorTy()) { 4048 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4049 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4050 } else { 4051 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4052 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4053 } 4054 Value *Or = Builder.CreateOr(LHS, RHS); 4055 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 4056 } 4057 4058 llvm::Type *ResTy = ConvertType(E->getType()); 4059 4060 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 4061 // If we have 0 || X, just emit X without inserting the control flow. 4062 bool LHSCondVal; 4063 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4064 if (!LHSCondVal) { // If we have 0 || X, just emit X. 4065 CGF.incrementProfileCounter(E); 4066 4067 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4068 // ZExt result to int or bool. 4069 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 4070 } 4071 4072 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 4073 if (!CGF.ContainsLabel(E->getRHS())) 4074 return llvm::ConstantInt::get(ResTy, 1); 4075 } 4076 4077 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 4078 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 4079 4080 CodeGenFunction::ConditionalEvaluation eval(CGF); 4081 4082 // Branch on the LHS first. If it is true, go to the success (cont) block. 4083 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 4084 CGF.getCurrentProfileCount() - 4085 CGF.getProfileCount(E->getRHS())); 4086 4087 // Any edges into the ContBlock are now from an (indeterminate number of) 4088 // edges from this first condition. All of these values will be true. Start 4089 // setting up the PHI node in the Cont Block for this. 4090 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4091 "", ContBlock); 4092 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4093 PI != PE; ++PI) 4094 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 4095 4096 eval.begin(CGF); 4097 4098 // Emit the RHS condition as a bool value. 4099 CGF.EmitBlock(RHSBlock); 4100 CGF.incrementProfileCounter(E); 4101 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4102 4103 eval.end(CGF); 4104 4105 // Reaquire the RHS block, as there may be subblocks inserted. 4106 RHSBlock = Builder.GetInsertBlock(); 4107 4108 // Emit an unconditional branch from this block to ContBlock. Insert an entry 4109 // into the phi node for the edge with the value of RHSCond. 4110 CGF.EmitBlock(ContBlock); 4111 PN->addIncoming(RHSCond, RHSBlock); 4112 4113 // ZExt result to int. 4114 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 4115 } 4116 4117 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 4118 CGF.EmitIgnoredExpr(E->getLHS()); 4119 CGF.EnsureInsertPoint(); 4120 return Visit(E->getRHS()); 4121 } 4122 4123 //===----------------------------------------------------------------------===// 4124 // Other Operators 4125 //===----------------------------------------------------------------------===// 4126 4127 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 4128 /// expression is cheap enough and side-effect-free enough to evaluate 4129 /// unconditionally instead of conditionally. This is used to convert control 4130 /// flow into selects in some cases. 4131 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 4132 CodeGenFunction &CGF) { 4133 // Anything that is an integer or floating point constant is fine. 4134 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 4135 4136 // Even non-volatile automatic variables can't be evaluated unconditionally. 4137 // Referencing a thread_local may cause non-trivial initialization work to 4138 // occur. If we're inside a lambda and one of the variables is from the scope 4139 // outside the lambda, that function may have returned already. Reading its 4140 // locals is a bad idea. Also, these reads may introduce races there didn't 4141 // exist in the source-level program. 4142 } 4143 4144 4145 Value *ScalarExprEmitter:: 4146 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 4147 TestAndClearIgnoreResultAssign(); 4148 4149 // Bind the common expression if necessary. 4150 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4151 4152 Expr *condExpr = E->getCond(); 4153 Expr *lhsExpr = E->getTrueExpr(); 4154 Expr *rhsExpr = E->getFalseExpr(); 4155 4156 // If the condition constant folds and can be elided, try to avoid emitting 4157 // the condition and the dead arm. 4158 bool CondExprBool; 4159 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4160 Expr *live = lhsExpr, *dead = rhsExpr; 4161 if (!CondExprBool) std::swap(live, dead); 4162 4163 // If the dead side doesn't have labels we need, just emit the Live part. 4164 if (!CGF.ContainsLabel(dead)) { 4165 if (CondExprBool) 4166 CGF.incrementProfileCounter(E); 4167 Value *Result = Visit(live); 4168 4169 // If the live part is a throw expression, it acts like it has a void 4170 // type, so evaluating it returns a null Value*. However, a conditional 4171 // with non-void type must return a non-null Value*. 4172 if (!Result && !E->getType()->isVoidType()) 4173 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4174 4175 return Result; 4176 } 4177 } 4178 4179 // OpenCL: If the condition is a vector, we can treat this condition like 4180 // the select function. 4181 if (CGF.getLangOpts().OpenCL 4182 && condExpr->getType()->isVectorType()) { 4183 CGF.incrementProfileCounter(E); 4184 4185 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4186 llvm::Value *LHS = Visit(lhsExpr); 4187 llvm::Value *RHS = Visit(rhsExpr); 4188 4189 llvm::Type *condType = ConvertType(condExpr->getType()); 4190 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 4191 4192 unsigned numElem = vecTy->getNumElements(); 4193 llvm::Type *elemType = vecTy->getElementType(); 4194 4195 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4196 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4197 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 4198 llvm::VectorType::get(elemType, 4199 numElem), 4200 "sext"); 4201 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4202 4203 // Cast float to int to perform ANDs if necessary. 4204 llvm::Value *RHSTmp = RHS; 4205 llvm::Value *LHSTmp = LHS; 4206 bool wasCast = false; 4207 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4208 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4209 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4210 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4211 wasCast = true; 4212 } 4213 4214 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4215 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4216 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4217 if (wasCast) 4218 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4219 4220 return tmp5; 4221 } 4222 4223 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4224 // select instead of as control flow. We can only do this if it is cheap and 4225 // safe to evaluate the LHS and RHS unconditionally. 4226 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4227 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4228 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4229 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4230 4231 CGF.incrementProfileCounter(E, StepV); 4232 4233 llvm::Value *LHS = Visit(lhsExpr); 4234 llvm::Value *RHS = Visit(rhsExpr); 4235 if (!LHS) { 4236 // If the conditional has void type, make sure we return a null Value*. 4237 assert(!RHS && "LHS and RHS types must match"); 4238 return nullptr; 4239 } 4240 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4241 } 4242 4243 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4244 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4245 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4246 4247 CodeGenFunction::ConditionalEvaluation eval(CGF); 4248 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4249 CGF.getProfileCount(lhsExpr)); 4250 4251 CGF.EmitBlock(LHSBlock); 4252 CGF.incrementProfileCounter(E); 4253 eval.begin(CGF); 4254 Value *LHS = Visit(lhsExpr); 4255 eval.end(CGF); 4256 4257 LHSBlock = Builder.GetInsertBlock(); 4258 Builder.CreateBr(ContBlock); 4259 4260 CGF.EmitBlock(RHSBlock); 4261 eval.begin(CGF); 4262 Value *RHS = Visit(rhsExpr); 4263 eval.end(CGF); 4264 4265 RHSBlock = Builder.GetInsertBlock(); 4266 CGF.EmitBlock(ContBlock); 4267 4268 // If the LHS or RHS is a throw expression, it will be legitimately null. 4269 if (!LHS) 4270 return RHS; 4271 if (!RHS) 4272 return LHS; 4273 4274 // Create a PHI node for the real part. 4275 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4276 PN->addIncoming(LHS, LHSBlock); 4277 PN->addIncoming(RHS, RHSBlock); 4278 return PN; 4279 } 4280 4281 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4282 return Visit(E->getChosenSubExpr()); 4283 } 4284 4285 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4286 QualType Ty = VE->getType(); 4287 4288 if (Ty->isVariablyModifiedType()) 4289 CGF.EmitVariablyModifiedType(Ty); 4290 4291 Address ArgValue = Address::invalid(); 4292 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4293 4294 llvm::Type *ArgTy = ConvertType(VE->getType()); 4295 4296 // If EmitVAArg fails, emit an error. 4297 if (!ArgPtr.isValid()) { 4298 CGF.ErrorUnsupported(VE, "va_arg expression"); 4299 return llvm::UndefValue::get(ArgTy); 4300 } 4301 4302 // FIXME Volatility. 4303 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4304 4305 // If EmitVAArg promoted the type, we must truncate it. 4306 if (ArgTy != Val->getType()) { 4307 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4308 Val = Builder.CreateIntToPtr(Val, ArgTy); 4309 else 4310 Val = Builder.CreateTrunc(Val, ArgTy); 4311 } 4312 4313 return Val; 4314 } 4315 4316 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4317 return CGF.EmitBlockLiteral(block); 4318 } 4319 4320 // Convert a vec3 to vec4, or vice versa. 4321 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4322 Value *Src, unsigned NumElementsDst) { 4323 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 4324 SmallVector<llvm::Constant*, 4> Args; 4325 Args.push_back(Builder.getInt32(0)); 4326 Args.push_back(Builder.getInt32(1)); 4327 Args.push_back(Builder.getInt32(2)); 4328 if (NumElementsDst == 4) 4329 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 4330 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 4331 return Builder.CreateShuffleVector(Src, UnV, Mask); 4332 } 4333 4334 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4335 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4336 // but could be scalar or vectors of different lengths, and either can be 4337 // pointer. 4338 // There are 4 cases: 4339 // 1. non-pointer -> non-pointer : needs 1 bitcast 4340 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4341 // 3. pointer -> non-pointer 4342 // a) pointer -> intptr_t : needs 1 ptrtoint 4343 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4344 // 4. non-pointer -> pointer 4345 // a) intptr_t -> pointer : needs 1 inttoptr 4346 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4347 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4348 // allow casting directly between pointer types and non-integer non-pointer 4349 // types. 4350 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4351 const llvm::DataLayout &DL, 4352 Value *Src, llvm::Type *DstTy, 4353 StringRef Name = "") { 4354 auto SrcTy = Src->getType(); 4355 4356 // Case 1. 4357 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4358 return Builder.CreateBitCast(Src, DstTy, Name); 4359 4360 // Case 2. 4361 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4362 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4363 4364 // Case 3. 4365 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4366 // Case 3b. 4367 if (!DstTy->isIntegerTy()) 4368 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4369 // Cases 3a and 3b. 4370 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4371 } 4372 4373 // Case 4b. 4374 if (!SrcTy->isIntegerTy()) 4375 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4376 // Cases 4a and 4b. 4377 return Builder.CreateIntToPtr(Src, DstTy, Name); 4378 } 4379 4380 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4381 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4382 llvm::Type *DstTy = ConvertType(E->getType()); 4383 4384 llvm::Type *SrcTy = Src->getType(); 4385 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 4386 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 4387 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 4388 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 4389 4390 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4391 // vector to get a vec4, then a bitcast if the target type is different. 4392 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4393 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4394 4395 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4396 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4397 DstTy); 4398 } 4399 4400 Src->setName("astype"); 4401 return Src; 4402 } 4403 4404 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4405 // to vec4 if the original type is not vec4, then a shuffle vector to 4406 // get a vec3. 4407 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4408 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4409 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 4410 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4411 Vec4Ty); 4412 } 4413 4414 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4415 Src->setName("astype"); 4416 return Src; 4417 } 4418 4419 return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4420 Src, DstTy, "astype"); 4421 } 4422 4423 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4424 return CGF.EmitAtomicExpr(E).getScalarVal(); 4425 } 4426 4427 //===----------------------------------------------------------------------===// 4428 // Entry Point into this File 4429 //===----------------------------------------------------------------------===// 4430 4431 /// Emit the computation of the specified expression of scalar type, ignoring 4432 /// the result. 4433 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4434 assert(E && hasScalarEvaluationKind(E->getType()) && 4435 "Invalid scalar expression to emit"); 4436 4437 return ScalarExprEmitter(*this, IgnoreResultAssign) 4438 .Visit(const_cast<Expr *>(E)); 4439 } 4440 4441 /// Emit a conversion from the specified type to the specified destination type, 4442 /// both of which are LLVM scalar types. 4443 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4444 QualType DstTy, 4445 SourceLocation Loc) { 4446 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4447 "Invalid scalar expression to emit"); 4448 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4449 } 4450 4451 /// Emit a conversion from the specified complex type to the specified 4452 /// destination type, where the destination type is an LLVM scalar type. 4453 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4454 QualType SrcTy, 4455 QualType DstTy, 4456 SourceLocation Loc) { 4457 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4458 "Invalid complex -> scalar conversion"); 4459 return ScalarExprEmitter(*this) 4460 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4461 } 4462 4463 4464 llvm::Value *CodeGenFunction:: 4465 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4466 bool isInc, bool isPre) { 4467 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4468 } 4469 4470 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4471 // object->isa or (*object).isa 4472 // Generate code as for: *(Class*)object 4473 4474 Expr *BaseExpr = E->getBase(); 4475 Address Addr = Address::invalid(); 4476 if (BaseExpr->isRValue()) { 4477 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4478 } else { 4479 Addr = EmitLValue(BaseExpr).getAddress(); 4480 } 4481 4482 // Cast the address to Class*. 4483 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4484 return MakeAddrLValue(Addr, E->getType()); 4485 } 4486 4487 4488 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4489 const CompoundAssignOperator *E) { 4490 ScalarExprEmitter Scalar(*this); 4491 Value *Result = nullptr; 4492 switch (E->getOpcode()) { 4493 #define COMPOUND_OP(Op) \ 4494 case BO_##Op##Assign: \ 4495 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4496 Result) 4497 COMPOUND_OP(Mul); 4498 COMPOUND_OP(Div); 4499 COMPOUND_OP(Rem); 4500 COMPOUND_OP(Add); 4501 COMPOUND_OP(Sub); 4502 COMPOUND_OP(Shl); 4503 COMPOUND_OP(Shr); 4504 COMPOUND_OP(And); 4505 COMPOUND_OP(Xor); 4506 COMPOUND_OP(Or); 4507 #undef COMPOUND_OP 4508 4509 case BO_PtrMemD: 4510 case BO_PtrMemI: 4511 case BO_Mul: 4512 case BO_Div: 4513 case BO_Rem: 4514 case BO_Add: 4515 case BO_Sub: 4516 case BO_Shl: 4517 case BO_Shr: 4518 case BO_LT: 4519 case BO_GT: 4520 case BO_LE: 4521 case BO_GE: 4522 case BO_EQ: 4523 case BO_NE: 4524 case BO_Cmp: 4525 case BO_And: 4526 case BO_Xor: 4527 case BO_Or: 4528 case BO_LAnd: 4529 case BO_LOr: 4530 case BO_Assign: 4531 case BO_Comma: 4532 llvm_unreachable("Not valid compound assignment operators"); 4533 } 4534 4535 llvm_unreachable("Unhandled compound assignment operator"); 4536 } 4537 4538 struct GEPOffsetAndOverflow { 4539 // The total (signed) byte offset for the GEP. 4540 llvm::Value *TotalOffset; 4541 // The offset overflow flag - true if the total offset overflows. 4542 llvm::Value *OffsetOverflows; 4543 }; 4544 4545 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant, 4546 /// and compute the total offset it applies from it's base pointer BasePtr. 4547 /// Returns offset in bytes and a boolean flag whether an overflow happened 4548 /// during evaluation. 4549 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal, 4550 llvm::LLVMContext &VMContext, 4551 CodeGenModule &CGM, 4552 CGBuilderTy Builder) { 4553 const auto &DL = CGM.getDataLayout(); 4554 4555 // The total (signed) byte offset for the GEP. 4556 llvm::Value *TotalOffset = nullptr; 4557 4558 // Was the GEP already reduced to a constant? 4559 if (isa<llvm::Constant>(GEPVal)) { 4560 // Compute the offset by casting both pointers to integers and subtracting: 4561 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr) 4562 Value *BasePtr_int = 4563 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType())); 4564 Value *GEPVal_int = 4565 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType())); 4566 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int); 4567 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()}; 4568 } 4569 4570 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4571 assert(GEP->getPointerOperand() == BasePtr && 4572 "BasePtr must be the the base of the GEP."); 4573 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4574 4575 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4576 4577 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4578 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4579 auto *SAddIntrinsic = 4580 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4581 auto *SMulIntrinsic = 4582 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4583 4584 // The offset overflow flag - true if the total offset overflows. 4585 llvm::Value *OffsetOverflows = Builder.getFalse(); 4586 4587 /// Return the result of the given binary operation. 4588 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 4589 llvm::Value *RHS) -> llvm::Value * { 4590 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 4591 4592 // If the operands are constants, return a constant result. 4593 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 4594 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 4595 llvm::APInt N; 4596 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 4597 /*Signed=*/true, N); 4598 if (HasOverflow) 4599 OffsetOverflows = Builder.getTrue(); 4600 return llvm::ConstantInt::get(VMContext, N); 4601 } 4602 } 4603 4604 // Otherwise, compute the result with checked arithmetic. 4605 auto *ResultAndOverflow = Builder.CreateCall( 4606 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 4607 OffsetOverflows = Builder.CreateOr( 4608 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 4609 return Builder.CreateExtractValue(ResultAndOverflow, 0); 4610 }; 4611 4612 // Determine the total byte offset by looking at each GEP operand. 4613 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 4614 GTI != GTE; ++GTI) { 4615 llvm::Value *LocalOffset; 4616 auto *Index = GTI.getOperand(); 4617 // Compute the local offset contributed by this indexing step: 4618 if (auto *STy = GTI.getStructTypeOrNull()) { 4619 // For struct indexing, the local offset is the byte position of the 4620 // specified field. 4621 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 4622 LocalOffset = llvm::ConstantInt::get( 4623 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 4624 } else { 4625 // Otherwise this is array-like indexing. The local offset is the index 4626 // multiplied by the element size. 4627 auto *ElementSize = llvm::ConstantInt::get( 4628 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 4629 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 4630 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 4631 } 4632 4633 // If this is the first offset, set it as the total offset. Otherwise, add 4634 // the local offset into the running total. 4635 if (!TotalOffset || TotalOffset == Zero) 4636 TotalOffset = LocalOffset; 4637 else 4638 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 4639 } 4640 4641 return {TotalOffset, OffsetOverflows}; 4642 } 4643 4644 Value * 4645 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList, 4646 bool SignedIndices, bool IsSubtraction, 4647 SourceLocation Loc, const Twine &Name) { 4648 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 4649 4650 // If the pointer overflow sanitizer isn't enabled, do nothing. 4651 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 4652 return GEPVal; 4653 4654 llvm::Type *PtrTy = Ptr->getType(); 4655 4656 // Perform nullptr-and-offset check unless the nullptr is defined. 4657 bool PerformNullCheck = !NullPointerIsDefined( 4658 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace()); 4659 // Check for overflows unless the GEP got constant-folded, 4660 // and only in the default address space 4661 bool PerformOverflowCheck = 4662 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0; 4663 4664 if (!(PerformNullCheck || PerformOverflowCheck)) 4665 return GEPVal; 4666 4667 const auto &DL = CGM.getDataLayout(); 4668 4669 SanitizerScope SanScope(this); 4670 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy); 4671 4672 GEPOffsetAndOverflow EvaluatedGEP = 4673 EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder); 4674 4675 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || 4676 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && 4677 "If the offset got constant-folded, we don't expect that there was an " 4678 "overflow."); 4679 4680 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4681 4682 // Common case: if the total offset is zero, and we are using C++ semantics, 4683 // where nullptr+0 is defined, don't emit a check. 4684 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus) 4685 return GEPVal; 4686 4687 // Now that we've computed the total offset, add it to the base pointer (with 4688 // wrapping semantics). 4689 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy); 4690 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset); 4691 4692 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 4693 4694 if (PerformNullCheck) { 4695 // In C++, if the base pointer evaluates to a null pointer value, 4696 // the only valid pointer this inbounds GEP can produce is also 4697 // a null pointer, so the offset must also evaluate to zero. 4698 // Likewise, if we have non-zero base pointer, we can not get null pointer 4699 // as a result, so the offset can not be -intptr_t(BasePtr). 4700 // In other words, both pointers are either null, or both are non-null, 4701 // or the behaviour is undefined. 4702 // 4703 // C, however, is more strict in this regard, and gives more 4704 // optimization opportunities: in C, additionally, nullptr+0 is undefined. 4705 // So both the input to the 'gep inbounds' AND the output must not be null. 4706 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr); 4707 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP); 4708 auto *Valid = 4709 CGM.getLangOpts().CPlusPlus 4710 ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr) 4711 : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr); 4712 Checks.emplace_back(Valid, SanitizerKind::PointerOverflow); 4713 } 4714 4715 if (PerformOverflowCheck) { 4716 // The GEP is valid if: 4717 // 1) The total offset doesn't overflow, and 4718 // 2) The sign of the difference between the computed address and the base 4719 // pointer matches the sign of the total offset. 4720 llvm::Value *ValidGEP; 4721 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows); 4722 if (SignedIndices) { 4723 // GEP is computed as `unsigned base + signed offset`, therefore: 4724 // * If offset was positive, then the computed pointer can not be 4725 // [unsigned] less than the base pointer, unless it overflowed. 4726 // * If offset was negative, then the computed pointer can not be 4727 // [unsigned] greater than the bas pointere, unless it overflowed. 4728 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4729 auto *PosOrZeroOffset = 4730 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero); 4731 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 4732 ValidGEP = 4733 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid); 4734 } else if (!IsSubtraction) { 4735 // GEP is computed as `unsigned base + unsigned offset`, therefore the 4736 // computed pointer can not be [unsigned] less than base pointer, 4737 // unless there was an overflow. 4738 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`. 4739 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4740 } else { 4741 // GEP is computed as `unsigned base - unsigned offset`, therefore the 4742 // computed pointer can not be [unsigned] greater than base pointer, 4743 // unless there was an overflow. 4744 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`. 4745 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr); 4746 } 4747 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow); 4748 Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow); 4749 } 4750 4751 assert(!Checks.empty() && "Should have produced some checks."); 4752 4753 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 4754 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 4755 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 4756 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 4757 4758 return GEPVal; 4759 } 4760