1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Frontend/CodeGenOptions.h"
15 #include "CodeGenFunction.h"
16 #include "CGCXXABI.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "CGDebugInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "llvm/Constants.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Intrinsics.h"
29 #include "llvm/Module.h"
30 #include "llvm/Support/CFG.h"
31 #include "llvm/Target/TargetData.h"
32 #include <cstdarg>
33 
34 using namespace clang;
35 using namespace CodeGen;
36 using llvm::Value;
37 
38 //===----------------------------------------------------------------------===//
39 //                         Scalar Expression Emitter
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 struct BinOpInfo {
44   Value *LHS;
45   Value *RHS;
46   QualType Ty;  // Computation Type.
47   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
49 };
50 
51 static bool MustVisitNullValue(const Expr *E) {
52   // If a null pointer expression's type is the C++0x nullptr_t, then
53   // it's not necessarily a simple constant and it must be evaluated
54   // for its potential side effects.
55   return E->getType()->isNullPtrType();
56 }
57 
58 class ScalarExprEmitter
59   : public StmtVisitor<ScalarExprEmitter, Value*> {
60   CodeGenFunction &CGF;
61   CGBuilderTy &Builder;
62   bool IgnoreResultAssign;
63   llvm::LLVMContext &VMContext;
64 public:
65 
66   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68       VMContext(cgf.getLLVMContext()) {
69   }
70 
71   //===--------------------------------------------------------------------===//
72   //                               Utilities
73   //===--------------------------------------------------------------------===//
74 
75   bool TestAndClearIgnoreResultAssign() {
76     bool I = IgnoreResultAssign;
77     IgnoreResultAssign = false;
78     return I;
79   }
80 
81   const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
82   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
83   LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84 
85   Value *EmitLoadOfLValue(LValue LV, QualType T) {
86     return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
87   }
88 
89   /// EmitLoadOfLValue - Given an expression with complex type that represents a
90   /// value l-value, this method emits the address of the l-value, then loads
91   /// and returns the result.
92   Value *EmitLoadOfLValue(const Expr *E) {
93     return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
94   }
95 
96   /// EmitConversionToBool - Convert the specified expression value to a
97   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
98   Value *EmitConversionToBool(Value *Src, QualType DstTy);
99 
100   /// EmitScalarConversion - Emit a conversion from the specified type to the
101   /// specified destination type, both of which are LLVM scalar types.
102   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103 
104   /// EmitComplexToScalarConversion - Emit a conversion from the specified
105   /// complex type to the specified destination type, where the destination type
106   /// is an LLVM scalar type.
107   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108                                        QualType SrcTy, QualType DstTy);
109 
110   /// EmitNullValue - Emit a value that corresponds to null for the given type.
111   Value *EmitNullValue(QualType Ty);
112 
113   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
114   Value *EmitFloatToBoolConversion(Value *V) {
115     // Compare against 0.0 for fp scalars.
116     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
117     return Builder.CreateFCmpUNE(V, Zero, "tobool");
118   }
119 
120   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
121   Value *EmitPointerToBoolConversion(Value *V) {
122     Value *Zero = llvm::ConstantPointerNull::get(
123                                       cast<llvm::PointerType>(V->getType()));
124     return Builder.CreateICmpNE(V, Zero, "tobool");
125   }
126 
127   Value *EmitIntToBoolConversion(Value *V) {
128     // Because of the type rules of C, we often end up computing a
129     // logical value, then zero extending it to int, then wanting it
130     // as a logical value again.  Optimize this common case.
131     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
132       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
133         Value *Result = ZI->getOperand(0);
134         // If there aren't any more uses, zap the instruction to save space.
135         // Note that there can be more uses, for example if this
136         // is the result of an assignment.
137         if (ZI->use_empty())
138           ZI->eraseFromParent();
139         return Result;
140       }
141     }
142 
143     return Builder.CreateIsNotNull(V, "tobool");
144   }
145 
146   //===--------------------------------------------------------------------===//
147   //                            Visitor Methods
148   //===--------------------------------------------------------------------===//
149 
150   Value *Visit(Expr *E) {
151     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
152   }
153 
154   Value *VisitStmt(Stmt *S) {
155     S->dump(CGF.getContext().getSourceManager());
156     assert(0 && "Stmt can't have complex result type!");
157     return 0;
158   }
159   Value *VisitExpr(Expr *S);
160 
161   Value *VisitParenExpr(ParenExpr *PE) {
162     return Visit(PE->getSubExpr());
163   }
164   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
165     return Visit(GE->getResultExpr());
166   }
167 
168   // Leaves.
169   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
170     return Builder.getInt(E->getValue());
171   }
172   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
173     return llvm::ConstantFP::get(VMContext, E->getValue());
174   }
175   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
176     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
177   }
178   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
179     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
180   }
181   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
182     return EmitNullValue(E->getType());
183   }
184   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
185     return EmitNullValue(E->getType());
186   }
187   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
188   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
189   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
190     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
191     return Builder.CreateBitCast(V, ConvertType(E->getType()));
192   }
193 
194   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
195     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
196   }
197 
198   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
199     if (E->isGLValue())
200       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getType());
201 
202     // Otherwise, assume the mapping is the scalar directly.
203     return CGF.getOpaqueRValueMapping(E).getScalarVal();
204   }
205 
206   // l-values.
207   Value *VisitDeclRefExpr(DeclRefExpr *E) {
208     Expr::EvalResult Result;
209     if (!E->Evaluate(Result, CGF.getContext()))
210       return EmitLoadOfLValue(E);
211 
212     assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
213 
214     llvm::Constant *C;
215     if (Result.Val.isInt())
216       C = Builder.getInt(Result.Val.getInt());
217     else if (Result.Val.isFloat())
218       C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
219     else
220       return EmitLoadOfLValue(E);
221 
222     // Make sure we emit a debug reference to the global variable.
223     if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
224       if (!CGF.getContext().DeclMustBeEmitted(VD))
225         CGF.EmitDeclRefExprDbgValue(E, C);
226     } else if (isa<EnumConstantDecl>(E->getDecl())) {
227       CGF.EmitDeclRefExprDbgValue(E, C);
228     }
229 
230     return C;
231   }
232   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
233     return CGF.EmitObjCSelectorExpr(E);
234   }
235   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
236     return CGF.EmitObjCProtocolExpr(E);
237   }
238   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
239     return EmitLoadOfLValue(E);
240   }
241   Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
242     assert(E->getObjectKind() == OK_Ordinary &&
243            "reached property reference without lvalue-to-rvalue");
244     return EmitLoadOfLValue(E);
245   }
246   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
247     if (E->getMethodDecl() &&
248         E->getMethodDecl()->getResultType()->isReferenceType())
249       return EmitLoadOfLValue(E);
250     return CGF.EmitObjCMessageExpr(E).getScalarVal();
251   }
252 
253   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
254     LValue LV = CGF.EmitObjCIsaExpr(E);
255     Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
256     return V;
257   }
258 
259   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
260   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
261   Value *VisitMemberExpr(MemberExpr *E);
262   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
263   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
264     return EmitLoadOfLValue(E);
265   }
266 
267   Value *VisitInitListExpr(InitListExpr *E);
268 
269   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
270     return CGF.CGM.EmitNullConstant(E->getType());
271   }
272   Value *VisitCastExpr(CastExpr *E) {
273     // Make sure to evaluate VLA bounds now so that we have them for later.
274     if (E->getType()->isVariablyModifiedType())
275       CGF.EmitVLASize(E->getType());
276 
277     return EmitCastExpr(E);
278   }
279   Value *EmitCastExpr(CastExpr *E);
280 
281   Value *VisitCallExpr(const CallExpr *E) {
282     if (E->getCallReturnType()->isReferenceType())
283       return EmitLoadOfLValue(E);
284 
285     return CGF.EmitCallExpr(E).getScalarVal();
286   }
287 
288   Value *VisitStmtExpr(const StmtExpr *E);
289 
290   Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
291 
292   // Unary Operators.
293   Value *VisitUnaryPostDec(const UnaryOperator *E) {
294     LValue LV = EmitLValue(E->getSubExpr());
295     return EmitScalarPrePostIncDec(E, LV, false, false);
296   }
297   Value *VisitUnaryPostInc(const UnaryOperator *E) {
298     LValue LV = EmitLValue(E->getSubExpr());
299     return EmitScalarPrePostIncDec(E, LV, true, false);
300   }
301   Value *VisitUnaryPreDec(const UnaryOperator *E) {
302     LValue LV = EmitLValue(E->getSubExpr());
303     return EmitScalarPrePostIncDec(E, LV, false, true);
304   }
305   Value *VisitUnaryPreInc(const UnaryOperator *E) {
306     LValue LV = EmitLValue(E->getSubExpr());
307     return EmitScalarPrePostIncDec(E, LV, true, true);
308   }
309 
310   llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
311                                                llvm::Value *InVal,
312                                                llvm::Value *NextVal,
313                                                bool IsInc);
314 
315   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
316                                        bool isInc, bool isPre);
317 
318 
319   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
320     if (isa<MemberPointerType>(E->getType())) // never sugared
321       return CGF.CGM.getMemberPointerConstant(E);
322 
323     return EmitLValue(E->getSubExpr()).getAddress();
324   }
325   Value *VisitUnaryDeref(const UnaryOperator *E) {
326     if (E->getType()->isVoidType())
327       return Visit(E->getSubExpr()); // the actual value should be unused
328     return EmitLoadOfLValue(E);
329   }
330   Value *VisitUnaryPlus(const UnaryOperator *E) {
331     // This differs from gcc, though, most likely due to a bug in gcc.
332     TestAndClearIgnoreResultAssign();
333     return Visit(E->getSubExpr());
334   }
335   Value *VisitUnaryMinus    (const UnaryOperator *E);
336   Value *VisitUnaryNot      (const UnaryOperator *E);
337   Value *VisitUnaryLNot     (const UnaryOperator *E);
338   Value *VisitUnaryReal     (const UnaryOperator *E);
339   Value *VisitUnaryImag     (const UnaryOperator *E);
340   Value *VisitUnaryExtension(const UnaryOperator *E) {
341     return Visit(E->getSubExpr());
342   }
343 
344   // C++
345   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
346     return Visit(DAE->getExpr());
347   }
348   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
349     return CGF.LoadCXXThis();
350   }
351 
352   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
353     return CGF.EmitExprWithCleanups(E).getScalarVal();
354   }
355   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
356     return CGF.EmitCXXNewExpr(E);
357   }
358   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
359     CGF.EmitCXXDeleteExpr(E);
360     return 0;
361   }
362   Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
363     return Builder.getInt1(E->getValue());
364   }
365 
366   Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
367     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
368   }
369 
370   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
371     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
372   }
373 
374   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
375     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
376   }
377 
378   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
379     // C++ [expr.pseudo]p1:
380     //   The result shall only be used as the operand for the function call
381     //   operator (), and the result of such a call has type void. The only
382     //   effect is the evaluation of the postfix-expression before the dot or
383     //   arrow.
384     CGF.EmitScalarExpr(E->getBase());
385     return 0;
386   }
387 
388   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
389     return EmitNullValue(E->getType());
390   }
391 
392   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
393     CGF.EmitCXXThrowExpr(E);
394     return 0;
395   }
396 
397   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
398     return Builder.getInt1(E->getValue());
399   }
400 
401   // Binary Operators.
402   Value *EmitMul(const BinOpInfo &Ops) {
403     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
404       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
405       case LangOptions::SOB_Undefined:
406         return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
407       case LangOptions::SOB_Defined:
408         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
409       case LangOptions::SOB_Trapping:
410         return EmitOverflowCheckedBinOp(Ops);
411       }
412     }
413 
414     if (Ops.LHS->getType()->isFPOrFPVectorTy())
415       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
416     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
417   }
418   bool isTrapvOverflowBehavior() {
419     return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
420                == LangOptions::SOB_Trapping;
421   }
422   /// Create a binary op that checks for overflow.
423   /// Currently only supports +, - and *.
424   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
425   // Emit the overflow BB when -ftrapv option is activated.
426   void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
427     Builder.SetInsertPoint(overflowBB);
428     llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
429     Builder.CreateCall(Trap);
430     Builder.CreateUnreachable();
431   }
432   // Check for undefined division and modulus behaviors.
433   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
434                                                   llvm::Value *Zero,bool isDiv);
435   Value *EmitDiv(const BinOpInfo &Ops);
436   Value *EmitRem(const BinOpInfo &Ops);
437   Value *EmitAdd(const BinOpInfo &Ops);
438   Value *EmitSub(const BinOpInfo &Ops);
439   Value *EmitShl(const BinOpInfo &Ops);
440   Value *EmitShr(const BinOpInfo &Ops);
441   Value *EmitAnd(const BinOpInfo &Ops) {
442     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
443   }
444   Value *EmitXor(const BinOpInfo &Ops) {
445     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
446   }
447   Value *EmitOr (const BinOpInfo &Ops) {
448     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
449   }
450 
451   BinOpInfo EmitBinOps(const BinaryOperator *E);
452   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
453                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
454                                   Value *&Result);
455 
456   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
457                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
458 
459   // Binary operators and binary compound assignment operators.
460 #define HANDLEBINOP(OP) \
461   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
462     return Emit ## OP(EmitBinOps(E));                                      \
463   }                                                                        \
464   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
465     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
466   }
467   HANDLEBINOP(Mul)
468   HANDLEBINOP(Div)
469   HANDLEBINOP(Rem)
470   HANDLEBINOP(Add)
471   HANDLEBINOP(Sub)
472   HANDLEBINOP(Shl)
473   HANDLEBINOP(Shr)
474   HANDLEBINOP(And)
475   HANDLEBINOP(Xor)
476   HANDLEBINOP(Or)
477 #undef HANDLEBINOP
478 
479   // Comparisons.
480   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
481                      unsigned SICmpOpc, unsigned FCmpOpc);
482 #define VISITCOMP(CODE, UI, SI, FP) \
483     Value *VisitBin##CODE(const BinaryOperator *E) { \
484       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
485                          llvm::FCmpInst::FP); }
486   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
487   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
488   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
489   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
490   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
491   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
492 #undef VISITCOMP
493 
494   Value *VisitBinAssign     (const BinaryOperator *E);
495 
496   Value *VisitBinLAnd       (const BinaryOperator *E);
497   Value *VisitBinLOr        (const BinaryOperator *E);
498   Value *VisitBinComma      (const BinaryOperator *E);
499 
500   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
501   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
502 
503   // Other Operators.
504   Value *VisitBlockExpr(const BlockExpr *BE);
505   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
506   Value *VisitChooseExpr(ChooseExpr *CE);
507   Value *VisitVAArgExpr(VAArgExpr *VE);
508   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
509     return CGF.EmitObjCStringLiteral(E);
510   }
511 };
512 }  // end anonymous namespace.
513 
514 //===----------------------------------------------------------------------===//
515 //                                Utilities
516 //===----------------------------------------------------------------------===//
517 
518 /// EmitConversionToBool - Convert the specified expression value to a
519 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
520 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
521   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
522 
523   if (SrcType->isRealFloatingType())
524     return EmitFloatToBoolConversion(Src);
525 
526   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
527     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
528 
529   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
530          "Unknown scalar type to convert");
531 
532   if (isa<llvm::IntegerType>(Src->getType()))
533     return EmitIntToBoolConversion(Src);
534 
535   assert(isa<llvm::PointerType>(Src->getType()));
536   return EmitPointerToBoolConversion(Src);
537 }
538 
539 /// EmitScalarConversion - Emit a conversion from the specified type to the
540 /// specified destination type, both of which are LLVM scalar types.
541 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
542                                                QualType DstType) {
543   SrcType = CGF.getContext().getCanonicalType(SrcType);
544   DstType = CGF.getContext().getCanonicalType(DstType);
545   if (SrcType == DstType) return Src;
546 
547   if (DstType->isVoidType()) return 0;
548 
549   // Handle conversions to bool first, they are special: comparisons against 0.
550   if (DstType->isBooleanType())
551     return EmitConversionToBool(Src, SrcType);
552 
553   const llvm::Type *DstTy = ConvertType(DstType);
554 
555   // Ignore conversions like int -> uint.
556   if (Src->getType() == DstTy)
557     return Src;
558 
559   // Handle pointer conversions next: pointers can only be converted to/from
560   // other pointers and integers. Check for pointer types in terms of LLVM, as
561   // some native types (like Obj-C id) may map to a pointer type.
562   if (isa<llvm::PointerType>(DstTy)) {
563     // The source value may be an integer, or a pointer.
564     if (isa<llvm::PointerType>(Src->getType()))
565       return Builder.CreateBitCast(Src, DstTy, "conv");
566 
567     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
568     // First, convert to the correct width so that we control the kind of
569     // extension.
570     const llvm::Type *MiddleTy = CGF.IntPtrTy;
571     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
572     llvm::Value* IntResult =
573         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
574     // Then, cast to pointer.
575     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
576   }
577 
578   if (isa<llvm::PointerType>(Src->getType())) {
579     // Must be an ptr to int cast.
580     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
581     return Builder.CreatePtrToInt(Src, DstTy, "conv");
582   }
583 
584   // A scalar can be splatted to an extended vector of the same element type
585   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
586     // Cast the scalar to element type
587     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
588     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
589 
590     // Insert the element in element zero of an undef vector
591     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
592     llvm::Value *Idx = Builder.getInt32(0);
593     UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
594 
595     // Splat the element across to all elements
596     llvm::SmallVector<llvm::Constant*, 16> Args;
597     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
598     for (unsigned i = 0; i != NumElements; ++i)
599       Args.push_back(Builder.getInt32(0));
600 
601     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
602     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
603     return Yay;
604   }
605 
606   // Allow bitcast from vector to integer/fp of the same size.
607   if (isa<llvm::VectorType>(Src->getType()) ||
608       isa<llvm::VectorType>(DstTy))
609     return Builder.CreateBitCast(Src, DstTy, "conv");
610 
611   // Finally, we have the arithmetic types: real int/float.
612   if (isa<llvm::IntegerType>(Src->getType())) {
613     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
614     if (isa<llvm::IntegerType>(DstTy))
615       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
616     else if (InputSigned)
617       return Builder.CreateSIToFP(Src, DstTy, "conv");
618     else
619       return Builder.CreateUIToFP(Src, DstTy, "conv");
620   }
621 
622   assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
623   if (isa<llvm::IntegerType>(DstTy)) {
624     if (DstType->isSignedIntegerOrEnumerationType())
625       return Builder.CreateFPToSI(Src, DstTy, "conv");
626     else
627       return Builder.CreateFPToUI(Src, DstTy, "conv");
628   }
629 
630   assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
631   if (DstTy->getTypeID() < Src->getType()->getTypeID())
632     return Builder.CreateFPTrunc(Src, DstTy, "conv");
633   else
634     return Builder.CreateFPExt(Src, DstTy, "conv");
635 }
636 
637 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
638 /// type to the specified destination type, where the destination type is an
639 /// LLVM scalar type.
640 Value *ScalarExprEmitter::
641 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
642                               QualType SrcTy, QualType DstTy) {
643   // Get the source element type.
644   SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
645 
646   // Handle conversions to bool first, they are special: comparisons against 0.
647   if (DstTy->isBooleanType()) {
648     //  Complex != 0  -> (Real != 0) | (Imag != 0)
649     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
650     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
651     return Builder.CreateOr(Src.first, Src.second, "tobool");
652   }
653 
654   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
655   // the imaginary part of the complex value is discarded and the value of the
656   // real part is converted according to the conversion rules for the
657   // corresponding real type.
658   return EmitScalarConversion(Src.first, SrcTy, DstTy);
659 }
660 
661 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
662   if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
663     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
664 
665   return llvm::Constant::getNullValue(ConvertType(Ty));
666 }
667 
668 //===----------------------------------------------------------------------===//
669 //                            Visitor Methods
670 //===----------------------------------------------------------------------===//
671 
672 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
673   CGF.ErrorUnsupported(E, "scalar expression");
674   if (E->getType()->isVoidType())
675     return 0;
676   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
677 }
678 
679 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
680   // Vector Mask Case
681   if (E->getNumSubExprs() == 2 ||
682       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
683     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
684     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
685     Value *Mask;
686 
687     const llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
688     unsigned LHSElts = LTy->getNumElements();
689 
690     if (E->getNumSubExprs() == 3) {
691       Mask = CGF.EmitScalarExpr(E->getExpr(2));
692 
693       // Shuffle LHS & RHS into one input vector.
694       llvm::SmallVector<llvm::Constant*, 32> concat;
695       for (unsigned i = 0; i != LHSElts; ++i) {
696         concat.push_back(Builder.getInt32(2*i));
697         concat.push_back(Builder.getInt32(2*i+1));
698       }
699 
700       Value* CV = llvm::ConstantVector::get(concat);
701       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
702       LHSElts *= 2;
703     } else {
704       Mask = RHS;
705     }
706 
707     const llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
708     llvm::Constant* EltMask;
709 
710     // Treat vec3 like vec4.
711     if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
712       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
713                                        (1 << llvm::Log2_32(LHSElts+2))-1);
714     else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
715       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
716                                        (1 << llvm::Log2_32(LHSElts+1))-1);
717     else
718       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
719                                        (1 << llvm::Log2_32(LHSElts))-1);
720 
721     // Mask off the high bits of each shuffle index.
722     llvm::SmallVector<llvm::Constant *, 32> MaskV;
723     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
724       MaskV.push_back(EltMask);
725 
726     Value* MaskBits = llvm::ConstantVector::get(MaskV);
727     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
728 
729     // newv = undef
730     // mask = mask & maskbits
731     // for each elt
732     //   n = extract mask i
733     //   x = extract val n
734     //   newv = insert newv, x, i
735     const llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
736                                                         MTy->getNumElements());
737     Value* NewV = llvm::UndefValue::get(RTy);
738     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
739       Value *Indx = Builder.getInt32(i);
740       Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
741       Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
742 
743       // Handle vec3 special since the index will be off by one for the RHS.
744       if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
745         Value *cmpIndx, *newIndx;
746         cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
747                                         "cmp_shuf_idx");
748         newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
749         Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
750       }
751       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
752       NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
753     }
754     return NewV;
755   }
756 
757   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
758   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
759 
760   // Handle vec3 special since the index will be off by one for the RHS.
761   const llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
762   llvm::SmallVector<llvm::Constant*, 32> indices;
763   for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
764     unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
765     if (VTy->getNumElements() == 3 && Idx > 3)
766       Idx -= 1;
767     indices.push_back(Builder.getInt32(Idx));
768   }
769 
770   Value *SV = llvm::ConstantVector::get(indices);
771   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
772 }
773 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
774   Expr::EvalResult Result;
775   if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
776     if (E->isArrow())
777       CGF.EmitScalarExpr(E->getBase());
778     else
779       EmitLValue(E->getBase());
780     return Builder.getInt(Result.Val.getInt());
781   }
782 
783   // Emit debug info for aggregate now, if it was delayed to reduce
784   // debug info size.
785   CGDebugInfo *DI = CGF.getDebugInfo();
786   if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
787     QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
788     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
789       if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
790         DI->getOrCreateRecordType(PTy->getPointeeType(),
791                                   M->getParent()->getLocation());
792   }
793   return EmitLoadOfLValue(E);
794 }
795 
796 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
797   TestAndClearIgnoreResultAssign();
798 
799   // Emit subscript expressions in rvalue context's.  For most cases, this just
800   // loads the lvalue formed by the subscript expr.  However, we have to be
801   // careful, because the base of a vector subscript is occasionally an rvalue,
802   // so we can't get it as an lvalue.
803   if (!E->getBase()->getType()->isVectorType())
804     return EmitLoadOfLValue(E);
805 
806   // Handle the vector case.  The base must be a vector, the index must be an
807   // integer value.
808   Value *Base = Visit(E->getBase());
809   Value *Idx  = Visit(E->getIdx());
810   bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType();
811   Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
812   return Builder.CreateExtractElement(Base, Idx, "vecext");
813 }
814 
815 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
816                                   unsigned Off, const llvm::Type *I32Ty) {
817   int MV = SVI->getMaskValue(Idx);
818   if (MV == -1)
819     return llvm::UndefValue::get(I32Ty);
820   return llvm::ConstantInt::get(I32Ty, Off+MV);
821 }
822 
823 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
824   bool Ignore = TestAndClearIgnoreResultAssign();
825   (void)Ignore;
826   assert (Ignore == false && "init list ignored");
827   unsigned NumInitElements = E->getNumInits();
828 
829   if (E->hadArrayRangeDesignator())
830     CGF.ErrorUnsupported(E, "GNU array range designator extension");
831 
832   const llvm::VectorType *VType =
833     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
834 
835   // We have a scalar in braces. Just use the first element.
836   if (!VType)
837     return Visit(E->getInit(0));
838 
839   unsigned ResElts = VType->getNumElements();
840 
841   // Loop over initializers collecting the Value for each, and remembering
842   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
843   // us to fold the shuffle for the swizzle into the shuffle for the vector
844   // initializer, since LLVM optimizers generally do not want to touch
845   // shuffles.
846   unsigned CurIdx = 0;
847   bool VIsUndefShuffle = false;
848   llvm::Value *V = llvm::UndefValue::get(VType);
849   for (unsigned i = 0; i != NumInitElements; ++i) {
850     Expr *IE = E->getInit(i);
851     Value *Init = Visit(IE);
852     llvm::SmallVector<llvm::Constant*, 16> Args;
853 
854     const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
855 
856     // Handle scalar elements.  If the scalar initializer is actually one
857     // element of a different vector of the same width, use shuffle instead of
858     // extract+insert.
859     if (!VVT) {
860       if (isa<ExtVectorElementExpr>(IE)) {
861         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
862 
863         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
864           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
865           Value *LHS = 0, *RHS = 0;
866           if (CurIdx == 0) {
867             // insert into undef -> shuffle (src, undef)
868             Args.push_back(C);
869             for (unsigned j = 1; j != ResElts; ++j)
870               Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
871 
872             LHS = EI->getVectorOperand();
873             RHS = V;
874             VIsUndefShuffle = true;
875           } else if (VIsUndefShuffle) {
876             // insert into undefshuffle && size match -> shuffle (v, src)
877             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
878             for (unsigned j = 0; j != CurIdx; ++j)
879               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
880             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
881             for (unsigned j = CurIdx + 1; j != ResElts; ++j)
882               Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
883 
884             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
885             RHS = EI->getVectorOperand();
886             VIsUndefShuffle = false;
887           }
888           if (!Args.empty()) {
889             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
890             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
891             ++CurIdx;
892             continue;
893           }
894         }
895       }
896       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
897                                       "vecinit");
898       VIsUndefShuffle = false;
899       ++CurIdx;
900       continue;
901     }
902 
903     unsigned InitElts = VVT->getNumElements();
904 
905     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
906     // input is the same width as the vector being constructed, generate an
907     // optimized shuffle of the swizzle input into the result.
908     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
909     if (isa<ExtVectorElementExpr>(IE)) {
910       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
911       Value *SVOp = SVI->getOperand(0);
912       const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
913 
914       if (OpTy->getNumElements() == ResElts) {
915         for (unsigned j = 0; j != CurIdx; ++j) {
916           // If the current vector initializer is a shuffle with undef, merge
917           // this shuffle directly into it.
918           if (VIsUndefShuffle) {
919             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
920                                       CGF.Int32Ty));
921           } else {
922             Args.push_back(Builder.getInt32(j));
923           }
924         }
925         for (unsigned j = 0, je = InitElts; j != je; ++j)
926           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
927         for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
928           Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
929 
930         if (VIsUndefShuffle)
931           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
932 
933         Init = SVOp;
934       }
935     }
936 
937     // Extend init to result vector length, and then shuffle its contribution
938     // to the vector initializer into V.
939     if (Args.empty()) {
940       for (unsigned j = 0; j != InitElts; ++j)
941         Args.push_back(Builder.getInt32(j));
942       for (unsigned j = InitElts; j != ResElts; ++j)
943         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
944       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
945       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
946                                          Mask, "vext");
947 
948       Args.clear();
949       for (unsigned j = 0; j != CurIdx; ++j)
950         Args.push_back(Builder.getInt32(j));
951       for (unsigned j = 0; j != InitElts; ++j)
952         Args.push_back(Builder.getInt32(j+Offset));
953       for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
954         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
955     }
956 
957     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
958     // merging subsequent shuffles into this one.
959     if (CurIdx == 0)
960       std::swap(V, Init);
961     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
962     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
963     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
964     CurIdx += InitElts;
965   }
966 
967   // FIXME: evaluate codegen vs. shuffling against constant null vector.
968   // Emit remaining default initializers.
969   const llvm::Type *EltTy = VType->getElementType();
970 
971   // Emit remaining default initializers
972   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
973     Value *Idx = Builder.getInt32(CurIdx);
974     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
975     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
976   }
977   return V;
978 }
979 
980 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
981   const Expr *E = CE->getSubExpr();
982 
983   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
984     return false;
985 
986   if (isa<CXXThisExpr>(E)) {
987     // We always assume that 'this' is never null.
988     return false;
989   }
990 
991   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
992     // And that glvalue casts are never null.
993     if (ICE->getValueKind() != VK_RValue)
994       return false;
995   }
996 
997   return true;
998 }
999 
1000 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1001 // have to handle a more broad range of conversions than explicit casts, as they
1002 // handle things like function to ptr-to-function decay etc.
1003 Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
1004   Expr *E = CE->getSubExpr();
1005   QualType DestTy = CE->getType();
1006   CastKind Kind = CE->getCastKind();
1007 
1008   if (!DestTy->isVoidType())
1009     TestAndClearIgnoreResultAssign();
1010 
1011   // Since almost all cast kinds apply to scalars, this switch doesn't have
1012   // a default case, so the compiler will warn on a missing case.  The cases
1013   // are in the same order as in the CastKind enum.
1014   switch (Kind) {
1015   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1016 
1017   case CK_LValueBitCast:
1018   case CK_ObjCObjectLValueCast: {
1019     Value *V = EmitLValue(E).getAddress();
1020     V = Builder.CreateBitCast(V,
1021                           ConvertType(CGF.getContext().getPointerType(DestTy)));
1022     return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), DestTy);
1023   }
1024 
1025   case CK_AnyPointerToObjCPointerCast:
1026   case CK_AnyPointerToBlockPointerCast:
1027   case CK_BitCast: {
1028     Value *Src = Visit(const_cast<Expr*>(E));
1029     return Builder.CreateBitCast(Src, ConvertType(DestTy));
1030   }
1031   case CK_NoOp:
1032   case CK_UserDefinedConversion:
1033     return Visit(const_cast<Expr*>(E));
1034 
1035   case CK_BaseToDerived: {
1036     const CXXRecordDecl *DerivedClassDecl =
1037       DestTy->getCXXRecordDeclForPointerType();
1038 
1039     return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1040                                         CE->path_begin(), CE->path_end(),
1041                                         ShouldNullCheckClassCastValue(CE));
1042   }
1043   case CK_UncheckedDerivedToBase:
1044   case CK_DerivedToBase: {
1045     const RecordType *DerivedClassTy =
1046       E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1047     CXXRecordDecl *DerivedClassDecl =
1048       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1049 
1050     return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1051                                      CE->path_begin(), CE->path_end(),
1052                                      ShouldNullCheckClassCastValue(CE));
1053   }
1054   case CK_Dynamic: {
1055     Value *V = Visit(const_cast<Expr*>(E));
1056     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1057     return CGF.EmitDynamicCast(V, DCE);
1058   }
1059 
1060   case CK_ArrayToPointerDecay: {
1061     assert(E->getType()->isArrayType() &&
1062            "Array to pointer decay must have array source type!");
1063 
1064     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1065 
1066     // Note that VLA pointers are always decayed, so we don't need to do
1067     // anything here.
1068     if (!E->getType()->isVariableArrayType()) {
1069       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1070       assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1071                                  ->getElementType()) &&
1072              "Expected pointer to array");
1073       V = Builder.CreateStructGEP(V, 0, "arraydecay");
1074     }
1075 
1076     return V;
1077   }
1078   case CK_FunctionToPointerDecay:
1079     return EmitLValue(E).getAddress();
1080 
1081   case CK_NullToPointer:
1082     if (MustVisitNullValue(E))
1083       (void) Visit(E);
1084 
1085     return llvm::ConstantPointerNull::get(
1086                                cast<llvm::PointerType>(ConvertType(DestTy)));
1087 
1088   case CK_NullToMemberPointer: {
1089     if (MustVisitNullValue(E))
1090       (void) Visit(E);
1091 
1092     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1093     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1094   }
1095 
1096   case CK_BaseToDerivedMemberPointer:
1097   case CK_DerivedToBaseMemberPointer: {
1098     Value *Src = Visit(E);
1099 
1100     // Note that the AST doesn't distinguish between checked and
1101     // unchecked member pointer conversions, so we always have to
1102     // implement checked conversions here.  This is inefficient when
1103     // actual control flow may be required in order to perform the
1104     // check, which it is for data member pointers (but not member
1105     // function pointers on Itanium and ARM).
1106     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1107   }
1108 
1109   case CK_FloatingRealToComplex:
1110   case CK_FloatingComplexCast:
1111   case CK_IntegralRealToComplex:
1112   case CK_IntegralComplexCast:
1113   case CK_IntegralComplexToFloatingComplex:
1114   case CK_FloatingComplexToIntegralComplex:
1115   case CK_ConstructorConversion:
1116   case CK_ToUnion:
1117     llvm_unreachable("scalar cast to non-scalar value");
1118     break;
1119 
1120   case CK_GetObjCProperty: {
1121     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1122     assert(E->isGLValue() && E->getObjectKind() == OK_ObjCProperty &&
1123            "CK_GetObjCProperty for non-lvalue or non-ObjCProperty");
1124     RValue RV = CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType());
1125     return RV.getScalarVal();
1126   }
1127 
1128   case CK_LValueToRValue:
1129     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1130     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1131     return Visit(const_cast<Expr*>(E));
1132 
1133   case CK_IntegralToPointer: {
1134     Value *Src = Visit(const_cast<Expr*>(E));
1135 
1136     // First, convert to the correct width so that we control the kind of
1137     // extension.
1138     const llvm::Type *MiddleTy = CGF.IntPtrTy;
1139     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1140     llvm::Value* IntResult =
1141       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1142 
1143     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1144   }
1145   case CK_PointerToIntegral: {
1146     Value *Src = Visit(const_cast<Expr*>(E));
1147 
1148     // Handle conversion to bool correctly.
1149     if (DestTy->isBooleanType())
1150       return EmitScalarConversion(Src, E->getType(), DestTy);
1151 
1152     return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
1153   }
1154   case CK_ToVoid: {
1155     CGF.EmitIgnoredExpr(E);
1156     return 0;
1157   }
1158   case CK_VectorSplat: {
1159     const llvm::Type *DstTy = ConvertType(DestTy);
1160     Value *Elt = Visit(const_cast<Expr*>(E));
1161 
1162     // Insert the element in element zero of an undef vector
1163     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1164     llvm::Value *Idx = Builder.getInt32(0);
1165     UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
1166 
1167     // Splat the element across to all elements
1168     llvm::SmallVector<llvm::Constant*, 16> Args;
1169     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1170     llvm::Constant *Zero = Builder.getInt32(0);
1171     for (unsigned i = 0; i < NumElements; i++)
1172       Args.push_back(Zero);
1173 
1174     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1175     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1176     return Yay;
1177   }
1178 
1179   case CK_IntegralCast:
1180   case CK_IntegralToFloating:
1181   case CK_FloatingToIntegral:
1182   case CK_FloatingCast:
1183     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1184 
1185   case CK_IntegralToBoolean:
1186     return EmitIntToBoolConversion(Visit(E));
1187   case CK_PointerToBoolean:
1188     return EmitPointerToBoolConversion(Visit(E));
1189   case CK_FloatingToBoolean:
1190     return EmitFloatToBoolConversion(Visit(E));
1191   case CK_MemberPointerToBoolean: {
1192     llvm::Value *MemPtr = Visit(E);
1193     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1194     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1195   }
1196 
1197   case CK_FloatingComplexToReal:
1198   case CK_IntegralComplexToReal:
1199     return CGF.EmitComplexExpr(E, false, true).first;
1200 
1201   case CK_FloatingComplexToBoolean:
1202   case CK_IntegralComplexToBoolean: {
1203     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1204 
1205     // TODO: kill this function off, inline appropriate case here
1206     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1207   }
1208 
1209   }
1210 
1211   llvm_unreachable("unknown scalar cast");
1212   return 0;
1213 }
1214 
1215 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1216   CodeGenFunction::StmtExprEvaluation eval(CGF);
1217   return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1218     .getScalarVal();
1219 }
1220 
1221 Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1222   LValue LV = CGF.EmitBlockDeclRefLValue(E);
1223   return CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
1224 }
1225 
1226 //===----------------------------------------------------------------------===//
1227 //                             Unary Operators
1228 //===----------------------------------------------------------------------===//
1229 
1230 llvm::Value *ScalarExprEmitter::
1231 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1232                                 llvm::Value *InVal,
1233                                 llvm::Value *NextVal, bool IsInc) {
1234   switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1235   case LangOptions::SOB_Undefined:
1236     return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1237     break;
1238   case LangOptions::SOB_Defined:
1239     return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1240     break;
1241   case LangOptions::SOB_Trapping:
1242     BinOpInfo BinOp;
1243     BinOp.LHS = InVal;
1244     BinOp.RHS = NextVal;
1245     BinOp.Ty = E->getType();
1246     BinOp.Opcode = BO_Add;
1247     BinOp.E = E;
1248     return EmitOverflowCheckedBinOp(BinOp);
1249     break;
1250   }
1251   assert(false && "Unknown SignedOverflowBehaviorTy");
1252   return 0;
1253 }
1254 
1255 llvm::Value *
1256 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1257                                            bool isInc, bool isPre) {
1258 
1259   QualType type = E->getSubExpr()->getType();
1260   llvm::Value *value = EmitLoadOfLValue(LV, type);
1261   llvm::Value *input = value;
1262 
1263   int amount = (isInc ? 1 : -1);
1264 
1265   // Special case of integer increment that we have to check first: bool++.
1266   // Due to promotion rules, we get:
1267   //   bool++ -> bool = bool + 1
1268   //          -> bool = (int)bool + 1
1269   //          -> bool = ((int)bool + 1 != 0)
1270   // An interesting aspect of this is that increment is always true.
1271   // Decrement does not have this property.
1272   if (isInc && type->isBooleanType()) {
1273     value = Builder.getTrue();
1274 
1275   // Most common case by far: integer increment.
1276   } else if (type->isIntegerType()) {
1277 
1278     llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1279 
1280     // Note that signed integer inc/dec with width less than int can't
1281     // overflow because of promotion rules; we're just eliding a few steps here.
1282     if (type->isSignedIntegerOrEnumerationType() &&
1283         value->getType()->getPrimitiveSizeInBits() >=
1284             CGF.CGM.IntTy->getBitWidth())
1285       value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1286     else
1287       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1288 
1289   // Next most common: pointer increment.
1290   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1291     QualType type = ptr->getPointeeType();
1292 
1293     // VLA types don't have constant size.
1294     if (type->isVariableArrayType()) {
1295       llvm::Value *vlaSize =
1296         CGF.GetVLASize(CGF.getContext().getAsVariableArrayType(type));
1297       value = CGF.EmitCastToVoidPtr(value);
1298       if (!isInc) vlaSize = Builder.CreateNSWNeg(vlaSize, "vla.negsize");
1299       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1300         value = Builder.CreateGEP(value, vlaSize, "vla.inc");
1301       else
1302         value = Builder.CreateInBoundsGEP(value, vlaSize, "vla.inc");
1303       value = Builder.CreateBitCast(value, input->getType());
1304 
1305     // Arithmetic on function pointers (!) is just +-1.
1306     } else if (type->isFunctionType()) {
1307       llvm::Value *amt = Builder.getInt32(amount);
1308 
1309       value = CGF.EmitCastToVoidPtr(value);
1310       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1311         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1312       else
1313         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1314       value = Builder.CreateBitCast(value, input->getType());
1315 
1316     // For everything else, we can just do a simple increment.
1317     } else {
1318       llvm::Value *amt = Builder.getInt32(amount);
1319       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1320         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1321       else
1322         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1323     }
1324 
1325   // Vector increment/decrement.
1326   } else if (type->isVectorType()) {
1327     if (type->hasIntegerRepresentation()) {
1328       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1329 
1330       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1331     } else {
1332       value = Builder.CreateFAdd(
1333                   value,
1334                   llvm::ConstantFP::get(value->getType(), amount),
1335                   isInc ? "inc" : "dec");
1336     }
1337 
1338   // Floating point.
1339   } else if (type->isRealFloatingType()) {
1340     // Add the inc/dec to the real part.
1341     llvm::Value *amt;
1342     if (value->getType()->isFloatTy())
1343       amt = llvm::ConstantFP::get(VMContext,
1344                                   llvm::APFloat(static_cast<float>(amount)));
1345     else if (value->getType()->isDoubleTy())
1346       amt = llvm::ConstantFP::get(VMContext,
1347                                   llvm::APFloat(static_cast<double>(amount)));
1348     else {
1349       llvm::APFloat F(static_cast<float>(amount));
1350       bool ignored;
1351       F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1352                 &ignored);
1353       amt = llvm::ConstantFP::get(VMContext, F);
1354     }
1355     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1356 
1357   // Objective-C pointer types.
1358   } else {
1359     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1360     value = CGF.EmitCastToVoidPtr(value);
1361 
1362     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1363     if (!isInc) size = -size;
1364     llvm::Value *sizeValue =
1365       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1366 
1367     if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1368       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1369     else
1370       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1371     value = Builder.CreateBitCast(value, input->getType());
1372   }
1373 
1374   // Store the updated result through the lvalue.
1375   if (LV.isBitField())
1376     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, type, &value);
1377   else
1378     CGF.EmitStoreThroughLValue(RValue::get(value), LV, type);
1379 
1380   // If this is a postinc, return the value read from memory, otherwise use the
1381   // updated value.
1382   return isPre ? value : input;
1383 }
1384 
1385 
1386 
1387 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1388   TestAndClearIgnoreResultAssign();
1389   // Emit unary minus with EmitSub so we handle overflow cases etc.
1390   BinOpInfo BinOp;
1391   BinOp.RHS = Visit(E->getSubExpr());
1392 
1393   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1394     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1395   else
1396     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1397   BinOp.Ty = E->getType();
1398   BinOp.Opcode = BO_Sub;
1399   BinOp.E = E;
1400   return EmitSub(BinOp);
1401 }
1402 
1403 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1404   TestAndClearIgnoreResultAssign();
1405   Value *Op = Visit(E->getSubExpr());
1406   return Builder.CreateNot(Op, "neg");
1407 }
1408 
1409 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1410   // Compare operand to zero.
1411   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1412 
1413   // Invert value.
1414   // TODO: Could dynamically modify easy computations here.  For example, if
1415   // the operand is an icmp ne, turn into icmp eq.
1416   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1417 
1418   // ZExt result to the expr type.
1419   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1420 }
1421 
1422 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1423   // Try folding the offsetof to a constant.
1424   Expr::EvalResult EvalResult;
1425   if (E->Evaluate(EvalResult, CGF.getContext()))
1426     return Builder.getInt(EvalResult.Val.getInt());
1427 
1428   // Loop over the components of the offsetof to compute the value.
1429   unsigned n = E->getNumComponents();
1430   const llvm::Type* ResultType = ConvertType(E->getType());
1431   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1432   QualType CurrentType = E->getTypeSourceInfo()->getType();
1433   for (unsigned i = 0; i != n; ++i) {
1434     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1435     llvm::Value *Offset = 0;
1436     switch (ON.getKind()) {
1437     case OffsetOfExpr::OffsetOfNode::Array: {
1438       // Compute the index
1439       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1440       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1441       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1442       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1443 
1444       // Save the element type
1445       CurrentType =
1446           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1447 
1448       // Compute the element size
1449       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1450           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1451 
1452       // Multiply out to compute the result
1453       Offset = Builder.CreateMul(Idx, ElemSize);
1454       break;
1455     }
1456 
1457     case OffsetOfExpr::OffsetOfNode::Field: {
1458       FieldDecl *MemberDecl = ON.getField();
1459       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1460       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1461 
1462       // Compute the index of the field in its parent.
1463       unsigned i = 0;
1464       // FIXME: It would be nice if we didn't have to loop here!
1465       for (RecordDecl::field_iterator Field = RD->field_begin(),
1466                                       FieldEnd = RD->field_end();
1467            Field != FieldEnd; (void)++Field, ++i) {
1468         if (*Field == MemberDecl)
1469           break;
1470       }
1471       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1472 
1473       // Compute the offset to the field
1474       int64_t OffsetInt = RL.getFieldOffset(i) /
1475                           CGF.getContext().getCharWidth();
1476       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1477 
1478       // Save the element type.
1479       CurrentType = MemberDecl->getType();
1480       break;
1481     }
1482 
1483     case OffsetOfExpr::OffsetOfNode::Identifier:
1484       llvm_unreachable("dependent __builtin_offsetof");
1485 
1486     case OffsetOfExpr::OffsetOfNode::Base: {
1487       if (ON.getBase()->isVirtual()) {
1488         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1489         continue;
1490       }
1491 
1492       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1493       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1494 
1495       // Save the element type.
1496       CurrentType = ON.getBase()->getType();
1497 
1498       // Compute the offset to the base.
1499       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1500       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1501       int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1502                           CGF.getContext().getCharWidth();
1503       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1504       break;
1505     }
1506     }
1507     Result = Builder.CreateAdd(Result, Offset);
1508   }
1509   return Result;
1510 }
1511 
1512 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1513 /// argument of the sizeof expression as an integer.
1514 Value *
1515 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1516                               const UnaryExprOrTypeTraitExpr *E) {
1517   QualType TypeToSize = E->getTypeOfArgument();
1518   if (E->getKind() == UETT_SizeOf) {
1519     if (const VariableArrayType *VAT =
1520           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1521       if (E->isArgumentType()) {
1522         // sizeof(type) - make sure to emit the VLA size.
1523         CGF.EmitVLASize(TypeToSize);
1524       } else {
1525         // C99 6.5.3.4p2: If the argument is an expression of type
1526         // VLA, it is evaluated.
1527         CGF.EmitIgnoredExpr(E->getArgumentExpr());
1528       }
1529 
1530       return CGF.GetVLASize(VAT);
1531     }
1532   }
1533 
1534   // If this isn't sizeof(vla), the result must be constant; use the constant
1535   // folding logic so we don't have to duplicate it here.
1536   Expr::EvalResult Result;
1537   E->Evaluate(Result, CGF.getContext());
1538   return Builder.getInt(Result.Val.getInt());
1539 }
1540 
1541 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1542   Expr *Op = E->getSubExpr();
1543   if (Op->getType()->isAnyComplexType()) {
1544     // If it's an l-value, load through the appropriate subobject l-value.
1545     // Note that we have to ask E because Op might be an l-value that
1546     // this won't work for, e.g. an Obj-C property.
1547     if (E->isGLValue())
1548       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType())
1549                 .getScalarVal();
1550 
1551     // Otherwise, calculate and project.
1552     return CGF.EmitComplexExpr(Op, false, true).first;
1553   }
1554 
1555   return Visit(Op);
1556 }
1557 
1558 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1559   Expr *Op = E->getSubExpr();
1560   if (Op->getType()->isAnyComplexType()) {
1561     // If it's an l-value, load through the appropriate subobject l-value.
1562     // Note that we have to ask E because Op might be an l-value that
1563     // this won't work for, e.g. an Obj-C property.
1564     if (Op->isGLValue())
1565       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType())
1566                 .getScalarVal();
1567 
1568     // Otherwise, calculate and project.
1569     return CGF.EmitComplexExpr(Op, true, false).second;
1570   }
1571 
1572   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1573   // effects are evaluated, but not the actual value.
1574   CGF.EmitScalarExpr(Op, true);
1575   return llvm::Constant::getNullValue(ConvertType(E->getType()));
1576 }
1577 
1578 //===----------------------------------------------------------------------===//
1579 //                           Binary Operators
1580 //===----------------------------------------------------------------------===//
1581 
1582 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1583   TestAndClearIgnoreResultAssign();
1584   BinOpInfo Result;
1585   Result.LHS = Visit(E->getLHS());
1586   Result.RHS = Visit(E->getRHS());
1587   Result.Ty  = E->getType();
1588   Result.Opcode = E->getOpcode();
1589   Result.E = E;
1590   return Result;
1591 }
1592 
1593 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1594                                               const CompoundAssignOperator *E,
1595                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1596                                                    Value *&Result) {
1597   QualType LHSTy = E->getLHS()->getType();
1598   BinOpInfo OpInfo;
1599 
1600   if (E->getComputationResultType()->isAnyComplexType()) {
1601     // This needs to go through the complex expression emitter, but it's a tad
1602     // complicated to do that... I'm leaving it out for now.  (Note that we do
1603     // actually need the imaginary part of the RHS for multiplication and
1604     // division.)
1605     CGF.ErrorUnsupported(E, "complex compound assignment");
1606     Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1607     return LValue();
1608   }
1609 
1610   // Emit the RHS first.  __block variables need to have the rhs evaluated
1611   // first, plus this should improve codegen a little.
1612   OpInfo.RHS = Visit(E->getRHS());
1613   OpInfo.Ty = E->getComputationResultType();
1614   OpInfo.Opcode = E->getOpcode();
1615   OpInfo.E = E;
1616   // Load/convert the LHS.
1617   LValue LHSLV = EmitCheckedLValue(E->getLHS());
1618   OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1619   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1620                                     E->getComputationLHSType());
1621 
1622   // Expand the binary operator.
1623   Result = (this->*Func)(OpInfo);
1624 
1625   // Convert the result back to the LHS type.
1626   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1627 
1628   // Store the result value into the LHS lvalue. Bit-fields are handled
1629   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1630   // 'An assignment expression has the value of the left operand after the
1631   // assignment...'.
1632   if (LHSLV.isBitField())
1633     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1634                                        &Result);
1635   else
1636     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1637 
1638   return LHSLV;
1639 }
1640 
1641 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1642                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1643   bool Ignore = TestAndClearIgnoreResultAssign();
1644   Value *RHS;
1645   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1646 
1647   // If the result is clearly ignored, return now.
1648   if (Ignore)
1649     return 0;
1650 
1651   // The result of an assignment in C is the assigned r-value.
1652   if (!CGF.getContext().getLangOptions().CPlusPlus)
1653     return RHS;
1654 
1655   // Objective-C property assignment never reloads the value following a store.
1656   if (LHS.isPropertyRef())
1657     return RHS;
1658 
1659   // If the lvalue is non-volatile, return the computed value of the assignment.
1660   if (!LHS.isVolatileQualified())
1661     return RHS;
1662 
1663   // Otherwise, reload the value.
1664   return EmitLoadOfLValue(LHS, E->getType());
1665 }
1666 
1667 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1668      					    const BinOpInfo &Ops,
1669 				     	    llvm::Value *Zero, bool isDiv) {
1670   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1671   llvm::BasicBlock *contBB =
1672     CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn);
1673 
1674   const llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1675 
1676   if (Ops.Ty->hasSignedIntegerRepresentation()) {
1677     llvm::Value *IntMin =
1678       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1679     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1680 
1681     llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1682     llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1683     llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1684     llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1685     Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1686                          overflowBB, contBB);
1687   } else {
1688     CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1689                              overflowBB, contBB);
1690   }
1691   EmitOverflowBB(overflowBB);
1692   Builder.SetInsertPoint(contBB);
1693 }
1694 
1695 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1696   if (isTrapvOverflowBehavior()) {
1697     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1698 
1699     if (Ops.Ty->isIntegerType())
1700       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1701     else if (Ops.Ty->isRealFloatingType()) {
1702       llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1703                                                           CGF.CurFn);
1704       llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn);
1705       CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1706                                overflowBB, DivCont);
1707       EmitOverflowBB(overflowBB);
1708       Builder.SetInsertPoint(DivCont);
1709     }
1710   }
1711   if (Ops.LHS->getType()->isFPOrFPVectorTy())
1712     return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1713   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1714     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1715   else
1716     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1717 }
1718 
1719 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1720   // Rem in C can't be a floating point type: C99 6.5.5p2.
1721   if (isTrapvOverflowBehavior()) {
1722     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1723 
1724     if (Ops.Ty->isIntegerType())
1725       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1726   }
1727 
1728   if (Ops.Ty->hasUnsignedIntegerRepresentation())
1729     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1730   else
1731     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1732 }
1733 
1734 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1735   unsigned IID;
1736   unsigned OpID = 0;
1737 
1738   switch (Ops.Opcode) {
1739   case BO_Add:
1740   case BO_AddAssign:
1741     OpID = 1;
1742     IID = llvm::Intrinsic::sadd_with_overflow;
1743     break;
1744   case BO_Sub:
1745   case BO_SubAssign:
1746     OpID = 2;
1747     IID = llvm::Intrinsic::ssub_with_overflow;
1748     break;
1749   case BO_Mul:
1750   case BO_MulAssign:
1751     OpID = 3;
1752     IID = llvm::Intrinsic::smul_with_overflow;
1753     break;
1754   default:
1755     assert(false && "Unsupported operation for overflow detection");
1756     IID = 0;
1757   }
1758   OpID <<= 1;
1759   OpID |= 1;
1760 
1761   const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1762 
1763   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1764 
1765   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1766   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1767   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1768 
1769   // Branch in case of overflow.
1770   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1771   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1772   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn);
1773 
1774   Builder.CreateCondBr(overflow, overflowBB, continueBB);
1775 
1776   // Handle overflow with llvm.trap.
1777   const std::string *handlerName =
1778     &CGF.getContext().getLangOptions().OverflowHandler;
1779   if (handlerName->empty()) {
1780     EmitOverflowBB(overflowBB);
1781     Builder.SetInsertPoint(continueBB);
1782     return result;
1783   }
1784 
1785   // If an overflow handler is set, then we want to call it and then use its
1786   // result, if it returns.
1787   Builder.SetInsertPoint(overflowBB);
1788 
1789   // Get the overflow handler.
1790   const llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext);
1791   const llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
1792   llvm::FunctionType *handlerTy =
1793       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1794   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1795 
1796   // Sign extend the args to 64-bit, so that we can use the same handler for
1797   // all types of overflow.
1798   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1799   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1800 
1801   // Call the handler with the two arguments, the operation, and the size of
1802   // the result.
1803   llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1804       Builder.getInt8(OpID),
1805       Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1806 
1807   // Truncate the result back to the desired size.
1808   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1809   Builder.CreateBr(continueBB);
1810 
1811   Builder.SetInsertPoint(continueBB);
1812   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
1813   phi->addIncoming(result, initialBB);
1814   phi->addIncoming(handlerResult, overflowBB);
1815 
1816   return phi;
1817 }
1818 
1819 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1820   if (!Ops.Ty->isAnyPointerType()) {
1821     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
1822       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1823       case LangOptions::SOB_Undefined:
1824         return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1825       case LangOptions::SOB_Defined:
1826         return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1827       case LangOptions::SOB_Trapping:
1828         return EmitOverflowCheckedBinOp(Ops);
1829       }
1830     }
1831 
1832     if (Ops.LHS->getType()->isFPOrFPVectorTy())
1833       return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1834 
1835     return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1836   }
1837 
1838   // Must have binary (not unary) expr here.  Unary pointer decrement doesn't
1839   // use this path.
1840   const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1841 
1842   if (Ops.Ty->isPointerType() &&
1843       Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1844     // The amount of the addition needs to account for the VLA size
1845     CGF.ErrorUnsupported(BinOp, "VLA pointer addition");
1846   }
1847 
1848   Value *Ptr, *Idx;
1849   Expr *IdxExp;
1850   const PointerType *PT = BinOp->getLHS()->getType()->getAs<PointerType>();
1851   const ObjCObjectPointerType *OPT =
1852     BinOp->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1853   if (PT || OPT) {
1854     Ptr = Ops.LHS;
1855     Idx = Ops.RHS;
1856     IdxExp = BinOp->getRHS();
1857   } else {  // int + pointer
1858     PT = BinOp->getRHS()->getType()->getAs<PointerType>();
1859     OPT = BinOp->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1860     assert((PT || OPT) && "Invalid add expr");
1861     Ptr = Ops.RHS;
1862     Idx = Ops.LHS;
1863     IdxExp = BinOp->getLHS();
1864   }
1865 
1866   unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1867   if (Width < CGF.PointerWidthInBits) {
1868     // Zero or sign extend the pointer value based on whether the index is
1869     // signed or not.
1870     const llvm::Type *IdxType = CGF.IntPtrTy;
1871     if (IdxExp->getType()->isSignedIntegerOrEnumerationType())
1872       Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1873     else
1874       Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1875   }
1876   const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1877   // Handle interface types, which are not represented with a concrete type.
1878   if (const ObjCObjectType *OIT = ElementType->getAs<ObjCObjectType>()) {
1879     llvm::Value *InterfaceSize =
1880       llvm::ConstantInt::get(Idx->getType(),
1881           CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
1882     Idx = Builder.CreateMul(Idx, InterfaceSize);
1883     const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1884     Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1885     Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1886     return Builder.CreateBitCast(Res, Ptr->getType());
1887   }
1888 
1889   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1890   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1891   // future proof.
1892   if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1893     const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1894     Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1895     Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1896     return Builder.CreateBitCast(Res, Ptr->getType());
1897   }
1898 
1899   if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1900     return Builder.CreateGEP(Ptr, Idx, "add.ptr");
1901   return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1902 }
1903 
1904 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1905   if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1906     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
1907       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1908       case LangOptions::SOB_Undefined:
1909         return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub");
1910       case LangOptions::SOB_Defined:
1911         return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1912       case LangOptions::SOB_Trapping:
1913         return EmitOverflowCheckedBinOp(Ops);
1914       }
1915     }
1916 
1917     if (Ops.LHS->getType()->isFPOrFPVectorTy())
1918       return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1919 
1920     return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1921   }
1922 
1923   // Must have binary (not unary) expr here.  Unary pointer increment doesn't
1924   // use this path.
1925   const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1926 
1927   if (BinOp->getLHS()->getType()->isPointerType() &&
1928       BinOp->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1929     // The amount of the addition needs to account for the VLA size for
1930     // ptr-int
1931     // The amount of the division needs to account for the VLA size for
1932     // ptr-ptr.
1933     CGF.ErrorUnsupported(BinOp, "VLA pointer subtraction");
1934   }
1935 
1936   const QualType LHSType = BinOp->getLHS()->getType();
1937   const QualType LHSElementType = LHSType->getPointeeType();
1938   if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1939     // pointer - int
1940     Value *Idx = Ops.RHS;
1941     unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1942     if (Width < CGF.PointerWidthInBits) {
1943       // Zero or sign extend the pointer value based on whether the index is
1944       // signed or not.
1945       const llvm::Type *IdxType = CGF.IntPtrTy;
1946       if (BinOp->getRHS()->getType()->isSignedIntegerOrEnumerationType())
1947         Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1948       else
1949         Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1950     }
1951     Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1952 
1953     // Handle interface types, which are not represented with a concrete type.
1954     if (const ObjCObjectType *OIT = LHSElementType->getAs<ObjCObjectType>()) {
1955       llvm::Value *InterfaceSize =
1956         llvm::ConstantInt::get(Idx->getType(),
1957                                CGF.getContext().
1958                                  getTypeSizeInChars(OIT).getQuantity());
1959       Idx = Builder.CreateMul(Idx, InterfaceSize);
1960       const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1961       Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1962       Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1963       return Builder.CreateBitCast(Res, Ops.LHS->getType());
1964     }
1965 
1966     // Explicitly handle GNU void* and function pointer arithmetic
1967     // extensions. The GNU void* casts amount to no-ops since our void* type is
1968     // i8*, but this is future proof.
1969     if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1970       const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1971       Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1972       Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1973       return Builder.CreateBitCast(Res, Ops.LHS->getType());
1974     }
1975 
1976     if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1977       return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
1978     return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1979   }
1980 
1981   // pointer - pointer
1982   Value *LHS = Ops.LHS;
1983   Value *RHS = Ops.RHS;
1984 
1985   CharUnits ElementSize;
1986 
1987   // Handle GCC extension for pointer arithmetic on void* and function pointer
1988   // types.
1989   if (LHSElementType->isVoidType() || LHSElementType->isFunctionType())
1990     ElementSize = CharUnits::One();
1991   else
1992     ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
1993 
1994   const llvm::Type *ResultType = ConvertType(Ops.Ty);
1995   LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1996   RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1997   Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1998 
1999   // Optimize out the shift for element size of 1.
2000   if (ElementSize.isOne())
2001     return BytesBetween;
2002 
2003   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2004   // pointer difference in C is only defined in the case where both operands
2005   // are pointing to elements of an array.
2006   Value *BytesPerElt =
2007       llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
2008   return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
2009 }
2010 
2011 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2012   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2013   // RHS to the same size as the LHS.
2014   Value *RHS = Ops.RHS;
2015   if (Ops.LHS->getType() != RHS->getType())
2016     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2017 
2018   if (CGF.CatchUndefined
2019       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2020     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2021     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2022     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2023                                  llvm::ConstantInt::get(RHS->getType(), Width)),
2024                              Cont, CGF.getTrapBB());
2025     CGF.EmitBlock(Cont);
2026   }
2027 
2028   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2029 }
2030 
2031 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2032   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2033   // RHS to the same size as the LHS.
2034   Value *RHS = Ops.RHS;
2035   if (Ops.LHS->getType() != RHS->getType())
2036     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2037 
2038   if (CGF.CatchUndefined
2039       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2040     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2041     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2042     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2043                                  llvm::ConstantInt::get(RHS->getType(), Width)),
2044                              Cont, CGF.getTrapBB());
2045     CGF.EmitBlock(Cont);
2046   }
2047 
2048   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2049     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2050   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2051 }
2052 
2053 enum IntrinsicType { VCMPEQ, VCMPGT };
2054 // return corresponding comparison intrinsic for given vector type
2055 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2056                                         BuiltinType::Kind ElemKind) {
2057   switch (ElemKind) {
2058   default: assert(0 && "unexpected element type");
2059   case BuiltinType::Char_U:
2060   case BuiltinType::UChar:
2061     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2062                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2063     break;
2064   case BuiltinType::Char_S:
2065   case BuiltinType::SChar:
2066     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2067                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2068     break;
2069   case BuiltinType::UShort:
2070     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2071                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2072     break;
2073   case BuiltinType::Short:
2074     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2075                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2076     break;
2077   case BuiltinType::UInt:
2078   case BuiltinType::ULong:
2079     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2080                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2081     break;
2082   case BuiltinType::Int:
2083   case BuiltinType::Long:
2084     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2085                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2086     break;
2087   case BuiltinType::Float:
2088     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2089                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2090     break;
2091   }
2092   return llvm::Intrinsic::not_intrinsic;
2093 }
2094 
2095 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2096                                       unsigned SICmpOpc, unsigned FCmpOpc) {
2097   TestAndClearIgnoreResultAssign();
2098   Value *Result;
2099   QualType LHSTy = E->getLHS()->getType();
2100   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2101     assert(E->getOpcode() == BO_EQ ||
2102            E->getOpcode() == BO_NE);
2103     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2104     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2105     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2106                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2107   } else if (!LHSTy->isAnyComplexType()) {
2108     Value *LHS = Visit(E->getLHS());
2109     Value *RHS = Visit(E->getRHS());
2110 
2111     // If AltiVec, the comparison results in a numeric type, so we use
2112     // intrinsics comparing vectors and giving 0 or 1 as a result
2113     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2114       // constants for mapping CR6 register bits to predicate result
2115       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2116 
2117       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2118 
2119       // in several cases vector arguments order will be reversed
2120       Value *FirstVecArg = LHS,
2121             *SecondVecArg = RHS;
2122 
2123       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2124       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2125       BuiltinType::Kind ElementKind = BTy->getKind();
2126 
2127       switch(E->getOpcode()) {
2128       default: assert(0 && "is not a comparison operation");
2129       case BO_EQ:
2130         CR6 = CR6_LT;
2131         ID = GetIntrinsic(VCMPEQ, ElementKind);
2132         break;
2133       case BO_NE:
2134         CR6 = CR6_EQ;
2135         ID = GetIntrinsic(VCMPEQ, ElementKind);
2136         break;
2137       case BO_LT:
2138         CR6 = CR6_LT;
2139         ID = GetIntrinsic(VCMPGT, ElementKind);
2140         std::swap(FirstVecArg, SecondVecArg);
2141         break;
2142       case BO_GT:
2143         CR6 = CR6_LT;
2144         ID = GetIntrinsic(VCMPGT, ElementKind);
2145         break;
2146       case BO_LE:
2147         if (ElementKind == BuiltinType::Float) {
2148           CR6 = CR6_LT;
2149           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2150           std::swap(FirstVecArg, SecondVecArg);
2151         }
2152         else {
2153           CR6 = CR6_EQ;
2154           ID = GetIntrinsic(VCMPGT, ElementKind);
2155         }
2156         break;
2157       case BO_GE:
2158         if (ElementKind == BuiltinType::Float) {
2159           CR6 = CR6_LT;
2160           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2161         }
2162         else {
2163           CR6 = CR6_EQ;
2164           ID = GetIntrinsic(VCMPGT, ElementKind);
2165           std::swap(FirstVecArg, SecondVecArg);
2166         }
2167         break;
2168       }
2169 
2170       Value *CR6Param = Builder.getInt32(CR6);
2171       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2172       Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2173       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2174     }
2175 
2176     if (LHS->getType()->isFPOrFPVectorTy()) {
2177       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2178                                   LHS, RHS, "cmp");
2179     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2180       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2181                                   LHS, RHS, "cmp");
2182     } else {
2183       // Unsigned integers and pointers.
2184       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2185                                   LHS, RHS, "cmp");
2186     }
2187 
2188     // If this is a vector comparison, sign extend the result to the appropriate
2189     // vector integer type and return it (don't convert to bool).
2190     if (LHSTy->isVectorType())
2191       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2192 
2193   } else {
2194     // Complex Comparison: can only be an equality comparison.
2195     CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2196     CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2197 
2198     QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2199 
2200     Value *ResultR, *ResultI;
2201     if (CETy->isRealFloatingType()) {
2202       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2203                                    LHS.first, RHS.first, "cmp.r");
2204       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2205                                    LHS.second, RHS.second, "cmp.i");
2206     } else {
2207       // Complex comparisons can only be equality comparisons.  As such, signed
2208       // and unsigned opcodes are the same.
2209       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2210                                    LHS.first, RHS.first, "cmp.r");
2211       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2212                                    LHS.second, RHS.second, "cmp.i");
2213     }
2214 
2215     if (E->getOpcode() == BO_EQ) {
2216       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2217     } else {
2218       assert(E->getOpcode() == BO_NE &&
2219              "Complex comparison other than == or != ?");
2220       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2221     }
2222   }
2223 
2224   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2225 }
2226 
2227 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2228   bool Ignore = TestAndClearIgnoreResultAssign();
2229 
2230   // __block variables need to have the rhs evaluated first, plus this should
2231   // improve codegen just a little.
2232   Value *RHS = Visit(E->getRHS());
2233   LValue LHS = EmitCheckedLValue(E->getLHS());
2234 
2235   // Store the value into the LHS.  Bit-fields are handled specially
2236   // because the result is altered by the store, i.e., [C99 6.5.16p1]
2237   // 'An assignment expression has the value of the left operand after
2238   // the assignment...'.
2239   if (LHS.isBitField())
2240     CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
2241                                        &RHS);
2242   else
2243     CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
2244 
2245   // If the result is clearly ignored, return now.
2246   if (Ignore)
2247     return 0;
2248 
2249   // The result of an assignment in C is the assigned r-value.
2250   if (!CGF.getContext().getLangOptions().CPlusPlus)
2251     return RHS;
2252 
2253   // Objective-C property assignment never reloads the value following a store.
2254   if (LHS.isPropertyRef())
2255     return RHS;
2256 
2257   // If the lvalue is non-volatile, return the computed value of the assignment.
2258   if (!LHS.isVolatileQualified())
2259     return RHS;
2260 
2261   // Otherwise, reload the value.
2262   return EmitLoadOfLValue(LHS, E->getType());
2263 }
2264 
2265 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2266   const llvm::Type *ResTy = ConvertType(E->getType());
2267 
2268   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2269   // If we have 1 && X, just emit X without inserting the control flow.
2270   bool LHSCondVal;
2271   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2272     if (LHSCondVal) { // If we have 1 && X, just emit X.
2273       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2274       // ZExt result to int or bool.
2275       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2276     }
2277 
2278     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2279     if (!CGF.ContainsLabel(E->getRHS()))
2280       return llvm::Constant::getNullValue(ResTy);
2281   }
2282 
2283   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2284   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2285 
2286   CodeGenFunction::ConditionalEvaluation eval(CGF);
2287 
2288   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2289   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2290 
2291   // Any edges into the ContBlock are now from an (indeterminate number of)
2292   // edges from this first condition.  All of these values will be false.  Start
2293   // setting up the PHI node in the Cont Block for this.
2294   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2295                                             "", ContBlock);
2296   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2297        PI != PE; ++PI)
2298     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2299 
2300   eval.begin(CGF);
2301   CGF.EmitBlock(RHSBlock);
2302   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2303   eval.end(CGF);
2304 
2305   // Reaquire the RHS block, as there may be subblocks inserted.
2306   RHSBlock = Builder.GetInsertBlock();
2307 
2308   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2309   // into the phi node for the edge with the value of RHSCond.
2310   if (CGF.getDebugInfo())
2311     // There is no need to emit line number for unconditional branch.
2312     Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2313   CGF.EmitBlock(ContBlock);
2314   PN->addIncoming(RHSCond, RHSBlock);
2315 
2316   // ZExt result to int.
2317   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2318 }
2319 
2320 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2321   const llvm::Type *ResTy = ConvertType(E->getType());
2322 
2323   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2324   // If we have 0 || X, just emit X without inserting the control flow.
2325   bool LHSCondVal;
2326   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2327     if (!LHSCondVal) { // If we have 0 || X, just emit X.
2328       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2329       // ZExt result to int or bool.
2330       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2331     }
2332 
2333     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2334     if (!CGF.ContainsLabel(E->getRHS()))
2335       return llvm::ConstantInt::get(ResTy, 1);
2336   }
2337 
2338   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2339   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2340 
2341   CodeGenFunction::ConditionalEvaluation eval(CGF);
2342 
2343   // Branch on the LHS first.  If it is true, go to the success (cont) block.
2344   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2345 
2346   // Any edges into the ContBlock are now from an (indeterminate number of)
2347   // edges from this first condition.  All of these values will be true.  Start
2348   // setting up the PHI node in the Cont Block for this.
2349   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2350                                             "", ContBlock);
2351   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2352        PI != PE; ++PI)
2353     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2354 
2355   eval.begin(CGF);
2356 
2357   // Emit the RHS condition as a bool value.
2358   CGF.EmitBlock(RHSBlock);
2359   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2360 
2361   eval.end(CGF);
2362 
2363   // Reaquire the RHS block, as there may be subblocks inserted.
2364   RHSBlock = Builder.GetInsertBlock();
2365 
2366   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2367   // into the phi node for the edge with the value of RHSCond.
2368   CGF.EmitBlock(ContBlock);
2369   PN->addIncoming(RHSCond, RHSBlock);
2370 
2371   // ZExt result to int.
2372   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2373 }
2374 
2375 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2376   CGF.EmitIgnoredExpr(E->getLHS());
2377   CGF.EnsureInsertPoint();
2378   return Visit(E->getRHS());
2379 }
2380 
2381 //===----------------------------------------------------------------------===//
2382 //                             Other Operators
2383 //===----------------------------------------------------------------------===//
2384 
2385 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2386 /// expression is cheap enough and side-effect-free enough to evaluate
2387 /// unconditionally instead of conditionally.  This is used to convert control
2388 /// flow into selects in some cases.
2389 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2390                                                    CodeGenFunction &CGF) {
2391   E = E->IgnoreParens();
2392 
2393   // Anything that is an integer or floating point constant is fine.
2394   if (E->isConstantInitializer(CGF.getContext(), false))
2395     return true;
2396 
2397   // Non-volatile automatic variables too, to get "cond ? X : Y" where
2398   // X and Y are local variables.
2399   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2400     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2401       if (VD->hasLocalStorage() && !(CGF.getContext()
2402                                      .getCanonicalType(VD->getType())
2403                                      .isVolatileQualified()))
2404         return true;
2405 
2406   return false;
2407 }
2408 
2409 
2410 Value *ScalarExprEmitter::
2411 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2412   TestAndClearIgnoreResultAssign();
2413 
2414   // Bind the common expression if necessary.
2415   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2416 
2417   Expr *condExpr = E->getCond();
2418   Expr *lhsExpr = E->getTrueExpr();
2419   Expr *rhsExpr = E->getFalseExpr();
2420 
2421   // If the condition constant folds and can be elided, try to avoid emitting
2422   // the condition and the dead arm.
2423   bool CondExprBool;
2424   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2425     Expr *live = lhsExpr, *dead = rhsExpr;
2426     if (!CondExprBool) std::swap(live, dead);
2427 
2428     // If the dead side doesn't have labels we need, and if the Live side isn't
2429     // the gnu missing ?: extension (which we could handle, but don't bother
2430     // to), just emit the Live part.
2431     if (!CGF.ContainsLabel(dead))
2432       return Visit(live);
2433   }
2434 
2435   // OpenCL: If the condition is a vector, we can treat this condition like
2436   // the select function.
2437   if (CGF.getContext().getLangOptions().OpenCL
2438       && condExpr->getType()->isVectorType()) {
2439     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2440     llvm::Value *LHS = Visit(lhsExpr);
2441     llvm::Value *RHS = Visit(rhsExpr);
2442 
2443     const llvm::Type *condType = ConvertType(condExpr->getType());
2444     const llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2445 
2446     unsigned numElem = vecTy->getNumElements();
2447     const llvm::Type *elemType = vecTy->getElementType();
2448 
2449     std::vector<llvm::Constant*> Zvals;
2450     for (unsigned i = 0; i < numElem; ++i)
2451       Zvals.push_back(llvm::ConstantInt::get(elemType, 0));
2452 
2453     llvm::Value *zeroVec = llvm::ConstantVector::get(Zvals);
2454     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2455     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2456                                           llvm::VectorType::get(elemType,
2457                                                                 numElem),
2458                                           "sext");
2459     llvm::Value *tmp2 = Builder.CreateNot(tmp);
2460 
2461     // Cast float to int to perform ANDs if necessary.
2462     llvm::Value *RHSTmp = RHS;
2463     llvm::Value *LHSTmp = LHS;
2464     bool wasCast = false;
2465     const llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2466     if (rhsVTy->getElementType()->isFloatTy()) {
2467       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2468       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2469       wasCast = true;
2470     }
2471 
2472     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2473     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2474     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2475     if (wasCast)
2476       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2477 
2478     return tmp5;
2479   }
2480 
2481   // If this is a really simple expression (like x ? 4 : 5), emit this as a
2482   // select instead of as control flow.  We can only do this if it is cheap and
2483   // safe to evaluate the LHS and RHS unconditionally.
2484   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
2485       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
2486     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
2487     llvm::Value *LHS = Visit(lhsExpr);
2488     llvm::Value *RHS = Visit(rhsExpr);
2489     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2490   }
2491 
2492   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2493   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2494   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2495 
2496   CodeGenFunction::ConditionalEvaluation eval(CGF);
2497   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
2498 
2499   CGF.EmitBlock(LHSBlock);
2500   eval.begin(CGF);
2501   Value *LHS = Visit(lhsExpr);
2502   eval.end(CGF);
2503 
2504   LHSBlock = Builder.GetInsertBlock();
2505   Builder.CreateBr(ContBlock);
2506 
2507   CGF.EmitBlock(RHSBlock);
2508   eval.begin(CGF);
2509   Value *RHS = Visit(rhsExpr);
2510   eval.end(CGF);
2511 
2512   RHSBlock = Builder.GetInsertBlock();
2513   CGF.EmitBlock(ContBlock);
2514 
2515   // If the LHS or RHS is a throw expression, it will be legitimately null.
2516   if (!LHS)
2517     return RHS;
2518   if (!RHS)
2519     return LHS;
2520 
2521   // Create a PHI node for the real part.
2522   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
2523   PN->addIncoming(LHS, LHSBlock);
2524   PN->addIncoming(RHS, RHSBlock);
2525   return PN;
2526 }
2527 
2528 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2529   return Visit(E->getChosenSubExpr(CGF.getContext()));
2530 }
2531 
2532 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2533   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2534   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2535 
2536   // If EmitVAArg fails, we fall back to the LLVM instruction.
2537   if (!ArgPtr)
2538     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2539 
2540   // FIXME Volatility.
2541   return Builder.CreateLoad(ArgPtr);
2542 }
2543 
2544 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2545   return CGF.EmitBlockLiteral(block);
2546 }
2547 
2548 //===----------------------------------------------------------------------===//
2549 //                         Entry Point into this File
2550 //===----------------------------------------------------------------------===//
2551 
2552 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
2553 /// type, ignoring the result.
2554 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2555   assert(E && !hasAggregateLLVMType(E->getType()) &&
2556          "Invalid scalar expression to emit");
2557 
2558   if (isa<CXXDefaultArgExpr>(E))
2559     disableDebugInfo();
2560   Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
2561     .Visit(const_cast<Expr*>(E));
2562   if (isa<CXXDefaultArgExpr>(E))
2563     enableDebugInfo();
2564   return V;
2565 }
2566 
2567 /// EmitScalarConversion - Emit a conversion from the specified type to the
2568 /// specified destination type, both of which are LLVM scalar types.
2569 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2570                                              QualType DstTy) {
2571   assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2572          "Invalid scalar expression to emit");
2573   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2574 }
2575 
2576 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2577 /// type to the specified destination type, where the destination type is an
2578 /// LLVM scalar type.
2579 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2580                                                       QualType SrcTy,
2581                                                       QualType DstTy) {
2582   assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2583          "Invalid complex -> scalar conversion");
2584   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2585                                                                 DstTy);
2586 }
2587 
2588 
2589 llvm::Value *CodeGenFunction::
2590 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2591                         bool isInc, bool isPre) {
2592   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2593 }
2594 
2595 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2596   llvm::Value *V;
2597   // object->isa or (*object).isa
2598   // Generate code as for: *(Class*)object
2599   // build Class* type
2600   const llvm::Type *ClassPtrTy = ConvertType(E->getType());
2601 
2602   Expr *BaseExpr = E->getBase();
2603   if (BaseExpr->isRValue()) {
2604     V = CreateTempAlloca(ClassPtrTy, "resval");
2605     llvm::Value *Src = EmitScalarExpr(BaseExpr);
2606     Builder.CreateStore(Src, V);
2607     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2608       MakeAddrLValue(V, E->getType()), E->getType());
2609   } else {
2610     if (E->isArrow())
2611       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2612     else
2613       V = EmitLValue(BaseExpr).getAddress();
2614   }
2615 
2616   // build Class* type
2617   ClassPtrTy = ClassPtrTy->getPointerTo();
2618   V = Builder.CreateBitCast(V, ClassPtrTy);
2619   return MakeAddrLValue(V, E->getType());
2620 }
2621 
2622 
2623 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
2624                                             const CompoundAssignOperator *E) {
2625   ScalarExprEmitter Scalar(*this);
2626   Value *Result = 0;
2627   switch (E->getOpcode()) {
2628 #define COMPOUND_OP(Op)                                                       \
2629     case BO_##Op##Assign:                                                     \
2630       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2631                                              Result)
2632   COMPOUND_OP(Mul);
2633   COMPOUND_OP(Div);
2634   COMPOUND_OP(Rem);
2635   COMPOUND_OP(Add);
2636   COMPOUND_OP(Sub);
2637   COMPOUND_OP(Shl);
2638   COMPOUND_OP(Shr);
2639   COMPOUND_OP(And);
2640   COMPOUND_OP(Xor);
2641   COMPOUND_OP(Or);
2642 #undef COMPOUND_OP
2643 
2644   case BO_PtrMemD:
2645   case BO_PtrMemI:
2646   case BO_Mul:
2647   case BO_Div:
2648   case BO_Rem:
2649   case BO_Add:
2650   case BO_Sub:
2651   case BO_Shl:
2652   case BO_Shr:
2653   case BO_LT:
2654   case BO_GT:
2655   case BO_LE:
2656   case BO_GE:
2657   case BO_EQ:
2658   case BO_NE:
2659   case BO_And:
2660   case BO_Xor:
2661   case BO_Or:
2662   case BO_LAnd:
2663   case BO_LOr:
2664   case BO_Assign:
2665   case BO_Comma:
2666     assert(false && "Not valid compound assignment operators");
2667     break;
2668   }
2669 
2670   llvm_unreachable("Unhandled compound assignment operator");
2671 }
2672