1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCXXABI.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Basic/FixedPoint.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Frontend/CodeGenOptions.h"
29 #include "llvm/ADT/Optional.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/Module.h"
38 #include <cstdarg>
39 
40 using namespace clang;
41 using namespace CodeGen;
42 using llvm::Value;
43 
44 //===----------------------------------------------------------------------===//
45 //                         Scalar Expression Emitter
46 //===----------------------------------------------------------------------===//
47 
48 namespace {
49 
50 /// Determine whether the given binary operation may overflow.
51 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
52 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
53 /// the returned overflow check is precise. The returned value is 'true' for
54 /// all other opcodes, to be conservative.
55 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
56                              BinaryOperator::Opcode Opcode, bool Signed,
57                              llvm::APInt &Result) {
58   // Assume overflow is possible, unless we can prove otherwise.
59   bool Overflow = true;
60   const auto &LHSAP = LHS->getValue();
61   const auto &RHSAP = RHS->getValue();
62   if (Opcode == BO_Add) {
63     if (Signed)
64       Result = LHSAP.sadd_ov(RHSAP, Overflow);
65     else
66       Result = LHSAP.uadd_ov(RHSAP, Overflow);
67   } else if (Opcode == BO_Sub) {
68     if (Signed)
69       Result = LHSAP.ssub_ov(RHSAP, Overflow);
70     else
71       Result = LHSAP.usub_ov(RHSAP, Overflow);
72   } else if (Opcode == BO_Mul) {
73     if (Signed)
74       Result = LHSAP.smul_ov(RHSAP, Overflow);
75     else
76       Result = LHSAP.umul_ov(RHSAP, Overflow);
77   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
78     if (Signed && !RHS->isZero())
79       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
80     else
81       return false;
82   }
83   return Overflow;
84 }
85 
86 struct BinOpInfo {
87   Value *LHS;
88   Value *RHS;
89   QualType Ty;  // Computation Type.
90   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
91   FPOptions FPFeatures;
92   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
93 
94   /// Check if the binop can result in integer overflow.
95   bool mayHaveIntegerOverflow() const {
96     // Without constant input, we can't rule out overflow.
97     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
98     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
99     if (!LHSCI || !RHSCI)
100       return true;
101 
102     llvm::APInt Result;
103     return ::mayHaveIntegerOverflow(
104         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
105   }
106 
107   /// Check if the binop computes a division or a remainder.
108   bool isDivremOp() const {
109     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
110            Opcode == BO_RemAssign;
111   }
112 
113   /// Check if the binop can result in an integer division by zero.
114   bool mayHaveIntegerDivisionByZero() const {
115     if (isDivremOp())
116       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
117         return CI->isZero();
118     return true;
119   }
120 
121   /// Check if the binop can result in a float division by zero.
122   bool mayHaveFloatDivisionByZero() const {
123     if (isDivremOp())
124       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
125         return CFP->isZero();
126     return true;
127   }
128 };
129 
130 static bool MustVisitNullValue(const Expr *E) {
131   // If a null pointer expression's type is the C++0x nullptr_t, then
132   // it's not necessarily a simple constant and it must be evaluated
133   // for its potential side effects.
134   return E->getType()->isNullPtrType();
135 }
136 
137 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
138 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
139                                                         const Expr *E) {
140   const Expr *Base = E->IgnoreImpCasts();
141   if (E == Base)
142     return llvm::None;
143 
144   QualType BaseTy = Base->getType();
145   if (!BaseTy->isPromotableIntegerType() ||
146       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
147     return llvm::None;
148 
149   return BaseTy;
150 }
151 
152 /// Check if \p E is a widened promoted integer.
153 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
154   return getUnwidenedIntegerType(Ctx, E).hasValue();
155 }
156 
157 /// Check if we can skip the overflow check for \p Op.
158 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
159   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
160          "Expected a unary or binary operator");
161 
162   // If the binop has constant inputs and we can prove there is no overflow,
163   // we can elide the overflow check.
164   if (!Op.mayHaveIntegerOverflow())
165     return true;
166 
167   // If a unary op has a widened operand, the op cannot overflow.
168   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
169     return !UO->canOverflow();
170 
171   // We usually don't need overflow checks for binops with widened operands.
172   // Multiplication with promoted unsigned operands is a special case.
173   const auto *BO = cast<BinaryOperator>(Op.E);
174   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
175   if (!OptionalLHSTy)
176     return false;
177 
178   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
179   if (!OptionalRHSTy)
180     return false;
181 
182   QualType LHSTy = *OptionalLHSTy;
183   QualType RHSTy = *OptionalRHSTy;
184 
185   // This is the simple case: binops without unsigned multiplication, and with
186   // widened operands. No overflow check is needed here.
187   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
188       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
189     return true;
190 
191   // For unsigned multiplication the overflow check can be elided if either one
192   // of the unpromoted types are less than half the size of the promoted type.
193   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
194   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
195          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
196 }
197 
198 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
199 static void updateFastMathFlags(llvm::FastMathFlags &FMF,
200                                 FPOptions FPFeatures) {
201   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
202 }
203 
204 /// Propagate fast-math flags from \p Op to the instruction in \p V.
205 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
206   if (auto *I = dyn_cast<llvm::Instruction>(V)) {
207     llvm::FastMathFlags FMF = I->getFastMathFlags();
208     updateFastMathFlags(FMF, Op.FPFeatures);
209     I->setFastMathFlags(FMF);
210   }
211   return V;
212 }
213 
214 class ScalarExprEmitter
215   : public StmtVisitor<ScalarExprEmitter, Value*> {
216   CodeGenFunction &CGF;
217   CGBuilderTy &Builder;
218   bool IgnoreResultAssign;
219   llvm::LLVMContext &VMContext;
220 public:
221 
222   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
223     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
224       VMContext(cgf.getLLVMContext()) {
225   }
226 
227   //===--------------------------------------------------------------------===//
228   //                               Utilities
229   //===--------------------------------------------------------------------===//
230 
231   bool TestAndClearIgnoreResultAssign() {
232     bool I = IgnoreResultAssign;
233     IgnoreResultAssign = false;
234     return I;
235   }
236 
237   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
238   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
239   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
240     return CGF.EmitCheckedLValue(E, TCK);
241   }
242 
243   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
244                       const BinOpInfo &Info);
245 
246   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
247     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
248   }
249 
250   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
251     const AlignValueAttr *AVAttr = nullptr;
252     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
253       const ValueDecl *VD = DRE->getDecl();
254 
255       if (VD->getType()->isReferenceType()) {
256         if (const auto *TTy =
257             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
258           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
259       } else {
260         // Assumptions for function parameters are emitted at the start of the
261         // function, so there is no need to repeat that here.
262         if (isa<ParmVarDecl>(VD))
263           return;
264 
265         AVAttr = VD->getAttr<AlignValueAttr>();
266       }
267     }
268 
269     if (!AVAttr)
270       if (const auto *TTy =
271           dyn_cast<TypedefType>(E->getType()))
272         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
273 
274     if (!AVAttr)
275       return;
276 
277     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
278     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
279     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
280   }
281 
282   /// EmitLoadOfLValue - Given an expression with complex type that represents a
283   /// value l-value, this method emits the address of the l-value, then loads
284   /// and returns the result.
285   Value *EmitLoadOfLValue(const Expr *E) {
286     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
287                                 E->getExprLoc());
288 
289     EmitLValueAlignmentAssumption(E, V);
290     return V;
291   }
292 
293   /// EmitConversionToBool - Convert the specified expression value to a
294   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
295   Value *EmitConversionToBool(Value *Src, QualType DstTy);
296 
297   /// Emit a check that a conversion to or from a floating-point type does not
298   /// overflow.
299   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
300                                 Value *Src, QualType SrcType, QualType DstType,
301                                 llvm::Type *DstTy, SourceLocation Loc);
302 
303   /// Known implicit conversion check kinds.
304   /// Keep in sync with the enum of the same name in ubsan_handlers.h
305   enum ImplicitConversionCheckKind : unsigned char {
306     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
307     ICCK_UnsignedIntegerTruncation = 1,
308     ICCK_SignedIntegerTruncation = 2,
309     ICCK_IntegerSignChange = 3,
310     ICCK_SignedIntegerTruncationOrSignChange = 4,
311   };
312 
313   /// Emit a check that an [implicit] truncation of an integer  does not
314   /// discard any bits. It is not UB, so we use the value after truncation.
315   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
316                                   QualType DstType, SourceLocation Loc);
317 
318   /// Emit a check that an [implicit] conversion of an integer does not change
319   /// the sign of the value. It is not UB, so we use the value after conversion.
320   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
321   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
322                                   QualType DstType, SourceLocation Loc);
323 
324   /// Emit a conversion from the specified type to the specified destination
325   /// type, both of which are LLVM scalar types.
326   struct ScalarConversionOpts {
327     bool TreatBooleanAsSigned;
328     bool EmitImplicitIntegerTruncationChecks;
329     bool EmitImplicitIntegerSignChangeChecks;
330 
331     ScalarConversionOpts()
332         : TreatBooleanAsSigned(false),
333           EmitImplicitIntegerTruncationChecks(false),
334           EmitImplicitIntegerSignChangeChecks(false) {}
335 
336     ScalarConversionOpts(clang::SanitizerSet SanOpts)
337         : TreatBooleanAsSigned(false),
338           EmitImplicitIntegerTruncationChecks(
339               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
340           EmitImplicitIntegerSignChangeChecks(
341               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
342   };
343   Value *
344   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
345                        SourceLocation Loc,
346                        ScalarConversionOpts Opts = ScalarConversionOpts());
347 
348   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
349                                   SourceLocation Loc);
350 
351   /// Emit a conversion from the specified complex type to the specified
352   /// destination type, where the destination type is an LLVM scalar type.
353   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
354                                        QualType SrcTy, QualType DstTy,
355                                        SourceLocation Loc);
356 
357   /// EmitNullValue - Emit a value that corresponds to null for the given type.
358   Value *EmitNullValue(QualType Ty);
359 
360   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
361   Value *EmitFloatToBoolConversion(Value *V) {
362     // Compare against 0.0 for fp scalars.
363     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
364     return Builder.CreateFCmpUNE(V, Zero, "tobool");
365   }
366 
367   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
368   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
369     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
370 
371     return Builder.CreateICmpNE(V, Zero, "tobool");
372   }
373 
374   Value *EmitIntToBoolConversion(Value *V) {
375     // Because of the type rules of C, we often end up computing a
376     // logical value, then zero extending it to int, then wanting it
377     // as a logical value again.  Optimize this common case.
378     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
379       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
380         Value *Result = ZI->getOperand(0);
381         // If there aren't any more uses, zap the instruction to save space.
382         // Note that there can be more uses, for example if this
383         // is the result of an assignment.
384         if (ZI->use_empty())
385           ZI->eraseFromParent();
386         return Result;
387       }
388     }
389 
390     return Builder.CreateIsNotNull(V, "tobool");
391   }
392 
393   //===--------------------------------------------------------------------===//
394   //                            Visitor Methods
395   //===--------------------------------------------------------------------===//
396 
397   Value *Visit(Expr *E) {
398     ApplyDebugLocation DL(CGF, E);
399     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
400   }
401 
402   Value *VisitStmt(Stmt *S) {
403     S->dump(CGF.getContext().getSourceManager());
404     llvm_unreachable("Stmt can't have complex result type!");
405   }
406   Value *VisitExpr(Expr *S);
407 
408   Value *VisitConstantExpr(ConstantExpr *E) {
409     return Visit(E->getSubExpr());
410   }
411   Value *VisitParenExpr(ParenExpr *PE) {
412     return Visit(PE->getSubExpr());
413   }
414   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
415     return Visit(E->getReplacement());
416   }
417   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
418     return Visit(GE->getResultExpr());
419   }
420   Value *VisitCoawaitExpr(CoawaitExpr *S) {
421     return CGF.EmitCoawaitExpr(*S).getScalarVal();
422   }
423   Value *VisitCoyieldExpr(CoyieldExpr *S) {
424     return CGF.EmitCoyieldExpr(*S).getScalarVal();
425   }
426   Value *VisitUnaryCoawait(const UnaryOperator *E) {
427     return Visit(E->getSubExpr());
428   }
429 
430   // Leaves.
431   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
432     return Builder.getInt(E->getValue());
433   }
434   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
435     return Builder.getInt(E->getValue());
436   }
437   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
438     return llvm::ConstantFP::get(VMContext, E->getValue());
439   }
440   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
441     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
442   }
443   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
444     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
445   }
446   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
447     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
448   }
449   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
450     return EmitNullValue(E->getType());
451   }
452   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
453     return EmitNullValue(E->getType());
454   }
455   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
456   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
457   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
458     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
459     return Builder.CreateBitCast(V, ConvertType(E->getType()));
460   }
461 
462   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
463     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
464   }
465 
466   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
467     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
468   }
469 
470   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
471     if (E->isGLValue())
472       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
473                               E->getExprLoc());
474 
475     // Otherwise, assume the mapping is the scalar directly.
476     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
477   }
478 
479   // l-values.
480   Value *VisitDeclRefExpr(DeclRefExpr *E) {
481     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
482       return CGF.emitScalarConstant(Constant, E);
483     return EmitLoadOfLValue(E);
484   }
485 
486   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
487     return CGF.EmitObjCSelectorExpr(E);
488   }
489   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
490     return CGF.EmitObjCProtocolExpr(E);
491   }
492   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
493     return EmitLoadOfLValue(E);
494   }
495   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
496     if (E->getMethodDecl() &&
497         E->getMethodDecl()->getReturnType()->isReferenceType())
498       return EmitLoadOfLValue(E);
499     return CGF.EmitObjCMessageExpr(E).getScalarVal();
500   }
501 
502   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
503     LValue LV = CGF.EmitObjCIsaExpr(E);
504     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
505     return V;
506   }
507 
508   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
509     VersionTuple Version = E->getVersion();
510 
511     // If we're checking for a platform older than our minimum deployment
512     // target, we can fold the check away.
513     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
514       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
515 
516     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
517     llvm::Value *Args[] = {
518         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
519         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
520         llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
521     };
522 
523     return CGF.EmitBuiltinAvailable(Args);
524   }
525 
526   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
527   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
528   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
529   Value *VisitMemberExpr(MemberExpr *E);
530   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
531   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
532     return EmitLoadOfLValue(E);
533   }
534 
535   Value *VisitInitListExpr(InitListExpr *E);
536 
537   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
538     assert(CGF.getArrayInitIndex() &&
539            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
540     return CGF.getArrayInitIndex();
541   }
542 
543   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
544     return EmitNullValue(E->getType());
545   }
546   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
547     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
548     return VisitCastExpr(E);
549   }
550   Value *VisitCastExpr(CastExpr *E);
551 
552   Value *VisitCallExpr(const CallExpr *E) {
553     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
554       return EmitLoadOfLValue(E);
555 
556     Value *V = CGF.EmitCallExpr(E).getScalarVal();
557 
558     EmitLValueAlignmentAssumption(E, V);
559     return V;
560   }
561 
562   Value *VisitStmtExpr(const StmtExpr *E);
563 
564   // Unary Operators.
565   Value *VisitUnaryPostDec(const UnaryOperator *E) {
566     LValue LV = EmitLValue(E->getSubExpr());
567     return EmitScalarPrePostIncDec(E, LV, false, false);
568   }
569   Value *VisitUnaryPostInc(const UnaryOperator *E) {
570     LValue LV = EmitLValue(E->getSubExpr());
571     return EmitScalarPrePostIncDec(E, LV, true, false);
572   }
573   Value *VisitUnaryPreDec(const UnaryOperator *E) {
574     LValue LV = EmitLValue(E->getSubExpr());
575     return EmitScalarPrePostIncDec(E, LV, false, true);
576   }
577   Value *VisitUnaryPreInc(const UnaryOperator *E) {
578     LValue LV = EmitLValue(E->getSubExpr());
579     return EmitScalarPrePostIncDec(E, LV, true, true);
580   }
581 
582   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
583                                                   llvm::Value *InVal,
584                                                   bool IsInc);
585 
586   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
587                                        bool isInc, bool isPre);
588 
589 
590   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
591     if (isa<MemberPointerType>(E->getType())) // never sugared
592       return CGF.CGM.getMemberPointerConstant(E);
593 
594     return EmitLValue(E->getSubExpr()).getPointer();
595   }
596   Value *VisitUnaryDeref(const UnaryOperator *E) {
597     if (E->getType()->isVoidType())
598       return Visit(E->getSubExpr()); // the actual value should be unused
599     return EmitLoadOfLValue(E);
600   }
601   Value *VisitUnaryPlus(const UnaryOperator *E) {
602     // This differs from gcc, though, most likely due to a bug in gcc.
603     TestAndClearIgnoreResultAssign();
604     return Visit(E->getSubExpr());
605   }
606   Value *VisitUnaryMinus    (const UnaryOperator *E);
607   Value *VisitUnaryNot      (const UnaryOperator *E);
608   Value *VisitUnaryLNot     (const UnaryOperator *E);
609   Value *VisitUnaryReal     (const UnaryOperator *E);
610   Value *VisitUnaryImag     (const UnaryOperator *E);
611   Value *VisitUnaryExtension(const UnaryOperator *E) {
612     return Visit(E->getSubExpr());
613   }
614 
615   // C++
616   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
617     return EmitLoadOfLValue(E);
618   }
619 
620   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
621     return Visit(DAE->getExpr());
622   }
623   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
624     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
625     return Visit(DIE->getExpr());
626   }
627   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
628     return CGF.LoadCXXThis();
629   }
630 
631   Value *VisitExprWithCleanups(ExprWithCleanups *E);
632   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
633     return CGF.EmitCXXNewExpr(E);
634   }
635   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
636     CGF.EmitCXXDeleteExpr(E);
637     return nullptr;
638   }
639 
640   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
641     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
642   }
643 
644   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
645     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
646   }
647 
648   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
649     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
650   }
651 
652   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
653     // C++ [expr.pseudo]p1:
654     //   The result shall only be used as the operand for the function call
655     //   operator (), and the result of such a call has type void. The only
656     //   effect is the evaluation of the postfix-expression before the dot or
657     //   arrow.
658     CGF.EmitScalarExpr(E->getBase());
659     return nullptr;
660   }
661 
662   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
663     return EmitNullValue(E->getType());
664   }
665 
666   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
667     CGF.EmitCXXThrowExpr(E);
668     return nullptr;
669   }
670 
671   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
672     return Builder.getInt1(E->getValue());
673   }
674 
675   // Binary Operators.
676   Value *EmitMul(const BinOpInfo &Ops) {
677     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
678       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
679       case LangOptions::SOB_Defined:
680         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
681       case LangOptions::SOB_Undefined:
682         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
683           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
684         LLVM_FALLTHROUGH;
685       case LangOptions::SOB_Trapping:
686         if (CanElideOverflowCheck(CGF.getContext(), Ops))
687           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
688         return EmitOverflowCheckedBinOp(Ops);
689       }
690     }
691 
692     if (Ops.Ty->isUnsignedIntegerType() &&
693         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
694         !CanElideOverflowCheck(CGF.getContext(), Ops))
695       return EmitOverflowCheckedBinOp(Ops);
696 
697     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
698       Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
699       return propagateFMFlags(V, Ops);
700     }
701     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
702   }
703   /// Create a binary op that checks for overflow.
704   /// Currently only supports +, - and *.
705   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
706 
707   // Check for undefined division and modulus behaviors.
708   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
709                                                   llvm::Value *Zero,bool isDiv);
710   // Common helper for getting how wide LHS of shift is.
711   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
712   Value *EmitDiv(const BinOpInfo &Ops);
713   Value *EmitRem(const BinOpInfo &Ops);
714   Value *EmitAdd(const BinOpInfo &Ops);
715   Value *EmitSub(const BinOpInfo &Ops);
716   Value *EmitShl(const BinOpInfo &Ops);
717   Value *EmitShr(const BinOpInfo &Ops);
718   Value *EmitAnd(const BinOpInfo &Ops) {
719     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
720   }
721   Value *EmitXor(const BinOpInfo &Ops) {
722     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
723   }
724   Value *EmitOr (const BinOpInfo &Ops) {
725     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
726   }
727 
728   BinOpInfo EmitBinOps(const BinaryOperator *E);
729   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
730                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
731                                   Value *&Result);
732 
733   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
734                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
735 
736   // Binary operators and binary compound assignment operators.
737 #define HANDLEBINOP(OP) \
738   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
739     return Emit ## OP(EmitBinOps(E));                                      \
740   }                                                                        \
741   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
742     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
743   }
744   HANDLEBINOP(Mul)
745   HANDLEBINOP(Div)
746   HANDLEBINOP(Rem)
747   HANDLEBINOP(Add)
748   HANDLEBINOP(Sub)
749   HANDLEBINOP(Shl)
750   HANDLEBINOP(Shr)
751   HANDLEBINOP(And)
752   HANDLEBINOP(Xor)
753   HANDLEBINOP(Or)
754 #undef HANDLEBINOP
755 
756   // Comparisons.
757   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
758                      llvm::CmpInst::Predicate SICmpOpc,
759                      llvm::CmpInst::Predicate FCmpOpc);
760 #define VISITCOMP(CODE, UI, SI, FP) \
761     Value *VisitBin##CODE(const BinaryOperator *E) { \
762       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
763                          llvm::FCmpInst::FP); }
764   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
765   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
766   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
767   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
768   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
769   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
770 #undef VISITCOMP
771 
772   Value *VisitBinAssign     (const BinaryOperator *E);
773 
774   Value *VisitBinLAnd       (const BinaryOperator *E);
775   Value *VisitBinLOr        (const BinaryOperator *E);
776   Value *VisitBinComma      (const BinaryOperator *E);
777 
778   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
779   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
780 
781   // Other Operators.
782   Value *VisitBlockExpr(const BlockExpr *BE);
783   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
784   Value *VisitChooseExpr(ChooseExpr *CE);
785   Value *VisitVAArgExpr(VAArgExpr *VE);
786   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
787     return CGF.EmitObjCStringLiteral(E);
788   }
789   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
790     return CGF.EmitObjCBoxedExpr(E);
791   }
792   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
793     return CGF.EmitObjCArrayLiteral(E);
794   }
795   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
796     return CGF.EmitObjCDictionaryLiteral(E);
797   }
798   Value *VisitAsTypeExpr(AsTypeExpr *CE);
799   Value *VisitAtomicExpr(AtomicExpr *AE);
800 };
801 }  // end anonymous namespace.
802 
803 //===----------------------------------------------------------------------===//
804 //                                Utilities
805 //===----------------------------------------------------------------------===//
806 
807 /// EmitConversionToBool - Convert the specified expression value to a
808 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
809 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
810   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
811 
812   if (SrcType->isRealFloatingType())
813     return EmitFloatToBoolConversion(Src);
814 
815   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
816     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
817 
818   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
819          "Unknown scalar type to convert");
820 
821   if (isa<llvm::IntegerType>(Src->getType()))
822     return EmitIntToBoolConversion(Src);
823 
824   assert(isa<llvm::PointerType>(Src->getType()));
825   return EmitPointerToBoolConversion(Src, SrcType);
826 }
827 
828 void ScalarExprEmitter::EmitFloatConversionCheck(
829     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
830     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
831   CodeGenFunction::SanitizerScope SanScope(&CGF);
832   using llvm::APFloat;
833   using llvm::APSInt;
834 
835   llvm::Type *SrcTy = Src->getType();
836 
837   llvm::Value *Check = nullptr;
838   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
839     // Integer to floating-point. This can fail for unsigned short -> __half
840     // or unsigned __int128 -> float.
841     assert(DstType->isFloatingType());
842     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
843 
844     APFloat LargestFloat =
845       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
846     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
847 
848     bool IsExact;
849     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
850                                       &IsExact) != APFloat::opOK)
851       // The range of representable values of this floating point type includes
852       // all values of this integer type. Don't need an overflow check.
853       return;
854 
855     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
856     if (SrcIsUnsigned)
857       Check = Builder.CreateICmpULE(Src, Max);
858     else {
859       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
860       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
861       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
862       Check = Builder.CreateAnd(GE, LE);
863     }
864   } else {
865     const llvm::fltSemantics &SrcSema =
866       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
867     if (isa<llvm::IntegerType>(DstTy)) {
868       // Floating-point to integer. This has undefined behavior if the source is
869       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
870       // to an integer).
871       unsigned Width = CGF.getContext().getIntWidth(DstType);
872       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
873 
874       APSInt Min = APSInt::getMinValue(Width, Unsigned);
875       APFloat MinSrc(SrcSema, APFloat::uninitialized);
876       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
877           APFloat::opOverflow)
878         // Don't need an overflow check for lower bound. Just check for
879         // -Inf/NaN.
880         MinSrc = APFloat::getInf(SrcSema, true);
881       else
882         // Find the largest value which is too small to represent (before
883         // truncation toward zero).
884         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
885 
886       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
887       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
888       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
889           APFloat::opOverflow)
890         // Don't need an overflow check for upper bound. Just check for
891         // +Inf/NaN.
892         MaxSrc = APFloat::getInf(SrcSema, false);
893       else
894         // Find the smallest value which is too large to represent (before
895         // truncation toward zero).
896         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
897 
898       // If we're converting from __half, convert the range to float to match
899       // the type of src.
900       if (OrigSrcType->isHalfType()) {
901         const llvm::fltSemantics &Sema =
902           CGF.getContext().getFloatTypeSemantics(SrcType);
903         bool IsInexact;
904         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
905         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
906       }
907 
908       llvm::Value *GE =
909         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
910       llvm::Value *LE =
911         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
912       Check = Builder.CreateAnd(GE, LE);
913     } else {
914       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
915       //
916       // Floating-point to floating-point. This has undefined behavior if the
917       // source is not in the range of representable values of the destination
918       // type. The C and C++ standards are spectacularly unclear here. We
919       // diagnose finite out-of-range conversions, but allow infinities and NaNs
920       // to convert to the corresponding value in the smaller type.
921       //
922       // C11 Annex F gives all such conversions defined behavior for IEC 60559
923       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
924       // does not.
925 
926       // Converting from a lower rank to a higher rank can never have
927       // undefined behavior, since higher-rank types must have a superset
928       // of values of lower-rank types.
929       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
930         return;
931 
932       assert(!OrigSrcType->isHalfType() &&
933              "should not check conversion from __half, it has the lowest rank");
934 
935       const llvm::fltSemantics &DstSema =
936         CGF.getContext().getFloatTypeSemantics(DstType);
937       APFloat MinBad = APFloat::getLargest(DstSema, false);
938       APFloat MaxBad = APFloat::getInf(DstSema, false);
939 
940       bool IsInexact;
941       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
942       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
943 
944       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
945         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
946       llvm::Value *GE =
947         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
948       llvm::Value *LE =
949         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
950       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
951     }
952   }
953 
954   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
955                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
956                                   CGF.EmitCheckTypeDescriptor(DstType)};
957   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
958                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
959 }
960 
961 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
962 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
963 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
964                  std::pair<llvm::Value *, SanitizerMask>>
965 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
966                                  QualType DstType, CGBuilderTy &Builder) {
967   llvm::Type *SrcTy = Src->getType();
968   llvm::Type *DstTy = Dst->getType();
969   (void)DstTy; // Only used in assert()
970 
971   // This should be truncation of integral types.
972   assert(Src != Dst);
973   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
974   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
975          "non-integer llvm type");
976 
977   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
978   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
979 
980   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
981   // Else, it is a signed truncation.
982   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
983   SanitizerMask Mask;
984   if (!SrcSigned && !DstSigned) {
985     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
986     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
987   } else {
988     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
989     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
990   }
991 
992   llvm::Value *Check = nullptr;
993   // 1. Extend the truncated value back to the same width as the Src.
994   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
995   // 2. Equality-compare with the original source value
996   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
997   // If the comparison result is 'i1 false', then the truncation was lossy.
998   return std::make_pair(Kind, std::make_pair(Check, Mask));
999 }
1000 
1001 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1002                                                    Value *Dst, QualType DstType,
1003                                                    SourceLocation Loc) {
1004   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1005     return;
1006 
1007   // We only care about int->int conversions here.
1008   // We ignore conversions to/from pointer and/or bool.
1009   if (!(SrcType->isIntegerType() && DstType->isIntegerType()))
1010     return;
1011 
1012   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1013   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1014   // This must be truncation. Else we do not care.
1015   if (SrcBits <= DstBits)
1016     return;
1017 
1018   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1019 
1020   // If the integer sign change sanitizer is enabled,
1021   // and we are truncating from larger unsigned type to smaller signed type,
1022   // let that next sanitizer deal with it.
1023   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1024   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1025   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1026       (!SrcSigned && DstSigned))
1027     return;
1028 
1029   CodeGenFunction::SanitizerScope SanScope(&CGF);
1030 
1031   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1032             std::pair<llvm::Value *, SanitizerMask>>
1033       Check =
1034           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1035   // If the comparison result is 'i1 false', then the truncation was lossy.
1036 
1037   // Do we care about this type of truncation?
1038   if (!CGF.SanOpts.has(Check.second.second))
1039     return;
1040 
1041   llvm::Constant *StaticArgs[] = {
1042       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1043       CGF.EmitCheckTypeDescriptor(DstType),
1044       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1045   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1046                 {Src, Dst});
1047 }
1048 
1049 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1050 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1051 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1052                  std::pair<llvm::Value *, SanitizerMask>>
1053 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1054                                  QualType DstType, CGBuilderTy &Builder) {
1055   llvm::Type *SrcTy = Src->getType();
1056   llvm::Type *DstTy = Dst->getType();
1057 
1058   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1059          "non-integer llvm type");
1060 
1061   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1062   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1063   (void)SrcSigned; // Only used in assert()
1064   (void)DstSigned; // Only used in assert()
1065   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1066   unsigned DstBits = DstTy->getScalarSizeInBits();
1067   (void)SrcBits; // Only used in assert()
1068   (void)DstBits; // Only used in assert()
1069 
1070   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1071          "either the widths should be different, or the signednesses.");
1072 
1073   // NOTE: zero value is considered to be non-negative.
1074   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1075                                        const char *Name) -> Value * {
1076     // Is this value a signed type?
1077     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1078     llvm::Type *VTy = V->getType();
1079     if (!VSigned) {
1080       // If the value is unsigned, then it is never negative.
1081       // FIXME: can we encounter non-scalar VTy here?
1082       return llvm::ConstantInt::getFalse(VTy->getContext());
1083     }
1084     // Get the zero of the same type with which we will be comparing.
1085     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1086     // %V.isnegative = icmp slt %V, 0
1087     // I.e is %V *strictly* less than zero, does it have negative value?
1088     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1089                               llvm::Twine(Name) + "." + V->getName() +
1090                                   ".negativitycheck");
1091   };
1092 
1093   // 1. Was the old Value negative?
1094   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1095   // 2. Is the new Value negative?
1096   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1097   // 3. Now, was the 'negativity status' preserved during the conversion?
1098   //    NOTE: conversion from negative to zero is considered to change the sign.
1099   //    (We want to get 'false' when the conversion changed the sign)
1100   //    So we should just equality-compare the negativity statuses.
1101   llvm::Value *Check = nullptr;
1102   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1103   // If the comparison result is 'false', then the conversion changed the sign.
1104   return std::make_pair(
1105       ScalarExprEmitter::ICCK_IntegerSignChange,
1106       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1107 }
1108 
1109 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1110                                                    Value *Dst, QualType DstType,
1111                                                    SourceLocation Loc) {
1112   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1113     return;
1114 
1115   llvm::Type *SrcTy = Src->getType();
1116   llvm::Type *DstTy = Dst->getType();
1117 
1118   // We only care about int->int conversions here.
1119   // We ignore conversions to/from pointer and/or bool.
1120   if (!(SrcType->isIntegerType() && DstType->isIntegerType()))
1121     return;
1122 
1123   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1124   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1125   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1126   unsigned DstBits = DstTy->getScalarSizeInBits();
1127 
1128   // Now, we do not need to emit the check in *all* of the cases.
1129   // We can avoid emitting it in some obvious cases where it would have been
1130   // dropped by the opt passes (instcombine) always anyways.
1131   // If it's a cast between effectively the same type, no check.
1132   // NOTE: this is *not* equivalent to checking the canonical types.
1133   if (SrcSigned == DstSigned && SrcBits == DstBits)
1134     return;
1135   // At least one of the values needs to have signed type.
1136   // If both are unsigned, then obviously, neither of them can be negative.
1137   if (!SrcSigned && !DstSigned)
1138     return;
1139   // If the conversion is to *larger* *signed* type, then no check is needed.
1140   // Because either sign-extension happens (so the sign will remain),
1141   // or zero-extension will happen (the sign bit will be zero.)
1142   if ((DstBits > SrcBits) && DstSigned)
1143     return;
1144   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1145       (SrcBits > DstBits) && SrcSigned) {
1146     // If the signed integer truncation sanitizer is enabled,
1147     // and this is a truncation from signed type, then no check is needed.
1148     // Because here sign change check is interchangeable with truncation check.
1149     return;
1150   }
1151   // That's it. We can't rule out any more cases with the data we have.
1152 
1153   CodeGenFunction::SanitizerScope SanScope(&CGF);
1154 
1155   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1156             std::pair<llvm::Value *, SanitizerMask>>
1157       Check;
1158 
1159   // Each of these checks needs to return 'false' when an issue was detected.
1160   ImplicitConversionCheckKind CheckKind;
1161   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1162   // So we can 'and' all the checks together, and still get 'false',
1163   // if at least one of the checks detected an issue.
1164 
1165   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1166   CheckKind = Check.first;
1167   Checks.emplace_back(Check.second);
1168 
1169   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1170       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1171     // If the signed integer truncation sanitizer was enabled,
1172     // and we are truncating from larger unsigned type to smaller signed type,
1173     // let's handle the case we skipped in that check.
1174     Check =
1175         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1176     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1177     Checks.emplace_back(Check.second);
1178     // If the comparison result is 'i1 false', then the truncation was lossy.
1179   }
1180 
1181   llvm::Constant *StaticArgs[] = {
1182       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1183       CGF.EmitCheckTypeDescriptor(DstType),
1184       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1185   // EmitCheck() will 'and' all the checks together.
1186   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1187                 {Src, Dst});
1188 }
1189 
1190 /// Emit a conversion from the specified type to the specified destination type,
1191 /// both of which are LLVM scalar types.
1192 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1193                                                QualType DstType,
1194                                                SourceLocation Loc,
1195                                                ScalarConversionOpts Opts) {
1196   // All conversions involving fixed point types should be handled by the
1197   // EmitFixedPoint family functions. This is done to prevent bloating up this
1198   // function more, and although fixed point numbers are represented by
1199   // integers, we do not want to follow any logic that assumes they should be
1200   // treated as integers.
1201   // TODO(leonardchan): When necessary, add another if statement checking for
1202   // conversions to fixed point types from other types.
1203   if (SrcType->isFixedPointType()) {
1204     if (DstType->isFixedPointType()) {
1205       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1206     } else if (DstType->isBooleanType()) {
1207       // We do not need to check the padding bit on unsigned types if unsigned
1208       // padding is enabled because overflow into this bit is undefined
1209       // behavior.
1210       return Builder.CreateIsNotNull(Src, "tobool");
1211     }
1212 
1213     llvm_unreachable(
1214         "Unhandled scalar conversion involving a fixed point type.");
1215   }
1216 
1217   QualType NoncanonicalSrcType = SrcType;
1218   QualType NoncanonicalDstType = DstType;
1219 
1220   SrcType = CGF.getContext().getCanonicalType(SrcType);
1221   DstType = CGF.getContext().getCanonicalType(DstType);
1222   if (SrcType == DstType) return Src;
1223 
1224   if (DstType->isVoidType()) return nullptr;
1225 
1226   llvm::Value *OrigSrc = Src;
1227   QualType OrigSrcType = SrcType;
1228   llvm::Type *SrcTy = Src->getType();
1229 
1230   // Handle conversions to bool first, they are special: comparisons against 0.
1231   if (DstType->isBooleanType())
1232     return EmitConversionToBool(Src, SrcType);
1233 
1234   llvm::Type *DstTy = ConvertType(DstType);
1235 
1236   // Cast from half through float if half isn't a native type.
1237   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1238     // Cast to FP using the intrinsic if the half type itself isn't supported.
1239     if (DstTy->isFloatingPointTy()) {
1240       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1241         return Builder.CreateCall(
1242             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1243             Src);
1244     } else {
1245       // Cast to other types through float, using either the intrinsic or FPExt,
1246       // depending on whether the half type itself is supported
1247       // (as opposed to operations on half, available with NativeHalfType).
1248       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1249         Src = Builder.CreateCall(
1250             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1251                                  CGF.CGM.FloatTy),
1252             Src);
1253       } else {
1254         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1255       }
1256       SrcType = CGF.getContext().FloatTy;
1257       SrcTy = CGF.FloatTy;
1258     }
1259   }
1260 
1261   // Ignore conversions like int -> uint.
1262   if (SrcTy == DstTy) {
1263     if (Opts.EmitImplicitIntegerSignChangeChecks)
1264       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1265                                  NoncanonicalDstType, Loc);
1266 
1267     return Src;
1268   }
1269 
1270   // Handle pointer conversions next: pointers can only be converted to/from
1271   // other pointers and integers. Check for pointer types in terms of LLVM, as
1272   // some native types (like Obj-C id) may map to a pointer type.
1273   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1274     // The source value may be an integer, or a pointer.
1275     if (isa<llvm::PointerType>(SrcTy))
1276       return Builder.CreateBitCast(Src, DstTy, "conv");
1277 
1278     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1279     // First, convert to the correct width so that we control the kind of
1280     // extension.
1281     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1282     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1283     llvm::Value* IntResult =
1284         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1285     // Then, cast to pointer.
1286     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1287   }
1288 
1289   if (isa<llvm::PointerType>(SrcTy)) {
1290     // Must be an ptr to int cast.
1291     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1292     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1293   }
1294 
1295   // A scalar can be splatted to an extended vector of the same element type
1296   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1297     // Sema should add casts to make sure that the source expression's type is
1298     // the same as the vector's element type (sans qualifiers)
1299     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1300                SrcType.getTypePtr() &&
1301            "Splatted expr doesn't match with vector element type?");
1302 
1303     // Splat the element across to all elements
1304     unsigned NumElements = DstTy->getVectorNumElements();
1305     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1306   }
1307 
1308   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1309     // Allow bitcast from vector to integer/fp of the same size.
1310     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1311     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1312     if (SrcSize == DstSize)
1313       return Builder.CreateBitCast(Src, DstTy, "conv");
1314 
1315     // Conversions between vectors of different sizes are not allowed except
1316     // when vectors of half are involved. Operations on storage-only half
1317     // vectors require promoting half vector operands to float vectors and
1318     // truncating the result, which is either an int or float vector, to a
1319     // short or half vector.
1320 
1321     // Source and destination are both expected to be vectors.
1322     llvm::Type *SrcElementTy = SrcTy->getVectorElementType();
1323     llvm::Type *DstElementTy = DstTy->getVectorElementType();
1324     (void)DstElementTy;
1325 
1326     assert(((SrcElementTy->isIntegerTy() &&
1327              DstElementTy->isIntegerTy()) ||
1328             (SrcElementTy->isFloatingPointTy() &&
1329              DstElementTy->isFloatingPointTy())) &&
1330            "unexpected conversion between a floating-point vector and an "
1331            "integer vector");
1332 
1333     // Truncate an i32 vector to an i16 vector.
1334     if (SrcElementTy->isIntegerTy())
1335       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1336 
1337     // Truncate a float vector to a half vector.
1338     if (SrcSize > DstSize)
1339       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1340 
1341     // Promote a half vector to a float vector.
1342     return Builder.CreateFPExt(Src, DstTy, "conv");
1343   }
1344 
1345   // Finally, we have the arithmetic types: real int/float.
1346   Value *Res = nullptr;
1347   llvm::Type *ResTy = DstTy;
1348 
1349   // An overflowing conversion has undefined behavior if either the source type
1350   // or the destination type is a floating-point type.
1351   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1352       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
1353     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1354                              Loc);
1355 
1356   // Cast to half through float if half isn't a native type.
1357   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1358     // Make sure we cast in a single step if from another FP type.
1359     if (SrcTy->isFloatingPointTy()) {
1360       // Use the intrinsic if the half type itself isn't supported
1361       // (as opposed to operations on half, available with NativeHalfType).
1362       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1363         return Builder.CreateCall(
1364             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1365       // If the half type is supported, just use an fptrunc.
1366       return Builder.CreateFPTrunc(Src, DstTy);
1367     }
1368     DstTy = CGF.FloatTy;
1369   }
1370 
1371   if (isa<llvm::IntegerType>(SrcTy)) {
1372     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1373     if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1374       InputSigned = true;
1375     }
1376     if (isa<llvm::IntegerType>(DstTy))
1377       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1378     else if (InputSigned)
1379       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1380     else
1381       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1382   } else if (isa<llvm::IntegerType>(DstTy)) {
1383     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1384     if (DstType->isSignedIntegerOrEnumerationType())
1385       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1386     else
1387       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1388   } else {
1389     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1390            "Unknown real conversion");
1391     if (DstTy->getTypeID() < SrcTy->getTypeID())
1392       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1393     else
1394       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1395   }
1396 
1397   if (DstTy != ResTy) {
1398     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1399       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1400       Res = Builder.CreateCall(
1401         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1402         Res);
1403     } else {
1404       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1405     }
1406   }
1407 
1408   if (Opts.EmitImplicitIntegerTruncationChecks)
1409     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1410                                NoncanonicalDstType, Loc);
1411 
1412   if (Opts.EmitImplicitIntegerSignChangeChecks)
1413     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1414                                NoncanonicalDstType, Loc);
1415 
1416   return Res;
1417 }
1418 
1419 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1420                                                    QualType DstTy,
1421                                                    SourceLocation Loc) {
1422   using llvm::APInt;
1423   using llvm::ConstantInt;
1424   using llvm::Value;
1425 
1426   assert(SrcTy->isFixedPointType());
1427   assert(DstTy->isFixedPointType());
1428 
1429   FixedPointSemantics SrcFPSema =
1430       CGF.getContext().getFixedPointSemantics(SrcTy);
1431   FixedPointSemantics DstFPSema =
1432       CGF.getContext().getFixedPointSemantics(DstTy);
1433   unsigned SrcWidth = SrcFPSema.getWidth();
1434   unsigned DstWidth = DstFPSema.getWidth();
1435   unsigned SrcScale = SrcFPSema.getScale();
1436   unsigned DstScale = DstFPSema.getScale();
1437   bool SrcIsSigned = SrcFPSema.isSigned();
1438   bool DstIsSigned = DstFPSema.isSigned();
1439 
1440   llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth);
1441 
1442   Value *Result = Src;
1443   unsigned ResultWidth = SrcWidth;
1444 
1445   if (!DstFPSema.isSaturated()) {
1446     // Downscale.
1447     if (DstScale < SrcScale)
1448       Result = SrcIsSigned ?
1449           Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") :
1450           Builder.CreateLShr(Result, SrcScale - DstScale, "downscale");
1451 
1452     // Resize.
1453     Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1454 
1455     // Upscale.
1456     if (DstScale > SrcScale)
1457       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1458   } else {
1459     // Adjust the number of fractional bits.
1460     if (DstScale > SrcScale) {
1461       ResultWidth = SrcWidth + DstScale - SrcScale;
1462       llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth);
1463       Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize");
1464       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1465     } else if (DstScale < SrcScale) {
1466       Result = SrcIsSigned ?
1467           Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") :
1468           Builder.CreateLShr(Result, SrcScale - DstScale, "downscale");
1469     }
1470 
1471     // Handle saturation.
1472     bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits();
1473     if (LessIntBits) {
1474       Value *Max = ConstantInt::get(
1475           CGF.getLLVMContext(),
1476           APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth));
1477       Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max)
1478                                    : Builder.CreateICmpUGT(Result, Max);
1479       Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax");
1480     }
1481     // Cannot overflow min to dest type if src is unsigned since all fixed
1482     // point types can cover the unsigned min of 0.
1483     if (SrcIsSigned && (LessIntBits || !DstIsSigned)) {
1484       Value *Min = ConstantInt::get(
1485           CGF.getLLVMContext(),
1486           APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth));
1487       Value *TooLow = Builder.CreateICmpSLT(Result, Min);
1488       Result = Builder.CreateSelect(TooLow, Min, Result, "satmin");
1489     }
1490 
1491     // Resize the integer part to get the final destination size.
1492     Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1493   }
1494   return Result;
1495 }
1496 
1497 /// Emit a conversion from the specified complex type to the specified
1498 /// destination type, where the destination type is an LLVM scalar type.
1499 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1500     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1501     SourceLocation Loc) {
1502   // Get the source element type.
1503   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1504 
1505   // Handle conversions to bool first, they are special: comparisons against 0.
1506   if (DstTy->isBooleanType()) {
1507     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1508     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1509     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1510     return Builder.CreateOr(Src.first, Src.second, "tobool");
1511   }
1512 
1513   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1514   // the imaginary part of the complex value is discarded and the value of the
1515   // real part is converted according to the conversion rules for the
1516   // corresponding real type.
1517   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1518 }
1519 
1520 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1521   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1522 }
1523 
1524 /// Emit a sanitization check for the given "binary" operation (which
1525 /// might actually be a unary increment which has been lowered to a binary
1526 /// operation). The check passes if all values in \p Checks (which are \c i1),
1527 /// are \c true.
1528 void ScalarExprEmitter::EmitBinOpCheck(
1529     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1530   assert(CGF.IsSanitizerScope);
1531   SanitizerHandler Check;
1532   SmallVector<llvm::Constant *, 4> StaticData;
1533   SmallVector<llvm::Value *, 2> DynamicData;
1534 
1535   BinaryOperatorKind Opcode = Info.Opcode;
1536   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1537     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1538 
1539   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1540   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1541   if (UO && UO->getOpcode() == UO_Minus) {
1542     Check = SanitizerHandler::NegateOverflow;
1543     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1544     DynamicData.push_back(Info.RHS);
1545   } else {
1546     if (BinaryOperator::isShiftOp(Opcode)) {
1547       // Shift LHS negative or too large, or RHS out of bounds.
1548       Check = SanitizerHandler::ShiftOutOfBounds;
1549       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1550       StaticData.push_back(
1551         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1552       StaticData.push_back(
1553         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1554     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1555       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1556       Check = SanitizerHandler::DivremOverflow;
1557       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1558     } else {
1559       // Arithmetic overflow (+, -, *).
1560       switch (Opcode) {
1561       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1562       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1563       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1564       default: llvm_unreachable("unexpected opcode for bin op check");
1565       }
1566       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1567     }
1568     DynamicData.push_back(Info.LHS);
1569     DynamicData.push_back(Info.RHS);
1570   }
1571 
1572   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1573 }
1574 
1575 //===----------------------------------------------------------------------===//
1576 //                            Visitor Methods
1577 //===----------------------------------------------------------------------===//
1578 
1579 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1580   CGF.ErrorUnsupported(E, "scalar expression");
1581   if (E->getType()->isVoidType())
1582     return nullptr;
1583   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1584 }
1585 
1586 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1587   // Vector Mask Case
1588   if (E->getNumSubExprs() == 2) {
1589     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1590     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1591     Value *Mask;
1592 
1593     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1594     unsigned LHSElts = LTy->getNumElements();
1595 
1596     Mask = RHS;
1597 
1598     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1599 
1600     // Mask off the high bits of each shuffle index.
1601     Value *MaskBits =
1602         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1603     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1604 
1605     // newv = undef
1606     // mask = mask & maskbits
1607     // for each elt
1608     //   n = extract mask i
1609     //   x = extract val n
1610     //   newv = insert newv, x, i
1611     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1612                                                   MTy->getNumElements());
1613     Value* NewV = llvm::UndefValue::get(RTy);
1614     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1615       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1616       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1617 
1618       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1619       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1620     }
1621     return NewV;
1622   }
1623 
1624   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1625   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1626 
1627   SmallVector<llvm::Constant*, 32> indices;
1628   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1629     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1630     // Check for -1 and output it as undef in the IR.
1631     if (Idx.isSigned() && Idx.isAllOnesValue())
1632       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1633     else
1634       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1635   }
1636 
1637   Value *SV = llvm::ConstantVector::get(indices);
1638   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1639 }
1640 
1641 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1642   QualType SrcType = E->getSrcExpr()->getType(),
1643            DstType = E->getType();
1644 
1645   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1646 
1647   SrcType = CGF.getContext().getCanonicalType(SrcType);
1648   DstType = CGF.getContext().getCanonicalType(DstType);
1649   if (SrcType == DstType) return Src;
1650 
1651   assert(SrcType->isVectorType() &&
1652          "ConvertVector source type must be a vector");
1653   assert(DstType->isVectorType() &&
1654          "ConvertVector destination type must be a vector");
1655 
1656   llvm::Type *SrcTy = Src->getType();
1657   llvm::Type *DstTy = ConvertType(DstType);
1658 
1659   // Ignore conversions like int -> uint.
1660   if (SrcTy == DstTy)
1661     return Src;
1662 
1663   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1664            DstEltType = DstType->getAs<VectorType>()->getElementType();
1665 
1666   assert(SrcTy->isVectorTy() &&
1667          "ConvertVector source IR type must be a vector");
1668   assert(DstTy->isVectorTy() &&
1669          "ConvertVector destination IR type must be a vector");
1670 
1671   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1672              *DstEltTy = DstTy->getVectorElementType();
1673 
1674   if (DstEltType->isBooleanType()) {
1675     assert((SrcEltTy->isFloatingPointTy() ||
1676             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1677 
1678     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1679     if (SrcEltTy->isFloatingPointTy()) {
1680       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1681     } else {
1682       return Builder.CreateICmpNE(Src, Zero, "tobool");
1683     }
1684   }
1685 
1686   // We have the arithmetic types: real int/float.
1687   Value *Res = nullptr;
1688 
1689   if (isa<llvm::IntegerType>(SrcEltTy)) {
1690     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1691     if (isa<llvm::IntegerType>(DstEltTy))
1692       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1693     else if (InputSigned)
1694       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1695     else
1696       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1697   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1698     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1699     if (DstEltType->isSignedIntegerOrEnumerationType())
1700       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1701     else
1702       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1703   } else {
1704     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1705            "Unknown real conversion");
1706     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1707       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1708     else
1709       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1710   }
1711 
1712   return Res;
1713 }
1714 
1715 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1716   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1717     CGF.EmitIgnoredExpr(E->getBase());
1718     return CGF.emitScalarConstant(Constant, E);
1719   } else {
1720     llvm::APSInt Value;
1721     if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1722       CGF.EmitIgnoredExpr(E->getBase());
1723       return Builder.getInt(Value);
1724     }
1725   }
1726 
1727   return EmitLoadOfLValue(E);
1728 }
1729 
1730 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1731   TestAndClearIgnoreResultAssign();
1732 
1733   // Emit subscript expressions in rvalue context's.  For most cases, this just
1734   // loads the lvalue formed by the subscript expr.  However, we have to be
1735   // careful, because the base of a vector subscript is occasionally an rvalue,
1736   // so we can't get it as an lvalue.
1737   if (!E->getBase()->getType()->isVectorType())
1738     return EmitLoadOfLValue(E);
1739 
1740   // Handle the vector case.  The base must be a vector, the index must be an
1741   // integer value.
1742   Value *Base = Visit(E->getBase());
1743   Value *Idx  = Visit(E->getIdx());
1744   QualType IdxTy = E->getIdx()->getType();
1745 
1746   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1747     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1748 
1749   return Builder.CreateExtractElement(Base, Idx, "vecext");
1750 }
1751 
1752 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1753                                   unsigned Off, llvm::Type *I32Ty) {
1754   int MV = SVI->getMaskValue(Idx);
1755   if (MV == -1)
1756     return llvm::UndefValue::get(I32Ty);
1757   return llvm::ConstantInt::get(I32Ty, Off+MV);
1758 }
1759 
1760 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1761   if (C->getBitWidth() != 32) {
1762       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1763                                                     C->getZExtValue()) &&
1764              "Index operand too large for shufflevector mask!");
1765       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1766   }
1767   return C;
1768 }
1769 
1770 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1771   bool Ignore = TestAndClearIgnoreResultAssign();
1772   (void)Ignore;
1773   assert (Ignore == false && "init list ignored");
1774   unsigned NumInitElements = E->getNumInits();
1775 
1776   if (E->hadArrayRangeDesignator())
1777     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1778 
1779   llvm::VectorType *VType =
1780     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1781 
1782   if (!VType) {
1783     if (NumInitElements == 0) {
1784       // C++11 value-initialization for the scalar.
1785       return EmitNullValue(E->getType());
1786     }
1787     // We have a scalar in braces. Just use the first element.
1788     return Visit(E->getInit(0));
1789   }
1790 
1791   unsigned ResElts = VType->getNumElements();
1792 
1793   // Loop over initializers collecting the Value for each, and remembering
1794   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1795   // us to fold the shuffle for the swizzle into the shuffle for the vector
1796   // initializer, since LLVM optimizers generally do not want to touch
1797   // shuffles.
1798   unsigned CurIdx = 0;
1799   bool VIsUndefShuffle = false;
1800   llvm::Value *V = llvm::UndefValue::get(VType);
1801   for (unsigned i = 0; i != NumInitElements; ++i) {
1802     Expr *IE = E->getInit(i);
1803     Value *Init = Visit(IE);
1804     SmallVector<llvm::Constant*, 16> Args;
1805 
1806     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1807 
1808     // Handle scalar elements.  If the scalar initializer is actually one
1809     // element of a different vector of the same width, use shuffle instead of
1810     // extract+insert.
1811     if (!VVT) {
1812       if (isa<ExtVectorElementExpr>(IE)) {
1813         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1814 
1815         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1816           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1817           Value *LHS = nullptr, *RHS = nullptr;
1818           if (CurIdx == 0) {
1819             // insert into undef -> shuffle (src, undef)
1820             // shufflemask must use an i32
1821             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1822             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1823 
1824             LHS = EI->getVectorOperand();
1825             RHS = V;
1826             VIsUndefShuffle = true;
1827           } else if (VIsUndefShuffle) {
1828             // insert into undefshuffle && size match -> shuffle (v, src)
1829             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1830             for (unsigned j = 0; j != CurIdx; ++j)
1831               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1832             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1833             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1834 
1835             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1836             RHS = EI->getVectorOperand();
1837             VIsUndefShuffle = false;
1838           }
1839           if (!Args.empty()) {
1840             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1841             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1842             ++CurIdx;
1843             continue;
1844           }
1845         }
1846       }
1847       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1848                                       "vecinit");
1849       VIsUndefShuffle = false;
1850       ++CurIdx;
1851       continue;
1852     }
1853 
1854     unsigned InitElts = VVT->getNumElements();
1855 
1856     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1857     // input is the same width as the vector being constructed, generate an
1858     // optimized shuffle of the swizzle input into the result.
1859     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1860     if (isa<ExtVectorElementExpr>(IE)) {
1861       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1862       Value *SVOp = SVI->getOperand(0);
1863       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1864 
1865       if (OpTy->getNumElements() == ResElts) {
1866         for (unsigned j = 0; j != CurIdx; ++j) {
1867           // If the current vector initializer is a shuffle with undef, merge
1868           // this shuffle directly into it.
1869           if (VIsUndefShuffle) {
1870             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1871                                       CGF.Int32Ty));
1872           } else {
1873             Args.push_back(Builder.getInt32(j));
1874           }
1875         }
1876         for (unsigned j = 0, je = InitElts; j != je; ++j)
1877           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1878         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1879 
1880         if (VIsUndefShuffle)
1881           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1882 
1883         Init = SVOp;
1884       }
1885     }
1886 
1887     // Extend init to result vector length, and then shuffle its contribution
1888     // to the vector initializer into V.
1889     if (Args.empty()) {
1890       for (unsigned j = 0; j != InitElts; ++j)
1891         Args.push_back(Builder.getInt32(j));
1892       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1893       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1894       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1895                                          Mask, "vext");
1896 
1897       Args.clear();
1898       for (unsigned j = 0; j != CurIdx; ++j)
1899         Args.push_back(Builder.getInt32(j));
1900       for (unsigned j = 0; j != InitElts; ++j)
1901         Args.push_back(Builder.getInt32(j+Offset));
1902       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1903     }
1904 
1905     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1906     // merging subsequent shuffles into this one.
1907     if (CurIdx == 0)
1908       std::swap(V, Init);
1909     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1910     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1911     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1912     CurIdx += InitElts;
1913   }
1914 
1915   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1916   // Emit remaining default initializers.
1917   llvm::Type *EltTy = VType->getElementType();
1918 
1919   // Emit remaining default initializers
1920   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1921     Value *Idx = Builder.getInt32(CurIdx);
1922     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1923     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1924   }
1925   return V;
1926 }
1927 
1928 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1929   const Expr *E = CE->getSubExpr();
1930 
1931   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1932     return false;
1933 
1934   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1935     // We always assume that 'this' is never null.
1936     return false;
1937   }
1938 
1939   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1940     // And that glvalue casts are never null.
1941     if (ICE->getValueKind() != VK_RValue)
1942       return false;
1943   }
1944 
1945   return true;
1946 }
1947 
1948 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1949 // have to handle a more broad range of conversions than explicit casts, as they
1950 // handle things like function to ptr-to-function decay etc.
1951 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1952   Expr *E = CE->getSubExpr();
1953   QualType DestTy = CE->getType();
1954   CastKind Kind = CE->getCastKind();
1955 
1956   // These cases are generally not written to ignore the result of
1957   // evaluating their sub-expressions, so we clear this now.
1958   bool Ignored = TestAndClearIgnoreResultAssign();
1959 
1960   // Since almost all cast kinds apply to scalars, this switch doesn't have
1961   // a default case, so the compiler will warn on a missing case.  The cases
1962   // are in the same order as in the CastKind enum.
1963   switch (Kind) {
1964   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1965   case CK_BuiltinFnToFnPtr:
1966     llvm_unreachable("builtin functions are handled elsewhere");
1967 
1968   case CK_LValueBitCast:
1969   case CK_ObjCObjectLValueCast: {
1970     Address Addr = EmitLValue(E).getAddress();
1971     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1972     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1973     return EmitLoadOfLValue(LV, CE->getExprLoc());
1974   }
1975 
1976   case CK_CPointerToObjCPointerCast:
1977   case CK_BlockPointerToObjCPointerCast:
1978   case CK_AnyPointerToBlockPointerCast:
1979   case CK_BitCast: {
1980     Value *Src = Visit(const_cast<Expr*>(E));
1981     llvm::Type *SrcTy = Src->getType();
1982     llvm::Type *DstTy = ConvertType(DestTy);
1983     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1984         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1985       llvm_unreachable("wrong cast for pointers in different address spaces"
1986                        "(must be an address space cast)!");
1987     }
1988 
1989     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1990       if (auto PT = DestTy->getAs<PointerType>())
1991         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1992                                       /*MayBeNull=*/true,
1993                                       CodeGenFunction::CFITCK_UnrelatedCast,
1994                                       CE->getBeginLoc());
1995     }
1996 
1997     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
1998       const QualType SrcType = E->getType();
1999 
2000       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2001         // Casting to pointer that could carry dynamic information (provided by
2002         // invariant.group) requires launder.
2003         Src = Builder.CreateLaunderInvariantGroup(Src);
2004       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2005         // Casting to pointer that does not carry dynamic information (provided
2006         // by invariant.group) requires stripping it.  Note that we don't do it
2007         // if the source could not be dynamic type and destination could be
2008         // dynamic because dynamic information is already laundered.  It is
2009         // because launder(strip(src)) == launder(src), so there is no need to
2010         // add extra strip before launder.
2011         Src = Builder.CreateStripInvariantGroup(Src);
2012       }
2013     }
2014 
2015     return Builder.CreateBitCast(Src, DstTy);
2016   }
2017   case CK_AddressSpaceConversion: {
2018     Expr::EvalResult Result;
2019     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2020         Result.Val.isNullPointer()) {
2021       // If E has side effect, it is emitted even if its final result is a
2022       // null pointer. In that case, a DCE pass should be able to
2023       // eliminate the useless instructions emitted during translating E.
2024       if (Result.HasSideEffects)
2025         Visit(E);
2026       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2027           ConvertType(DestTy)), DestTy);
2028     }
2029     // Since target may map different address spaces in AST to the same address
2030     // space, an address space conversion may end up as a bitcast.
2031     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2032         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2033         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2034   }
2035   case CK_AtomicToNonAtomic:
2036   case CK_NonAtomicToAtomic:
2037   case CK_NoOp:
2038   case CK_UserDefinedConversion:
2039     return Visit(const_cast<Expr*>(E));
2040 
2041   case CK_BaseToDerived: {
2042     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2043     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2044 
2045     Address Base = CGF.EmitPointerWithAlignment(E);
2046     Address Derived =
2047       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2048                                    CE->path_begin(), CE->path_end(),
2049                                    CGF.ShouldNullCheckClassCastValue(CE));
2050 
2051     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2052     // performed and the object is not of the derived type.
2053     if (CGF.sanitizePerformTypeCheck())
2054       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2055                         Derived.getPointer(), DestTy->getPointeeType());
2056 
2057     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2058       CGF.EmitVTablePtrCheckForCast(
2059           DestTy->getPointeeType(), Derived.getPointer(),
2060           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2061           CE->getBeginLoc());
2062 
2063     return Derived.getPointer();
2064   }
2065   case CK_UncheckedDerivedToBase:
2066   case CK_DerivedToBase: {
2067     // The EmitPointerWithAlignment path does this fine; just discard
2068     // the alignment.
2069     return CGF.EmitPointerWithAlignment(CE).getPointer();
2070   }
2071 
2072   case CK_Dynamic: {
2073     Address V = CGF.EmitPointerWithAlignment(E);
2074     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2075     return CGF.EmitDynamicCast(V, DCE);
2076   }
2077 
2078   case CK_ArrayToPointerDecay:
2079     return CGF.EmitArrayToPointerDecay(E).getPointer();
2080   case CK_FunctionToPointerDecay:
2081     return EmitLValue(E).getPointer();
2082 
2083   case CK_NullToPointer:
2084     if (MustVisitNullValue(E))
2085       (void) Visit(E);
2086 
2087     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2088                               DestTy);
2089 
2090   case CK_NullToMemberPointer: {
2091     if (MustVisitNullValue(E))
2092       (void) Visit(E);
2093 
2094     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2095     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2096   }
2097 
2098   case CK_ReinterpretMemberPointer:
2099   case CK_BaseToDerivedMemberPointer:
2100   case CK_DerivedToBaseMemberPointer: {
2101     Value *Src = Visit(E);
2102 
2103     // Note that the AST doesn't distinguish between checked and
2104     // unchecked member pointer conversions, so we always have to
2105     // implement checked conversions here.  This is inefficient when
2106     // actual control flow may be required in order to perform the
2107     // check, which it is for data member pointers (but not member
2108     // function pointers on Itanium and ARM).
2109     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2110   }
2111 
2112   case CK_ARCProduceObject:
2113     return CGF.EmitARCRetainScalarExpr(E);
2114   case CK_ARCConsumeObject:
2115     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2116   case CK_ARCReclaimReturnedObject:
2117     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2118   case CK_ARCExtendBlockObject:
2119     return CGF.EmitARCExtendBlockObject(E);
2120 
2121   case CK_CopyAndAutoreleaseBlockObject:
2122     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2123 
2124   case CK_FloatingRealToComplex:
2125   case CK_FloatingComplexCast:
2126   case CK_IntegralRealToComplex:
2127   case CK_IntegralComplexCast:
2128   case CK_IntegralComplexToFloatingComplex:
2129   case CK_FloatingComplexToIntegralComplex:
2130   case CK_ConstructorConversion:
2131   case CK_ToUnion:
2132     llvm_unreachable("scalar cast to non-scalar value");
2133 
2134   case CK_LValueToRValue:
2135     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2136     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2137     return Visit(const_cast<Expr*>(E));
2138 
2139   case CK_IntegralToPointer: {
2140     Value *Src = Visit(const_cast<Expr*>(E));
2141 
2142     // First, convert to the correct width so that we control the kind of
2143     // extension.
2144     auto DestLLVMTy = ConvertType(DestTy);
2145     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2146     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2147     llvm::Value* IntResult =
2148       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2149 
2150     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2151 
2152     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2153       // Going from integer to pointer that could be dynamic requires reloading
2154       // dynamic information from invariant.group.
2155       if (DestTy.mayBeDynamicClass())
2156         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2157     }
2158     return IntToPtr;
2159   }
2160   case CK_PointerToIntegral: {
2161     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2162     auto *PtrExpr = Visit(E);
2163 
2164     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2165       const QualType SrcType = E->getType();
2166 
2167       // Casting to integer requires stripping dynamic information as it does
2168       // not carries it.
2169       if (SrcType.mayBeDynamicClass())
2170         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2171     }
2172 
2173     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2174   }
2175   case CK_ToVoid: {
2176     CGF.EmitIgnoredExpr(E);
2177     return nullptr;
2178   }
2179   case CK_VectorSplat: {
2180     llvm::Type *DstTy = ConvertType(DestTy);
2181     Value *Elt = Visit(const_cast<Expr*>(E));
2182     // Splat the element across to all elements
2183     unsigned NumElements = DstTy->getVectorNumElements();
2184     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2185   }
2186 
2187   case CK_FixedPointCast:
2188     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2189                                 CE->getExprLoc());
2190 
2191   case CK_FixedPointToBoolean:
2192     assert(E->getType()->isFixedPointType() &&
2193            "Expected src type to be fixed point type");
2194     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2195     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2196                                 CE->getExprLoc());
2197 
2198   case CK_IntegralCast: {
2199     ScalarConversionOpts Opts;
2200     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2201       if (!ICE->isPartOfExplicitCast())
2202         Opts = ScalarConversionOpts(CGF.SanOpts);
2203     }
2204     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2205                                 CE->getExprLoc(), Opts);
2206   }
2207   case CK_IntegralToFloating:
2208   case CK_FloatingToIntegral:
2209   case CK_FloatingCast:
2210     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2211                                 CE->getExprLoc());
2212   case CK_BooleanToSignedIntegral: {
2213     ScalarConversionOpts Opts;
2214     Opts.TreatBooleanAsSigned = true;
2215     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2216                                 CE->getExprLoc(), Opts);
2217   }
2218   case CK_IntegralToBoolean:
2219     return EmitIntToBoolConversion(Visit(E));
2220   case CK_PointerToBoolean:
2221     return EmitPointerToBoolConversion(Visit(E), E->getType());
2222   case CK_FloatingToBoolean:
2223     return EmitFloatToBoolConversion(Visit(E));
2224   case CK_MemberPointerToBoolean: {
2225     llvm::Value *MemPtr = Visit(E);
2226     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2227     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2228   }
2229 
2230   case CK_FloatingComplexToReal:
2231   case CK_IntegralComplexToReal:
2232     return CGF.EmitComplexExpr(E, false, true).first;
2233 
2234   case CK_FloatingComplexToBoolean:
2235   case CK_IntegralComplexToBoolean: {
2236     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2237 
2238     // TODO: kill this function off, inline appropriate case here
2239     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2240                                          CE->getExprLoc());
2241   }
2242 
2243   case CK_ZeroToOCLOpaqueType: {
2244     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2245             DestTy->isOCLIntelSubgroupAVCType()) &&
2246            "CK_ZeroToOCLEvent cast on non-event type");
2247     return llvm::Constant::getNullValue(ConvertType(DestTy));
2248   }
2249 
2250   case CK_IntToOCLSampler:
2251     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2252 
2253   } // end of switch
2254 
2255   llvm_unreachable("unknown scalar cast");
2256 }
2257 
2258 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2259   CodeGenFunction::StmtExprEvaluation eval(CGF);
2260   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2261                                            !E->getType()->isVoidType());
2262   if (!RetAlloca.isValid())
2263     return nullptr;
2264   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2265                               E->getExprLoc());
2266 }
2267 
2268 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2269   CGF.enterFullExpression(E);
2270   CodeGenFunction::RunCleanupsScope Scope(CGF);
2271   Value *V = Visit(E->getSubExpr());
2272   // Defend against dominance problems caused by jumps out of expression
2273   // evaluation through the shared cleanup block.
2274   Scope.ForceCleanup({&V});
2275   return V;
2276 }
2277 
2278 //===----------------------------------------------------------------------===//
2279 //                             Unary Operators
2280 //===----------------------------------------------------------------------===//
2281 
2282 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2283                                            llvm::Value *InVal, bool IsInc) {
2284   BinOpInfo BinOp;
2285   BinOp.LHS = InVal;
2286   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2287   BinOp.Ty = E->getType();
2288   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2289   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2290   BinOp.E = E;
2291   return BinOp;
2292 }
2293 
2294 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2295     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2296   llvm::Value *Amount =
2297       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2298   StringRef Name = IsInc ? "inc" : "dec";
2299   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2300   case LangOptions::SOB_Defined:
2301     return Builder.CreateAdd(InVal, Amount, Name);
2302   case LangOptions::SOB_Undefined:
2303     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2304       return Builder.CreateNSWAdd(InVal, Amount, Name);
2305     LLVM_FALLTHROUGH;
2306   case LangOptions::SOB_Trapping:
2307     if (!E->canOverflow())
2308       return Builder.CreateNSWAdd(InVal, Amount, Name);
2309     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
2310   }
2311   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2312 }
2313 
2314 llvm::Value *
2315 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2316                                            bool isInc, bool isPre) {
2317 
2318   QualType type = E->getSubExpr()->getType();
2319   llvm::PHINode *atomicPHI = nullptr;
2320   llvm::Value *value;
2321   llvm::Value *input;
2322 
2323   int amount = (isInc ? 1 : -1);
2324   bool isSubtraction = !isInc;
2325 
2326   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2327     type = atomicTy->getValueType();
2328     if (isInc && type->isBooleanType()) {
2329       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2330       if (isPre) {
2331         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
2332           ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2333         return Builder.getTrue();
2334       }
2335       // For atomic bool increment, we just store true and return it for
2336       // preincrement, do an atomic swap with true for postincrement
2337       return Builder.CreateAtomicRMW(
2338           llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
2339           llvm::AtomicOrdering::SequentiallyConsistent);
2340     }
2341     // Special case for atomic increment / decrement on integers, emit
2342     // atomicrmw instructions.  We skip this if we want to be doing overflow
2343     // checking, and fall into the slow path with the atomic cmpxchg loop.
2344     if (!type->isBooleanType() && type->isIntegerType() &&
2345         !(type->isUnsignedIntegerType() &&
2346           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2347         CGF.getLangOpts().getSignedOverflowBehavior() !=
2348             LangOptions::SOB_Trapping) {
2349       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2350         llvm::AtomicRMWInst::Sub;
2351       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2352         llvm::Instruction::Sub;
2353       llvm::Value *amt = CGF.EmitToMemory(
2354           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2355       llvm::Value *old = Builder.CreateAtomicRMW(aop,
2356           LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
2357       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2358     }
2359     value = EmitLoadOfLValue(LV, E->getExprLoc());
2360     input = value;
2361     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2362     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2363     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2364     value = CGF.EmitToMemory(value, type);
2365     Builder.CreateBr(opBB);
2366     Builder.SetInsertPoint(opBB);
2367     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2368     atomicPHI->addIncoming(value, startBB);
2369     value = atomicPHI;
2370   } else {
2371     value = EmitLoadOfLValue(LV, E->getExprLoc());
2372     input = value;
2373   }
2374 
2375   // Special case of integer increment that we have to check first: bool++.
2376   // Due to promotion rules, we get:
2377   //   bool++ -> bool = bool + 1
2378   //          -> bool = (int)bool + 1
2379   //          -> bool = ((int)bool + 1 != 0)
2380   // An interesting aspect of this is that increment is always true.
2381   // Decrement does not have this property.
2382   if (isInc && type->isBooleanType()) {
2383     value = Builder.getTrue();
2384 
2385   // Most common case by far: integer increment.
2386   } else if (type->isIntegerType()) {
2387     // Note that signed integer inc/dec with width less than int can't
2388     // overflow because of promotion rules; we're just eliding a few steps here.
2389     if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2390       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2391     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2392                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2393       value =
2394           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
2395     } else {
2396       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2397       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2398     }
2399 
2400   // Next most common: pointer increment.
2401   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2402     QualType type = ptr->getPointeeType();
2403 
2404     // VLA types don't have constant size.
2405     if (const VariableArrayType *vla
2406           = CGF.getContext().getAsVariableArrayType(type)) {
2407       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2408       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2409       if (CGF.getLangOpts().isSignedOverflowDefined())
2410         value = Builder.CreateGEP(value, numElts, "vla.inc");
2411       else
2412         value = CGF.EmitCheckedInBoundsGEP(
2413             value, numElts, /*SignedIndices=*/false, isSubtraction,
2414             E->getExprLoc(), "vla.inc");
2415 
2416     // Arithmetic on function pointers (!) is just +-1.
2417     } else if (type->isFunctionType()) {
2418       llvm::Value *amt = Builder.getInt32(amount);
2419 
2420       value = CGF.EmitCastToVoidPtr(value);
2421       if (CGF.getLangOpts().isSignedOverflowDefined())
2422         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2423       else
2424         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2425                                            isSubtraction, E->getExprLoc(),
2426                                            "incdec.funcptr");
2427       value = Builder.CreateBitCast(value, input->getType());
2428 
2429     // For everything else, we can just do a simple increment.
2430     } else {
2431       llvm::Value *amt = Builder.getInt32(amount);
2432       if (CGF.getLangOpts().isSignedOverflowDefined())
2433         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2434       else
2435         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2436                                            isSubtraction, E->getExprLoc(),
2437                                            "incdec.ptr");
2438     }
2439 
2440   // Vector increment/decrement.
2441   } else if (type->isVectorType()) {
2442     if (type->hasIntegerRepresentation()) {
2443       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2444 
2445       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2446     } else {
2447       value = Builder.CreateFAdd(
2448                   value,
2449                   llvm::ConstantFP::get(value->getType(), amount),
2450                   isInc ? "inc" : "dec");
2451     }
2452 
2453   // Floating point.
2454   } else if (type->isRealFloatingType()) {
2455     // Add the inc/dec to the real part.
2456     llvm::Value *amt;
2457 
2458     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2459       // Another special case: half FP increment should be done via float
2460       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2461         value = Builder.CreateCall(
2462             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2463                                  CGF.CGM.FloatTy),
2464             input, "incdec.conv");
2465       } else {
2466         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2467       }
2468     }
2469 
2470     if (value->getType()->isFloatTy())
2471       amt = llvm::ConstantFP::get(VMContext,
2472                                   llvm::APFloat(static_cast<float>(amount)));
2473     else if (value->getType()->isDoubleTy())
2474       amt = llvm::ConstantFP::get(VMContext,
2475                                   llvm::APFloat(static_cast<double>(amount)));
2476     else {
2477       // Remaining types are Half, LongDouble or __float128. Convert from float.
2478       llvm::APFloat F(static_cast<float>(amount));
2479       bool ignored;
2480       const llvm::fltSemantics *FS;
2481       // Don't use getFloatTypeSemantics because Half isn't
2482       // necessarily represented using the "half" LLVM type.
2483       if (value->getType()->isFP128Ty())
2484         FS = &CGF.getTarget().getFloat128Format();
2485       else if (value->getType()->isHalfTy())
2486         FS = &CGF.getTarget().getHalfFormat();
2487       else
2488         FS = &CGF.getTarget().getLongDoubleFormat();
2489       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2490       amt = llvm::ConstantFP::get(VMContext, F);
2491     }
2492     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2493 
2494     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2495       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2496         value = Builder.CreateCall(
2497             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2498                                  CGF.CGM.FloatTy),
2499             value, "incdec.conv");
2500       } else {
2501         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2502       }
2503     }
2504 
2505   // Objective-C pointer types.
2506   } else {
2507     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2508     value = CGF.EmitCastToVoidPtr(value);
2509 
2510     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2511     if (!isInc) size = -size;
2512     llvm::Value *sizeValue =
2513       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2514 
2515     if (CGF.getLangOpts().isSignedOverflowDefined())
2516       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2517     else
2518       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2519                                          /*SignedIndices=*/false, isSubtraction,
2520                                          E->getExprLoc(), "incdec.objptr");
2521     value = Builder.CreateBitCast(value, input->getType());
2522   }
2523 
2524   if (atomicPHI) {
2525     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2526     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2527     auto Pair = CGF.EmitAtomicCompareExchange(
2528         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2529     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2530     llvm::Value *success = Pair.second;
2531     atomicPHI->addIncoming(old, opBB);
2532     Builder.CreateCondBr(success, contBB, opBB);
2533     Builder.SetInsertPoint(contBB);
2534     return isPre ? value : input;
2535   }
2536 
2537   // Store the updated result through the lvalue.
2538   if (LV.isBitField())
2539     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2540   else
2541     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2542 
2543   // If this is a postinc, return the value read from memory, otherwise use the
2544   // updated value.
2545   return isPre ? value : input;
2546 }
2547 
2548 
2549 
2550 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2551   TestAndClearIgnoreResultAssign();
2552   // Emit unary minus with EmitSub so we handle overflow cases etc.
2553   BinOpInfo BinOp;
2554   BinOp.RHS = Visit(E->getSubExpr());
2555 
2556   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
2557     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
2558   else
2559     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2560   BinOp.Ty = E->getType();
2561   BinOp.Opcode = BO_Sub;
2562   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2563   BinOp.E = E;
2564   return EmitSub(BinOp);
2565 }
2566 
2567 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2568   TestAndClearIgnoreResultAssign();
2569   Value *Op = Visit(E->getSubExpr());
2570   return Builder.CreateNot(Op, "neg");
2571 }
2572 
2573 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2574   // Perform vector logical not on comparison with zero vector.
2575   if (E->getType()->isExtVectorType()) {
2576     Value *Oper = Visit(E->getSubExpr());
2577     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2578     Value *Result;
2579     if (Oper->getType()->isFPOrFPVectorTy())
2580       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2581     else
2582       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2583     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2584   }
2585 
2586   // Compare operand to zero.
2587   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2588 
2589   // Invert value.
2590   // TODO: Could dynamically modify easy computations here.  For example, if
2591   // the operand is an icmp ne, turn into icmp eq.
2592   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2593 
2594   // ZExt result to the expr type.
2595   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2596 }
2597 
2598 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2599   // Try folding the offsetof to a constant.
2600   llvm::APSInt Value;
2601   if (E->EvaluateAsInt(Value, CGF.getContext()))
2602     return Builder.getInt(Value);
2603 
2604   // Loop over the components of the offsetof to compute the value.
2605   unsigned n = E->getNumComponents();
2606   llvm::Type* ResultType = ConvertType(E->getType());
2607   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2608   QualType CurrentType = E->getTypeSourceInfo()->getType();
2609   for (unsigned i = 0; i != n; ++i) {
2610     OffsetOfNode ON = E->getComponent(i);
2611     llvm::Value *Offset = nullptr;
2612     switch (ON.getKind()) {
2613     case OffsetOfNode::Array: {
2614       // Compute the index
2615       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2616       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2617       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2618       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2619 
2620       // Save the element type
2621       CurrentType =
2622           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2623 
2624       // Compute the element size
2625       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2626           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2627 
2628       // Multiply out to compute the result
2629       Offset = Builder.CreateMul(Idx, ElemSize);
2630       break;
2631     }
2632 
2633     case OffsetOfNode::Field: {
2634       FieldDecl *MemberDecl = ON.getField();
2635       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2636       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2637 
2638       // Compute the index of the field in its parent.
2639       unsigned i = 0;
2640       // FIXME: It would be nice if we didn't have to loop here!
2641       for (RecordDecl::field_iterator Field = RD->field_begin(),
2642                                       FieldEnd = RD->field_end();
2643            Field != FieldEnd; ++Field, ++i) {
2644         if (*Field == MemberDecl)
2645           break;
2646       }
2647       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2648 
2649       // Compute the offset to the field
2650       int64_t OffsetInt = RL.getFieldOffset(i) /
2651                           CGF.getContext().getCharWidth();
2652       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2653 
2654       // Save the element type.
2655       CurrentType = MemberDecl->getType();
2656       break;
2657     }
2658 
2659     case OffsetOfNode::Identifier:
2660       llvm_unreachable("dependent __builtin_offsetof");
2661 
2662     case OffsetOfNode::Base: {
2663       if (ON.getBase()->isVirtual()) {
2664         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2665         continue;
2666       }
2667 
2668       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2669       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2670 
2671       // Save the element type.
2672       CurrentType = ON.getBase()->getType();
2673 
2674       // Compute the offset to the base.
2675       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2676       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2677       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2678       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2679       break;
2680     }
2681     }
2682     Result = Builder.CreateAdd(Result, Offset);
2683   }
2684   return Result;
2685 }
2686 
2687 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2688 /// argument of the sizeof expression as an integer.
2689 Value *
2690 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2691                               const UnaryExprOrTypeTraitExpr *E) {
2692   QualType TypeToSize = E->getTypeOfArgument();
2693   if (E->getKind() == UETT_SizeOf) {
2694     if (const VariableArrayType *VAT =
2695           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2696       if (E->isArgumentType()) {
2697         // sizeof(type) - make sure to emit the VLA size.
2698         CGF.EmitVariablyModifiedType(TypeToSize);
2699       } else {
2700         // C99 6.5.3.4p2: If the argument is an expression of type
2701         // VLA, it is evaluated.
2702         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2703       }
2704 
2705       auto VlaSize = CGF.getVLASize(VAT);
2706       llvm::Value *size = VlaSize.NumElts;
2707 
2708       // Scale the number of non-VLA elements by the non-VLA element size.
2709       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2710       if (!eltSize.isOne())
2711         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2712 
2713       return size;
2714     }
2715   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2716     auto Alignment =
2717         CGF.getContext()
2718             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2719                 E->getTypeOfArgument()->getPointeeType()))
2720             .getQuantity();
2721     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2722   }
2723 
2724   // If this isn't sizeof(vla), the result must be constant; use the constant
2725   // folding logic so we don't have to duplicate it here.
2726   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2727 }
2728 
2729 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2730   Expr *Op = E->getSubExpr();
2731   if (Op->getType()->isAnyComplexType()) {
2732     // If it's an l-value, load through the appropriate subobject l-value.
2733     // Note that we have to ask E because Op might be an l-value that
2734     // this won't work for, e.g. an Obj-C property.
2735     if (E->isGLValue())
2736       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2737                                   E->getExprLoc()).getScalarVal();
2738 
2739     // Otherwise, calculate and project.
2740     return CGF.EmitComplexExpr(Op, false, true).first;
2741   }
2742 
2743   return Visit(Op);
2744 }
2745 
2746 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2747   Expr *Op = E->getSubExpr();
2748   if (Op->getType()->isAnyComplexType()) {
2749     // If it's an l-value, load through the appropriate subobject l-value.
2750     // Note that we have to ask E because Op might be an l-value that
2751     // this won't work for, e.g. an Obj-C property.
2752     if (Op->isGLValue())
2753       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2754                                   E->getExprLoc()).getScalarVal();
2755 
2756     // Otherwise, calculate and project.
2757     return CGF.EmitComplexExpr(Op, true, false).second;
2758   }
2759 
2760   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2761   // effects are evaluated, but not the actual value.
2762   if (Op->isGLValue())
2763     CGF.EmitLValue(Op);
2764   else
2765     CGF.EmitScalarExpr(Op, true);
2766   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2767 }
2768 
2769 //===----------------------------------------------------------------------===//
2770 //                           Binary Operators
2771 //===----------------------------------------------------------------------===//
2772 
2773 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2774   TestAndClearIgnoreResultAssign();
2775   BinOpInfo Result;
2776   Result.LHS = Visit(E->getLHS());
2777   Result.RHS = Visit(E->getRHS());
2778   Result.Ty  = E->getType();
2779   Result.Opcode = E->getOpcode();
2780   Result.FPFeatures = E->getFPFeatures();
2781   Result.E = E;
2782   return Result;
2783 }
2784 
2785 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2786                                               const CompoundAssignOperator *E,
2787                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2788                                                    Value *&Result) {
2789   QualType LHSTy = E->getLHS()->getType();
2790   BinOpInfo OpInfo;
2791 
2792   if (E->getComputationResultType()->isAnyComplexType())
2793     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2794 
2795   // Emit the RHS first.  __block variables need to have the rhs evaluated
2796   // first, plus this should improve codegen a little.
2797   OpInfo.RHS = Visit(E->getRHS());
2798   OpInfo.Ty = E->getComputationResultType();
2799   OpInfo.Opcode = E->getOpcode();
2800   OpInfo.FPFeatures = E->getFPFeatures();
2801   OpInfo.E = E;
2802   // Load/convert the LHS.
2803   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2804 
2805   llvm::PHINode *atomicPHI = nullptr;
2806   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2807     QualType type = atomicTy->getValueType();
2808     if (!type->isBooleanType() && type->isIntegerType() &&
2809         !(type->isUnsignedIntegerType() &&
2810           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2811         CGF.getLangOpts().getSignedOverflowBehavior() !=
2812             LangOptions::SOB_Trapping) {
2813       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2814       switch (OpInfo.Opcode) {
2815         // We don't have atomicrmw operands for *, %, /, <<, >>
2816         case BO_MulAssign: case BO_DivAssign:
2817         case BO_RemAssign:
2818         case BO_ShlAssign:
2819         case BO_ShrAssign:
2820           break;
2821         case BO_AddAssign:
2822           aop = llvm::AtomicRMWInst::Add;
2823           break;
2824         case BO_SubAssign:
2825           aop = llvm::AtomicRMWInst::Sub;
2826           break;
2827         case BO_AndAssign:
2828           aop = llvm::AtomicRMWInst::And;
2829           break;
2830         case BO_XorAssign:
2831           aop = llvm::AtomicRMWInst::Xor;
2832           break;
2833         case BO_OrAssign:
2834           aop = llvm::AtomicRMWInst::Or;
2835           break;
2836         default:
2837           llvm_unreachable("Invalid compound assignment type");
2838       }
2839       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2840         llvm::Value *amt = CGF.EmitToMemory(
2841             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2842                                  E->getExprLoc()),
2843             LHSTy);
2844         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2845             llvm::AtomicOrdering::SequentiallyConsistent);
2846         return LHSLV;
2847       }
2848     }
2849     // FIXME: For floating point types, we should be saving and restoring the
2850     // floating point environment in the loop.
2851     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2852     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2853     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2854     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2855     Builder.CreateBr(opBB);
2856     Builder.SetInsertPoint(opBB);
2857     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2858     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2859     OpInfo.LHS = atomicPHI;
2860   }
2861   else
2862     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2863 
2864   SourceLocation Loc = E->getExprLoc();
2865   OpInfo.LHS =
2866       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2867 
2868   // Expand the binary operator.
2869   Result = (this->*Func)(OpInfo);
2870 
2871   // Convert the result back to the LHS type,
2872   // potentially with Implicit Conversion sanitizer check.
2873   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
2874                                 Loc, ScalarConversionOpts(CGF.SanOpts));
2875 
2876   if (atomicPHI) {
2877     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2878     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2879     auto Pair = CGF.EmitAtomicCompareExchange(
2880         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2881     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2882     llvm::Value *success = Pair.second;
2883     atomicPHI->addIncoming(old, opBB);
2884     Builder.CreateCondBr(success, contBB, opBB);
2885     Builder.SetInsertPoint(contBB);
2886     return LHSLV;
2887   }
2888 
2889   // Store the result value into the LHS lvalue. Bit-fields are handled
2890   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2891   // 'An assignment expression has the value of the left operand after the
2892   // assignment...'.
2893   if (LHSLV.isBitField())
2894     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2895   else
2896     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2897 
2898   return LHSLV;
2899 }
2900 
2901 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2902                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2903   bool Ignore = TestAndClearIgnoreResultAssign();
2904   Value *RHS;
2905   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2906 
2907   // If the result is clearly ignored, return now.
2908   if (Ignore)
2909     return nullptr;
2910 
2911   // The result of an assignment in C is the assigned r-value.
2912   if (!CGF.getLangOpts().CPlusPlus)
2913     return RHS;
2914 
2915   // If the lvalue is non-volatile, return the computed value of the assignment.
2916   if (!LHS.isVolatileQualified())
2917     return RHS;
2918 
2919   // Otherwise, reload the value.
2920   return EmitLoadOfLValue(LHS, E->getExprLoc());
2921 }
2922 
2923 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2924     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2925   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2926 
2927   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2928     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2929                                     SanitizerKind::IntegerDivideByZero));
2930   }
2931 
2932   const auto *BO = cast<BinaryOperator>(Ops.E);
2933   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2934       Ops.Ty->hasSignedIntegerRepresentation() &&
2935       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
2936       Ops.mayHaveIntegerOverflow()) {
2937     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2938 
2939     llvm::Value *IntMin =
2940       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2941     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2942 
2943     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2944     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2945     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2946     Checks.push_back(
2947         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2948   }
2949 
2950   if (Checks.size() > 0)
2951     EmitBinOpCheck(Checks, Ops);
2952 }
2953 
2954 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2955   {
2956     CodeGenFunction::SanitizerScope SanScope(&CGF);
2957     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2958          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2959         Ops.Ty->isIntegerType() &&
2960         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
2961       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2962       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2963     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2964                Ops.Ty->isRealFloatingType() &&
2965                Ops.mayHaveFloatDivisionByZero()) {
2966       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2967       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2968       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2969                      Ops);
2970     }
2971   }
2972 
2973   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2974     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2975     if (CGF.getLangOpts().OpenCL &&
2976         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
2977       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
2978       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
2979       // build option allows an application to specify that single precision
2980       // floating-point divide (x/y and 1/x) and sqrt used in the program
2981       // source are correctly rounded.
2982       llvm::Type *ValTy = Val->getType();
2983       if (ValTy->isFloatTy() ||
2984           (isa<llvm::VectorType>(ValTy) &&
2985            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2986         CGF.SetFPAccuracy(Val, 2.5);
2987     }
2988     return Val;
2989   }
2990   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2991     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2992   else
2993     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2994 }
2995 
2996 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2997   // Rem in C can't be a floating point type: C99 6.5.5p2.
2998   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2999        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3000       Ops.Ty->isIntegerType() &&
3001       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3002     CodeGenFunction::SanitizerScope SanScope(&CGF);
3003     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3004     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3005   }
3006 
3007   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3008     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3009   else
3010     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3011 }
3012 
3013 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3014   unsigned IID;
3015   unsigned OpID = 0;
3016 
3017   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3018   switch (Ops.Opcode) {
3019   case BO_Add:
3020   case BO_AddAssign:
3021     OpID = 1;
3022     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3023                      llvm::Intrinsic::uadd_with_overflow;
3024     break;
3025   case BO_Sub:
3026   case BO_SubAssign:
3027     OpID = 2;
3028     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3029                      llvm::Intrinsic::usub_with_overflow;
3030     break;
3031   case BO_Mul:
3032   case BO_MulAssign:
3033     OpID = 3;
3034     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3035                      llvm::Intrinsic::umul_with_overflow;
3036     break;
3037   default:
3038     llvm_unreachable("Unsupported operation for overflow detection");
3039   }
3040   OpID <<= 1;
3041   if (isSigned)
3042     OpID |= 1;
3043 
3044   CodeGenFunction::SanitizerScope SanScope(&CGF);
3045   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3046 
3047   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3048 
3049   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3050   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3051   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3052 
3053   // Handle overflow with llvm.trap if no custom handler has been specified.
3054   const std::string *handlerName =
3055     &CGF.getLangOpts().OverflowHandler;
3056   if (handlerName->empty()) {
3057     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3058     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3059     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3060       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3061       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3062                               : SanitizerKind::UnsignedIntegerOverflow;
3063       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3064     } else
3065       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
3066     return result;
3067   }
3068 
3069   // Branch in case of overflow.
3070   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3071   llvm::BasicBlock *continueBB =
3072       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3073   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3074 
3075   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3076 
3077   // If an overflow handler is set, then we want to call it and then use its
3078   // result, if it returns.
3079   Builder.SetInsertPoint(overflowBB);
3080 
3081   // Get the overflow handler.
3082   llvm::Type *Int8Ty = CGF.Int8Ty;
3083   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3084   llvm::FunctionType *handlerTy =
3085       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3086   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3087 
3088   // Sign extend the args to 64-bit, so that we can use the same handler for
3089   // all types of overflow.
3090   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3091   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3092 
3093   // Call the handler with the two arguments, the operation, and the size of
3094   // the result.
3095   llvm::Value *handlerArgs[] = {
3096     lhs,
3097     rhs,
3098     Builder.getInt8(OpID),
3099     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3100   };
3101   llvm::Value *handlerResult =
3102     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3103 
3104   // Truncate the result back to the desired size.
3105   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3106   Builder.CreateBr(continueBB);
3107 
3108   Builder.SetInsertPoint(continueBB);
3109   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3110   phi->addIncoming(result, initialBB);
3111   phi->addIncoming(handlerResult, overflowBB);
3112 
3113   return phi;
3114 }
3115 
3116 /// Emit pointer + index arithmetic.
3117 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3118                                     const BinOpInfo &op,
3119                                     bool isSubtraction) {
3120   // Must have binary (not unary) expr here.  Unary pointer
3121   // increment/decrement doesn't use this path.
3122   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3123 
3124   Value *pointer = op.LHS;
3125   Expr *pointerOperand = expr->getLHS();
3126   Value *index = op.RHS;
3127   Expr *indexOperand = expr->getRHS();
3128 
3129   // In a subtraction, the LHS is always the pointer.
3130   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3131     std::swap(pointer, index);
3132     std::swap(pointerOperand, indexOperand);
3133   }
3134 
3135   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3136 
3137   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3138   auto &DL = CGF.CGM.getDataLayout();
3139   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3140 
3141   // Some versions of glibc and gcc use idioms (particularly in their malloc
3142   // routines) that add a pointer-sized integer (known to be a pointer value)
3143   // to a null pointer in order to cast the value back to an integer or as
3144   // part of a pointer alignment algorithm.  This is undefined behavior, but
3145   // we'd like to be able to compile programs that use it.
3146   //
3147   // Normally, we'd generate a GEP with a null-pointer base here in response
3148   // to that code, but it's also UB to dereference a pointer created that
3149   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3150   // generate a direct cast of the integer value to a pointer.
3151   //
3152   // The idiom (p = nullptr + N) is not met if any of the following are true:
3153   //
3154   //   The operation is subtraction.
3155   //   The index is not pointer-sized.
3156   //   The pointer type is not byte-sized.
3157   //
3158   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3159                                                        op.Opcode,
3160                                                        expr->getLHS(),
3161                                                        expr->getRHS()))
3162     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3163 
3164   if (width != DL.getTypeSizeInBits(PtrTy)) {
3165     // Zero-extend or sign-extend the pointer value according to
3166     // whether the index is signed or not.
3167     index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
3168                                       "idx.ext");
3169   }
3170 
3171   // If this is subtraction, negate the index.
3172   if (isSubtraction)
3173     index = CGF.Builder.CreateNeg(index, "idx.neg");
3174 
3175   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3176     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3177                         /*Accessed*/ false);
3178 
3179   const PointerType *pointerType
3180     = pointerOperand->getType()->getAs<PointerType>();
3181   if (!pointerType) {
3182     QualType objectType = pointerOperand->getType()
3183                                         ->castAs<ObjCObjectPointerType>()
3184                                         ->getPointeeType();
3185     llvm::Value *objectSize
3186       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3187 
3188     index = CGF.Builder.CreateMul(index, objectSize);
3189 
3190     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3191     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3192     return CGF.Builder.CreateBitCast(result, pointer->getType());
3193   }
3194 
3195   QualType elementType = pointerType->getPointeeType();
3196   if (const VariableArrayType *vla
3197         = CGF.getContext().getAsVariableArrayType(elementType)) {
3198     // The element count here is the total number of non-VLA elements.
3199     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3200 
3201     // Effectively, the multiply by the VLA size is part of the GEP.
3202     // GEP indexes are signed, and scaling an index isn't permitted to
3203     // signed-overflow, so we use the same semantics for our explicit
3204     // multiply.  We suppress this if overflow is not undefined behavior.
3205     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3206       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3207       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3208     } else {
3209       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3210       pointer =
3211           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3212                                      op.E->getExprLoc(), "add.ptr");
3213     }
3214     return pointer;
3215   }
3216 
3217   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3218   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3219   // future proof.
3220   if (elementType->isVoidType() || elementType->isFunctionType()) {
3221     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3222     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3223     return CGF.Builder.CreateBitCast(result, pointer->getType());
3224   }
3225 
3226   if (CGF.getLangOpts().isSignedOverflowDefined())
3227     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3228 
3229   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3230                                     op.E->getExprLoc(), "add.ptr");
3231 }
3232 
3233 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3234 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3235 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3236 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3237 // efficient operations.
3238 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
3239                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3240                            bool negMul, bool negAdd) {
3241   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3242 
3243   Value *MulOp0 = MulOp->getOperand(0);
3244   Value *MulOp1 = MulOp->getOperand(1);
3245   if (negMul) {
3246     MulOp0 =
3247       Builder.CreateFSub(
3248         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
3249         "neg");
3250   } else if (negAdd) {
3251     Addend =
3252       Builder.CreateFSub(
3253         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
3254         "neg");
3255   }
3256 
3257   Value *FMulAdd = Builder.CreateCall(
3258       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3259       {MulOp0, MulOp1, Addend});
3260    MulOp->eraseFromParent();
3261 
3262    return FMulAdd;
3263 }
3264 
3265 // Check whether it would be legal to emit an fmuladd intrinsic call to
3266 // represent op and if so, build the fmuladd.
3267 //
3268 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3269 // Does NOT check the type of the operation - it's assumed that this function
3270 // will be called from contexts where it's known that the type is contractable.
3271 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3272                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3273                          bool isSub=false) {
3274 
3275   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3276           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3277          "Only fadd/fsub can be the root of an fmuladd.");
3278 
3279   // Check whether this op is marked as fusable.
3280   if (!op.FPFeatures.allowFPContractWithinStatement())
3281     return nullptr;
3282 
3283   // We have a potentially fusable op. Look for a mul on one of the operands.
3284   // Also, make sure that the mul result isn't used directly. In that case,
3285   // there's no point creating a muladd operation.
3286   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3287     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3288         LHSBinOp->use_empty())
3289       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3290   }
3291   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3292     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3293         RHSBinOp->use_empty())
3294       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3295   }
3296 
3297   return nullptr;
3298 }
3299 
3300 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3301   if (op.LHS->getType()->isPointerTy() ||
3302       op.RHS->getType()->isPointerTy())
3303     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3304 
3305   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3306     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3307     case LangOptions::SOB_Defined:
3308       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3309     case LangOptions::SOB_Undefined:
3310       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3311         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3312       LLVM_FALLTHROUGH;
3313     case LangOptions::SOB_Trapping:
3314       if (CanElideOverflowCheck(CGF.getContext(), op))
3315         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3316       return EmitOverflowCheckedBinOp(op);
3317     }
3318   }
3319 
3320   if (op.Ty->isUnsignedIntegerType() &&
3321       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3322       !CanElideOverflowCheck(CGF.getContext(), op))
3323     return EmitOverflowCheckedBinOp(op);
3324 
3325   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3326     // Try to form an fmuladd.
3327     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3328       return FMulAdd;
3329 
3330     Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
3331     return propagateFMFlags(V, op);
3332   }
3333 
3334   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3335 }
3336 
3337 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3338   // The LHS is always a pointer if either side is.
3339   if (!op.LHS->getType()->isPointerTy()) {
3340     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3341       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3342       case LangOptions::SOB_Defined:
3343         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3344       case LangOptions::SOB_Undefined:
3345         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3346           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3347         LLVM_FALLTHROUGH;
3348       case LangOptions::SOB_Trapping:
3349         if (CanElideOverflowCheck(CGF.getContext(), op))
3350           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3351         return EmitOverflowCheckedBinOp(op);
3352       }
3353     }
3354 
3355     if (op.Ty->isUnsignedIntegerType() &&
3356         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3357         !CanElideOverflowCheck(CGF.getContext(), op))
3358       return EmitOverflowCheckedBinOp(op);
3359 
3360     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3361       // Try to form an fmuladd.
3362       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3363         return FMulAdd;
3364       Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
3365       return propagateFMFlags(V, op);
3366     }
3367 
3368     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3369   }
3370 
3371   // If the RHS is not a pointer, then we have normal pointer
3372   // arithmetic.
3373   if (!op.RHS->getType()->isPointerTy())
3374     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3375 
3376   // Otherwise, this is a pointer subtraction.
3377 
3378   // Do the raw subtraction part.
3379   llvm::Value *LHS
3380     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3381   llvm::Value *RHS
3382     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3383   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3384 
3385   // Okay, figure out the element size.
3386   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3387   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3388 
3389   llvm::Value *divisor = nullptr;
3390 
3391   // For a variable-length array, this is going to be non-constant.
3392   if (const VariableArrayType *vla
3393         = CGF.getContext().getAsVariableArrayType(elementType)) {
3394     auto VlaSize = CGF.getVLASize(vla);
3395     elementType = VlaSize.Type;
3396     divisor = VlaSize.NumElts;
3397 
3398     // Scale the number of non-VLA elements by the non-VLA element size.
3399     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3400     if (!eltSize.isOne())
3401       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3402 
3403   // For everything elese, we can just compute it, safe in the
3404   // assumption that Sema won't let anything through that we can't
3405   // safely compute the size of.
3406   } else {
3407     CharUnits elementSize;
3408     // Handle GCC extension for pointer arithmetic on void* and
3409     // function pointer types.
3410     if (elementType->isVoidType() || elementType->isFunctionType())
3411       elementSize = CharUnits::One();
3412     else
3413       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3414 
3415     // Don't even emit the divide for element size of 1.
3416     if (elementSize.isOne())
3417       return diffInChars;
3418 
3419     divisor = CGF.CGM.getSize(elementSize);
3420   }
3421 
3422   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3423   // pointer difference in C is only defined in the case where both operands
3424   // are pointing to elements of an array.
3425   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3426 }
3427 
3428 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3429   llvm::IntegerType *Ty;
3430   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3431     Ty = cast<llvm::IntegerType>(VT->getElementType());
3432   else
3433     Ty = cast<llvm::IntegerType>(LHS->getType());
3434   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3435 }
3436 
3437 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3438   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3439   // RHS to the same size as the LHS.
3440   Value *RHS = Ops.RHS;
3441   if (Ops.LHS->getType() != RHS->getType())
3442     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3443 
3444   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3445                       Ops.Ty->hasSignedIntegerRepresentation() &&
3446                       !CGF.getLangOpts().isSignedOverflowDefined();
3447   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3448   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3449   if (CGF.getLangOpts().OpenCL)
3450     RHS =
3451         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
3452   else if ((SanitizeBase || SanitizeExponent) &&
3453            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3454     CodeGenFunction::SanitizerScope SanScope(&CGF);
3455     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3456     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3457     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3458 
3459     if (SanitizeExponent) {
3460       Checks.push_back(
3461           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3462     }
3463 
3464     if (SanitizeBase) {
3465       // Check whether we are shifting any non-zero bits off the top of the
3466       // integer. We only emit this check if exponent is valid - otherwise
3467       // instructions below will have undefined behavior themselves.
3468       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3469       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3470       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3471       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3472       llvm::Value *PromotedWidthMinusOne =
3473           (RHS == Ops.RHS) ? WidthMinusOne
3474                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3475       CGF.EmitBlock(CheckShiftBase);
3476       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3477           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3478                                      /*NUW*/ true, /*NSW*/ true),
3479           "shl.check");
3480       if (CGF.getLangOpts().CPlusPlus) {
3481         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3482         // Under C++11's rules, shifting a 1 bit into the sign bit is
3483         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3484         // define signed left shifts, so we use the C99 and C++11 rules there).
3485         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3486         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3487       }
3488       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3489       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3490       CGF.EmitBlock(Cont);
3491       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3492       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3493       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3494       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3495     }
3496 
3497     assert(!Checks.empty());
3498     EmitBinOpCheck(Checks, Ops);
3499   }
3500 
3501   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3502 }
3503 
3504 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3505   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3506   // RHS to the same size as the LHS.
3507   Value *RHS = Ops.RHS;
3508   if (Ops.LHS->getType() != RHS->getType())
3509     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3510 
3511   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3512   if (CGF.getLangOpts().OpenCL)
3513     RHS =
3514         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
3515   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3516            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3517     CodeGenFunction::SanitizerScope SanScope(&CGF);
3518     llvm::Value *Valid =
3519         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3520     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3521   }
3522 
3523   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3524     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3525   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3526 }
3527 
3528 enum IntrinsicType { VCMPEQ, VCMPGT };
3529 // return corresponding comparison intrinsic for given vector type
3530 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3531                                         BuiltinType::Kind ElemKind) {
3532   switch (ElemKind) {
3533   default: llvm_unreachable("unexpected element type");
3534   case BuiltinType::Char_U:
3535   case BuiltinType::UChar:
3536     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3537                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3538   case BuiltinType::Char_S:
3539   case BuiltinType::SChar:
3540     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3541                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3542   case BuiltinType::UShort:
3543     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3544                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3545   case BuiltinType::Short:
3546     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3547                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3548   case BuiltinType::UInt:
3549     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3550                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3551   case BuiltinType::Int:
3552     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3553                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3554   case BuiltinType::ULong:
3555   case BuiltinType::ULongLong:
3556     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3557                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3558   case BuiltinType::Long:
3559   case BuiltinType::LongLong:
3560     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3561                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3562   case BuiltinType::Float:
3563     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3564                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3565   case BuiltinType::Double:
3566     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3567                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3568   }
3569 }
3570 
3571 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3572                                       llvm::CmpInst::Predicate UICmpOpc,
3573                                       llvm::CmpInst::Predicate SICmpOpc,
3574                                       llvm::CmpInst::Predicate FCmpOpc) {
3575   TestAndClearIgnoreResultAssign();
3576   Value *Result;
3577   QualType LHSTy = E->getLHS()->getType();
3578   QualType RHSTy = E->getRHS()->getType();
3579   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3580     assert(E->getOpcode() == BO_EQ ||
3581            E->getOpcode() == BO_NE);
3582     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3583     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3584     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3585                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3586   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3587     Value *LHS = Visit(E->getLHS());
3588     Value *RHS = Visit(E->getRHS());
3589 
3590     // If AltiVec, the comparison results in a numeric type, so we use
3591     // intrinsics comparing vectors and giving 0 or 1 as a result
3592     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3593       // constants for mapping CR6 register bits to predicate result
3594       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3595 
3596       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3597 
3598       // in several cases vector arguments order will be reversed
3599       Value *FirstVecArg = LHS,
3600             *SecondVecArg = RHS;
3601 
3602       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
3603       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
3604       BuiltinType::Kind ElementKind = BTy->getKind();
3605 
3606       switch(E->getOpcode()) {
3607       default: llvm_unreachable("is not a comparison operation");
3608       case BO_EQ:
3609         CR6 = CR6_LT;
3610         ID = GetIntrinsic(VCMPEQ, ElementKind);
3611         break;
3612       case BO_NE:
3613         CR6 = CR6_EQ;
3614         ID = GetIntrinsic(VCMPEQ, ElementKind);
3615         break;
3616       case BO_LT:
3617         CR6 = CR6_LT;
3618         ID = GetIntrinsic(VCMPGT, ElementKind);
3619         std::swap(FirstVecArg, SecondVecArg);
3620         break;
3621       case BO_GT:
3622         CR6 = CR6_LT;
3623         ID = GetIntrinsic(VCMPGT, ElementKind);
3624         break;
3625       case BO_LE:
3626         if (ElementKind == BuiltinType::Float) {
3627           CR6 = CR6_LT;
3628           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3629           std::swap(FirstVecArg, SecondVecArg);
3630         }
3631         else {
3632           CR6 = CR6_EQ;
3633           ID = GetIntrinsic(VCMPGT, ElementKind);
3634         }
3635         break;
3636       case BO_GE:
3637         if (ElementKind == BuiltinType::Float) {
3638           CR6 = CR6_LT;
3639           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3640         }
3641         else {
3642           CR6 = CR6_EQ;
3643           ID = GetIntrinsic(VCMPGT, ElementKind);
3644           std::swap(FirstVecArg, SecondVecArg);
3645         }
3646         break;
3647       }
3648 
3649       Value *CR6Param = Builder.getInt32(CR6);
3650       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3651       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3652 
3653       // The result type of intrinsic may not be same as E->getType().
3654       // If E->getType() is not BoolTy, EmitScalarConversion will do the
3655       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3656       // do nothing, if ResultTy is not i1 at the same time, it will cause
3657       // crash later.
3658       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3659       if (ResultTy->getBitWidth() > 1 &&
3660           E->getType() == CGF.getContext().BoolTy)
3661         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3662       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3663                                   E->getExprLoc());
3664     }
3665 
3666     if (LHS->getType()->isFPOrFPVectorTy()) {
3667       Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3668     } else if (LHSTy->hasSignedIntegerRepresentation()) {
3669       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3670     } else {
3671       // Unsigned integers and pointers.
3672 
3673       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
3674           !isa<llvm::ConstantPointerNull>(LHS) &&
3675           !isa<llvm::ConstantPointerNull>(RHS)) {
3676 
3677         // Dynamic information is required to be stripped for comparisons,
3678         // because it could leak the dynamic information.  Based on comparisons
3679         // of pointers to dynamic objects, the optimizer can replace one pointer
3680         // with another, which might be incorrect in presence of invariant
3681         // groups. Comparison with null is safe because null does not carry any
3682         // dynamic information.
3683         if (LHSTy.mayBeDynamicClass())
3684           LHS = Builder.CreateStripInvariantGroup(LHS);
3685         if (RHSTy.mayBeDynamicClass())
3686           RHS = Builder.CreateStripInvariantGroup(RHS);
3687       }
3688 
3689       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3690     }
3691 
3692     // If this is a vector comparison, sign extend the result to the appropriate
3693     // vector integer type and return it (don't convert to bool).
3694     if (LHSTy->isVectorType())
3695       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3696 
3697   } else {
3698     // Complex Comparison: can only be an equality comparison.
3699     CodeGenFunction::ComplexPairTy LHS, RHS;
3700     QualType CETy;
3701     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3702       LHS = CGF.EmitComplexExpr(E->getLHS());
3703       CETy = CTy->getElementType();
3704     } else {
3705       LHS.first = Visit(E->getLHS());
3706       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3707       CETy = LHSTy;
3708     }
3709     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3710       RHS = CGF.EmitComplexExpr(E->getRHS());
3711       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
3712                                                      CTy->getElementType()) &&
3713              "The element types must always match.");
3714       (void)CTy;
3715     } else {
3716       RHS.first = Visit(E->getRHS());
3717       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
3718       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
3719              "The element types must always match.");
3720     }
3721 
3722     Value *ResultR, *ResultI;
3723     if (CETy->isRealFloatingType()) {
3724       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
3725       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
3726     } else {
3727       // Complex comparisons can only be equality comparisons.  As such, signed
3728       // and unsigned opcodes are the same.
3729       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
3730       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
3731     }
3732 
3733     if (E->getOpcode() == BO_EQ) {
3734       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
3735     } else {
3736       assert(E->getOpcode() == BO_NE &&
3737              "Complex comparison other than == or != ?");
3738       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
3739     }
3740   }
3741 
3742   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3743                               E->getExprLoc());
3744 }
3745 
3746 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3747   bool Ignore = TestAndClearIgnoreResultAssign();
3748 
3749   Value *RHS;
3750   LValue LHS;
3751 
3752   switch (E->getLHS()->getType().getObjCLifetime()) {
3753   case Qualifiers::OCL_Strong:
3754     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3755     break;
3756 
3757   case Qualifiers::OCL_Autoreleasing:
3758     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3759     break;
3760 
3761   case Qualifiers::OCL_ExplicitNone:
3762     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3763     break;
3764 
3765   case Qualifiers::OCL_Weak:
3766     RHS = Visit(E->getRHS());
3767     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3768     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3769     break;
3770 
3771   case Qualifiers::OCL_None:
3772     // __block variables need to have the rhs evaluated first, plus
3773     // this should improve codegen just a little.
3774     RHS = Visit(E->getRHS());
3775     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3776 
3777     // Store the value into the LHS.  Bit-fields are handled specially
3778     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3779     // 'An assignment expression has the value of the left operand after
3780     // the assignment...'.
3781     if (LHS.isBitField()) {
3782       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3783     } else {
3784       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
3785       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3786     }
3787   }
3788 
3789   // If the result is clearly ignored, return now.
3790   if (Ignore)
3791     return nullptr;
3792 
3793   // The result of an assignment in C is the assigned r-value.
3794   if (!CGF.getLangOpts().CPlusPlus)
3795     return RHS;
3796 
3797   // If the lvalue is non-volatile, return the computed value of the assignment.
3798   if (!LHS.isVolatileQualified())
3799     return RHS;
3800 
3801   // Otherwise, reload the value.
3802   return EmitLoadOfLValue(LHS, E->getExprLoc());
3803 }
3804 
3805 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3806   // Perform vector logical and on comparisons with zero vectors.
3807   if (E->getType()->isVectorType()) {
3808     CGF.incrementProfileCounter(E);
3809 
3810     Value *LHS = Visit(E->getLHS());
3811     Value *RHS = Visit(E->getRHS());
3812     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3813     if (LHS->getType()->isFPOrFPVectorTy()) {
3814       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3815       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3816     } else {
3817       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3818       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3819     }
3820     Value *And = Builder.CreateAnd(LHS, RHS);
3821     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3822   }
3823 
3824   llvm::Type *ResTy = ConvertType(E->getType());
3825 
3826   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3827   // If we have 1 && X, just emit X without inserting the control flow.
3828   bool LHSCondVal;
3829   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3830     if (LHSCondVal) { // If we have 1 && X, just emit X.
3831       CGF.incrementProfileCounter(E);
3832 
3833       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3834       // ZExt result to int or bool.
3835       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3836     }
3837 
3838     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3839     if (!CGF.ContainsLabel(E->getRHS()))
3840       return llvm::Constant::getNullValue(ResTy);
3841   }
3842 
3843   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3844   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3845 
3846   CodeGenFunction::ConditionalEvaluation eval(CGF);
3847 
3848   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3849   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3850                            CGF.getProfileCount(E->getRHS()));
3851 
3852   // Any edges into the ContBlock are now from an (indeterminate number of)
3853   // edges from this first condition.  All of these values will be false.  Start
3854   // setting up the PHI node in the Cont Block for this.
3855   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3856                                             "", ContBlock);
3857   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3858        PI != PE; ++PI)
3859     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3860 
3861   eval.begin(CGF);
3862   CGF.EmitBlock(RHSBlock);
3863   CGF.incrementProfileCounter(E);
3864   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3865   eval.end(CGF);
3866 
3867   // Reaquire the RHS block, as there may be subblocks inserted.
3868   RHSBlock = Builder.GetInsertBlock();
3869 
3870   // Emit an unconditional branch from this block to ContBlock.
3871   {
3872     // There is no need to emit line number for unconditional branch.
3873     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3874     CGF.EmitBlock(ContBlock);
3875   }
3876   // Insert an entry into the phi node for the edge with the value of RHSCond.
3877   PN->addIncoming(RHSCond, RHSBlock);
3878 
3879   // Artificial location to preserve the scope information
3880   {
3881     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
3882     PN->setDebugLoc(Builder.getCurrentDebugLocation());
3883   }
3884 
3885   // ZExt result to int.
3886   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3887 }
3888 
3889 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3890   // Perform vector logical or on comparisons with zero vectors.
3891   if (E->getType()->isVectorType()) {
3892     CGF.incrementProfileCounter(E);
3893 
3894     Value *LHS = Visit(E->getLHS());
3895     Value *RHS = Visit(E->getRHS());
3896     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3897     if (LHS->getType()->isFPOrFPVectorTy()) {
3898       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3899       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3900     } else {
3901       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3902       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3903     }
3904     Value *Or = Builder.CreateOr(LHS, RHS);
3905     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3906   }
3907 
3908   llvm::Type *ResTy = ConvertType(E->getType());
3909 
3910   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3911   // If we have 0 || X, just emit X without inserting the control flow.
3912   bool LHSCondVal;
3913   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3914     if (!LHSCondVal) { // If we have 0 || X, just emit X.
3915       CGF.incrementProfileCounter(E);
3916 
3917       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3918       // ZExt result to int or bool.
3919       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3920     }
3921 
3922     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3923     if (!CGF.ContainsLabel(E->getRHS()))
3924       return llvm::ConstantInt::get(ResTy, 1);
3925   }
3926 
3927   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3928   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3929 
3930   CodeGenFunction::ConditionalEvaluation eval(CGF);
3931 
3932   // Branch on the LHS first.  If it is true, go to the success (cont) block.
3933   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3934                            CGF.getCurrentProfileCount() -
3935                                CGF.getProfileCount(E->getRHS()));
3936 
3937   // Any edges into the ContBlock are now from an (indeterminate number of)
3938   // edges from this first condition.  All of these values will be true.  Start
3939   // setting up the PHI node in the Cont Block for this.
3940   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3941                                             "", ContBlock);
3942   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3943        PI != PE; ++PI)
3944     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3945 
3946   eval.begin(CGF);
3947 
3948   // Emit the RHS condition as a bool value.
3949   CGF.EmitBlock(RHSBlock);
3950   CGF.incrementProfileCounter(E);
3951   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3952 
3953   eval.end(CGF);
3954 
3955   // Reaquire the RHS block, as there may be subblocks inserted.
3956   RHSBlock = Builder.GetInsertBlock();
3957 
3958   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3959   // into the phi node for the edge with the value of RHSCond.
3960   CGF.EmitBlock(ContBlock);
3961   PN->addIncoming(RHSCond, RHSBlock);
3962 
3963   // ZExt result to int.
3964   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3965 }
3966 
3967 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3968   CGF.EmitIgnoredExpr(E->getLHS());
3969   CGF.EnsureInsertPoint();
3970   return Visit(E->getRHS());
3971 }
3972 
3973 //===----------------------------------------------------------------------===//
3974 //                             Other Operators
3975 //===----------------------------------------------------------------------===//
3976 
3977 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3978 /// expression is cheap enough and side-effect-free enough to evaluate
3979 /// unconditionally instead of conditionally.  This is used to convert control
3980 /// flow into selects in some cases.
3981 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3982                                                    CodeGenFunction &CGF) {
3983   // Anything that is an integer or floating point constant is fine.
3984   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3985 
3986   // Even non-volatile automatic variables can't be evaluated unconditionally.
3987   // Referencing a thread_local may cause non-trivial initialization work to
3988   // occur. If we're inside a lambda and one of the variables is from the scope
3989   // outside the lambda, that function may have returned already. Reading its
3990   // locals is a bad idea. Also, these reads may introduce races there didn't
3991   // exist in the source-level program.
3992 }
3993 
3994 
3995 Value *ScalarExprEmitter::
3996 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3997   TestAndClearIgnoreResultAssign();
3998 
3999   // Bind the common expression if necessary.
4000   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4001 
4002   Expr *condExpr = E->getCond();
4003   Expr *lhsExpr = E->getTrueExpr();
4004   Expr *rhsExpr = E->getFalseExpr();
4005 
4006   // If the condition constant folds and can be elided, try to avoid emitting
4007   // the condition and the dead arm.
4008   bool CondExprBool;
4009   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4010     Expr *live = lhsExpr, *dead = rhsExpr;
4011     if (!CondExprBool) std::swap(live, dead);
4012 
4013     // If the dead side doesn't have labels we need, just emit the Live part.
4014     if (!CGF.ContainsLabel(dead)) {
4015       if (CondExprBool)
4016         CGF.incrementProfileCounter(E);
4017       Value *Result = Visit(live);
4018 
4019       // If the live part is a throw expression, it acts like it has a void
4020       // type, so evaluating it returns a null Value*.  However, a conditional
4021       // with non-void type must return a non-null Value*.
4022       if (!Result && !E->getType()->isVoidType())
4023         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4024 
4025       return Result;
4026     }
4027   }
4028 
4029   // OpenCL: If the condition is a vector, we can treat this condition like
4030   // the select function.
4031   if (CGF.getLangOpts().OpenCL
4032       && condExpr->getType()->isVectorType()) {
4033     CGF.incrementProfileCounter(E);
4034 
4035     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4036     llvm::Value *LHS = Visit(lhsExpr);
4037     llvm::Value *RHS = Visit(rhsExpr);
4038 
4039     llvm::Type *condType = ConvertType(condExpr->getType());
4040     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
4041 
4042     unsigned numElem = vecTy->getNumElements();
4043     llvm::Type *elemType = vecTy->getElementType();
4044 
4045     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4046     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4047     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
4048                                           llvm::VectorType::get(elemType,
4049                                                                 numElem),
4050                                           "sext");
4051     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4052 
4053     // Cast float to int to perform ANDs if necessary.
4054     llvm::Value *RHSTmp = RHS;
4055     llvm::Value *LHSTmp = LHS;
4056     bool wasCast = false;
4057     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4058     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4059       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4060       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4061       wasCast = true;
4062     }
4063 
4064     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4065     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4066     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4067     if (wasCast)
4068       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4069 
4070     return tmp5;
4071   }
4072 
4073   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4074   // select instead of as control flow.  We can only do this if it is cheap and
4075   // safe to evaluate the LHS and RHS unconditionally.
4076   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4077       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4078     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4079     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4080 
4081     CGF.incrementProfileCounter(E, StepV);
4082 
4083     llvm::Value *LHS = Visit(lhsExpr);
4084     llvm::Value *RHS = Visit(rhsExpr);
4085     if (!LHS) {
4086       // If the conditional has void type, make sure we return a null Value*.
4087       assert(!RHS && "LHS and RHS types must match");
4088       return nullptr;
4089     }
4090     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4091   }
4092 
4093   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4094   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4095   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4096 
4097   CodeGenFunction::ConditionalEvaluation eval(CGF);
4098   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4099                            CGF.getProfileCount(lhsExpr));
4100 
4101   CGF.EmitBlock(LHSBlock);
4102   CGF.incrementProfileCounter(E);
4103   eval.begin(CGF);
4104   Value *LHS = Visit(lhsExpr);
4105   eval.end(CGF);
4106 
4107   LHSBlock = Builder.GetInsertBlock();
4108   Builder.CreateBr(ContBlock);
4109 
4110   CGF.EmitBlock(RHSBlock);
4111   eval.begin(CGF);
4112   Value *RHS = Visit(rhsExpr);
4113   eval.end(CGF);
4114 
4115   RHSBlock = Builder.GetInsertBlock();
4116   CGF.EmitBlock(ContBlock);
4117 
4118   // If the LHS or RHS is a throw expression, it will be legitimately null.
4119   if (!LHS)
4120     return RHS;
4121   if (!RHS)
4122     return LHS;
4123 
4124   // Create a PHI node for the real part.
4125   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4126   PN->addIncoming(LHS, LHSBlock);
4127   PN->addIncoming(RHS, RHSBlock);
4128   return PN;
4129 }
4130 
4131 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4132   return Visit(E->getChosenSubExpr());
4133 }
4134 
4135 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4136   QualType Ty = VE->getType();
4137 
4138   if (Ty->isVariablyModifiedType())
4139     CGF.EmitVariablyModifiedType(Ty);
4140 
4141   Address ArgValue = Address::invalid();
4142   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4143 
4144   llvm::Type *ArgTy = ConvertType(VE->getType());
4145 
4146   // If EmitVAArg fails, emit an error.
4147   if (!ArgPtr.isValid()) {
4148     CGF.ErrorUnsupported(VE, "va_arg expression");
4149     return llvm::UndefValue::get(ArgTy);
4150   }
4151 
4152   // FIXME Volatility.
4153   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4154 
4155   // If EmitVAArg promoted the type, we must truncate it.
4156   if (ArgTy != Val->getType()) {
4157     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4158       Val = Builder.CreateIntToPtr(Val, ArgTy);
4159     else
4160       Val = Builder.CreateTrunc(Val, ArgTy);
4161   }
4162 
4163   return Val;
4164 }
4165 
4166 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4167   return CGF.EmitBlockLiteral(block);
4168 }
4169 
4170 // Convert a vec3 to vec4, or vice versa.
4171 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4172                                  Value *Src, unsigned NumElementsDst) {
4173   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
4174   SmallVector<llvm::Constant*, 4> Args;
4175   Args.push_back(Builder.getInt32(0));
4176   Args.push_back(Builder.getInt32(1));
4177   Args.push_back(Builder.getInt32(2));
4178   if (NumElementsDst == 4)
4179     Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
4180   llvm::Constant *Mask = llvm::ConstantVector::get(Args);
4181   return Builder.CreateShuffleVector(Src, UnV, Mask);
4182 }
4183 
4184 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4185 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4186 // but could be scalar or vectors of different lengths, and either can be
4187 // pointer.
4188 // There are 4 cases:
4189 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4190 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4191 // 3. pointer -> non-pointer
4192 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4193 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4194 // 4. non-pointer -> pointer
4195 //   a) intptr_t -> pointer       : needs 1 inttoptr
4196 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4197 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4198 // allow casting directly between pointer types and non-integer non-pointer
4199 // types.
4200 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4201                                            const llvm::DataLayout &DL,
4202                                            Value *Src, llvm::Type *DstTy,
4203                                            StringRef Name = "") {
4204   auto SrcTy = Src->getType();
4205 
4206   // Case 1.
4207   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4208     return Builder.CreateBitCast(Src, DstTy, Name);
4209 
4210   // Case 2.
4211   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4212     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4213 
4214   // Case 3.
4215   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4216     // Case 3b.
4217     if (!DstTy->isIntegerTy())
4218       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4219     // Cases 3a and 3b.
4220     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4221   }
4222 
4223   // Case 4b.
4224   if (!SrcTy->isIntegerTy())
4225     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4226   // Cases 4a and 4b.
4227   return Builder.CreateIntToPtr(Src, DstTy, Name);
4228 }
4229 
4230 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4231   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4232   llvm::Type *DstTy = ConvertType(E->getType());
4233 
4234   llvm::Type *SrcTy = Src->getType();
4235   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
4236     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
4237   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
4238     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
4239 
4240   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4241   // vector to get a vec4, then a bitcast if the target type is different.
4242   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4243     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4244 
4245     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4246       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4247                                          DstTy);
4248     }
4249 
4250     Src->setName("astype");
4251     return Src;
4252   }
4253 
4254   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4255   // to vec4 if the original type is not vec4, then a shuffle vector to
4256   // get a vec3.
4257   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4258     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4259       auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
4260       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4261                                          Vec4Ty);
4262     }
4263 
4264     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4265     Src->setName("astype");
4266     return Src;
4267   }
4268 
4269   return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4270                                             Src, DstTy, "astype");
4271 }
4272 
4273 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4274   return CGF.EmitAtomicExpr(E).getScalarVal();
4275 }
4276 
4277 //===----------------------------------------------------------------------===//
4278 //                         Entry Point into this File
4279 //===----------------------------------------------------------------------===//
4280 
4281 /// Emit the computation of the specified expression of scalar type, ignoring
4282 /// the result.
4283 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4284   assert(E && hasScalarEvaluationKind(E->getType()) &&
4285          "Invalid scalar expression to emit");
4286 
4287   return ScalarExprEmitter(*this, IgnoreResultAssign)
4288       .Visit(const_cast<Expr *>(E));
4289 }
4290 
4291 /// Emit a conversion from the specified type to the specified destination type,
4292 /// both of which are LLVM scalar types.
4293 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4294                                              QualType DstTy,
4295                                              SourceLocation Loc) {
4296   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4297          "Invalid scalar expression to emit");
4298   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4299 }
4300 
4301 /// Emit a conversion from the specified complex type to the specified
4302 /// destination type, where the destination type is an LLVM scalar type.
4303 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4304                                                       QualType SrcTy,
4305                                                       QualType DstTy,
4306                                                       SourceLocation Loc) {
4307   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4308          "Invalid complex -> scalar conversion");
4309   return ScalarExprEmitter(*this)
4310       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4311 }
4312 
4313 
4314 llvm::Value *CodeGenFunction::
4315 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4316                         bool isInc, bool isPre) {
4317   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4318 }
4319 
4320 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4321   // object->isa or (*object).isa
4322   // Generate code as for: *(Class*)object
4323 
4324   Expr *BaseExpr = E->getBase();
4325   Address Addr = Address::invalid();
4326   if (BaseExpr->isRValue()) {
4327     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4328   } else {
4329     Addr = EmitLValue(BaseExpr).getAddress();
4330   }
4331 
4332   // Cast the address to Class*.
4333   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4334   return MakeAddrLValue(Addr, E->getType());
4335 }
4336 
4337 
4338 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4339                                             const CompoundAssignOperator *E) {
4340   ScalarExprEmitter Scalar(*this);
4341   Value *Result = nullptr;
4342   switch (E->getOpcode()) {
4343 #define COMPOUND_OP(Op)                                                       \
4344     case BO_##Op##Assign:                                                     \
4345       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4346                                              Result)
4347   COMPOUND_OP(Mul);
4348   COMPOUND_OP(Div);
4349   COMPOUND_OP(Rem);
4350   COMPOUND_OP(Add);
4351   COMPOUND_OP(Sub);
4352   COMPOUND_OP(Shl);
4353   COMPOUND_OP(Shr);
4354   COMPOUND_OP(And);
4355   COMPOUND_OP(Xor);
4356   COMPOUND_OP(Or);
4357 #undef COMPOUND_OP
4358 
4359   case BO_PtrMemD:
4360   case BO_PtrMemI:
4361   case BO_Mul:
4362   case BO_Div:
4363   case BO_Rem:
4364   case BO_Add:
4365   case BO_Sub:
4366   case BO_Shl:
4367   case BO_Shr:
4368   case BO_LT:
4369   case BO_GT:
4370   case BO_LE:
4371   case BO_GE:
4372   case BO_EQ:
4373   case BO_NE:
4374   case BO_Cmp:
4375   case BO_And:
4376   case BO_Xor:
4377   case BO_Or:
4378   case BO_LAnd:
4379   case BO_LOr:
4380   case BO_Assign:
4381   case BO_Comma:
4382     llvm_unreachable("Not valid compound assignment operators");
4383   }
4384 
4385   llvm_unreachable("Unhandled compound assignment operator");
4386 }
4387 
4388 Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr,
4389                                                ArrayRef<Value *> IdxList,
4390                                                bool SignedIndices,
4391                                                bool IsSubtraction,
4392                                                SourceLocation Loc,
4393                                                const Twine &Name) {
4394   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4395 
4396   // If the pointer overflow sanitizer isn't enabled, do nothing.
4397   if (!SanOpts.has(SanitizerKind::PointerOverflow))
4398     return GEPVal;
4399 
4400   // If the GEP has already been reduced to a constant, leave it be.
4401   if (isa<llvm::Constant>(GEPVal))
4402     return GEPVal;
4403 
4404   // Only check for overflows in the default address space.
4405   if (GEPVal->getType()->getPointerAddressSpace())
4406     return GEPVal;
4407 
4408   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4409   assert(GEP->isInBounds() && "Expected inbounds GEP");
4410 
4411   SanitizerScope SanScope(this);
4412   auto &VMContext = getLLVMContext();
4413   const auto &DL = CGM.getDataLayout();
4414   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4415 
4416   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4417   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4418   auto *SAddIntrinsic =
4419       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4420   auto *SMulIntrinsic =
4421       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4422 
4423   // The total (signed) byte offset for the GEP.
4424   llvm::Value *TotalOffset = nullptr;
4425   // The offset overflow flag - true if the total offset overflows.
4426   llvm::Value *OffsetOverflows = Builder.getFalse();
4427 
4428   /// Return the result of the given binary operation.
4429   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4430                   llvm::Value *RHS) -> llvm::Value * {
4431     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4432 
4433     // If the operands are constants, return a constant result.
4434     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4435       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4436         llvm::APInt N;
4437         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4438                                                   /*Signed=*/true, N);
4439         if (HasOverflow)
4440           OffsetOverflows = Builder.getTrue();
4441         return llvm::ConstantInt::get(VMContext, N);
4442       }
4443     }
4444 
4445     // Otherwise, compute the result with checked arithmetic.
4446     auto *ResultAndOverflow = Builder.CreateCall(
4447         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4448     OffsetOverflows = Builder.CreateOr(
4449         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4450     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4451   };
4452 
4453   // Determine the total byte offset by looking at each GEP operand.
4454   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4455        GTI != GTE; ++GTI) {
4456     llvm::Value *LocalOffset;
4457     auto *Index = GTI.getOperand();
4458     // Compute the local offset contributed by this indexing step:
4459     if (auto *STy = GTI.getStructTypeOrNull()) {
4460       // For struct indexing, the local offset is the byte position of the
4461       // specified field.
4462       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4463       LocalOffset = llvm::ConstantInt::get(
4464           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4465     } else {
4466       // Otherwise this is array-like indexing. The local offset is the index
4467       // multiplied by the element size.
4468       auto *ElementSize = llvm::ConstantInt::get(
4469           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4470       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4471       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4472     }
4473 
4474     // If this is the first offset, set it as the total offset. Otherwise, add
4475     // the local offset into the running total.
4476     if (!TotalOffset || TotalOffset == Zero)
4477       TotalOffset = LocalOffset;
4478     else
4479       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4480   }
4481 
4482   // Common case: if the total offset is zero, don't emit a check.
4483   if (TotalOffset == Zero)
4484     return GEPVal;
4485 
4486   // Now that we've computed the total offset, add it to the base pointer (with
4487   // wrapping semantics).
4488   auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy);
4489   auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset);
4490 
4491   // The GEP is valid if:
4492   // 1) The total offset doesn't overflow, and
4493   // 2) The sign of the difference between the computed address and the base
4494   // pointer matches the sign of the total offset.
4495   llvm::Value *ValidGEP;
4496   auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows);
4497   if (SignedIndices) {
4498     auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4499     auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero);
4500     llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4501     ValidGEP = Builder.CreateAnd(
4502         Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid),
4503         NoOffsetOverflow);
4504   } else if (!SignedIndices && !IsSubtraction) {
4505     auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4506     ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow);
4507   } else {
4508     auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4509     ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow);
4510   }
4511 
4512   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4513   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4514   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4515   EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow),
4516             SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4517 
4518   return GEPVal;
4519 }
4520