1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCleanup.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Frontend/CodeGenOptions.h"
28 #include "llvm/ADT/Optional.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GlobalVariable.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/Module.h"
36 #include <cstdarg>
37 
38 using namespace clang;
39 using namespace CodeGen;
40 using llvm::Value;
41 
42 //===----------------------------------------------------------------------===//
43 //                         Scalar Expression Emitter
44 //===----------------------------------------------------------------------===//
45 
46 namespace {
47 struct BinOpInfo {
48   Value *LHS;
49   Value *RHS;
50   QualType Ty;  // Computation Type.
51   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
52   bool FPContractable;
53   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
54 };
55 
56 static bool MustVisitNullValue(const Expr *E) {
57   // If a null pointer expression's type is the C++0x nullptr_t, then
58   // it's not necessarily a simple constant and it must be evaluated
59   // for its potential side effects.
60   return E->getType()->isNullPtrType();
61 }
62 
63 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
64 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
65                                                         const Expr *E) {
66   const Expr *Base = E->IgnoreImpCasts();
67   if (E == Base)
68     return llvm::None;
69 
70   QualType BaseTy = Base->getType();
71   if (!BaseTy->isPromotableIntegerType() ||
72       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
73     return llvm::None;
74 
75   return BaseTy;
76 }
77 
78 /// Check if \p E is a widened promoted integer.
79 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
80   return getUnwidenedIntegerType(Ctx, E).hasValue();
81 }
82 
83 /// Check if we can skip the overflow check for \p Op.
84 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
85   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
86          "Expected a unary or binary operator");
87 
88   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
89     return IsWidenedIntegerOp(Ctx, UO->getSubExpr());
90 
91   const auto *BO = cast<BinaryOperator>(Op.E);
92   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
93   if (!OptionalLHSTy)
94     return false;
95 
96   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
97   if (!OptionalRHSTy)
98     return false;
99 
100   QualType LHSTy = *OptionalLHSTy;
101   QualType RHSTy = *OptionalRHSTy;
102 
103   // We usually don't need overflow checks for binary operations with widened
104   // operands. Multiplication with promoted unsigned operands is a special case.
105   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
106       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
107     return true;
108 
109   // The overflow check can be skipped if either one of the unpromoted types
110   // are less than half the size of the promoted type.
111   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
112   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
113          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
114 }
115 
116 class ScalarExprEmitter
117   : public StmtVisitor<ScalarExprEmitter, Value*> {
118   CodeGenFunction &CGF;
119   CGBuilderTy &Builder;
120   bool IgnoreResultAssign;
121   llvm::LLVMContext &VMContext;
122 public:
123 
124   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
125     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
126       VMContext(cgf.getLLVMContext()) {
127   }
128 
129   //===--------------------------------------------------------------------===//
130   //                               Utilities
131   //===--------------------------------------------------------------------===//
132 
133   bool TestAndClearIgnoreResultAssign() {
134     bool I = IgnoreResultAssign;
135     IgnoreResultAssign = false;
136     return I;
137   }
138 
139   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
140   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
141   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
142     return CGF.EmitCheckedLValue(E, TCK);
143   }
144 
145   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
146                       const BinOpInfo &Info);
147 
148   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
149     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
150   }
151 
152   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
153     const AlignValueAttr *AVAttr = nullptr;
154     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
155       const ValueDecl *VD = DRE->getDecl();
156 
157       if (VD->getType()->isReferenceType()) {
158         if (const auto *TTy =
159             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
160           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
161       } else {
162         // Assumptions for function parameters are emitted at the start of the
163         // function, so there is no need to repeat that here.
164         if (isa<ParmVarDecl>(VD))
165           return;
166 
167         AVAttr = VD->getAttr<AlignValueAttr>();
168       }
169     }
170 
171     if (!AVAttr)
172       if (const auto *TTy =
173           dyn_cast<TypedefType>(E->getType()))
174         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
175 
176     if (!AVAttr)
177       return;
178 
179     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
180     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
181     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
182   }
183 
184   /// EmitLoadOfLValue - Given an expression with complex type that represents a
185   /// value l-value, this method emits the address of the l-value, then loads
186   /// and returns the result.
187   Value *EmitLoadOfLValue(const Expr *E) {
188     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
189                                 E->getExprLoc());
190 
191     EmitLValueAlignmentAssumption(E, V);
192     return V;
193   }
194 
195   /// EmitConversionToBool - Convert the specified expression value to a
196   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
197   Value *EmitConversionToBool(Value *Src, QualType DstTy);
198 
199   /// Emit a check that a conversion to or from a floating-point type does not
200   /// overflow.
201   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
202                                 Value *Src, QualType SrcType, QualType DstType,
203                                 llvm::Type *DstTy, SourceLocation Loc);
204 
205   /// Emit a conversion from the specified type to the specified destination
206   /// type, both of which are LLVM scalar types.
207   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
208                               SourceLocation Loc);
209 
210   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
211                               SourceLocation Loc, bool TreatBooleanAsSigned);
212 
213   /// Emit a conversion from the specified complex type to the specified
214   /// destination type, where the destination type is an LLVM scalar type.
215   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
216                                        QualType SrcTy, QualType DstTy,
217                                        SourceLocation Loc);
218 
219   /// EmitNullValue - Emit a value that corresponds to null for the given type.
220   Value *EmitNullValue(QualType Ty);
221 
222   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
223   Value *EmitFloatToBoolConversion(Value *V) {
224     // Compare against 0.0 for fp scalars.
225     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
226     return Builder.CreateFCmpUNE(V, Zero, "tobool");
227   }
228 
229   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
230   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
231     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
232 
233     return Builder.CreateICmpNE(V, Zero, "tobool");
234   }
235 
236   Value *EmitIntToBoolConversion(Value *V) {
237     // Because of the type rules of C, we often end up computing a
238     // logical value, then zero extending it to int, then wanting it
239     // as a logical value again.  Optimize this common case.
240     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
241       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
242         Value *Result = ZI->getOperand(0);
243         // If there aren't any more uses, zap the instruction to save space.
244         // Note that there can be more uses, for example if this
245         // is the result of an assignment.
246         if (ZI->use_empty())
247           ZI->eraseFromParent();
248         return Result;
249       }
250     }
251 
252     return Builder.CreateIsNotNull(V, "tobool");
253   }
254 
255   //===--------------------------------------------------------------------===//
256   //                            Visitor Methods
257   //===--------------------------------------------------------------------===//
258 
259   Value *Visit(Expr *E) {
260     ApplyDebugLocation DL(CGF, E);
261     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
262   }
263 
264   Value *VisitStmt(Stmt *S) {
265     S->dump(CGF.getContext().getSourceManager());
266     llvm_unreachable("Stmt can't have complex result type!");
267   }
268   Value *VisitExpr(Expr *S);
269 
270   Value *VisitParenExpr(ParenExpr *PE) {
271     return Visit(PE->getSubExpr());
272   }
273   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
274     return Visit(E->getReplacement());
275   }
276   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
277     return Visit(GE->getResultExpr());
278   }
279 
280   // Leaves.
281   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
282     return Builder.getInt(E->getValue());
283   }
284   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
285     return llvm::ConstantFP::get(VMContext, E->getValue());
286   }
287   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
288     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
289   }
290   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
291     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
292   }
293   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
294     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
295   }
296   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
297     return EmitNullValue(E->getType());
298   }
299   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
300     return EmitNullValue(E->getType());
301   }
302   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
303   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
304   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
305     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
306     return Builder.CreateBitCast(V, ConvertType(E->getType()));
307   }
308 
309   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
310     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
311   }
312 
313   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
314     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
315   }
316 
317   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
318     if (E->isGLValue())
319       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
320 
321     // Otherwise, assume the mapping is the scalar directly.
322     return CGF.getOpaqueRValueMapping(E).getScalarVal();
323   }
324 
325   // l-values.
326   Value *VisitDeclRefExpr(DeclRefExpr *E) {
327     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
328       if (result.isReference())
329         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
330                                 E->getExprLoc());
331       return result.getValue();
332     }
333     return EmitLoadOfLValue(E);
334   }
335 
336   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
337     return CGF.EmitObjCSelectorExpr(E);
338   }
339   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
340     return CGF.EmitObjCProtocolExpr(E);
341   }
342   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
343     return EmitLoadOfLValue(E);
344   }
345   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
346     if (E->getMethodDecl() &&
347         E->getMethodDecl()->getReturnType()->isReferenceType())
348       return EmitLoadOfLValue(E);
349     return CGF.EmitObjCMessageExpr(E).getScalarVal();
350   }
351 
352   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
353     LValue LV = CGF.EmitObjCIsaExpr(E);
354     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
355     return V;
356   }
357 
358   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
359     VersionTuple Version = E->getVersion();
360 
361     // If we're checking for a platform older than our minimum deployment
362     // target, we can fold the check away.
363     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
364       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
365 
366     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
367     llvm::Value *Args[] = {
368         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
369         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
370         llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
371     };
372 
373     return CGF.EmitBuiltinAvailable(Args);
374   }
375 
376   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
377   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
378   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
379   Value *VisitMemberExpr(MemberExpr *E);
380   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
381   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
382     return EmitLoadOfLValue(E);
383   }
384 
385   Value *VisitInitListExpr(InitListExpr *E);
386 
387   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
388     assert(CGF.getArrayInitIndex() &&
389            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
390     return CGF.getArrayInitIndex();
391   }
392 
393   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
394     return EmitNullValue(E->getType());
395   }
396   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
397     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
398     return VisitCastExpr(E);
399   }
400   Value *VisitCastExpr(CastExpr *E);
401 
402   Value *VisitCallExpr(const CallExpr *E) {
403     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
404       return EmitLoadOfLValue(E);
405 
406     Value *V = CGF.EmitCallExpr(E).getScalarVal();
407 
408     EmitLValueAlignmentAssumption(E, V);
409     return V;
410   }
411 
412   Value *VisitStmtExpr(const StmtExpr *E);
413 
414   // Unary Operators.
415   Value *VisitUnaryPostDec(const UnaryOperator *E) {
416     LValue LV = EmitLValue(E->getSubExpr());
417     return EmitScalarPrePostIncDec(E, LV, false, false);
418   }
419   Value *VisitUnaryPostInc(const UnaryOperator *E) {
420     LValue LV = EmitLValue(E->getSubExpr());
421     return EmitScalarPrePostIncDec(E, LV, true, false);
422   }
423   Value *VisitUnaryPreDec(const UnaryOperator *E) {
424     LValue LV = EmitLValue(E->getSubExpr());
425     return EmitScalarPrePostIncDec(E, LV, false, true);
426   }
427   Value *VisitUnaryPreInc(const UnaryOperator *E) {
428     LValue LV = EmitLValue(E->getSubExpr());
429     return EmitScalarPrePostIncDec(E, LV, true, true);
430   }
431 
432   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
433                                                   llvm::Value *InVal,
434                                                   bool IsInc);
435 
436   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
437                                        bool isInc, bool isPre);
438 
439 
440   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
441     if (isa<MemberPointerType>(E->getType())) // never sugared
442       return CGF.CGM.getMemberPointerConstant(E);
443 
444     return EmitLValue(E->getSubExpr()).getPointer();
445   }
446   Value *VisitUnaryDeref(const UnaryOperator *E) {
447     if (E->getType()->isVoidType())
448       return Visit(E->getSubExpr()); // the actual value should be unused
449     return EmitLoadOfLValue(E);
450   }
451   Value *VisitUnaryPlus(const UnaryOperator *E) {
452     // This differs from gcc, though, most likely due to a bug in gcc.
453     TestAndClearIgnoreResultAssign();
454     return Visit(E->getSubExpr());
455   }
456   Value *VisitUnaryMinus    (const UnaryOperator *E);
457   Value *VisitUnaryNot      (const UnaryOperator *E);
458   Value *VisitUnaryLNot     (const UnaryOperator *E);
459   Value *VisitUnaryReal     (const UnaryOperator *E);
460   Value *VisitUnaryImag     (const UnaryOperator *E);
461   Value *VisitUnaryExtension(const UnaryOperator *E) {
462     return Visit(E->getSubExpr());
463   }
464 
465   // C++
466   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
467     return EmitLoadOfLValue(E);
468   }
469 
470   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
471     return Visit(DAE->getExpr());
472   }
473   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
474     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
475     return Visit(DIE->getExpr());
476   }
477   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
478     return CGF.LoadCXXThis();
479   }
480 
481   Value *VisitExprWithCleanups(ExprWithCleanups *E);
482   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
483     return CGF.EmitCXXNewExpr(E);
484   }
485   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
486     CGF.EmitCXXDeleteExpr(E);
487     return nullptr;
488   }
489 
490   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
491     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
492   }
493 
494   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
495     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
496   }
497 
498   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
499     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
500   }
501 
502   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
503     // C++ [expr.pseudo]p1:
504     //   The result shall only be used as the operand for the function call
505     //   operator (), and the result of such a call has type void. The only
506     //   effect is the evaluation of the postfix-expression before the dot or
507     //   arrow.
508     CGF.EmitScalarExpr(E->getBase());
509     return nullptr;
510   }
511 
512   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
513     return EmitNullValue(E->getType());
514   }
515 
516   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
517     CGF.EmitCXXThrowExpr(E);
518     return nullptr;
519   }
520 
521   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
522     return Builder.getInt1(E->getValue());
523   }
524 
525   // Binary Operators.
526   Value *EmitMul(const BinOpInfo &Ops) {
527     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
528       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
529       case LangOptions::SOB_Defined:
530         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
531       case LangOptions::SOB_Undefined:
532         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
533           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
534         // Fall through.
535       case LangOptions::SOB_Trapping:
536         if (CanElideOverflowCheck(CGF.getContext(), Ops))
537           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
538         return EmitOverflowCheckedBinOp(Ops);
539       }
540     }
541 
542     if (Ops.Ty->isUnsignedIntegerType() &&
543         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
544         !CanElideOverflowCheck(CGF.getContext(), Ops))
545       return EmitOverflowCheckedBinOp(Ops);
546 
547     if (Ops.LHS->getType()->isFPOrFPVectorTy())
548       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
549     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
550   }
551   /// Create a binary op that checks for overflow.
552   /// Currently only supports +, - and *.
553   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
554 
555   // Check for undefined division and modulus behaviors.
556   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
557                                                   llvm::Value *Zero,bool isDiv);
558   // Common helper for getting how wide LHS of shift is.
559   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
560   Value *EmitDiv(const BinOpInfo &Ops);
561   Value *EmitRem(const BinOpInfo &Ops);
562   Value *EmitAdd(const BinOpInfo &Ops);
563   Value *EmitSub(const BinOpInfo &Ops);
564   Value *EmitShl(const BinOpInfo &Ops);
565   Value *EmitShr(const BinOpInfo &Ops);
566   Value *EmitAnd(const BinOpInfo &Ops) {
567     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
568   }
569   Value *EmitXor(const BinOpInfo &Ops) {
570     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
571   }
572   Value *EmitOr (const BinOpInfo &Ops) {
573     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
574   }
575 
576   BinOpInfo EmitBinOps(const BinaryOperator *E);
577   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
578                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
579                                   Value *&Result);
580 
581   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
582                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
583 
584   // Binary operators and binary compound assignment operators.
585 #define HANDLEBINOP(OP) \
586   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
587     return Emit ## OP(EmitBinOps(E));                                      \
588   }                                                                        \
589   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
590     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
591   }
592   HANDLEBINOP(Mul)
593   HANDLEBINOP(Div)
594   HANDLEBINOP(Rem)
595   HANDLEBINOP(Add)
596   HANDLEBINOP(Sub)
597   HANDLEBINOP(Shl)
598   HANDLEBINOP(Shr)
599   HANDLEBINOP(And)
600   HANDLEBINOP(Xor)
601   HANDLEBINOP(Or)
602 #undef HANDLEBINOP
603 
604   // Comparisons.
605   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
606                      llvm::CmpInst::Predicate SICmpOpc,
607                      llvm::CmpInst::Predicate FCmpOpc);
608 #define VISITCOMP(CODE, UI, SI, FP) \
609     Value *VisitBin##CODE(const BinaryOperator *E) { \
610       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
611                          llvm::FCmpInst::FP); }
612   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
613   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
614   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
615   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
616   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
617   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
618 #undef VISITCOMP
619 
620   Value *VisitBinAssign     (const BinaryOperator *E);
621 
622   Value *VisitBinLAnd       (const BinaryOperator *E);
623   Value *VisitBinLOr        (const BinaryOperator *E);
624   Value *VisitBinComma      (const BinaryOperator *E);
625 
626   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
627   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
628 
629   // Other Operators.
630   Value *VisitBlockExpr(const BlockExpr *BE);
631   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
632   Value *VisitChooseExpr(ChooseExpr *CE);
633   Value *VisitVAArgExpr(VAArgExpr *VE);
634   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
635     return CGF.EmitObjCStringLiteral(E);
636   }
637   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
638     return CGF.EmitObjCBoxedExpr(E);
639   }
640   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
641     return CGF.EmitObjCArrayLiteral(E);
642   }
643   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
644     return CGF.EmitObjCDictionaryLiteral(E);
645   }
646   Value *VisitAsTypeExpr(AsTypeExpr *CE);
647   Value *VisitAtomicExpr(AtomicExpr *AE);
648 };
649 }  // end anonymous namespace.
650 
651 //===----------------------------------------------------------------------===//
652 //                                Utilities
653 //===----------------------------------------------------------------------===//
654 
655 /// EmitConversionToBool - Convert the specified expression value to a
656 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
657 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
658   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
659 
660   if (SrcType->isRealFloatingType())
661     return EmitFloatToBoolConversion(Src);
662 
663   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
664     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
665 
666   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
667          "Unknown scalar type to convert");
668 
669   if (isa<llvm::IntegerType>(Src->getType()))
670     return EmitIntToBoolConversion(Src);
671 
672   assert(isa<llvm::PointerType>(Src->getType()));
673   return EmitPointerToBoolConversion(Src, SrcType);
674 }
675 
676 void ScalarExprEmitter::EmitFloatConversionCheck(
677     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
678     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
679   CodeGenFunction::SanitizerScope SanScope(&CGF);
680   using llvm::APFloat;
681   using llvm::APSInt;
682 
683   llvm::Type *SrcTy = Src->getType();
684 
685   llvm::Value *Check = nullptr;
686   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
687     // Integer to floating-point. This can fail for unsigned short -> __half
688     // or unsigned __int128 -> float.
689     assert(DstType->isFloatingType());
690     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
691 
692     APFloat LargestFloat =
693       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
694     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
695 
696     bool IsExact;
697     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
698                                       &IsExact) != APFloat::opOK)
699       // The range of representable values of this floating point type includes
700       // all values of this integer type. Don't need an overflow check.
701       return;
702 
703     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
704     if (SrcIsUnsigned)
705       Check = Builder.CreateICmpULE(Src, Max);
706     else {
707       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
708       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
709       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
710       Check = Builder.CreateAnd(GE, LE);
711     }
712   } else {
713     const llvm::fltSemantics &SrcSema =
714       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
715     if (isa<llvm::IntegerType>(DstTy)) {
716       // Floating-point to integer. This has undefined behavior if the source is
717       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
718       // to an integer).
719       unsigned Width = CGF.getContext().getIntWidth(DstType);
720       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
721 
722       APSInt Min = APSInt::getMinValue(Width, Unsigned);
723       APFloat MinSrc(SrcSema, APFloat::uninitialized);
724       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
725           APFloat::opOverflow)
726         // Don't need an overflow check for lower bound. Just check for
727         // -Inf/NaN.
728         MinSrc = APFloat::getInf(SrcSema, true);
729       else
730         // Find the largest value which is too small to represent (before
731         // truncation toward zero).
732         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
733 
734       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
735       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
736       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
737           APFloat::opOverflow)
738         // Don't need an overflow check for upper bound. Just check for
739         // +Inf/NaN.
740         MaxSrc = APFloat::getInf(SrcSema, false);
741       else
742         // Find the smallest value which is too large to represent (before
743         // truncation toward zero).
744         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
745 
746       // If we're converting from __half, convert the range to float to match
747       // the type of src.
748       if (OrigSrcType->isHalfType()) {
749         const llvm::fltSemantics &Sema =
750           CGF.getContext().getFloatTypeSemantics(SrcType);
751         bool IsInexact;
752         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
753         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
754       }
755 
756       llvm::Value *GE =
757         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
758       llvm::Value *LE =
759         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
760       Check = Builder.CreateAnd(GE, LE);
761     } else {
762       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
763       //
764       // Floating-point to floating-point. This has undefined behavior if the
765       // source is not in the range of representable values of the destination
766       // type. The C and C++ standards are spectacularly unclear here. We
767       // diagnose finite out-of-range conversions, but allow infinities and NaNs
768       // to convert to the corresponding value in the smaller type.
769       //
770       // C11 Annex F gives all such conversions defined behavior for IEC 60559
771       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
772       // does not.
773 
774       // Converting from a lower rank to a higher rank can never have
775       // undefined behavior, since higher-rank types must have a superset
776       // of values of lower-rank types.
777       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
778         return;
779 
780       assert(!OrigSrcType->isHalfType() &&
781              "should not check conversion from __half, it has the lowest rank");
782 
783       const llvm::fltSemantics &DstSema =
784         CGF.getContext().getFloatTypeSemantics(DstType);
785       APFloat MinBad = APFloat::getLargest(DstSema, false);
786       APFloat MaxBad = APFloat::getInf(DstSema, false);
787 
788       bool IsInexact;
789       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
790       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
791 
792       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
793         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
794       llvm::Value *GE =
795         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
796       llvm::Value *LE =
797         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
798       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
799     }
800   }
801 
802   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
803                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
804                                   CGF.EmitCheckTypeDescriptor(DstType)};
805   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
806                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
807 }
808 
809 /// Emit a conversion from the specified type to the specified destination type,
810 /// both of which are LLVM scalar types.
811 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
812                                                QualType DstType,
813                                                SourceLocation Loc) {
814   return EmitScalarConversion(Src, SrcType, DstType, Loc, false);
815 }
816 
817 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
818                                                QualType DstType,
819                                                SourceLocation Loc,
820                                                bool TreatBooleanAsSigned) {
821   SrcType = CGF.getContext().getCanonicalType(SrcType);
822   DstType = CGF.getContext().getCanonicalType(DstType);
823   if (SrcType == DstType) return Src;
824 
825   if (DstType->isVoidType()) return nullptr;
826 
827   llvm::Value *OrigSrc = Src;
828   QualType OrigSrcType = SrcType;
829   llvm::Type *SrcTy = Src->getType();
830 
831   // Handle conversions to bool first, they are special: comparisons against 0.
832   if (DstType->isBooleanType())
833     return EmitConversionToBool(Src, SrcType);
834 
835   llvm::Type *DstTy = ConvertType(DstType);
836 
837   // Cast from half through float if half isn't a native type.
838   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
839     // Cast to FP using the intrinsic if the half type itself isn't supported.
840     if (DstTy->isFloatingPointTy()) {
841       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
842         return Builder.CreateCall(
843             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
844             Src);
845     } else {
846       // Cast to other types through float, using either the intrinsic or FPExt,
847       // depending on whether the half type itself is supported
848       // (as opposed to operations on half, available with NativeHalfType).
849       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
850         Src = Builder.CreateCall(
851             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
852                                  CGF.CGM.FloatTy),
853             Src);
854       } else {
855         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
856       }
857       SrcType = CGF.getContext().FloatTy;
858       SrcTy = CGF.FloatTy;
859     }
860   }
861 
862   // Ignore conversions like int -> uint.
863   if (SrcTy == DstTy)
864     return Src;
865 
866   // Handle pointer conversions next: pointers can only be converted to/from
867   // other pointers and integers. Check for pointer types in terms of LLVM, as
868   // some native types (like Obj-C id) may map to a pointer type.
869   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
870     // The source value may be an integer, or a pointer.
871     if (isa<llvm::PointerType>(SrcTy))
872       return Builder.CreateBitCast(Src, DstTy, "conv");
873 
874     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
875     // First, convert to the correct width so that we control the kind of
876     // extension.
877     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
878     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
879     llvm::Value* IntResult =
880         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
881     // Then, cast to pointer.
882     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
883   }
884 
885   if (isa<llvm::PointerType>(SrcTy)) {
886     // Must be an ptr to int cast.
887     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
888     return Builder.CreatePtrToInt(Src, DstTy, "conv");
889   }
890 
891   // A scalar can be splatted to an extended vector of the same element type
892   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
893     // Sema should add casts to make sure that the source expression's type is
894     // the same as the vector's element type (sans qualifiers)
895     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
896                SrcType.getTypePtr() &&
897            "Splatted expr doesn't match with vector element type?");
898 
899     // Splat the element across to all elements
900     unsigned NumElements = DstTy->getVectorNumElements();
901     return Builder.CreateVectorSplat(NumElements, Src, "splat");
902   }
903 
904   // Allow bitcast from vector to integer/fp of the same size.
905   if (isa<llvm::VectorType>(SrcTy) ||
906       isa<llvm::VectorType>(DstTy))
907     return Builder.CreateBitCast(Src, DstTy, "conv");
908 
909   // Finally, we have the arithmetic types: real int/float.
910   Value *Res = nullptr;
911   llvm::Type *ResTy = DstTy;
912 
913   // An overflowing conversion has undefined behavior if either the source type
914   // or the destination type is a floating-point type.
915   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
916       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
917     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
918                              Loc);
919 
920   // Cast to half through float if half isn't a native type.
921   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
922     // Make sure we cast in a single step if from another FP type.
923     if (SrcTy->isFloatingPointTy()) {
924       // Use the intrinsic if the half type itself isn't supported
925       // (as opposed to operations on half, available with NativeHalfType).
926       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
927         return Builder.CreateCall(
928             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
929       // If the half type is supported, just use an fptrunc.
930       return Builder.CreateFPTrunc(Src, DstTy);
931     }
932     DstTy = CGF.FloatTy;
933   }
934 
935   if (isa<llvm::IntegerType>(SrcTy)) {
936     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
937     if (SrcType->isBooleanType() && TreatBooleanAsSigned) {
938       InputSigned = true;
939     }
940     if (isa<llvm::IntegerType>(DstTy))
941       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
942     else if (InputSigned)
943       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
944     else
945       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
946   } else if (isa<llvm::IntegerType>(DstTy)) {
947     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
948     if (DstType->isSignedIntegerOrEnumerationType())
949       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
950     else
951       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
952   } else {
953     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
954            "Unknown real conversion");
955     if (DstTy->getTypeID() < SrcTy->getTypeID())
956       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
957     else
958       Res = Builder.CreateFPExt(Src, DstTy, "conv");
959   }
960 
961   if (DstTy != ResTy) {
962     if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
963       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
964       Res = Builder.CreateCall(
965         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
966         Res);
967     } else {
968       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
969     }
970   }
971 
972   return Res;
973 }
974 
975 /// Emit a conversion from the specified complex type to the specified
976 /// destination type, where the destination type is an LLVM scalar type.
977 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
978     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
979     SourceLocation Loc) {
980   // Get the source element type.
981   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
982 
983   // Handle conversions to bool first, they are special: comparisons against 0.
984   if (DstTy->isBooleanType()) {
985     //  Complex != 0  -> (Real != 0) | (Imag != 0)
986     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
987     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
988     return Builder.CreateOr(Src.first, Src.second, "tobool");
989   }
990 
991   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
992   // the imaginary part of the complex value is discarded and the value of the
993   // real part is converted according to the conversion rules for the
994   // corresponding real type.
995   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
996 }
997 
998 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
999   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1000 }
1001 
1002 /// \brief Emit a sanitization check for the given "binary" operation (which
1003 /// might actually be a unary increment which has been lowered to a binary
1004 /// operation). The check passes if all values in \p Checks (which are \c i1),
1005 /// are \c true.
1006 void ScalarExprEmitter::EmitBinOpCheck(
1007     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1008   assert(CGF.IsSanitizerScope);
1009   SanitizerHandler Check;
1010   SmallVector<llvm::Constant *, 4> StaticData;
1011   SmallVector<llvm::Value *, 2> DynamicData;
1012 
1013   BinaryOperatorKind Opcode = Info.Opcode;
1014   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1015     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1016 
1017   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1018   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1019   if (UO && UO->getOpcode() == UO_Minus) {
1020     Check = SanitizerHandler::NegateOverflow;
1021     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1022     DynamicData.push_back(Info.RHS);
1023   } else {
1024     if (BinaryOperator::isShiftOp(Opcode)) {
1025       // Shift LHS negative or too large, or RHS out of bounds.
1026       Check = SanitizerHandler::ShiftOutOfBounds;
1027       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1028       StaticData.push_back(
1029         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1030       StaticData.push_back(
1031         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1032     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1033       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1034       Check = SanitizerHandler::DivremOverflow;
1035       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1036     } else {
1037       // Arithmetic overflow (+, -, *).
1038       switch (Opcode) {
1039       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1040       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1041       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1042       default: llvm_unreachable("unexpected opcode for bin op check");
1043       }
1044       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1045     }
1046     DynamicData.push_back(Info.LHS);
1047     DynamicData.push_back(Info.RHS);
1048   }
1049 
1050   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1051 }
1052 
1053 //===----------------------------------------------------------------------===//
1054 //                            Visitor Methods
1055 //===----------------------------------------------------------------------===//
1056 
1057 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1058   CGF.ErrorUnsupported(E, "scalar expression");
1059   if (E->getType()->isVoidType())
1060     return nullptr;
1061   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1062 }
1063 
1064 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1065   // Vector Mask Case
1066   if (E->getNumSubExprs() == 2) {
1067     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1068     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1069     Value *Mask;
1070 
1071     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1072     unsigned LHSElts = LTy->getNumElements();
1073 
1074     Mask = RHS;
1075 
1076     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1077 
1078     // Mask off the high bits of each shuffle index.
1079     Value *MaskBits =
1080         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1081     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1082 
1083     // newv = undef
1084     // mask = mask & maskbits
1085     // for each elt
1086     //   n = extract mask i
1087     //   x = extract val n
1088     //   newv = insert newv, x, i
1089     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1090                                                   MTy->getNumElements());
1091     Value* NewV = llvm::UndefValue::get(RTy);
1092     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1093       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1094       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1095 
1096       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1097       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1098     }
1099     return NewV;
1100   }
1101 
1102   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1103   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1104 
1105   SmallVector<llvm::Constant*, 32> indices;
1106   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1107     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1108     // Check for -1 and output it as undef in the IR.
1109     if (Idx.isSigned() && Idx.isAllOnesValue())
1110       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1111     else
1112       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1113   }
1114 
1115   Value *SV = llvm::ConstantVector::get(indices);
1116   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1117 }
1118 
1119 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1120   QualType SrcType = E->getSrcExpr()->getType(),
1121            DstType = E->getType();
1122 
1123   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1124 
1125   SrcType = CGF.getContext().getCanonicalType(SrcType);
1126   DstType = CGF.getContext().getCanonicalType(DstType);
1127   if (SrcType == DstType) return Src;
1128 
1129   assert(SrcType->isVectorType() &&
1130          "ConvertVector source type must be a vector");
1131   assert(DstType->isVectorType() &&
1132          "ConvertVector destination type must be a vector");
1133 
1134   llvm::Type *SrcTy = Src->getType();
1135   llvm::Type *DstTy = ConvertType(DstType);
1136 
1137   // Ignore conversions like int -> uint.
1138   if (SrcTy == DstTy)
1139     return Src;
1140 
1141   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1142            DstEltType = DstType->getAs<VectorType>()->getElementType();
1143 
1144   assert(SrcTy->isVectorTy() &&
1145          "ConvertVector source IR type must be a vector");
1146   assert(DstTy->isVectorTy() &&
1147          "ConvertVector destination IR type must be a vector");
1148 
1149   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1150              *DstEltTy = DstTy->getVectorElementType();
1151 
1152   if (DstEltType->isBooleanType()) {
1153     assert((SrcEltTy->isFloatingPointTy() ||
1154             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1155 
1156     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1157     if (SrcEltTy->isFloatingPointTy()) {
1158       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1159     } else {
1160       return Builder.CreateICmpNE(Src, Zero, "tobool");
1161     }
1162   }
1163 
1164   // We have the arithmetic types: real int/float.
1165   Value *Res = nullptr;
1166 
1167   if (isa<llvm::IntegerType>(SrcEltTy)) {
1168     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1169     if (isa<llvm::IntegerType>(DstEltTy))
1170       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1171     else if (InputSigned)
1172       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1173     else
1174       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1175   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1176     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1177     if (DstEltType->isSignedIntegerOrEnumerationType())
1178       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1179     else
1180       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1181   } else {
1182     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1183            "Unknown real conversion");
1184     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1185       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1186     else
1187       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1188   }
1189 
1190   return Res;
1191 }
1192 
1193 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1194   llvm::APSInt Value;
1195   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1196     if (E->isArrow())
1197       CGF.EmitScalarExpr(E->getBase());
1198     else
1199       EmitLValue(E->getBase());
1200     return Builder.getInt(Value);
1201   }
1202 
1203   return EmitLoadOfLValue(E);
1204 }
1205 
1206 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1207   TestAndClearIgnoreResultAssign();
1208 
1209   // Emit subscript expressions in rvalue context's.  For most cases, this just
1210   // loads the lvalue formed by the subscript expr.  However, we have to be
1211   // careful, because the base of a vector subscript is occasionally an rvalue,
1212   // so we can't get it as an lvalue.
1213   if (!E->getBase()->getType()->isVectorType())
1214     return EmitLoadOfLValue(E);
1215 
1216   // Handle the vector case.  The base must be a vector, the index must be an
1217   // integer value.
1218   Value *Base = Visit(E->getBase());
1219   Value *Idx  = Visit(E->getIdx());
1220   QualType IdxTy = E->getIdx()->getType();
1221 
1222   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1223     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1224 
1225   return Builder.CreateExtractElement(Base, Idx, "vecext");
1226 }
1227 
1228 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1229                                   unsigned Off, llvm::Type *I32Ty) {
1230   int MV = SVI->getMaskValue(Idx);
1231   if (MV == -1)
1232     return llvm::UndefValue::get(I32Ty);
1233   return llvm::ConstantInt::get(I32Ty, Off+MV);
1234 }
1235 
1236 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1237   if (C->getBitWidth() != 32) {
1238       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1239                                                     C->getZExtValue()) &&
1240              "Index operand too large for shufflevector mask!");
1241       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1242   }
1243   return C;
1244 }
1245 
1246 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1247   bool Ignore = TestAndClearIgnoreResultAssign();
1248   (void)Ignore;
1249   assert (Ignore == false && "init list ignored");
1250   unsigned NumInitElements = E->getNumInits();
1251 
1252   if (E->hadArrayRangeDesignator())
1253     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1254 
1255   llvm::VectorType *VType =
1256     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1257 
1258   if (!VType) {
1259     if (NumInitElements == 0) {
1260       // C++11 value-initialization for the scalar.
1261       return EmitNullValue(E->getType());
1262     }
1263     // We have a scalar in braces. Just use the first element.
1264     return Visit(E->getInit(0));
1265   }
1266 
1267   unsigned ResElts = VType->getNumElements();
1268 
1269   // Loop over initializers collecting the Value for each, and remembering
1270   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1271   // us to fold the shuffle for the swizzle into the shuffle for the vector
1272   // initializer, since LLVM optimizers generally do not want to touch
1273   // shuffles.
1274   unsigned CurIdx = 0;
1275   bool VIsUndefShuffle = false;
1276   llvm::Value *V = llvm::UndefValue::get(VType);
1277   for (unsigned i = 0; i != NumInitElements; ++i) {
1278     Expr *IE = E->getInit(i);
1279     Value *Init = Visit(IE);
1280     SmallVector<llvm::Constant*, 16> Args;
1281 
1282     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1283 
1284     // Handle scalar elements.  If the scalar initializer is actually one
1285     // element of a different vector of the same width, use shuffle instead of
1286     // extract+insert.
1287     if (!VVT) {
1288       if (isa<ExtVectorElementExpr>(IE)) {
1289         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1290 
1291         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1292           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1293           Value *LHS = nullptr, *RHS = nullptr;
1294           if (CurIdx == 0) {
1295             // insert into undef -> shuffle (src, undef)
1296             // shufflemask must use an i32
1297             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1298             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1299 
1300             LHS = EI->getVectorOperand();
1301             RHS = V;
1302             VIsUndefShuffle = true;
1303           } else if (VIsUndefShuffle) {
1304             // insert into undefshuffle && size match -> shuffle (v, src)
1305             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1306             for (unsigned j = 0; j != CurIdx; ++j)
1307               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1308             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1309             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1310 
1311             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1312             RHS = EI->getVectorOperand();
1313             VIsUndefShuffle = false;
1314           }
1315           if (!Args.empty()) {
1316             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1317             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1318             ++CurIdx;
1319             continue;
1320           }
1321         }
1322       }
1323       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1324                                       "vecinit");
1325       VIsUndefShuffle = false;
1326       ++CurIdx;
1327       continue;
1328     }
1329 
1330     unsigned InitElts = VVT->getNumElements();
1331 
1332     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1333     // input is the same width as the vector being constructed, generate an
1334     // optimized shuffle of the swizzle input into the result.
1335     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1336     if (isa<ExtVectorElementExpr>(IE)) {
1337       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1338       Value *SVOp = SVI->getOperand(0);
1339       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1340 
1341       if (OpTy->getNumElements() == ResElts) {
1342         for (unsigned j = 0; j != CurIdx; ++j) {
1343           // If the current vector initializer is a shuffle with undef, merge
1344           // this shuffle directly into it.
1345           if (VIsUndefShuffle) {
1346             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1347                                       CGF.Int32Ty));
1348           } else {
1349             Args.push_back(Builder.getInt32(j));
1350           }
1351         }
1352         for (unsigned j = 0, je = InitElts; j != je; ++j)
1353           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1354         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1355 
1356         if (VIsUndefShuffle)
1357           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1358 
1359         Init = SVOp;
1360       }
1361     }
1362 
1363     // Extend init to result vector length, and then shuffle its contribution
1364     // to the vector initializer into V.
1365     if (Args.empty()) {
1366       for (unsigned j = 0; j != InitElts; ++j)
1367         Args.push_back(Builder.getInt32(j));
1368       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1369       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1370       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1371                                          Mask, "vext");
1372 
1373       Args.clear();
1374       for (unsigned j = 0; j != CurIdx; ++j)
1375         Args.push_back(Builder.getInt32(j));
1376       for (unsigned j = 0; j != InitElts; ++j)
1377         Args.push_back(Builder.getInt32(j+Offset));
1378       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1379     }
1380 
1381     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1382     // merging subsequent shuffles into this one.
1383     if (CurIdx == 0)
1384       std::swap(V, Init);
1385     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1386     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1387     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1388     CurIdx += InitElts;
1389   }
1390 
1391   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1392   // Emit remaining default initializers.
1393   llvm::Type *EltTy = VType->getElementType();
1394 
1395   // Emit remaining default initializers
1396   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1397     Value *Idx = Builder.getInt32(CurIdx);
1398     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1399     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1400   }
1401   return V;
1402 }
1403 
1404 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1405   const Expr *E = CE->getSubExpr();
1406 
1407   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1408     return false;
1409 
1410   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1411     // We always assume that 'this' is never null.
1412     return false;
1413   }
1414 
1415   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1416     // And that glvalue casts are never null.
1417     if (ICE->getValueKind() != VK_RValue)
1418       return false;
1419   }
1420 
1421   return true;
1422 }
1423 
1424 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1425 // have to handle a more broad range of conversions than explicit casts, as they
1426 // handle things like function to ptr-to-function decay etc.
1427 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1428   Expr *E = CE->getSubExpr();
1429   QualType DestTy = CE->getType();
1430   CastKind Kind = CE->getCastKind();
1431 
1432   // These cases are generally not written to ignore the result of
1433   // evaluating their sub-expressions, so we clear this now.
1434   bool Ignored = TestAndClearIgnoreResultAssign();
1435 
1436   // Since almost all cast kinds apply to scalars, this switch doesn't have
1437   // a default case, so the compiler will warn on a missing case.  The cases
1438   // are in the same order as in the CastKind enum.
1439   switch (Kind) {
1440   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1441   case CK_BuiltinFnToFnPtr:
1442     llvm_unreachable("builtin functions are handled elsewhere");
1443 
1444   case CK_LValueBitCast:
1445   case CK_ObjCObjectLValueCast: {
1446     Address Addr = EmitLValue(E).getAddress();
1447     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1448     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1449     return EmitLoadOfLValue(LV, CE->getExprLoc());
1450   }
1451 
1452   case CK_CPointerToObjCPointerCast:
1453   case CK_BlockPointerToObjCPointerCast:
1454   case CK_AnyPointerToBlockPointerCast:
1455   case CK_BitCast: {
1456     Value *Src = Visit(const_cast<Expr*>(E));
1457     llvm::Type *SrcTy = Src->getType();
1458     llvm::Type *DstTy = ConvertType(DestTy);
1459     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1460         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1461       llvm_unreachable("wrong cast for pointers in different address spaces"
1462                        "(must be an address space cast)!");
1463     }
1464 
1465     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1466       if (auto PT = DestTy->getAs<PointerType>())
1467         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1468                                       /*MayBeNull=*/true,
1469                                       CodeGenFunction::CFITCK_UnrelatedCast,
1470                                       CE->getLocStart());
1471     }
1472 
1473     return Builder.CreateBitCast(Src, DstTy);
1474   }
1475   case CK_AddressSpaceConversion: {
1476     Expr::EvalResult Result;
1477     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
1478         Result.Val.isNullPointer()) {
1479       // If E has side effect, it is emitted even if its final result is a
1480       // null pointer. In that case, a DCE pass should be able to
1481       // eliminate the useless instructions emitted during translating E.
1482       if (Result.HasSideEffects)
1483         Visit(E);
1484       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
1485           ConvertType(DestTy)), DestTy);
1486     }
1487     // Since target may map different address spaces in AST to the same address
1488     // space, an address space conversion may end up as a bitcast.
1489     auto *Src = Visit(E);
1490     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGF, Src,
1491                                                                E->getType(),
1492                                                                DestTy);
1493   }
1494   case CK_AtomicToNonAtomic:
1495   case CK_NonAtomicToAtomic:
1496   case CK_NoOp:
1497   case CK_UserDefinedConversion:
1498     return Visit(const_cast<Expr*>(E));
1499 
1500   case CK_BaseToDerived: {
1501     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1502     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1503 
1504     Address Base = CGF.EmitPointerWithAlignment(E);
1505     Address Derived =
1506       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
1507                                    CE->path_begin(), CE->path_end(),
1508                                    CGF.ShouldNullCheckClassCastValue(CE));
1509 
1510     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1511     // performed and the object is not of the derived type.
1512     if (CGF.sanitizePerformTypeCheck())
1513       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1514                         Derived.getPointer(), DestTy->getPointeeType());
1515 
1516     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1517       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
1518                                     Derived.getPointer(),
1519                                     /*MayBeNull=*/true,
1520                                     CodeGenFunction::CFITCK_DerivedCast,
1521                                     CE->getLocStart());
1522 
1523     return Derived.getPointer();
1524   }
1525   case CK_UncheckedDerivedToBase:
1526   case CK_DerivedToBase: {
1527     // The EmitPointerWithAlignment path does this fine; just discard
1528     // the alignment.
1529     return CGF.EmitPointerWithAlignment(CE).getPointer();
1530   }
1531 
1532   case CK_Dynamic: {
1533     Address V = CGF.EmitPointerWithAlignment(E);
1534     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1535     return CGF.EmitDynamicCast(V, DCE);
1536   }
1537 
1538   case CK_ArrayToPointerDecay:
1539     return CGF.EmitArrayToPointerDecay(E).getPointer();
1540   case CK_FunctionToPointerDecay:
1541     return EmitLValue(E).getPointer();
1542 
1543   case CK_NullToPointer:
1544     if (MustVisitNullValue(E))
1545       (void) Visit(E);
1546 
1547     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
1548                               DestTy);
1549 
1550   case CK_NullToMemberPointer: {
1551     if (MustVisitNullValue(E))
1552       (void) Visit(E);
1553 
1554     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1555     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1556   }
1557 
1558   case CK_ReinterpretMemberPointer:
1559   case CK_BaseToDerivedMemberPointer:
1560   case CK_DerivedToBaseMemberPointer: {
1561     Value *Src = Visit(E);
1562 
1563     // Note that the AST doesn't distinguish between checked and
1564     // unchecked member pointer conversions, so we always have to
1565     // implement checked conversions here.  This is inefficient when
1566     // actual control flow may be required in order to perform the
1567     // check, which it is for data member pointers (but not member
1568     // function pointers on Itanium and ARM).
1569     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1570   }
1571 
1572   case CK_ARCProduceObject:
1573     return CGF.EmitARCRetainScalarExpr(E);
1574   case CK_ARCConsumeObject:
1575     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1576   case CK_ARCReclaimReturnedObject:
1577     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
1578   case CK_ARCExtendBlockObject:
1579     return CGF.EmitARCExtendBlockObject(E);
1580 
1581   case CK_CopyAndAutoreleaseBlockObject:
1582     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1583 
1584   case CK_FloatingRealToComplex:
1585   case CK_FloatingComplexCast:
1586   case CK_IntegralRealToComplex:
1587   case CK_IntegralComplexCast:
1588   case CK_IntegralComplexToFloatingComplex:
1589   case CK_FloatingComplexToIntegralComplex:
1590   case CK_ConstructorConversion:
1591   case CK_ToUnion:
1592     llvm_unreachable("scalar cast to non-scalar value");
1593 
1594   case CK_LValueToRValue:
1595     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1596     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1597     return Visit(const_cast<Expr*>(E));
1598 
1599   case CK_IntegralToPointer: {
1600     Value *Src = Visit(const_cast<Expr*>(E));
1601 
1602     // First, convert to the correct width so that we control the kind of
1603     // extension.
1604     auto DestLLVMTy = ConvertType(DestTy);
1605     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
1606     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1607     llvm::Value* IntResult =
1608       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1609 
1610     return Builder.CreateIntToPtr(IntResult, DestLLVMTy);
1611   }
1612   case CK_PointerToIntegral:
1613     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1614     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1615 
1616   case CK_ToVoid: {
1617     CGF.EmitIgnoredExpr(E);
1618     return nullptr;
1619   }
1620   case CK_VectorSplat: {
1621     llvm::Type *DstTy = ConvertType(DestTy);
1622     Value *Elt = Visit(const_cast<Expr*>(E));
1623     // Splat the element across to all elements
1624     unsigned NumElements = DstTy->getVectorNumElements();
1625     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1626   }
1627 
1628   case CK_IntegralCast:
1629   case CK_IntegralToFloating:
1630   case CK_FloatingToIntegral:
1631   case CK_FloatingCast:
1632     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1633                                 CE->getExprLoc());
1634   case CK_BooleanToSignedIntegral:
1635     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1636                                 CE->getExprLoc(),
1637                                 /*TreatBooleanAsSigned=*/true);
1638   case CK_IntegralToBoolean:
1639     return EmitIntToBoolConversion(Visit(E));
1640   case CK_PointerToBoolean:
1641     return EmitPointerToBoolConversion(Visit(E), E->getType());
1642   case CK_FloatingToBoolean:
1643     return EmitFloatToBoolConversion(Visit(E));
1644   case CK_MemberPointerToBoolean: {
1645     llvm::Value *MemPtr = Visit(E);
1646     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1647     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1648   }
1649 
1650   case CK_FloatingComplexToReal:
1651   case CK_IntegralComplexToReal:
1652     return CGF.EmitComplexExpr(E, false, true).first;
1653 
1654   case CK_FloatingComplexToBoolean:
1655   case CK_IntegralComplexToBoolean: {
1656     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1657 
1658     // TODO: kill this function off, inline appropriate case here
1659     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
1660                                          CE->getExprLoc());
1661   }
1662 
1663   case CK_ZeroToOCLEvent: {
1664     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1665     return llvm::Constant::getNullValue(ConvertType(DestTy));
1666   }
1667 
1668   case CK_ZeroToOCLQueue: {
1669     assert(DestTy->isQueueT() && "CK_ZeroToOCLQueue cast on non queue_t type");
1670     return llvm::Constant::getNullValue(ConvertType(DestTy));
1671   }
1672 
1673   case CK_IntToOCLSampler:
1674     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
1675 
1676   } // end of switch
1677 
1678   llvm_unreachable("unknown scalar cast");
1679 }
1680 
1681 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1682   CodeGenFunction::StmtExprEvaluation eval(CGF);
1683   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1684                                            !E->getType()->isVoidType());
1685   if (!RetAlloca.isValid())
1686     return nullptr;
1687   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1688                               E->getExprLoc());
1689 }
1690 
1691 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1692   CGF.enterFullExpression(E);
1693   CodeGenFunction::RunCleanupsScope Scope(CGF);
1694   Value *V = Visit(E->getSubExpr());
1695   // Defend against dominance problems caused by jumps out of expression
1696   // evaluation through the shared cleanup block.
1697   Scope.ForceCleanup({&V});
1698   return V;
1699 }
1700 
1701 //===----------------------------------------------------------------------===//
1702 //                             Unary Operators
1703 //===----------------------------------------------------------------------===//
1704 
1705 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1706                                            llvm::Value *InVal, bool IsInc) {
1707   BinOpInfo BinOp;
1708   BinOp.LHS = InVal;
1709   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1710   BinOp.Ty = E->getType();
1711   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1712   BinOp.FPContractable = false;
1713   BinOp.E = E;
1714   return BinOp;
1715 }
1716 
1717 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1718     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1719   llvm::Value *Amount =
1720       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1721   StringRef Name = IsInc ? "inc" : "dec";
1722   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1723   case LangOptions::SOB_Defined:
1724     return Builder.CreateAdd(InVal, Amount, Name);
1725   case LangOptions::SOB_Undefined:
1726     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1727       return Builder.CreateNSWAdd(InVal, Amount, Name);
1728     // Fall through.
1729   case LangOptions::SOB_Trapping:
1730     if (IsWidenedIntegerOp(CGF.getContext(), E->getSubExpr()))
1731       return Builder.CreateNSWAdd(InVal, Amount, Name);
1732     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1733   }
1734   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1735 }
1736 
1737 llvm::Value *
1738 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1739                                            bool isInc, bool isPre) {
1740 
1741   QualType type = E->getSubExpr()->getType();
1742   llvm::PHINode *atomicPHI = nullptr;
1743   llvm::Value *value;
1744   llvm::Value *input;
1745 
1746   int amount = (isInc ? 1 : -1);
1747 
1748   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1749     type = atomicTy->getValueType();
1750     if (isInc && type->isBooleanType()) {
1751       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1752       if (isPre) {
1753         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
1754           ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
1755         return Builder.getTrue();
1756       }
1757       // For atomic bool increment, we just store true and return it for
1758       // preincrement, do an atomic swap with true for postincrement
1759       return Builder.CreateAtomicRMW(
1760           llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
1761           llvm::AtomicOrdering::SequentiallyConsistent);
1762     }
1763     // Special case for atomic increment / decrement on integers, emit
1764     // atomicrmw instructions.  We skip this if we want to be doing overflow
1765     // checking, and fall into the slow path with the atomic cmpxchg loop.
1766     if (!type->isBooleanType() && type->isIntegerType() &&
1767         !(type->isUnsignedIntegerType() &&
1768           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1769         CGF.getLangOpts().getSignedOverflowBehavior() !=
1770             LangOptions::SOB_Trapping) {
1771       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1772         llvm::AtomicRMWInst::Sub;
1773       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1774         llvm::Instruction::Sub;
1775       llvm::Value *amt = CGF.EmitToMemory(
1776           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1777       llvm::Value *old = Builder.CreateAtomicRMW(aop,
1778           LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
1779       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1780     }
1781     value = EmitLoadOfLValue(LV, E->getExprLoc());
1782     input = value;
1783     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1784     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1785     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1786     value = CGF.EmitToMemory(value, type);
1787     Builder.CreateBr(opBB);
1788     Builder.SetInsertPoint(opBB);
1789     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1790     atomicPHI->addIncoming(value, startBB);
1791     value = atomicPHI;
1792   } else {
1793     value = EmitLoadOfLValue(LV, E->getExprLoc());
1794     input = value;
1795   }
1796 
1797   // Special case of integer increment that we have to check first: bool++.
1798   // Due to promotion rules, we get:
1799   //   bool++ -> bool = bool + 1
1800   //          -> bool = (int)bool + 1
1801   //          -> bool = ((int)bool + 1 != 0)
1802   // An interesting aspect of this is that increment is always true.
1803   // Decrement does not have this property.
1804   if (isInc && type->isBooleanType()) {
1805     value = Builder.getTrue();
1806 
1807   // Most common case by far: integer increment.
1808   } else if (type->isIntegerType()) {
1809     // Note that signed integer inc/dec with width less than int can't
1810     // overflow because of promotion rules; we're just eliding a few steps here.
1811     bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1812                        CGF.IntTy->getIntegerBitWidth();
1813     if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1814       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1815     } else if (CanOverflow && type->isUnsignedIntegerType() &&
1816                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1817       value =
1818           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1819     } else {
1820       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1821       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1822     }
1823 
1824   // Next most common: pointer increment.
1825   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1826     QualType type = ptr->getPointeeType();
1827 
1828     // VLA types don't have constant size.
1829     if (const VariableArrayType *vla
1830           = CGF.getContext().getAsVariableArrayType(type)) {
1831       llvm::Value *numElts = CGF.getVLASize(vla).first;
1832       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1833       if (CGF.getLangOpts().isSignedOverflowDefined())
1834         value = Builder.CreateGEP(value, numElts, "vla.inc");
1835       else
1836         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1837 
1838     // Arithmetic on function pointers (!) is just +-1.
1839     } else if (type->isFunctionType()) {
1840       llvm::Value *amt = Builder.getInt32(amount);
1841 
1842       value = CGF.EmitCastToVoidPtr(value);
1843       if (CGF.getLangOpts().isSignedOverflowDefined())
1844         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1845       else
1846         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1847       value = Builder.CreateBitCast(value, input->getType());
1848 
1849     // For everything else, we can just do a simple increment.
1850     } else {
1851       llvm::Value *amt = Builder.getInt32(amount);
1852       if (CGF.getLangOpts().isSignedOverflowDefined())
1853         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1854       else
1855         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1856     }
1857 
1858   // Vector increment/decrement.
1859   } else if (type->isVectorType()) {
1860     if (type->hasIntegerRepresentation()) {
1861       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1862 
1863       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1864     } else {
1865       value = Builder.CreateFAdd(
1866                   value,
1867                   llvm::ConstantFP::get(value->getType(), amount),
1868                   isInc ? "inc" : "dec");
1869     }
1870 
1871   // Floating point.
1872   } else if (type->isRealFloatingType()) {
1873     // Add the inc/dec to the real part.
1874     llvm::Value *amt;
1875 
1876     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1877       // Another special case: half FP increment should be done via float
1878       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1879         value = Builder.CreateCall(
1880             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1881                                  CGF.CGM.FloatTy),
1882             input, "incdec.conv");
1883       } else {
1884         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
1885       }
1886     }
1887 
1888     if (value->getType()->isFloatTy())
1889       amt = llvm::ConstantFP::get(VMContext,
1890                                   llvm::APFloat(static_cast<float>(amount)));
1891     else if (value->getType()->isDoubleTy())
1892       amt = llvm::ConstantFP::get(VMContext,
1893                                   llvm::APFloat(static_cast<double>(amount)));
1894     else {
1895       // Remaining types are Half, LongDouble or __float128. Convert from float.
1896       llvm::APFloat F(static_cast<float>(amount));
1897       bool ignored;
1898       const llvm::fltSemantics *FS;
1899       // Don't use getFloatTypeSemantics because Half isn't
1900       // necessarily represented using the "half" LLVM type.
1901       if (value->getType()->isFP128Ty())
1902         FS = &CGF.getTarget().getFloat128Format();
1903       else if (value->getType()->isHalfTy())
1904         FS = &CGF.getTarget().getHalfFormat();
1905       else
1906         FS = &CGF.getTarget().getLongDoubleFormat();
1907       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
1908       amt = llvm::ConstantFP::get(VMContext, F);
1909     }
1910     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1911 
1912     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1913       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1914         value = Builder.CreateCall(
1915             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
1916                                  CGF.CGM.FloatTy),
1917             value, "incdec.conv");
1918       } else {
1919         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
1920       }
1921     }
1922 
1923   // Objective-C pointer types.
1924   } else {
1925     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1926     value = CGF.EmitCastToVoidPtr(value);
1927 
1928     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1929     if (!isInc) size = -size;
1930     llvm::Value *sizeValue =
1931       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1932 
1933     if (CGF.getLangOpts().isSignedOverflowDefined())
1934       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1935     else
1936       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1937     value = Builder.CreateBitCast(value, input->getType());
1938   }
1939 
1940   if (atomicPHI) {
1941     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1942     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1943     auto Pair = CGF.EmitAtomicCompareExchange(
1944         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
1945     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
1946     llvm::Value *success = Pair.second;
1947     atomicPHI->addIncoming(old, opBB);
1948     Builder.CreateCondBr(success, contBB, opBB);
1949     Builder.SetInsertPoint(contBB);
1950     return isPre ? value : input;
1951   }
1952 
1953   // Store the updated result through the lvalue.
1954   if (LV.isBitField())
1955     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1956   else
1957     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1958 
1959   // If this is a postinc, return the value read from memory, otherwise use the
1960   // updated value.
1961   return isPre ? value : input;
1962 }
1963 
1964 
1965 
1966 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1967   TestAndClearIgnoreResultAssign();
1968   // Emit unary minus with EmitSub so we handle overflow cases etc.
1969   BinOpInfo BinOp;
1970   BinOp.RHS = Visit(E->getSubExpr());
1971 
1972   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1973     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1974   else
1975     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1976   BinOp.Ty = E->getType();
1977   BinOp.Opcode = BO_Sub;
1978   BinOp.FPContractable = false;
1979   BinOp.E = E;
1980   return EmitSub(BinOp);
1981 }
1982 
1983 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1984   TestAndClearIgnoreResultAssign();
1985   Value *Op = Visit(E->getSubExpr());
1986   return Builder.CreateNot(Op, "neg");
1987 }
1988 
1989 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1990   // Perform vector logical not on comparison with zero vector.
1991   if (E->getType()->isExtVectorType()) {
1992     Value *Oper = Visit(E->getSubExpr());
1993     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1994     Value *Result;
1995     if (Oper->getType()->isFPOrFPVectorTy())
1996       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1997     else
1998       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1999     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2000   }
2001 
2002   // Compare operand to zero.
2003   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2004 
2005   // Invert value.
2006   // TODO: Could dynamically modify easy computations here.  For example, if
2007   // the operand is an icmp ne, turn into icmp eq.
2008   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2009 
2010   // ZExt result to the expr type.
2011   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2012 }
2013 
2014 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2015   // Try folding the offsetof to a constant.
2016   llvm::APSInt Value;
2017   if (E->EvaluateAsInt(Value, CGF.getContext()))
2018     return Builder.getInt(Value);
2019 
2020   // Loop over the components of the offsetof to compute the value.
2021   unsigned n = E->getNumComponents();
2022   llvm::Type* ResultType = ConvertType(E->getType());
2023   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2024   QualType CurrentType = E->getTypeSourceInfo()->getType();
2025   for (unsigned i = 0; i != n; ++i) {
2026     OffsetOfNode ON = E->getComponent(i);
2027     llvm::Value *Offset = nullptr;
2028     switch (ON.getKind()) {
2029     case OffsetOfNode::Array: {
2030       // Compute the index
2031       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2032       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2033       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2034       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2035 
2036       // Save the element type
2037       CurrentType =
2038           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2039 
2040       // Compute the element size
2041       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2042           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2043 
2044       // Multiply out to compute the result
2045       Offset = Builder.CreateMul(Idx, ElemSize);
2046       break;
2047     }
2048 
2049     case OffsetOfNode::Field: {
2050       FieldDecl *MemberDecl = ON.getField();
2051       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2052       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2053 
2054       // Compute the index of the field in its parent.
2055       unsigned i = 0;
2056       // FIXME: It would be nice if we didn't have to loop here!
2057       for (RecordDecl::field_iterator Field = RD->field_begin(),
2058                                       FieldEnd = RD->field_end();
2059            Field != FieldEnd; ++Field, ++i) {
2060         if (*Field == MemberDecl)
2061           break;
2062       }
2063       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2064 
2065       // Compute the offset to the field
2066       int64_t OffsetInt = RL.getFieldOffset(i) /
2067                           CGF.getContext().getCharWidth();
2068       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2069 
2070       // Save the element type.
2071       CurrentType = MemberDecl->getType();
2072       break;
2073     }
2074 
2075     case OffsetOfNode::Identifier:
2076       llvm_unreachable("dependent __builtin_offsetof");
2077 
2078     case OffsetOfNode::Base: {
2079       if (ON.getBase()->isVirtual()) {
2080         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2081         continue;
2082       }
2083 
2084       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2085       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2086 
2087       // Save the element type.
2088       CurrentType = ON.getBase()->getType();
2089 
2090       // Compute the offset to the base.
2091       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2092       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2093       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2094       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2095       break;
2096     }
2097     }
2098     Result = Builder.CreateAdd(Result, Offset);
2099   }
2100   return Result;
2101 }
2102 
2103 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2104 /// argument of the sizeof expression as an integer.
2105 Value *
2106 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2107                               const UnaryExprOrTypeTraitExpr *E) {
2108   QualType TypeToSize = E->getTypeOfArgument();
2109   if (E->getKind() == UETT_SizeOf) {
2110     if (const VariableArrayType *VAT =
2111           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2112       if (E->isArgumentType()) {
2113         // sizeof(type) - make sure to emit the VLA size.
2114         CGF.EmitVariablyModifiedType(TypeToSize);
2115       } else {
2116         // C99 6.5.3.4p2: If the argument is an expression of type
2117         // VLA, it is evaluated.
2118         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2119       }
2120 
2121       QualType eltType;
2122       llvm::Value *numElts;
2123       std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2124 
2125       llvm::Value *size = numElts;
2126 
2127       // Scale the number of non-VLA elements by the non-VLA element size.
2128       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2129       if (!eltSize.isOne())
2130         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2131 
2132       return size;
2133     }
2134   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2135     auto Alignment =
2136         CGF.getContext()
2137             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2138                 E->getTypeOfArgument()->getPointeeType()))
2139             .getQuantity();
2140     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2141   }
2142 
2143   // If this isn't sizeof(vla), the result must be constant; use the constant
2144   // folding logic so we don't have to duplicate it here.
2145   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2146 }
2147 
2148 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2149   Expr *Op = E->getSubExpr();
2150   if (Op->getType()->isAnyComplexType()) {
2151     // If it's an l-value, load through the appropriate subobject l-value.
2152     // Note that we have to ask E because Op might be an l-value that
2153     // this won't work for, e.g. an Obj-C property.
2154     if (E->isGLValue())
2155       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2156                                   E->getExprLoc()).getScalarVal();
2157 
2158     // Otherwise, calculate and project.
2159     return CGF.EmitComplexExpr(Op, false, true).first;
2160   }
2161 
2162   return Visit(Op);
2163 }
2164 
2165 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2166   Expr *Op = E->getSubExpr();
2167   if (Op->getType()->isAnyComplexType()) {
2168     // If it's an l-value, load through the appropriate subobject l-value.
2169     // Note that we have to ask E because Op might be an l-value that
2170     // this won't work for, e.g. an Obj-C property.
2171     if (Op->isGLValue())
2172       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2173                                   E->getExprLoc()).getScalarVal();
2174 
2175     // Otherwise, calculate and project.
2176     return CGF.EmitComplexExpr(Op, true, false).second;
2177   }
2178 
2179   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2180   // effects are evaluated, but not the actual value.
2181   if (Op->isGLValue())
2182     CGF.EmitLValue(Op);
2183   else
2184     CGF.EmitScalarExpr(Op, true);
2185   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2186 }
2187 
2188 //===----------------------------------------------------------------------===//
2189 //                           Binary Operators
2190 //===----------------------------------------------------------------------===//
2191 
2192 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2193   TestAndClearIgnoreResultAssign();
2194   BinOpInfo Result;
2195   Result.LHS = Visit(E->getLHS());
2196   Result.RHS = Visit(E->getRHS());
2197   Result.Ty  = E->getType();
2198   Result.Opcode = E->getOpcode();
2199   Result.FPContractable = E->isFPContractable();
2200   Result.E = E;
2201   return Result;
2202 }
2203 
2204 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2205                                               const CompoundAssignOperator *E,
2206                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2207                                                    Value *&Result) {
2208   QualType LHSTy = E->getLHS()->getType();
2209   BinOpInfo OpInfo;
2210 
2211   if (E->getComputationResultType()->isAnyComplexType())
2212     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2213 
2214   // Emit the RHS first.  __block variables need to have the rhs evaluated
2215   // first, plus this should improve codegen a little.
2216   OpInfo.RHS = Visit(E->getRHS());
2217   OpInfo.Ty = E->getComputationResultType();
2218   OpInfo.Opcode = E->getOpcode();
2219   OpInfo.FPContractable = E->isFPContractable();
2220   OpInfo.E = E;
2221   // Load/convert the LHS.
2222   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2223 
2224   llvm::PHINode *atomicPHI = nullptr;
2225   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2226     QualType type = atomicTy->getValueType();
2227     if (!type->isBooleanType() && type->isIntegerType() &&
2228         !(type->isUnsignedIntegerType() &&
2229           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2230         CGF.getLangOpts().getSignedOverflowBehavior() !=
2231             LangOptions::SOB_Trapping) {
2232       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2233       switch (OpInfo.Opcode) {
2234         // We don't have atomicrmw operands for *, %, /, <<, >>
2235         case BO_MulAssign: case BO_DivAssign:
2236         case BO_RemAssign:
2237         case BO_ShlAssign:
2238         case BO_ShrAssign:
2239           break;
2240         case BO_AddAssign:
2241           aop = llvm::AtomicRMWInst::Add;
2242           break;
2243         case BO_SubAssign:
2244           aop = llvm::AtomicRMWInst::Sub;
2245           break;
2246         case BO_AndAssign:
2247           aop = llvm::AtomicRMWInst::And;
2248           break;
2249         case BO_XorAssign:
2250           aop = llvm::AtomicRMWInst::Xor;
2251           break;
2252         case BO_OrAssign:
2253           aop = llvm::AtomicRMWInst::Or;
2254           break;
2255         default:
2256           llvm_unreachable("Invalid compound assignment type");
2257       }
2258       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2259         llvm::Value *amt = CGF.EmitToMemory(
2260             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2261                                  E->getExprLoc()),
2262             LHSTy);
2263         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2264             llvm::AtomicOrdering::SequentiallyConsistent);
2265         return LHSLV;
2266       }
2267     }
2268     // FIXME: For floating point types, we should be saving and restoring the
2269     // floating point environment in the loop.
2270     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2271     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2272     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2273     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2274     Builder.CreateBr(opBB);
2275     Builder.SetInsertPoint(opBB);
2276     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2277     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2278     OpInfo.LHS = atomicPHI;
2279   }
2280   else
2281     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2282 
2283   SourceLocation Loc = E->getExprLoc();
2284   OpInfo.LHS =
2285       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2286 
2287   // Expand the binary operator.
2288   Result = (this->*Func)(OpInfo);
2289 
2290   // Convert the result back to the LHS type.
2291   Result =
2292       EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2293 
2294   if (atomicPHI) {
2295     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2296     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2297     auto Pair = CGF.EmitAtomicCompareExchange(
2298         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2299     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2300     llvm::Value *success = Pair.second;
2301     atomicPHI->addIncoming(old, opBB);
2302     Builder.CreateCondBr(success, contBB, opBB);
2303     Builder.SetInsertPoint(contBB);
2304     return LHSLV;
2305   }
2306 
2307   // Store the result value into the LHS lvalue. Bit-fields are handled
2308   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2309   // 'An assignment expression has the value of the left operand after the
2310   // assignment...'.
2311   if (LHSLV.isBitField())
2312     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2313   else
2314     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2315 
2316   return LHSLV;
2317 }
2318 
2319 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2320                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2321   bool Ignore = TestAndClearIgnoreResultAssign();
2322   Value *RHS;
2323   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2324 
2325   // If the result is clearly ignored, return now.
2326   if (Ignore)
2327     return nullptr;
2328 
2329   // The result of an assignment in C is the assigned r-value.
2330   if (!CGF.getLangOpts().CPlusPlus)
2331     return RHS;
2332 
2333   // If the lvalue is non-volatile, return the computed value of the assignment.
2334   if (!LHS.isVolatileQualified())
2335     return RHS;
2336 
2337   // Otherwise, reload the value.
2338   return EmitLoadOfLValue(LHS, E->getExprLoc());
2339 }
2340 
2341 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2342     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2343   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2344 
2345   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2346     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2347                                     SanitizerKind::IntegerDivideByZero));
2348   }
2349 
2350   const auto *BO = cast<BinaryOperator>(Ops.E);
2351   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2352       Ops.Ty->hasSignedIntegerRepresentation() &&
2353       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS())) {
2354     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2355 
2356     llvm::Value *IntMin =
2357       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2358     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2359 
2360     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2361     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2362     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2363     Checks.push_back(
2364         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2365   }
2366 
2367   if (Checks.size() > 0)
2368     EmitBinOpCheck(Checks, Ops);
2369 }
2370 
2371 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2372   {
2373     CodeGenFunction::SanitizerScope SanScope(&CGF);
2374     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2375          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2376         Ops.Ty->isIntegerType()) {
2377       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2378       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2379     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2380                Ops.Ty->isRealFloatingType()) {
2381       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2382       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2383       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2384                      Ops);
2385     }
2386   }
2387 
2388   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2389     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2390     if (CGF.getLangOpts().OpenCL &&
2391         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
2392       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
2393       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
2394       // build option allows an application to specify that single precision
2395       // floating-point divide (x/y and 1/x) and sqrt used in the program
2396       // source are correctly rounded.
2397       llvm::Type *ValTy = Val->getType();
2398       if (ValTy->isFloatTy() ||
2399           (isa<llvm::VectorType>(ValTy) &&
2400            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2401         CGF.SetFPAccuracy(Val, 2.5);
2402     }
2403     return Val;
2404   }
2405   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2406     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2407   else
2408     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2409 }
2410 
2411 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2412   // Rem in C can't be a floating point type: C99 6.5.5p2.
2413   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2414        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2415       Ops.Ty->isIntegerType()) {
2416     CodeGenFunction::SanitizerScope SanScope(&CGF);
2417     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2418     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2419   }
2420 
2421   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2422     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2423   else
2424     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2425 }
2426 
2427 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2428   unsigned IID;
2429   unsigned OpID = 0;
2430 
2431   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2432   switch (Ops.Opcode) {
2433   case BO_Add:
2434   case BO_AddAssign:
2435     OpID = 1;
2436     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2437                      llvm::Intrinsic::uadd_with_overflow;
2438     break;
2439   case BO_Sub:
2440   case BO_SubAssign:
2441     OpID = 2;
2442     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2443                      llvm::Intrinsic::usub_with_overflow;
2444     break;
2445   case BO_Mul:
2446   case BO_MulAssign:
2447     OpID = 3;
2448     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2449                      llvm::Intrinsic::umul_with_overflow;
2450     break;
2451   default:
2452     llvm_unreachable("Unsupported operation for overflow detection");
2453   }
2454   OpID <<= 1;
2455   if (isSigned)
2456     OpID |= 1;
2457 
2458   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2459 
2460   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2461 
2462   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2463   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2464   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2465 
2466   // Handle overflow with llvm.trap if no custom handler has been specified.
2467   const std::string *handlerName =
2468     &CGF.getLangOpts().OverflowHandler;
2469   if (handlerName->empty()) {
2470     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2471     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2472     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2473       CodeGenFunction::SanitizerScope SanScope(&CGF);
2474       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2475       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2476                               : SanitizerKind::UnsignedIntegerOverflow;
2477       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2478     } else
2479       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2480     return result;
2481   }
2482 
2483   // Branch in case of overflow.
2484   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2485   llvm::BasicBlock *continueBB =
2486       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
2487   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2488 
2489   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2490 
2491   // If an overflow handler is set, then we want to call it and then use its
2492   // result, if it returns.
2493   Builder.SetInsertPoint(overflowBB);
2494 
2495   // Get the overflow handler.
2496   llvm::Type *Int8Ty = CGF.Int8Ty;
2497   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2498   llvm::FunctionType *handlerTy =
2499       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2500   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2501 
2502   // Sign extend the args to 64-bit, so that we can use the same handler for
2503   // all types of overflow.
2504   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2505   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2506 
2507   // Call the handler with the two arguments, the operation, and the size of
2508   // the result.
2509   llvm::Value *handlerArgs[] = {
2510     lhs,
2511     rhs,
2512     Builder.getInt8(OpID),
2513     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2514   };
2515   llvm::Value *handlerResult =
2516     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2517 
2518   // Truncate the result back to the desired size.
2519   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2520   Builder.CreateBr(continueBB);
2521 
2522   Builder.SetInsertPoint(continueBB);
2523   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2524   phi->addIncoming(result, initialBB);
2525   phi->addIncoming(handlerResult, overflowBB);
2526 
2527   return phi;
2528 }
2529 
2530 /// Emit pointer + index arithmetic.
2531 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2532                                     const BinOpInfo &op,
2533                                     bool isSubtraction) {
2534   // Must have binary (not unary) expr here.  Unary pointer
2535   // increment/decrement doesn't use this path.
2536   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2537 
2538   Value *pointer = op.LHS;
2539   Expr *pointerOperand = expr->getLHS();
2540   Value *index = op.RHS;
2541   Expr *indexOperand = expr->getRHS();
2542 
2543   // In a subtraction, the LHS is always the pointer.
2544   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2545     std::swap(pointer, index);
2546     std::swap(pointerOperand, indexOperand);
2547   }
2548 
2549   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2550   auto &DL = CGF.CGM.getDataLayout();
2551   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
2552   if (width != DL.getTypeSizeInBits(PtrTy)) {
2553     // Zero-extend or sign-extend the pointer value according to
2554     // whether the index is signed or not.
2555     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2556     index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
2557                                       "idx.ext");
2558   }
2559 
2560   // If this is subtraction, negate the index.
2561   if (isSubtraction)
2562     index = CGF.Builder.CreateNeg(index, "idx.neg");
2563 
2564   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2565     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2566                         /*Accessed*/ false);
2567 
2568   const PointerType *pointerType
2569     = pointerOperand->getType()->getAs<PointerType>();
2570   if (!pointerType) {
2571     QualType objectType = pointerOperand->getType()
2572                                         ->castAs<ObjCObjectPointerType>()
2573                                         ->getPointeeType();
2574     llvm::Value *objectSize
2575       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2576 
2577     index = CGF.Builder.CreateMul(index, objectSize);
2578 
2579     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2580     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2581     return CGF.Builder.CreateBitCast(result, pointer->getType());
2582   }
2583 
2584   QualType elementType = pointerType->getPointeeType();
2585   if (const VariableArrayType *vla
2586         = CGF.getContext().getAsVariableArrayType(elementType)) {
2587     // The element count here is the total number of non-VLA elements.
2588     llvm::Value *numElements = CGF.getVLASize(vla).first;
2589 
2590     // Effectively, the multiply by the VLA size is part of the GEP.
2591     // GEP indexes are signed, and scaling an index isn't permitted to
2592     // signed-overflow, so we use the same semantics for our explicit
2593     // multiply.  We suppress this if overflow is not undefined behavior.
2594     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2595       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2596       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2597     } else {
2598       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2599       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2600     }
2601     return pointer;
2602   }
2603 
2604   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2605   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2606   // future proof.
2607   if (elementType->isVoidType() || elementType->isFunctionType()) {
2608     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2609     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2610     return CGF.Builder.CreateBitCast(result, pointer->getType());
2611   }
2612 
2613   if (CGF.getLangOpts().isSignedOverflowDefined())
2614     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2615 
2616   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2617 }
2618 
2619 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2620 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2621 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2622 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2623 // efficient operations.
2624 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2625                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2626                            bool negMul, bool negAdd) {
2627   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2628 
2629   Value *MulOp0 = MulOp->getOperand(0);
2630   Value *MulOp1 = MulOp->getOperand(1);
2631   if (negMul) {
2632     MulOp0 =
2633       Builder.CreateFSub(
2634         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2635         "neg");
2636   } else if (negAdd) {
2637     Addend =
2638       Builder.CreateFSub(
2639         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2640         "neg");
2641   }
2642 
2643   Value *FMulAdd = Builder.CreateCall(
2644       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2645       {MulOp0, MulOp1, Addend});
2646    MulOp->eraseFromParent();
2647 
2648    return FMulAdd;
2649 }
2650 
2651 // Check whether it would be legal to emit an fmuladd intrinsic call to
2652 // represent op and if so, build the fmuladd.
2653 //
2654 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2655 // Does NOT check the type of the operation - it's assumed that this function
2656 // will be called from contexts where it's known that the type is contractable.
2657 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2658                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2659                          bool isSub=false) {
2660 
2661   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2662           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2663          "Only fadd/fsub can be the root of an fmuladd.");
2664 
2665   // Check whether this op is marked as fusable.
2666   if (!op.FPContractable)
2667     return nullptr;
2668 
2669   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2670   // either disabled, or handled entirely by the LLVM backend).
2671   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2672     return nullptr;
2673 
2674   // We have a potentially fusable op. Look for a mul on one of the operands.
2675   // Also, make sure that the mul result isn't used directly. In that case,
2676   // there's no point creating a muladd operation.
2677   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2678     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2679         LHSBinOp->use_empty())
2680       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2681   }
2682   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2683     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2684         RHSBinOp->use_empty())
2685       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2686   }
2687 
2688   return nullptr;
2689 }
2690 
2691 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2692   if (op.LHS->getType()->isPointerTy() ||
2693       op.RHS->getType()->isPointerTy())
2694     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2695 
2696   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2697     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2698     case LangOptions::SOB_Defined:
2699       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2700     case LangOptions::SOB_Undefined:
2701       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2702         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2703       // Fall through.
2704     case LangOptions::SOB_Trapping:
2705       if (CanElideOverflowCheck(CGF.getContext(), op))
2706         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2707       return EmitOverflowCheckedBinOp(op);
2708     }
2709   }
2710 
2711   if (op.Ty->isUnsignedIntegerType() &&
2712       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
2713       !CanElideOverflowCheck(CGF.getContext(), op))
2714     return EmitOverflowCheckedBinOp(op);
2715 
2716   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2717     // Try to form an fmuladd.
2718     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2719       return FMulAdd;
2720 
2721     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2722   }
2723 
2724   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2725 }
2726 
2727 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2728   // The LHS is always a pointer if either side is.
2729   if (!op.LHS->getType()->isPointerTy()) {
2730     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2731       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2732       case LangOptions::SOB_Defined:
2733         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2734       case LangOptions::SOB_Undefined:
2735         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2736           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2737         // Fall through.
2738       case LangOptions::SOB_Trapping:
2739         if (CanElideOverflowCheck(CGF.getContext(), op))
2740           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2741         return EmitOverflowCheckedBinOp(op);
2742       }
2743     }
2744 
2745     if (op.Ty->isUnsignedIntegerType() &&
2746         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
2747         !CanElideOverflowCheck(CGF.getContext(), op))
2748       return EmitOverflowCheckedBinOp(op);
2749 
2750     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2751       // Try to form an fmuladd.
2752       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2753         return FMulAdd;
2754       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2755     }
2756 
2757     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2758   }
2759 
2760   // If the RHS is not a pointer, then we have normal pointer
2761   // arithmetic.
2762   if (!op.RHS->getType()->isPointerTy())
2763     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2764 
2765   // Otherwise, this is a pointer subtraction.
2766 
2767   // Do the raw subtraction part.
2768   llvm::Value *LHS
2769     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2770   llvm::Value *RHS
2771     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2772   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2773 
2774   // Okay, figure out the element size.
2775   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2776   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2777 
2778   llvm::Value *divisor = nullptr;
2779 
2780   // For a variable-length array, this is going to be non-constant.
2781   if (const VariableArrayType *vla
2782         = CGF.getContext().getAsVariableArrayType(elementType)) {
2783     llvm::Value *numElements;
2784     std::tie(numElements, elementType) = CGF.getVLASize(vla);
2785 
2786     divisor = numElements;
2787 
2788     // Scale the number of non-VLA elements by the non-VLA element size.
2789     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2790     if (!eltSize.isOne())
2791       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2792 
2793   // For everything elese, we can just compute it, safe in the
2794   // assumption that Sema won't let anything through that we can't
2795   // safely compute the size of.
2796   } else {
2797     CharUnits elementSize;
2798     // Handle GCC extension for pointer arithmetic on void* and
2799     // function pointer types.
2800     if (elementType->isVoidType() || elementType->isFunctionType())
2801       elementSize = CharUnits::One();
2802     else
2803       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2804 
2805     // Don't even emit the divide for element size of 1.
2806     if (elementSize.isOne())
2807       return diffInChars;
2808 
2809     divisor = CGF.CGM.getSize(elementSize);
2810   }
2811 
2812   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2813   // pointer difference in C is only defined in the case where both operands
2814   // are pointing to elements of an array.
2815   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2816 }
2817 
2818 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2819   llvm::IntegerType *Ty;
2820   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2821     Ty = cast<llvm::IntegerType>(VT->getElementType());
2822   else
2823     Ty = cast<llvm::IntegerType>(LHS->getType());
2824   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2825 }
2826 
2827 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2828   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2829   // RHS to the same size as the LHS.
2830   Value *RHS = Ops.RHS;
2831   if (Ops.LHS->getType() != RHS->getType())
2832     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2833 
2834   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
2835                       Ops.Ty->hasSignedIntegerRepresentation() &&
2836                       !CGF.getLangOpts().isSignedOverflowDefined();
2837   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
2838   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2839   if (CGF.getLangOpts().OpenCL)
2840     RHS =
2841         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2842   else if ((SanitizeBase || SanitizeExponent) &&
2843            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2844     CodeGenFunction::SanitizerScope SanScope(&CGF);
2845     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
2846     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
2847     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
2848 
2849     if (SanitizeExponent) {
2850       Checks.push_back(
2851           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
2852     }
2853 
2854     if (SanitizeBase) {
2855       // Check whether we are shifting any non-zero bits off the top of the
2856       // integer. We only emit this check if exponent is valid - otherwise
2857       // instructions below will have undefined behavior themselves.
2858       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2859       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2860       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
2861       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
2862       llvm::Value *PromotedWidthMinusOne =
2863           (RHS == Ops.RHS) ? WidthMinusOne
2864                            : GetWidthMinusOneValue(Ops.LHS, RHS);
2865       CGF.EmitBlock(CheckShiftBase);
2866       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
2867           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
2868                                      /*NUW*/ true, /*NSW*/ true),
2869           "shl.check");
2870       if (CGF.getLangOpts().CPlusPlus) {
2871         // In C99, we are not permitted to shift a 1 bit into the sign bit.
2872         // Under C++11's rules, shifting a 1 bit into the sign bit is
2873         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2874         // define signed left shifts, so we use the C99 and C++11 rules there).
2875         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2876         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2877       }
2878       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2879       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2880       CGF.EmitBlock(Cont);
2881       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
2882       BaseCheck->addIncoming(Builder.getTrue(), Orig);
2883       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
2884       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
2885     }
2886 
2887     assert(!Checks.empty());
2888     EmitBinOpCheck(Checks, Ops);
2889   }
2890 
2891   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2892 }
2893 
2894 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2895   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2896   // RHS to the same size as the LHS.
2897   Value *RHS = Ops.RHS;
2898   if (Ops.LHS->getType() != RHS->getType())
2899     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2900 
2901   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2902   if (CGF.getLangOpts().OpenCL)
2903     RHS =
2904         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2905   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
2906            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2907     CodeGenFunction::SanitizerScope SanScope(&CGF);
2908     llvm::Value *Valid =
2909         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
2910     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
2911   }
2912 
2913   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2914     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2915   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2916 }
2917 
2918 enum IntrinsicType { VCMPEQ, VCMPGT };
2919 // return corresponding comparison intrinsic for given vector type
2920 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2921                                         BuiltinType::Kind ElemKind) {
2922   switch (ElemKind) {
2923   default: llvm_unreachable("unexpected element type");
2924   case BuiltinType::Char_U:
2925   case BuiltinType::UChar:
2926     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2927                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2928   case BuiltinType::Char_S:
2929   case BuiltinType::SChar:
2930     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2931                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2932   case BuiltinType::UShort:
2933     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2934                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2935   case BuiltinType::Short:
2936     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2937                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2938   case BuiltinType::UInt:
2939   case BuiltinType::ULong:
2940     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2941                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2942   case BuiltinType::Int:
2943   case BuiltinType::Long:
2944     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2945                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2946   case BuiltinType::Float:
2947     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2948                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2949   }
2950 }
2951 
2952 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
2953                                       llvm::CmpInst::Predicate UICmpOpc,
2954                                       llvm::CmpInst::Predicate SICmpOpc,
2955                                       llvm::CmpInst::Predicate FCmpOpc) {
2956   TestAndClearIgnoreResultAssign();
2957   Value *Result;
2958   QualType LHSTy = E->getLHS()->getType();
2959   QualType RHSTy = E->getRHS()->getType();
2960   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2961     assert(E->getOpcode() == BO_EQ ||
2962            E->getOpcode() == BO_NE);
2963     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2964     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2965     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2966                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2967   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
2968     Value *LHS = Visit(E->getLHS());
2969     Value *RHS = Visit(E->getRHS());
2970 
2971     // If AltiVec, the comparison results in a numeric type, so we use
2972     // intrinsics comparing vectors and giving 0 or 1 as a result
2973     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2974       // constants for mapping CR6 register bits to predicate result
2975       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2976 
2977       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2978 
2979       // in several cases vector arguments order will be reversed
2980       Value *FirstVecArg = LHS,
2981             *SecondVecArg = RHS;
2982 
2983       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2984       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2985       BuiltinType::Kind ElementKind = BTy->getKind();
2986 
2987       switch(E->getOpcode()) {
2988       default: llvm_unreachable("is not a comparison operation");
2989       case BO_EQ:
2990         CR6 = CR6_LT;
2991         ID = GetIntrinsic(VCMPEQ, ElementKind);
2992         break;
2993       case BO_NE:
2994         CR6 = CR6_EQ;
2995         ID = GetIntrinsic(VCMPEQ, ElementKind);
2996         break;
2997       case BO_LT:
2998         CR6 = CR6_LT;
2999         ID = GetIntrinsic(VCMPGT, ElementKind);
3000         std::swap(FirstVecArg, SecondVecArg);
3001         break;
3002       case BO_GT:
3003         CR6 = CR6_LT;
3004         ID = GetIntrinsic(VCMPGT, ElementKind);
3005         break;
3006       case BO_LE:
3007         if (ElementKind == BuiltinType::Float) {
3008           CR6 = CR6_LT;
3009           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3010           std::swap(FirstVecArg, SecondVecArg);
3011         }
3012         else {
3013           CR6 = CR6_EQ;
3014           ID = GetIntrinsic(VCMPGT, ElementKind);
3015         }
3016         break;
3017       case BO_GE:
3018         if (ElementKind == BuiltinType::Float) {
3019           CR6 = CR6_LT;
3020           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3021         }
3022         else {
3023           CR6 = CR6_EQ;
3024           ID = GetIntrinsic(VCMPGT, ElementKind);
3025           std::swap(FirstVecArg, SecondVecArg);
3026         }
3027         break;
3028       }
3029 
3030       Value *CR6Param = Builder.getInt32(CR6);
3031       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3032       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3033       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3034                                   E->getExprLoc());
3035     }
3036 
3037     if (LHS->getType()->isFPOrFPVectorTy()) {
3038       Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3039     } else if (LHSTy->hasSignedIntegerRepresentation()) {
3040       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3041     } else {
3042       // Unsigned integers and pointers.
3043       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3044     }
3045 
3046     // If this is a vector comparison, sign extend the result to the appropriate
3047     // vector integer type and return it (don't convert to bool).
3048     if (LHSTy->isVectorType())
3049       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3050 
3051   } else {
3052     // Complex Comparison: can only be an equality comparison.
3053     CodeGenFunction::ComplexPairTy LHS, RHS;
3054     QualType CETy;
3055     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3056       LHS = CGF.EmitComplexExpr(E->getLHS());
3057       CETy = CTy->getElementType();
3058     } else {
3059       LHS.first = Visit(E->getLHS());
3060       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3061       CETy = LHSTy;
3062     }
3063     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3064       RHS = CGF.EmitComplexExpr(E->getRHS());
3065       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
3066                                                      CTy->getElementType()) &&
3067              "The element types must always match.");
3068       (void)CTy;
3069     } else {
3070       RHS.first = Visit(E->getRHS());
3071       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
3072       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
3073              "The element types must always match.");
3074     }
3075 
3076     Value *ResultR, *ResultI;
3077     if (CETy->isRealFloatingType()) {
3078       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
3079       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
3080     } else {
3081       // Complex comparisons can only be equality comparisons.  As such, signed
3082       // and unsigned opcodes are the same.
3083       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
3084       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
3085     }
3086 
3087     if (E->getOpcode() == BO_EQ) {
3088       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
3089     } else {
3090       assert(E->getOpcode() == BO_NE &&
3091              "Complex comparison other than == or != ?");
3092       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
3093     }
3094   }
3095 
3096   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3097                               E->getExprLoc());
3098 }
3099 
3100 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3101   bool Ignore = TestAndClearIgnoreResultAssign();
3102 
3103   Value *RHS;
3104   LValue LHS;
3105 
3106   switch (E->getLHS()->getType().getObjCLifetime()) {
3107   case Qualifiers::OCL_Strong:
3108     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3109     break;
3110 
3111   case Qualifiers::OCL_Autoreleasing:
3112     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3113     break;
3114 
3115   case Qualifiers::OCL_ExplicitNone:
3116     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3117     break;
3118 
3119   case Qualifiers::OCL_Weak:
3120     RHS = Visit(E->getRHS());
3121     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3122     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3123     break;
3124 
3125   case Qualifiers::OCL_None:
3126     // __block variables need to have the rhs evaluated first, plus
3127     // this should improve codegen just a little.
3128     RHS = Visit(E->getRHS());
3129     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3130 
3131     // Store the value into the LHS.  Bit-fields are handled specially
3132     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3133     // 'An assignment expression has the value of the left operand after
3134     // the assignment...'.
3135     if (LHS.isBitField()) {
3136       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3137     } else {
3138       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
3139       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3140     }
3141   }
3142 
3143   // If the result is clearly ignored, return now.
3144   if (Ignore)
3145     return nullptr;
3146 
3147   // The result of an assignment in C is the assigned r-value.
3148   if (!CGF.getLangOpts().CPlusPlus)
3149     return RHS;
3150 
3151   // If the lvalue is non-volatile, return the computed value of the assignment.
3152   if (!LHS.isVolatileQualified())
3153     return RHS;
3154 
3155   // Otherwise, reload the value.
3156   return EmitLoadOfLValue(LHS, E->getExprLoc());
3157 }
3158 
3159 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3160   // Perform vector logical and on comparisons with zero vectors.
3161   if (E->getType()->isVectorType()) {
3162     CGF.incrementProfileCounter(E);
3163 
3164     Value *LHS = Visit(E->getLHS());
3165     Value *RHS = Visit(E->getRHS());
3166     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3167     if (LHS->getType()->isFPOrFPVectorTy()) {
3168       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3169       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3170     } else {
3171       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3172       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3173     }
3174     Value *And = Builder.CreateAnd(LHS, RHS);
3175     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3176   }
3177 
3178   llvm::Type *ResTy = ConvertType(E->getType());
3179 
3180   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3181   // If we have 1 && X, just emit X without inserting the control flow.
3182   bool LHSCondVal;
3183   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3184     if (LHSCondVal) { // If we have 1 && X, just emit X.
3185       CGF.incrementProfileCounter(E);
3186 
3187       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3188       // ZExt result to int or bool.
3189       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3190     }
3191 
3192     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3193     if (!CGF.ContainsLabel(E->getRHS()))
3194       return llvm::Constant::getNullValue(ResTy);
3195   }
3196 
3197   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3198   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3199 
3200   CodeGenFunction::ConditionalEvaluation eval(CGF);
3201 
3202   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3203   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3204                            CGF.getProfileCount(E->getRHS()));
3205 
3206   // Any edges into the ContBlock are now from an (indeterminate number of)
3207   // edges from this first condition.  All of these values will be false.  Start
3208   // setting up the PHI node in the Cont Block for this.
3209   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3210                                             "", ContBlock);
3211   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3212        PI != PE; ++PI)
3213     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3214 
3215   eval.begin(CGF);
3216   CGF.EmitBlock(RHSBlock);
3217   CGF.incrementProfileCounter(E);
3218   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3219   eval.end(CGF);
3220 
3221   // Reaquire the RHS block, as there may be subblocks inserted.
3222   RHSBlock = Builder.GetInsertBlock();
3223 
3224   // Emit an unconditional branch from this block to ContBlock.
3225   {
3226     // There is no need to emit line number for unconditional branch.
3227     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3228     CGF.EmitBlock(ContBlock);
3229   }
3230   // Insert an entry into the phi node for the edge with the value of RHSCond.
3231   PN->addIncoming(RHSCond, RHSBlock);
3232 
3233   // ZExt result to int.
3234   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3235 }
3236 
3237 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3238   // Perform vector logical or on comparisons with zero vectors.
3239   if (E->getType()->isVectorType()) {
3240     CGF.incrementProfileCounter(E);
3241 
3242     Value *LHS = Visit(E->getLHS());
3243     Value *RHS = Visit(E->getRHS());
3244     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3245     if (LHS->getType()->isFPOrFPVectorTy()) {
3246       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3247       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3248     } else {
3249       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3250       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3251     }
3252     Value *Or = Builder.CreateOr(LHS, RHS);
3253     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3254   }
3255 
3256   llvm::Type *ResTy = ConvertType(E->getType());
3257 
3258   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3259   // If we have 0 || X, just emit X without inserting the control flow.
3260   bool LHSCondVal;
3261   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3262     if (!LHSCondVal) { // If we have 0 || X, just emit X.
3263       CGF.incrementProfileCounter(E);
3264 
3265       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3266       // ZExt result to int or bool.
3267       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3268     }
3269 
3270     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3271     if (!CGF.ContainsLabel(E->getRHS()))
3272       return llvm::ConstantInt::get(ResTy, 1);
3273   }
3274 
3275   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3276   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3277 
3278   CodeGenFunction::ConditionalEvaluation eval(CGF);
3279 
3280   // Branch on the LHS first.  If it is true, go to the success (cont) block.
3281   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3282                            CGF.getCurrentProfileCount() -
3283                                CGF.getProfileCount(E->getRHS()));
3284 
3285   // Any edges into the ContBlock are now from an (indeterminate number of)
3286   // edges from this first condition.  All of these values will be true.  Start
3287   // setting up the PHI node in the Cont Block for this.
3288   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3289                                             "", ContBlock);
3290   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3291        PI != PE; ++PI)
3292     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3293 
3294   eval.begin(CGF);
3295 
3296   // Emit the RHS condition as a bool value.
3297   CGF.EmitBlock(RHSBlock);
3298   CGF.incrementProfileCounter(E);
3299   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3300 
3301   eval.end(CGF);
3302 
3303   // Reaquire the RHS block, as there may be subblocks inserted.
3304   RHSBlock = Builder.GetInsertBlock();
3305 
3306   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3307   // into the phi node for the edge with the value of RHSCond.
3308   CGF.EmitBlock(ContBlock);
3309   PN->addIncoming(RHSCond, RHSBlock);
3310 
3311   // ZExt result to int.
3312   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3313 }
3314 
3315 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3316   CGF.EmitIgnoredExpr(E->getLHS());
3317   CGF.EnsureInsertPoint();
3318   return Visit(E->getRHS());
3319 }
3320 
3321 //===----------------------------------------------------------------------===//
3322 //                             Other Operators
3323 //===----------------------------------------------------------------------===//
3324 
3325 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3326 /// expression is cheap enough and side-effect-free enough to evaluate
3327 /// unconditionally instead of conditionally.  This is used to convert control
3328 /// flow into selects in some cases.
3329 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3330                                                    CodeGenFunction &CGF) {
3331   // Anything that is an integer or floating point constant is fine.
3332   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3333 
3334   // Even non-volatile automatic variables can't be evaluated unconditionally.
3335   // Referencing a thread_local may cause non-trivial initialization work to
3336   // occur. If we're inside a lambda and one of the variables is from the scope
3337   // outside the lambda, that function may have returned already. Reading its
3338   // locals is a bad idea. Also, these reads may introduce races there didn't
3339   // exist in the source-level program.
3340 }
3341 
3342 
3343 Value *ScalarExprEmitter::
3344 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3345   TestAndClearIgnoreResultAssign();
3346 
3347   // Bind the common expression if necessary.
3348   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3349 
3350   Expr *condExpr = E->getCond();
3351   Expr *lhsExpr = E->getTrueExpr();
3352   Expr *rhsExpr = E->getFalseExpr();
3353 
3354   // If the condition constant folds and can be elided, try to avoid emitting
3355   // the condition and the dead arm.
3356   bool CondExprBool;
3357   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3358     Expr *live = lhsExpr, *dead = rhsExpr;
3359     if (!CondExprBool) std::swap(live, dead);
3360 
3361     // If the dead side doesn't have labels we need, just emit the Live part.
3362     if (!CGF.ContainsLabel(dead)) {
3363       if (CondExprBool)
3364         CGF.incrementProfileCounter(E);
3365       Value *Result = Visit(live);
3366 
3367       // If the live part is a throw expression, it acts like it has a void
3368       // type, so evaluating it returns a null Value*.  However, a conditional
3369       // with non-void type must return a non-null Value*.
3370       if (!Result && !E->getType()->isVoidType())
3371         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3372 
3373       return Result;
3374     }
3375   }
3376 
3377   // OpenCL: If the condition is a vector, we can treat this condition like
3378   // the select function.
3379   if (CGF.getLangOpts().OpenCL
3380       && condExpr->getType()->isVectorType()) {
3381     CGF.incrementProfileCounter(E);
3382 
3383     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3384     llvm::Value *LHS = Visit(lhsExpr);
3385     llvm::Value *RHS = Visit(rhsExpr);
3386 
3387     llvm::Type *condType = ConvertType(condExpr->getType());
3388     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3389 
3390     unsigned numElem = vecTy->getNumElements();
3391     llvm::Type *elemType = vecTy->getElementType();
3392 
3393     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3394     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3395     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3396                                           llvm::VectorType::get(elemType,
3397                                                                 numElem),
3398                                           "sext");
3399     llvm::Value *tmp2 = Builder.CreateNot(tmp);
3400 
3401     // Cast float to int to perform ANDs if necessary.
3402     llvm::Value *RHSTmp = RHS;
3403     llvm::Value *LHSTmp = LHS;
3404     bool wasCast = false;
3405     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3406     if (rhsVTy->getElementType()->isFloatingPointTy()) {
3407       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3408       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3409       wasCast = true;
3410     }
3411 
3412     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3413     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3414     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3415     if (wasCast)
3416       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3417 
3418     return tmp5;
3419   }
3420 
3421   // If this is a really simple expression (like x ? 4 : 5), emit this as a
3422   // select instead of as control flow.  We can only do this if it is cheap and
3423   // safe to evaluate the LHS and RHS unconditionally.
3424   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3425       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3426     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3427     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
3428 
3429     CGF.incrementProfileCounter(E, StepV);
3430 
3431     llvm::Value *LHS = Visit(lhsExpr);
3432     llvm::Value *RHS = Visit(rhsExpr);
3433     if (!LHS) {
3434       // If the conditional has void type, make sure we return a null Value*.
3435       assert(!RHS && "LHS and RHS types must match");
3436       return nullptr;
3437     }
3438     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3439   }
3440 
3441   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3442   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3443   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3444 
3445   CodeGenFunction::ConditionalEvaluation eval(CGF);
3446   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3447                            CGF.getProfileCount(lhsExpr));
3448 
3449   CGF.EmitBlock(LHSBlock);
3450   CGF.incrementProfileCounter(E);
3451   eval.begin(CGF);
3452   Value *LHS = Visit(lhsExpr);
3453   eval.end(CGF);
3454 
3455   LHSBlock = Builder.GetInsertBlock();
3456   Builder.CreateBr(ContBlock);
3457 
3458   CGF.EmitBlock(RHSBlock);
3459   eval.begin(CGF);
3460   Value *RHS = Visit(rhsExpr);
3461   eval.end(CGF);
3462 
3463   RHSBlock = Builder.GetInsertBlock();
3464   CGF.EmitBlock(ContBlock);
3465 
3466   // If the LHS or RHS is a throw expression, it will be legitimately null.
3467   if (!LHS)
3468     return RHS;
3469   if (!RHS)
3470     return LHS;
3471 
3472   // Create a PHI node for the real part.
3473   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3474   PN->addIncoming(LHS, LHSBlock);
3475   PN->addIncoming(RHS, RHSBlock);
3476   return PN;
3477 }
3478 
3479 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3480   return Visit(E->getChosenSubExpr());
3481 }
3482 
3483 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3484   QualType Ty = VE->getType();
3485 
3486   if (Ty->isVariablyModifiedType())
3487     CGF.EmitVariablyModifiedType(Ty);
3488 
3489   Address ArgValue = Address::invalid();
3490   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
3491 
3492   llvm::Type *ArgTy = ConvertType(VE->getType());
3493 
3494   // If EmitVAArg fails, emit an error.
3495   if (!ArgPtr.isValid()) {
3496     CGF.ErrorUnsupported(VE, "va_arg expression");
3497     return llvm::UndefValue::get(ArgTy);
3498   }
3499 
3500   // FIXME Volatility.
3501   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3502 
3503   // If EmitVAArg promoted the type, we must truncate it.
3504   if (ArgTy != Val->getType()) {
3505     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3506       Val = Builder.CreateIntToPtr(Val, ArgTy);
3507     else
3508       Val = Builder.CreateTrunc(Val, ArgTy);
3509   }
3510 
3511   return Val;
3512 }
3513 
3514 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3515   return CGF.EmitBlockLiteral(block);
3516 }
3517 
3518 // Convert a vec3 to vec4, or vice versa.
3519 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
3520                                  Value *Src, unsigned NumElementsDst) {
3521   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3522   SmallVector<llvm::Constant*, 4> Args;
3523   Args.push_back(Builder.getInt32(0));
3524   Args.push_back(Builder.getInt32(1));
3525   Args.push_back(Builder.getInt32(2));
3526   if (NumElementsDst == 4)
3527     Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3528   llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3529   return Builder.CreateShuffleVector(Src, UnV, Mask);
3530 }
3531 
3532 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
3533 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
3534 // but could be scalar or vectors of different lengths, and either can be
3535 // pointer.
3536 // There are 4 cases:
3537 // 1. non-pointer -> non-pointer  : needs 1 bitcast
3538 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
3539 // 3. pointer -> non-pointer
3540 //   a) pointer -> intptr_t       : needs 1 ptrtoint
3541 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
3542 // 4. non-pointer -> pointer
3543 //   a) intptr_t -> pointer       : needs 1 inttoptr
3544 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
3545 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
3546 // allow casting directly between pointer types and non-integer non-pointer
3547 // types.
3548 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
3549                                            const llvm::DataLayout &DL,
3550                                            Value *Src, llvm::Type *DstTy,
3551                                            StringRef Name = "") {
3552   auto SrcTy = Src->getType();
3553 
3554   // Case 1.
3555   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
3556     return Builder.CreateBitCast(Src, DstTy, Name);
3557 
3558   // Case 2.
3559   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
3560     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
3561 
3562   // Case 3.
3563   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
3564     // Case 3b.
3565     if (!DstTy->isIntegerTy())
3566       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
3567     // Cases 3a and 3b.
3568     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
3569   }
3570 
3571   // Case 4b.
3572   if (!SrcTy->isIntegerTy())
3573     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
3574   // Cases 4a and 4b.
3575   return Builder.CreateIntToPtr(Src, DstTy, Name);
3576 }
3577 
3578 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3579   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3580   llvm::Type *DstTy = ConvertType(E->getType());
3581 
3582   llvm::Type *SrcTy = Src->getType();
3583   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
3584     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
3585   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
3586     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
3587 
3588   // Going from vec3 to non-vec3 is a special case and requires a shuffle
3589   // vector to get a vec4, then a bitcast if the target type is different.
3590   if (NumElementsSrc == 3 && NumElementsDst != 3) {
3591     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
3592     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3593                                        DstTy);
3594     Src->setName("astype");
3595     return Src;
3596   }
3597 
3598   // Going from non-vec3 to vec3 is a special case and requires a bitcast
3599   // to vec4 if the original type is not vec4, then a shuffle vector to
3600   // get a vec3.
3601   if (NumElementsSrc != 3 && NumElementsDst == 3) {
3602     auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
3603     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3604                                        Vec4Ty);
3605     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
3606     Src->setName("astype");
3607     return Src;
3608   }
3609 
3610   return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
3611                                             Src, DstTy, "astype");
3612 }
3613 
3614 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3615   return CGF.EmitAtomicExpr(E).getScalarVal();
3616 }
3617 
3618 //===----------------------------------------------------------------------===//
3619 //                         Entry Point into this File
3620 //===----------------------------------------------------------------------===//
3621 
3622 /// Emit the computation of the specified expression of scalar type, ignoring
3623 /// the result.
3624 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3625   assert(E && hasScalarEvaluationKind(E->getType()) &&
3626          "Invalid scalar expression to emit");
3627 
3628   return ScalarExprEmitter(*this, IgnoreResultAssign)
3629       .Visit(const_cast<Expr *>(E));
3630 }
3631 
3632 /// Emit a conversion from the specified type to the specified destination type,
3633 /// both of which are LLVM scalar types.
3634 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3635                                              QualType DstTy,
3636                                              SourceLocation Loc) {
3637   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3638          "Invalid scalar expression to emit");
3639   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
3640 }
3641 
3642 /// Emit a conversion from the specified complex type to the specified
3643 /// destination type, where the destination type is an LLVM scalar type.
3644 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3645                                                       QualType SrcTy,
3646                                                       QualType DstTy,
3647                                                       SourceLocation Loc) {
3648   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3649          "Invalid complex -> scalar conversion");
3650   return ScalarExprEmitter(*this)
3651       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
3652 }
3653 
3654 
3655 llvm::Value *CodeGenFunction::
3656 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3657                         bool isInc, bool isPre) {
3658   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3659 }
3660 
3661 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3662   // object->isa or (*object).isa
3663   // Generate code as for: *(Class*)object
3664 
3665   Expr *BaseExpr = E->getBase();
3666   Address Addr = Address::invalid();
3667   if (BaseExpr->isRValue()) {
3668     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
3669   } else {
3670     Addr = EmitLValue(BaseExpr).getAddress();
3671   }
3672 
3673   // Cast the address to Class*.
3674   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
3675   return MakeAddrLValue(Addr, E->getType());
3676 }
3677 
3678 
3679 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3680                                             const CompoundAssignOperator *E) {
3681   ScalarExprEmitter Scalar(*this);
3682   Value *Result = nullptr;
3683   switch (E->getOpcode()) {
3684 #define COMPOUND_OP(Op)                                                       \
3685     case BO_##Op##Assign:                                                     \
3686       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3687                                              Result)
3688   COMPOUND_OP(Mul);
3689   COMPOUND_OP(Div);
3690   COMPOUND_OP(Rem);
3691   COMPOUND_OP(Add);
3692   COMPOUND_OP(Sub);
3693   COMPOUND_OP(Shl);
3694   COMPOUND_OP(Shr);
3695   COMPOUND_OP(And);
3696   COMPOUND_OP(Xor);
3697   COMPOUND_OP(Or);
3698 #undef COMPOUND_OP
3699 
3700   case BO_PtrMemD:
3701   case BO_PtrMemI:
3702   case BO_Mul:
3703   case BO_Div:
3704   case BO_Rem:
3705   case BO_Add:
3706   case BO_Sub:
3707   case BO_Shl:
3708   case BO_Shr:
3709   case BO_LT:
3710   case BO_GT:
3711   case BO_LE:
3712   case BO_GE:
3713   case BO_EQ:
3714   case BO_NE:
3715   case BO_And:
3716   case BO_Xor:
3717   case BO_Or:
3718   case BO_LAnd:
3719   case BO_LOr:
3720   case BO_Assign:
3721   case BO_Comma:
3722     llvm_unreachable("Not valid compound assignment operators");
3723   }
3724 
3725   llvm_unreachable("Unhandled compound assignment operator");
3726 }
3727