1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCleanup.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CGOpenMPRuntime.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "ConstantEmitter.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "llvm/ADT/APFixedPoint.h" 31 #include "llvm/ADT/Optional.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/FixedPointBuilder.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GetElementPtrTypeIterator.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/IntrinsicsPowerPC.h" 41 #include "llvm/IR/MatrixBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include <cstdarg> 44 45 using namespace clang; 46 using namespace CodeGen; 47 using llvm::Value; 48 49 //===----------------------------------------------------------------------===// 50 // Scalar Expression Emitter 51 //===----------------------------------------------------------------------===// 52 53 namespace { 54 55 /// Determine whether the given binary operation may overflow. 56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 58 /// the returned overflow check is precise. The returned value is 'true' for 59 /// all other opcodes, to be conservative. 60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 61 BinaryOperator::Opcode Opcode, bool Signed, 62 llvm::APInt &Result) { 63 // Assume overflow is possible, unless we can prove otherwise. 64 bool Overflow = true; 65 const auto &LHSAP = LHS->getValue(); 66 const auto &RHSAP = RHS->getValue(); 67 if (Opcode == BO_Add) { 68 if (Signed) 69 Result = LHSAP.sadd_ov(RHSAP, Overflow); 70 else 71 Result = LHSAP.uadd_ov(RHSAP, Overflow); 72 } else if (Opcode == BO_Sub) { 73 if (Signed) 74 Result = LHSAP.ssub_ov(RHSAP, Overflow); 75 else 76 Result = LHSAP.usub_ov(RHSAP, Overflow); 77 } else if (Opcode == BO_Mul) { 78 if (Signed) 79 Result = LHSAP.smul_ov(RHSAP, Overflow); 80 else 81 Result = LHSAP.umul_ov(RHSAP, Overflow); 82 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 83 if (Signed && !RHS->isZero()) 84 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 85 else 86 return false; 87 } 88 return Overflow; 89 } 90 91 struct BinOpInfo { 92 Value *LHS; 93 Value *RHS; 94 QualType Ty; // Computation Type. 95 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 96 FPOptions FPFeatures; 97 const Expr *E; // Entire expr, for error unsupported. May not be binop. 98 99 /// Check if the binop can result in integer overflow. 100 bool mayHaveIntegerOverflow() const { 101 // Without constant input, we can't rule out overflow. 102 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 103 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 104 if (!LHSCI || !RHSCI) 105 return true; 106 107 llvm::APInt Result; 108 return ::mayHaveIntegerOverflow( 109 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 110 } 111 112 /// Check if the binop computes a division or a remainder. 113 bool isDivremOp() const { 114 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 115 Opcode == BO_RemAssign; 116 } 117 118 /// Check if the binop can result in an integer division by zero. 119 bool mayHaveIntegerDivisionByZero() const { 120 if (isDivremOp()) 121 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 122 return CI->isZero(); 123 return true; 124 } 125 126 /// Check if the binop can result in a float division by zero. 127 bool mayHaveFloatDivisionByZero() const { 128 if (isDivremOp()) 129 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 130 return CFP->isZero(); 131 return true; 132 } 133 134 /// Check if at least one operand is a fixed point type. In such cases, this 135 /// operation did not follow usual arithmetic conversion and both operands 136 /// might not be of the same type. 137 bool isFixedPointOp() const { 138 // We cannot simply check the result type since comparison operations return 139 // an int. 140 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { 141 QualType LHSType = BinOp->getLHS()->getType(); 142 QualType RHSType = BinOp->getRHS()->getType(); 143 return LHSType->isFixedPointType() || RHSType->isFixedPointType(); 144 } 145 if (const auto *UnOp = dyn_cast<UnaryOperator>(E)) 146 return UnOp->getSubExpr()->getType()->isFixedPointType(); 147 return false; 148 } 149 }; 150 151 static bool MustVisitNullValue(const Expr *E) { 152 // If a null pointer expression's type is the C++0x nullptr_t, then 153 // it's not necessarily a simple constant and it must be evaluated 154 // for its potential side effects. 155 return E->getType()->isNullPtrType(); 156 } 157 158 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 159 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 160 const Expr *E) { 161 const Expr *Base = E->IgnoreImpCasts(); 162 if (E == Base) 163 return llvm::None; 164 165 QualType BaseTy = Base->getType(); 166 if (!BaseTy->isPromotableIntegerType() || 167 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 168 return llvm::None; 169 170 return BaseTy; 171 } 172 173 /// Check if \p E is a widened promoted integer. 174 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 175 return getUnwidenedIntegerType(Ctx, E).hasValue(); 176 } 177 178 /// Check if we can skip the overflow check for \p Op. 179 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 180 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 181 "Expected a unary or binary operator"); 182 183 // If the binop has constant inputs and we can prove there is no overflow, 184 // we can elide the overflow check. 185 if (!Op.mayHaveIntegerOverflow()) 186 return true; 187 188 // If a unary op has a widened operand, the op cannot overflow. 189 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 190 return !UO->canOverflow(); 191 192 // We usually don't need overflow checks for binops with widened operands. 193 // Multiplication with promoted unsigned operands is a special case. 194 const auto *BO = cast<BinaryOperator>(Op.E); 195 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 196 if (!OptionalLHSTy) 197 return false; 198 199 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 200 if (!OptionalRHSTy) 201 return false; 202 203 QualType LHSTy = *OptionalLHSTy; 204 QualType RHSTy = *OptionalRHSTy; 205 206 // This is the simple case: binops without unsigned multiplication, and with 207 // widened operands. No overflow check is needed here. 208 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 209 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 210 return true; 211 212 // For unsigned multiplication the overflow check can be elided if either one 213 // of the unpromoted types are less than half the size of the promoted type. 214 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 215 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 216 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 217 } 218 219 class ScalarExprEmitter 220 : public StmtVisitor<ScalarExprEmitter, Value*> { 221 CodeGenFunction &CGF; 222 CGBuilderTy &Builder; 223 bool IgnoreResultAssign; 224 llvm::LLVMContext &VMContext; 225 public: 226 227 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 228 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 229 VMContext(cgf.getLLVMContext()) { 230 } 231 232 //===--------------------------------------------------------------------===// 233 // Utilities 234 //===--------------------------------------------------------------------===// 235 236 bool TestAndClearIgnoreResultAssign() { 237 bool I = IgnoreResultAssign; 238 IgnoreResultAssign = false; 239 return I; 240 } 241 242 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 243 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 244 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 245 return CGF.EmitCheckedLValue(E, TCK); 246 } 247 248 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 249 const BinOpInfo &Info); 250 251 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 252 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 253 } 254 255 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 256 const AlignValueAttr *AVAttr = nullptr; 257 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 258 const ValueDecl *VD = DRE->getDecl(); 259 260 if (VD->getType()->isReferenceType()) { 261 if (const auto *TTy = 262 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 263 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 264 } else { 265 // Assumptions for function parameters are emitted at the start of the 266 // function, so there is no need to repeat that here, 267 // unless the alignment-assumption sanitizer is enabled, 268 // then we prefer the assumption over alignment attribute 269 // on IR function param. 270 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) 271 return; 272 273 AVAttr = VD->getAttr<AlignValueAttr>(); 274 } 275 } 276 277 if (!AVAttr) 278 if (const auto *TTy = 279 dyn_cast<TypedefType>(E->getType())) 280 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 281 282 if (!AVAttr) 283 return; 284 285 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 286 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 287 CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI); 288 } 289 290 /// EmitLoadOfLValue - Given an expression with complex type that represents a 291 /// value l-value, this method emits the address of the l-value, then loads 292 /// and returns the result. 293 Value *EmitLoadOfLValue(const Expr *E) { 294 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 295 E->getExprLoc()); 296 297 EmitLValueAlignmentAssumption(E, V); 298 return V; 299 } 300 301 /// EmitConversionToBool - Convert the specified expression value to a 302 /// boolean (i1) truth value. This is equivalent to "Val != 0". 303 Value *EmitConversionToBool(Value *Src, QualType DstTy); 304 305 /// Emit a check that a conversion from a floating-point type does not 306 /// overflow. 307 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 308 Value *Src, QualType SrcType, QualType DstType, 309 llvm::Type *DstTy, SourceLocation Loc); 310 311 /// Known implicit conversion check kinds. 312 /// Keep in sync with the enum of the same name in ubsan_handlers.h 313 enum ImplicitConversionCheckKind : unsigned char { 314 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 315 ICCK_UnsignedIntegerTruncation = 1, 316 ICCK_SignedIntegerTruncation = 2, 317 ICCK_IntegerSignChange = 3, 318 ICCK_SignedIntegerTruncationOrSignChange = 4, 319 }; 320 321 /// Emit a check that an [implicit] truncation of an integer does not 322 /// discard any bits. It is not UB, so we use the value after truncation. 323 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 324 QualType DstType, SourceLocation Loc); 325 326 /// Emit a check that an [implicit] conversion of an integer does not change 327 /// the sign of the value. It is not UB, so we use the value after conversion. 328 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 329 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 330 QualType DstType, SourceLocation Loc); 331 332 /// Emit a conversion from the specified type to the specified destination 333 /// type, both of which are LLVM scalar types. 334 struct ScalarConversionOpts { 335 bool TreatBooleanAsSigned; 336 bool EmitImplicitIntegerTruncationChecks; 337 bool EmitImplicitIntegerSignChangeChecks; 338 339 ScalarConversionOpts() 340 : TreatBooleanAsSigned(false), 341 EmitImplicitIntegerTruncationChecks(false), 342 EmitImplicitIntegerSignChangeChecks(false) {} 343 344 ScalarConversionOpts(clang::SanitizerSet SanOpts) 345 : TreatBooleanAsSigned(false), 346 EmitImplicitIntegerTruncationChecks( 347 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 348 EmitImplicitIntegerSignChangeChecks( 349 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 350 }; 351 Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType, 352 llvm::Type *SrcTy, llvm::Type *DstTy, 353 ScalarConversionOpts Opts); 354 Value * 355 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 356 SourceLocation Loc, 357 ScalarConversionOpts Opts = ScalarConversionOpts()); 358 359 /// Convert between either a fixed point and other fixed point or fixed point 360 /// and an integer. 361 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 362 SourceLocation Loc); 363 364 /// Emit a conversion from the specified complex type to the specified 365 /// destination type, where the destination type is an LLVM scalar type. 366 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 367 QualType SrcTy, QualType DstTy, 368 SourceLocation Loc); 369 370 /// EmitNullValue - Emit a value that corresponds to null for the given type. 371 Value *EmitNullValue(QualType Ty); 372 373 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 374 Value *EmitFloatToBoolConversion(Value *V) { 375 // Compare against 0.0 for fp scalars. 376 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 377 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 378 } 379 380 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 381 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 382 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 383 384 return Builder.CreateICmpNE(V, Zero, "tobool"); 385 } 386 387 Value *EmitIntToBoolConversion(Value *V) { 388 // Because of the type rules of C, we often end up computing a 389 // logical value, then zero extending it to int, then wanting it 390 // as a logical value again. Optimize this common case. 391 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 392 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 393 Value *Result = ZI->getOperand(0); 394 // If there aren't any more uses, zap the instruction to save space. 395 // Note that there can be more uses, for example if this 396 // is the result of an assignment. 397 if (ZI->use_empty()) 398 ZI->eraseFromParent(); 399 return Result; 400 } 401 } 402 403 return Builder.CreateIsNotNull(V, "tobool"); 404 } 405 406 //===--------------------------------------------------------------------===// 407 // Visitor Methods 408 //===--------------------------------------------------------------------===// 409 410 Value *Visit(Expr *E) { 411 ApplyDebugLocation DL(CGF, E); 412 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 413 } 414 415 Value *VisitStmt(Stmt *S) { 416 S->dump(llvm::errs(), CGF.getContext()); 417 llvm_unreachable("Stmt can't have complex result type!"); 418 } 419 Value *VisitExpr(Expr *S); 420 421 Value *VisitConstantExpr(ConstantExpr *E) { 422 // A constant expression of type 'void' generates no code and produces no 423 // value. 424 if (E->getType()->isVoidType()) 425 return nullptr; 426 427 if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) { 428 if (E->isGLValue()) 429 return CGF.Builder.CreateLoad(Address( 430 Result, CGF.getContext().getTypeAlignInChars(E->getType()))); 431 return Result; 432 } 433 return Visit(E->getSubExpr()); 434 } 435 Value *VisitParenExpr(ParenExpr *PE) { 436 return Visit(PE->getSubExpr()); 437 } 438 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 439 return Visit(E->getReplacement()); 440 } 441 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 442 return Visit(GE->getResultExpr()); 443 } 444 Value *VisitCoawaitExpr(CoawaitExpr *S) { 445 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 446 } 447 Value *VisitCoyieldExpr(CoyieldExpr *S) { 448 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 449 } 450 Value *VisitUnaryCoawait(const UnaryOperator *E) { 451 return Visit(E->getSubExpr()); 452 } 453 454 // Leaves. 455 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 456 return Builder.getInt(E->getValue()); 457 } 458 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 459 return Builder.getInt(E->getValue()); 460 } 461 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 462 return llvm::ConstantFP::get(VMContext, E->getValue()); 463 } 464 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 465 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 466 } 467 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 468 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 469 } 470 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 471 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 472 } 473 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 474 return EmitNullValue(E->getType()); 475 } 476 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 477 return EmitNullValue(E->getType()); 478 } 479 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 480 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 481 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 482 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 483 return Builder.CreateBitCast(V, ConvertType(E->getType())); 484 } 485 486 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 487 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 488 } 489 490 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 491 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 492 } 493 494 Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E); 495 496 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 497 if (E->isGLValue()) 498 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 499 E->getExprLoc()); 500 501 // Otherwise, assume the mapping is the scalar directly. 502 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 503 } 504 505 // l-values. 506 Value *VisitDeclRefExpr(DeclRefExpr *E) { 507 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 508 return CGF.emitScalarConstant(Constant, E); 509 return EmitLoadOfLValue(E); 510 } 511 512 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 513 return CGF.EmitObjCSelectorExpr(E); 514 } 515 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 516 return CGF.EmitObjCProtocolExpr(E); 517 } 518 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 519 return EmitLoadOfLValue(E); 520 } 521 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 522 if (E->getMethodDecl() && 523 E->getMethodDecl()->getReturnType()->isReferenceType()) 524 return EmitLoadOfLValue(E); 525 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 526 } 527 528 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 529 LValue LV = CGF.EmitObjCIsaExpr(E); 530 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 531 return V; 532 } 533 534 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 535 VersionTuple Version = E->getVersion(); 536 537 // If we're checking for a platform older than our minimum deployment 538 // target, we can fold the check away. 539 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 540 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 541 542 return CGF.EmitBuiltinAvailable(Version); 543 } 544 545 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 546 Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E); 547 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 548 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 549 Value *VisitMemberExpr(MemberExpr *E); 550 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 551 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 552 // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which 553 // transitively calls EmitCompoundLiteralLValue, here in C++ since compound 554 // literals aren't l-values in C++. We do so simply because that's the 555 // cleanest way to handle compound literals in C++. 556 // See the discussion here: https://reviews.llvm.org/D64464 557 return EmitLoadOfLValue(E); 558 } 559 560 Value *VisitInitListExpr(InitListExpr *E); 561 562 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 563 assert(CGF.getArrayInitIndex() && 564 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 565 return CGF.getArrayInitIndex(); 566 } 567 568 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 569 return EmitNullValue(E->getType()); 570 } 571 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 572 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 573 return VisitCastExpr(E); 574 } 575 Value *VisitCastExpr(CastExpr *E); 576 577 Value *VisitCallExpr(const CallExpr *E) { 578 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 579 return EmitLoadOfLValue(E); 580 581 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 582 583 EmitLValueAlignmentAssumption(E, V); 584 return V; 585 } 586 587 Value *VisitStmtExpr(const StmtExpr *E); 588 589 // Unary Operators. 590 Value *VisitUnaryPostDec(const UnaryOperator *E) { 591 LValue LV = EmitLValue(E->getSubExpr()); 592 return EmitScalarPrePostIncDec(E, LV, false, false); 593 } 594 Value *VisitUnaryPostInc(const UnaryOperator *E) { 595 LValue LV = EmitLValue(E->getSubExpr()); 596 return EmitScalarPrePostIncDec(E, LV, true, false); 597 } 598 Value *VisitUnaryPreDec(const UnaryOperator *E) { 599 LValue LV = EmitLValue(E->getSubExpr()); 600 return EmitScalarPrePostIncDec(E, LV, false, true); 601 } 602 Value *VisitUnaryPreInc(const UnaryOperator *E) { 603 LValue LV = EmitLValue(E->getSubExpr()); 604 return EmitScalarPrePostIncDec(E, LV, true, true); 605 } 606 607 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 608 llvm::Value *InVal, 609 bool IsInc); 610 611 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 612 bool isInc, bool isPre); 613 614 615 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 616 if (isa<MemberPointerType>(E->getType())) // never sugared 617 return CGF.CGM.getMemberPointerConstant(E); 618 619 return EmitLValue(E->getSubExpr()).getPointer(CGF); 620 } 621 Value *VisitUnaryDeref(const UnaryOperator *E) { 622 if (E->getType()->isVoidType()) 623 return Visit(E->getSubExpr()); // the actual value should be unused 624 return EmitLoadOfLValue(E); 625 } 626 Value *VisitUnaryPlus(const UnaryOperator *E) { 627 // This differs from gcc, though, most likely due to a bug in gcc. 628 TestAndClearIgnoreResultAssign(); 629 return Visit(E->getSubExpr()); 630 } 631 Value *VisitUnaryMinus (const UnaryOperator *E); 632 Value *VisitUnaryNot (const UnaryOperator *E); 633 Value *VisitUnaryLNot (const UnaryOperator *E); 634 Value *VisitUnaryReal (const UnaryOperator *E); 635 Value *VisitUnaryImag (const UnaryOperator *E); 636 Value *VisitUnaryExtension(const UnaryOperator *E) { 637 return Visit(E->getSubExpr()); 638 } 639 640 // C++ 641 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 642 return EmitLoadOfLValue(E); 643 } 644 Value *VisitSourceLocExpr(SourceLocExpr *SLE) { 645 auto &Ctx = CGF.getContext(); 646 APValue Evaluated = 647 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr()); 648 return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated, 649 SLE->getType()); 650 } 651 652 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 653 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 654 return Visit(DAE->getExpr()); 655 } 656 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 657 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 658 return Visit(DIE->getExpr()); 659 } 660 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 661 return CGF.LoadCXXThis(); 662 } 663 664 Value *VisitExprWithCleanups(ExprWithCleanups *E); 665 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 666 return CGF.EmitCXXNewExpr(E); 667 } 668 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 669 CGF.EmitCXXDeleteExpr(E); 670 return nullptr; 671 } 672 673 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 674 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 675 } 676 677 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) { 678 return Builder.getInt1(E->isSatisfied()); 679 } 680 681 Value *VisitRequiresExpr(const RequiresExpr *E) { 682 return Builder.getInt1(E->isSatisfied()); 683 } 684 685 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 686 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 687 } 688 689 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 690 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 691 } 692 693 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 694 // C++ [expr.pseudo]p1: 695 // The result shall only be used as the operand for the function call 696 // operator (), and the result of such a call has type void. The only 697 // effect is the evaluation of the postfix-expression before the dot or 698 // arrow. 699 CGF.EmitScalarExpr(E->getBase()); 700 return nullptr; 701 } 702 703 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 704 return EmitNullValue(E->getType()); 705 } 706 707 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 708 CGF.EmitCXXThrowExpr(E); 709 return nullptr; 710 } 711 712 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 713 return Builder.getInt1(E->getValue()); 714 } 715 716 // Binary Operators. 717 Value *EmitMul(const BinOpInfo &Ops) { 718 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 719 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 720 case LangOptions::SOB_Defined: 721 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 722 case LangOptions::SOB_Undefined: 723 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 724 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 725 LLVM_FALLTHROUGH; 726 case LangOptions::SOB_Trapping: 727 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 728 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 729 return EmitOverflowCheckedBinOp(Ops); 730 } 731 } 732 733 if (Ops.Ty->isConstantMatrixType()) { 734 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 735 // We need to check the types of the operands of the operator to get the 736 // correct matrix dimensions. 737 auto *BO = cast<BinaryOperator>(Ops.E); 738 auto *LHSMatTy = dyn_cast<ConstantMatrixType>( 739 BO->getLHS()->getType().getCanonicalType()); 740 auto *RHSMatTy = dyn_cast<ConstantMatrixType>( 741 BO->getRHS()->getType().getCanonicalType()); 742 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 743 if (LHSMatTy && RHSMatTy) 744 return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(), 745 LHSMatTy->getNumColumns(), 746 RHSMatTy->getNumColumns()); 747 return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS); 748 } 749 750 if (Ops.Ty->isUnsignedIntegerType() && 751 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 752 !CanElideOverflowCheck(CGF.getContext(), Ops)) 753 return EmitOverflowCheckedBinOp(Ops); 754 755 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 756 // Preserve the old values 757 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 758 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 759 } 760 if (Ops.isFixedPointOp()) 761 return EmitFixedPointBinOp(Ops); 762 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 763 } 764 /// Create a binary op that checks for overflow. 765 /// Currently only supports +, - and *. 766 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 767 768 // Check for undefined division and modulus behaviors. 769 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 770 llvm::Value *Zero,bool isDiv); 771 // Common helper for getting how wide LHS of shift is. 772 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 773 774 // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for 775 // non powers of two. 776 Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name); 777 778 Value *EmitDiv(const BinOpInfo &Ops); 779 Value *EmitRem(const BinOpInfo &Ops); 780 Value *EmitAdd(const BinOpInfo &Ops); 781 Value *EmitSub(const BinOpInfo &Ops); 782 Value *EmitShl(const BinOpInfo &Ops); 783 Value *EmitShr(const BinOpInfo &Ops); 784 Value *EmitAnd(const BinOpInfo &Ops) { 785 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 786 } 787 Value *EmitXor(const BinOpInfo &Ops) { 788 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 789 } 790 Value *EmitOr (const BinOpInfo &Ops) { 791 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 792 } 793 794 // Helper functions for fixed point binary operations. 795 Value *EmitFixedPointBinOp(const BinOpInfo &Ops); 796 797 BinOpInfo EmitBinOps(const BinaryOperator *E); 798 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 799 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 800 Value *&Result); 801 802 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 803 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 804 805 // Binary operators and binary compound assignment operators. 806 #define HANDLEBINOP(OP) \ 807 Value *VisitBin ## OP(const BinaryOperator *E) { \ 808 return Emit ## OP(EmitBinOps(E)); \ 809 } \ 810 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 811 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 812 } 813 HANDLEBINOP(Mul) 814 HANDLEBINOP(Div) 815 HANDLEBINOP(Rem) 816 HANDLEBINOP(Add) 817 HANDLEBINOP(Sub) 818 HANDLEBINOP(Shl) 819 HANDLEBINOP(Shr) 820 HANDLEBINOP(And) 821 HANDLEBINOP(Xor) 822 HANDLEBINOP(Or) 823 #undef HANDLEBINOP 824 825 // Comparisons. 826 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 827 llvm::CmpInst::Predicate SICmpOpc, 828 llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling); 829 #define VISITCOMP(CODE, UI, SI, FP, SIG) \ 830 Value *VisitBin##CODE(const BinaryOperator *E) { \ 831 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 832 llvm::FCmpInst::FP, SIG); } 833 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true) 834 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true) 835 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true) 836 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true) 837 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false) 838 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false) 839 #undef VISITCOMP 840 841 Value *VisitBinAssign (const BinaryOperator *E); 842 843 Value *VisitBinLAnd (const BinaryOperator *E); 844 Value *VisitBinLOr (const BinaryOperator *E); 845 Value *VisitBinComma (const BinaryOperator *E); 846 847 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 848 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 849 850 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 851 return Visit(E->getSemanticForm()); 852 } 853 854 // Other Operators. 855 Value *VisitBlockExpr(const BlockExpr *BE); 856 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 857 Value *VisitChooseExpr(ChooseExpr *CE); 858 Value *VisitVAArgExpr(VAArgExpr *VE); 859 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 860 return CGF.EmitObjCStringLiteral(E); 861 } 862 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 863 return CGF.EmitObjCBoxedExpr(E); 864 } 865 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 866 return CGF.EmitObjCArrayLiteral(E); 867 } 868 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 869 return CGF.EmitObjCDictionaryLiteral(E); 870 } 871 Value *VisitAsTypeExpr(AsTypeExpr *CE); 872 Value *VisitAtomicExpr(AtomicExpr *AE); 873 }; 874 } // end anonymous namespace. 875 876 //===----------------------------------------------------------------------===// 877 // Utilities 878 //===----------------------------------------------------------------------===// 879 880 /// EmitConversionToBool - Convert the specified expression value to a 881 /// boolean (i1) truth value. This is equivalent to "Val != 0". 882 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 883 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 884 885 if (SrcType->isRealFloatingType()) 886 return EmitFloatToBoolConversion(Src); 887 888 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 889 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 890 891 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 892 "Unknown scalar type to convert"); 893 894 if (isa<llvm::IntegerType>(Src->getType())) 895 return EmitIntToBoolConversion(Src); 896 897 assert(isa<llvm::PointerType>(Src->getType())); 898 return EmitPointerToBoolConversion(Src, SrcType); 899 } 900 901 void ScalarExprEmitter::EmitFloatConversionCheck( 902 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 903 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 904 assert(SrcType->isFloatingType() && "not a conversion from floating point"); 905 if (!isa<llvm::IntegerType>(DstTy)) 906 return; 907 908 CodeGenFunction::SanitizerScope SanScope(&CGF); 909 using llvm::APFloat; 910 using llvm::APSInt; 911 912 llvm::Value *Check = nullptr; 913 const llvm::fltSemantics &SrcSema = 914 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 915 916 // Floating-point to integer. This has undefined behavior if the source is 917 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 918 // to an integer). 919 unsigned Width = CGF.getContext().getIntWidth(DstType); 920 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 921 922 APSInt Min = APSInt::getMinValue(Width, Unsigned); 923 APFloat MinSrc(SrcSema, APFloat::uninitialized); 924 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 925 APFloat::opOverflow) 926 // Don't need an overflow check for lower bound. Just check for 927 // -Inf/NaN. 928 MinSrc = APFloat::getInf(SrcSema, true); 929 else 930 // Find the largest value which is too small to represent (before 931 // truncation toward zero). 932 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 933 934 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 935 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 936 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 937 APFloat::opOverflow) 938 // Don't need an overflow check for upper bound. Just check for 939 // +Inf/NaN. 940 MaxSrc = APFloat::getInf(SrcSema, false); 941 else 942 // Find the smallest value which is too large to represent (before 943 // truncation toward zero). 944 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 945 946 // If we're converting from __half, convert the range to float to match 947 // the type of src. 948 if (OrigSrcType->isHalfType()) { 949 const llvm::fltSemantics &Sema = 950 CGF.getContext().getFloatTypeSemantics(SrcType); 951 bool IsInexact; 952 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 953 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 954 } 955 956 llvm::Value *GE = 957 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 958 llvm::Value *LE = 959 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 960 Check = Builder.CreateAnd(GE, LE); 961 962 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 963 CGF.EmitCheckTypeDescriptor(OrigSrcType), 964 CGF.EmitCheckTypeDescriptor(DstType)}; 965 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 966 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 967 } 968 969 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 970 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 971 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 972 std::pair<llvm::Value *, SanitizerMask>> 973 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 974 QualType DstType, CGBuilderTy &Builder) { 975 llvm::Type *SrcTy = Src->getType(); 976 llvm::Type *DstTy = Dst->getType(); 977 (void)DstTy; // Only used in assert() 978 979 // This should be truncation of integral types. 980 assert(Src != Dst); 981 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 982 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 983 "non-integer llvm type"); 984 985 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 986 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 987 988 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 989 // Else, it is a signed truncation. 990 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 991 SanitizerMask Mask; 992 if (!SrcSigned && !DstSigned) { 993 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 994 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 995 } else { 996 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 997 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 998 } 999 1000 llvm::Value *Check = nullptr; 1001 // 1. Extend the truncated value back to the same width as the Src. 1002 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 1003 // 2. Equality-compare with the original source value 1004 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 1005 // If the comparison result is 'i1 false', then the truncation was lossy. 1006 return std::make_pair(Kind, std::make_pair(Check, Mask)); 1007 } 1008 1009 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 1010 QualType SrcType, QualType DstType) { 1011 return SrcType->isIntegerType() && DstType->isIntegerType(); 1012 } 1013 1014 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 1015 Value *Dst, QualType DstType, 1016 SourceLocation Loc) { 1017 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 1018 return; 1019 1020 // We only care about int->int conversions here. 1021 // We ignore conversions to/from pointer and/or bool. 1022 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1023 DstType)) 1024 return; 1025 1026 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 1027 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 1028 // This must be truncation. Else we do not care. 1029 if (SrcBits <= DstBits) 1030 return; 1031 1032 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 1033 1034 // If the integer sign change sanitizer is enabled, 1035 // and we are truncating from larger unsigned type to smaller signed type, 1036 // let that next sanitizer deal with it. 1037 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1038 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1039 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 1040 (!SrcSigned && DstSigned)) 1041 return; 1042 1043 CodeGenFunction::SanitizerScope SanScope(&CGF); 1044 1045 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1046 std::pair<llvm::Value *, SanitizerMask>> 1047 Check = 1048 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1049 // If the comparison result is 'i1 false', then the truncation was lossy. 1050 1051 // Do we care about this type of truncation? 1052 if (!CGF.SanOpts.has(Check.second.second)) 1053 return; 1054 1055 llvm::Constant *StaticArgs[] = { 1056 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1057 CGF.EmitCheckTypeDescriptor(DstType), 1058 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1059 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1060 {Src, Dst}); 1061 } 1062 1063 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1064 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1065 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1066 std::pair<llvm::Value *, SanitizerMask>> 1067 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1068 QualType DstType, CGBuilderTy &Builder) { 1069 llvm::Type *SrcTy = Src->getType(); 1070 llvm::Type *DstTy = Dst->getType(); 1071 1072 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1073 "non-integer llvm type"); 1074 1075 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1076 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1077 (void)SrcSigned; // Only used in assert() 1078 (void)DstSigned; // Only used in assert() 1079 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1080 unsigned DstBits = DstTy->getScalarSizeInBits(); 1081 (void)SrcBits; // Only used in assert() 1082 (void)DstBits; // Only used in assert() 1083 1084 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1085 "either the widths should be different, or the signednesses."); 1086 1087 // NOTE: zero value is considered to be non-negative. 1088 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1089 const char *Name) -> Value * { 1090 // Is this value a signed type? 1091 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1092 llvm::Type *VTy = V->getType(); 1093 if (!VSigned) { 1094 // If the value is unsigned, then it is never negative. 1095 // FIXME: can we encounter non-scalar VTy here? 1096 return llvm::ConstantInt::getFalse(VTy->getContext()); 1097 } 1098 // Get the zero of the same type with which we will be comparing. 1099 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1100 // %V.isnegative = icmp slt %V, 0 1101 // I.e is %V *strictly* less than zero, does it have negative value? 1102 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1103 llvm::Twine(Name) + "." + V->getName() + 1104 ".negativitycheck"); 1105 }; 1106 1107 // 1. Was the old Value negative? 1108 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1109 // 2. Is the new Value negative? 1110 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1111 // 3. Now, was the 'negativity status' preserved during the conversion? 1112 // NOTE: conversion from negative to zero is considered to change the sign. 1113 // (We want to get 'false' when the conversion changed the sign) 1114 // So we should just equality-compare the negativity statuses. 1115 llvm::Value *Check = nullptr; 1116 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1117 // If the comparison result is 'false', then the conversion changed the sign. 1118 return std::make_pair( 1119 ScalarExprEmitter::ICCK_IntegerSignChange, 1120 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1121 } 1122 1123 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1124 Value *Dst, QualType DstType, 1125 SourceLocation Loc) { 1126 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1127 return; 1128 1129 llvm::Type *SrcTy = Src->getType(); 1130 llvm::Type *DstTy = Dst->getType(); 1131 1132 // We only care about int->int conversions here. 1133 // We ignore conversions to/from pointer and/or bool. 1134 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1135 DstType)) 1136 return; 1137 1138 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1139 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1140 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1141 unsigned DstBits = DstTy->getScalarSizeInBits(); 1142 1143 // Now, we do not need to emit the check in *all* of the cases. 1144 // We can avoid emitting it in some obvious cases where it would have been 1145 // dropped by the opt passes (instcombine) always anyways. 1146 // If it's a cast between effectively the same type, no check. 1147 // NOTE: this is *not* equivalent to checking the canonical types. 1148 if (SrcSigned == DstSigned && SrcBits == DstBits) 1149 return; 1150 // At least one of the values needs to have signed type. 1151 // If both are unsigned, then obviously, neither of them can be negative. 1152 if (!SrcSigned && !DstSigned) 1153 return; 1154 // If the conversion is to *larger* *signed* type, then no check is needed. 1155 // Because either sign-extension happens (so the sign will remain), 1156 // or zero-extension will happen (the sign bit will be zero.) 1157 if ((DstBits > SrcBits) && DstSigned) 1158 return; 1159 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1160 (SrcBits > DstBits) && SrcSigned) { 1161 // If the signed integer truncation sanitizer is enabled, 1162 // and this is a truncation from signed type, then no check is needed. 1163 // Because here sign change check is interchangeable with truncation check. 1164 return; 1165 } 1166 // That's it. We can't rule out any more cases with the data we have. 1167 1168 CodeGenFunction::SanitizerScope SanScope(&CGF); 1169 1170 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1171 std::pair<llvm::Value *, SanitizerMask>> 1172 Check; 1173 1174 // Each of these checks needs to return 'false' when an issue was detected. 1175 ImplicitConversionCheckKind CheckKind; 1176 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1177 // So we can 'and' all the checks together, and still get 'false', 1178 // if at least one of the checks detected an issue. 1179 1180 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1181 CheckKind = Check.first; 1182 Checks.emplace_back(Check.second); 1183 1184 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1185 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1186 // If the signed integer truncation sanitizer was enabled, 1187 // and we are truncating from larger unsigned type to smaller signed type, 1188 // let's handle the case we skipped in that check. 1189 Check = 1190 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1191 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1192 Checks.emplace_back(Check.second); 1193 // If the comparison result is 'i1 false', then the truncation was lossy. 1194 } 1195 1196 llvm::Constant *StaticArgs[] = { 1197 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1198 CGF.EmitCheckTypeDescriptor(DstType), 1199 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1200 // EmitCheck() will 'and' all the checks together. 1201 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1202 {Src, Dst}); 1203 } 1204 1205 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType, 1206 QualType DstType, llvm::Type *SrcTy, 1207 llvm::Type *DstTy, 1208 ScalarConversionOpts Opts) { 1209 // The Element types determine the type of cast to perform. 1210 llvm::Type *SrcElementTy; 1211 llvm::Type *DstElementTy; 1212 QualType SrcElementType; 1213 QualType DstElementType; 1214 if (SrcType->isMatrixType() && DstType->isMatrixType()) { 1215 SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType(); 1216 DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1217 SrcElementType = SrcType->castAs<MatrixType>()->getElementType(); 1218 DstElementType = DstType->castAs<MatrixType>()->getElementType(); 1219 } else { 1220 assert(!SrcType->isMatrixType() && !DstType->isMatrixType() && 1221 "cannot cast between matrix and non-matrix types"); 1222 SrcElementTy = SrcTy; 1223 DstElementTy = DstTy; 1224 SrcElementType = SrcType; 1225 DstElementType = DstType; 1226 } 1227 1228 if (isa<llvm::IntegerType>(SrcElementTy)) { 1229 bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType(); 1230 if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1231 InputSigned = true; 1232 } 1233 1234 if (isa<llvm::IntegerType>(DstElementTy)) 1235 return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1236 if (InputSigned) 1237 return Builder.CreateSIToFP(Src, DstTy, "conv"); 1238 return Builder.CreateUIToFP(Src, DstTy, "conv"); 1239 } 1240 1241 if (isa<llvm::IntegerType>(DstElementTy)) { 1242 assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion"); 1243 if (DstElementType->isSignedIntegerOrEnumerationType()) 1244 return Builder.CreateFPToSI(Src, DstTy, "conv"); 1245 return Builder.CreateFPToUI(Src, DstTy, "conv"); 1246 } 1247 1248 if (DstElementTy->getTypeID() < SrcElementTy->getTypeID()) 1249 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1250 return Builder.CreateFPExt(Src, DstTy, "conv"); 1251 } 1252 1253 /// Emit a conversion from the specified type to the specified destination type, 1254 /// both of which are LLVM scalar types. 1255 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1256 QualType DstType, 1257 SourceLocation Loc, 1258 ScalarConversionOpts Opts) { 1259 // All conversions involving fixed point types should be handled by the 1260 // EmitFixedPoint family functions. This is done to prevent bloating up this 1261 // function more, and although fixed point numbers are represented by 1262 // integers, we do not want to follow any logic that assumes they should be 1263 // treated as integers. 1264 // TODO(leonardchan): When necessary, add another if statement checking for 1265 // conversions to fixed point types from other types. 1266 if (SrcType->isFixedPointType()) { 1267 if (DstType->isBooleanType()) 1268 // It is important that we check this before checking if the dest type is 1269 // an integer because booleans are technically integer types. 1270 // We do not need to check the padding bit on unsigned types if unsigned 1271 // padding is enabled because overflow into this bit is undefined 1272 // behavior. 1273 return Builder.CreateIsNotNull(Src, "tobool"); 1274 if (DstType->isFixedPointType() || DstType->isIntegerType() || 1275 DstType->isRealFloatingType()) 1276 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1277 1278 llvm_unreachable( 1279 "Unhandled scalar conversion from a fixed point type to another type."); 1280 } else if (DstType->isFixedPointType()) { 1281 if (SrcType->isIntegerType() || SrcType->isRealFloatingType()) 1282 // This also includes converting booleans and enums to fixed point types. 1283 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1284 1285 llvm_unreachable( 1286 "Unhandled scalar conversion to a fixed point type from another type."); 1287 } 1288 1289 QualType NoncanonicalSrcType = SrcType; 1290 QualType NoncanonicalDstType = DstType; 1291 1292 SrcType = CGF.getContext().getCanonicalType(SrcType); 1293 DstType = CGF.getContext().getCanonicalType(DstType); 1294 if (SrcType == DstType) return Src; 1295 1296 if (DstType->isVoidType()) return nullptr; 1297 1298 llvm::Value *OrigSrc = Src; 1299 QualType OrigSrcType = SrcType; 1300 llvm::Type *SrcTy = Src->getType(); 1301 1302 // Handle conversions to bool first, they are special: comparisons against 0. 1303 if (DstType->isBooleanType()) 1304 return EmitConversionToBool(Src, SrcType); 1305 1306 llvm::Type *DstTy = ConvertType(DstType); 1307 1308 // Cast from half through float if half isn't a native type. 1309 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1310 // Cast to FP using the intrinsic if the half type itself isn't supported. 1311 if (DstTy->isFloatingPointTy()) { 1312 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1313 return Builder.CreateCall( 1314 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1315 Src); 1316 } else { 1317 // Cast to other types through float, using either the intrinsic or FPExt, 1318 // depending on whether the half type itself is supported 1319 // (as opposed to operations on half, available with NativeHalfType). 1320 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1321 Src = Builder.CreateCall( 1322 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1323 CGF.CGM.FloatTy), 1324 Src); 1325 } else { 1326 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1327 } 1328 SrcType = CGF.getContext().FloatTy; 1329 SrcTy = CGF.FloatTy; 1330 } 1331 } 1332 1333 // Ignore conversions like int -> uint. 1334 if (SrcTy == DstTy) { 1335 if (Opts.EmitImplicitIntegerSignChangeChecks) 1336 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1337 NoncanonicalDstType, Loc); 1338 1339 return Src; 1340 } 1341 1342 // Handle pointer conversions next: pointers can only be converted to/from 1343 // other pointers and integers. Check for pointer types in terms of LLVM, as 1344 // some native types (like Obj-C id) may map to a pointer type. 1345 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1346 // The source value may be an integer, or a pointer. 1347 if (isa<llvm::PointerType>(SrcTy)) 1348 return Builder.CreateBitCast(Src, DstTy, "conv"); 1349 1350 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1351 // First, convert to the correct width so that we control the kind of 1352 // extension. 1353 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1354 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1355 llvm::Value* IntResult = 1356 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1357 // Then, cast to pointer. 1358 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1359 } 1360 1361 if (isa<llvm::PointerType>(SrcTy)) { 1362 // Must be an ptr to int cast. 1363 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1364 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1365 } 1366 1367 // A scalar can be splatted to an extended vector of the same element type 1368 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1369 // Sema should add casts to make sure that the source expression's type is 1370 // the same as the vector's element type (sans qualifiers) 1371 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1372 SrcType.getTypePtr() && 1373 "Splatted expr doesn't match with vector element type?"); 1374 1375 // Splat the element across to all elements 1376 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 1377 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1378 } 1379 1380 if (SrcType->isMatrixType() && DstType->isMatrixType()) 1381 return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts); 1382 1383 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1384 // Allow bitcast from vector to integer/fp of the same size. 1385 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1386 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1387 if (SrcSize == DstSize) 1388 return Builder.CreateBitCast(Src, DstTy, "conv"); 1389 1390 // Conversions between vectors of different sizes are not allowed except 1391 // when vectors of half are involved. Operations on storage-only half 1392 // vectors require promoting half vector operands to float vectors and 1393 // truncating the result, which is either an int or float vector, to a 1394 // short or half vector. 1395 1396 // Source and destination are both expected to be vectors. 1397 llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType(); 1398 llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1399 (void)DstElementTy; 1400 1401 assert(((SrcElementTy->isIntegerTy() && 1402 DstElementTy->isIntegerTy()) || 1403 (SrcElementTy->isFloatingPointTy() && 1404 DstElementTy->isFloatingPointTy())) && 1405 "unexpected conversion between a floating-point vector and an " 1406 "integer vector"); 1407 1408 // Truncate an i32 vector to an i16 vector. 1409 if (SrcElementTy->isIntegerTy()) 1410 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1411 1412 // Truncate a float vector to a half vector. 1413 if (SrcSize > DstSize) 1414 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1415 1416 // Promote a half vector to a float vector. 1417 return Builder.CreateFPExt(Src, DstTy, "conv"); 1418 } 1419 1420 // Finally, we have the arithmetic types: real int/float. 1421 Value *Res = nullptr; 1422 llvm::Type *ResTy = DstTy; 1423 1424 // An overflowing conversion has undefined behavior if either the source type 1425 // or the destination type is a floating-point type. However, we consider the 1426 // range of representable values for all floating-point types to be 1427 // [-inf,+inf], so no overflow can ever happen when the destination type is a 1428 // floating-point type. 1429 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1430 OrigSrcType->isFloatingType()) 1431 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1432 Loc); 1433 1434 // Cast to half through float if half isn't a native type. 1435 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1436 // Make sure we cast in a single step if from another FP type. 1437 if (SrcTy->isFloatingPointTy()) { 1438 // Use the intrinsic if the half type itself isn't supported 1439 // (as opposed to operations on half, available with NativeHalfType). 1440 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1441 return Builder.CreateCall( 1442 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1443 // If the half type is supported, just use an fptrunc. 1444 return Builder.CreateFPTrunc(Src, DstTy); 1445 } 1446 DstTy = CGF.FloatTy; 1447 } 1448 1449 Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts); 1450 1451 if (DstTy != ResTy) { 1452 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1453 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1454 Res = Builder.CreateCall( 1455 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1456 Res); 1457 } else { 1458 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1459 } 1460 } 1461 1462 if (Opts.EmitImplicitIntegerTruncationChecks) 1463 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1464 NoncanonicalDstType, Loc); 1465 1466 if (Opts.EmitImplicitIntegerSignChangeChecks) 1467 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1468 NoncanonicalDstType, Loc); 1469 1470 return Res; 1471 } 1472 1473 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1474 QualType DstTy, 1475 SourceLocation Loc) { 1476 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 1477 llvm::Value *Result; 1478 if (SrcTy->isRealFloatingType()) 1479 Result = FPBuilder.CreateFloatingToFixed(Src, 1480 CGF.getContext().getFixedPointSemantics(DstTy)); 1481 else if (DstTy->isRealFloatingType()) 1482 Result = FPBuilder.CreateFixedToFloating(Src, 1483 CGF.getContext().getFixedPointSemantics(SrcTy), 1484 ConvertType(DstTy)); 1485 else { 1486 auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy); 1487 auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy); 1488 1489 if (DstTy->isIntegerType()) 1490 Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema, 1491 DstFPSema.getWidth(), 1492 DstFPSema.isSigned()); 1493 else if (SrcTy->isIntegerType()) 1494 Result = FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(), 1495 DstFPSema); 1496 else 1497 Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema); 1498 } 1499 return Result; 1500 } 1501 1502 /// Emit a conversion from the specified complex type to the specified 1503 /// destination type, where the destination type is an LLVM scalar type. 1504 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1505 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1506 SourceLocation Loc) { 1507 // Get the source element type. 1508 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1509 1510 // Handle conversions to bool first, they are special: comparisons against 0. 1511 if (DstTy->isBooleanType()) { 1512 // Complex != 0 -> (Real != 0) | (Imag != 0) 1513 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1514 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1515 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1516 } 1517 1518 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1519 // the imaginary part of the complex value is discarded and the value of the 1520 // real part is converted according to the conversion rules for the 1521 // corresponding real type. 1522 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1523 } 1524 1525 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1526 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1527 } 1528 1529 /// Emit a sanitization check for the given "binary" operation (which 1530 /// might actually be a unary increment which has been lowered to a binary 1531 /// operation). The check passes if all values in \p Checks (which are \c i1), 1532 /// are \c true. 1533 void ScalarExprEmitter::EmitBinOpCheck( 1534 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1535 assert(CGF.IsSanitizerScope); 1536 SanitizerHandler Check; 1537 SmallVector<llvm::Constant *, 4> StaticData; 1538 SmallVector<llvm::Value *, 2> DynamicData; 1539 1540 BinaryOperatorKind Opcode = Info.Opcode; 1541 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1542 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1543 1544 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1545 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1546 if (UO && UO->getOpcode() == UO_Minus) { 1547 Check = SanitizerHandler::NegateOverflow; 1548 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1549 DynamicData.push_back(Info.RHS); 1550 } else { 1551 if (BinaryOperator::isShiftOp(Opcode)) { 1552 // Shift LHS negative or too large, or RHS out of bounds. 1553 Check = SanitizerHandler::ShiftOutOfBounds; 1554 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1555 StaticData.push_back( 1556 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1557 StaticData.push_back( 1558 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1559 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1560 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1561 Check = SanitizerHandler::DivremOverflow; 1562 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1563 } else { 1564 // Arithmetic overflow (+, -, *). 1565 switch (Opcode) { 1566 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1567 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1568 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1569 default: llvm_unreachable("unexpected opcode for bin op check"); 1570 } 1571 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1572 } 1573 DynamicData.push_back(Info.LHS); 1574 DynamicData.push_back(Info.RHS); 1575 } 1576 1577 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1578 } 1579 1580 //===----------------------------------------------------------------------===// 1581 // Visitor Methods 1582 //===----------------------------------------------------------------------===// 1583 1584 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1585 CGF.ErrorUnsupported(E, "scalar expression"); 1586 if (E->getType()->isVoidType()) 1587 return nullptr; 1588 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1589 } 1590 1591 Value * 1592 ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) { 1593 ASTContext &Context = CGF.getContext(); 1594 llvm::Optional<LangAS> GlobalAS = 1595 Context.getTargetInfo().getConstantAddressSpace(); 1596 llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr( 1597 E->ComputeName(Context), "__usn_str", 1598 static_cast<unsigned>(GlobalAS.getValueOr(LangAS::Default))); 1599 1600 unsigned ExprAS = Context.getTargetAddressSpace(E->getType()); 1601 1602 if (GlobalConstStr->getType()->getPointerAddressSpace() == ExprAS) 1603 return GlobalConstStr; 1604 1605 llvm::Type *EltTy = GlobalConstStr->getType()->getPointerElementType(); 1606 llvm::PointerType *NewPtrTy = llvm::PointerType::get(EltTy, ExprAS); 1607 return Builder.CreateAddrSpaceCast(GlobalConstStr, NewPtrTy, "usn_addr_cast"); 1608 } 1609 1610 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1611 // Vector Mask Case 1612 if (E->getNumSubExprs() == 2) { 1613 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1614 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1615 Value *Mask; 1616 1617 auto *LTy = cast<llvm::FixedVectorType>(LHS->getType()); 1618 unsigned LHSElts = LTy->getNumElements(); 1619 1620 Mask = RHS; 1621 1622 auto *MTy = cast<llvm::FixedVectorType>(Mask->getType()); 1623 1624 // Mask off the high bits of each shuffle index. 1625 Value *MaskBits = 1626 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1627 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1628 1629 // newv = undef 1630 // mask = mask & maskbits 1631 // for each elt 1632 // n = extract mask i 1633 // x = extract val n 1634 // newv = insert newv, x, i 1635 auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(), 1636 MTy->getNumElements()); 1637 Value* NewV = llvm::UndefValue::get(RTy); 1638 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1639 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1640 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1641 1642 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1643 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1644 } 1645 return NewV; 1646 } 1647 1648 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1649 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1650 1651 SmallVector<int, 32> Indices; 1652 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1653 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1654 // Check for -1 and output it as undef in the IR. 1655 if (Idx.isSigned() && Idx.isAllOnes()) 1656 Indices.push_back(-1); 1657 else 1658 Indices.push_back(Idx.getZExtValue()); 1659 } 1660 1661 return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle"); 1662 } 1663 1664 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1665 QualType SrcType = E->getSrcExpr()->getType(), 1666 DstType = E->getType(); 1667 1668 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1669 1670 SrcType = CGF.getContext().getCanonicalType(SrcType); 1671 DstType = CGF.getContext().getCanonicalType(DstType); 1672 if (SrcType == DstType) return Src; 1673 1674 assert(SrcType->isVectorType() && 1675 "ConvertVector source type must be a vector"); 1676 assert(DstType->isVectorType() && 1677 "ConvertVector destination type must be a vector"); 1678 1679 llvm::Type *SrcTy = Src->getType(); 1680 llvm::Type *DstTy = ConvertType(DstType); 1681 1682 // Ignore conversions like int -> uint. 1683 if (SrcTy == DstTy) 1684 return Src; 1685 1686 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(), 1687 DstEltType = DstType->castAs<VectorType>()->getElementType(); 1688 1689 assert(SrcTy->isVectorTy() && 1690 "ConvertVector source IR type must be a vector"); 1691 assert(DstTy->isVectorTy() && 1692 "ConvertVector destination IR type must be a vector"); 1693 1694 llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(), 1695 *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1696 1697 if (DstEltType->isBooleanType()) { 1698 assert((SrcEltTy->isFloatingPointTy() || 1699 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1700 1701 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1702 if (SrcEltTy->isFloatingPointTy()) { 1703 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1704 } else { 1705 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1706 } 1707 } 1708 1709 // We have the arithmetic types: real int/float. 1710 Value *Res = nullptr; 1711 1712 if (isa<llvm::IntegerType>(SrcEltTy)) { 1713 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1714 if (isa<llvm::IntegerType>(DstEltTy)) 1715 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1716 else if (InputSigned) 1717 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1718 else 1719 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1720 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1721 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1722 if (DstEltType->isSignedIntegerOrEnumerationType()) 1723 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1724 else 1725 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1726 } else { 1727 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1728 "Unknown real conversion"); 1729 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1730 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1731 else 1732 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1733 } 1734 1735 return Res; 1736 } 1737 1738 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1739 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1740 CGF.EmitIgnoredExpr(E->getBase()); 1741 return CGF.emitScalarConstant(Constant, E); 1742 } else { 1743 Expr::EvalResult Result; 1744 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1745 llvm::APSInt Value = Result.Val.getInt(); 1746 CGF.EmitIgnoredExpr(E->getBase()); 1747 return Builder.getInt(Value); 1748 } 1749 } 1750 1751 return EmitLoadOfLValue(E); 1752 } 1753 1754 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1755 TestAndClearIgnoreResultAssign(); 1756 1757 // Emit subscript expressions in rvalue context's. For most cases, this just 1758 // loads the lvalue formed by the subscript expr. However, we have to be 1759 // careful, because the base of a vector subscript is occasionally an rvalue, 1760 // so we can't get it as an lvalue. 1761 if (!E->getBase()->getType()->isVectorType()) 1762 return EmitLoadOfLValue(E); 1763 1764 // Handle the vector case. The base must be a vector, the index must be an 1765 // integer value. 1766 Value *Base = Visit(E->getBase()); 1767 Value *Idx = Visit(E->getIdx()); 1768 QualType IdxTy = E->getIdx()->getType(); 1769 1770 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1771 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1772 1773 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1774 } 1775 1776 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) { 1777 TestAndClearIgnoreResultAssign(); 1778 1779 // Handle the vector case. The base must be a vector, the index must be an 1780 // integer value. 1781 Value *RowIdx = Visit(E->getRowIdx()); 1782 Value *ColumnIdx = Visit(E->getColumnIdx()); 1783 1784 const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>(); 1785 unsigned NumRows = MatrixTy->getNumRows(); 1786 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 1787 Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows); 1788 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0) 1789 MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened()); 1790 1791 Value *Matrix = Visit(E->getBase()); 1792 1793 // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds? 1794 return Builder.CreateExtractElement(Matrix, Idx, "matrixext"); 1795 } 1796 1797 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1798 unsigned Off) { 1799 int MV = SVI->getMaskValue(Idx); 1800 if (MV == -1) 1801 return -1; 1802 return Off + MV; 1803 } 1804 1805 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1806 assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && 1807 "Index operand too large for shufflevector mask!"); 1808 return C->getZExtValue(); 1809 } 1810 1811 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1812 bool Ignore = TestAndClearIgnoreResultAssign(); 1813 (void)Ignore; 1814 assert (Ignore == false && "init list ignored"); 1815 unsigned NumInitElements = E->getNumInits(); 1816 1817 if (E->hadArrayRangeDesignator()) 1818 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1819 1820 llvm::VectorType *VType = 1821 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1822 1823 if (!VType) { 1824 if (NumInitElements == 0) { 1825 // C++11 value-initialization for the scalar. 1826 return EmitNullValue(E->getType()); 1827 } 1828 // We have a scalar in braces. Just use the first element. 1829 return Visit(E->getInit(0)); 1830 } 1831 1832 unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements(); 1833 1834 // Loop over initializers collecting the Value for each, and remembering 1835 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1836 // us to fold the shuffle for the swizzle into the shuffle for the vector 1837 // initializer, since LLVM optimizers generally do not want to touch 1838 // shuffles. 1839 unsigned CurIdx = 0; 1840 bool VIsUndefShuffle = false; 1841 llvm::Value *V = llvm::UndefValue::get(VType); 1842 for (unsigned i = 0; i != NumInitElements; ++i) { 1843 Expr *IE = E->getInit(i); 1844 Value *Init = Visit(IE); 1845 SmallVector<int, 16> Args; 1846 1847 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1848 1849 // Handle scalar elements. If the scalar initializer is actually one 1850 // element of a different vector of the same width, use shuffle instead of 1851 // extract+insert. 1852 if (!VVT) { 1853 if (isa<ExtVectorElementExpr>(IE)) { 1854 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1855 1856 if (cast<llvm::FixedVectorType>(EI->getVectorOperandType()) 1857 ->getNumElements() == ResElts) { 1858 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1859 Value *LHS = nullptr, *RHS = nullptr; 1860 if (CurIdx == 0) { 1861 // insert into undef -> shuffle (src, undef) 1862 // shufflemask must use an i32 1863 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1864 Args.resize(ResElts, -1); 1865 1866 LHS = EI->getVectorOperand(); 1867 RHS = V; 1868 VIsUndefShuffle = true; 1869 } else if (VIsUndefShuffle) { 1870 // insert into undefshuffle && size match -> shuffle (v, src) 1871 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1872 for (unsigned j = 0; j != CurIdx; ++j) 1873 Args.push_back(getMaskElt(SVV, j, 0)); 1874 Args.push_back(ResElts + C->getZExtValue()); 1875 Args.resize(ResElts, -1); 1876 1877 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1878 RHS = EI->getVectorOperand(); 1879 VIsUndefShuffle = false; 1880 } 1881 if (!Args.empty()) { 1882 V = Builder.CreateShuffleVector(LHS, RHS, Args); 1883 ++CurIdx; 1884 continue; 1885 } 1886 } 1887 } 1888 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1889 "vecinit"); 1890 VIsUndefShuffle = false; 1891 ++CurIdx; 1892 continue; 1893 } 1894 1895 unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements(); 1896 1897 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1898 // input is the same width as the vector being constructed, generate an 1899 // optimized shuffle of the swizzle input into the result. 1900 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1901 if (isa<ExtVectorElementExpr>(IE)) { 1902 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1903 Value *SVOp = SVI->getOperand(0); 1904 auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType()); 1905 1906 if (OpTy->getNumElements() == ResElts) { 1907 for (unsigned j = 0; j != CurIdx; ++j) { 1908 // If the current vector initializer is a shuffle with undef, merge 1909 // this shuffle directly into it. 1910 if (VIsUndefShuffle) { 1911 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0)); 1912 } else { 1913 Args.push_back(j); 1914 } 1915 } 1916 for (unsigned j = 0, je = InitElts; j != je; ++j) 1917 Args.push_back(getMaskElt(SVI, j, Offset)); 1918 Args.resize(ResElts, -1); 1919 1920 if (VIsUndefShuffle) 1921 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1922 1923 Init = SVOp; 1924 } 1925 } 1926 1927 // Extend init to result vector length, and then shuffle its contribution 1928 // to the vector initializer into V. 1929 if (Args.empty()) { 1930 for (unsigned j = 0; j != InitElts; ++j) 1931 Args.push_back(j); 1932 Args.resize(ResElts, -1); 1933 Init = Builder.CreateShuffleVector(Init, Args, "vext"); 1934 1935 Args.clear(); 1936 for (unsigned j = 0; j != CurIdx; ++j) 1937 Args.push_back(j); 1938 for (unsigned j = 0; j != InitElts; ++j) 1939 Args.push_back(j + Offset); 1940 Args.resize(ResElts, -1); 1941 } 1942 1943 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1944 // merging subsequent shuffles into this one. 1945 if (CurIdx == 0) 1946 std::swap(V, Init); 1947 V = Builder.CreateShuffleVector(V, Init, Args, "vecinit"); 1948 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1949 CurIdx += InitElts; 1950 } 1951 1952 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1953 // Emit remaining default initializers. 1954 llvm::Type *EltTy = VType->getElementType(); 1955 1956 // Emit remaining default initializers 1957 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1958 Value *Idx = Builder.getInt32(CurIdx); 1959 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1960 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1961 } 1962 return V; 1963 } 1964 1965 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1966 const Expr *E = CE->getSubExpr(); 1967 1968 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1969 return false; 1970 1971 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1972 // We always assume that 'this' is never null. 1973 return false; 1974 } 1975 1976 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1977 // And that glvalue casts are never null. 1978 if (ICE->isGLValue()) 1979 return false; 1980 } 1981 1982 return true; 1983 } 1984 1985 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1986 // have to handle a more broad range of conversions than explicit casts, as they 1987 // handle things like function to ptr-to-function decay etc. 1988 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1989 Expr *E = CE->getSubExpr(); 1990 QualType DestTy = CE->getType(); 1991 CastKind Kind = CE->getCastKind(); 1992 1993 // These cases are generally not written to ignore the result of 1994 // evaluating their sub-expressions, so we clear this now. 1995 bool Ignored = TestAndClearIgnoreResultAssign(); 1996 1997 // Since almost all cast kinds apply to scalars, this switch doesn't have 1998 // a default case, so the compiler will warn on a missing case. The cases 1999 // are in the same order as in the CastKind enum. 2000 switch (Kind) { 2001 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 2002 case CK_BuiltinFnToFnPtr: 2003 llvm_unreachable("builtin functions are handled elsewhere"); 2004 2005 case CK_LValueBitCast: 2006 case CK_ObjCObjectLValueCast: { 2007 Address Addr = EmitLValue(E).getAddress(CGF); 2008 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 2009 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 2010 return EmitLoadOfLValue(LV, CE->getExprLoc()); 2011 } 2012 2013 case CK_LValueToRValueBitCast: { 2014 LValue SourceLVal = CGF.EmitLValue(E); 2015 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF), 2016 CGF.ConvertTypeForMem(DestTy)); 2017 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 2018 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 2019 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 2020 } 2021 2022 case CK_CPointerToObjCPointerCast: 2023 case CK_BlockPointerToObjCPointerCast: 2024 case CK_AnyPointerToBlockPointerCast: 2025 case CK_BitCast: { 2026 Value *Src = Visit(const_cast<Expr*>(E)); 2027 llvm::Type *SrcTy = Src->getType(); 2028 llvm::Type *DstTy = ConvertType(DestTy); 2029 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 2030 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 2031 llvm_unreachable("wrong cast for pointers in different address spaces" 2032 "(must be an address space cast)!"); 2033 } 2034 2035 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 2036 if (auto PT = DestTy->getAs<PointerType>()) 2037 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 2038 /*MayBeNull=*/true, 2039 CodeGenFunction::CFITCK_UnrelatedCast, 2040 CE->getBeginLoc()); 2041 } 2042 2043 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2044 const QualType SrcType = E->getType(); 2045 2046 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 2047 // Casting to pointer that could carry dynamic information (provided by 2048 // invariant.group) requires launder. 2049 Src = Builder.CreateLaunderInvariantGroup(Src); 2050 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 2051 // Casting to pointer that does not carry dynamic information (provided 2052 // by invariant.group) requires stripping it. Note that we don't do it 2053 // if the source could not be dynamic type and destination could be 2054 // dynamic because dynamic information is already laundered. It is 2055 // because launder(strip(src)) == launder(src), so there is no need to 2056 // add extra strip before launder. 2057 Src = Builder.CreateStripInvariantGroup(Src); 2058 } 2059 } 2060 2061 // Update heapallocsite metadata when there is an explicit pointer cast. 2062 if (auto *CI = dyn_cast<llvm::CallBase>(Src)) { 2063 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) { 2064 QualType PointeeType = DestTy->getPointeeType(); 2065 if (!PointeeType.isNull()) 2066 CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType, 2067 CE->getExprLoc()); 2068 } 2069 } 2070 2071 // If Src is a fixed vector and Dst is a scalable vector, and both have the 2072 // same element type, use the llvm.experimental.vector.insert intrinsic to 2073 // perform the bitcast. 2074 if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) { 2075 if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) { 2076 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate 2077 // vector, use a vector insert and bitcast the result. 2078 bool NeedsBitCast = false; 2079 auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 2080 llvm::Type *OrigType = DstTy; 2081 if (ScalableDst == PredType && 2082 FixedSrc->getElementType() == Builder.getInt8Ty()) { 2083 DstTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); 2084 ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy); 2085 NeedsBitCast = true; 2086 } 2087 if (FixedSrc->getElementType() == ScalableDst->getElementType()) { 2088 llvm::Value *UndefVec = llvm::UndefValue::get(DstTy); 2089 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 2090 llvm::Value *Result = Builder.CreateInsertVector( 2091 DstTy, UndefVec, Src, Zero, "castScalableSve"); 2092 if (NeedsBitCast) 2093 Result = Builder.CreateBitCast(Result, OrigType); 2094 return Result; 2095 } 2096 } 2097 } 2098 2099 // If Src is a scalable vector and Dst is a fixed vector, and both have the 2100 // same element type, use the llvm.experimental.vector.extract intrinsic to 2101 // perform the bitcast. 2102 if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) { 2103 if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) { 2104 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8 2105 // vector, bitcast the source and use a vector extract. 2106 auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 2107 if (ScalableSrc == PredType && 2108 FixedDst->getElementType() == Builder.getInt8Ty()) { 2109 SrcTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); 2110 ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy); 2111 Src = Builder.CreateBitCast(Src, SrcTy); 2112 } 2113 if (ScalableSrc->getElementType() == FixedDst->getElementType()) { 2114 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 2115 return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve"); 2116 } 2117 } 2118 } 2119 2120 // Perform VLAT <-> VLST bitcast through memory. 2121 // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics 2122 // require the element types of the vectors to be the same, we 2123 // need to keep this around for bitcasts between VLAT <-> VLST where 2124 // the element types of the vectors are not the same, until we figure 2125 // out a better way of doing these casts. 2126 if ((isa<llvm::FixedVectorType>(SrcTy) && 2127 isa<llvm::ScalableVectorType>(DstTy)) || 2128 (isa<llvm::ScalableVectorType>(SrcTy) && 2129 isa<llvm::FixedVectorType>(DstTy))) { 2130 Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value"); 2131 LValue LV = CGF.MakeAddrLValue(Addr, E->getType()); 2132 CGF.EmitStoreOfScalar(Src, LV); 2133 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy), 2134 "castFixedSve"); 2135 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 2136 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 2137 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 2138 } 2139 2140 return Builder.CreateBitCast(Src, DstTy); 2141 } 2142 case CK_AddressSpaceConversion: { 2143 Expr::EvalResult Result; 2144 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2145 Result.Val.isNullPointer()) { 2146 // If E has side effect, it is emitted even if its final result is a 2147 // null pointer. In that case, a DCE pass should be able to 2148 // eliminate the useless instructions emitted during translating E. 2149 if (Result.HasSideEffects) 2150 Visit(E); 2151 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2152 ConvertType(DestTy)), DestTy); 2153 } 2154 // Since target may map different address spaces in AST to the same address 2155 // space, an address space conversion may end up as a bitcast. 2156 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2157 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2158 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2159 } 2160 case CK_AtomicToNonAtomic: 2161 case CK_NonAtomicToAtomic: 2162 case CK_UserDefinedConversion: 2163 return Visit(const_cast<Expr*>(E)); 2164 2165 case CK_NoOp: { 2166 llvm::Value *V = Visit(const_cast<Expr *>(E)); 2167 if (V) { 2168 // CK_NoOp can model a pointer qualification conversion, which can remove 2169 // an array bound and change the IR type. 2170 // FIXME: Once pointee types are removed from IR, remove this. 2171 llvm::Type *T = ConvertType(DestTy); 2172 if (T != V->getType()) 2173 V = Builder.CreateBitCast(V, T); 2174 } 2175 return V; 2176 } 2177 2178 case CK_BaseToDerived: { 2179 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2180 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2181 2182 Address Base = CGF.EmitPointerWithAlignment(E); 2183 Address Derived = 2184 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2185 CE->path_begin(), CE->path_end(), 2186 CGF.ShouldNullCheckClassCastValue(CE)); 2187 2188 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2189 // performed and the object is not of the derived type. 2190 if (CGF.sanitizePerformTypeCheck()) 2191 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2192 Derived.getPointer(), DestTy->getPointeeType()); 2193 2194 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2195 CGF.EmitVTablePtrCheckForCast( 2196 DestTy->getPointeeType(), Derived.getPointer(), 2197 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 2198 CE->getBeginLoc()); 2199 2200 return Derived.getPointer(); 2201 } 2202 case CK_UncheckedDerivedToBase: 2203 case CK_DerivedToBase: { 2204 // The EmitPointerWithAlignment path does this fine; just discard 2205 // the alignment. 2206 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2207 } 2208 2209 case CK_Dynamic: { 2210 Address V = CGF.EmitPointerWithAlignment(E); 2211 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2212 return CGF.EmitDynamicCast(V, DCE); 2213 } 2214 2215 case CK_ArrayToPointerDecay: 2216 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2217 case CK_FunctionToPointerDecay: 2218 return EmitLValue(E).getPointer(CGF); 2219 2220 case CK_NullToPointer: 2221 if (MustVisitNullValue(E)) 2222 CGF.EmitIgnoredExpr(E); 2223 2224 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2225 DestTy); 2226 2227 case CK_NullToMemberPointer: { 2228 if (MustVisitNullValue(E)) 2229 CGF.EmitIgnoredExpr(E); 2230 2231 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2232 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2233 } 2234 2235 case CK_ReinterpretMemberPointer: 2236 case CK_BaseToDerivedMemberPointer: 2237 case CK_DerivedToBaseMemberPointer: { 2238 Value *Src = Visit(E); 2239 2240 // Note that the AST doesn't distinguish between checked and 2241 // unchecked member pointer conversions, so we always have to 2242 // implement checked conversions here. This is inefficient when 2243 // actual control flow may be required in order to perform the 2244 // check, which it is for data member pointers (but not member 2245 // function pointers on Itanium and ARM). 2246 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2247 } 2248 2249 case CK_ARCProduceObject: 2250 return CGF.EmitARCRetainScalarExpr(E); 2251 case CK_ARCConsumeObject: 2252 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2253 case CK_ARCReclaimReturnedObject: 2254 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2255 case CK_ARCExtendBlockObject: 2256 return CGF.EmitARCExtendBlockObject(E); 2257 2258 case CK_CopyAndAutoreleaseBlockObject: 2259 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2260 2261 case CK_FloatingRealToComplex: 2262 case CK_FloatingComplexCast: 2263 case CK_IntegralRealToComplex: 2264 case CK_IntegralComplexCast: 2265 case CK_IntegralComplexToFloatingComplex: 2266 case CK_FloatingComplexToIntegralComplex: 2267 case CK_ConstructorConversion: 2268 case CK_ToUnion: 2269 llvm_unreachable("scalar cast to non-scalar value"); 2270 2271 case CK_LValueToRValue: 2272 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2273 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2274 return Visit(const_cast<Expr*>(E)); 2275 2276 case CK_IntegralToPointer: { 2277 Value *Src = Visit(const_cast<Expr*>(E)); 2278 2279 // First, convert to the correct width so that we control the kind of 2280 // extension. 2281 auto DestLLVMTy = ConvertType(DestTy); 2282 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2283 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2284 llvm::Value* IntResult = 2285 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2286 2287 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2288 2289 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2290 // Going from integer to pointer that could be dynamic requires reloading 2291 // dynamic information from invariant.group. 2292 if (DestTy.mayBeDynamicClass()) 2293 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2294 } 2295 return IntToPtr; 2296 } 2297 case CK_PointerToIntegral: { 2298 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2299 auto *PtrExpr = Visit(E); 2300 2301 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2302 const QualType SrcType = E->getType(); 2303 2304 // Casting to integer requires stripping dynamic information as it does 2305 // not carries it. 2306 if (SrcType.mayBeDynamicClass()) 2307 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2308 } 2309 2310 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2311 } 2312 case CK_ToVoid: { 2313 CGF.EmitIgnoredExpr(E); 2314 return nullptr; 2315 } 2316 case CK_MatrixCast: { 2317 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2318 CE->getExprLoc()); 2319 } 2320 case CK_VectorSplat: { 2321 llvm::Type *DstTy = ConvertType(DestTy); 2322 Value *Elt = Visit(const_cast<Expr*>(E)); 2323 // Splat the element across to all elements 2324 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 2325 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2326 } 2327 2328 case CK_FixedPointCast: 2329 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2330 CE->getExprLoc()); 2331 2332 case CK_FixedPointToBoolean: 2333 assert(E->getType()->isFixedPointType() && 2334 "Expected src type to be fixed point type"); 2335 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2336 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2337 CE->getExprLoc()); 2338 2339 case CK_FixedPointToIntegral: 2340 assert(E->getType()->isFixedPointType() && 2341 "Expected src type to be fixed point type"); 2342 assert(DestTy->isIntegerType() && "Expected dest type to be an integer"); 2343 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2344 CE->getExprLoc()); 2345 2346 case CK_IntegralToFixedPoint: 2347 assert(E->getType()->isIntegerType() && 2348 "Expected src type to be an integer"); 2349 assert(DestTy->isFixedPointType() && 2350 "Expected dest type to be fixed point type"); 2351 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2352 CE->getExprLoc()); 2353 2354 case CK_IntegralCast: { 2355 ScalarConversionOpts Opts; 2356 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2357 if (!ICE->isPartOfExplicitCast()) 2358 Opts = ScalarConversionOpts(CGF.SanOpts); 2359 } 2360 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2361 CE->getExprLoc(), Opts); 2362 } 2363 case CK_IntegralToFloating: 2364 case CK_FloatingToIntegral: 2365 case CK_FloatingCast: 2366 case CK_FixedPointToFloating: 2367 case CK_FloatingToFixedPoint: { 2368 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); 2369 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2370 CE->getExprLoc()); 2371 } 2372 case CK_BooleanToSignedIntegral: { 2373 ScalarConversionOpts Opts; 2374 Opts.TreatBooleanAsSigned = true; 2375 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2376 CE->getExprLoc(), Opts); 2377 } 2378 case CK_IntegralToBoolean: 2379 return EmitIntToBoolConversion(Visit(E)); 2380 case CK_PointerToBoolean: 2381 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2382 case CK_FloatingToBoolean: { 2383 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); 2384 return EmitFloatToBoolConversion(Visit(E)); 2385 } 2386 case CK_MemberPointerToBoolean: { 2387 llvm::Value *MemPtr = Visit(E); 2388 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2389 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2390 } 2391 2392 case CK_FloatingComplexToReal: 2393 case CK_IntegralComplexToReal: 2394 return CGF.EmitComplexExpr(E, false, true).first; 2395 2396 case CK_FloatingComplexToBoolean: 2397 case CK_IntegralComplexToBoolean: { 2398 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2399 2400 // TODO: kill this function off, inline appropriate case here 2401 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2402 CE->getExprLoc()); 2403 } 2404 2405 case CK_ZeroToOCLOpaqueType: { 2406 assert((DestTy->isEventT() || DestTy->isQueueT() || 2407 DestTy->isOCLIntelSubgroupAVCType()) && 2408 "CK_ZeroToOCLEvent cast on non-event type"); 2409 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2410 } 2411 2412 case CK_IntToOCLSampler: 2413 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2414 2415 } // end of switch 2416 2417 llvm_unreachable("unknown scalar cast"); 2418 } 2419 2420 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2421 CodeGenFunction::StmtExprEvaluation eval(CGF); 2422 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2423 !E->getType()->isVoidType()); 2424 if (!RetAlloca.isValid()) 2425 return nullptr; 2426 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2427 E->getExprLoc()); 2428 } 2429 2430 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2431 CodeGenFunction::RunCleanupsScope Scope(CGF); 2432 Value *V = Visit(E->getSubExpr()); 2433 // Defend against dominance problems caused by jumps out of expression 2434 // evaluation through the shared cleanup block. 2435 Scope.ForceCleanup({&V}); 2436 return V; 2437 } 2438 2439 //===----------------------------------------------------------------------===// 2440 // Unary Operators 2441 //===----------------------------------------------------------------------===// 2442 2443 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2444 llvm::Value *InVal, bool IsInc, 2445 FPOptions FPFeatures) { 2446 BinOpInfo BinOp; 2447 BinOp.LHS = InVal; 2448 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2449 BinOp.Ty = E->getType(); 2450 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2451 BinOp.FPFeatures = FPFeatures; 2452 BinOp.E = E; 2453 return BinOp; 2454 } 2455 2456 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2457 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2458 llvm::Value *Amount = 2459 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2460 StringRef Name = IsInc ? "inc" : "dec"; 2461 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2462 case LangOptions::SOB_Defined: 2463 return Builder.CreateAdd(InVal, Amount, Name); 2464 case LangOptions::SOB_Undefined: 2465 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2466 return Builder.CreateNSWAdd(InVal, Amount, Name); 2467 LLVM_FALLTHROUGH; 2468 case LangOptions::SOB_Trapping: 2469 if (!E->canOverflow()) 2470 return Builder.CreateNSWAdd(InVal, Amount, Name); 2471 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( 2472 E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); 2473 } 2474 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2475 } 2476 2477 namespace { 2478 /// Handles check and update for lastprivate conditional variables. 2479 class OMPLastprivateConditionalUpdateRAII { 2480 private: 2481 CodeGenFunction &CGF; 2482 const UnaryOperator *E; 2483 2484 public: 2485 OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF, 2486 const UnaryOperator *E) 2487 : CGF(CGF), E(E) {} 2488 ~OMPLastprivateConditionalUpdateRAII() { 2489 if (CGF.getLangOpts().OpenMP) 2490 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional( 2491 CGF, E->getSubExpr()); 2492 } 2493 }; 2494 } // namespace 2495 2496 llvm::Value * 2497 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2498 bool isInc, bool isPre) { 2499 OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E); 2500 QualType type = E->getSubExpr()->getType(); 2501 llvm::PHINode *atomicPHI = nullptr; 2502 llvm::Value *value; 2503 llvm::Value *input; 2504 2505 int amount = (isInc ? 1 : -1); 2506 bool isSubtraction = !isInc; 2507 2508 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2509 type = atomicTy->getValueType(); 2510 if (isInc && type->isBooleanType()) { 2511 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2512 if (isPre) { 2513 Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified()) 2514 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2515 return Builder.getTrue(); 2516 } 2517 // For atomic bool increment, we just store true and return it for 2518 // preincrement, do an atomic swap with true for postincrement 2519 return Builder.CreateAtomicRMW( 2520 llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True, 2521 llvm::AtomicOrdering::SequentiallyConsistent); 2522 } 2523 // Special case for atomic increment / decrement on integers, emit 2524 // atomicrmw instructions. We skip this if we want to be doing overflow 2525 // checking, and fall into the slow path with the atomic cmpxchg loop. 2526 if (!type->isBooleanType() && type->isIntegerType() && 2527 !(type->isUnsignedIntegerType() && 2528 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2529 CGF.getLangOpts().getSignedOverflowBehavior() != 2530 LangOptions::SOB_Trapping) { 2531 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2532 llvm::AtomicRMWInst::Sub; 2533 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2534 llvm::Instruction::Sub; 2535 llvm::Value *amt = CGF.EmitToMemory( 2536 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2537 llvm::Value *old = 2538 Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt, 2539 llvm::AtomicOrdering::SequentiallyConsistent); 2540 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2541 } 2542 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2543 input = value; 2544 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2545 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2546 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2547 value = CGF.EmitToMemory(value, type); 2548 Builder.CreateBr(opBB); 2549 Builder.SetInsertPoint(opBB); 2550 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2551 atomicPHI->addIncoming(value, startBB); 2552 value = atomicPHI; 2553 } else { 2554 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2555 input = value; 2556 } 2557 2558 // Special case of integer increment that we have to check first: bool++. 2559 // Due to promotion rules, we get: 2560 // bool++ -> bool = bool + 1 2561 // -> bool = (int)bool + 1 2562 // -> bool = ((int)bool + 1 != 0) 2563 // An interesting aspect of this is that increment is always true. 2564 // Decrement does not have this property. 2565 if (isInc && type->isBooleanType()) { 2566 value = Builder.getTrue(); 2567 2568 // Most common case by far: integer increment. 2569 } else if (type->isIntegerType()) { 2570 QualType promotedType; 2571 bool canPerformLossyDemotionCheck = false; 2572 if (type->isPromotableIntegerType()) { 2573 promotedType = CGF.getContext().getPromotedIntegerType(type); 2574 assert(promotedType != type && "Shouldn't promote to the same type."); 2575 canPerformLossyDemotionCheck = true; 2576 canPerformLossyDemotionCheck &= 2577 CGF.getContext().getCanonicalType(type) != 2578 CGF.getContext().getCanonicalType(promotedType); 2579 canPerformLossyDemotionCheck &= 2580 PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 2581 type, promotedType); 2582 assert((!canPerformLossyDemotionCheck || 2583 type->isSignedIntegerOrEnumerationType() || 2584 promotedType->isSignedIntegerOrEnumerationType() || 2585 ConvertType(type)->getScalarSizeInBits() == 2586 ConvertType(promotedType)->getScalarSizeInBits()) && 2587 "The following check expects that if we do promotion to different " 2588 "underlying canonical type, at least one of the types (either " 2589 "base or promoted) will be signed, or the bitwidths will match."); 2590 } 2591 if (CGF.SanOpts.hasOneOf( 2592 SanitizerKind::ImplicitIntegerArithmeticValueChange) && 2593 canPerformLossyDemotionCheck) { 2594 // While `x += 1` (for `x` with width less than int) is modeled as 2595 // promotion+arithmetics+demotion, and we can catch lossy demotion with 2596 // ease; inc/dec with width less than int can't overflow because of 2597 // promotion rules, so we omit promotion+demotion, which means that we can 2598 // not catch lossy "demotion". Because we still want to catch these cases 2599 // when the sanitizer is enabled, we perform the promotion, then perform 2600 // the increment/decrement in the wider type, and finally 2601 // perform the demotion. This will catch lossy demotions. 2602 2603 value = EmitScalarConversion(value, type, promotedType, E->getExprLoc()); 2604 Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2605 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2606 // Do pass non-default ScalarConversionOpts so that sanitizer check is 2607 // emitted. 2608 value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(), 2609 ScalarConversionOpts(CGF.SanOpts)); 2610 2611 // Note that signed integer inc/dec with width less than int can't 2612 // overflow because of promotion rules; we're just eliding a few steps 2613 // here. 2614 } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2615 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2616 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2617 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2618 value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( 2619 E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); 2620 } else { 2621 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2622 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2623 } 2624 2625 // Next most common: pointer increment. 2626 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2627 QualType type = ptr->getPointeeType(); 2628 2629 // VLA types don't have constant size. 2630 if (const VariableArrayType *vla 2631 = CGF.getContext().getAsVariableArrayType(type)) { 2632 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2633 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2634 llvm::Type *elemTy = value->getType()->getPointerElementType(); 2635 if (CGF.getLangOpts().isSignedOverflowDefined()) 2636 value = Builder.CreateGEP(elemTy, value, numElts, "vla.inc"); 2637 else 2638 value = CGF.EmitCheckedInBoundsGEP( 2639 elemTy, value, numElts, /*SignedIndices=*/false, isSubtraction, 2640 E->getExprLoc(), "vla.inc"); 2641 2642 // Arithmetic on function pointers (!) is just +-1. 2643 } else if (type->isFunctionType()) { 2644 llvm::Value *amt = Builder.getInt32(amount); 2645 2646 value = CGF.EmitCastToVoidPtr(value); 2647 if (CGF.getLangOpts().isSignedOverflowDefined()) 2648 value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr"); 2649 else 2650 value = CGF.EmitCheckedInBoundsGEP(CGF.Int8Ty, value, amt, 2651 /*SignedIndices=*/false, 2652 isSubtraction, E->getExprLoc(), 2653 "incdec.funcptr"); 2654 value = Builder.CreateBitCast(value, input->getType()); 2655 2656 // For everything else, we can just do a simple increment. 2657 } else { 2658 llvm::Value *amt = Builder.getInt32(amount); 2659 llvm::Type *elemTy = value->getType()->getPointerElementType(); 2660 if (CGF.getLangOpts().isSignedOverflowDefined()) 2661 value = Builder.CreateGEP(elemTy, value, amt, "incdec.ptr"); 2662 else 2663 value = CGF.EmitCheckedInBoundsGEP( 2664 elemTy, value, amt, /*SignedIndices=*/false, isSubtraction, 2665 E->getExprLoc(), "incdec.ptr"); 2666 } 2667 2668 // Vector increment/decrement. 2669 } else if (type->isVectorType()) { 2670 if (type->hasIntegerRepresentation()) { 2671 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2672 2673 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2674 } else { 2675 value = Builder.CreateFAdd( 2676 value, 2677 llvm::ConstantFP::get(value->getType(), amount), 2678 isInc ? "inc" : "dec"); 2679 } 2680 2681 // Floating point. 2682 } else if (type->isRealFloatingType()) { 2683 // Add the inc/dec to the real part. 2684 llvm::Value *amt; 2685 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 2686 2687 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2688 // Another special case: half FP increment should be done via float 2689 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2690 value = Builder.CreateCall( 2691 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2692 CGF.CGM.FloatTy), 2693 input, "incdec.conv"); 2694 } else { 2695 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2696 } 2697 } 2698 2699 if (value->getType()->isFloatTy()) 2700 amt = llvm::ConstantFP::get(VMContext, 2701 llvm::APFloat(static_cast<float>(amount))); 2702 else if (value->getType()->isDoubleTy()) 2703 amt = llvm::ConstantFP::get(VMContext, 2704 llvm::APFloat(static_cast<double>(amount))); 2705 else { 2706 // Remaining types are Half, LongDouble, __ibm128 or __float128. Convert 2707 // from float. 2708 llvm::APFloat F(static_cast<float>(amount)); 2709 bool ignored; 2710 const llvm::fltSemantics *FS; 2711 // Don't use getFloatTypeSemantics because Half isn't 2712 // necessarily represented using the "half" LLVM type. 2713 if (value->getType()->isFP128Ty()) 2714 FS = &CGF.getTarget().getFloat128Format(); 2715 else if (value->getType()->isHalfTy()) 2716 FS = &CGF.getTarget().getHalfFormat(); 2717 else if (value->getType()->isPPC_FP128Ty()) 2718 FS = &CGF.getTarget().getIbm128Format(); 2719 else 2720 FS = &CGF.getTarget().getLongDoubleFormat(); 2721 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2722 amt = llvm::ConstantFP::get(VMContext, F); 2723 } 2724 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2725 2726 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2727 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2728 value = Builder.CreateCall( 2729 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2730 CGF.CGM.FloatTy), 2731 value, "incdec.conv"); 2732 } else { 2733 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2734 } 2735 } 2736 2737 // Fixed-point types. 2738 } else if (type->isFixedPointType()) { 2739 // Fixed-point types are tricky. In some cases, it isn't possible to 2740 // represent a 1 or a -1 in the type at all. Piggyback off of 2741 // EmitFixedPointBinOp to avoid having to reimplement saturation. 2742 BinOpInfo Info; 2743 Info.E = E; 2744 Info.Ty = E->getType(); 2745 Info.Opcode = isInc ? BO_Add : BO_Sub; 2746 Info.LHS = value; 2747 Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false); 2748 // If the type is signed, it's better to represent this as +(-1) or -(-1), 2749 // since -1 is guaranteed to be representable. 2750 if (type->isSignedFixedPointType()) { 2751 Info.Opcode = isInc ? BO_Sub : BO_Add; 2752 Info.RHS = Builder.CreateNeg(Info.RHS); 2753 } 2754 // Now, convert from our invented integer literal to the type of the unary 2755 // op. This will upscale and saturate if necessary. This value can become 2756 // undef in some cases. 2757 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 2758 auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty); 2759 Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema); 2760 value = EmitFixedPointBinOp(Info); 2761 2762 // Objective-C pointer types. 2763 } else { 2764 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2765 value = CGF.EmitCastToVoidPtr(value); 2766 2767 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2768 if (!isInc) size = -size; 2769 llvm::Value *sizeValue = 2770 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2771 2772 if (CGF.getLangOpts().isSignedOverflowDefined()) 2773 value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr"); 2774 else 2775 value = CGF.EmitCheckedInBoundsGEP( 2776 CGF.Int8Ty, value, sizeValue, /*SignedIndices=*/false, isSubtraction, 2777 E->getExprLoc(), "incdec.objptr"); 2778 value = Builder.CreateBitCast(value, input->getType()); 2779 } 2780 2781 if (atomicPHI) { 2782 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2783 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2784 auto Pair = CGF.EmitAtomicCompareExchange( 2785 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2786 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2787 llvm::Value *success = Pair.second; 2788 atomicPHI->addIncoming(old, curBlock); 2789 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2790 Builder.SetInsertPoint(contBB); 2791 return isPre ? value : input; 2792 } 2793 2794 // Store the updated result through the lvalue. 2795 if (LV.isBitField()) 2796 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2797 else 2798 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2799 2800 // If this is a postinc, return the value read from memory, otherwise use the 2801 // updated value. 2802 return isPre ? value : input; 2803 } 2804 2805 2806 2807 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2808 TestAndClearIgnoreResultAssign(); 2809 Value *Op = Visit(E->getSubExpr()); 2810 2811 // Generate a unary FNeg for FP ops. 2812 if (Op->getType()->isFPOrFPVectorTy()) 2813 return Builder.CreateFNeg(Op, "fneg"); 2814 2815 // Emit unary minus with EmitSub so we handle overflow cases etc. 2816 BinOpInfo BinOp; 2817 BinOp.RHS = Op; 2818 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2819 BinOp.Ty = E->getType(); 2820 BinOp.Opcode = BO_Sub; 2821 BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 2822 BinOp.E = E; 2823 return EmitSub(BinOp); 2824 } 2825 2826 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2827 TestAndClearIgnoreResultAssign(); 2828 Value *Op = Visit(E->getSubExpr()); 2829 return Builder.CreateNot(Op, "neg"); 2830 } 2831 2832 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2833 // Perform vector logical not on comparison with zero vector. 2834 if (E->getType()->isVectorType() && 2835 E->getType()->castAs<VectorType>()->getVectorKind() == 2836 VectorType::GenericVector) { 2837 Value *Oper = Visit(E->getSubExpr()); 2838 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2839 Value *Result; 2840 if (Oper->getType()->isFPOrFPVectorTy()) { 2841 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 2842 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 2843 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2844 } else 2845 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2846 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2847 } 2848 2849 // Compare operand to zero. 2850 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2851 2852 // Invert value. 2853 // TODO: Could dynamically modify easy computations here. For example, if 2854 // the operand is an icmp ne, turn into icmp eq. 2855 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2856 2857 // ZExt result to the expr type. 2858 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2859 } 2860 2861 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2862 // Try folding the offsetof to a constant. 2863 Expr::EvalResult EVResult; 2864 if (E->EvaluateAsInt(EVResult, CGF.getContext())) { 2865 llvm::APSInt Value = EVResult.Val.getInt(); 2866 return Builder.getInt(Value); 2867 } 2868 2869 // Loop over the components of the offsetof to compute the value. 2870 unsigned n = E->getNumComponents(); 2871 llvm::Type* ResultType = ConvertType(E->getType()); 2872 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2873 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2874 for (unsigned i = 0; i != n; ++i) { 2875 OffsetOfNode ON = E->getComponent(i); 2876 llvm::Value *Offset = nullptr; 2877 switch (ON.getKind()) { 2878 case OffsetOfNode::Array: { 2879 // Compute the index 2880 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2881 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2882 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2883 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2884 2885 // Save the element type 2886 CurrentType = 2887 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2888 2889 // Compute the element size 2890 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2891 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2892 2893 // Multiply out to compute the result 2894 Offset = Builder.CreateMul(Idx, ElemSize); 2895 break; 2896 } 2897 2898 case OffsetOfNode::Field: { 2899 FieldDecl *MemberDecl = ON.getField(); 2900 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2901 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2902 2903 // Compute the index of the field in its parent. 2904 unsigned i = 0; 2905 // FIXME: It would be nice if we didn't have to loop here! 2906 for (RecordDecl::field_iterator Field = RD->field_begin(), 2907 FieldEnd = RD->field_end(); 2908 Field != FieldEnd; ++Field, ++i) { 2909 if (*Field == MemberDecl) 2910 break; 2911 } 2912 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2913 2914 // Compute the offset to the field 2915 int64_t OffsetInt = RL.getFieldOffset(i) / 2916 CGF.getContext().getCharWidth(); 2917 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2918 2919 // Save the element type. 2920 CurrentType = MemberDecl->getType(); 2921 break; 2922 } 2923 2924 case OffsetOfNode::Identifier: 2925 llvm_unreachable("dependent __builtin_offsetof"); 2926 2927 case OffsetOfNode::Base: { 2928 if (ON.getBase()->isVirtual()) { 2929 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2930 continue; 2931 } 2932 2933 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2934 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2935 2936 // Save the element type. 2937 CurrentType = ON.getBase()->getType(); 2938 2939 // Compute the offset to the base. 2940 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2941 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2942 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2943 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2944 break; 2945 } 2946 } 2947 Result = Builder.CreateAdd(Result, Offset); 2948 } 2949 return Result; 2950 } 2951 2952 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2953 /// argument of the sizeof expression as an integer. 2954 Value * 2955 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2956 const UnaryExprOrTypeTraitExpr *E) { 2957 QualType TypeToSize = E->getTypeOfArgument(); 2958 if (E->getKind() == UETT_SizeOf) { 2959 if (const VariableArrayType *VAT = 2960 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2961 if (E->isArgumentType()) { 2962 // sizeof(type) - make sure to emit the VLA size. 2963 CGF.EmitVariablyModifiedType(TypeToSize); 2964 } else { 2965 // C99 6.5.3.4p2: If the argument is an expression of type 2966 // VLA, it is evaluated. 2967 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2968 } 2969 2970 auto VlaSize = CGF.getVLASize(VAT); 2971 llvm::Value *size = VlaSize.NumElts; 2972 2973 // Scale the number of non-VLA elements by the non-VLA element size. 2974 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2975 if (!eltSize.isOne()) 2976 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2977 2978 return size; 2979 } 2980 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2981 auto Alignment = 2982 CGF.getContext() 2983 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2984 E->getTypeOfArgument()->getPointeeType())) 2985 .getQuantity(); 2986 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2987 } 2988 2989 // If this isn't sizeof(vla), the result must be constant; use the constant 2990 // folding logic so we don't have to duplicate it here. 2991 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2992 } 2993 2994 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2995 Expr *Op = E->getSubExpr(); 2996 if (Op->getType()->isAnyComplexType()) { 2997 // If it's an l-value, load through the appropriate subobject l-value. 2998 // Note that we have to ask E because Op might be an l-value that 2999 // this won't work for, e.g. an Obj-C property. 3000 if (E->isGLValue()) 3001 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 3002 E->getExprLoc()).getScalarVal(); 3003 3004 // Otherwise, calculate and project. 3005 return CGF.EmitComplexExpr(Op, false, true).first; 3006 } 3007 3008 return Visit(Op); 3009 } 3010 3011 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 3012 Expr *Op = E->getSubExpr(); 3013 if (Op->getType()->isAnyComplexType()) { 3014 // If it's an l-value, load through the appropriate subobject l-value. 3015 // Note that we have to ask E because Op might be an l-value that 3016 // this won't work for, e.g. an Obj-C property. 3017 if (Op->isGLValue()) 3018 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 3019 E->getExprLoc()).getScalarVal(); 3020 3021 // Otherwise, calculate and project. 3022 return CGF.EmitComplexExpr(Op, true, false).second; 3023 } 3024 3025 // __imag on a scalar returns zero. Emit the subexpr to ensure side 3026 // effects are evaluated, but not the actual value. 3027 if (Op->isGLValue()) 3028 CGF.EmitLValue(Op); 3029 else 3030 CGF.EmitScalarExpr(Op, true); 3031 return llvm::Constant::getNullValue(ConvertType(E->getType())); 3032 } 3033 3034 //===----------------------------------------------------------------------===// 3035 // Binary Operators 3036 //===----------------------------------------------------------------------===// 3037 3038 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 3039 TestAndClearIgnoreResultAssign(); 3040 BinOpInfo Result; 3041 Result.LHS = Visit(E->getLHS()); 3042 Result.RHS = Visit(E->getRHS()); 3043 Result.Ty = E->getType(); 3044 Result.Opcode = E->getOpcode(); 3045 Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 3046 Result.E = E; 3047 return Result; 3048 } 3049 3050 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 3051 const CompoundAssignOperator *E, 3052 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 3053 Value *&Result) { 3054 QualType LHSTy = E->getLHS()->getType(); 3055 BinOpInfo OpInfo; 3056 3057 if (E->getComputationResultType()->isAnyComplexType()) 3058 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 3059 3060 // Emit the RHS first. __block variables need to have the rhs evaluated 3061 // first, plus this should improve codegen a little. 3062 OpInfo.RHS = Visit(E->getRHS()); 3063 OpInfo.Ty = E->getComputationResultType(); 3064 OpInfo.Opcode = E->getOpcode(); 3065 OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 3066 OpInfo.E = E; 3067 // Load/convert the LHS. 3068 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3069 3070 llvm::PHINode *atomicPHI = nullptr; 3071 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 3072 QualType type = atomicTy->getValueType(); 3073 if (!type->isBooleanType() && type->isIntegerType() && 3074 !(type->isUnsignedIntegerType() && 3075 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 3076 CGF.getLangOpts().getSignedOverflowBehavior() != 3077 LangOptions::SOB_Trapping) { 3078 llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP; 3079 llvm::Instruction::BinaryOps Op; 3080 switch (OpInfo.Opcode) { 3081 // We don't have atomicrmw operands for *, %, /, <<, >> 3082 case BO_MulAssign: case BO_DivAssign: 3083 case BO_RemAssign: 3084 case BO_ShlAssign: 3085 case BO_ShrAssign: 3086 break; 3087 case BO_AddAssign: 3088 AtomicOp = llvm::AtomicRMWInst::Add; 3089 Op = llvm::Instruction::Add; 3090 break; 3091 case BO_SubAssign: 3092 AtomicOp = llvm::AtomicRMWInst::Sub; 3093 Op = llvm::Instruction::Sub; 3094 break; 3095 case BO_AndAssign: 3096 AtomicOp = llvm::AtomicRMWInst::And; 3097 Op = llvm::Instruction::And; 3098 break; 3099 case BO_XorAssign: 3100 AtomicOp = llvm::AtomicRMWInst::Xor; 3101 Op = llvm::Instruction::Xor; 3102 break; 3103 case BO_OrAssign: 3104 AtomicOp = llvm::AtomicRMWInst::Or; 3105 Op = llvm::Instruction::Or; 3106 break; 3107 default: 3108 llvm_unreachable("Invalid compound assignment type"); 3109 } 3110 if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) { 3111 llvm::Value *Amt = CGF.EmitToMemory( 3112 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 3113 E->getExprLoc()), 3114 LHSTy); 3115 Value *OldVal = Builder.CreateAtomicRMW( 3116 AtomicOp, LHSLV.getPointer(CGF), Amt, 3117 llvm::AtomicOrdering::SequentiallyConsistent); 3118 3119 // Since operation is atomic, the result type is guaranteed to be the 3120 // same as the input in LLVM terms. 3121 Result = Builder.CreateBinOp(Op, OldVal, Amt); 3122 return LHSLV; 3123 } 3124 } 3125 // FIXME: For floating point types, we should be saving and restoring the 3126 // floating point environment in the loop. 3127 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 3128 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 3129 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 3130 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 3131 Builder.CreateBr(opBB); 3132 Builder.SetInsertPoint(opBB); 3133 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 3134 atomicPHI->addIncoming(OpInfo.LHS, startBB); 3135 OpInfo.LHS = atomicPHI; 3136 } 3137 else 3138 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 3139 3140 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures); 3141 SourceLocation Loc = E->getExprLoc(); 3142 OpInfo.LHS = 3143 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 3144 3145 // Expand the binary operator. 3146 Result = (this->*Func)(OpInfo); 3147 3148 // Convert the result back to the LHS type, 3149 // potentially with Implicit Conversion sanitizer check. 3150 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, 3151 Loc, ScalarConversionOpts(CGF.SanOpts)); 3152 3153 if (atomicPHI) { 3154 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 3155 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 3156 auto Pair = CGF.EmitAtomicCompareExchange( 3157 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 3158 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 3159 llvm::Value *success = Pair.second; 3160 atomicPHI->addIncoming(old, curBlock); 3161 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 3162 Builder.SetInsertPoint(contBB); 3163 return LHSLV; 3164 } 3165 3166 // Store the result value into the LHS lvalue. Bit-fields are handled 3167 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 3168 // 'An assignment expression has the value of the left operand after the 3169 // assignment...'. 3170 if (LHSLV.isBitField()) 3171 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 3172 else 3173 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 3174 3175 if (CGF.getLangOpts().OpenMP) 3176 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, 3177 E->getLHS()); 3178 return LHSLV; 3179 } 3180 3181 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 3182 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 3183 bool Ignore = TestAndClearIgnoreResultAssign(); 3184 Value *RHS = nullptr; 3185 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 3186 3187 // If the result is clearly ignored, return now. 3188 if (Ignore) 3189 return nullptr; 3190 3191 // The result of an assignment in C is the assigned r-value. 3192 if (!CGF.getLangOpts().CPlusPlus) 3193 return RHS; 3194 3195 // If the lvalue is non-volatile, return the computed value of the assignment. 3196 if (!LHS.isVolatileQualified()) 3197 return RHS; 3198 3199 // Otherwise, reload the value. 3200 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3201 } 3202 3203 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 3204 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 3205 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 3206 3207 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 3208 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 3209 SanitizerKind::IntegerDivideByZero)); 3210 } 3211 3212 const auto *BO = cast<BinaryOperator>(Ops.E); 3213 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 3214 Ops.Ty->hasSignedIntegerRepresentation() && 3215 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 3216 Ops.mayHaveIntegerOverflow()) { 3217 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 3218 3219 llvm::Value *IntMin = 3220 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 3221 llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty); 3222 3223 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 3224 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 3225 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 3226 Checks.push_back( 3227 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 3228 } 3229 3230 if (Checks.size() > 0) 3231 EmitBinOpCheck(Checks, Ops); 3232 } 3233 3234 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 3235 { 3236 CodeGenFunction::SanitizerScope SanScope(&CGF); 3237 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3238 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3239 Ops.Ty->isIntegerType() && 3240 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3241 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3242 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 3243 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 3244 Ops.Ty->isRealFloatingType() && 3245 Ops.mayHaveFloatDivisionByZero()) { 3246 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3247 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 3248 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 3249 Ops); 3250 } 3251 } 3252 3253 if (Ops.Ty->isConstantMatrixType()) { 3254 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 3255 // We need to check the types of the operands of the operator to get the 3256 // correct matrix dimensions. 3257 auto *BO = cast<BinaryOperator>(Ops.E); 3258 (void)BO; 3259 assert( 3260 isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) && 3261 "first operand must be a matrix"); 3262 assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() && 3263 "second operand must be an arithmetic type"); 3264 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 3265 return MB.CreateScalarDiv(Ops.LHS, Ops.RHS, 3266 Ops.Ty->hasUnsignedIntegerRepresentation()); 3267 } 3268 3269 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 3270 llvm::Value *Val; 3271 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 3272 Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 3273 if ((CGF.getLangOpts().OpenCL && 3274 !CGF.CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) || 3275 (CGF.getLangOpts().HIP && CGF.getLangOpts().CUDAIsDevice && 3276 !CGF.CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) { 3277 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 3278 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 3279 // build option allows an application to specify that single precision 3280 // floating-point divide (x/y and 1/x) and sqrt used in the program 3281 // source are correctly rounded. 3282 llvm::Type *ValTy = Val->getType(); 3283 if (ValTy->isFloatTy() || 3284 (isa<llvm::VectorType>(ValTy) && 3285 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 3286 CGF.SetFPAccuracy(Val, 2.5); 3287 } 3288 return Val; 3289 } 3290 else if (Ops.isFixedPointOp()) 3291 return EmitFixedPointBinOp(Ops); 3292 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3293 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 3294 else 3295 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 3296 } 3297 3298 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 3299 // Rem in C can't be a floating point type: C99 6.5.5p2. 3300 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3301 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3302 Ops.Ty->isIntegerType() && 3303 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3304 CodeGenFunction::SanitizerScope SanScope(&CGF); 3305 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3306 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3307 } 3308 3309 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3310 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3311 else 3312 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3313 } 3314 3315 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3316 unsigned IID; 3317 unsigned OpID = 0; 3318 SanitizerHandler OverflowKind; 3319 3320 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3321 switch (Ops.Opcode) { 3322 case BO_Add: 3323 case BO_AddAssign: 3324 OpID = 1; 3325 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3326 llvm::Intrinsic::uadd_with_overflow; 3327 OverflowKind = SanitizerHandler::AddOverflow; 3328 break; 3329 case BO_Sub: 3330 case BO_SubAssign: 3331 OpID = 2; 3332 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3333 llvm::Intrinsic::usub_with_overflow; 3334 OverflowKind = SanitizerHandler::SubOverflow; 3335 break; 3336 case BO_Mul: 3337 case BO_MulAssign: 3338 OpID = 3; 3339 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3340 llvm::Intrinsic::umul_with_overflow; 3341 OverflowKind = SanitizerHandler::MulOverflow; 3342 break; 3343 default: 3344 llvm_unreachable("Unsupported operation for overflow detection"); 3345 } 3346 OpID <<= 1; 3347 if (isSigned) 3348 OpID |= 1; 3349 3350 CodeGenFunction::SanitizerScope SanScope(&CGF); 3351 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3352 3353 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3354 3355 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3356 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3357 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3358 3359 // Handle overflow with llvm.trap if no custom handler has been specified. 3360 const std::string *handlerName = 3361 &CGF.getLangOpts().OverflowHandler; 3362 if (handlerName->empty()) { 3363 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3364 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3365 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3366 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3367 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3368 : SanitizerKind::UnsignedIntegerOverflow; 3369 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3370 } else 3371 CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind); 3372 return result; 3373 } 3374 3375 // Branch in case of overflow. 3376 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3377 llvm::BasicBlock *continueBB = 3378 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3379 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3380 3381 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3382 3383 // If an overflow handler is set, then we want to call it and then use its 3384 // result, if it returns. 3385 Builder.SetInsertPoint(overflowBB); 3386 3387 // Get the overflow handler. 3388 llvm::Type *Int8Ty = CGF.Int8Ty; 3389 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3390 llvm::FunctionType *handlerTy = 3391 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3392 llvm::FunctionCallee handler = 3393 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3394 3395 // Sign extend the args to 64-bit, so that we can use the same handler for 3396 // all types of overflow. 3397 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3398 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3399 3400 // Call the handler with the two arguments, the operation, and the size of 3401 // the result. 3402 llvm::Value *handlerArgs[] = { 3403 lhs, 3404 rhs, 3405 Builder.getInt8(OpID), 3406 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3407 }; 3408 llvm::Value *handlerResult = 3409 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3410 3411 // Truncate the result back to the desired size. 3412 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3413 Builder.CreateBr(continueBB); 3414 3415 Builder.SetInsertPoint(continueBB); 3416 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3417 phi->addIncoming(result, initialBB); 3418 phi->addIncoming(handlerResult, overflowBB); 3419 3420 return phi; 3421 } 3422 3423 /// Emit pointer + index arithmetic. 3424 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3425 const BinOpInfo &op, 3426 bool isSubtraction) { 3427 // Must have binary (not unary) expr here. Unary pointer 3428 // increment/decrement doesn't use this path. 3429 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3430 3431 Value *pointer = op.LHS; 3432 Expr *pointerOperand = expr->getLHS(); 3433 Value *index = op.RHS; 3434 Expr *indexOperand = expr->getRHS(); 3435 3436 // In a subtraction, the LHS is always the pointer. 3437 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3438 std::swap(pointer, index); 3439 std::swap(pointerOperand, indexOperand); 3440 } 3441 3442 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3443 3444 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3445 auto &DL = CGF.CGM.getDataLayout(); 3446 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3447 3448 // Some versions of glibc and gcc use idioms (particularly in their malloc 3449 // routines) that add a pointer-sized integer (known to be a pointer value) 3450 // to a null pointer in order to cast the value back to an integer or as 3451 // part of a pointer alignment algorithm. This is undefined behavior, but 3452 // we'd like to be able to compile programs that use it. 3453 // 3454 // Normally, we'd generate a GEP with a null-pointer base here in response 3455 // to that code, but it's also UB to dereference a pointer created that 3456 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3457 // generate a direct cast of the integer value to a pointer. 3458 // 3459 // The idiom (p = nullptr + N) is not met if any of the following are true: 3460 // 3461 // The operation is subtraction. 3462 // The index is not pointer-sized. 3463 // The pointer type is not byte-sized. 3464 // 3465 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3466 op.Opcode, 3467 expr->getLHS(), 3468 expr->getRHS())) 3469 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3470 3471 if (width != DL.getIndexTypeSizeInBits(PtrTy)) { 3472 // Zero-extend or sign-extend the pointer value according to 3473 // whether the index is signed or not. 3474 index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned, 3475 "idx.ext"); 3476 } 3477 3478 // If this is subtraction, negate the index. 3479 if (isSubtraction) 3480 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3481 3482 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3483 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3484 /*Accessed*/ false); 3485 3486 const PointerType *pointerType 3487 = pointerOperand->getType()->getAs<PointerType>(); 3488 if (!pointerType) { 3489 QualType objectType = pointerOperand->getType() 3490 ->castAs<ObjCObjectPointerType>() 3491 ->getPointeeType(); 3492 llvm::Value *objectSize 3493 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3494 3495 index = CGF.Builder.CreateMul(index, objectSize); 3496 3497 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3498 result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr"); 3499 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3500 } 3501 3502 QualType elementType = pointerType->getPointeeType(); 3503 if (const VariableArrayType *vla 3504 = CGF.getContext().getAsVariableArrayType(elementType)) { 3505 // The element count here is the total number of non-VLA elements. 3506 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3507 3508 // Effectively, the multiply by the VLA size is part of the GEP. 3509 // GEP indexes are signed, and scaling an index isn't permitted to 3510 // signed-overflow, so we use the same semantics for our explicit 3511 // multiply. We suppress this if overflow is not undefined behavior. 3512 llvm::Type *elemTy = pointer->getType()->getPointerElementType(); 3513 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3514 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3515 pointer = CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr"); 3516 } else { 3517 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3518 pointer = CGF.EmitCheckedInBoundsGEP( 3519 elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(), 3520 "add.ptr"); 3521 } 3522 return pointer; 3523 } 3524 3525 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3526 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3527 // future proof. 3528 if (elementType->isVoidType() || elementType->isFunctionType()) { 3529 Value *result = CGF.EmitCastToVoidPtr(pointer); 3530 result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr"); 3531 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3532 } 3533 3534 llvm::Type *elemTy = CGF.ConvertTypeForMem(elementType); 3535 if (CGF.getLangOpts().isSignedOverflowDefined()) 3536 return CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr"); 3537 3538 return CGF.EmitCheckedInBoundsGEP( 3539 elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(), 3540 "add.ptr"); 3541 } 3542 3543 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3544 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3545 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3546 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3547 // efficient operations. 3548 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend, 3549 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3550 bool negMul, bool negAdd) { 3551 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3552 3553 Value *MulOp0 = MulOp->getOperand(0); 3554 Value *MulOp1 = MulOp->getOperand(1); 3555 if (negMul) 3556 MulOp0 = Builder.CreateFNeg(MulOp0, "neg"); 3557 if (negAdd) 3558 Addend = Builder.CreateFNeg(Addend, "neg"); 3559 3560 Value *FMulAdd = nullptr; 3561 if (Builder.getIsFPConstrained()) { 3562 assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) && 3563 "Only constrained operation should be created when Builder is in FP " 3564 "constrained mode"); 3565 FMulAdd = Builder.CreateConstrainedFPCall( 3566 CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd, 3567 Addend->getType()), 3568 {MulOp0, MulOp1, Addend}); 3569 } else { 3570 FMulAdd = Builder.CreateCall( 3571 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3572 {MulOp0, MulOp1, Addend}); 3573 } 3574 MulOp->eraseFromParent(); 3575 3576 return FMulAdd; 3577 } 3578 3579 // Check whether it would be legal to emit an fmuladd intrinsic call to 3580 // represent op and if so, build the fmuladd. 3581 // 3582 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3583 // Does NOT check the type of the operation - it's assumed that this function 3584 // will be called from contexts where it's known that the type is contractable. 3585 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3586 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3587 bool isSub=false) { 3588 3589 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3590 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3591 "Only fadd/fsub can be the root of an fmuladd."); 3592 3593 // Check whether this op is marked as fusable. 3594 if (!op.FPFeatures.allowFPContractWithinStatement()) 3595 return nullptr; 3596 3597 // We have a potentially fusable op. Look for a mul on one of the operands. 3598 // Also, make sure that the mul result isn't used directly. In that case, 3599 // there's no point creating a muladd operation. 3600 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3601 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3602 LHSBinOp->use_empty()) 3603 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3604 } 3605 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3606 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3607 RHSBinOp->use_empty()) 3608 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3609 } 3610 3611 if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) { 3612 if (LHSBinOp->getIntrinsicID() == 3613 llvm::Intrinsic::experimental_constrained_fmul && 3614 LHSBinOp->use_empty()) 3615 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3616 } 3617 if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) { 3618 if (RHSBinOp->getIntrinsicID() == 3619 llvm::Intrinsic::experimental_constrained_fmul && 3620 RHSBinOp->use_empty()) 3621 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3622 } 3623 3624 return nullptr; 3625 } 3626 3627 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3628 if (op.LHS->getType()->isPointerTy() || 3629 op.RHS->getType()->isPointerTy()) 3630 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3631 3632 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3633 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3634 case LangOptions::SOB_Defined: 3635 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3636 case LangOptions::SOB_Undefined: 3637 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3638 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3639 LLVM_FALLTHROUGH; 3640 case LangOptions::SOB_Trapping: 3641 if (CanElideOverflowCheck(CGF.getContext(), op)) 3642 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3643 return EmitOverflowCheckedBinOp(op); 3644 } 3645 } 3646 3647 if (op.Ty->isConstantMatrixType()) { 3648 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 3649 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3650 return MB.CreateAdd(op.LHS, op.RHS); 3651 } 3652 3653 if (op.Ty->isUnsignedIntegerType() && 3654 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3655 !CanElideOverflowCheck(CGF.getContext(), op)) 3656 return EmitOverflowCheckedBinOp(op); 3657 3658 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3659 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3660 // Try to form an fmuladd. 3661 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3662 return FMulAdd; 3663 3664 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3665 } 3666 3667 if (op.isFixedPointOp()) 3668 return EmitFixedPointBinOp(op); 3669 3670 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3671 } 3672 3673 /// The resulting value must be calculated with exact precision, so the operands 3674 /// may not be the same type. 3675 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { 3676 using llvm::APSInt; 3677 using llvm::ConstantInt; 3678 3679 // This is either a binary operation where at least one of the operands is 3680 // a fixed-point type, or a unary operation where the operand is a fixed-point 3681 // type. The result type of a binary operation is determined by 3682 // Sema::handleFixedPointConversions(). 3683 QualType ResultTy = op.Ty; 3684 QualType LHSTy, RHSTy; 3685 if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) { 3686 RHSTy = BinOp->getRHS()->getType(); 3687 if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) { 3688 // For compound assignment, the effective type of the LHS at this point 3689 // is the computation LHS type, not the actual LHS type, and the final 3690 // result type is not the type of the expression but rather the 3691 // computation result type. 3692 LHSTy = CAO->getComputationLHSType(); 3693 ResultTy = CAO->getComputationResultType(); 3694 } else 3695 LHSTy = BinOp->getLHS()->getType(); 3696 } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) { 3697 LHSTy = UnOp->getSubExpr()->getType(); 3698 RHSTy = UnOp->getSubExpr()->getType(); 3699 } 3700 ASTContext &Ctx = CGF.getContext(); 3701 Value *LHS = op.LHS; 3702 Value *RHS = op.RHS; 3703 3704 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); 3705 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); 3706 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); 3707 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); 3708 3709 // Perform the actual operation. 3710 Value *Result; 3711 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 3712 switch (op.Opcode) { 3713 case BO_AddAssign: 3714 case BO_Add: 3715 Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema); 3716 break; 3717 case BO_SubAssign: 3718 case BO_Sub: 3719 Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema); 3720 break; 3721 case BO_MulAssign: 3722 case BO_Mul: 3723 Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema); 3724 break; 3725 case BO_DivAssign: 3726 case BO_Div: 3727 Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema); 3728 break; 3729 case BO_ShlAssign: 3730 case BO_Shl: 3731 Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS); 3732 break; 3733 case BO_ShrAssign: 3734 case BO_Shr: 3735 Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS); 3736 break; 3737 case BO_LT: 3738 return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema); 3739 case BO_GT: 3740 return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema); 3741 case BO_LE: 3742 return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3743 case BO_GE: 3744 return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3745 case BO_EQ: 3746 // For equality operations, we assume any padding bits on unsigned types are 3747 // zero'd out. They could be overwritten through non-saturating operations 3748 // that cause overflow, but this leads to undefined behavior. 3749 return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema); 3750 case BO_NE: 3751 return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3752 case BO_Cmp: 3753 case BO_LAnd: 3754 case BO_LOr: 3755 llvm_unreachable("Found unimplemented fixed point binary operation"); 3756 case BO_PtrMemD: 3757 case BO_PtrMemI: 3758 case BO_Rem: 3759 case BO_Xor: 3760 case BO_And: 3761 case BO_Or: 3762 case BO_Assign: 3763 case BO_RemAssign: 3764 case BO_AndAssign: 3765 case BO_XorAssign: 3766 case BO_OrAssign: 3767 case BO_Comma: 3768 llvm_unreachable("Found unsupported binary operation for fixed point types."); 3769 } 3770 3771 bool IsShift = BinaryOperator::isShiftOp(op.Opcode) || 3772 BinaryOperator::isShiftAssignOp(op.Opcode); 3773 // Convert to the result type. 3774 return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema 3775 : CommonFixedSema, 3776 ResultFixedSema); 3777 } 3778 3779 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3780 // The LHS is always a pointer if either side is. 3781 if (!op.LHS->getType()->isPointerTy()) { 3782 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3783 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3784 case LangOptions::SOB_Defined: 3785 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3786 case LangOptions::SOB_Undefined: 3787 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3788 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3789 LLVM_FALLTHROUGH; 3790 case LangOptions::SOB_Trapping: 3791 if (CanElideOverflowCheck(CGF.getContext(), op)) 3792 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3793 return EmitOverflowCheckedBinOp(op); 3794 } 3795 } 3796 3797 if (op.Ty->isConstantMatrixType()) { 3798 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 3799 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3800 return MB.CreateSub(op.LHS, op.RHS); 3801 } 3802 3803 if (op.Ty->isUnsignedIntegerType() && 3804 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3805 !CanElideOverflowCheck(CGF.getContext(), op)) 3806 return EmitOverflowCheckedBinOp(op); 3807 3808 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3809 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3810 // Try to form an fmuladd. 3811 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3812 return FMulAdd; 3813 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3814 } 3815 3816 if (op.isFixedPointOp()) 3817 return EmitFixedPointBinOp(op); 3818 3819 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3820 } 3821 3822 // If the RHS is not a pointer, then we have normal pointer 3823 // arithmetic. 3824 if (!op.RHS->getType()->isPointerTy()) 3825 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3826 3827 // Otherwise, this is a pointer subtraction. 3828 3829 // Do the raw subtraction part. 3830 llvm::Value *LHS 3831 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3832 llvm::Value *RHS 3833 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3834 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3835 3836 // Okay, figure out the element size. 3837 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3838 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3839 3840 llvm::Value *divisor = nullptr; 3841 3842 // For a variable-length array, this is going to be non-constant. 3843 if (const VariableArrayType *vla 3844 = CGF.getContext().getAsVariableArrayType(elementType)) { 3845 auto VlaSize = CGF.getVLASize(vla); 3846 elementType = VlaSize.Type; 3847 divisor = VlaSize.NumElts; 3848 3849 // Scale the number of non-VLA elements by the non-VLA element size. 3850 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3851 if (!eltSize.isOne()) 3852 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3853 3854 // For everything elese, we can just compute it, safe in the 3855 // assumption that Sema won't let anything through that we can't 3856 // safely compute the size of. 3857 } else { 3858 CharUnits elementSize; 3859 // Handle GCC extension for pointer arithmetic on void* and 3860 // function pointer types. 3861 if (elementType->isVoidType() || elementType->isFunctionType()) 3862 elementSize = CharUnits::One(); 3863 else 3864 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3865 3866 // Don't even emit the divide for element size of 1. 3867 if (elementSize.isOne()) 3868 return diffInChars; 3869 3870 divisor = CGF.CGM.getSize(elementSize); 3871 } 3872 3873 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3874 // pointer difference in C is only defined in the case where both operands 3875 // are pointing to elements of an array. 3876 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3877 } 3878 3879 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3880 llvm::IntegerType *Ty; 3881 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3882 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3883 else 3884 Ty = cast<llvm::IntegerType>(LHS->getType()); 3885 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3886 } 3887 3888 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS, 3889 const Twine &Name) { 3890 llvm::IntegerType *Ty; 3891 if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3892 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3893 else 3894 Ty = cast<llvm::IntegerType>(LHS->getType()); 3895 3896 if (llvm::isPowerOf2_64(Ty->getBitWidth())) 3897 return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name); 3898 3899 return Builder.CreateURem( 3900 RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name); 3901 } 3902 3903 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3904 // TODO: This misses out on the sanitizer check below. 3905 if (Ops.isFixedPointOp()) 3906 return EmitFixedPointBinOp(Ops); 3907 3908 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3909 // RHS to the same size as the LHS. 3910 Value *RHS = Ops.RHS; 3911 if (Ops.LHS->getType() != RHS->getType()) 3912 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3913 3914 bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3915 Ops.Ty->hasSignedIntegerRepresentation() && 3916 !CGF.getLangOpts().isSignedOverflowDefined() && 3917 !CGF.getLangOpts().CPlusPlus20; 3918 bool SanitizeUnsignedBase = 3919 CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) && 3920 Ops.Ty->hasUnsignedIntegerRepresentation(); 3921 bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase; 3922 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3923 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3924 if (CGF.getLangOpts().OpenCL) 3925 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask"); 3926 else if ((SanitizeBase || SanitizeExponent) && 3927 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3928 CodeGenFunction::SanitizerScope SanScope(&CGF); 3929 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3930 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3931 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3932 3933 if (SanitizeExponent) { 3934 Checks.push_back( 3935 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3936 } 3937 3938 if (SanitizeBase) { 3939 // Check whether we are shifting any non-zero bits off the top of the 3940 // integer. We only emit this check if exponent is valid - otherwise 3941 // instructions below will have undefined behavior themselves. 3942 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3943 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3944 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3945 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3946 llvm::Value *PromotedWidthMinusOne = 3947 (RHS == Ops.RHS) ? WidthMinusOne 3948 : GetWidthMinusOneValue(Ops.LHS, RHS); 3949 CGF.EmitBlock(CheckShiftBase); 3950 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3951 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3952 /*NUW*/ true, /*NSW*/ true), 3953 "shl.check"); 3954 if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) { 3955 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3956 // Under C++11's rules, shifting a 1 bit into the sign bit is 3957 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3958 // define signed left shifts, so we use the C99 and C++11 rules there). 3959 // Unsigned shifts can always shift into the top bit. 3960 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3961 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3962 } 3963 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3964 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3965 CGF.EmitBlock(Cont); 3966 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3967 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3968 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3969 Checks.push_back(std::make_pair( 3970 BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase 3971 : SanitizerKind::UnsignedShiftBase)); 3972 } 3973 3974 assert(!Checks.empty()); 3975 EmitBinOpCheck(Checks, Ops); 3976 } 3977 3978 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3979 } 3980 3981 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3982 // TODO: This misses out on the sanitizer check below. 3983 if (Ops.isFixedPointOp()) 3984 return EmitFixedPointBinOp(Ops); 3985 3986 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3987 // RHS to the same size as the LHS. 3988 Value *RHS = Ops.RHS; 3989 if (Ops.LHS->getType() != RHS->getType()) 3990 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3991 3992 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3993 if (CGF.getLangOpts().OpenCL) 3994 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask"); 3995 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3996 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3997 CodeGenFunction::SanitizerScope SanScope(&CGF); 3998 llvm::Value *Valid = 3999 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 4000 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 4001 } 4002 4003 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 4004 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 4005 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 4006 } 4007 4008 enum IntrinsicType { VCMPEQ, VCMPGT }; 4009 // return corresponding comparison intrinsic for given vector type 4010 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 4011 BuiltinType::Kind ElemKind) { 4012 switch (ElemKind) { 4013 default: llvm_unreachable("unexpected element type"); 4014 case BuiltinType::Char_U: 4015 case BuiltinType::UChar: 4016 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 4017 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 4018 case BuiltinType::Char_S: 4019 case BuiltinType::SChar: 4020 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 4021 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 4022 case BuiltinType::UShort: 4023 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 4024 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 4025 case BuiltinType::Short: 4026 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 4027 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 4028 case BuiltinType::UInt: 4029 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 4030 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 4031 case BuiltinType::Int: 4032 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 4033 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 4034 case BuiltinType::ULong: 4035 case BuiltinType::ULongLong: 4036 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 4037 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 4038 case BuiltinType::Long: 4039 case BuiltinType::LongLong: 4040 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 4041 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 4042 case BuiltinType::Float: 4043 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 4044 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 4045 case BuiltinType::Double: 4046 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 4047 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 4048 case BuiltinType::UInt128: 4049 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p 4050 : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p; 4051 case BuiltinType::Int128: 4052 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p 4053 : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p; 4054 } 4055 } 4056 4057 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 4058 llvm::CmpInst::Predicate UICmpOpc, 4059 llvm::CmpInst::Predicate SICmpOpc, 4060 llvm::CmpInst::Predicate FCmpOpc, 4061 bool IsSignaling) { 4062 TestAndClearIgnoreResultAssign(); 4063 Value *Result; 4064 QualType LHSTy = E->getLHS()->getType(); 4065 QualType RHSTy = E->getRHS()->getType(); 4066 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 4067 assert(E->getOpcode() == BO_EQ || 4068 E->getOpcode() == BO_NE); 4069 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 4070 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 4071 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 4072 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 4073 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 4074 BinOpInfo BOInfo = EmitBinOps(E); 4075 Value *LHS = BOInfo.LHS; 4076 Value *RHS = BOInfo.RHS; 4077 4078 // If AltiVec, the comparison results in a numeric type, so we use 4079 // intrinsics comparing vectors and giving 0 or 1 as a result 4080 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 4081 // constants for mapping CR6 register bits to predicate result 4082 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 4083 4084 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 4085 4086 // in several cases vector arguments order will be reversed 4087 Value *FirstVecArg = LHS, 4088 *SecondVecArg = RHS; 4089 4090 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType(); 4091 BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind(); 4092 4093 switch(E->getOpcode()) { 4094 default: llvm_unreachable("is not a comparison operation"); 4095 case BO_EQ: 4096 CR6 = CR6_LT; 4097 ID = GetIntrinsic(VCMPEQ, ElementKind); 4098 break; 4099 case BO_NE: 4100 CR6 = CR6_EQ; 4101 ID = GetIntrinsic(VCMPEQ, ElementKind); 4102 break; 4103 case BO_LT: 4104 CR6 = CR6_LT; 4105 ID = GetIntrinsic(VCMPGT, ElementKind); 4106 std::swap(FirstVecArg, SecondVecArg); 4107 break; 4108 case BO_GT: 4109 CR6 = CR6_LT; 4110 ID = GetIntrinsic(VCMPGT, ElementKind); 4111 break; 4112 case BO_LE: 4113 if (ElementKind == BuiltinType::Float) { 4114 CR6 = CR6_LT; 4115 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 4116 std::swap(FirstVecArg, SecondVecArg); 4117 } 4118 else { 4119 CR6 = CR6_EQ; 4120 ID = GetIntrinsic(VCMPGT, ElementKind); 4121 } 4122 break; 4123 case BO_GE: 4124 if (ElementKind == BuiltinType::Float) { 4125 CR6 = CR6_LT; 4126 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 4127 } 4128 else { 4129 CR6 = CR6_EQ; 4130 ID = GetIntrinsic(VCMPGT, ElementKind); 4131 std::swap(FirstVecArg, SecondVecArg); 4132 } 4133 break; 4134 } 4135 4136 Value *CR6Param = Builder.getInt32(CR6); 4137 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 4138 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 4139 4140 // The result type of intrinsic may not be same as E->getType(). 4141 // If E->getType() is not BoolTy, EmitScalarConversion will do the 4142 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 4143 // do nothing, if ResultTy is not i1 at the same time, it will cause 4144 // crash later. 4145 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 4146 if (ResultTy->getBitWidth() > 1 && 4147 E->getType() == CGF.getContext().BoolTy) 4148 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 4149 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 4150 E->getExprLoc()); 4151 } 4152 4153 if (BOInfo.isFixedPointOp()) { 4154 Result = EmitFixedPointBinOp(BOInfo); 4155 } else if (LHS->getType()->isFPOrFPVectorTy()) { 4156 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures); 4157 if (!IsSignaling) 4158 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 4159 else 4160 Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp"); 4161 } else if (LHSTy->hasSignedIntegerRepresentation()) { 4162 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 4163 } else { 4164 // Unsigned integers and pointers. 4165 4166 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 4167 !isa<llvm::ConstantPointerNull>(LHS) && 4168 !isa<llvm::ConstantPointerNull>(RHS)) { 4169 4170 // Dynamic information is required to be stripped for comparisons, 4171 // because it could leak the dynamic information. Based on comparisons 4172 // of pointers to dynamic objects, the optimizer can replace one pointer 4173 // with another, which might be incorrect in presence of invariant 4174 // groups. Comparison with null is safe because null does not carry any 4175 // dynamic information. 4176 if (LHSTy.mayBeDynamicClass()) 4177 LHS = Builder.CreateStripInvariantGroup(LHS); 4178 if (RHSTy.mayBeDynamicClass()) 4179 RHS = Builder.CreateStripInvariantGroup(RHS); 4180 } 4181 4182 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 4183 } 4184 4185 // If this is a vector comparison, sign extend the result to the appropriate 4186 // vector integer type and return it (don't convert to bool). 4187 if (LHSTy->isVectorType()) 4188 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 4189 4190 } else { 4191 // Complex Comparison: can only be an equality comparison. 4192 CodeGenFunction::ComplexPairTy LHS, RHS; 4193 QualType CETy; 4194 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 4195 LHS = CGF.EmitComplexExpr(E->getLHS()); 4196 CETy = CTy->getElementType(); 4197 } else { 4198 LHS.first = Visit(E->getLHS()); 4199 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 4200 CETy = LHSTy; 4201 } 4202 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 4203 RHS = CGF.EmitComplexExpr(E->getRHS()); 4204 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 4205 CTy->getElementType()) && 4206 "The element types must always match."); 4207 (void)CTy; 4208 } else { 4209 RHS.first = Visit(E->getRHS()); 4210 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 4211 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 4212 "The element types must always match."); 4213 } 4214 4215 Value *ResultR, *ResultI; 4216 if (CETy->isRealFloatingType()) { 4217 // As complex comparisons can only be equality comparisons, they 4218 // are never signaling comparisons. 4219 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 4220 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 4221 } else { 4222 // Complex comparisons can only be equality comparisons. As such, signed 4223 // and unsigned opcodes are the same. 4224 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 4225 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 4226 } 4227 4228 if (E->getOpcode() == BO_EQ) { 4229 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 4230 } else { 4231 assert(E->getOpcode() == BO_NE && 4232 "Complex comparison other than == or != ?"); 4233 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 4234 } 4235 } 4236 4237 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 4238 E->getExprLoc()); 4239 } 4240 4241 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 4242 bool Ignore = TestAndClearIgnoreResultAssign(); 4243 4244 Value *RHS; 4245 LValue LHS; 4246 4247 switch (E->getLHS()->getType().getObjCLifetime()) { 4248 case Qualifiers::OCL_Strong: 4249 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 4250 break; 4251 4252 case Qualifiers::OCL_Autoreleasing: 4253 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 4254 break; 4255 4256 case Qualifiers::OCL_ExplicitNone: 4257 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 4258 break; 4259 4260 case Qualifiers::OCL_Weak: 4261 RHS = Visit(E->getRHS()); 4262 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4263 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore); 4264 break; 4265 4266 case Qualifiers::OCL_None: 4267 // __block variables need to have the rhs evaluated first, plus 4268 // this should improve codegen just a little. 4269 RHS = Visit(E->getRHS()); 4270 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4271 4272 // Store the value into the LHS. Bit-fields are handled specially 4273 // because the result is altered by the store, i.e., [C99 6.5.16p1] 4274 // 'An assignment expression has the value of the left operand after 4275 // the assignment...'. 4276 if (LHS.isBitField()) { 4277 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 4278 } else { 4279 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 4280 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 4281 } 4282 } 4283 4284 // If the result is clearly ignored, return now. 4285 if (Ignore) 4286 return nullptr; 4287 4288 // The result of an assignment in C is the assigned r-value. 4289 if (!CGF.getLangOpts().CPlusPlus) 4290 return RHS; 4291 4292 // If the lvalue is non-volatile, return the computed value of the assignment. 4293 if (!LHS.isVolatileQualified()) 4294 return RHS; 4295 4296 // Otherwise, reload the value. 4297 return EmitLoadOfLValue(LHS, E->getExprLoc()); 4298 } 4299 4300 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 4301 // Perform vector logical and on comparisons with zero vectors. 4302 if (E->getType()->isVectorType()) { 4303 CGF.incrementProfileCounter(E); 4304 4305 Value *LHS = Visit(E->getLHS()); 4306 Value *RHS = Visit(E->getRHS()); 4307 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4308 if (LHS->getType()->isFPOrFPVectorTy()) { 4309 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 4310 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 4311 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4312 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4313 } else { 4314 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4315 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4316 } 4317 Value *And = Builder.CreateAnd(LHS, RHS); 4318 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 4319 } 4320 4321 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr(); 4322 llvm::Type *ResTy = ConvertType(E->getType()); 4323 4324 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 4325 // If we have 1 && X, just emit X without inserting the control flow. 4326 bool LHSCondVal; 4327 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4328 if (LHSCondVal) { // If we have 1 && X, just emit X. 4329 CGF.incrementProfileCounter(E); 4330 4331 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4332 4333 // If we're generating for profiling or coverage, generate a branch to a 4334 // block that increments the RHS counter needed to track branch condition 4335 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and 4336 // "FalseBlock" after the increment is done. 4337 if (InstrumentRegions && 4338 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4339 llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end"); 4340 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt"); 4341 Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock); 4342 CGF.EmitBlock(RHSBlockCnt); 4343 CGF.incrementProfileCounter(E->getRHS()); 4344 CGF.EmitBranch(FBlock); 4345 CGF.EmitBlock(FBlock); 4346 } 4347 4348 // ZExt result to int or bool. 4349 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 4350 } 4351 4352 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 4353 if (!CGF.ContainsLabel(E->getRHS())) 4354 return llvm::Constant::getNullValue(ResTy); 4355 } 4356 4357 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 4358 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 4359 4360 CodeGenFunction::ConditionalEvaluation eval(CGF); 4361 4362 // Branch on the LHS first. If it is false, go to the failure (cont) block. 4363 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 4364 CGF.getProfileCount(E->getRHS())); 4365 4366 // Any edges into the ContBlock are now from an (indeterminate number of) 4367 // edges from this first condition. All of these values will be false. Start 4368 // setting up the PHI node in the Cont Block for this. 4369 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4370 "", ContBlock); 4371 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4372 PI != PE; ++PI) 4373 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 4374 4375 eval.begin(CGF); 4376 CGF.EmitBlock(RHSBlock); 4377 CGF.incrementProfileCounter(E); 4378 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4379 eval.end(CGF); 4380 4381 // Reaquire the RHS block, as there may be subblocks inserted. 4382 RHSBlock = Builder.GetInsertBlock(); 4383 4384 // If we're generating for profiling or coverage, generate a branch on the 4385 // RHS to a block that increments the RHS true counter needed to track branch 4386 // condition coverage. 4387 if (InstrumentRegions && 4388 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4389 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt"); 4390 Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock); 4391 CGF.EmitBlock(RHSBlockCnt); 4392 CGF.incrementProfileCounter(E->getRHS()); 4393 CGF.EmitBranch(ContBlock); 4394 PN->addIncoming(RHSCond, RHSBlockCnt); 4395 } 4396 4397 // Emit an unconditional branch from this block to ContBlock. 4398 { 4399 // There is no need to emit line number for unconditional branch. 4400 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4401 CGF.EmitBlock(ContBlock); 4402 } 4403 // Insert an entry into the phi node for the edge with the value of RHSCond. 4404 PN->addIncoming(RHSCond, RHSBlock); 4405 4406 // Artificial location to preserve the scope information 4407 { 4408 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 4409 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 4410 } 4411 4412 // ZExt result to int. 4413 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 4414 } 4415 4416 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 4417 // Perform vector logical or on comparisons with zero vectors. 4418 if (E->getType()->isVectorType()) { 4419 CGF.incrementProfileCounter(E); 4420 4421 Value *LHS = Visit(E->getLHS()); 4422 Value *RHS = Visit(E->getRHS()); 4423 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4424 if (LHS->getType()->isFPOrFPVectorTy()) { 4425 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 4426 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 4427 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4428 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4429 } else { 4430 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4431 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4432 } 4433 Value *Or = Builder.CreateOr(LHS, RHS); 4434 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 4435 } 4436 4437 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr(); 4438 llvm::Type *ResTy = ConvertType(E->getType()); 4439 4440 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 4441 // If we have 0 || X, just emit X without inserting the control flow. 4442 bool LHSCondVal; 4443 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4444 if (!LHSCondVal) { // If we have 0 || X, just emit X. 4445 CGF.incrementProfileCounter(E); 4446 4447 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4448 4449 // If we're generating for profiling or coverage, generate a branch to a 4450 // block that increments the RHS counter need to track branch condition 4451 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and 4452 // "FalseBlock" after the increment is done. 4453 if (InstrumentRegions && 4454 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4455 llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end"); 4456 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt"); 4457 Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt); 4458 CGF.EmitBlock(RHSBlockCnt); 4459 CGF.incrementProfileCounter(E->getRHS()); 4460 CGF.EmitBranch(FBlock); 4461 CGF.EmitBlock(FBlock); 4462 } 4463 4464 // ZExt result to int or bool. 4465 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 4466 } 4467 4468 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 4469 if (!CGF.ContainsLabel(E->getRHS())) 4470 return llvm::ConstantInt::get(ResTy, 1); 4471 } 4472 4473 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 4474 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 4475 4476 CodeGenFunction::ConditionalEvaluation eval(CGF); 4477 4478 // Branch on the LHS first. If it is true, go to the success (cont) block. 4479 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 4480 CGF.getCurrentProfileCount() - 4481 CGF.getProfileCount(E->getRHS())); 4482 4483 // Any edges into the ContBlock are now from an (indeterminate number of) 4484 // edges from this first condition. All of these values will be true. Start 4485 // setting up the PHI node in the Cont Block for this. 4486 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4487 "", ContBlock); 4488 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4489 PI != PE; ++PI) 4490 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 4491 4492 eval.begin(CGF); 4493 4494 // Emit the RHS condition as a bool value. 4495 CGF.EmitBlock(RHSBlock); 4496 CGF.incrementProfileCounter(E); 4497 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4498 4499 eval.end(CGF); 4500 4501 // Reaquire the RHS block, as there may be subblocks inserted. 4502 RHSBlock = Builder.GetInsertBlock(); 4503 4504 // If we're generating for profiling or coverage, generate a branch on the 4505 // RHS to a block that increments the RHS true counter needed to track branch 4506 // condition coverage. 4507 if (InstrumentRegions && 4508 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4509 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt"); 4510 Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt); 4511 CGF.EmitBlock(RHSBlockCnt); 4512 CGF.incrementProfileCounter(E->getRHS()); 4513 CGF.EmitBranch(ContBlock); 4514 PN->addIncoming(RHSCond, RHSBlockCnt); 4515 } 4516 4517 // Emit an unconditional branch from this block to ContBlock. Insert an entry 4518 // into the phi node for the edge with the value of RHSCond. 4519 CGF.EmitBlock(ContBlock); 4520 PN->addIncoming(RHSCond, RHSBlock); 4521 4522 // ZExt result to int. 4523 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 4524 } 4525 4526 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 4527 CGF.EmitIgnoredExpr(E->getLHS()); 4528 CGF.EnsureInsertPoint(); 4529 return Visit(E->getRHS()); 4530 } 4531 4532 //===----------------------------------------------------------------------===// 4533 // Other Operators 4534 //===----------------------------------------------------------------------===// 4535 4536 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 4537 /// expression is cheap enough and side-effect-free enough to evaluate 4538 /// unconditionally instead of conditionally. This is used to convert control 4539 /// flow into selects in some cases. 4540 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 4541 CodeGenFunction &CGF) { 4542 // Anything that is an integer or floating point constant is fine. 4543 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 4544 4545 // Even non-volatile automatic variables can't be evaluated unconditionally. 4546 // Referencing a thread_local may cause non-trivial initialization work to 4547 // occur. If we're inside a lambda and one of the variables is from the scope 4548 // outside the lambda, that function may have returned already. Reading its 4549 // locals is a bad idea. Also, these reads may introduce races there didn't 4550 // exist in the source-level program. 4551 } 4552 4553 4554 Value *ScalarExprEmitter:: 4555 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 4556 TestAndClearIgnoreResultAssign(); 4557 4558 // Bind the common expression if necessary. 4559 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4560 4561 Expr *condExpr = E->getCond(); 4562 Expr *lhsExpr = E->getTrueExpr(); 4563 Expr *rhsExpr = E->getFalseExpr(); 4564 4565 // If the condition constant folds and can be elided, try to avoid emitting 4566 // the condition and the dead arm. 4567 bool CondExprBool; 4568 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4569 Expr *live = lhsExpr, *dead = rhsExpr; 4570 if (!CondExprBool) std::swap(live, dead); 4571 4572 // If the dead side doesn't have labels we need, just emit the Live part. 4573 if (!CGF.ContainsLabel(dead)) { 4574 if (CondExprBool) 4575 CGF.incrementProfileCounter(E); 4576 Value *Result = Visit(live); 4577 4578 // If the live part is a throw expression, it acts like it has a void 4579 // type, so evaluating it returns a null Value*. However, a conditional 4580 // with non-void type must return a non-null Value*. 4581 if (!Result && !E->getType()->isVoidType()) 4582 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4583 4584 return Result; 4585 } 4586 } 4587 4588 // OpenCL: If the condition is a vector, we can treat this condition like 4589 // the select function. 4590 if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) || 4591 condExpr->getType()->isExtVectorType()) { 4592 CGF.incrementProfileCounter(E); 4593 4594 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4595 llvm::Value *LHS = Visit(lhsExpr); 4596 llvm::Value *RHS = Visit(rhsExpr); 4597 4598 llvm::Type *condType = ConvertType(condExpr->getType()); 4599 auto *vecTy = cast<llvm::FixedVectorType>(condType); 4600 4601 unsigned numElem = vecTy->getNumElements(); 4602 llvm::Type *elemType = vecTy->getElementType(); 4603 4604 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4605 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4606 llvm::Value *tmp = Builder.CreateSExt( 4607 TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext"); 4608 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4609 4610 // Cast float to int to perform ANDs if necessary. 4611 llvm::Value *RHSTmp = RHS; 4612 llvm::Value *LHSTmp = LHS; 4613 bool wasCast = false; 4614 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4615 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4616 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4617 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4618 wasCast = true; 4619 } 4620 4621 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4622 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4623 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4624 if (wasCast) 4625 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4626 4627 return tmp5; 4628 } 4629 4630 if (condExpr->getType()->isVectorType()) { 4631 CGF.incrementProfileCounter(E); 4632 4633 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4634 llvm::Value *LHS = Visit(lhsExpr); 4635 llvm::Value *RHS = Visit(rhsExpr); 4636 4637 llvm::Type *CondType = ConvertType(condExpr->getType()); 4638 auto *VecTy = cast<llvm::VectorType>(CondType); 4639 llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy); 4640 4641 CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond"); 4642 return Builder.CreateSelect(CondV, LHS, RHS, "vector_select"); 4643 } 4644 4645 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4646 // select instead of as control flow. We can only do this if it is cheap and 4647 // safe to evaluate the LHS and RHS unconditionally. 4648 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4649 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4650 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4651 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4652 4653 CGF.incrementProfileCounter(E, StepV); 4654 4655 llvm::Value *LHS = Visit(lhsExpr); 4656 llvm::Value *RHS = Visit(rhsExpr); 4657 if (!LHS) { 4658 // If the conditional has void type, make sure we return a null Value*. 4659 assert(!RHS && "LHS and RHS types must match"); 4660 return nullptr; 4661 } 4662 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4663 } 4664 4665 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4666 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4667 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4668 4669 CodeGenFunction::ConditionalEvaluation eval(CGF); 4670 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4671 CGF.getProfileCount(lhsExpr)); 4672 4673 CGF.EmitBlock(LHSBlock); 4674 CGF.incrementProfileCounter(E); 4675 eval.begin(CGF); 4676 Value *LHS = Visit(lhsExpr); 4677 eval.end(CGF); 4678 4679 LHSBlock = Builder.GetInsertBlock(); 4680 Builder.CreateBr(ContBlock); 4681 4682 CGF.EmitBlock(RHSBlock); 4683 eval.begin(CGF); 4684 Value *RHS = Visit(rhsExpr); 4685 eval.end(CGF); 4686 4687 RHSBlock = Builder.GetInsertBlock(); 4688 CGF.EmitBlock(ContBlock); 4689 4690 // If the LHS or RHS is a throw expression, it will be legitimately null. 4691 if (!LHS) 4692 return RHS; 4693 if (!RHS) 4694 return LHS; 4695 4696 // Create a PHI node for the real part. 4697 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4698 PN->addIncoming(LHS, LHSBlock); 4699 PN->addIncoming(RHS, RHSBlock); 4700 return PN; 4701 } 4702 4703 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4704 return Visit(E->getChosenSubExpr()); 4705 } 4706 4707 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4708 QualType Ty = VE->getType(); 4709 4710 if (Ty->isVariablyModifiedType()) 4711 CGF.EmitVariablyModifiedType(Ty); 4712 4713 Address ArgValue = Address::invalid(); 4714 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4715 4716 llvm::Type *ArgTy = ConvertType(VE->getType()); 4717 4718 // If EmitVAArg fails, emit an error. 4719 if (!ArgPtr.isValid()) { 4720 CGF.ErrorUnsupported(VE, "va_arg expression"); 4721 return llvm::UndefValue::get(ArgTy); 4722 } 4723 4724 // FIXME Volatility. 4725 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4726 4727 // If EmitVAArg promoted the type, we must truncate it. 4728 if (ArgTy != Val->getType()) { 4729 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4730 Val = Builder.CreateIntToPtr(Val, ArgTy); 4731 else 4732 Val = Builder.CreateTrunc(Val, ArgTy); 4733 } 4734 4735 return Val; 4736 } 4737 4738 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4739 return CGF.EmitBlockLiteral(block); 4740 } 4741 4742 // Convert a vec3 to vec4, or vice versa. 4743 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4744 Value *Src, unsigned NumElementsDst) { 4745 static constexpr int Mask[] = {0, 1, 2, -1}; 4746 return Builder.CreateShuffleVector(Src, 4747 llvm::makeArrayRef(Mask, NumElementsDst)); 4748 } 4749 4750 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4751 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4752 // but could be scalar or vectors of different lengths, and either can be 4753 // pointer. 4754 // There are 4 cases: 4755 // 1. non-pointer -> non-pointer : needs 1 bitcast 4756 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4757 // 3. pointer -> non-pointer 4758 // a) pointer -> intptr_t : needs 1 ptrtoint 4759 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4760 // 4. non-pointer -> pointer 4761 // a) intptr_t -> pointer : needs 1 inttoptr 4762 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4763 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4764 // allow casting directly between pointer types and non-integer non-pointer 4765 // types. 4766 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4767 const llvm::DataLayout &DL, 4768 Value *Src, llvm::Type *DstTy, 4769 StringRef Name = "") { 4770 auto SrcTy = Src->getType(); 4771 4772 // Case 1. 4773 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4774 return Builder.CreateBitCast(Src, DstTy, Name); 4775 4776 // Case 2. 4777 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4778 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4779 4780 // Case 3. 4781 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4782 // Case 3b. 4783 if (!DstTy->isIntegerTy()) 4784 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4785 // Cases 3a and 3b. 4786 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4787 } 4788 4789 // Case 4b. 4790 if (!SrcTy->isIntegerTy()) 4791 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4792 // Cases 4a and 4b. 4793 return Builder.CreateIntToPtr(Src, DstTy, Name); 4794 } 4795 4796 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4797 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4798 llvm::Type *DstTy = ConvertType(E->getType()); 4799 4800 llvm::Type *SrcTy = Src->getType(); 4801 unsigned NumElementsSrc = 4802 isa<llvm::VectorType>(SrcTy) 4803 ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements() 4804 : 0; 4805 unsigned NumElementsDst = 4806 isa<llvm::VectorType>(DstTy) 4807 ? cast<llvm::FixedVectorType>(DstTy)->getNumElements() 4808 : 0; 4809 4810 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4811 // vector to get a vec4, then a bitcast if the target type is different. 4812 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4813 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4814 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4815 DstTy); 4816 4817 Src->setName("astype"); 4818 return Src; 4819 } 4820 4821 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4822 // to vec4 if the original type is not vec4, then a shuffle vector to 4823 // get a vec3. 4824 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4825 auto *Vec4Ty = llvm::FixedVectorType::get( 4826 cast<llvm::VectorType>(DstTy)->getElementType(), 4); 4827 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4828 Vec4Ty); 4829 4830 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4831 Src->setName("astype"); 4832 return Src; 4833 } 4834 4835 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4836 Src, DstTy, "astype"); 4837 } 4838 4839 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4840 return CGF.EmitAtomicExpr(E).getScalarVal(); 4841 } 4842 4843 //===----------------------------------------------------------------------===// 4844 // Entry Point into this File 4845 //===----------------------------------------------------------------------===// 4846 4847 /// Emit the computation of the specified expression of scalar type, ignoring 4848 /// the result. 4849 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4850 assert(E && hasScalarEvaluationKind(E->getType()) && 4851 "Invalid scalar expression to emit"); 4852 4853 return ScalarExprEmitter(*this, IgnoreResultAssign) 4854 .Visit(const_cast<Expr *>(E)); 4855 } 4856 4857 /// Emit a conversion from the specified type to the specified destination type, 4858 /// both of which are LLVM scalar types. 4859 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4860 QualType DstTy, 4861 SourceLocation Loc) { 4862 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4863 "Invalid scalar expression to emit"); 4864 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4865 } 4866 4867 /// Emit a conversion from the specified complex type to the specified 4868 /// destination type, where the destination type is an LLVM scalar type. 4869 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4870 QualType SrcTy, 4871 QualType DstTy, 4872 SourceLocation Loc) { 4873 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4874 "Invalid complex -> scalar conversion"); 4875 return ScalarExprEmitter(*this) 4876 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4877 } 4878 4879 4880 llvm::Value *CodeGenFunction:: 4881 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4882 bool isInc, bool isPre) { 4883 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4884 } 4885 4886 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4887 // object->isa or (*object).isa 4888 // Generate code as for: *(Class*)object 4889 4890 Expr *BaseExpr = E->getBase(); 4891 Address Addr = Address::invalid(); 4892 if (BaseExpr->isPRValue()) { 4893 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4894 } else { 4895 Addr = EmitLValue(BaseExpr).getAddress(*this); 4896 } 4897 4898 // Cast the address to Class*. 4899 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4900 return MakeAddrLValue(Addr, E->getType()); 4901 } 4902 4903 4904 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4905 const CompoundAssignOperator *E) { 4906 ScalarExprEmitter Scalar(*this); 4907 Value *Result = nullptr; 4908 switch (E->getOpcode()) { 4909 #define COMPOUND_OP(Op) \ 4910 case BO_##Op##Assign: \ 4911 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4912 Result) 4913 COMPOUND_OP(Mul); 4914 COMPOUND_OP(Div); 4915 COMPOUND_OP(Rem); 4916 COMPOUND_OP(Add); 4917 COMPOUND_OP(Sub); 4918 COMPOUND_OP(Shl); 4919 COMPOUND_OP(Shr); 4920 COMPOUND_OP(And); 4921 COMPOUND_OP(Xor); 4922 COMPOUND_OP(Or); 4923 #undef COMPOUND_OP 4924 4925 case BO_PtrMemD: 4926 case BO_PtrMemI: 4927 case BO_Mul: 4928 case BO_Div: 4929 case BO_Rem: 4930 case BO_Add: 4931 case BO_Sub: 4932 case BO_Shl: 4933 case BO_Shr: 4934 case BO_LT: 4935 case BO_GT: 4936 case BO_LE: 4937 case BO_GE: 4938 case BO_EQ: 4939 case BO_NE: 4940 case BO_Cmp: 4941 case BO_And: 4942 case BO_Xor: 4943 case BO_Or: 4944 case BO_LAnd: 4945 case BO_LOr: 4946 case BO_Assign: 4947 case BO_Comma: 4948 llvm_unreachable("Not valid compound assignment operators"); 4949 } 4950 4951 llvm_unreachable("Unhandled compound assignment operator"); 4952 } 4953 4954 struct GEPOffsetAndOverflow { 4955 // The total (signed) byte offset for the GEP. 4956 llvm::Value *TotalOffset; 4957 // The offset overflow flag - true if the total offset overflows. 4958 llvm::Value *OffsetOverflows; 4959 }; 4960 4961 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant, 4962 /// and compute the total offset it applies from it's base pointer BasePtr. 4963 /// Returns offset in bytes and a boolean flag whether an overflow happened 4964 /// during evaluation. 4965 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal, 4966 llvm::LLVMContext &VMContext, 4967 CodeGenModule &CGM, 4968 CGBuilderTy &Builder) { 4969 const auto &DL = CGM.getDataLayout(); 4970 4971 // The total (signed) byte offset for the GEP. 4972 llvm::Value *TotalOffset = nullptr; 4973 4974 // Was the GEP already reduced to a constant? 4975 if (isa<llvm::Constant>(GEPVal)) { 4976 // Compute the offset by casting both pointers to integers and subtracting: 4977 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr) 4978 Value *BasePtr_int = 4979 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType())); 4980 Value *GEPVal_int = 4981 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType())); 4982 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int); 4983 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()}; 4984 } 4985 4986 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4987 assert(GEP->getPointerOperand() == BasePtr && 4988 "BasePtr must be the base of the GEP."); 4989 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4990 4991 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4992 4993 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4994 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4995 auto *SAddIntrinsic = 4996 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4997 auto *SMulIntrinsic = 4998 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4999 5000 // The offset overflow flag - true if the total offset overflows. 5001 llvm::Value *OffsetOverflows = Builder.getFalse(); 5002 5003 /// Return the result of the given binary operation. 5004 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 5005 llvm::Value *RHS) -> llvm::Value * { 5006 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 5007 5008 // If the operands are constants, return a constant result. 5009 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 5010 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 5011 llvm::APInt N; 5012 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 5013 /*Signed=*/true, N); 5014 if (HasOverflow) 5015 OffsetOverflows = Builder.getTrue(); 5016 return llvm::ConstantInt::get(VMContext, N); 5017 } 5018 } 5019 5020 // Otherwise, compute the result with checked arithmetic. 5021 auto *ResultAndOverflow = Builder.CreateCall( 5022 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 5023 OffsetOverflows = Builder.CreateOr( 5024 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 5025 return Builder.CreateExtractValue(ResultAndOverflow, 0); 5026 }; 5027 5028 // Determine the total byte offset by looking at each GEP operand. 5029 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 5030 GTI != GTE; ++GTI) { 5031 llvm::Value *LocalOffset; 5032 auto *Index = GTI.getOperand(); 5033 // Compute the local offset contributed by this indexing step: 5034 if (auto *STy = GTI.getStructTypeOrNull()) { 5035 // For struct indexing, the local offset is the byte position of the 5036 // specified field. 5037 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 5038 LocalOffset = llvm::ConstantInt::get( 5039 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 5040 } else { 5041 // Otherwise this is array-like indexing. The local offset is the index 5042 // multiplied by the element size. 5043 auto *ElementSize = llvm::ConstantInt::get( 5044 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 5045 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 5046 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 5047 } 5048 5049 // If this is the first offset, set it as the total offset. Otherwise, add 5050 // the local offset into the running total. 5051 if (!TotalOffset || TotalOffset == Zero) 5052 TotalOffset = LocalOffset; 5053 else 5054 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 5055 } 5056 5057 return {TotalOffset, OffsetOverflows}; 5058 } 5059 5060 Value * 5061 CodeGenFunction::EmitCheckedInBoundsGEP(llvm::Type *ElemTy, Value *Ptr, 5062 ArrayRef<Value *> IdxList, 5063 bool SignedIndices, bool IsSubtraction, 5064 SourceLocation Loc, const Twine &Name) { 5065 llvm::Type *PtrTy = Ptr->getType(); 5066 Value *GEPVal = Builder.CreateInBoundsGEP(ElemTy, Ptr, IdxList, Name); 5067 5068 // If the pointer overflow sanitizer isn't enabled, do nothing. 5069 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 5070 return GEPVal; 5071 5072 // Perform nullptr-and-offset check unless the nullptr is defined. 5073 bool PerformNullCheck = !NullPointerIsDefined( 5074 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace()); 5075 // Check for overflows unless the GEP got constant-folded, 5076 // and only in the default address space 5077 bool PerformOverflowCheck = 5078 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0; 5079 5080 if (!(PerformNullCheck || PerformOverflowCheck)) 5081 return GEPVal; 5082 5083 const auto &DL = CGM.getDataLayout(); 5084 5085 SanitizerScope SanScope(this); 5086 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy); 5087 5088 GEPOffsetAndOverflow EvaluatedGEP = 5089 EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder); 5090 5091 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || 5092 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && 5093 "If the offset got constant-folded, we don't expect that there was an " 5094 "overflow."); 5095 5096 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 5097 5098 // Common case: if the total offset is zero, and we are using C++ semantics, 5099 // where nullptr+0 is defined, don't emit a check. 5100 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus) 5101 return GEPVal; 5102 5103 // Now that we've computed the total offset, add it to the base pointer (with 5104 // wrapping semantics). 5105 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy); 5106 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset); 5107 5108 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 5109 5110 if (PerformNullCheck) { 5111 // In C++, if the base pointer evaluates to a null pointer value, 5112 // the only valid pointer this inbounds GEP can produce is also 5113 // a null pointer, so the offset must also evaluate to zero. 5114 // Likewise, if we have non-zero base pointer, we can not get null pointer 5115 // as a result, so the offset can not be -intptr_t(BasePtr). 5116 // In other words, both pointers are either null, or both are non-null, 5117 // or the behaviour is undefined. 5118 // 5119 // C, however, is more strict in this regard, and gives more 5120 // optimization opportunities: in C, additionally, nullptr+0 is undefined. 5121 // So both the input to the 'gep inbounds' AND the output must not be null. 5122 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr); 5123 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP); 5124 auto *Valid = 5125 CGM.getLangOpts().CPlusPlus 5126 ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr) 5127 : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr); 5128 Checks.emplace_back(Valid, SanitizerKind::PointerOverflow); 5129 } 5130 5131 if (PerformOverflowCheck) { 5132 // The GEP is valid if: 5133 // 1) The total offset doesn't overflow, and 5134 // 2) The sign of the difference between the computed address and the base 5135 // pointer matches the sign of the total offset. 5136 llvm::Value *ValidGEP; 5137 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows); 5138 if (SignedIndices) { 5139 // GEP is computed as `unsigned base + signed offset`, therefore: 5140 // * If offset was positive, then the computed pointer can not be 5141 // [unsigned] less than the base pointer, unless it overflowed. 5142 // * If offset was negative, then the computed pointer can not be 5143 // [unsigned] greater than the bas pointere, unless it overflowed. 5144 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 5145 auto *PosOrZeroOffset = 5146 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero); 5147 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 5148 ValidGEP = 5149 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid); 5150 } else if (!IsSubtraction) { 5151 // GEP is computed as `unsigned base + unsigned offset`, therefore the 5152 // computed pointer can not be [unsigned] less than base pointer, 5153 // unless there was an overflow. 5154 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`. 5155 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 5156 } else { 5157 // GEP is computed as `unsigned base - unsigned offset`, therefore the 5158 // computed pointer can not be [unsigned] greater than base pointer, 5159 // unless there was an overflow. 5160 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`. 5161 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr); 5162 } 5163 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow); 5164 Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow); 5165 } 5166 5167 assert(!Checks.empty() && "Should have produced some checks."); 5168 5169 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 5170 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 5171 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 5172 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 5173 5174 return GEPVal; 5175 } 5176