1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/APFixedPoint.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/FixedPointBuilder.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/IntrinsicsPowerPC.h"
41 #include "llvm/IR/MatrixBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include <cstdarg>
44 
45 using namespace clang;
46 using namespace CodeGen;
47 using llvm::Value;
48 
49 //===----------------------------------------------------------------------===//
50 //                         Scalar Expression Emitter
51 //===----------------------------------------------------------------------===//
52 
53 namespace {
54 
55 /// Determine whether the given binary operation may overflow.
56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
58 /// the returned overflow check is precise. The returned value is 'true' for
59 /// all other opcodes, to be conservative.
60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
61                              BinaryOperator::Opcode Opcode, bool Signed,
62                              llvm::APInt &Result) {
63   // Assume overflow is possible, unless we can prove otherwise.
64   bool Overflow = true;
65   const auto &LHSAP = LHS->getValue();
66   const auto &RHSAP = RHS->getValue();
67   if (Opcode == BO_Add) {
68     if (Signed)
69       Result = LHSAP.sadd_ov(RHSAP, Overflow);
70     else
71       Result = LHSAP.uadd_ov(RHSAP, Overflow);
72   } else if (Opcode == BO_Sub) {
73     if (Signed)
74       Result = LHSAP.ssub_ov(RHSAP, Overflow);
75     else
76       Result = LHSAP.usub_ov(RHSAP, Overflow);
77   } else if (Opcode == BO_Mul) {
78     if (Signed)
79       Result = LHSAP.smul_ov(RHSAP, Overflow);
80     else
81       Result = LHSAP.umul_ov(RHSAP, Overflow);
82   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
83     if (Signed && !RHS->isZero())
84       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
85     else
86       return false;
87   }
88   return Overflow;
89 }
90 
91 struct BinOpInfo {
92   Value *LHS;
93   Value *RHS;
94   QualType Ty;  // Computation Type.
95   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
96   FPOptions FPFeatures;
97   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
98 
99   /// Check if the binop can result in integer overflow.
100   bool mayHaveIntegerOverflow() const {
101     // Without constant input, we can't rule out overflow.
102     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
103     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
104     if (!LHSCI || !RHSCI)
105       return true;
106 
107     llvm::APInt Result;
108     return ::mayHaveIntegerOverflow(
109         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
110   }
111 
112   /// Check if the binop computes a division or a remainder.
113   bool isDivremOp() const {
114     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
115            Opcode == BO_RemAssign;
116   }
117 
118   /// Check if the binop can result in an integer division by zero.
119   bool mayHaveIntegerDivisionByZero() const {
120     if (isDivremOp())
121       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
122         return CI->isZero();
123     return true;
124   }
125 
126   /// Check if the binop can result in a float division by zero.
127   bool mayHaveFloatDivisionByZero() const {
128     if (isDivremOp())
129       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
130         return CFP->isZero();
131     return true;
132   }
133 
134   /// Check if at least one operand is a fixed point type. In such cases, this
135   /// operation did not follow usual arithmetic conversion and both operands
136   /// might not be of the same type.
137   bool isFixedPointOp() const {
138     // We cannot simply check the result type since comparison operations return
139     // an int.
140     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
141       QualType LHSType = BinOp->getLHS()->getType();
142       QualType RHSType = BinOp->getRHS()->getType();
143       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
144     }
145     if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
146       return UnOp->getSubExpr()->getType()->isFixedPointType();
147     return false;
148   }
149 };
150 
151 static bool MustVisitNullValue(const Expr *E) {
152   // If a null pointer expression's type is the C++0x nullptr_t, then
153   // it's not necessarily a simple constant and it must be evaluated
154   // for its potential side effects.
155   return E->getType()->isNullPtrType();
156 }
157 
158 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
159 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
160                                                         const Expr *E) {
161   const Expr *Base = E->IgnoreImpCasts();
162   if (E == Base)
163     return llvm::None;
164 
165   QualType BaseTy = Base->getType();
166   if (!BaseTy->isPromotableIntegerType() ||
167       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
168     return llvm::None;
169 
170   return BaseTy;
171 }
172 
173 /// Check if \p E is a widened promoted integer.
174 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
175   return getUnwidenedIntegerType(Ctx, E).hasValue();
176 }
177 
178 /// Check if we can skip the overflow check for \p Op.
179 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
180   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
181          "Expected a unary or binary operator");
182 
183   // If the binop has constant inputs and we can prove there is no overflow,
184   // we can elide the overflow check.
185   if (!Op.mayHaveIntegerOverflow())
186     return true;
187 
188   // If a unary op has a widened operand, the op cannot overflow.
189   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
190     return !UO->canOverflow();
191 
192   // We usually don't need overflow checks for binops with widened operands.
193   // Multiplication with promoted unsigned operands is a special case.
194   const auto *BO = cast<BinaryOperator>(Op.E);
195   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
196   if (!OptionalLHSTy)
197     return false;
198 
199   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
200   if (!OptionalRHSTy)
201     return false;
202 
203   QualType LHSTy = *OptionalLHSTy;
204   QualType RHSTy = *OptionalRHSTy;
205 
206   // This is the simple case: binops without unsigned multiplication, and with
207   // widened operands. No overflow check is needed here.
208   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
209       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
210     return true;
211 
212   // For unsigned multiplication the overflow check can be elided if either one
213   // of the unpromoted types are less than half the size of the promoted type.
214   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
215   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
216          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
217 }
218 
219 class ScalarExprEmitter
220   : public StmtVisitor<ScalarExprEmitter, Value*> {
221   CodeGenFunction &CGF;
222   CGBuilderTy &Builder;
223   bool IgnoreResultAssign;
224   llvm::LLVMContext &VMContext;
225 public:
226 
227   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
228     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
229       VMContext(cgf.getLLVMContext()) {
230   }
231 
232   //===--------------------------------------------------------------------===//
233   //                               Utilities
234   //===--------------------------------------------------------------------===//
235 
236   bool TestAndClearIgnoreResultAssign() {
237     bool I = IgnoreResultAssign;
238     IgnoreResultAssign = false;
239     return I;
240   }
241 
242   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
243   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
244   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
245     return CGF.EmitCheckedLValue(E, TCK);
246   }
247 
248   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
249                       const BinOpInfo &Info);
250 
251   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
252     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
253   }
254 
255   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
256     const AlignValueAttr *AVAttr = nullptr;
257     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
258       const ValueDecl *VD = DRE->getDecl();
259 
260       if (VD->getType()->isReferenceType()) {
261         if (const auto *TTy =
262             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
263           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
264       } else {
265         // Assumptions for function parameters are emitted at the start of the
266         // function, so there is no need to repeat that here,
267         // unless the alignment-assumption sanitizer is enabled,
268         // then we prefer the assumption over alignment attribute
269         // on IR function param.
270         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
271           return;
272 
273         AVAttr = VD->getAttr<AlignValueAttr>();
274       }
275     }
276 
277     if (!AVAttr)
278       if (const auto *TTy =
279           dyn_cast<TypedefType>(E->getType()))
280         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
281 
282     if (!AVAttr)
283       return;
284 
285     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
286     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
287     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
288   }
289 
290   /// EmitLoadOfLValue - Given an expression with complex type that represents a
291   /// value l-value, this method emits the address of the l-value, then loads
292   /// and returns the result.
293   Value *EmitLoadOfLValue(const Expr *E) {
294     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
295                                 E->getExprLoc());
296 
297     EmitLValueAlignmentAssumption(E, V);
298     return V;
299   }
300 
301   /// EmitConversionToBool - Convert the specified expression value to a
302   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
303   Value *EmitConversionToBool(Value *Src, QualType DstTy);
304 
305   /// Emit a check that a conversion from a floating-point type does not
306   /// overflow.
307   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
308                                 Value *Src, QualType SrcType, QualType DstType,
309                                 llvm::Type *DstTy, SourceLocation Loc);
310 
311   /// Known implicit conversion check kinds.
312   /// Keep in sync with the enum of the same name in ubsan_handlers.h
313   enum ImplicitConversionCheckKind : unsigned char {
314     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
315     ICCK_UnsignedIntegerTruncation = 1,
316     ICCK_SignedIntegerTruncation = 2,
317     ICCK_IntegerSignChange = 3,
318     ICCK_SignedIntegerTruncationOrSignChange = 4,
319   };
320 
321   /// Emit a check that an [implicit] truncation of an integer  does not
322   /// discard any bits. It is not UB, so we use the value after truncation.
323   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
324                                   QualType DstType, SourceLocation Loc);
325 
326   /// Emit a check that an [implicit] conversion of an integer does not change
327   /// the sign of the value. It is not UB, so we use the value after conversion.
328   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
329   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
330                                   QualType DstType, SourceLocation Loc);
331 
332   /// Emit a conversion from the specified type to the specified destination
333   /// type, both of which are LLVM scalar types.
334   struct ScalarConversionOpts {
335     bool TreatBooleanAsSigned;
336     bool EmitImplicitIntegerTruncationChecks;
337     bool EmitImplicitIntegerSignChangeChecks;
338 
339     ScalarConversionOpts()
340         : TreatBooleanAsSigned(false),
341           EmitImplicitIntegerTruncationChecks(false),
342           EmitImplicitIntegerSignChangeChecks(false) {}
343 
344     ScalarConversionOpts(clang::SanitizerSet SanOpts)
345         : TreatBooleanAsSigned(false),
346           EmitImplicitIntegerTruncationChecks(
347               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
348           EmitImplicitIntegerSignChangeChecks(
349               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
350   };
351   Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
352                         llvm::Type *SrcTy, llvm::Type *DstTy,
353                         ScalarConversionOpts Opts);
354   Value *
355   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
356                        SourceLocation Loc,
357                        ScalarConversionOpts Opts = ScalarConversionOpts());
358 
359   /// Convert between either a fixed point and other fixed point or fixed point
360   /// and an integer.
361   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
362                                   SourceLocation Loc);
363 
364   /// Emit a conversion from the specified complex type to the specified
365   /// destination type, where the destination type is an LLVM scalar type.
366   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
367                                        QualType SrcTy, QualType DstTy,
368                                        SourceLocation Loc);
369 
370   /// EmitNullValue - Emit a value that corresponds to null for the given type.
371   Value *EmitNullValue(QualType Ty);
372 
373   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
374   Value *EmitFloatToBoolConversion(Value *V) {
375     // Compare against 0.0 for fp scalars.
376     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
377     return Builder.CreateFCmpUNE(V, Zero, "tobool");
378   }
379 
380   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
381   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
382     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
383 
384     return Builder.CreateICmpNE(V, Zero, "tobool");
385   }
386 
387   Value *EmitIntToBoolConversion(Value *V) {
388     // Because of the type rules of C, we often end up computing a
389     // logical value, then zero extending it to int, then wanting it
390     // as a logical value again.  Optimize this common case.
391     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
392       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
393         Value *Result = ZI->getOperand(0);
394         // If there aren't any more uses, zap the instruction to save space.
395         // Note that there can be more uses, for example if this
396         // is the result of an assignment.
397         if (ZI->use_empty())
398           ZI->eraseFromParent();
399         return Result;
400       }
401     }
402 
403     return Builder.CreateIsNotNull(V, "tobool");
404   }
405 
406   //===--------------------------------------------------------------------===//
407   //                            Visitor Methods
408   //===--------------------------------------------------------------------===//
409 
410   Value *Visit(Expr *E) {
411     ApplyDebugLocation DL(CGF, E);
412     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
413   }
414 
415   Value *VisitStmt(Stmt *S) {
416     S->dump(llvm::errs(), CGF.getContext());
417     llvm_unreachable("Stmt can't have complex result type!");
418   }
419   Value *VisitExpr(Expr *S);
420 
421   Value *VisitConstantExpr(ConstantExpr *E) {
422     if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
423       if (E->isGLValue())
424         return CGF.Builder.CreateLoad(Address(
425             Result, CGF.getContext().getTypeAlignInChars(E->getType())));
426       return Result;
427     }
428     return Visit(E->getSubExpr());
429   }
430   Value *VisitParenExpr(ParenExpr *PE) {
431     return Visit(PE->getSubExpr());
432   }
433   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
434     return Visit(E->getReplacement());
435   }
436   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
437     return Visit(GE->getResultExpr());
438   }
439   Value *VisitCoawaitExpr(CoawaitExpr *S) {
440     return CGF.EmitCoawaitExpr(*S).getScalarVal();
441   }
442   Value *VisitCoyieldExpr(CoyieldExpr *S) {
443     return CGF.EmitCoyieldExpr(*S).getScalarVal();
444   }
445   Value *VisitUnaryCoawait(const UnaryOperator *E) {
446     return Visit(E->getSubExpr());
447   }
448 
449   // Leaves.
450   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
451     return Builder.getInt(E->getValue());
452   }
453   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
454     return Builder.getInt(E->getValue());
455   }
456   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
457     return llvm::ConstantFP::get(VMContext, E->getValue());
458   }
459   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
460     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
461   }
462   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
463     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
464   }
465   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
466     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
467   }
468   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
469     return EmitNullValue(E->getType());
470   }
471   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
472     return EmitNullValue(E->getType());
473   }
474   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
475   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
476   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
477     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
478     return Builder.CreateBitCast(V, ConvertType(E->getType()));
479   }
480 
481   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
482     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
483   }
484 
485   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
486     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
487   }
488 
489   Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E);
490 
491   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
492     if (E->isGLValue())
493       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
494                               E->getExprLoc());
495 
496     // Otherwise, assume the mapping is the scalar directly.
497     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
498   }
499 
500   // l-values.
501   Value *VisitDeclRefExpr(DeclRefExpr *E) {
502     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
503       return CGF.emitScalarConstant(Constant, E);
504     return EmitLoadOfLValue(E);
505   }
506 
507   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
508     return CGF.EmitObjCSelectorExpr(E);
509   }
510   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
511     return CGF.EmitObjCProtocolExpr(E);
512   }
513   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
514     return EmitLoadOfLValue(E);
515   }
516   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
517     if (E->getMethodDecl() &&
518         E->getMethodDecl()->getReturnType()->isReferenceType())
519       return EmitLoadOfLValue(E);
520     return CGF.EmitObjCMessageExpr(E).getScalarVal();
521   }
522 
523   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
524     LValue LV = CGF.EmitObjCIsaExpr(E);
525     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
526     return V;
527   }
528 
529   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
530     VersionTuple Version = E->getVersion();
531 
532     // If we're checking for a platform older than our minimum deployment
533     // target, we can fold the check away.
534     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
535       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
536 
537     return CGF.EmitBuiltinAvailable(Version);
538   }
539 
540   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
541   Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
542   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
543   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
544   Value *VisitMemberExpr(MemberExpr *E);
545   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
546   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
547     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
548     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
549     // literals aren't l-values in C++. We do so simply because that's the
550     // cleanest way to handle compound literals in C++.
551     // See the discussion here: https://reviews.llvm.org/D64464
552     return EmitLoadOfLValue(E);
553   }
554 
555   Value *VisitInitListExpr(InitListExpr *E);
556 
557   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
558     assert(CGF.getArrayInitIndex() &&
559            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
560     return CGF.getArrayInitIndex();
561   }
562 
563   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
564     return EmitNullValue(E->getType());
565   }
566   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
567     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
568     return VisitCastExpr(E);
569   }
570   Value *VisitCastExpr(CastExpr *E);
571 
572   Value *VisitCallExpr(const CallExpr *E) {
573     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
574       return EmitLoadOfLValue(E);
575 
576     Value *V = CGF.EmitCallExpr(E).getScalarVal();
577 
578     EmitLValueAlignmentAssumption(E, V);
579     return V;
580   }
581 
582   Value *VisitStmtExpr(const StmtExpr *E);
583 
584   // Unary Operators.
585   Value *VisitUnaryPostDec(const UnaryOperator *E) {
586     LValue LV = EmitLValue(E->getSubExpr());
587     return EmitScalarPrePostIncDec(E, LV, false, false);
588   }
589   Value *VisitUnaryPostInc(const UnaryOperator *E) {
590     LValue LV = EmitLValue(E->getSubExpr());
591     return EmitScalarPrePostIncDec(E, LV, true, false);
592   }
593   Value *VisitUnaryPreDec(const UnaryOperator *E) {
594     LValue LV = EmitLValue(E->getSubExpr());
595     return EmitScalarPrePostIncDec(E, LV, false, true);
596   }
597   Value *VisitUnaryPreInc(const UnaryOperator *E) {
598     LValue LV = EmitLValue(E->getSubExpr());
599     return EmitScalarPrePostIncDec(E, LV, true, true);
600   }
601 
602   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
603                                                   llvm::Value *InVal,
604                                                   bool IsInc);
605 
606   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
607                                        bool isInc, bool isPre);
608 
609 
610   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
611     if (isa<MemberPointerType>(E->getType())) // never sugared
612       return CGF.CGM.getMemberPointerConstant(E);
613 
614     return EmitLValue(E->getSubExpr()).getPointer(CGF);
615   }
616   Value *VisitUnaryDeref(const UnaryOperator *E) {
617     if (E->getType()->isVoidType())
618       return Visit(E->getSubExpr()); // the actual value should be unused
619     return EmitLoadOfLValue(E);
620   }
621   Value *VisitUnaryPlus(const UnaryOperator *E) {
622     // This differs from gcc, though, most likely due to a bug in gcc.
623     TestAndClearIgnoreResultAssign();
624     return Visit(E->getSubExpr());
625   }
626   Value *VisitUnaryMinus    (const UnaryOperator *E);
627   Value *VisitUnaryNot      (const UnaryOperator *E);
628   Value *VisitUnaryLNot     (const UnaryOperator *E);
629   Value *VisitUnaryReal     (const UnaryOperator *E);
630   Value *VisitUnaryImag     (const UnaryOperator *E);
631   Value *VisitUnaryExtension(const UnaryOperator *E) {
632     return Visit(E->getSubExpr());
633   }
634 
635   // C++
636   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
637     return EmitLoadOfLValue(E);
638   }
639   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
640     auto &Ctx = CGF.getContext();
641     APValue Evaluated =
642         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
643     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
644                                              SLE->getType());
645   }
646 
647   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
648     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
649     return Visit(DAE->getExpr());
650   }
651   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
652     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
653     return Visit(DIE->getExpr());
654   }
655   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
656     return CGF.LoadCXXThis();
657   }
658 
659   Value *VisitExprWithCleanups(ExprWithCleanups *E);
660   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
661     return CGF.EmitCXXNewExpr(E);
662   }
663   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
664     CGF.EmitCXXDeleteExpr(E);
665     return nullptr;
666   }
667 
668   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
669     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
670   }
671 
672   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
673     return Builder.getInt1(E->isSatisfied());
674   }
675 
676   Value *VisitRequiresExpr(const RequiresExpr *E) {
677     return Builder.getInt1(E->isSatisfied());
678   }
679 
680   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
681     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
682   }
683 
684   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
685     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
686   }
687 
688   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
689     // C++ [expr.pseudo]p1:
690     //   The result shall only be used as the operand for the function call
691     //   operator (), and the result of such a call has type void. The only
692     //   effect is the evaluation of the postfix-expression before the dot or
693     //   arrow.
694     CGF.EmitScalarExpr(E->getBase());
695     return nullptr;
696   }
697 
698   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
699     return EmitNullValue(E->getType());
700   }
701 
702   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
703     CGF.EmitCXXThrowExpr(E);
704     return nullptr;
705   }
706 
707   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
708     return Builder.getInt1(E->getValue());
709   }
710 
711   // Binary Operators.
712   Value *EmitMul(const BinOpInfo &Ops) {
713     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
714       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
715       case LangOptions::SOB_Defined:
716         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
717       case LangOptions::SOB_Undefined:
718         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
719           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
720         LLVM_FALLTHROUGH;
721       case LangOptions::SOB_Trapping:
722         if (CanElideOverflowCheck(CGF.getContext(), Ops))
723           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
724         return EmitOverflowCheckedBinOp(Ops);
725       }
726     }
727 
728     if (Ops.Ty->isConstantMatrixType()) {
729       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
730       // We need to check the types of the operands of the operator to get the
731       // correct matrix dimensions.
732       auto *BO = cast<BinaryOperator>(Ops.E);
733       auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
734           BO->getLHS()->getType().getCanonicalType());
735       auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
736           BO->getRHS()->getType().getCanonicalType());
737       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
738       if (LHSMatTy && RHSMatTy)
739         return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
740                                        LHSMatTy->getNumColumns(),
741                                        RHSMatTy->getNumColumns());
742       return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
743     }
744 
745     if (Ops.Ty->isUnsignedIntegerType() &&
746         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
747         !CanElideOverflowCheck(CGF.getContext(), Ops))
748       return EmitOverflowCheckedBinOp(Ops);
749 
750     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
751       //  Preserve the old values
752       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
753       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
754     }
755     if (Ops.isFixedPointOp())
756       return EmitFixedPointBinOp(Ops);
757     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
758   }
759   /// Create a binary op that checks for overflow.
760   /// Currently only supports +, - and *.
761   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
762 
763   // Check for undefined division and modulus behaviors.
764   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
765                                                   llvm::Value *Zero,bool isDiv);
766   // Common helper for getting how wide LHS of shift is.
767   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
768 
769   // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
770   // non powers of two.
771   Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
772 
773   Value *EmitDiv(const BinOpInfo &Ops);
774   Value *EmitRem(const BinOpInfo &Ops);
775   Value *EmitAdd(const BinOpInfo &Ops);
776   Value *EmitSub(const BinOpInfo &Ops);
777   Value *EmitShl(const BinOpInfo &Ops);
778   Value *EmitShr(const BinOpInfo &Ops);
779   Value *EmitAnd(const BinOpInfo &Ops) {
780     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
781   }
782   Value *EmitXor(const BinOpInfo &Ops) {
783     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
784   }
785   Value *EmitOr (const BinOpInfo &Ops) {
786     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
787   }
788 
789   // Helper functions for fixed point binary operations.
790   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
791 
792   BinOpInfo EmitBinOps(const BinaryOperator *E);
793   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
794                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
795                                   Value *&Result);
796 
797   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
798                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
799 
800   // Binary operators and binary compound assignment operators.
801 #define HANDLEBINOP(OP) \
802   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
803     return Emit ## OP(EmitBinOps(E));                                      \
804   }                                                                        \
805   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
806     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
807   }
808   HANDLEBINOP(Mul)
809   HANDLEBINOP(Div)
810   HANDLEBINOP(Rem)
811   HANDLEBINOP(Add)
812   HANDLEBINOP(Sub)
813   HANDLEBINOP(Shl)
814   HANDLEBINOP(Shr)
815   HANDLEBINOP(And)
816   HANDLEBINOP(Xor)
817   HANDLEBINOP(Or)
818 #undef HANDLEBINOP
819 
820   // Comparisons.
821   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
822                      llvm::CmpInst::Predicate SICmpOpc,
823                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
824 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
825     Value *VisitBin##CODE(const BinaryOperator *E) { \
826       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
827                          llvm::FCmpInst::FP, SIG); }
828   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
829   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
830   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
831   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
832   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
833   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
834 #undef VISITCOMP
835 
836   Value *VisitBinAssign     (const BinaryOperator *E);
837 
838   Value *VisitBinLAnd       (const BinaryOperator *E);
839   Value *VisitBinLOr        (const BinaryOperator *E);
840   Value *VisitBinComma      (const BinaryOperator *E);
841 
842   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
843   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
844 
845   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
846     return Visit(E->getSemanticForm());
847   }
848 
849   // Other Operators.
850   Value *VisitBlockExpr(const BlockExpr *BE);
851   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
852   Value *VisitChooseExpr(ChooseExpr *CE);
853   Value *VisitVAArgExpr(VAArgExpr *VE);
854   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
855     return CGF.EmitObjCStringLiteral(E);
856   }
857   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
858     return CGF.EmitObjCBoxedExpr(E);
859   }
860   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
861     return CGF.EmitObjCArrayLiteral(E);
862   }
863   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
864     return CGF.EmitObjCDictionaryLiteral(E);
865   }
866   Value *VisitAsTypeExpr(AsTypeExpr *CE);
867   Value *VisitAtomicExpr(AtomicExpr *AE);
868 };
869 }  // end anonymous namespace.
870 
871 //===----------------------------------------------------------------------===//
872 //                                Utilities
873 //===----------------------------------------------------------------------===//
874 
875 /// EmitConversionToBool - Convert the specified expression value to a
876 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
877 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
878   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
879 
880   if (SrcType->isRealFloatingType())
881     return EmitFloatToBoolConversion(Src);
882 
883   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
884     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
885 
886   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
887          "Unknown scalar type to convert");
888 
889   if (isa<llvm::IntegerType>(Src->getType()))
890     return EmitIntToBoolConversion(Src);
891 
892   assert(isa<llvm::PointerType>(Src->getType()));
893   return EmitPointerToBoolConversion(Src, SrcType);
894 }
895 
896 void ScalarExprEmitter::EmitFloatConversionCheck(
897     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
898     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
899   assert(SrcType->isFloatingType() && "not a conversion from floating point");
900   if (!isa<llvm::IntegerType>(DstTy))
901     return;
902 
903   CodeGenFunction::SanitizerScope SanScope(&CGF);
904   using llvm::APFloat;
905   using llvm::APSInt;
906 
907   llvm::Value *Check = nullptr;
908   const llvm::fltSemantics &SrcSema =
909     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
910 
911   // Floating-point to integer. This has undefined behavior if the source is
912   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
913   // to an integer).
914   unsigned Width = CGF.getContext().getIntWidth(DstType);
915   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
916 
917   APSInt Min = APSInt::getMinValue(Width, Unsigned);
918   APFloat MinSrc(SrcSema, APFloat::uninitialized);
919   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
920       APFloat::opOverflow)
921     // Don't need an overflow check for lower bound. Just check for
922     // -Inf/NaN.
923     MinSrc = APFloat::getInf(SrcSema, true);
924   else
925     // Find the largest value which is too small to represent (before
926     // truncation toward zero).
927     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
928 
929   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
930   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
931   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
932       APFloat::opOverflow)
933     // Don't need an overflow check for upper bound. Just check for
934     // +Inf/NaN.
935     MaxSrc = APFloat::getInf(SrcSema, false);
936   else
937     // Find the smallest value which is too large to represent (before
938     // truncation toward zero).
939     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
940 
941   // If we're converting from __half, convert the range to float to match
942   // the type of src.
943   if (OrigSrcType->isHalfType()) {
944     const llvm::fltSemantics &Sema =
945       CGF.getContext().getFloatTypeSemantics(SrcType);
946     bool IsInexact;
947     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
948     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
949   }
950 
951   llvm::Value *GE =
952     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
953   llvm::Value *LE =
954     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
955   Check = Builder.CreateAnd(GE, LE);
956 
957   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
958                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
959                                   CGF.EmitCheckTypeDescriptor(DstType)};
960   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
961                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
962 }
963 
964 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
965 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
966 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
967                  std::pair<llvm::Value *, SanitizerMask>>
968 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
969                                  QualType DstType, CGBuilderTy &Builder) {
970   llvm::Type *SrcTy = Src->getType();
971   llvm::Type *DstTy = Dst->getType();
972   (void)DstTy; // Only used in assert()
973 
974   // This should be truncation of integral types.
975   assert(Src != Dst);
976   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
977   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
978          "non-integer llvm type");
979 
980   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
981   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
982 
983   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
984   // Else, it is a signed truncation.
985   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
986   SanitizerMask Mask;
987   if (!SrcSigned && !DstSigned) {
988     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
989     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
990   } else {
991     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
992     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
993   }
994 
995   llvm::Value *Check = nullptr;
996   // 1. Extend the truncated value back to the same width as the Src.
997   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
998   // 2. Equality-compare with the original source value
999   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1000   // If the comparison result is 'i1 false', then the truncation was lossy.
1001   return std::make_pair(Kind, std::make_pair(Check, Mask));
1002 }
1003 
1004 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1005     QualType SrcType, QualType DstType) {
1006   return SrcType->isIntegerType() && DstType->isIntegerType();
1007 }
1008 
1009 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1010                                                    Value *Dst, QualType DstType,
1011                                                    SourceLocation Loc) {
1012   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1013     return;
1014 
1015   // We only care about int->int conversions here.
1016   // We ignore conversions to/from pointer and/or bool.
1017   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1018                                                                        DstType))
1019     return;
1020 
1021   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1022   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1023   // This must be truncation. Else we do not care.
1024   if (SrcBits <= DstBits)
1025     return;
1026 
1027   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1028 
1029   // If the integer sign change sanitizer is enabled,
1030   // and we are truncating from larger unsigned type to smaller signed type,
1031   // let that next sanitizer deal with it.
1032   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1033   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1034   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1035       (!SrcSigned && DstSigned))
1036     return;
1037 
1038   CodeGenFunction::SanitizerScope SanScope(&CGF);
1039 
1040   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1041             std::pair<llvm::Value *, SanitizerMask>>
1042       Check =
1043           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1044   // If the comparison result is 'i1 false', then the truncation was lossy.
1045 
1046   // Do we care about this type of truncation?
1047   if (!CGF.SanOpts.has(Check.second.second))
1048     return;
1049 
1050   llvm::Constant *StaticArgs[] = {
1051       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1052       CGF.EmitCheckTypeDescriptor(DstType),
1053       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1054   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1055                 {Src, Dst});
1056 }
1057 
1058 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1059 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1060 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1061                  std::pair<llvm::Value *, SanitizerMask>>
1062 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1063                                  QualType DstType, CGBuilderTy &Builder) {
1064   llvm::Type *SrcTy = Src->getType();
1065   llvm::Type *DstTy = Dst->getType();
1066 
1067   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1068          "non-integer llvm type");
1069 
1070   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1071   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1072   (void)SrcSigned; // Only used in assert()
1073   (void)DstSigned; // Only used in assert()
1074   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1075   unsigned DstBits = DstTy->getScalarSizeInBits();
1076   (void)SrcBits; // Only used in assert()
1077   (void)DstBits; // Only used in assert()
1078 
1079   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1080          "either the widths should be different, or the signednesses.");
1081 
1082   // NOTE: zero value is considered to be non-negative.
1083   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1084                                        const char *Name) -> Value * {
1085     // Is this value a signed type?
1086     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1087     llvm::Type *VTy = V->getType();
1088     if (!VSigned) {
1089       // If the value is unsigned, then it is never negative.
1090       // FIXME: can we encounter non-scalar VTy here?
1091       return llvm::ConstantInt::getFalse(VTy->getContext());
1092     }
1093     // Get the zero of the same type with which we will be comparing.
1094     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1095     // %V.isnegative = icmp slt %V, 0
1096     // I.e is %V *strictly* less than zero, does it have negative value?
1097     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1098                               llvm::Twine(Name) + "." + V->getName() +
1099                                   ".negativitycheck");
1100   };
1101 
1102   // 1. Was the old Value negative?
1103   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1104   // 2. Is the new Value negative?
1105   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1106   // 3. Now, was the 'negativity status' preserved during the conversion?
1107   //    NOTE: conversion from negative to zero is considered to change the sign.
1108   //    (We want to get 'false' when the conversion changed the sign)
1109   //    So we should just equality-compare the negativity statuses.
1110   llvm::Value *Check = nullptr;
1111   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1112   // If the comparison result is 'false', then the conversion changed the sign.
1113   return std::make_pair(
1114       ScalarExprEmitter::ICCK_IntegerSignChange,
1115       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1116 }
1117 
1118 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1119                                                    Value *Dst, QualType DstType,
1120                                                    SourceLocation Loc) {
1121   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1122     return;
1123 
1124   llvm::Type *SrcTy = Src->getType();
1125   llvm::Type *DstTy = Dst->getType();
1126 
1127   // We only care about int->int conversions here.
1128   // We ignore conversions to/from pointer and/or bool.
1129   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1130                                                                        DstType))
1131     return;
1132 
1133   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1134   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1135   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1136   unsigned DstBits = DstTy->getScalarSizeInBits();
1137 
1138   // Now, we do not need to emit the check in *all* of the cases.
1139   // We can avoid emitting it in some obvious cases where it would have been
1140   // dropped by the opt passes (instcombine) always anyways.
1141   // If it's a cast between effectively the same type, no check.
1142   // NOTE: this is *not* equivalent to checking the canonical types.
1143   if (SrcSigned == DstSigned && SrcBits == DstBits)
1144     return;
1145   // At least one of the values needs to have signed type.
1146   // If both are unsigned, then obviously, neither of them can be negative.
1147   if (!SrcSigned && !DstSigned)
1148     return;
1149   // If the conversion is to *larger* *signed* type, then no check is needed.
1150   // Because either sign-extension happens (so the sign will remain),
1151   // or zero-extension will happen (the sign bit will be zero.)
1152   if ((DstBits > SrcBits) && DstSigned)
1153     return;
1154   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1155       (SrcBits > DstBits) && SrcSigned) {
1156     // If the signed integer truncation sanitizer is enabled,
1157     // and this is a truncation from signed type, then no check is needed.
1158     // Because here sign change check is interchangeable with truncation check.
1159     return;
1160   }
1161   // That's it. We can't rule out any more cases with the data we have.
1162 
1163   CodeGenFunction::SanitizerScope SanScope(&CGF);
1164 
1165   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1166             std::pair<llvm::Value *, SanitizerMask>>
1167       Check;
1168 
1169   // Each of these checks needs to return 'false' when an issue was detected.
1170   ImplicitConversionCheckKind CheckKind;
1171   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1172   // So we can 'and' all the checks together, and still get 'false',
1173   // if at least one of the checks detected an issue.
1174 
1175   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1176   CheckKind = Check.first;
1177   Checks.emplace_back(Check.second);
1178 
1179   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1180       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1181     // If the signed integer truncation sanitizer was enabled,
1182     // and we are truncating from larger unsigned type to smaller signed type,
1183     // let's handle the case we skipped in that check.
1184     Check =
1185         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1186     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1187     Checks.emplace_back(Check.second);
1188     // If the comparison result is 'i1 false', then the truncation was lossy.
1189   }
1190 
1191   llvm::Constant *StaticArgs[] = {
1192       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1193       CGF.EmitCheckTypeDescriptor(DstType),
1194       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1195   // EmitCheck() will 'and' all the checks together.
1196   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1197                 {Src, Dst});
1198 }
1199 
1200 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
1201                                          QualType DstType, llvm::Type *SrcTy,
1202                                          llvm::Type *DstTy,
1203                                          ScalarConversionOpts Opts) {
1204   // The Element types determine the type of cast to perform.
1205   llvm::Type *SrcElementTy;
1206   llvm::Type *DstElementTy;
1207   QualType SrcElementType;
1208   QualType DstElementType;
1209   if (SrcType->isMatrixType() && DstType->isMatrixType()) {
1210     SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1211     DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1212     SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
1213     DstElementType = DstType->castAs<MatrixType>()->getElementType();
1214   } else {
1215     assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
1216            "cannot cast between matrix and non-matrix types");
1217     SrcElementTy = SrcTy;
1218     DstElementTy = DstTy;
1219     SrcElementType = SrcType;
1220     DstElementType = DstType;
1221   }
1222 
1223   if (isa<llvm::IntegerType>(SrcElementTy)) {
1224     bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
1225     if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1226       InputSigned = true;
1227     }
1228 
1229     if (isa<llvm::IntegerType>(DstElementTy))
1230       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1231     if (InputSigned)
1232       return Builder.CreateSIToFP(Src, DstTy, "conv");
1233     return Builder.CreateUIToFP(Src, DstTy, "conv");
1234   }
1235 
1236   if (isa<llvm::IntegerType>(DstElementTy)) {
1237     assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
1238     if (DstElementType->isSignedIntegerOrEnumerationType())
1239       return Builder.CreateFPToSI(Src, DstTy, "conv");
1240     return Builder.CreateFPToUI(Src, DstTy, "conv");
1241   }
1242 
1243   if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
1244     return Builder.CreateFPTrunc(Src, DstTy, "conv");
1245   return Builder.CreateFPExt(Src, DstTy, "conv");
1246 }
1247 
1248 /// Emit a conversion from the specified type to the specified destination type,
1249 /// both of which are LLVM scalar types.
1250 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1251                                                QualType DstType,
1252                                                SourceLocation Loc,
1253                                                ScalarConversionOpts Opts) {
1254   // All conversions involving fixed point types should be handled by the
1255   // EmitFixedPoint family functions. This is done to prevent bloating up this
1256   // function more, and although fixed point numbers are represented by
1257   // integers, we do not want to follow any logic that assumes they should be
1258   // treated as integers.
1259   // TODO(leonardchan): When necessary, add another if statement checking for
1260   // conversions to fixed point types from other types.
1261   if (SrcType->isFixedPointType()) {
1262     if (DstType->isBooleanType())
1263       // It is important that we check this before checking if the dest type is
1264       // an integer because booleans are technically integer types.
1265       // We do not need to check the padding bit on unsigned types if unsigned
1266       // padding is enabled because overflow into this bit is undefined
1267       // behavior.
1268       return Builder.CreateIsNotNull(Src, "tobool");
1269     if (DstType->isFixedPointType() || DstType->isIntegerType() ||
1270         DstType->isRealFloatingType())
1271       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1272 
1273     llvm_unreachable(
1274         "Unhandled scalar conversion from a fixed point type to another type.");
1275   } else if (DstType->isFixedPointType()) {
1276     if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
1277       // This also includes converting booleans and enums to fixed point types.
1278       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1279 
1280     llvm_unreachable(
1281         "Unhandled scalar conversion to a fixed point type from another type.");
1282   }
1283 
1284   QualType NoncanonicalSrcType = SrcType;
1285   QualType NoncanonicalDstType = DstType;
1286 
1287   SrcType = CGF.getContext().getCanonicalType(SrcType);
1288   DstType = CGF.getContext().getCanonicalType(DstType);
1289   if (SrcType == DstType) return Src;
1290 
1291   if (DstType->isVoidType()) return nullptr;
1292 
1293   llvm::Value *OrigSrc = Src;
1294   QualType OrigSrcType = SrcType;
1295   llvm::Type *SrcTy = Src->getType();
1296 
1297   // Handle conversions to bool first, they are special: comparisons against 0.
1298   if (DstType->isBooleanType())
1299     return EmitConversionToBool(Src, SrcType);
1300 
1301   llvm::Type *DstTy = ConvertType(DstType);
1302 
1303   // Cast from half through float if half isn't a native type.
1304   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1305     // Cast to FP using the intrinsic if the half type itself isn't supported.
1306     if (DstTy->isFloatingPointTy()) {
1307       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1308         return Builder.CreateCall(
1309             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1310             Src);
1311     } else {
1312       // Cast to other types through float, using either the intrinsic or FPExt,
1313       // depending on whether the half type itself is supported
1314       // (as opposed to operations on half, available with NativeHalfType).
1315       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1316         Src = Builder.CreateCall(
1317             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1318                                  CGF.CGM.FloatTy),
1319             Src);
1320       } else {
1321         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1322       }
1323       SrcType = CGF.getContext().FloatTy;
1324       SrcTy = CGF.FloatTy;
1325     }
1326   }
1327 
1328   // Ignore conversions like int -> uint.
1329   if (SrcTy == DstTy) {
1330     if (Opts.EmitImplicitIntegerSignChangeChecks)
1331       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1332                                  NoncanonicalDstType, Loc);
1333 
1334     return Src;
1335   }
1336 
1337   // Handle pointer conversions next: pointers can only be converted to/from
1338   // other pointers and integers. Check for pointer types in terms of LLVM, as
1339   // some native types (like Obj-C id) may map to a pointer type.
1340   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1341     // The source value may be an integer, or a pointer.
1342     if (isa<llvm::PointerType>(SrcTy))
1343       return Builder.CreateBitCast(Src, DstTy, "conv");
1344 
1345     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1346     // First, convert to the correct width so that we control the kind of
1347     // extension.
1348     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1349     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1350     llvm::Value* IntResult =
1351         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1352     // Then, cast to pointer.
1353     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1354   }
1355 
1356   if (isa<llvm::PointerType>(SrcTy)) {
1357     // Must be an ptr to int cast.
1358     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1359     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1360   }
1361 
1362   // A scalar can be splatted to an extended vector of the same element type
1363   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1364     // Sema should add casts to make sure that the source expression's type is
1365     // the same as the vector's element type (sans qualifiers)
1366     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1367                SrcType.getTypePtr() &&
1368            "Splatted expr doesn't match with vector element type?");
1369 
1370     // Splat the element across to all elements
1371     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1372     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1373   }
1374 
1375   if (SrcType->isMatrixType() && DstType->isMatrixType())
1376     return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1377 
1378   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1379     // Allow bitcast from vector to integer/fp of the same size.
1380     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1381     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1382     if (SrcSize == DstSize)
1383       return Builder.CreateBitCast(Src, DstTy, "conv");
1384 
1385     // Conversions between vectors of different sizes are not allowed except
1386     // when vectors of half are involved. Operations on storage-only half
1387     // vectors require promoting half vector operands to float vectors and
1388     // truncating the result, which is either an int or float vector, to a
1389     // short or half vector.
1390 
1391     // Source and destination are both expected to be vectors.
1392     llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1393     llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1394     (void)DstElementTy;
1395 
1396     assert(((SrcElementTy->isIntegerTy() &&
1397              DstElementTy->isIntegerTy()) ||
1398             (SrcElementTy->isFloatingPointTy() &&
1399              DstElementTy->isFloatingPointTy())) &&
1400            "unexpected conversion between a floating-point vector and an "
1401            "integer vector");
1402 
1403     // Truncate an i32 vector to an i16 vector.
1404     if (SrcElementTy->isIntegerTy())
1405       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1406 
1407     // Truncate a float vector to a half vector.
1408     if (SrcSize > DstSize)
1409       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1410 
1411     // Promote a half vector to a float vector.
1412     return Builder.CreateFPExt(Src, DstTy, "conv");
1413   }
1414 
1415   // Finally, we have the arithmetic types: real int/float.
1416   Value *Res = nullptr;
1417   llvm::Type *ResTy = DstTy;
1418 
1419   // An overflowing conversion has undefined behavior if either the source type
1420   // or the destination type is a floating-point type. However, we consider the
1421   // range of representable values for all floating-point types to be
1422   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1423   // floating-point type.
1424   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1425       OrigSrcType->isFloatingType())
1426     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1427                              Loc);
1428 
1429   // Cast to half through float if half isn't a native type.
1430   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1431     // Make sure we cast in a single step if from another FP type.
1432     if (SrcTy->isFloatingPointTy()) {
1433       // Use the intrinsic if the half type itself isn't supported
1434       // (as opposed to operations on half, available with NativeHalfType).
1435       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1436         return Builder.CreateCall(
1437             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1438       // If the half type is supported, just use an fptrunc.
1439       return Builder.CreateFPTrunc(Src, DstTy);
1440     }
1441     DstTy = CGF.FloatTy;
1442   }
1443 
1444   Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1445 
1446   if (DstTy != ResTy) {
1447     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1448       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1449       Res = Builder.CreateCall(
1450         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1451         Res);
1452     } else {
1453       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1454     }
1455   }
1456 
1457   if (Opts.EmitImplicitIntegerTruncationChecks)
1458     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1459                                NoncanonicalDstType, Loc);
1460 
1461   if (Opts.EmitImplicitIntegerSignChangeChecks)
1462     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1463                                NoncanonicalDstType, Loc);
1464 
1465   return Res;
1466 }
1467 
1468 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1469                                                    QualType DstTy,
1470                                                    SourceLocation Loc) {
1471   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1472   llvm::Value *Result;
1473   if (SrcTy->isRealFloatingType())
1474     Result = FPBuilder.CreateFloatingToFixed(Src,
1475         CGF.getContext().getFixedPointSemantics(DstTy));
1476   else if (DstTy->isRealFloatingType())
1477     Result = FPBuilder.CreateFixedToFloating(Src,
1478         CGF.getContext().getFixedPointSemantics(SrcTy),
1479         ConvertType(DstTy));
1480   else {
1481     auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1482     auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1483 
1484     if (DstTy->isIntegerType())
1485       Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1486                                               DstFPSema.getWidth(),
1487                                               DstFPSema.isSigned());
1488     else if (SrcTy->isIntegerType())
1489       Result =  FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1490                                                DstFPSema);
1491     else
1492       Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1493   }
1494   return Result;
1495 }
1496 
1497 /// Emit a conversion from the specified complex type to the specified
1498 /// destination type, where the destination type is an LLVM scalar type.
1499 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1500     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1501     SourceLocation Loc) {
1502   // Get the source element type.
1503   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1504 
1505   // Handle conversions to bool first, they are special: comparisons against 0.
1506   if (DstTy->isBooleanType()) {
1507     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1508     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1509     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1510     return Builder.CreateOr(Src.first, Src.second, "tobool");
1511   }
1512 
1513   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1514   // the imaginary part of the complex value is discarded and the value of the
1515   // real part is converted according to the conversion rules for the
1516   // corresponding real type.
1517   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1518 }
1519 
1520 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1521   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1522 }
1523 
1524 /// Emit a sanitization check for the given "binary" operation (which
1525 /// might actually be a unary increment which has been lowered to a binary
1526 /// operation). The check passes if all values in \p Checks (which are \c i1),
1527 /// are \c true.
1528 void ScalarExprEmitter::EmitBinOpCheck(
1529     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1530   assert(CGF.IsSanitizerScope);
1531   SanitizerHandler Check;
1532   SmallVector<llvm::Constant *, 4> StaticData;
1533   SmallVector<llvm::Value *, 2> DynamicData;
1534 
1535   BinaryOperatorKind Opcode = Info.Opcode;
1536   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1537     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1538 
1539   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1540   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1541   if (UO && UO->getOpcode() == UO_Minus) {
1542     Check = SanitizerHandler::NegateOverflow;
1543     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1544     DynamicData.push_back(Info.RHS);
1545   } else {
1546     if (BinaryOperator::isShiftOp(Opcode)) {
1547       // Shift LHS negative or too large, or RHS out of bounds.
1548       Check = SanitizerHandler::ShiftOutOfBounds;
1549       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1550       StaticData.push_back(
1551         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1552       StaticData.push_back(
1553         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1554     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1555       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1556       Check = SanitizerHandler::DivremOverflow;
1557       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1558     } else {
1559       // Arithmetic overflow (+, -, *).
1560       switch (Opcode) {
1561       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1562       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1563       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1564       default: llvm_unreachable("unexpected opcode for bin op check");
1565       }
1566       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1567     }
1568     DynamicData.push_back(Info.LHS);
1569     DynamicData.push_back(Info.RHS);
1570   }
1571 
1572   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1573 }
1574 
1575 //===----------------------------------------------------------------------===//
1576 //                            Visitor Methods
1577 //===----------------------------------------------------------------------===//
1578 
1579 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1580   CGF.ErrorUnsupported(E, "scalar expression");
1581   if (E->getType()->isVoidType())
1582     return nullptr;
1583   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1584 }
1585 
1586 Value *
1587 ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) {
1588   ASTContext &Context = CGF.getContext();
1589   llvm::Optional<LangAS> GlobalAS =
1590       Context.getTargetInfo().getConstantAddressSpace();
1591   llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr(
1592       E->ComputeName(Context), "__usn_str",
1593       static_cast<unsigned>(GlobalAS.getValueOr(LangAS::Default)));
1594 
1595   unsigned ExprAS = Context.getTargetAddressSpace(E->getType());
1596 
1597   if (GlobalConstStr->getType()->getPointerAddressSpace() == ExprAS)
1598     return GlobalConstStr;
1599 
1600   llvm::Type *EltTy = GlobalConstStr->getType()->getPointerElementType();
1601   llvm::PointerType *NewPtrTy = llvm::PointerType::get(EltTy, ExprAS);
1602   return Builder.CreateAddrSpaceCast(GlobalConstStr, NewPtrTy, "usn_addr_cast");
1603 }
1604 
1605 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1606   // Vector Mask Case
1607   if (E->getNumSubExprs() == 2) {
1608     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1609     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1610     Value *Mask;
1611 
1612     auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1613     unsigned LHSElts = LTy->getNumElements();
1614 
1615     Mask = RHS;
1616 
1617     auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1618 
1619     // Mask off the high bits of each shuffle index.
1620     Value *MaskBits =
1621         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1622     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1623 
1624     // newv = undef
1625     // mask = mask & maskbits
1626     // for each elt
1627     //   n = extract mask i
1628     //   x = extract val n
1629     //   newv = insert newv, x, i
1630     auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1631                                            MTy->getNumElements());
1632     Value* NewV = llvm::UndefValue::get(RTy);
1633     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1634       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1635       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1636 
1637       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1638       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1639     }
1640     return NewV;
1641   }
1642 
1643   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1644   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1645 
1646   SmallVector<int, 32> Indices;
1647   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1648     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1649     // Check for -1 and output it as undef in the IR.
1650     if (Idx.isSigned() && Idx.isAllOnesValue())
1651       Indices.push_back(-1);
1652     else
1653       Indices.push_back(Idx.getZExtValue());
1654   }
1655 
1656   return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1657 }
1658 
1659 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1660   QualType SrcType = E->getSrcExpr()->getType(),
1661            DstType = E->getType();
1662 
1663   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1664 
1665   SrcType = CGF.getContext().getCanonicalType(SrcType);
1666   DstType = CGF.getContext().getCanonicalType(DstType);
1667   if (SrcType == DstType) return Src;
1668 
1669   assert(SrcType->isVectorType() &&
1670          "ConvertVector source type must be a vector");
1671   assert(DstType->isVectorType() &&
1672          "ConvertVector destination type must be a vector");
1673 
1674   llvm::Type *SrcTy = Src->getType();
1675   llvm::Type *DstTy = ConvertType(DstType);
1676 
1677   // Ignore conversions like int -> uint.
1678   if (SrcTy == DstTy)
1679     return Src;
1680 
1681   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1682            DstEltType = DstType->castAs<VectorType>()->getElementType();
1683 
1684   assert(SrcTy->isVectorTy() &&
1685          "ConvertVector source IR type must be a vector");
1686   assert(DstTy->isVectorTy() &&
1687          "ConvertVector destination IR type must be a vector");
1688 
1689   llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1690              *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1691 
1692   if (DstEltType->isBooleanType()) {
1693     assert((SrcEltTy->isFloatingPointTy() ||
1694             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1695 
1696     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1697     if (SrcEltTy->isFloatingPointTy()) {
1698       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1699     } else {
1700       return Builder.CreateICmpNE(Src, Zero, "tobool");
1701     }
1702   }
1703 
1704   // We have the arithmetic types: real int/float.
1705   Value *Res = nullptr;
1706 
1707   if (isa<llvm::IntegerType>(SrcEltTy)) {
1708     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1709     if (isa<llvm::IntegerType>(DstEltTy))
1710       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1711     else if (InputSigned)
1712       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1713     else
1714       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1715   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1716     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1717     if (DstEltType->isSignedIntegerOrEnumerationType())
1718       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1719     else
1720       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1721   } else {
1722     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1723            "Unknown real conversion");
1724     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1725       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1726     else
1727       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1728   }
1729 
1730   return Res;
1731 }
1732 
1733 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1734   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1735     CGF.EmitIgnoredExpr(E->getBase());
1736     return CGF.emitScalarConstant(Constant, E);
1737   } else {
1738     Expr::EvalResult Result;
1739     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1740       llvm::APSInt Value = Result.Val.getInt();
1741       CGF.EmitIgnoredExpr(E->getBase());
1742       return Builder.getInt(Value);
1743     }
1744   }
1745 
1746   return EmitLoadOfLValue(E);
1747 }
1748 
1749 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1750   TestAndClearIgnoreResultAssign();
1751 
1752   // Emit subscript expressions in rvalue context's.  For most cases, this just
1753   // loads the lvalue formed by the subscript expr.  However, we have to be
1754   // careful, because the base of a vector subscript is occasionally an rvalue,
1755   // so we can't get it as an lvalue.
1756   if (!E->getBase()->getType()->isVectorType())
1757     return EmitLoadOfLValue(E);
1758 
1759   // Handle the vector case.  The base must be a vector, the index must be an
1760   // integer value.
1761   Value *Base = Visit(E->getBase());
1762   Value *Idx  = Visit(E->getIdx());
1763   QualType IdxTy = E->getIdx()->getType();
1764 
1765   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1766     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1767 
1768   return Builder.CreateExtractElement(Base, Idx, "vecext");
1769 }
1770 
1771 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1772   TestAndClearIgnoreResultAssign();
1773 
1774   // Handle the vector case.  The base must be a vector, the index must be an
1775   // integer value.
1776   Value *RowIdx = Visit(E->getRowIdx());
1777   Value *ColumnIdx = Visit(E->getColumnIdx());
1778   Value *Matrix = Visit(E->getBase());
1779 
1780   // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1781   llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
1782   return MB.CreateExtractElement(
1783       Matrix, RowIdx, ColumnIdx,
1784       E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows());
1785 }
1786 
1787 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1788                       unsigned Off) {
1789   int MV = SVI->getMaskValue(Idx);
1790   if (MV == -1)
1791     return -1;
1792   return Off + MV;
1793 }
1794 
1795 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1796   assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1797          "Index operand too large for shufflevector mask!");
1798   return C->getZExtValue();
1799 }
1800 
1801 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1802   bool Ignore = TestAndClearIgnoreResultAssign();
1803   (void)Ignore;
1804   assert (Ignore == false && "init list ignored");
1805   unsigned NumInitElements = E->getNumInits();
1806 
1807   if (E->hadArrayRangeDesignator())
1808     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1809 
1810   llvm::VectorType *VType =
1811     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1812 
1813   if (!VType) {
1814     if (NumInitElements == 0) {
1815       // C++11 value-initialization for the scalar.
1816       return EmitNullValue(E->getType());
1817     }
1818     // We have a scalar in braces. Just use the first element.
1819     return Visit(E->getInit(0));
1820   }
1821 
1822   unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
1823 
1824   // Loop over initializers collecting the Value for each, and remembering
1825   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1826   // us to fold the shuffle for the swizzle into the shuffle for the vector
1827   // initializer, since LLVM optimizers generally do not want to touch
1828   // shuffles.
1829   unsigned CurIdx = 0;
1830   bool VIsUndefShuffle = false;
1831   llvm::Value *V = llvm::UndefValue::get(VType);
1832   for (unsigned i = 0; i != NumInitElements; ++i) {
1833     Expr *IE = E->getInit(i);
1834     Value *Init = Visit(IE);
1835     SmallVector<int, 16> Args;
1836 
1837     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1838 
1839     // Handle scalar elements.  If the scalar initializer is actually one
1840     // element of a different vector of the same width, use shuffle instead of
1841     // extract+insert.
1842     if (!VVT) {
1843       if (isa<ExtVectorElementExpr>(IE)) {
1844         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1845 
1846         if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
1847                 ->getNumElements() == ResElts) {
1848           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1849           Value *LHS = nullptr, *RHS = nullptr;
1850           if (CurIdx == 0) {
1851             // insert into undef -> shuffle (src, undef)
1852             // shufflemask must use an i32
1853             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1854             Args.resize(ResElts, -1);
1855 
1856             LHS = EI->getVectorOperand();
1857             RHS = V;
1858             VIsUndefShuffle = true;
1859           } else if (VIsUndefShuffle) {
1860             // insert into undefshuffle && size match -> shuffle (v, src)
1861             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1862             for (unsigned j = 0; j != CurIdx; ++j)
1863               Args.push_back(getMaskElt(SVV, j, 0));
1864             Args.push_back(ResElts + C->getZExtValue());
1865             Args.resize(ResElts, -1);
1866 
1867             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1868             RHS = EI->getVectorOperand();
1869             VIsUndefShuffle = false;
1870           }
1871           if (!Args.empty()) {
1872             V = Builder.CreateShuffleVector(LHS, RHS, Args);
1873             ++CurIdx;
1874             continue;
1875           }
1876         }
1877       }
1878       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1879                                       "vecinit");
1880       VIsUndefShuffle = false;
1881       ++CurIdx;
1882       continue;
1883     }
1884 
1885     unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
1886 
1887     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1888     // input is the same width as the vector being constructed, generate an
1889     // optimized shuffle of the swizzle input into the result.
1890     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1891     if (isa<ExtVectorElementExpr>(IE)) {
1892       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1893       Value *SVOp = SVI->getOperand(0);
1894       auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
1895 
1896       if (OpTy->getNumElements() == ResElts) {
1897         for (unsigned j = 0; j != CurIdx; ++j) {
1898           // If the current vector initializer is a shuffle with undef, merge
1899           // this shuffle directly into it.
1900           if (VIsUndefShuffle) {
1901             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1902           } else {
1903             Args.push_back(j);
1904           }
1905         }
1906         for (unsigned j = 0, je = InitElts; j != je; ++j)
1907           Args.push_back(getMaskElt(SVI, j, Offset));
1908         Args.resize(ResElts, -1);
1909 
1910         if (VIsUndefShuffle)
1911           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1912 
1913         Init = SVOp;
1914       }
1915     }
1916 
1917     // Extend init to result vector length, and then shuffle its contribution
1918     // to the vector initializer into V.
1919     if (Args.empty()) {
1920       for (unsigned j = 0; j != InitElts; ++j)
1921         Args.push_back(j);
1922       Args.resize(ResElts, -1);
1923       Init = Builder.CreateShuffleVector(Init, Args, "vext");
1924 
1925       Args.clear();
1926       for (unsigned j = 0; j != CurIdx; ++j)
1927         Args.push_back(j);
1928       for (unsigned j = 0; j != InitElts; ++j)
1929         Args.push_back(j + Offset);
1930       Args.resize(ResElts, -1);
1931     }
1932 
1933     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1934     // merging subsequent shuffles into this one.
1935     if (CurIdx == 0)
1936       std::swap(V, Init);
1937     V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1938     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1939     CurIdx += InitElts;
1940   }
1941 
1942   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1943   // Emit remaining default initializers.
1944   llvm::Type *EltTy = VType->getElementType();
1945 
1946   // Emit remaining default initializers
1947   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1948     Value *Idx = Builder.getInt32(CurIdx);
1949     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1950     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1951   }
1952   return V;
1953 }
1954 
1955 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1956   const Expr *E = CE->getSubExpr();
1957 
1958   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1959     return false;
1960 
1961   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1962     // We always assume that 'this' is never null.
1963     return false;
1964   }
1965 
1966   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1967     // And that glvalue casts are never null.
1968     if (ICE->getValueKind() != VK_PRValue)
1969       return false;
1970   }
1971 
1972   return true;
1973 }
1974 
1975 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1976 // have to handle a more broad range of conversions than explicit casts, as they
1977 // handle things like function to ptr-to-function decay etc.
1978 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1979   Expr *E = CE->getSubExpr();
1980   QualType DestTy = CE->getType();
1981   CastKind Kind = CE->getCastKind();
1982 
1983   // These cases are generally not written to ignore the result of
1984   // evaluating their sub-expressions, so we clear this now.
1985   bool Ignored = TestAndClearIgnoreResultAssign();
1986 
1987   // Since almost all cast kinds apply to scalars, this switch doesn't have
1988   // a default case, so the compiler will warn on a missing case.  The cases
1989   // are in the same order as in the CastKind enum.
1990   switch (Kind) {
1991   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1992   case CK_BuiltinFnToFnPtr:
1993     llvm_unreachable("builtin functions are handled elsewhere");
1994 
1995   case CK_LValueBitCast:
1996   case CK_ObjCObjectLValueCast: {
1997     Address Addr = EmitLValue(E).getAddress(CGF);
1998     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1999     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2000     return EmitLoadOfLValue(LV, CE->getExprLoc());
2001   }
2002 
2003   case CK_LValueToRValueBitCast: {
2004     LValue SourceLVal = CGF.EmitLValue(E);
2005     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
2006                                                 CGF.ConvertTypeForMem(DestTy));
2007     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2008     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2009     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2010   }
2011 
2012   case CK_CPointerToObjCPointerCast:
2013   case CK_BlockPointerToObjCPointerCast:
2014   case CK_AnyPointerToBlockPointerCast:
2015   case CK_BitCast: {
2016     Value *Src = Visit(const_cast<Expr*>(E));
2017     llvm::Type *SrcTy = Src->getType();
2018     llvm::Type *DstTy = ConvertType(DestTy);
2019     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2020         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2021       llvm_unreachable("wrong cast for pointers in different address spaces"
2022                        "(must be an address space cast)!");
2023     }
2024 
2025     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2026       if (auto PT = DestTy->getAs<PointerType>())
2027         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
2028                                       /*MayBeNull=*/true,
2029                                       CodeGenFunction::CFITCK_UnrelatedCast,
2030                                       CE->getBeginLoc());
2031     }
2032 
2033     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2034       const QualType SrcType = E->getType();
2035 
2036       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2037         // Casting to pointer that could carry dynamic information (provided by
2038         // invariant.group) requires launder.
2039         Src = Builder.CreateLaunderInvariantGroup(Src);
2040       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2041         // Casting to pointer that does not carry dynamic information (provided
2042         // by invariant.group) requires stripping it.  Note that we don't do it
2043         // if the source could not be dynamic type and destination could be
2044         // dynamic because dynamic information is already laundered.  It is
2045         // because launder(strip(src)) == launder(src), so there is no need to
2046         // add extra strip before launder.
2047         Src = Builder.CreateStripInvariantGroup(Src);
2048       }
2049     }
2050 
2051     // Update heapallocsite metadata when there is an explicit pointer cast.
2052     if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2053       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
2054         QualType PointeeType = DestTy->getPointeeType();
2055         if (!PointeeType.isNull())
2056           CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2057                                                        CE->getExprLoc());
2058       }
2059     }
2060 
2061     // If Src is a fixed vector and Dst is a scalable vector, and both have the
2062     // same element type, use the llvm.experimental.vector.insert intrinsic to
2063     // perform the bitcast.
2064     if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
2065       if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
2066         if (FixedSrc->getElementType() == ScalableDst->getElementType()) {
2067           llvm::Value *UndefVec = llvm::UndefValue::get(DstTy);
2068           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2069           return Builder.CreateInsertVector(DstTy, UndefVec, Src, Zero,
2070                                             "castScalableSve");
2071         }
2072       }
2073     }
2074 
2075     // If Src is a scalable vector and Dst is a fixed vector, and both have the
2076     // same element type, use the llvm.experimental.vector.extract intrinsic to
2077     // perform the bitcast.
2078     if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
2079       if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) {
2080         if (ScalableSrc->getElementType() == FixedDst->getElementType()) {
2081           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2082           return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve");
2083         }
2084       }
2085     }
2086 
2087     // Perform VLAT <-> VLST bitcast through memory.
2088     // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics
2089     //       require the element types of the vectors to be the same, we
2090     //       need to keep this around for casting between predicates, or more
2091     //       generally for bitcasts between VLAT <-> VLST where the element
2092     //       types of the vectors are not the same, until we figure out a better
2093     //       way of doing these casts.
2094     if ((isa<llvm::FixedVectorType>(SrcTy) &&
2095          isa<llvm::ScalableVectorType>(DstTy)) ||
2096         (isa<llvm::ScalableVectorType>(SrcTy) &&
2097          isa<llvm::FixedVectorType>(DstTy))) {
2098       Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value");
2099       LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
2100       CGF.EmitStoreOfScalar(Src, LV);
2101       Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy),
2102                                           "castFixedSve");
2103       LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2104       DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2105       return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2106     }
2107 
2108     return Builder.CreateBitCast(Src, DstTy);
2109   }
2110   case CK_AddressSpaceConversion: {
2111     Expr::EvalResult Result;
2112     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2113         Result.Val.isNullPointer()) {
2114       // If E has side effect, it is emitted even if its final result is a
2115       // null pointer. In that case, a DCE pass should be able to
2116       // eliminate the useless instructions emitted during translating E.
2117       if (Result.HasSideEffects)
2118         Visit(E);
2119       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2120           ConvertType(DestTy)), DestTy);
2121     }
2122     // Since target may map different address spaces in AST to the same address
2123     // space, an address space conversion may end up as a bitcast.
2124     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2125         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2126         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2127   }
2128   case CK_AtomicToNonAtomic:
2129   case CK_NonAtomicToAtomic:
2130   case CK_NoOp:
2131   case CK_UserDefinedConversion:
2132     return Visit(const_cast<Expr*>(E));
2133 
2134   case CK_BaseToDerived: {
2135     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2136     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2137 
2138     Address Base = CGF.EmitPointerWithAlignment(E);
2139     Address Derived =
2140       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2141                                    CE->path_begin(), CE->path_end(),
2142                                    CGF.ShouldNullCheckClassCastValue(CE));
2143 
2144     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2145     // performed and the object is not of the derived type.
2146     if (CGF.sanitizePerformTypeCheck())
2147       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2148                         Derived.getPointer(), DestTy->getPointeeType());
2149 
2150     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2151       CGF.EmitVTablePtrCheckForCast(
2152           DestTy->getPointeeType(), Derived.getPointer(),
2153           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2154           CE->getBeginLoc());
2155 
2156     return Derived.getPointer();
2157   }
2158   case CK_UncheckedDerivedToBase:
2159   case CK_DerivedToBase: {
2160     // The EmitPointerWithAlignment path does this fine; just discard
2161     // the alignment.
2162     return CGF.EmitPointerWithAlignment(CE).getPointer();
2163   }
2164 
2165   case CK_Dynamic: {
2166     Address V = CGF.EmitPointerWithAlignment(E);
2167     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2168     return CGF.EmitDynamicCast(V, DCE);
2169   }
2170 
2171   case CK_ArrayToPointerDecay:
2172     return CGF.EmitArrayToPointerDecay(E).getPointer();
2173   case CK_FunctionToPointerDecay:
2174     return EmitLValue(E).getPointer(CGF);
2175 
2176   case CK_NullToPointer:
2177     if (MustVisitNullValue(E))
2178       CGF.EmitIgnoredExpr(E);
2179 
2180     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2181                               DestTy);
2182 
2183   case CK_NullToMemberPointer: {
2184     if (MustVisitNullValue(E))
2185       CGF.EmitIgnoredExpr(E);
2186 
2187     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2188     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2189   }
2190 
2191   case CK_ReinterpretMemberPointer:
2192   case CK_BaseToDerivedMemberPointer:
2193   case CK_DerivedToBaseMemberPointer: {
2194     Value *Src = Visit(E);
2195 
2196     // Note that the AST doesn't distinguish between checked and
2197     // unchecked member pointer conversions, so we always have to
2198     // implement checked conversions here.  This is inefficient when
2199     // actual control flow may be required in order to perform the
2200     // check, which it is for data member pointers (but not member
2201     // function pointers on Itanium and ARM).
2202     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2203   }
2204 
2205   case CK_ARCProduceObject:
2206     return CGF.EmitARCRetainScalarExpr(E);
2207   case CK_ARCConsumeObject:
2208     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2209   case CK_ARCReclaimReturnedObject:
2210     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2211   case CK_ARCExtendBlockObject:
2212     return CGF.EmitARCExtendBlockObject(E);
2213 
2214   case CK_CopyAndAutoreleaseBlockObject:
2215     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2216 
2217   case CK_FloatingRealToComplex:
2218   case CK_FloatingComplexCast:
2219   case CK_IntegralRealToComplex:
2220   case CK_IntegralComplexCast:
2221   case CK_IntegralComplexToFloatingComplex:
2222   case CK_FloatingComplexToIntegralComplex:
2223   case CK_ConstructorConversion:
2224   case CK_ToUnion:
2225     llvm_unreachable("scalar cast to non-scalar value");
2226 
2227   case CK_LValueToRValue:
2228     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2229     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2230     return Visit(const_cast<Expr*>(E));
2231 
2232   case CK_IntegralToPointer: {
2233     Value *Src = Visit(const_cast<Expr*>(E));
2234 
2235     // First, convert to the correct width so that we control the kind of
2236     // extension.
2237     auto DestLLVMTy = ConvertType(DestTy);
2238     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2239     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2240     llvm::Value* IntResult =
2241       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2242 
2243     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2244 
2245     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2246       // Going from integer to pointer that could be dynamic requires reloading
2247       // dynamic information from invariant.group.
2248       if (DestTy.mayBeDynamicClass())
2249         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2250     }
2251     return IntToPtr;
2252   }
2253   case CK_PointerToIntegral: {
2254     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2255     auto *PtrExpr = Visit(E);
2256 
2257     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2258       const QualType SrcType = E->getType();
2259 
2260       // Casting to integer requires stripping dynamic information as it does
2261       // not carries it.
2262       if (SrcType.mayBeDynamicClass())
2263         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2264     }
2265 
2266     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2267   }
2268   case CK_ToVoid: {
2269     CGF.EmitIgnoredExpr(E);
2270     return nullptr;
2271   }
2272   case CK_MatrixCast: {
2273     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2274                                 CE->getExprLoc());
2275   }
2276   case CK_VectorSplat: {
2277     llvm::Type *DstTy = ConvertType(DestTy);
2278     Value *Elt = Visit(const_cast<Expr*>(E));
2279     // Splat the element across to all elements
2280     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
2281     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2282   }
2283 
2284   case CK_FixedPointCast:
2285     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2286                                 CE->getExprLoc());
2287 
2288   case CK_FixedPointToBoolean:
2289     assert(E->getType()->isFixedPointType() &&
2290            "Expected src type to be fixed point type");
2291     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2292     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2293                                 CE->getExprLoc());
2294 
2295   case CK_FixedPointToIntegral:
2296     assert(E->getType()->isFixedPointType() &&
2297            "Expected src type to be fixed point type");
2298     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2299     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2300                                 CE->getExprLoc());
2301 
2302   case CK_IntegralToFixedPoint:
2303     assert(E->getType()->isIntegerType() &&
2304            "Expected src type to be an integer");
2305     assert(DestTy->isFixedPointType() &&
2306            "Expected dest type to be fixed point type");
2307     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2308                                 CE->getExprLoc());
2309 
2310   case CK_IntegralCast: {
2311     ScalarConversionOpts Opts;
2312     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2313       if (!ICE->isPartOfExplicitCast())
2314         Opts = ScalarConversionOpts(CGF.SanOpts);
2315     }
2316     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2317                                 CE->getExprLoc(), Opts);
2318   }
2319   case CK_IntegralToFloating:
2320   case CK_FloatingToIntegral:
2321   case CK_FloatingCast:
2322   case CK_FixedPointToFloating:
2323   case CK_FloatingToFixedPoint: {
2324     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2325     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2326                                 CE->getExprLoc());
2327   }
2328   case CK_BooleanToSignedIntegral: {
2329     ScalarConversionOpts Opts;
2330     Opts.TreatBooleanAsSigned = true;
2331     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2332                                 CE->getExprLoc(), Opts);
2333   }
2334   case CK_IntegralToBoolean:
2335     return EmitIntToBoolConversion(Visit(E));
2336   case CK_PointerToBoolean:
2337     return EmitPointerToBoolConversion(Visit(E), E->getType());
2338   case CK_FloatingToBoolean: {
2339     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2340     return EmitFloatToBoolConversion(Visit(E));
2341   }
2342   case CK_MemberPointerToBoolean: {
2343     llvm::Value *MemPtr = Visit(E);
2344     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2345     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2346   }
2347 
2348   case CK_FloatingComplexToReal:
2349   case CK_IntegralComplexToReal:
2350     return CGF.EmitComplexExpr(E, false, true).first;
2351 
2352   case CK_FloatingComplexToBoolean:
2353   case CK_IntegralComplexToBoolean: {
2354     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2355 
2356     // TODO: kill this function off, inline appropriate case here
2357     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2358                                          CE->getExprLoc());
2359   }
2360 
2361   case CK_ZeroToOCLOpaqueType: {
2362     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2363             DestTy->isOCLIntelSubgroupAVCType()) &&
2364            "CK_ZeroToOCLEvent cast on non-event type");
2365     return llvm::Constant::getNullValue(ConvertType(DestTy));
2366   }
2367 
2368   case CK_IntToOCLSampler:
2369     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2370 
2371   } // end of switch
2372 
2373   llvm_unreachable("unknown scalar cast");
2374 }
2375 
2376 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2377   CodeGenFunction::StmtExprEvaluation eval(CGF);
2378   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2379                                            !E->getType()->isVoidType());
2380   if (!RetAlloca.isValid())
2381     return nullptr;
2382   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2383                               E->getExprLoc());
2384 }
2385 
2386 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2387   CodeGenFunction::RunCleanupsScope Scope(CGF);
2388   Value *V = Visit(E->getSubExpr());
2389   // Defend against dominance problems caused by jumps out of expression
2390   // evaluation through the shared cleanup block.
2391   Scope.ForceCleanup({&V});
2392   return V;
2393 }
2394 
2395 //===----------------------------------------------------------------------===//
2396 //                             Unary Operators
2397 //===----------------------------------------------------------------------===//
2398 
2399 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2400                                            llvm::Value *InVal, bool IsInc,
2401                                            FPOptions FPFeatures) {
2402   BinOpInfo BinOp;
2403   BinOp.LHS = InVal;
2404   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2405   BinOp.Ty = E->getType();
2406   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2407   BinOp.FPFeatures = FPFeatures;
2408   BinOp.E = E;
2409   return BinOp;
2410 }
2411 
2412 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2413     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2414   llvm::Value *Amount =
2415       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2416   StringRef Name = IsInc ? "inc" : "dec";
2417   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2418   case LangOptions::SOB_Defined:
2419     return Builder.CreateAdd(InVal, Amount, Name);
2420   case LangOptions::SOB_Undefined:
2421     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2422       return Builder.CreateNSWAdd(InVal, Amount, Name);
2423     LLVM_FALLTHROUGH;
2424   case LangOptions::SOB_Trapping:
2425     if (!E->canOverflow())
2426       return Builder.CreateNSWAdd(InVal, Amount, Name);
2427     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2428         E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2429   }
2430   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2431 }
2432 
2433 namespace {
2434 /// Handles check and update for lastprivate conditional variables.
2435 class OMPLastprivateConditionalUpdateRAII {
2436 private:
2437   CodeGenFunction &CGF;
2438   const UnaryOperator *E;
2439 
2440 public:
2441   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2442                                       const UnaryOperator *E)
2443       : CGF(CGF), E(E) {}
2444   ~OMPLastprivateConditionalUpdateRAII() {
2445     if (CGF.getLangOpts().OpenMP)
2446       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2447           CGF, E->getSubExpr());
2448   }
2449 };
2450 } // namespace
2451 
2452 llvm::Value *
2453 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2454                                            bool isInc, bool isPre) {
2455   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2456   QualType type = E->getSubExpr()->getType();
2457   llvm::PHINode *atomicPHI = nullptr;
2458   llvm::Value *value;
2459   llvm::Value *input;
2460 
2461   int amount = (isInc ? 1 : -1);
2462   bool isSubtraction = !isInc;
2463 
2464   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2465     type = atomicTy->getValueType();
2466     if (isInc && type->isBooleanType()) {
2467       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2468       if (isPre) {
2469         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2470             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2471         return Builder.getTrue();
2472       }
2473       // For atomic bool increment, we just store true and return it for
2474       // preincrement, do an atomic swap with true for postincrement
2475       return Builder.CreateAtomicRMW(
2476           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2477           llvm::AtomicOrdering::SequentiallyConsistent);
2478     }
2479     // Special case for atomic increment / decrement on integers, emit
2480     // atomicrmw instructions.  We skip this if we want to be doing overflow
2481     // checking, and fall into the slow path with the atomic cmpxchg loop.
2482     if (!type->isBooleanType() && type->isIntegerType() &&
2483         !(type->isUnsignedIntegerType() &&
2484           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2485         CGF.getLangOpts().getSignedOverflowBehavior() !=
2486             LangOptions::SOB_Trapping) {
2487       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2488         llvm::AtomicRMWInst::Sub;
2489       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2490         llvm::Instruction::Sub;
2491       llvm::Value *amt = CGF.EmitToMemory(
2492           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2493       llvm::Value *old =
2494           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2495                                   llvm::AtomicOrdering::SequentiallyConsistent);
2496       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2497     }
2498     value = EmitLoadOfLValue(LV, E->getExprLoc());
2499     input = value;
2500     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2501     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2502     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2503     value = CGF.EmitToMemory(value, type);
2504     Builder.CreateBr(opBB);
2505     Builder.SetInsertPoint(opBB);
2506     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2507     atomicPHI->addIncoming(value, startBB);
2508     value = atomicPHI;
2509   } else {
2510     value = EmitLoadOfLValue(LV, E->getExprLoc());
2511     input = value;
2512   }
2513 
2514   // Special case of integer increment that we have to check first: bool++.
2515   // Due to promotion rules, we get:
2516   //   bool++ -> bool = bool + 1
2517   //          -> bool = (int)bool + 1
2518   //          -> bool = ((int)bool + 1 != 0)
2519   // An interesting aspect of this is that increment is always true.
2520   // Decrement does not have this property.
2521   if (isInc && type->isBooleanType()) {
2522     value = Builder.getTrue();
2523 
2524   // Most common case by far: integer increment.
2525   } else if (type->isIntegerType()) {
2526     QualType promotedType;
2527     bool canPerformLossyDemotionCheck = false;
2528     if (type->isPromotableIntegerType()) {
2529       promotedType = CGF.getContext().getPromotedIntegerType(type);
2530       assert(promotedType != type && "Shouldn't promote to the same type.");
2531       canPerformLossyDemotionCheck = true;
2532       canPerformLossyDemotionCheck &=
2533           CGF.getContext().getCanonicalType(type) !=
2534           CGF.getContext().getCanonicalType(promotedType);
2535       canPerformLossyDemotionCheck &=
2536           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2537               type, promotedType);
2538       assert((!canPerformLossyDemotionCheck ||
2539               type->isSignedIntegerOrEnumerationType() ||
2540               promotedType->isSignedIntegerOrEnumerationType() ||
2541               ConvertType(type)->getScalarSizeInBits() ==
2542                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2543              "The following check expects that if we do promotion to different "
2544              "underlying canonical type, at least one of the types (either "
2545              "base or promoted) will be signed, or the bitwidths will match.");
2546     }
2547     if (CGF.SanOpts.hasOneOf(
2548             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2549         canPerformLossyDemotionCheck) {
2550       // While `x += 1` (for `x` with width less than int) is modeled as
2551       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2552       // ease; inc/dec with width less than int can't overflow because of
2553       // promotion rules, so we omit promotion+demotion, which means that we can
2554       // not catch lossy "demotion". Because we still want to catch these cases
2555       // when the sanitizer is enabled, we perform the promotion, then perform
2556       // the increment/decrement in the wider type, and finally
2557       // perform the demotion. This will catch lossy demotions.
2558 
2559       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2560       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2561       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2562       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2563       // emitted.
2564       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2565                                    ScalarConversionOpts(CGF.SanOpts));
2566 
2567       // Note that signed integer inc/dec with width less than int can't
2568       // overflow because of promotion rules; we're just eliding a few steps
2569       // here.
2570     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2571       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2572     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2573                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2574       value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2575           E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2576     } else {
2577       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2578       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2579     }
2580 
2581   // Next most common: pointer increment.
2582   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2583     QualType type = ptr->getPointeeType();
2584 
2585     // VLA types don't have constant size.
2586     if (const VariableArrayType *vla
2587           = CGF.getContext().getAsVariableArrayType(type)) {
2588       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2589       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2590       if (CGF.getLangOpts().isSignedOverflowDefined())
2591         value = Builder.CreateGEP(value, numElts, "vla.inc");
2592       else
2593         value = CGF.EmitCheckedInBoundsGEP(
2594             value, numElts, /*SignedIndices=*/false, isSubtraction,
2595             E->getExprLoc(), "vla.inc");
2596 
2597     // Arithmetic on function pointers (!) is just +-1.
2598     } else if (type->isFunctionType()) {
2599       llvm::Value *amt = Builder.getInt32(amount);
2600 
2601       value = CGF.EmitCastToVoidPtr(value);
2602       if (CGF.getLangOpts().isSignedOverflowDefined())
2603         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2604       else
2605         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2606                                            isSubtraction, E->getExprLoc(),
2607                                            "incdec.funcptr");
2608       value = Builder.CreateBitCast(value, input->getType());
2609 
2610     // For everything else, we can just do a simple increment.
2611     } else {
2612       llvm::Value *amt = Builder.getInt32(amount);
2613       if (CGF.getLangOpts().isSignedOverflowDefined())
2614         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2615       else
2616         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2617                                            isSubtraction, E->getExprLoc(),
2618                                            "incdec.ptr");
2619     }
2620 
2621   // Vector increment/decrement.
2622   } else if (type->isVectorType()) {
2623     if (type->hasIntegerRepresentation()) {
2624       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2625 
2626       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2627     } else {
2628       value = Builder.CreateFAdd(
2629                   value,
2630                   llvm::ConstantFP::get(value->getType(), amount),
2631                   isInc ? "inc" : "dec");
2632     }
2633 
2634   // Floating point.
2635   } else if (type->isRealFloatingType()) {
2636     // Add the inc/dec to the real part.
2637     llvm::Value *amt;
2638     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
2639 
2640     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2641       // Another special case: half FP increment should be done via float
2642       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2643         value = Builder.CreateCall(
2644             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2645                                  CGF.CGM.FloatTy),
2646             input, "incdec.conv");
2647       } else {
2648         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2649       }
2650     }
2651 
2652     if (value->getType()->isFloatTy())
2653       amt = llvm::ConstantFP::get(VMContext,
2654                                   llvm::APFloat(static_cast<float>(amount)));
2655     else if (value->getType()->isDoubleTy())
2656       amt = llvm::ConstantFP::get(VMContext,
2657                                   llvm::APFloat(static_cast<double>(amount)));
2658     else {
2659       // Remaining types are Half, LongDouble or __float128. Convert from float.
2660       llvm::APFloat F(static_cast<float>(amount));
2661       bool ignored;
2662       const llvm::fltSemantics *FS;
2663       // Don't use getFloatTypeSemantics because Half isn't
2664       // necessarily represented using the "half" LLVM type.
2665       if (value->getType()->isFP128Ty())
2666         FS = &CGF.getTarget().getFloat128Format();
2667       else if (value->getType()->isHalfTy())
2668         FS = &CGF.getTarget().getHalfFormat();
2669       else
2670         FS = &CGF.getTarget().getLongDoubleFormat();
2671       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2672       amt = llvm::ConstantFP::get(VMContext, F);
2673     }
2674     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2675 
2676     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2677       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2678         value = Builder.CreateCall(
2679             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2680                                  CGF.CGM.FloatTy),
2681             value, "incdec.conv");
2682       } else {
2683         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2684       }
2685     }
2686 
2687   // Fixed-point types.
2688   } else if (type->isFixedPointType()) {
2689     // Fixed-point types are tricky. In some cases, it isn't possible to
2690     // represent a 1 or a -1 in the type at all. Piggyback off of
2691     // EmitFixedPointBinOp to avoid having to reimplement saturation.
2692     BinOpInfo Info;
2693     Info.E = E;
2694     Info.Ty = E->getType();
2695     Info.Opcode = isInc ? BO_Add : BO_Sub;
2696     Info.LHS = value;
2697     Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2698     // If the type is signed, it's better to represent this as +(-1) or -(-1),
2699     // since -1 is guaranteed to be representable.
2700     if (type->isSignedFixedPointType()) {
2701       Info.Opcode = isInc ? BO_Sub : BO_Add;
2702       Info.RHS = Builder.CreateNeg(Info.RHS);
2703     }
2704     // Now, convert from our invented integer literal to the type of the unary
2705     // op. This will upscale and saturate if necessary. This value can become
2706     // undef in some cases.
2707     llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
2708     auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
2709     Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
2710     value = EmitFixedPointBinOp(Info);
2711 
2712   // Objective-C pointer types.
2713   } else {
2714     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2715     value = CGF.EmitCastToVoidPtr(value);
2716 
2717     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2718     if (!isInc) size = -size;
2719     llvm::Value *sizeValue =
2720       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2721 
2722     if (CGF.getLangOpts().isSignedOverflowDefined())
2723       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2724     else
2725       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2726                                          /*SignedIndices=*/false, isSubtraction,
2727                                          E->getExprLoc(), "incdec.objptr");
2728     value = Builder.CreateBitCast(value, input->getType());
2729   }
2730 
2731   if (atomicPHI) {
2732     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2733     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2734     auto Pair = CGF.EmitAtomicCompareExchange(
2735         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2736     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2737     llvm::Value *success = Pair.second;
2738     atomicPHI->addIncoming(old, curBlock);
2739     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2740     Builder.SetInsertPoint(contBB);
2741     return isPre ? value : input;
2742   }
2743 
2744   // Store the updated result through the lvalue.
2745   if (LV.isBitField())
2746     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2747   else
2748     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2749 
2750   // If this is a postinc, return the value read from memory, otherwise use the
2751   // updated value.
2752   return isPre ? value : input;
2753 }
2754 
2755 
2756 
2757 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2758   TestAndClearIgnoreResultAssign();
2759   Value *Op = Visit(E->getSubExpr());
2760 
2761   // Generate a unary FNeg for FP ops.
2762   if (Op->getType()->isFPOrFPVectorTy())
2763     return Builder.CreateFNeg(Op, "fneg");
2764 
2765   // Emit unary minus with EmitSub so we handle overflow cases etc.
2766   BinOpInfo BinOp;
2767   BinOp.RHS = Op;
2768   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2769   BinOp.Ty = E->getType();
2770   BinOp.Opcode = BO_Sub;
2771   BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2772   BinOp.E = E;
2773   return EmitSub(BinOp);
2774 }
2775 
2776 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2777   TestAndClearIgnoreResultAssign();
2778   Value *Op = Visit(E->getSubExpr());
2779   return Builder.CreateNot(Op, "neg");
2780 }
2781 
2782 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2783   // Perform vector logical not on comparison with zero vector.
2784   if (E->getType()->isVectorType() &&
2785       E->getType()->castAs<VectorType>()->getVectorKind() ==
2786           VectorType::GenericVector) {
2787     Value *Oper = Visit(E->getSubExpr());
2788     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2789     Value *Result;
2790     if (Oper->getType()->isFPOrFPVectorTy()) {
2791       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
2792           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2793       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2794     } else
2795       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2796     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2797   }
2798 
2799   // Compare operand to zero.
2800   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2801 
2802   // Invert value.
2803   // TODO: Could dynamically modify easy computations here.  For example, if
2804   // the operand is an icmp ne, turn into icmp eq.
2805   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2806 
2807   // ZExt result to the expr type.
2808   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2809 }
2810 
2811 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2812   // Try folding the offsetof to a constant.
2813   Expr::EvalResult EVResult;
2814   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2815     llvm::APSInt Value = EVResult.Val.getInt();
2816     return Builder.getInt(Value);
2817   }
2818 
2819   // Loop over the components of the offsetof to compute the value.
2820   unsigned n = E->getNumComponents();
2821   llvm::Type* ResultType = ConvertType(E->getType());
2822   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2823   QualType CurrentType = E->getTypeSourceInfo()->getType();
2824   for (unsigned i = 0; i != n; ++i) {
2825     OffsetOfNode ON = E->getComponent(i);
2826     llvm::Value *Offset = nullptr;
2827     switch (ON.getKind()) {
2828     case OffsetOfNode::Array: {
2829       // Compute the index
2830       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2831       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2832       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2833       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2834 
2835       // Save the element type
2836       CurrentType =
2837           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2838 
2839       // Compute the element size
2840       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2841           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2842 
2843       // Multiply out to compute the result
2844       Offset = Builder.CreateMul(Idx, ElemSize);
2845       break;
2846     }
2847 
2848     case OffsetOfNode::Field: {
2849       FieldDecl *MemberDecl = ON.getField();
2850       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2851       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2852 
2853       // Compute the index of the field in its parent.
2854       unsigned i = 0;
2855       // FIXME: It would be nice if we didn't have to loop here!
2856       for (RecordDecl::field_iterator Field = RD->field_begin(),
2857                                       FieldEnd = RD->field_end();
2858            Field != FieldEnd; ++Field, ++i) {
2859         if (*Field == MemberDecl)
2860           break;
2861       }
2862       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2863 
2864       // Compute the offset to the field
2865       int64_t OffsetInt = RL.getFieldOffset(i) /
2866                           CGF.getContext().getCharWidth();
2867       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2868 
2869       // Save the element type.
2870       CurrentType = MemberDecl->getType();
2871       break;
2872     }
2873 
2874     case OffsetOfNode::Identifier:
2875       llvm_unreachable("dependent __builtin_offsetof");
2876 
2877     case OffsetOfNode::Base: {
2878       if (ON.getBase()->isVirtual()) {
2879         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2880         continue;
2881       }
2882 
2883       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2884       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2885 
2886       // Save the element type.
2887       CurrentType = ON.getBase()->getType();
2888 
2889       // Compute the offset to the base.
2890       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2891       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2892       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2893       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2894       break;
2895     }
2896     }
2897     Result = Builder.CreateAdd(Result, Offset);
2898   }
2899   return Result;
2900 }
2901 
2902 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2903 /// argument of the sizeof expression as an integer.
2904 Value *
2905 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2906                               const UnaryExprOrTypeTraitExpr *E) {
2907   QualType TypeToSize = E->getTypeOfArgument();
2908   if (E->getKind() == UETT_SizeOf) {
2909     if (const VariableArrayType *VAT =
2910           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2911       if (E->isArgumentType()) {
2912         // sizeof(type) - make sure to emit the VLA size.
2913         CGF.EmitVariablyModifiedType(TypeToSize);
2914       } else {
2915         // C99 6.5.3.4p2: If the argument is an expression of type
2916         // VLA, it is evaluated.
2917         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2918       }
2919 
2920       auto VlaSize = CGF.getVLASize(VAT);
2921       llvm::Value *size = VlaSize.NumElts;
2922 
2923       // Scale the number of non-VLA elements by the non-VLA element size.
2924       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2925       if (!eltSize.isOne())
2926         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2927 
2928       return size;
2929     }
2930   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2931     auto Alignment =
2932         CGF.getContext()
2933             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2934                 E->getTypeOfArgument()->getPointeeType()))
2935             .getQuantity();
2936     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2937   }
2938 
2939   // If this isn't sizeof(vla), the result must be constant; use the constant
2940   // folding logic so we don't have to duplicate it here.
2941   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2942 }
2943 
2944 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2945   Expr *Op = E->getSubExpr();
2946   if (Op->getType()->isAnyComplexType()) {
2947     // If it's an l-value, load through the appropriate subobject l-value.
2948     // Note that we have to ask E because Op might be an l-value that
2949     // this won't work for, e.g. an Obj-C property.
2950     if (E->isGLValue())
2951       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2952                                   E->getExprLoc()).getScalarVal();
2953 
2954     // Otherwise, calculate and project.
2955     return CGF.EmitComplexExpr(Op, false, true).first;
2956   }
2957 
2958   return Visit(Op);
2959 }
2960 
2961 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2962   Expr *Op = E->getSubExpr();
2963   if (Op->getType()->isAnyComplexType()) {
2964     // If it's an l-value, load through the appropriate subobject l-value.
2965     // Note that we have to ask E because Op might be an l-value that
2966     // this won't work for, e.g. an Obj-C property.
2967     if (Op->isGLValue())
2968       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2969                                   E->getExprLoc()).getScalarVal();
2970 
2971     // Otherwise, calculate and project.
2972     return CGF.EmitComplexExpr(Op, true, false).second;
2973   }
2974 
2975   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2976   // effects are evaluated, but not the actual value.
2977   if (Op->isGLValue())
2978     CGF.EmitLValue(Op);
2979   else
2980     CGF.EmitScalarExpr(Op, true);
2981   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2982 }
2983 
2984 //===----------------------------------------------------------------------===//
2985 //                           Binary Operators
2986 //===----------------------------------------------------------------------===//
2987 
2988 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2989   TestAndClearIgnoreResultAssign();
2990   BinOpInfo Result;
2991   Result.LHS = Visit(E->getLHS());
2992   Result.RHS = Visit(E->getRHS());
2993   Result.Ty  = E->getType();
2994   Result.Opcode = E->getOpcode();
2995   Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2996   Result.E = E;
2997   return Result;
2998 }
2999 
3000 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
3001                                               const CompoundAssignOperator *E,
3002                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
3003                                                    Value *&Result) {
3004   QualType LHSTy = E->getLHS()->getType();
3005   BinOpInfo OpInfo;
3006 
3007   if (E->getComputationResultType()->isAnyComplexType())
3008     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
3009 
3010   // Emit the RHS first.  __block variables need to have the rhs evaluated
3011   // first, plus this should improve codegen a little.
3012   OpInfo.RHS = Visit(E->getRHS());
3013   OpInfo.Ty = E->getComputationResultType();
3014   OpInfo.Opcode = E->getOpcode();
3015   OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3016   OpInfo.E = E;
3017   // Load/convert the LHS.
3018   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3019 
3020   llvm::PHINode *atomicPHI = nullptr;
3021   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
3022     QualType type = atomicTy->getValueType();
3023     if (!type->isBooleanType() && type->isIntegerType() &&
3024         !(type->isUnsignedIntegerType() &&
3025           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
3026         CGF.getLangOpts().getSignedOverflowBehavior() !=
3027             LangOptions::SOB_Trapping) {
3028       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
3029       llvm::Instruction::BinaryOps Op;
3030       switch (OpInfo.Opcode) {
3031         // We don't have atomicrmw operands for *, %, /, <<, >>
3032         case BO_MulAssign: case BO_DivAssign:
3033         case BO_RemAssign:
3034         case BO_ShlAssign:
3035         case BO_ShrAssign:
3036           break;
3037         case BO_AddAssign:
3038           AtomicOp = llvm::AtomicRMWInst::Add;
3039           Op = llvm::Instruction::Add;
3040           break;
3041         case BO_SubAssign:
3042           AtomicOp = llvm::AtomicRMWInst::Sub;
3043           Op = llvm::Instruction::Sub;
3044           break;
3045         case BO_AndAssign:
3046           AtomicOp = llvm::AtomicRMWInst::And;
3047           Op = llvm::Instruction::And;
3048           break;
3049         case BO_XorAssign:
3050           AtomicOp = llvm::AtomicRMWInst::Xor;
3051           Op = llvm::Instruction::Xor;
3052           break;
3053         case BO_OrAssign:
3054           AtomicOp = llvm::AtomicRMWInst::Or;
3055           Op = llvm::Instruction::Or;
3056           break;
3057         default:
3058           llvm_unreachable("Invalid compound assignment type");
3059       }
3060       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3061         llvm::Value *Amt = CGF.EmitToMemory(
3062             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3063                                  E->getExprLoc()),
3064             LHSTy);
3065         Value *OldVal = Builder.CreateAtomicRMW(
3066             AtomicOp, LHSLV.getPointer(CGF), Amt,
3067             llvm::AtomicOrdering::SequentiallyConsistent);
3068 
3069         // Since operation is atomic, the result type is guaranteed to be the
3070         // same as the input in LLVM terms.
3071         Result = Builder.CreateBinOp(Op, OldVal, Amt);
3072         return LHSLV;
3073       }
3074     }
3075     // FIXME: For floating point types, we should be saving and restoring the
3076     // floating point environment in the loop.
3077     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3078     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3079     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3080     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3081     Builder.CreateBr(opBB);
3082     Builder.SetInsertPoint(opBB);
3083     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3084     atomicPHI->addIncoming(OpInfo.LHS, startBB);
3085     OpInfo.LHS = atomicPHI;
3086   }
3087   else
3088     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3089 
3090   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3091   SourceLocation Loc = E->getExprLoc();
3092   OpInfo.LHS =
3093       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
3094 
3095   // Expand the binary operator.
3096   Result = (this->*Func)(OpInfo);
3097 
3098   // Convert the result back to the LHS type,
3099   // potentially with Implicit Conversion sanitizer check.
3100   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
3101                                 Loc, ScalarConversionOpts(CGF.SanOpts));
3102 
3103   if (atomicPHI) {
3104     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3105     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3106     auto Pair = CGF.EmitAtomicCompareExchange(
3107         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3108     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3109     llvm::Value *success = Pair.second;
3110     atomicPHI->addIncoming(old, curBlock);
3111     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3112     Builder.SetInsertPoint(contBB);
3113     return LHSLV;
3114   }
3115 
3116   // Store the result value into the LHS lvalue. Bit-fields are handled
3117   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3118   // 'An assignment expression has the value of the left operand after the
3119   // assignment...'.
3120   if (LHSLV.isBitField())
3121     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3122   else
3123     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3124 
3125   if (CGF.getLangOpts().OpenMP)
3126     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3127                                                                   E->getLHS());
3128   return LHSLV;
3129 }
3130 
3131 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3132                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3133   bool Ignore = TestAndClearIgnoreResultAssign();
3134   Value *RHS = nullptr;
3135   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3136 
3137   // If the result is clearly ignored, return now.
3138   if (Ignore)
3139     return nullptr;
3140 
3141   // The result of an assignment in C is the assigned r-value.
3142   if (!CGF.getLangOpts().CPlusPlus)
3143     return RHS;
3144 
3145   // If the lvalue is non-volatile, return the computed value of the assignment.
3146   if (!LHS.isVolatileQualified())
3147     return RHS;
3148 
3149   // Otherwise, reload the value.
3150   return EmitLoadOfLValue(LHS, E->getExprLoc());
3151 }
3152 
3153 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3154     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3155   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3156 
3157   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3158     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3159                                     SanitizerKind::IntegerDivideByZero));
3160   }
3161 
3162   const auto *BO = cast<BinaryOperator>(Ops.E);
3163   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3164       Ops.Ty->hasSignedIntegerRepresentation() &&
3165       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3166       Ops.mayHaveIntegerOverflow()) {
3167     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3168 
3169     llvm::Value *IntMin =
3170       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3171     llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
3172 
3173     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3174     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3175     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3176     Checks.push_back(
3177         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3178   }
3179 
3180   if (Checks.size() > 0)
3181     EmitBinOpCheck(Checks, Ops);
3182 }
3183 
3184 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3185   {
3186     CodeGenFunction::SanitizerScope SanScope(&CGF);
3187     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3188          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3189         Ops.Ty->isIntegerType() &&
3190         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3191       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3192       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3193     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3194                Ops.Ty->isRealFloatingType() &&
3195                Ops.mayHaveFloatDivisionByZero()) {
3196       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3197       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3198       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3199                      Ops);
3200     }
3201   }
3202 
3203   if (Ops.Ty->isConstantMatrixType()) {
3204     llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3205     // We need to check the types of the operands of the operator to get the
3206     // correct matrix dimensions.
3207     auto *BO = cast<BinaryOperator>(Ops.E);
3208     (void)BO;
3209     assert(
3210         isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
3211         "first operand must be a matrix");
3212     assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
3213            "second operand must be an arithmetic type");
3214     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3215     return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
3216                               Ops.Ty->hasUnsignedIntegerRepresentation());
3217   }
3218 
3219   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3220     llvm::Value *Val;
3221     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3222     Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3223     if ((CGF.getLangOpts().OpenCL &&
3224          !CGF.CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
3225         (CGF.getLangOpts().HIP && CGF.getLangOpts().CUDAIsDevice &&
3226          !CGF.CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
3227       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3228       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3229       // build option allows an application to specify that single precision
3230       // floating-point divide (x/y and 1/x) and sqrt used in the program
3231       // source are correctly rounded.
3232       llvm::Type *ValTy = Val->getType();
3233       if (ValTy->isFloatTy() ||
3234           (isa<llvm::VectorType>(ValTy) &&
3235            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3236         CGF.SetFPAccuracy(Val, 2.5);
3237     }
3238     return Val;
3239   }
3240   else if (Ops.isFixedPointOp())
3241     return EmitFixedPointBinOp(Ops);
3242   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3243     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3244   else
3245     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3246 }
3247 
3248 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3249   // Rem in C can't be a floating point type: C99 6.5.5p2.
3250   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3251        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3252       Ops.Ty->isIntegerType() &&
3253       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3254     CodeGenFunction::SanitizerScope SanScope(&CGF);
3255     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3256     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3257   }
3258 
3259   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3260     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3261   else
3262     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3263 }
3264 
3265 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3266   unsigned IID;
3267   unsigned OpID = 0;
3268   SanitizerHandler OverflowKind;
3269 
3270   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3271   switch (Ops.Opcode) {
3272   case BO_Add:
3273   case BO_AddAssign:
3274     OpID = 1;
3275     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3276                      llvm::Intrinsic::uadd_with_overflow;
3277     OverflowKind = SanitizerHandler::AddOverflow;
3278     break;
3279   case BO_Sub:
3280   case BO_SubAssign:
3281     OpID = 2;
3282     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3283                      llvm::Intrinsic::usub_with_overflow;
3284     OverflowKind = SanitizerHandler::SubOverflow;
3285     break;
3286   case BO_Mul:
3287   case BO_MulAssign:
3288     OpID = 3;
3289     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3290                      llvm::Intrinsic::umul_with_overflow;
3291     OverflowKind = SanitizerHandler::MulOverflow;
3292     break;
3293   default:
3294     llvm_unreachable("Unsupported operation for overflow detection");
3295   }
3296   OpID <<= 1;
3297   if (isSigned)
3298     OpID |= 1;
3299 
3300   CodeGenFunction::SanitizerScope SanScope(&CGF);
3301   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3302 
3303   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3304 
3305   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3306   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3307   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3308 
3309   // Handle overflow with llvm.trap if no custom handler has been specified.
3310   const std::string *handlerName =
3311     &CGF.getLangOpts().OverflowHandler;
3312   if (handlerName->empty()) {
3313     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3314     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3315     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3316       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3317       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3318                               : SanitizerKind::UnsignedIntegerOverflow;
3319       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3320     } else
3321       CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3322     return result;
3323   }
3324 
3325   // Branch in case of overflow.
3326   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3327   llvm::BasicBlock *continueBB =
3328       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3329   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3330 
3331   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3332 
3333   // If an overflow handler is set, then we want to call it and then use its
3334   // result, if it returns.
3335   Builder.SetInsertPoint(overflowBB);
3336 
3337   // Get the overflow handler.
3338   llvm::Type *Int8Ty = CGF.Int8Ty;
3339   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3340   llvm::FunctionType *handlerTy =
3341       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3342   llvm::FunctionCallee handler =
3343       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3344 
3345   // Sign extend the args to 64-bit, so that we can use the same handler for
3346   // all types of overflow.
3347   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3348   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3349 
3350   // Call the handler with the two arguments, the operation, and the size of
3351   // the result.
3352   llvm::Value *handlerArgs[] = {
3353     lhs,
3354     rhs,
3355     Builder.getInt8(OpID),
3356     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3357   };
3358   llvm::Value *handlerResult =
3359     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3360 
3361   // Truncate the result back to the desired size.
3362   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3363   Builder.CreateBr(continueBB);
3364 
3365   Builder.SetInsertPoint(continueBB);
3366   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3367   phi->addIncoming(result, initialBB);
3368   phi->addIncoming(handlerResult, overflowBB);
3369 
3370   return phi;
3371 }
3372 
3373 /// Emit pointer + index arithmetic.
3374 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3375                                     const BinOpInfo &op,
3376                                     bool isSubtraction) {
3377   // Must have binary (not unary) expr here.  Unary pointer
3378   // increment/decrement doesn't use this path.
3379   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3380 
3381   Value *pointer = op.LHS;
3382   Expr *pointerOperand = expr->getLHS();
3383   Value *index = op.RHS;
3384   Expr *indexOperand = expr->getRHS();
3385 
3386   // In a subtraction, the LHS is always the pointer.
3387   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3388     std::swap(pointer, index);
3389     std::swap(pointerOperand, indexOperand);
3390   }
3391 
3392   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3393 
3394   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3395   auto &DL = CGF.CGM.getDataLayout();
3396   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3397 
3398   // Some versions of glibc and gcc use idioms (particularly in their malloc
3399   // routines) that add a pointer-sized integer (known to be a pointer value)
3400   // to a null pointer in order to cast the value back to an integer or as
3401   // part of a pointer alignment algorithm.  This is undefined behavior, but
3402   // we'd like to be able to compile programs that use it.
3403   //
3404   // Normally, we'd generate a GEP with a null-pointer base here in response
3405   // to that code, but it's also UB to dereference a pointer created that
3406   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3407   // generate a direct cast of the integer value to a pointer.
3408   //
3409   // The idiom (p = nullptr + N) is not met if any of the following are true:
3410   //
3411   //   The operation is subtraction.
3412   //   The index is not pointer-sized.
3413   //   The pointer type is not byte-sized.
3414   //
3415   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3416                                                        op.Opcode,
3417                                                        expr->getLHS(),
3418                                                        expr->getRHS()))
3419     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3420 
3421   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3422     // Zero-extend or sign-extend the pointer value according to
3423     // whether the index is signed or not.
3424     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3425                                       "idx.ext");
3426   }
3427 
3428   // If this is subtraction, negate the index.
3429   if (isSubtraction)
3430     index = CGF.Builder.CreateNeg(index, "idx.neg");
3431 
3432   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3433     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3434                         /*Accessed*/ false);
3435 
3436   const PointerType *pointerType
3437     = pointerOperand->getType()->getAs<PointerType>();
3438   if (!pointerType) {
3439     QualType objectType = pointerOperand->getType()
3440                                         ->castAs<ObjCObjectPointerType>()
3441                                         ->getPointeeType();
3442     llvm::Value *objectSize
3443       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3444 
3445     index = CGF.Builder.CreateMul(index, objectSize);
3446 
3447     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3448     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3449     return CGF.Builder.CreateBitCast(result, pointer->getType());
3450   }
3451 
3452   QualType elementType = pointerType->getPointeeType();
3453   if (const VariableArrayType *vla
3454         = CGF.getContext().getAsVariableArrayType(elementType)) {
3455     // The element count here is the total number of non-VLA elements.
3456     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3457 
3458     // Effectively, the multiply by the VLA size is part of the GEP.
3459     // GEP indexes are signed, and scaling an index isn't permitted to
3460     // signed-overflow, so we use the same semantics for our explicit
3461     // multiply.  We suppress this if overflow is not undefined behavior.
3462     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3463       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3464       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3465     } else {
3466       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3467       pointer =
3468           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3469                                      op.E->getExprLoc(), "add.ptr");
3470     }
3471     return pointer;
3472   }
3473 
3474   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3475   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3476   // future proof.
3477   if (elementType->isVoidType() || elementType->isFunctionType()) {
3478     Value *result = CGF.EmitCastToVoidPtr(pointer);
3479     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3480     return CGF.Builder.CreateBitCast(result, pointer->getType());
3481   }
3482 
3483   if (CGF.getLangOpts().isSignedOverflowDefined())
3484     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3485 
3486   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3487                                     op.E->getExprLoc(), "add.ptr");
3488 }
3489 
3490 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3491 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3492 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3493 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3494 // efficient operations.
3495 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3496                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3497                            bool negMul, bool negAdd) {
3498   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3499 
3500   Value *MulOp0 = MulOp->getOperand(0);
3501   Value *MulOp1 = MulOp->getOperand(1);
3502   if (negMul)
3503     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3504   if (negAdd)
3505     Addend = Builder.CreateFNeg(Addend, "neg");
3506 
3507   Value *FMulAdd = nullptr;
3508   if (Builder.getIsFPConstrained()) {
3509     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3510            "Only constrained operation should be created when Builder is in FP "
3511            "constrained mode");
3512     FMulAdd = Builder.CreateConstrainedFPCall(
3513         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3514                              Addend->getType()),
3515         {MulOp0, MulOp1, Addend});
3516   } else {
3517     FMulAdd = Builder.CreateCall(
3518         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3519         {MulOp0, MulOp1, Addend});
3520   }
3521   MulOp->eraseFromParent();
3522 
3523   return FMulAdd;
3524 }
3525 
3526 // Check whether it would be legal to emit an fmuladd intrinsic call to
3527 // represent op and if so, build the fmuladd.
3528 //
3529 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3530 // Does NOT check the type of the operation - it's assumed that this function
3531 // will be called from contexts where it's known that the type is contractable.
3532 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3533                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3534                          bool isSub=false) {
3535 
3536   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3537           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3538          "Only fadd/fsub can be the root of an fmuladd.");
3539 
3540   // Check whether this op is marked as fusable.
3541   if (!op.FPFeatures.allowFPContractWithinStatement())
3542     return nullptr;
3543 
3544   // We have a potentially fusable op. Look for a mul on one of the operands.
3545   // Also, make sure that the mul result isn't used directly. In that case,
3546   // there's no point creating a muladd operation.
3547   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3548     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3549         LHSBinOp->use_empty())
3550       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3551   }
3552   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3553     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3554         RHSBinOp->use_empty())
3555       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3556   }
3557 
3558   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3559     if (LHSBinOp->getIntrinsicID() ==
3560             llvm::Intrinsic::experimental_constrained_fmul &&
3561         LHSBinOp->use_empty())
3562       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3563   }
3564   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3565     if (RHSBinOp->getIntrinsicID() ==
3566             llvm::Intrinsic::experimental_constrained_fmul &&
3567         RHSBinOp->use_empty())
3568       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3569   }
3570 
3571   return nullptr;
3572 }
3573 
3574 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3575   if (op.LHS->getType()->isPointerTy() ||
3576       op.RHS->getType()->isPointerTy())
3577     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3578 
3579   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3580     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3581     case LangOptions::SOB_Defined:
3582       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3583     case LangOptions::SOB_Undefined:
3584       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3585         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3586       LLVM_FALLTHROUGH;
3587     case LangOptions::SOB_Trapping:
3588       if (CanElideOverflowCheck(CGF.getContext(), op))
3589         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3590       return EmitOverflowCheckedBinOp(op);
3591     }
3592   }
3593 
3594   if (op.Ty->isConstantMatrixType()) {
3595     llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3596     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3597     return MB.CreateAdd(op.LHS, op.RHS);
3598   }
3599 
3600   if (op.Ty->isUnsignedIntegerType() &&
3601       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3602       !CanElideOverflowCheck(CGF.getContext(), op))
3603     return EmitOverflowCheckedBinOp(op);
3604 
3605   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3606     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3607     // Try to form an fmuladd.
3608     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3609       return FMulAdd;
3610 
3611     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3612   }
3613 
3614   if (op.isFixedPointOp())
3615     return EmitFixedPointBinOp(op);
3616 
3617   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3618 }
3619 
3620 /// The resulting value must be calculated with exact precision, so the operands
3621 /// may not be the same type.
3622 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3623   using llvm::APSInt;
3624   using llvm::ConstantInt;
3625 
3626   // This is either a binary operation where at least one of the operands is
3627   // a fixed-point type, or a unary operation where the operand is a fixed-point
3628   // type. The result type of a binary operation is determined by
3629   // Sema::handleFixedPointConversions().
3630   QualType ResultTy = op.Ty;
3631   QualType LHSTy, RHSTy;
3632   if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3633     RHSTy = BinOp->getRHS()->getType();
3634     if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3635       // For compound assignment, the effective type of the LHS at this point
3636       // is the computation LHS type, not the actual LHS type, and the final
3637       // result type is not the type of the expression but rather the
3638       // computation result type.
3639       LHSTy = CAO->getComputationLHSType();
3640       ResultTy = CAO->getComputationResultType();
3641     } else
3642       LHSTy = BinOp->getLHS()->getType();
3643   } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3644     LHSTy = UnOp->getSubExpr()->getType();
3645     RHSTy = UnOp->getSubExpr()->getType();
3646   }
3647   ASTContext &Ctx = CGF.getContext();
3648   Value *LHS = op.LHS;
3649   Value *RHS = op.RHS;
3650 
3651   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3652   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3653   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3654   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3655 
3656   // Perform the actual operation.
3657   Value *Result;
3658   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3659   switch (op.Opcode) {
3660   case BO_AddAssign:
3661   case BO_Add:
3662     Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
3663     break;
3664   case BO_SubAssign:
3665   case BO_Sub:
3666     Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
3667     break;
3668   case BO_MulAssign:
3669   case BO_Mul:
3670     Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
3671     break;
3672   case BO_DivAssign:
3673   case BO_Div:
3674     Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
3675     break;
3676   case BO_ShlAssign:
3677   case BO_Shl:
3678     Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
3679     break;
3680   case BO_ShrAssign:
3681   case BO_Shr:
3682     Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
3683     break;
3684   case BO_LT:
3685     return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3686   case BO_GT:
3687     return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3688   case BO_LE:
3689     return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3690   case BO_GE:
3691     return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3692   case BO_EQ:
3693     // For equality operations, we assume any padding bits on unsigned types are
3694     // zero'd out. They could be overwritten through non-saturating operations
3695     // that cause overflow, but this leads to undefined behavior.
3696     return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
3697   case BO_NE:
3698     return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3699   case BO_Cmp:
3700   case BO_LAnd:
3701   case BO_LOr:
3702     llvm_unreachable("Found unimplemented fixed point binary operation");
3703   case BO_PtrMemD:
3704   case BO_PtrMemI:
3705   case BO_Rem:
3706   case BO_Xor:
3707   case BO_And:
3708   case BO_Or:
3709   case BO_Assign:
3710   case BO_RemAssign:
3711   case BO_AndAssign:
3712   case BO_XorAssign:
3713   case BO_OrAssign:
3714   case BO_Comma:
3715     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3716   }
3717 
3718   bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
3719                  BinaryOperator::isShiftAssignOp(op.Opcode);
3720   // Convert to the result type.
3721   return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
3722                                                       : CommonFixedSema,
3723                                       ResultFixedSema);
3724 }
3725 
3726 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3727   // The LHS is always a pointer if either side is.
3728   if (!op.LHS->getType()->isPointerTy()) {
3729     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3730       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3731       case LangOptions::SOB_Defined:
3732         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3733       case LangOptions::SOB_Undefined:
3734         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3735           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3736         LLVM_FALLTHROUGH;
3737       case LangOptions::SOB_Trapping:
3738         if (CanElideOverflowCheck(CGF.getContext(), op))
3739           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3740         return EmitOverflowCheckedBinOp(op);
3741       }
3742     }
3743 
3744     if (op.Ty->isConstantMatrixType()) {
3745       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3746       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3747       return MB.CreateSub(op.LHS, op.RHS);
3748     }
3749 
3750     if (op.Ty->isUnsignedIntegerType() &&
3751         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3752         !CanElideOverflowCheck(CGF.getContext(), op))
3753       return EmitOverflowCheckedBinOp(op);
3754 
3755     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3756       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3757       // Try to form an fmuladd.
3758       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3759         return FMulAdd;
3760       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
3761     }
3762 
3763     if (op.isFixedPointOp())
3764       return EmitFixedPointBinOp(op);
3765 
3766     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3767   }
3768 
3769   // If the RHS is not a pointer, then we have normal pointer
3770   // arithmetic.
3771   if (!op.RHS->getType()->isPointerTy())
3772     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3773 
3774   // Otherwise, this is a pointer subtraction.
3775 
3776   // Do the raw subtraction part.
3777   llvm::Value *LHS
3778     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3779   llvm::Value *RHS
3780     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3781   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3782 
3783   // Okay, figure out the element size.
3784   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3785   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3786 
3787   llvm::Value *divisor = nullptr;
3788 
3789   // For a variable-length array, this is going to be non-constant.
3790   if (const VariableArrayType *vla
3791         = CGF.getContext().getAsVariableArrayType(elementType)) {
3792     auto VlaSize = CGF.getVLASize(vla);
3793     elementType = VlaSize.Type;
3794     divisor = VlaSize.NumElts;
3795 
3796     // Scale the number of non-VLA elements by the non-VLA element size.
3797     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3798     if (!eltSize.isOne())
3799       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3800 
3801   // For everything elese, we can just compute it, safe in the
3802   // assumption that Sema won't let anything through that we can't
3803   // safely compute the size of.
3804   } else {
3805     CharUnits elementSize;
3806     // Handle GCC extension for pointer arithmetic on void* and
3807     // function pointer types.
3808     if (elementType->isVoidType() || elementType->isFunctionType())
3809       elementSize = CharUnits::One();
3810     else
3811       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3812 
3813     // Don't even emit the divide for element size of 1.
3814     if (elementSize.isOne())
3815       return diffInChars;
3816 
3817     divisor = CGF.CGM.getSize(elementSize);
3818   }
3819 
3820   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3821   // pointer difference in C is only defined in the case where both operands
3822   // are pointing to elements of an array.
3823   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3824 }
3825 
3826 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3827   llvm::IntegerType *Ty;
3828   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3829     Ty = cast<llvm::IntegerType>(VT->getElementType());
3830   else
3831     Ty = cast<llvm::IntegerType>(LHS->getType());
3832   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3833 }
3834 
3835 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
3836                                               const Twine &Name) {
3837   llvm::IntegerType *Ty;
3838   if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3839     Ty = cast<llvm::IntegerType>(VT->getElementType());
3840   else
3841     Ty = cast<llvm::IntegerType>(LHS->getType());
3842 
3843   if (llvm::isPowerOf2_64(Ty->getBitWidth()))
3844         return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
3845 
3846   return Builder.CreateURem(
3847       RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
3848 }
3849 
3850 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3851   // TODO: This misses out on the sanitizer check below.
3852   if (Ops.isFixedPointOp())
3853     return EmitFixedPointBinOp(Ops);
3854 
3855   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3856   // RHS to the same size as the LHS.
3857   Value *RHS = Ops.RHS;
3858   if (Ops.LHS->getType() != RHS->getType())
3859     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3860 
3861   bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3862                             Ops.Ty->hasSignedIntegerRepresentation() &&
3863                             !CGF.getLangOpts().isSignedOverflowDefined() &&
3864                             !CGF.getLangOpts().CPlusPlus20;
3865   bool SanitizeUnsignedBase =
3866       CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
3867       Ops.Ty->hasUnsignedIntegerRepresentation();
3868   bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
3869   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3870   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3871   if (CGF.getLangOpts().OpenCL)
3872     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
3873   else if ((SanitizeBase || SanitizeExponent) &&
3874            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3875     CodeGenFunction::SanitizerScope SanScope(&CGF);
3876     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3877     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3878     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3879 
3880     if (SanitizeExponent) {
3881       Checks.push_back(
3882           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3883     }
3884 
3885     if (SanitizeBase) {
3886       // Check whether we are shifting any non-zero bits off the top of the
3887       // integer. We only emit this check if exponent is valid - otherwise
3888       // instructions below will have undefined behavior themselves.
3889       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3890       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3891       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3892       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3893       llvm::Value *PromotedWidthMinusOne =
3894           (RHS == Ops.RHS) ? WidthMinusOne
3895                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3896       CGF.EmitBlock(CheckShiftBase);
3897       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3898           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3899                                      /*NUW*/ true, /*NSW*/ true),
3900           "shl.check");
3901       if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
3902         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3903         // Under C++11's rules, shifting a 1 bit into the sign bit is
3904         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3905         // define signed left shifts, so we use the C99 and C++11 rules there).
3906         // Unsigned shifts can always shift into the top bit.
3907         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3908         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3909       }
3910       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3911       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3912       CGF.EmitBlock(Cont);
3913       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3914       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3915       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3916       Checks.push_back(std::make_pair(
3917           BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
3918                                         : SanitizerKind::UnsignedShiftBase));
3919     }
3920 
3921     assert(!Checks.empty());
3922     EmitBinOpCheck(Checks, Ops);
3923   }
3924 
3925   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3926 }
3927 
3928 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3929   // TODO: This misses out on the sanitizer check below.
3930   if (Ops.isFixedPointOp())
3931     return EmitFixedPointBinOp(Ops);
3932 
3933   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3934   // RHS to the same size as the LHS.
3935   Value *RHS = Ops.RHS;
3936   if (Ops.LHS->getType() != RHS->getType())
3937     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3938 
3939   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3940   if (CGF.getLangOpts().OpenCL)
3941     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
3942   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3943            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3944     CodeGenFunction::SanitizerScope SanScope(&CGF);
3945     llvm::Value *Valid =
3946         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3947     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3948   }
3949 
3950   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3951     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3952   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3953 }
3954 
3955 enum IntrinsicType { VCMPEQ, VCMPGT };
3956 // return corresponding comparison intrinsic for given vector type
3957 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3958                                         BuiltinType::Kind ElemKind) {
3959   switch (ElemKind) {
3960   default: llvm_unreachable("unexpected element type");
3961   case BuiltinType::Char_U:
3962   case BuiltinType::UChar:
3963     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3964                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3965   case BuiltinType::Char_S:
3966   case BuiltinType::SChar:
3967     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3968                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3969   case BuiltinType::UShort:
3970     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3971                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3972   case BuiltinType::Short:
3973     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3974                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3975   case BuiltinType::UInt:
3976     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3977                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3978   case BuiltinType::Int:
3979     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3980                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3981   case BuiltinType::ULong:
3982   case BuiltinType::ULongLong:
3983     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3984                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3985   case BuiltinType::Long:
3986   case BuiltinType::LongLong:
3987     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3988                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3989   case BuiltinType::Float:
3990     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3991                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3992   case BuiltinType::Double:
3993     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3994                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3995   case BuiltinType::UInt128:
3996     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
3997                           : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
3998   case BuiltinType::Int128:
3999     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4000                           : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
4001   }
4002 }
4003 
4004 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
4005                                       llvm::CmpInst::Predicate UICmpOpc,
4006                                       llvm::CmpInst::Predicate SICmpOpc,
4007                                       llvm::CmpInst::Predicate FCmpOpc,
4008                                       bool IsSignaling) {
4009   TestAndClearIgnoreResultAssign();
4010   Value *Result;
4011   QualType LHSTy = E->getLHS()->getType();
4012   QualType RHSTy = E->getRHS()->getType();
4013   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
4014     assert(E->getOpcode() == BO_EQ ||
4015            E->getOpcode() == BO_NE);
4016     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
4017     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
4018     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
4019                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
4020   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
4021     BinOpInfo BOInfo = EmitBinOps(E);
4022     Value *LHS = BOInfo.LHS;
4023     Value *RHS = BOInfo.RHS;
4024 
4025     // If AltiVec, the comparison results in a numeric type, so we use
4026     // intrinsics comparing vectors and giving 0 or 1 as a result
4027     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
4028       // constants for mapping CR6 register bits to predicate result
4029       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
4030 
4031       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
4032 
4033       // in several cases vector arguments order will be reversed
4034       Value *FirstVecArg = LHS,
4035             *SecondVecArg = RHS;
4036 
4037       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
4038       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
4039 
4040       switch(E->getOpcode()) {
4041       default: llvm_unreachable("is not a comparison operation");
4042       case BO_EQ:
4043         CR6 = CR6_LT;
4044         ID = GetIntrinsic(VCMPEQ, ElementKind);
4045         break;
4046       case BO_NE:
4047         CR6 = CR6_EQ;
4048         ID = GetIntrinsic(VCMPEQ, ElementKind);
4049         break;
4050       case BO_LT:
4051         CR6 = CR6_LT;
4052         ID = GetIntrinsic(VCMPGT, ElementKind);
4053         std::swap(FirstVecArg, SecondVecArg);
4054         break;
4055       case BO_GT:
4056         CR6 = CR6_LT;
4057         ID = GetIntrinsic(VCMPGT, ElementKind);
4058         break;
4059       case BO_LE:
4060         if (ElementKind == BuiltinType::Float) {
4061           CR6 = CR6_LT;
4062           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4063           std::swap(FirstVecArg, SecondVecArg);
4064         }
4065         else {
4066           CR6 = CR6_EQ;
4067           ID = GetIntrinsic(VCMPGT, ElementKind);
4068         }
4069         break;
4070       case BO_GE:
4071         if (ElementKind == BuiltinType::Float) {
4072           CR6 = CR6_LT;
4073           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4074         }
4075         else {
4076           CR6 = CR6_EQ;
4077           ID = GetIntrinsic(VCMPGT, ElementKind);
4078           std::swap(FirstVecArg, SecondVecArg);
4079         }
4080         break;
4081       }
4082 
4083       Value *CR6Param = Builder.getInt32(CR6);
4084       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4085       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4086 
4087       // The result type of intrinsic may not be same as E->getType().
4088       // If E->getType() is not BoolTy, EmitScalarConversion will do the
4089       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4090       // do nothing, if ResultTy is not i1 at the same time, it will cause
4091       // crash later.
4092       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4093       if (ResultTy->getBitWidth() > 1 &&
4094           E->getType() == CGF.getContext().BoolTy)
4095         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4096       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4097                                   E->getExprLoc());
4098     }
4099 
4100     if (BOInfo.isFixedPointOp()) {
4101       Result = EmitFixedPointBinOp(BOInfo);
4102     } else if (LHS->getType()->isFPOrFPVectorTy()) {
4103       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4104       if (!IsSignaling)
4105         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4106       else
4107         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4108     } else if (LHSTy->hasSignedIntegerRepresentation()) {
4109       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4110     } else {
4111       // Unsigned integers and pointers.
4112 
4113       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4114           !isa<llvm::ConstantPointerNull>(LHS) &&
4115           !isa<llvm::ConstantPointerNull>(RHS)) {
4116 
4117         // Dynamic information is required to be stripped for comparisons,
4118         // because it could leak the dynamic information.  Based on comparisons
4119         // of pointers to dynamic objects, the optimizer can replace one pointer
4120         // with another, which might be incorrect in presence of invariant
4121         // groups. Comparison with null is safe because null does not carry any
4122         // dynamic information.
4123         if (LHSTy.mayBeDynamicClass())
4124           LHS = Builder.CreateStripInvariantGroup(LHS);
4125         if (RHSTy.mayBeDynamicClass())
4126           RHS = Builder.CreateStripInvariantGroup(RHS);
4127       }
4128 
4129       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4130     }
4131 
4132     // If this is a vector comparison, sign extend the result to the appropriate
4133     // vector integer type and return it (don't convert to bool).
4134     if (LHSTy->isVectorType())
4135       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4136 
4137   } else {
4138     // Complex Comparison: can only be an equality comparison.
4139     CodeGenFunction::ComplexPairTy LHS, RHS;
4140     QualType CETy;
4141     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4142       LHS = CGF.EmitComplexExpr(E->getLHS());
4143       CETy = CTy->getElementType();
4144     } else {
4145       LHS.first = Visit(E->getLHS());
4146       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4147       CETy = LHSTy;
4148     }
4149     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4150       RHS = CGF.EmitComplexExpr(E->getRHS());
4151       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4152                                                      CTy->getElementType()) &&
4153              "The element types must always match.");
4154       (void)CTy;
4155     } else {
4156       RHS.first = Visit(E->getRHS());
4157       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4158       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4159              "The element types must always match.");
4160     }
4161 
4162     Value *ResultR, *ResultI;
4163     if (CETy->isRealFloatingType()) {
4164       // As complex comparisons can only be equality comparisons, they
4165       // are never signaling comparisons.
4166       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4167       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4168     } else {
4169       // Complex comparisons can only be equality comparisons.  As such, signed
4170       // and unsigned opcodes are the same.
4171       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4172       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4173     }
4174 
4175     if (E->getOpcode() == BO_EQ) {
4176       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4177     } else {
4178       assert(E->getOpcode() == BO_NE &&
4179              "Complex comparison other than == or != ?");
4180       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4181     }
4182   }
4183 
4184   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4185                               E->getExprLoc());
4186 }
4187 
4188 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4189   bool Ignore = TestAndClearIgnoreResultAssign();
4190 
4191   Value *RHS;
4192   LValue LHS;
4193 
4194   switch (E->getLHS()->getType().getObjCLifetime()) {
4195   case Qualifiers::OCL_Strong:
4196     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4197     break;
4198 
4199   case Qualifiers::OCL_Autoreleasing:
4200     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4201     break;
4202 
4203   case Qualifiers::OCL_ExplicitNone:
4204     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4205     break;
4206 
4207   case Qualifiers::OCL_Weak:
4208     RHS = Visit(E->getRHS());
4209     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4210     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4211     break;
4212 
4213   case Qualifiers::OCL_None:
4214     // __block variables need to have the rhs evaluated first, plus
4215     // this should improve codegen just a little.
4216     RHS = Visit(E->getRHS());
4217     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4218 
4219     // Store the value into the LHS.  Bit-fields are handled specially
4220     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4221     // 'An assignment expression has the value of the left operand after
4222     // the assignment...'.
4223     if (LHS.isBitField()) {
4224       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4225     } else {
4226       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4227       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4228     }
4229   }
4230 
4231   // If the result is clearly ignored, return now.
4232   if (Ignore)
4233     return nullptr;
4234 
4235   // The result of an assignment in C is the assigned r-value.
4236   if (!CGF.getLangOpts().CPlusPlus)
4237     return RHS;
4238 
4239   // If the lvalue is non-volatile, return the computed value of the assignment.
4240   if (!LHS.isVolatileQualified())
4241     return RHS;
4242 
4243   // Otherwise, reload the value.
4244   return EmitLoadOfLValue(LHS, E->getExprLoc());
4245 }
4246 
4247 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4248   // Perform vector logical and on comparisons with zero vectors.
4249   if (E->getType()->isVectorType()) {
4250     CGF.incrementProfileCounter(E);
4251 
4252     Value *LHS = Visit(E->getLHS());
4253     Value *RHS = Visit(E->getRHS());
4254     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4255     if (LHS->getType()->isFPOrFPVectorTy()) {
4256       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4257           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4258       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4259       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4260     } else {
4261       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4262       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4263     }
4264     Value *And = Builder.CreateAnd(LHS, RHS);
4265     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4266   }
4267 
4268   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4269   llvm::Type *ResTy = ConvertType(E->getType());
4270 
4271   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4272   // If we have 1 && X, just emit X without inserting the control flow.
4273   bool LHSCondVal;
4274   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4275     if (LHSCondVal) { // If we have 1 && X, just emit X.
4276       CGF.incrementProfileCounter(E);
4277 
4278       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4279 
4280       // If we're generating for profiling or coverage, generate a branch to a
4281       // block that increments the RHS counter needed to track branch condition
4282       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4283       // "FalseBlock" after the increment is done.
4284       if (InstrumentRegions &&
4285           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4286         llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
4287         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4288         Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
4289         CGF.EmitBlock(RHSBlockCnt);
4290         CGF.incrementProfileCounter(E->getRHS());
4291         CGF.EmitBranch(FBlock);
4292         CGF.EmitBlock(FBlock);
4293       }
4294 
4295       // ZExt result to int or bool.
4296       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4297     }
4298 
4299     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4300     if (!CGF.ContainsLabel(E->getRHS()))
4301       return llvm::Constant::getNullValue(ResTy);
4302   }
4303 
4304   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4305   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4306 
4307   CodeGenFunction::ConditionalEvaluation eval(CGF);
4308 
4309   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4310   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4311                            CGF.getProfileCount(E->getRHS()));
4312 
4313   // Any edges into the ContBlock are now from an (indeterminate number of)
4314   // edges from this first condition.  All of these values will be false.  Start
4315   // setting up the PHI node in the Cont Block for this.
4316   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4317                                             "", ContBlock);
4318   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4319        PI != PE; ++PI)
4320     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4321 
4322   eval.begin(CGF);
4323   CGF.EmitBlock(RHSBlock);
4324   CGF.incrementProfileCounter(E);
4325   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4326   eval.end(CGF);
4327 
4328   // Reaquire the RHS block, as there may be subblocks inserted.
4329   RHSBlock = Builder.GetInsertBlock();
4330 
4331   // If we're generating for profiling or coverage, generate a branch on the
4332   // RHS to a block that increments the RHS true counter needed to track branch
4333   // condition coverage.
4334   if (InstrumentRegions &&
4335       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4336     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4337     Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
4338     CGF.EmitBlock(RHSBlockCnt);
4339     CGF.incrementProfileCounter(E->getRHS());
4340     CGF.EmitBranch(ContBlock);
4341     PN->addIncoming(RHSCond, RHSBlockCnt);
4342   }
4343 
4344   // Emit an unconditional branch from this block to ContBlock.
4345   {
4346     // There is no need to emit line number for unconditional branch.
4347     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4348     CGF.EmitBlock(ContBlock);
4349   }
4350   // Insert an entry into the phi node for the edge with the value of RHSCond.
4351   PN->addIncoming(RHSCond, RHSBlock);
4352 
4353   // Artificial location to preserve the scope information
4354   {
4355     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4356     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4357   }
4358 
4359   // ZExt result to int.
4360   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4361 }
4362 
4363 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4364   // Perform vector logical or on comparisons with zero vectors.
4365   if (E->getType()->isVectorType()) {
4366     CGF.incrementProfileCounter(E);
4367 
4368     Value *LHS = Visit(E->getLHS());
4369     Value *RHS = Visit(E->getRHS());
4370     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4371     if (LHS->getType()->isFPOrFPVectorTy()) {
4372       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4373           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4374       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4375       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4376     } else {
4377       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4378       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4379     }
4380     Value *Or = Builder.CreateOr(LHS, RHS);
4381     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4382   }
4383 
4384   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4385   llvm::Type *ResTy = ConvertType(E->getType());
4386 
4387   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4388   // If we have 0 || X, just emit X without inserting the control flow.
4389   bool LHSCondVal;
4390   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4391     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4392       CGF.incrementProfileCounter(E);
4393 
4394       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4395 
4396       // If we're generating for profiling or coverage, generate a branch to a
4397       // block that increments the RHS counter need to track branch condition
4398       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4399       // "FalseBlock" after the increment is done.
4400       if (InstrumentRegions &&
4401           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4402         llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
4403         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4404         Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
4405         CGF.EmitBlock(RHSBlockCnt);
4406         CGF.incrementProfileCounter(E->getRHS());
4407         CGF.EmitBranch(FBlock);
4408         CGF.EmitBlock(FBlock);
4409       }
4410 
4411       // ZExt result to int or bool.
4412       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4413     }
4414 
4415     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4416     if (!CGF.ContainsLabel(E->getRHS()))
4417       return llvm::ConstantInt::get(ResTy, 1);
4418   }
4419 
4420   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4421   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4422 
4423   CodeGenFunction::ConditionalEvaluation eval(CGF);
4424 
4425   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4426   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4427                            CGF.getCurrentProfileCount() -
4428                                CGF.getProfileCount(E->getRHS()));
4429 
4430   // Any edges into the ContBlock are now from an (indeterminate number of)
4431   // edges from this first condition.  All of these values will be true.  Start
4432   // setting up the PHI node in the Cont Block for this.
4433   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4434                                             "", ContBlock);
4435   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4436        PI != PE; ++PI)
4437     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4438 
4439   eval.begin(CGF);
4440 
4441   // Emit the RHS condition as a bool value.
4442   CGF.EmitBlock(RHSBlock);
4443   CGF.incrementProfileCounter(E);
4444   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4445 
4446   eval.end(CGF);
4447 
4448   // Reaquire the RHS block, as there may be subblocks inserted.
4449   RHSBlock = Builder.GetInsertBlock();
4450 
4451   // If we're generating for profiling or coverage, generate a branch on the
4452   // RHS to a block that increments the RHS true counter needed to track branch
4453   // condition coverage.
4454   if (InstrumentRegions &&
4455       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4456     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4457     Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
4458     CGF.EmitBlock(RHSBlockCnt);
4459     CGF.incrementProfileCounter(E->getRHS());
4460     CGF.EmitBranch(ContBlock);
4461     PN->addIncoming(RHSCond, RHSBlockCnt);
4462   }
4463 
4464   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4465   // into the phi node for the edge with the value of RHSCond.
4466   CGF.EmitBlock(ContBlock);
4467   PN->addIncoming(RHSCond, RHSBlock);
4468 
4469   // ZExt result to int.
4470   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4471 }
4472 
4473 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4474   CGF.EmitIgnoredExpr(E->getLHS());
4475   CGF.EnsureInsertPoint();
4476   return Visit(E->getRHS());
4477 }
4478 
4479 //===----------------------------------------------------------------------===//
4480 //                             Other Operators
4481 //===----------------------------------------------------------------------===//
4482 
4483 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4484 /// expression is cheap enough and side-effect-free enough to evaluate
4485 /// unconditionally instead of conditionally.  This is used to convert control
4486 /// flow into selects in some cases.
4487 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4488                                                    CodeGenFunction &CGF) {
4489   // Anything that is an integer or floating point constant is fine.
4490   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4491 
4492   // Even non-volatile automatic variables can't be evaluated unconditionally.
4493   // Referencing a thread_local may cause non-trivial initialization work to
4494   // occur. If we're inside a lambda and one of the variables is from the scope
4495   // outside the lambda, that function may have returned already. Reading its
4496   // locals is a bad idea. Also, these reads may introduce races there didn't
4497   // exist in the source-level program.
4498 }
4499 
4500 
4501 Value *ScalarExprEmitter::
4502 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4503   TestAndClearIgnoreResultAssign();
4504 
4505   // Bind the common expression if necessary.
4506   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4507 
4508   Expr *condExpr = E->getCond();
4509   Expr *lhsExpr = E->getTrueExpr();
4510   Expr *rhsExpr = E->getFalseExpr();
4511 
4512   // If the condition constant folds and can be elided, try to avoid emitting
4513   // the condition and the dead arm.
4514   bool CondExprBool;
4515   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4516     Expr *live = lhsExpr, *dead = rhsExpr;
4517     if (!CondExprBool) std::swap(live, dead);
4518 
4519     // If the dead side doesn't have labels we need, just emit the Live part.
4520     if (!CGF.ContainsLabel(dead)) {
4521       if (CondExprBool)
4522         CGF.incrementProfileCounter(E);
4523       Value *Result = Visit(live);
4524 
4525       // If the live part is a throw expression, it acts like it has a void
4526       // type, so evaluating it returns a null Value*.  However, a conditional
4527       // with non-void type must return a non-null Value*.
4528       if (!Result && !E->getType()->isVoidType())
4529         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4530 
4531       return Result;
4532     }
4533   }
4534 
4535   // OpenCL: If the condition is a vector, we can treat this condition like
4536   // the select function.
4537   if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4538       condExpr->getType()->isExtVectorType()) {
4539     CGF.incrementProfileCounter(E);
4540 
4541     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4542     llvm::Value *LHS = Visit(lhsExpr);
4543     llvm::Value *RHS = Visit(rhsExpr);
4544 
4545     llvm::Type *condType = ConvertType(condExpr->getType());
4546     auto *vecTy = cast<llvm::FixedVectorType>(condType);
4547 
4548     unsigned numElem = vecTy->getNumElements();
4549     llvm::Type *elemType = vecTy->getElementType();
4550 
4551     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4552     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4553     llvm::Value *tmp = Builder.CreateSExt(
4554         TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4555     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4556 
4557     // Cast float to int to perform ANDs if necessary.
4558     llvm::Value *RHSTmp = RHS;
4559     llvm::Value *LHSTmp = LHS;
4560     bool wasCast = false;
4561     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4562     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4563       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4564       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4565       wasCast = true;
4566     }
4567 
4568     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4569     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4570     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4571     if (wasCast)
4572       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4573 
4574     return tmp5;
4575   }
4576 
4577   if (condExpr->getType()->isVectorType()) {
4578     CGF.incrementProfileCounter(E);
4579 
4580     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4581     llvm::Value *LHS = Visit(lhsExpr);
4582     llvm::Value *RHS = Visit(rhsExpr);
4583 
4584     llvm::Type *CondType = ConvertType(condExpr->getType());
4585     auto *VecTy = cast<llvm::VectorType>(CondType);
4586     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4587 
4588     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4589     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4590   }
4591 
4592   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4593   // select instead of as control flow.  We can only do this if it is cheap and
4594   // safe to evaluate the LHS and RHS unconditionally.
4595   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4596       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4597     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4598     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4599 
4600     CGF.incrementProfileCounter(E, StepV);
4601 
4602     llvm::Value *LHS = Visit(lhsExpr);
4603     llvm::Value *RHS = Visit(rhsExpr);
4604     if (!LHS) {
4605       // If the conditional has void type, make sure we return a null Value*.
4606       assert(!RHS && "LHS and RHS types must match");
4607       return nullptr;
4608     }
4609     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4610   }
4611 
4612   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4613   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4614   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4615 
4616   CodeGenFunction::ConditionalEvaluation eval(CGF);
4617   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4618                            CGF.getProfileCount(lhsExpr));
4619 
4620   CGF.EmitBlock(LHSBlock);
4621   CGF.incrementProfileCounter(E);
4622   eval.begin(CGF);
4623   Value *LHS = Visit(lhsExpr);
4624   eval.end(CGF);
4625 
4626   LHSBlock = Builder.GetInsertBlock();
4627   Builder.CreateBr(ContBlock);
4628 
4629   CGF.EmitBlock(RHSBlock);
4630   eval.begin(CGF);
4631   Value *RHS = Visit(rhsExpr);
4632   eval.end(CGF);
4633 
4634   RHSBlock = Builder.GetInsertBlock();
4635   CGF.EmitBlock(ContBlock);
4636 
4637   // If the LHS or RHS is a throw expression, it will be legitimately null.
4638   if (!LHS)
4639     return RHS;
4640   if (!RHS)
4641     return LHS;
4642 
4643   // Create a PHI node for the real part.
4644   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4645   PN->addIncoming(LHS, LHSBlock);
4646   PN->addIncoming(RHS, RHSBlock);
4647   return PN;
4648 }
4649 
4650 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4651   return Visit(E->getChosenSubExpr());
4652 }
4653 
4654 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4655   QualType Ty = VE->getType();
4656 
4657   if (Ty->isVariablyModifiedType())
4658     CGF.EmitVariablyModifiedType(Ty);
4659 
4660   Address ArgValue = Address::invalid();
4661   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4662 
4663   llvm::Type *ArgTy = ConvertType(VE->getType());
4664 
4665   // If EmitVAArg fails, emit an error.
4666   if (!ArgPtr.isValid()) {
4667     CGF.ErrorUnsupported(VE, "va_arg expression");
4668     return llvm::UndefValue::get(ArgTy);
4669   }
4670 
4671   // FIXME Volatility.
4672   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4673 
4674   // If EmitVAArg promoted the type, we must truncate it.
4675   if (ArgTy != Val->getType()) {
4676     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4677       Val = Builder.CreateIntToPtr(Val, ArgTy);
4678     else
4679       Val = Builder.CreateTrunc(Val, ArgTy);
4680   }
4681 
4682   return Val;
4683 }
4684 
4685 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4686   return CGF.EmitBlockLiteral(block);
4687 }
4688 
4689 // Convert a vec3 to vec4, or vice versa.
4690 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4691                                  Value *Src, unsigned NumElementsDst) {
4692   static constexpr int Mask[] = {0, 1, 2, -1};
4693   return Builder.CreateShuffleVector(Src,
4694                                      llvm::makeArrayRef(Mask, NumElementsDst));
4695 }
4696 
4697 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4698 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4699 // but could be scalar or vectors of different lengths, and either can be
4700 // pointer.
4701 // There are 4 cases:
4702 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4703 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4704 // 3. pointer -> non-pointer
4705 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4706 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4707 // 4. non-pointer -> pointer
4708 //   a) intptr_t -> pointer       : needs 1 inttoptr
4709 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4710 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4711 // allow casting directly between pointer types and non-integer non-pointer
4712 // types.
4713 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4714                                            const llvm::DataLayout &DL,
4715                                            Value *Src, llvm::Type *DstTy,
4716                                            StringRef Name = "") {
4717   auto SrcTy = Src->getType();
4718 
4719   // Case 1.
4720   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4721     return Builder.CreateBitCast(Src, DstTy, Name);
4722 
4723   // Case 2.
4724   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4725     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4726 
4727   // Case 3.
4728   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4729     // Case 3b.
4730     if (!DstTy->isIntegerTy())
4731       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4732     // Cases 3a and 3b.
4733     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4734   }
4735 
4736   // Case 4b.
4737   if (!SrcTy->isIntegerTy())
4738     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4739   // Cases 4a and 4b.
4740   return Builder.CreateIntToPtr(Src, DstTy, Name);
4741 }
4742 
4743 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4744   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4745   llvm::Type *DstTy = ConvertType(E->getType());
4746 
4747   llvm::Type *SrcTy = Src->getType();
4748   unsigned NumElementsSrc =
4749       isa<llvm::VectorType>(SrcTy)
4750           ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
4751           : 0;
4752   unsigned NumElementsDst =
4753       isa<llvm::VectorType>(DstTy)
4754           ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
4755           : 0;
4756 
4757   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4758   // vector to get a vec4, then a bitcast if the target type is different.
4759   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4760     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4761 
4762     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4763       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4764                                          DstTy);
4765     }
4766 
4767     Src->setName("astype");
4768     return Src;
4769   }
4770 
4771   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4772   // to vec4 if the original type is not vec4, then a shuffle vector to
4773   // get a vec3.
4774   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4775     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4776       auto *Vec4Ty = llvm::FixedVectorType::get(
4777           cast<llvm::VectorType>(DstTy)->getElementType(), 4);
4778       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4779                                          Vec4Ty);
4780     }
4781 
4782     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4783     Src->setName("astype");
4784     return Src;
4785   }
4786 
4787   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4788                                       Src, DstTy, "astype");
4789 }
4790 
4791 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4792   return CGF.EmitAtomicExpr(E).getScalarVal();
4793 }
4794 
4795 //===----------------------------------------------------------------------===//
4796 //                         Entry Point into this File
4797 //===----------------------------------------------------------------------===//
4798 
4799 /// Emit the computation of the specified expression of scalar type, ignoring
4800 /// the result.
4801 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4802   assert(E && hasScalarEvaluationKind(E->getType()) &&
4803          "Invalid scalar expression to emit");
4804 
4805   return ScalarExprEmitter(*this, IgnoreResultAssign)
4806       .Visit(const_cast<Expr *>(E));
4807 }
4808 
4809 /// Emit a conversion from the specified type to the specified destination type,
4810 /// both of which are LLVM scalar types.
4811 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4812                                              QualType DstTy,
4813                                              SourceLocation Loc) {
4814   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4815          "Invalid scalar expression to emit");
4816   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4817 }
4818 
4819 /// Emit a conversion from the specified complex type to the specified
4820 /// destination type, where the destination type is an LLVM scalar type.
4821 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4822                                                       QualType SrcTy,
4823                                                       QualType DstTy,
4824                                                       SourceLocation Loc) {
4825   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4826          "Invalid complex -> scalar conversion");
4827   return ScalarExprEmitter(*this)
4828       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4829 }
4830 
4831 
4832 llvm::Value *CodeGenFunction::
4833 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4834                         bool isInc, bool isPre) {
4835   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4836 }
4837 
4838 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4839   // object->isa or (*object).isa
4840   // Generate code as for: *(Class*)object
4841 
4842   Expr *BaseExpr = E->getBase();
4843   Address Addr = Address::invalid();
4844   if (BaseExpr->isPRValue()) {
4845     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4846   } else {
4847     Addr = EmitLValue(BaseExpr).getAddress(*this);
4848   }
4849 
4850   // Cast the address to Class*.
4851   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4852   return MakeAddrLValue(Addr, E->getType());
4853 }
4854 
4855 
4856 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4857                                             const CompoundAssignOperator *E) {
4858   ScalarExprEmitter Scalar(*this);
4859   Value *Result = nullptr;
4860   switch (E->getOpcode()) {
4861 #define COMPOUND_OP(Op)                                                       \
4862     case BO_##Op##Assign:                                                     \
4863       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4864                                              Result)
4865   COMPOUND_OP(Mul);
4866   COMPOUND_OP(Div);
4867   COMPOUND_OP(Rem);
4868   COMPOUND_OP(Add);
4869   COMPOUND_OP(Sub);
4870   COMPOUND_OP(Shl);
4871   COMPOUND_OP(Shr);
4872   COMPOUND_OP(And);
4873   COMPOUND_OP(Xor);
4874   COMPOUND_OP(Or);
4875 #undef COMPOUND_OP
4876 
4877   case BO_PtrMemD:
4878   case BO_PtrMemI:
4879   case BO_Mul:
4880   case BO_Div:
4881   case BO_Rem:
4882   case BO_Add:
4883   case BO_Sub:
4884   case BO_Shl:
4885   case BO_Shr:
4886   case BO_LT:
4887   case BO_GT:
4888   case BO_LE:
4889   case BO_GE:
4890   case BO_EQ:
4891   case BO_NE:
4892   case BO_Cmp:
4893   case BO_And:
4894   case BO_Xor:
4895   case BO_Or:
4896   case BO_LAnd:
4897   case BO_LOr:
4898   case BO_Assign:
4899   case BO_Comma:
4900     llvm_unreachable("Not valid compound assignment operators");
4901   }
4902 
4903   llvm_unreachable("Unhandled compound assignment operator");
4904 }
4905 
4906 struct GEPOffsetAndOverflow {
4907   // The total (signed) byte offset for the GEP.
4908   llvm::Value *TotalOffset;
4909   // The offset overflow flag - true if the total offset overflows.
4910   llvm::Value *OffsetOverflows;
4911 };
4912 
4913 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4914 /// and compute the total offset it applies from it's base pointer BasePtr.
4915 /// Returns offset in bytes and a boolean flag whether an overflow happened
4916 /// during evaluation.
4917 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4918                                                  llvm::LLVMContext &VMContext,
4919                                                  CodeGenModule &CGM,
4920                                                  CGBuilderTy &Builder) {
4921   const auto &DL = CGM.getDataLayout();
4922 
4923   // The total (signed) byte offset for the GEP.
4924   llvm::Value *TotalOffset = nullptr;
4925 
4926   // Was the GEP already reduced to a constant?
4927   if (isa<llvm::Constant>(GEPVal)) {
4928     // Compute the offset by casting both pointers to integers and subtracting:
4929     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4930     Value *BasePtr_int =
4931         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4932     Value *GEPVal_int =
4933         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4934     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4935     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4936   }
4937 
4938   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4939   assert(GEP->getPointerOperand() == BasePtr &&
4940          "BasePtr must be the the base of the GEP.");
4941   assert(GEP->isInBounds() && "Expected inbounds GEP");
4942 
4943   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4944 
4945   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4946   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4947   auto *SAddIntrinsic =
4948       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4949   auto *SMulIntrinsic =
4950       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4951 
4952   // The offset overflow flag - true if the total offset overflows.
4953   llvm::Value *OffsetOverflows = Builder.getFalse();
4954 
4955   /// Return the result of the given binary operation.
4956   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4957                   llvm::Value *RHS) -> llvm::Value * {
4958     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4959 
4960     // If the operands are constants, return a constant result.
4961     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4962       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4963         llvm::APInt N;
4964         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4965                                                   /*Signed=*/true, N);
4966         if (HasOverflow)
4967           OffsetOverflows = Builder.getTrue();
4968         return llvm::ConstantInt::get(VMContext, N);
4969       }
4970     }
4971 
4972     // Otherwise, compute the result with checked arithmetic.
4973     auto *ResultAndOverflow = Builder.CreateCall(
4974         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4975     OffsetOverflows = Builder.CreateOr(
4976         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4977     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4978   };
4979 
4980   // Determine the total byte offset by looking at each GEP operand.
4981   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4982        GTI != GTE; ++GTI) {
4983     llvm::Value *LocalOffset;
4984     auto *Index = GTI.getOperand();
4985     // Compute the local offset contributed by this indexing step:
4986     if (auto *STy = GTI.getStructTypeOrNull()) {
4987       // For struct indexing, the local offset is the byte position of the
4988       // specified field.
4989       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4990       LocalOffset = llvm::ConstantInt::get(
4991           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4992     } else {
4993       // Otherwise this is array-like indexing. The local offset is the index
4994       // multiplied by the element size.
4995       auto *ElementSize = llvm::ConstantInt::get(
4996           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4997       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4998       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4999     }
5000 
5001     // If this is the first offset, set it as the total offset. Otherwise, add
5002     // the local offset into the running total.
5003     if (!TotalOffset || TotalOffset == Zero)
5004       TotalOffset = LocalOffset;
5005     else
5006       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
5007   }
5008 
5009   return {TotalOffset, OffsetOverflows};
5010 }
5011 
5012 Value *
5013 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
5014                                         bool SignedIndices, bool IsSubtraction,
5015                                         SourceLocation Loc, const Twine &Name) {
5016   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
5017 
5018   // If the pointer overflow sanitizer isn't enabled, do nothing.
5019   if (!SanOpts.has(SanitizerKind::PointerOverflow))
5020     return GEPVal;
5021 
5022   llvm::Type *PtrTy = Ptr->getType();
5023 
5024   // Perform nullptr-and-offset check unless the nullptr is defined.
5025   bool PerformNullCheck = !NullPointerIsDefined(
5026       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
5027   // Check for overflows unless the GEP got constant-folded,
5028   // and only in the default address space
5029   bool PerformOverflowCheck =
5030       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
5031 
5032   if (!(PerformNullCheck || PerformOverflowCheck))
5033     return GEPVal;
5034 
5035   const auto &DL = CGM.getDataLayout();
5036 
5037   SanitizerScope SanScope(this);
5038   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
5039 
5040   GEPOffsetAndOverflow EvaluatedGEP =
5041       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
5042 
5043   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
5044           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
5045          "If the offset got constant-folded, we don't expect that there was an "
5046          "overflow.");
5047 
5048   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5049 
5050   // Common case: if the total offset is zero, and we are using C++ semantics,
5051   // where nullptr+0 is defined, don't emit a check.
5052   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
5053     return GEPVal;
5054 
5055   // Now that we've computed the total offset, add it to the base pointer (with
5056   // wrapping semantics).
5057   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
5058   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
5059 
5060   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
5061 
5062   if (PerformNullCheck) {
5063     // In C++, if the base pointer evaluates to a null pointer value,
5064     // the only valid  pointer this inbounds GEP can produce is also
5065     // a null pointer, so the offset must also evaluate to zero.
5066     // Likewise, if we have non-zero base pointer, we can not get null pointer
5067     // as a result, so the offset can not be -intptr_t(BasePtr).
5068     // In other words, both pointers are either null, or both are non-null,
5069     // or the behaviour is undefined.
5070     //
5071     // C, however, is more strict in this regard, and gives more
5072     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
5073     // So both the input to the 'gep inbounds' AND the output must not be null.
5074     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
5075     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
5076     auto *Valid =
5077         CGM.getLangOpts().CPlusPlus
5078             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
5079             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
5080     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
5081   }
5082 
5083   if (PerformOverflowCheck) {
5084     // The GEP is valid if:
5085     // 1) The total offset doesn't overflow, and
5086     // 2) The sign of the difference between the computed address and the base
5087     // pointer matches the sign of the total offset.
5088     llvm::Value *ValidGEP;
5089     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
5090     if (SignedIndices) {
5091       // GEP is computed as `unsigned base + signed offset`, therefore:
5092       // * If offset was positive, then the computed pointer can not be
5093       //   [unsigned] less than the base pointer, unless it overflowed.
5094       // * If offset was negative, then the computed pointer can not be
5095       //   [unsigned] greater than the bas pointere, unless it overflowed.
5096       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5097       auto *PosOrZeroOffset =
5098           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
5099       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
5100       ValidGEP =
5101           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
5102     } else if (!IsSubtraction) {
5103       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
5104       // computed pointer can not be [unsigned] less than base pointer,
5105       // unless there was an overflow.
5106       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5107       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5108     } else {
5109       // GEP is computed as `unsigned base - unsigned offset`, therefore the
5110       // computed pointer can not be [unsigned] greater than base pointer,
5111       // unless there was an overflow.
5112       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5113       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5114     }
5115     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5116     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
5117   }
5118 
5119   assert(!Checks.empty() && "Should have produced some checks.");
5120 
5121   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5122   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5123   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5124   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5125 
5126   return GEPVal;
5127 }
5128