1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtVisitor.h" 26 #include "clang/Basic/FixedPoint.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/ADT/Optional.h" 30 #include "llvm/IR/CFG.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/Module.h" 38 #include <cstdarg> 39 40 using namespace clang; 41 using namespace CodeGen; 42 using llvm::Value; 43 44 //===----------------------------------------------------------------------===// 45 // Scalar Expression Emitter 46 //===----------------------------------------------------------------------===// 47 48 namespace { 49 50 /// Determine whether the given binary operation may overflow. 51 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 52 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 53 /// the returned overflow check is precise. The returned value is 'true' for 54 /// all other opcodes, to be conservative. 55 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 56 BinaryOperator::Opcode Opcode, bool Signed, 57 llvm::APInt &Result) { 58 // Assume overflow is possible, unless we can prove otherwise. 59 bool Overflow = true; 60 const auto &LHSAP = LHS->getValue(); 61 const auto &RHSAP = RHS->getValue(); 62 if (Opcode == BO_Add) { 63 if (Signed) 64 Result = LHSAP.sadd_ov(RHSAP, Overflow); 65 else 66 Result = LHSAP.uadd_ov(RHSAP, Overflow); 67 } else if (Opcode == BO_Sub) { 68 if (Signed) 69 Result = LHSAP.ssub_ov(RHSAP, Overflow); 70 else 71 Result = LHSAP.usub_ov(RHSAP, Overflow); 72 } else if (Opcode == BO_Mul) { 73 if (Signed) 74 Result = LHSAP.smul_ov(RHSAP, Overflow); 75 else 76 Result = LHSAP.umul_ov(RHSAP, Overflow); 77 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 78 if (Signed && !RHS->isZero()) 79 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 80 else 81 return false; 82 } 83 return Overflow; 84 } 85 86 struct BinOpInfo { 87 Value *LHS; 88 Value *RHS; 89 QualType Ty; // Computation Type. 90 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 91 FPOptions FPFeatures; 92 const Expr *E; // Entire expr, for error unsupported. May not be binop. 93 94 /// Check if the binop can result in integer overflow. 95 bool mayHaveIntegerOverflow() const { 96 // Without constant input, we can't rule out overflow. 97 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 98 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 99 if (!LHSCI || !RHSCI) 100 return true; 101 102 llvm::APInt Result; 103 return ::mayHaveIntegerOverflow( 104 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 105 } 106 107 /// Check if the binop computes a division or a remainder. 108 bool isDivremOp() const { 109 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 110 Opcode == BO_RemAssign; 111 } 112 113 /// Check if the binop can result in an integer division by zero. 114 bool mayHaveIntegerDivisionByZero() const { 115 if (isDivremOp()) 116 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 117 return CI->isZero(); 118 return true; 119 } 120 121 /// Check if the binop can result in a float division by zero. 122 bool mayHaveFloatDivisionByZero() const { 123 if (isDivremOp()) 124 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 125 return CFP->isZero(); 126 return true; 127 } 128 }; 129 130 static bool MustVisitNullValue(const Expr *E) { 131 // If a null pointer expression's type is the C++0x nullptr_t, then 132 // it's not necessarily a simple constant and it must be evaluated 133 // for its potential side effects. 134 return E->getType()->isNullPtrType(); 135 } 136 137 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 138 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 139 const Expr *E) { 140 const Expr *Base = E->IgnoreImpCasts(); 141 if (E == Base) 142 return llvm::None; 143 144 QualType BaseTy = Base->getType(); 145 if (!BaseTy->isPromotableIntegerType() || 146 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 147 return llvm::None; 148 149 return BaseTy; 150 } 151 152 /// Check if \p E is a widened promoted integer. 153 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 154 return getUnwidenedIntegerType(Ctx, E).hasValue(); 155 } 156 157 /// Check if we can skip the overflow check for \p Op. 158 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 159 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 160 "Expected a unary or binary operator"); 161 162 // If the binop has constant inputs and we can prove there is no overflow, 163 // we can elide the overflow check. 164 if (!Op.mayHaveIntegerOverflow()) 165 return true; 166 167 // If a unary op has a widened operand, the op cannot overflow. 168 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 169 return !UO->canOverflow(); 170 171 // We usually don't need overflow checks for binops with widened operands. 172 // Multiplication with promoted unsigned operands is a special case. 173 const auto *BO = cast<BinaryOperator>(Op.E); 174 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 175 if (!OptionalLHSTy) 176 return false; 177 178 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 179 if (!OptionalRHSTy) 180 return false; 181 182 QualType LHSTy = *OptionalLHSTy; 183 QualType RHSTy = *OptionalRHSTy; 184 185 // This is the simple case: binops without unsigned multiplication, and with 186 // widened operands. No overflow check is needed here. 187 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 188 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 189 return true; 190 191 // For unsigned multiplication the overflow check can be elided if either one 192 // of the unpromoted types are less than half the size of the promoted type. 193 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 194 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 195 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 196 } 197 198 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions. 199 static void updateFastMathFlags(llvm::FastMathFlags &FMF, 200 FPOptions FPFeatures) { 201 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 202 } 203 204 /// Propagate fast-math flags from \p Op to the instruction in \p V. 205 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) { 206 if (auto *I = dyn_cast<llvm::Instruction>(V)) { 207 llvm::FastMathFlags FMF = I->getFastMathFlags(); 208 updateFastMathFlags(FMF, Op.FPFeatures); 209 I->setFastMathFlags(FMF); 210 } 211 return V; 212 } 213 214 class ScalarExprEmitter 215 : public StmtVisitor<ScalarExprEmitter, Value*> { 216 CodeGenFunction &CGF; 217 CGBuilderTy &Builder; 218 bool IgnoreResultAssign; 219 llvm::LLVMContext &VMContext; 220 public: 221 222 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 223 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 224 VMContext(cgf.getLLVMContext()) { 225 } 226 227 //===--------------------------------------------------------------------===// 228 // Utilities 229 //===--------------------------------------------------------------------===// 230 231 bool TestAndClearIgnoreResultAssign() { 232 bool I = IgnoreResultAssign; 233 IgnoreResultAssign = false; 234 return I; 235 } 236 237 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 238 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 239 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 240 return CGF.EmitCheckedLValue(E, TCK); 241 } 242 243 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 244 const BinOpInfo &Info); 245 246 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 247 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 248 } 249 250 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 251 const AlignValueAttr *AVAttr = nullptr; 252 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 253 const ValueDecl *VD = DRE->getDecl(); 254 255 if (VD->getType()->isReferenceType()) { 256 if (const auto *TTy = 257 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 258 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 259 } else { 260 // Assumptions for function parameters are emitted at the start of the 261 // function, so there is no need to repeat that here. 262 if (isa<ParmVarDecl>(VD)) 263 return; 264 265 AVAttr = VD->getAttr<AlignValueAttr>(); 266 } 267 } 268 269 if (!AVAttr) 270 if (const auto *TTy = 271 dyn_cast<TypedefType>(E->getType())) 272 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 273 274 if (!AVAttr) 275 return; 276 277 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 278 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 279 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); 280 } 281 282 /// EmitLoadOfLValue - Given an expression with complex type that represents a 283 /// value l-value, this method emits the address of the l-value, then loads 284 /// and returns the result. 285 Value *EmitLoadOfLValue(const Expr *E) { 286 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 287 E->getExprLoc()); 288 289 EmitLValueAlignmentAssumption(E, V); 290 return V; 291 } 292 293 /// EmitConversionToBool - Convert the specified expression value to a 294 /// boolean (i1) truth value. This is equivalent to "Val != 0". 295 Value *EmitConversionToBool(Value *Src, QualType DstTy); 296 297 /// Emit a check that a conversion to or from a floating-point type does not 298 /// overflow. 299 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 300 Value *Src, QualType SrcType, QualType DstType, 301 llvm::Type *DstTy, SourceLocation Loc); 302 303 /// Known implicit conversion check kinds. 304 /// Keep in sync with the enum of the same name in ubsan_handlers.h 305 enum ImplicitConversionCheckKind : unsigned char { 306 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 307 ICCK_UnsignedIntegerTruncation = 1, 308 ICCK_SignedIntegerTruncation = 2, 309 ICCK_IntegerSignChange = 3, 310 ICCK_SignedIntegerTruncationOrSignChange = 4, 311 }; 312 313 /// Emit a check that an [implicit] truncation of an integer does not 314 /// discard any bits. It is not UB, so we use the value after truncation. 315 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 316 QualType DstType, SourceLocation Loc); 317 318 /// Emit a check that an [implicit] conversion of an integer does not change 319 /// the sign of the value. It is not UB, so we use the value after conversion. 320 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 321 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 322 QualType DstType, SourceLocation Loc); 323 324 /// Emit a conversion from the specified type to the specified destination 325 /// type, both of which are LLVM scalar types. 326 struct ScalarConversionOpts { 327 bool TreatBooleanAsSigned; 328 bool EmitImplicitIntegerTruncationChecks; 329 bool EmitImplicitIntegerSignChangeChecks; 330 331 ScalarConversionOpts() 332 : TreatBooleanAsSigned(false), 333 EmitImplicitIntegerTruncationChecks(false), 334 EmitImplicitIntegerSignChangeChecks(false) {} 335 336 ScalarConversionOpts(clang::SanitizerSet SanOpts) 337 : TreatBooleanAsSigned(false), 338 EmitImplicitIntegerTruncationChecks( 339 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 340 EmitImplicitIntegerSignChangeChecks( 341 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 342 }; 343 Value * 344 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 345 SourceLocation Loc, 346 ScalarConversionOpts Opts = ScalarConversionOpts()); 347 348 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 349 SourceLocation Loc); 350 351 /// Emit a conversion from the specified complex type to the specified 352 /// destination type, where the destination type is an LLVM scalar type. 353 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 354 QualType SrcTy, QualType DstTy, 355 SourceLocation Loc); 356 357 /// EmitNullValue - Emit a value that corresponds to null for the given type. 358 Value *EmitNullValue(QualType Ty); 359 360 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 361 Value *EmitFloatToBoolConversion(Value *V) { 362 // Compare against 0.0 for fp scalars. 363 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 364 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 365 } 366 367 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 368 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 369 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 370 371 return Builder.CreateICmpNE(V, Zero, "tobool"); 372 } 373 374 Value *EmitIntToBoolConversion(Value *V) { 375 // Because of the type rules of C, we often end up computing a 376 // logical value, then zero extending it to int, then wanting it 377 // as a logical value again. Optimize this common case. 378 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 379 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 380 Value *Result = ZI->getOperand(0); 381 // If there aren't any more uses, zap the instruction to save space. 382 // Note that there can be more uses, for example if this 383 // is the result of an assignment. 384 if (ZI->use_empty()) 385 ZI->eraseFromParent(); 386 return Result; 387 } 388 } 389 390 return Builder.CreateIsNotNull(V, "tobool"); 391 } 392 393 //===--------------------------------------------------------------------===// 394 // Visitor Methods 395 //===--------------------------------------------------------------------===// 396 397 Value *Visit(Expr *E) { 398 ApplyDebugLocation DL(CGF, E); 399 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 400 } 401 402 Value *VisitStmt(Stmt *S) { 403 S->dump(CGF.getContext().getSourceManager()); 404 llvm_unreachable("Stmt can't have complex result type!"); 405 } 406 Value *VisitExpr(Expr *S); 407 408 Value *VisitConstantExpr(ConstantExpr *E) { 409 return Visit(E->getSubExpr()); 410 } 411 Value *VisitParenExpr(ParenExpr *PE) { 412 return Visit(PE->getSubExpr()); 413 } 414 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 415 return Visit(E->getReplacement()); 416 } 417 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 418 return Visit(GE->getResultExpr()); 419 } 420 Value *VisitCoawaitExpr(CoawaitExpr *S) { 421 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 422 } 423 Value *VisitCoyieldExpr(CoyieldExpr *S) { 424 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 425 } 426 Value *VisitUnaryCoawait(const UnaryOperator *E) { 427 return Visit(E->getSubExpr()); 428 } 429 430 // Leaves. 431 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 432 return Builder.getInt(E->getValue()); 433 } 434 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 435 return Builder.getInt(E->getValue()); 436 } 437 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 438 return llvm::ConstantFP::get(VMContext, E->getValue()); 439 } 440 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 441 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 442 } 443 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 444 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 445 } 446 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 447 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 448 } 449 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 450 return EmitNullValue(E->getType()); 451 } 452 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 453 return EmitNullValue(E->getType()); 454 } 455 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 456 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 457 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 458 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 459 return Builder.CreateBitCast(V, ConvertType(E->getType())); 460 } 461 462 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 463 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 464 } 465 466 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 467 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 468 } 469 470 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 471 if (E->isGLValue()) 472 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 473 E->getExprLoc()); 474 475 // Otherwise, assume the mapping is the scalar directly. 476 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 477 } 478 479 // l-values. 480 Value *VisitDeclRefExpr(DeclRefExpr *E) { 481 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 482 return CGF.emitScalarConstant(Constant, E); 483 return EmitLoadOfLValue(E); 484 } 485 486 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 487 return CGF.EmitObjCSelectorExpr(E); 488 } 489 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 490 return CGF.EmitObjCProtocolExpr(E); 491 } 492 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 493 return EmitLoadOfLValue(E); 494 } 495 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 496 if (E->getMethodDecl() && 497 E->getMethodDecl()->getReturnType()->isReferenceType()) 498 return EmitLoadOfLValue(E); 499 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 500 } 501 502 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 503 LValue LV = CGF.EmitObjCIsaExpr(E); 504 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 505 return V; 506 } 507 508 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 509 VersionTuple Version = E->getVersion(); 510 511 // If we're checking for a platform older than our minimum deployment 512 // target, we can fold the check away. 513 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 514 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 515 516 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 517 llvm::Value *Args[] = { 518 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), 519 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), 520 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), 521 }; 522 523 return CGF.EmitBuiltinAvailable(Args); 524 } 525 526 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 527 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 528 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 529 Value *VisitMemberExpr(MemberExpr *E); 530 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 531 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 532 return EmitLoadOfLValue(E); 533 } 534 535 Value *VisitInitListExpr(InitListExpr *E); 536 537 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 538 assert(CGF.getArrayInitIndex() && 539 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 540 return CGF.getArrayInitIndex(); 541 } 542 543 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 544 return EmitNullValue(E->getType()); 545 } 546 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 547 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 548 return VisitCastExpr(E); 549 } 550 Value *VisitCastExpr(CastExpr *E); 551 552 Value *VisitCallExpr(const CallExpr *E) { 553 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 554 return EmitLoadOfLValue(E); 555 556 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 557 558 EmitLValueAlignmentAssumption(E, V); 559 return V; 560 } 561 562 Value *VisitStmtExpr(const StmtExpr *E); 563 564 // Unary Operators. 565 Value *VisitUnaryPostDec(const UnaryOperator *E) { 566 LValue LV = EmitLValue(E->getSubExpr()); 567 return EmitScalarPrePostIncDec(E, LV, false, false); 568 } 569 Value *VisitUnaryPostInc(const UnaryOperator *E) { 570 LValue LV = EmitLValue(E->getSubExpr()); 571 return EmitScalarPrePostIncDec(E, LV, true, false); 572 } 573 Value *VisitUnaryPreDec(const UnaryOperator *E) { 574 LValue LV = EmitLValue(E->getSubExpr()); 575 return EmitScalarPrePostIncDec(E, LV, false, true); 576 } 577 Value *VisitUnaryPreInc(const UnaryOperator *E) { 578 LValue LV = EmitLValue(E->getSubExpr()); 579 return EmitScalarPrePostIncDec(E, LV, true, true); 580 } 581 582 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 583 llvm::Value *InVal, 584 bool IsInc); 585 586 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 587 bool isInc, bool isPre); 588 589 590 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 591 if (isa<MemberPointerType>(E->getType())) // never sugared 592 return CGF.CGM.getMemberPointerConstant(E); 593 594 return EmitLValue(E->getSubExpr()).getPointer(); 595 } 596 Value *VisitUnaryDeref(const UnaryOperator *E) { 597 if (E->getType()->isVoidType()) 598 return Visit(E->getSubExpr()); // the actual value should be unused 599 return EmitLoadOfLValue(E); 600 } 601 Value *VisitUnaryPlus(const UnaryOperator *E) { 602 // This differs from gcc, though, most likely due to a bug in gcc. 603 TestAndClearIgnoreResultAssign(); 604 return Visit(E->getSubExpr()); 605 } 606 Value *VisitUnaryMinus (const UnaryOperator *E); 607 Value *VisitUnaryNot (const UnaryOperator *E); 608 Value *VisitUnaryLNot (const UnaryOperator *E); 609 Value *VisitUnaryReal (const UnaryOperator *E); 610 Value *VisitUnaryImag (const UnaryOperator *E); 611 Value *VisitUnaryExtension(const UnaryOperator *E) { 612 return Visit(E->getSubExpr()); 613 } 614 615 // C++ 616 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 617 return EmitLoadOfLValue(E); 618 } 619 620 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 621 return Visit(DAE->getExpr()); 622 } 623 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 624 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 625 return Visit(DIE->getExpr()); 626 } 627 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 628 return CGF.LoadCXXThis(); 629 } 630 631 Value *VisitExprWithCleanups(ExprWithCleanups *E); 632 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 633 return CGF.EmitCXXNewExpr(E); 634 } 635 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 636 CGF.EmitCXXDeleteExpr(E); 637 return nullptr; 638 } 639 640 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 641 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 642 } 643 644 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 645 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 646 } 647 648 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 649 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 650 } 651 652 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 653 // C++ [expr.pseudo]p1: 654 // The result shall only be used as the operand for the function call 655 // operator (), and the result of such a call has type void. The only 656 // effect is the evaluation of the postfix-expression before the dot or 657 // arrow. 658 CGF.EmitScalarExpr(E->getBase()); 659 return nullptr; 660 } 661 662 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 663 return EmitNullValue(E->getType()); 664 } 665 666 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 667 CGF.EmitCXXThrowExpr(E); 668 return nullptr; 669 } 670 671 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 672 return Builder.getInt1(E->getValue()); 673 } 674 675 // Binary Operators. 676 Value *EmitMul(const BinOpInfo &Ops) { 677 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 678 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 679 case LangOptions::SOB_Defined: 680 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 681 case LangOptions::SOB_Undefined: 682 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 683 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 684 LLVM_FALLTHROUGH; 685 case LangOptions::SOB_Trapping: 686 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 687 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 688 return EmitOverflowCheckedBinOp(Ops); 689 } 690 } 691 692 if (Ops.Ty->isUnsignedIntegerType() && 693 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 694 !CanElideOverflowCheck(CGF.getContext(), Ops)) 695 return EmitOverflowCheckedBinOp(Ops); 696 697 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 698 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 699 return propagateFMFlags(V, Ops); 700 } 701 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 702 } 703 /// Create a binary op that checks for overflow. 704 /// Currently only supports +, - and *. 705 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 706 707 // Check for undefined division and modulus behaviors. 708 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 709 llvm::Value *Zero,bool isDiv); 710 // Common helper for getting how wide LHS of shift is. 711 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 712 Value *EmitDiv(const BinOpInfo &Ops); 713 Value *EmitRem(const BinOpInfo &Ops); 714 Value *EmitAdd(const BinOpInfo &Ops); 715 Value *EmitSub(const BinOpInfo &Ops); 716 Value *EmitShl(const BinOpInfo &Ops); 717 Value *EmitShr(const BinOpInfo &Ops); 718 Value *EmitAnd(const BinOpInfo &Ops) { 719 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 720 } 721 Value *EmitXor(const BinOpInfo &Ops) { 722 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 723 } 724 Value *EmitOr (const BinOpInfo &Ops) { 725 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 726 } 727 728 BinOpInfo EmitBinOps(const BinaryOperator *E); 729 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 730 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 731 Value *&Result); 732 733 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 734 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 735 736 // Binary operators and binary compound assignment operators. 737 #define HANDLEBINOP(OP) \ 738 Value *VisitBin ## OP(const BinaryOperator *E) { \ 739 return Emit ## OP(EmitBinOps(E)); \ 740 } \ 741 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 742 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 743 } 744 HANDLEBINOP(Mul) 745 HANDLEBINOP(Div) 746 HANDLEBINOP(Rem) 747 HANDLEBINOP(Add) 748 HANDLEBINOP(Sub) 749 HANDLEBINOP(Shl) 750 HANDLEBINOP(Shr) 751 HANDLEBINOP(And) 752 HANDLEBINOP(Xor) 753 HANDLEBINOP(Or) 754 #undef HANDLEBINOP 755 756 // Comparisons. 757 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 758 llvm::CmpInst::Predicate SICmpOpc, 759 llvm::CmpInst::Predicate FCmpOpc); 760 #define VISITCOMP(CODE, UI, SI, FP) \ 761 Value *VisitBin##CODE(const BinaryOperator *E) { \ 762 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 763 llvm::FCmpInst::FP); } 764 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 765 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 766 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 767 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 768 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 769 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 770 #undef VISITCOMP 771 772 Value *VisitBinAssign (const BinaryOperator *E); 773 774 Value *VisitBinLAnd (const BinaryOperator *E); 775 Value *VisitBinLOr (const BinaryOperator *E); 776 Value *VisitBinComma (const BinaryOperator *E); 777 778 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 779 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 780 781 // Other Operators. 782 Value *VisitBlockExpr(const BlockExpr *BE); 783 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 784 Value *VisitChooseExpr(ChooseExpr *CE); 785 Value *VisitVAArgExpr(VAArgExpr *VE); 786 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 787 return CGF.EmitObjCStringLiteral(E); 788 } 789 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 790 return CGF.EmitObjCBoxedExpr(E); 791 } 792 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 793 return CGF.EmitObjCArrayLiteral(E); 794 } 795 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 796 return CGF.EmitObjCDictionaryLiteral(E); 797 } 798 Value *VisitAsTypeExpr(AsTypeExpr *CE); 799 Value *VisitAtomicExpr(AtomicExpr *AE); 800 }; 801 } // end anonymous namespace. 802 803 //===----------------------------------------------------------------------===// 804 // Utilities 805 //===----------------------------------------------------------------------===// 806 807 /// EmitConversionToBool - Convert the specified expression value to a 808 /// boolean (i1) truth value. This is equivalent to "Val != 0". 809 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 810 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 811 812 if (SrcType->isRealFloatingType()) 813 return EmitFloatToBoolConversion(Src); 814 815 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 816 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 817 818 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 819 "Unknown scalar type to convert"); 820 821 if (isa<llvm::IntegerType>(Src->getType())) 822 return EmitIntToBoolConversion(Src); 823 824 assert(isa<llvm::PointerType>(Src->getType())); 825 return EmitPointerToBoolConversion(Src, SrcType); 826 } 827 828 void ScalarExprEmitter::EmitFloatConversionCheck( 829 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 830 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 831 CodeGenFunction::SanitizerScope SanScope(&CGF); 832 using llvm::APFloat; 833 using llvm::APSInt; 834 835 llvm::Type *SrcTy = Src->getType(); 836 837 llvm::Value *Check = nullptr; 838 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 839 // Integer to floating-point. This can fail for unsigned short -> __half 840 // or unsigned __int128 -> float. 841 assert(DstType->isFloatingType()); 842 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 843 844 APFloat LargestFloat = 845 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 846 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 847 848 bool IsExact; 849 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 850 &IsExact) != APFloat::opOK) 851 // The range of representable values of this floating point type includes 852 // all values of this integer type. Don't need an overflow check. 853 return; 854 855 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 856 if (SrcIsUnsigned) 857 Check = Builder.CreateICmpULE(Src, Max); 858 else { 859 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 860 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 861 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 862 Check = Builder.CreateAnd(GE, LE); 863 } 864 } else { 865 const llvm::fltSemantics &SrcSema = 866 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 867 if (isa<llvm::IntegerType>(DstTy)) { 868 // Floating-point to integer. This has undefined behavior if the source is 869 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 870 // to an integer). 871 unsigned Width = CGF.getContext().getIntWidth(DstType); 872 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 873 874 APSInt Min = APSInt::getMinValue(Width, Unsigned); 875 APFloat MinSrc(SrcSema, APFloat::uninitialized); 876 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 877 APFloat::opOverflow) 878 // Don't need an overflow check for lower bound. Just check for 879 // -Inf/NaN. 880 MinSrc = APFloat::getInf(SrcSema, true); 881 else 882 // Find the largest value which is too small to represent (before 883 // truncation toward zero). 884 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 885 886 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 887 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 888 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 889 APFloat::opOverflow) 890 // Don't need an overflow check for upper bound. Just check for 891 // +Inf/NaN. 892 MaxSrc = APFloat::getInf(SrcSema, false); 893 else 894 // Find the smallest value which is too large to represent (before 895 // truncation toward zero). 896 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 897 898 // If we're converting from __half, convert the range to float to match 899 // the type of src. 900 if (OrigSrcType->isHalfType()) { 901 const llvm::fltSemantics &Sema = 902 CGF.getContext().getFloatTypeSemantics(SrcType); 903 bool IsInexact; 904 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 905 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 906 } 907 908 llvm::Value *GE = 909 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 910 llvm::Value *LE = 911 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 912 Check = Builder.CreateAnd(GE, LE); 913 } else { 914 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 915 // 916 // Floating-point to floating-point. This has undefined behavior if the 917 // source is not in the range of representable values of the destination 918 // type. The C and C++ standards are spectacularly unclear here. We 919 // diagnose finite out-of-range conversions, but allow infinities and NaNs 920 // to convert to the corresponding value in the smaller type. 921 // 922 // C11 Annex F gives all such conversions defined behavior for IEC 60559 923 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 924 // does not. 925 926 // Converting from a lower rank to a higher rank can never have 927 // undefined behavior, since higher-rank types must have a superset 928 // of values of lower-rank types. 929 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 930 return; 931 932 assert(!OrigSrcType->isHalfType() && 933 "should not check conversion from __half, it has the lowest rank"); 934 935 const llvm::fltSemantics &DstSema = 936 CGF.getContext().getFloatTypeSemantics(DstType); 937 APFloat MinBad = APFloat::getLargest(DstSema, false); 938 APFloat MaxBad = APFloat::getInf(DstSema, false); 939 940 bool IsInexact; 941 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 942 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 943 944 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 945 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 946 llvm::Value *GE = 947 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 948 llvm::Value *LE = 949 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 950 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 951 } 952 } 953 954 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 955 CGF.EmitCheckTypeDescriptor(OrigSrcType), 956 CGF.EmitCheckTypeDescriptor(DstType)}; 957 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 958 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 959 } 960 961 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 962 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 963 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 964 std::pair<llvm::Value *, SanitizerMask>> 965 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 966 QualType DstType, CGBuilderTy &Builder) { 967 llvm::Type *SrcTy = Src->getType(); 968 llvm::Type *DstTy = Dst->getType(); 969 (void)DstTy; // Only used in assert() 970 971 // This should be truncation of integral types. 972 assert(Src != Dst); 973 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 974 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 975 "non-integer llvm type"); 976 977 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 978 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 979 980 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 981 // Else, it is a signed truncation. 982 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 983 SanitizerMask Mask; 984 if (!SrcSigned && !DstSigned) { 985 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 986 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 987 } else { 988 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 989 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 990 } 991 992 llvm::Value *Check = nullptr; 993 // 1. Extend the truncated value back to the same width as the Src. 994 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 995 // 2. Equality-compare with the original source value 996 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 997 // If the comparison result is 'i1 false', then the truncation was lossy. 998 return std::make_pair(Kind, std::make_pair(Check, Mask)); 999 } 1000 1001 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 1002 Value *Dst, QualType DstType, 1003 SourceLocation Loc) { 1004 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 1005 return; 1006 1007 // We only care about int->int conversions here. 1008 // We ignore conversions to/from pointer and/or bool. 1009 if (!(SrcType->isIntegerType() && DstType->isIntegerType())) 1010 return; 1011 1012 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 1013 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 1014 // This must be truncation. Else we do not care. 1015 if (SrcBits <= DstBits) 1016 return; 1017 1018 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 1019 1020 // If the integer sign change sanitizer is enabled, 1021 // and we are truncating from larger unsigned type to smaller signed type, 1022 // let that next sanitizer deal with it. 1023 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1024 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1025 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 1026 (!SrcSigned && DstSigned)) 1027 return; 1028 1029 CodeGenFunction::SanitizerScope SanScope(&CGF); 1030 1031 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1032 std::pair<llvm::Value *, SanitizerMask>> 1033 Check = 1034 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1035 // If the comparison result is 'i1 false', then the truncation was lossy. 1036 1037 // Do we care about this type of truncation? 1038 if (!CGF.SanOpts.has(Check.second.second)) 1039 return; 1040 1041 llvm::Constant *StaticArgs[] = { 1042 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1043 CGF.EmitCheckTypeDescriptor(DstType), 1044 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1045 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1046 {Src, Dst}); 1047 } 1048 1049 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1050 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1051 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1052 std::pair<llvm::Value *, SanitizerMask>> 1053 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1054 QualType DstType, CGBuilderTy &Builder) { 1055 llvm::Type *SrcTy = Src->getType(); 1056 llvm::Type *DstTy = Dst->getType(); 1057 1058 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1059 "non-integer llvm type"); 1060 1061 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1062 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1063 (void)SrcSigned; // Only used in assert() 1064 (void)DstSigned; // Only used in assert() 1065 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1066 unsigned DstBits = DstTy->getScalarSizeInBits(); 1067 (void)SrcBits; // Only used in assert() 1068 (void)DstBits; // Only used in assert() 1069 1070 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1071 "either the widths should be different, or the signednesses."); 1072 1073 // NOTE: zero value is considered to be non-negative. 1074 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1075 const char *Name) -> Value * { 1076 // Is this value a signed type? 1077 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1078 llvm::Type *VTy = V->getType(); 1079 if (!VSigned) { 1080 // If the value is unsigned, then it is never negative. 1081 // FIXME: can we encounter non-scalar VTy here? 1082 return llvm::ConstantInt::getFalse(VTy->getContext()); 1083 } 1084 // Get the zero of the same type with which we will be comparing. 1085 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1086 // %V.isnegative = icmp slt %V, 0 1087 // I.e is %V *strictly* less than zero, does it have negative value? 1088 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1089 llvm::Twine(Name) + "." + V->getName() + 1090 ".negativitycheck"); 1091 }; 1092 1093 // 1. Was the old Value negative? 1094 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1095 // 2. Is the new Value negative? 1096 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1097 // 3. Now, was the 'negativity status' preserved during the conversion? 1098 // NOTE: conversion from negative to zero is considered to change the sign. 1099 // (We want to get 'false' when the conversion changed the sign) 1100 // So we should just equality-compare the negativity statuses. 1101 llvm::Value *Check = nullptr; 1102 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1103 // If the comparison result is 'false', then the conversion changed the sign. 1104 return std::make_pair( 1105 ScalarExprEmitter::ICCK_IntegerSignChange, 1106 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1107 } 1108 1109 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1110 Value *Dst, QualType DstType, 1111 SourceLocation Loc) { 1112 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1113 return; 1114 1115 llvm::Type *SrcTy = Src->getType(); 1116 llvm::Type *DstTy = Dst->getType(); 1117 1118 // We only care about int->int conversions here. 1119 // We ignore conversions to/from pointer and/or bool. 1120 if (!(SrcType->isIntegerType() && DstType->isIntegerType())) 1121 return; 1122 1123 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1124 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1125 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1126 unsigned DstBits = DstTy->getScalarSizeInBits(); 1127 1128 // Now, we do not need to emit the check in *all* of the cases. 1129 // We can avoid emitting it in some obvious cases where it would have been 1130 // dropped by the opt passes (instcombine) always anyways. 1131 // If it's a cast between effectively the same type, no check. 1132 // NOTE: this is *not* equivalent to checking the canonical types. 1133 if (SrcSigned == DstSigned && SrcBits == DstBits) 1134 return; 1135 // At least one of the values needs to have signed type. 1136 // If both are unsigned, then obviously, neither of them can be negative. 1137 if (!SrcSigned && !DstSigned) 1138 return; 1139 // If the conversion is to *larger* *signed* type, then no check is needed. 1140 // Because either sign-extension happens (so the sign will remain), 1141 // or zero-extension will happen (the sign bit will be zero.) 1142 if ((DstBits > SrcBits) && DstSigned) 1143 return; 1144 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1145 (SrcBits > DstBits) && SrcSigned) { 1146 // If the signed integer truncation sanitizer is enabled, 1147 // and this is a truncation from signed type, then no check is needed. 1148 // Because here sign change check is interchangeable with truncation check. 1149 return; 1150 } 1151 // That's it. We can't rule out any more cases with the data we have. 1152 1153 CodeGenFunction::SanitizerScope SanScope(&CGF); 1154 1155 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1156 std::pair<llvm::Value *, SanitizerMask>> 1157 Check; 1158 1159 // Each of these checks needs to return 'false' when an issue was detected. 1160 ImplicitConversionCheckKind CheckKind; 1161 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1162 // So we can 'and' all the checks together, and still get 'false', 1163 // if at least one of the checks detected an issue. 1164 1165 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1166 CheckKind = Check.first; 1167 Checks.emplace_back(Check.second); 1168 1169 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1170 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1171 // If the signed integer truncation sanitizer was enabled, 1172 // and we are truncating from larger unsigned type to smaller signed type, 1173 // let's handle the case we skipped in that check. 1174 Check = 1175 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1176 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1177 Checks.emplace_back(Check.second); 1178 // If the comparison result is 'i1 false', then the truncation was lossy. 1179 } 1180 1181 llvm::Constant *StaticArgs[] = { 1182 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1183 CGF.EmitCheckTypeDescriptor(DstType), 1184 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1185 // EmitCheck() will 'and' all the checks together. 1186 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1187 {Src, Dst}); 1188 } 1189 1190 /// Emit a conversion from the specified type to the specified destination type, 1191 /// both of which are LLVM scalar types. 1192 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1193 QualType DstType, 1194 SourceLocation Loc, 1195 ScalarConversionOpts Opts) { 1196 // All conversions involving fixed point types should be handled by the 1197 // EmitFixedPoint family functions. This is done to prevent bloating up this 1198 // function more, and although fixed point numbers are represented by 1199 // integers, we do not want to follow any logic that assumes they should be 1200 // treated as integers. 1201 // TODO(leonardchan): When necessary, add another if statement checking for 1202 // conversions to fixed point types from other types. 1203 if (SrcType->isFixedPointType()) { 1204 if (DstType->isFixedPointType()) { 1205 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1206 } else if (DstType->isBooleanType()) { 1207 // We do not need to check the padding bit on unsigned types if unsigned 1208 // padding is enabled because overflow into this bit is undefined 1209 // behavior. 1210 return Builder.CreateIsNotNull(Src, "tobool"); 1211 } 1212 1213 llvm_unreachable( 1214 "Unhandled scalar conversion involving a fixed point type."); 1215 } 1216 1217 QualType NoncanonicalSrcType = SrcType; 1218 QualType NoncanonicalDstType = DstType; 1219 1220 SrcType = CGF.getContext().getCanonicalType(SrcType); 1221 DstType = CGF.getContext().getCanonicalType(DstType); 1222 if (SrcType == DstType) return Src; 1223 1224 if (DstType->isVoidType()) return nullptr; 1225 1226 llvm::Value *OrigSrc = Src; 1227 QualType OrigSrcType = SrcType; 1228 llvm::Type *SrcTy = Src->getType(); 1229 1230 // Handle conversions to bool first, they are special: comparisons against 0. 1231 if (DstType->isBooleanType()) 1232 return EmitConversionToBool(Src, SrcType); 1233 1234 llvm::Type *DstTy = ConvertType(DstType); 1235 1236 // Cast from half through float if half isn't a native type. 1237 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1238 // Cast to FP using the intrinsic if the half type itself isn't supported. 1239 if (DstTy->isFloatingPointTy()) { 1240 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1241 return Builder.CreateCall( 1242 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1243 Src); 1244 } else { 1245 // Cast to other types through float, using either the intrinsic or FPExt, 1246 // depending on whether the half type itself is supported 1247 // (as opposed to operations on half, available with NativeHalfType). 1248 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1249 Src = Builder.CreateCall( 1250 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1251 CGF.CGM.FloatTy), 1252 Src); 1253 } else { 1254 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1255 } 1256 SrcType = CGF.getContext().FloatTy; 1257 SrcTy = CGF.FloatTy; 1258 } 1259 } 1260 1261 // Ignore conversions like int -> uint. 1262 if (SrcTy == DstTy) { 1263 if (Opts.EmitImplicitIntegerSignChangeChecks) 1264 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1265 NoncanonicalDstType, Loc); 1266 1267 return Src; 1268 } 1269 1270 // Handle pointer conversions next: pointers can only be converted to/from 1271 // other pointers and integers. Check for pointer types in terms of LLVM, as 1272 // some native types (like Obj-C id) may map to a pointer type. 1273 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1274 // The source value may be an integer, or a pointer. 1275 if (isa<llvm::PointerType>(SrcTy)) 1276 return Builder.CreateBitCast(Src, DstTy, "conv"); 1277 1278 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1279 // First, convert to the correct width so that we control the kind of 1280 // extension. 1281 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1282 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1283 llvm::Value* IntResult = 1284 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1285 // Then, cast to pointer. 1286 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1287 } 1288 1289 if (isa<llvm::PointerType>(SrcTy)) { 1290 // Must be an ptr to int cast. 1291 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1292 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1293 } 1294 1295 // A scalar can be splatted to an extended vector of the same element type 1296 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1297 // Sema should add casts to make sure that the source expression's type is 1298 // the same as the vector's element type (sans qualifiers) 1299 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1300 SrcType.getTypePtr() && 1301 "Splatted expr doesn't match with vector element type?"); 1302 1303 // Splat the element across to all elements 1304 unsigned NumElements = DstTy->getVectorNumElements(); 1305 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1306 } 1307 1308 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1309 // Allow bitcast from vector to integer/fp of the same size. 1310 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1311 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1312 if (SrcSize == DstSize) 1313 return Builder.CreateBitCast(Src, DstTy, "conv"); 1314 1315 // Conversions between vectors of different sizes are not allowed except 1316 // when vectors of half are involved. Operations on storage-only half 1317 // vectors require promoting half vector operands to float vectors and 1318 // truncating the result, which is either an int or float vector, to a 1319 // short or half vector. 1320 1321 // Source and destination are both expected to be vectors. 1322 llvm::Type *SrcElementTy = SrcTy->getVectorElementType(); 1323 llvm::Type *DstElementTy = DstTy->getVectorElementType(); 1324 (void)DstElementTy; 1325 1326 assert(((SrcElementTy->isIntegerTy() && 1327 DstElementTy->isIntegerTy()) || 1328 (SrcElementTy->isFloatingPointTy() && 1329 DstElementTy->isFloatingPointTy())) && 1330 "unexpected conversion between a floating-point vector and an " 1331 "integer vector"); 1332 1333 // Truncate an i32 vector to an i16 vector. 1334 if (SrcElementTy->isIntegerTy()) 1335 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1336 1337 // Truncate a float vector to a half vector. 1338 if (SrcSize > DstSize) 1339 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1340 1341 // Promote a half vector to a float vector. 1342 return Builder.CreateFPExt(Src, DstTy, "conv"); 1343 } 1344 1345 // Finally, we have the arithmetic types: real int/float. 1346 Value *Res = nullptr; 1347 llvm::Type *ResTy = DstTy; 1348 1349 // An overflowing conversion has undefined behavior if either the source type 1350 // or the destination type is a floating-point type. 1351 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1352 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 1353 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1354 Loc); 1355 1356 // Cast to half through float if half isn't a native type. 1357 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1358 // Make sure we cast in a single step if from another FP type. 1359 if (SrcTy->isFloatingPointTy()) { 1360 // Use the intrinsic if the half type itself isn't supported 1361 // (as opposed to operations on half, available with NativeHalfType). 1362 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1363 return Builder.CreateCall( 1364 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1365 // If the half type is supported, just use an fptrunc. 1366 return Builder.CreateFPTrunc(Src, DstTy); 1367 } 1368 DstTy = CGF.FloatTy; 1369 } 1370 1371 if (isa<llvm::IntegerType>(SrcTy)) { 1372 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1373 if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1374 InputSigned = true; 1375 } 1376 if (isa<llvm::IntegerType>(DstTy)) 1377 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1378 else if (InputSigned) 1379 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1380 else 1381 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1382 } else if (isa<llvm::IntegerType>(DstTy)) { 1383 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1384 if (DstType->isSignedIntegerOrEnumerationType()) 1385 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1386 else 1387 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1388 } else { 1389 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1390 "Unknown real conversion"); 1391 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1392 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1393 else 1394 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1395 } 1396 1397 if (DstTy != ResTy) { 1398 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1399 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1400 Res = Builder.CreateCall( 1401 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1402 Res); 1403 } else { 1404 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1405 } 1406 } 1407 1408 if (Opts.EmitImplicitIntegerTruncationChecks) 1409 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1410 NoncanonicalDstType, Loc); 1411 1412 if (Opts.EmitImplicitIntegerSignChangeChecks) 1413 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1414 NoncanonicalDstType, Loc); 1415 1416 return Res; 1417 } 1418 1419 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1420 QualType DstTy, 1421 SourceLocation Loc) { 1422 using llvm::APInt; 1423 using llvm::ConstantInt; 1424 using llvm::Value; 1425 1426 assert(SrcTy->isFixedPointType()); 1427 assert(DstTy->isFixedPointType()); 1428 1429 FixedPointSemantics SrcFPSema = 1430 CGF.getContext().getFixedPointSemantics(SrcTy); 1431 FixedPointSemantics DstFPSema = 1432 CGF.getContext().getFixedPointSemantics(DstTy); 1433 unsigned SrcWidth = SrcFPSema.getWidth(); 1434 unsigned DstWidth = DstFPSema.getWidth(); 1435 unsigned SrcScale = SrcFPSema.getScale(); 1436 unsigned DstScale = DstFPSema.getScale(); 1437 bool SrcIsSigned = SrcFPSema.isSigned(); 1438 bool DstIsSigned = DstFPSema.isSigned(); 1439 1440 llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth); 1441 1442 Value *Result = Src; 1443 unsigned ResultWidth = SrcWidth; 1444 1445 if (!DstFPSema.isSaturated()) { 1446 // Downscale. 1447 if (DstScale < SrcScale) 1448 Result = SrcIsSigned ? 1449 Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") : 1450 Builder.CreateLShr(Result, SrcScale - DstScale, "downscale"); 1451 1452 // Resize. 1453 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1454 1455 // Upscale. 1456 if (DstScale > SrcScale) 1457 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1458 } else { 1459 // Adjust the number of fractional bits. 1460 if (DstScale > SrcScale) { 1461 ResultWidth = SrcWidth + DstScale - SrcScale; 1462 llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth); 1463 Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize"); 1464 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1465 } else if (DstScale < SrcScale) { 1466 Result = SrcIsSigned ? 1467 Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") : 1468 Builder.CreateLShr(Result, SrcScale - DstScale, "downscale"); 1469 } 1470 1471 // Handle saturation. 1472 bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits(); 1473 if (LessIntBits) { 1474 Value *Max = ConstantInt::get( 1475 CGF.getLLVMContext(), 1476 APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1477 Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max) 1478 : Builder.CreateICmpUGT(Result, Max); 1479 Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax"); 1480 } 1481 // Cannot overflow min to dest type if src is unsigned since all fixed 1482 // point types can cover the unsigned min of 0. 1483 if (SrcIsSigned && (LessIntBits || !DstIsSigned)) { 1484 Value *Min = ConstantInt::get( 1485 CGF.getLLVMContext(), 1486 APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1487 Value *TooLow = Builder.CreateICmpSLT(Result, Min); 1488 Result = Builder.CreateSelect(TooLow, Min, Result, "satmin"); 1489 } 1490 1491 // Resize the integer part to get the final destination size. 1492 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1493 } 1494 return Result; 1495 } 1496 1497 /// Emit a conversion from the specified complex type to the specified 1498 /// destination type, where the destination type is an LLVM scalar type. 1499 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1500 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1501 SourceLocation Loc) { 1502 // Get the source element type. 1503 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1504 1505 // Handle conversions to bool first, they are special: comparisons against 0. 1506 if (DstTy->isBooleanType()) { 1507 // Complex != 0 -> (Real != 0) | (Imag != 0) 1508 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1509 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1510 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1511 } 1512 1513 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1514 // the imaginary part of the complex value is discarded and the value of the 1515 // real part is converted according to the conversion rules for the 1516 // corresponding real type. 1517 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1518 } 1519 1520 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1521 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1522 } 1523 1524 /// Emit a sanitization check for the given "binary" operation (which 1525 /// might actually be a unary increment which has been lowered to a binary 1526 /// operation). The check passes if all values in \p Checks (which are \c i1), 1527 /// are \c true. 1528 void ScalarExprEmitter::EmitBinOpCheck( 1529 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1530 assert(CGF.IsSanitizerScope); 1531 SanitizerHandler Check; 1532 SmallVector<llvm::Constant *, 4> StaticData; 1533 SmallVector<llvm::Value *, 2> DynamicData; 1534 1535 BinaryOperatorKind Opcode = Info.Opcode; 1536 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1537 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1538 1539 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1540 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1541 if (UO && UO->getOpcode() == UO_Minus) { 1542 Check = SanitizerHandler::NegateOverflow; 1543 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1544 DynamicData.push_back(Info.RHS); 1545 } else { 1546 if (BinaryOperator::isShiftOp(Opcode)) { 1547 // Shift LHS negative or too large, or RHS out of bounds. 1548 Check = SanitizerHandler::ShiftOutOfBounds; 1549 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1550 StaticData.push_back( 1551 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1552 StaticData.push_back( 1553 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1554 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1555 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1556 Check = SanitizerHandler::DivremOverflow; 1557 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1558 } else { 1559 // Arithmetic overflow (+, -, *). 1560 switch (Opcode) { 1561 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1562 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1563 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1564 default: llvm_unreachable("unexpected opcode for bin op check"); 1565 } 1566 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1567 } 1568 DynamicData.push_back(Info.LHS); 1569 DynamicData.push_back(Info.RHS); 1570 } 1571 1572 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1573 } 1574 1575 //===----------------------------------------------------------------------===// 1576 // Visitor Methods 1577 //===----------------------------------------------------------------------===// 1578 1579 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1580 CGF.ErrorUnsupported(E, "scalar expression"); 1581 if (E->getType()->isVoidType()) 1582 return nullptr; 1583 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1584 } 1585 1586 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1587 // Vector Mask Case 1588 if (E->getNumSubExprs() == 2) { 1589 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1590 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1591 Value *Mask; 1592 1593 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 1594 unsigned LHSElts = LTy->getNumElements(); 1595 1596 Mask = RHS; 1597 1598 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1599 1600 // Mask off the high bits of each shuffle index. 1601 Value *MaskBits = 1602 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1603 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1604 1605 // newv = undef 1606 // mask = mask & maskbits 1607 // for each elt 1608 // n = extract mask i 1609 // x = extract val n 1610 // newv = insert newv, x, i 1611 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1612 MTy->getNumElements()); 1613 Value* NewV = llvm::UndefValue::get(RTy); 1614 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1615 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1616 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1617 1618 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1619 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1620 } 1621 return NewV; 1622 } 1623 1624 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1625 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1626 1627 SmallVector<llvm::Constant*, 32> indices; 1628 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1629 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1630 // Check for -1 and output it as undef in the IR. 1631 if (Idx.isSigned() && Idx.isAllOnesValue()) 1632 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1633 else 1634 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1635 } 1636 1637 Value *SV = llvm::ConstantVector::get(indices); 1638 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1639 } 1640 1641 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1642 QualType SrcType = E->getSrcExpr()->getType(), 1643 DstType = E->getType(); 1644 1645 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1646 1647 SrcType = CGF.getContext().getCanonicalType(SrcType); 1648 DstType = CGF.getContext().getCanonicalType(DstType); 1649 if (SrcType == DstType) return Src; 1650 1651 assert(SrcType->isVectorType() && 1652 "ConvertVector source type must be a vector"); 1653 assert(DstType->isVectorType() && 1654 "ConvertVector destination type must be a vector"); 1655 1656 llvm::Type *SrcTy = Src->getType(); 1657 llvm::Type *DstTy = ConvertType(DstType); 1658 1659 // Ignore conversions like int -> uint. 1660 if (SrcTy == DstTy) 1661 return Src; 1662 1663 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1664 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1665 1666 assert(SrcTy->isVectorTy() && 1667 "ConvertVector source IR type must be a vector"); 1668 assert(DstTy->isVectorTy() && 1669 "ConvertVector destination IR type must be a vector"); 1670 1671 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1672 *DstEltTy = DstTy->getVectorElementType(); 1673 1674 if (DstEltType->isBooleanType()) { 1675 assert((SrcEltTy->isFloatingPointTy() || 1676 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1677 1678 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1679 if (SrcEltTy->isFloatingPointTy()) { 1680 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1681 } else { 1682 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1683 } 1684 } 1685 1686 // We have the arithmetic types: real int/float. 1687 Value *Res = nullptr; 1688 1689 if (isa<llvm::IntegerType>(SrcEltTy)) { 1690 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1691 if (isa<llvm::IntegerType>(DstEltTy)) 1692 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1693 else if (InputSigned) 1694 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1695 else 1696 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1697 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1698 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1699 if (DstEltType->isSignedIntegerOrEnumerationType()) 1700 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1701 else 1702 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1703 } else { 1704 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1705 "Unknown real conversion"); 1706 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1707 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1708 else 1709 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1710 } 1711 1712 return Res; 1713 } 1714 1715 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1716 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1717 CGF.EmitIgnoredExpr(E->getBase()); 1718 return CGF.emitScalarConstant(Constant, E); 1719 } else { 1720 llvm::APSInt Value; 1721 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1722 CGF.EmitIgnoredExpr(E->getBase()); 1723 return Builder.getInt(Value); 1724 } 1725 } 1726 1727 return EmitLoadOfLValue(E); 1728 } 1729 1730 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1731 TestAndClearIgnoreResultAssign(); 1732 1733 // Emit subscript expressions in rvalue context's. For most cases, this just 1734 // loads the lvalue formed by the subscript expr. However, we have to be 1735 // careful, because the base of a vector subscript is occasionally an rvalue, 1736 // so we can't get it as an lvalue. 1737 if (!E->getBase()->getType()->isVectorType()) 1738 return EmitLoadOfLValue(E); 1739 1740 // Handle the vector case. The base must be a vector, the index must be an 1741 // integer value. 1742 Value *Base = Visit(E->getBase()); 1743 Value *Idx = Visit(E->getIdx()); 1744 QualType IdxTy = E->getIdx()->getType(); 1745 1746 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1747 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1748 1749 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1750 } 1751 1752 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1753 unsigned Off, llvm::Type *I32Ty) { 1754 int MV = SVI->getMaskValue(Idx); 1755 if (MV == -1) 1756 return llvm::UndefValue::get(I32Ty); 1757 return llvm::ConstantInt::get(I32Ty, Off+MV); 1758 } 1759 1760 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1761 if (C->getBitWidth() != 32) { 1762 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1763 C->getZExtValue()) && 1764 "Index operand too large for shufflevector mask!"); 1765 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1766 } 1767 return C; 1768 } 1769 1770 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1771 bool Ignore = TestAndClearIgnoreResultAssign(); 1772 (void)Ignore; 1773 assert (Ignore == false && "init list ignored"); 1774 unsigned NumInitElements = E->getNumInits(); 1775 1776 if (E->hadArrayRangeDesignator()) 1777 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1778 1779 llvm::VectorType *VType = 1780 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1781 1782 if (!VType) { 1783 if (NumInitElements == 0) { 1784 // C++11 value-initialization for the scalar. 1785 return EmitNullValue(E->getType()); 1786 } 1787 // We have a scalar in braces. Just use the first element. 1788 return Visit(E->getInit(0)); 1789 } 1790 1791 unsigned ResElts = VType->getNumElements(); 1792 1793 // Loop over initializers collecting the Value for each, and remembering 1794 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1795 // us to fold the shuffle for the swizzle into the shuffle for the vector 1796 // initializer, since LLVM optimizers generally do not want to touch 1797 // shuffles. 1798 unsigned CurIdx = 0; 1799 bool VIsUndefShuffle = false; 1800 llvm::Value *V = llvm::UndefValue::get(VType); 1801 for (unsigned i = 0; i != NumInitElements; ++i) { 1802 Expr *IE = E->getInit(i); 1803 Value *Init = Visit(IE); 1804 SmallVector<llvm::Constant*, 16> Args; 1805 1806 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1807 1808 // Handle scalar elements. If the scalar initializer is actually one 1809 // element of a different vector of the same width, use shuffle instead of 1810 // extract+insert. 1811 if (!VVT) { 1812 if (isa<ExtVectorElementExpr>(IE)) { 1813 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1814 1815 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1816 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1817 Value *LHS = nullptr, *RHS = nullptr; 1818 if (CurIdx == 0) { 1819 // insert into undef -> shuffle (src, undef) 1820 // shufflemask must use an i32 1821 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1822 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1823 1824 LHS = EI->getVectorOperand(); 1825 RHS = V; 1826 VIsUndefShuffle = true; 1827 } else if (VIsUndefShuffle) { 1828 // insert into undefshuffle && size match -> shuffle (v, src) 1829 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1830 for (unsigned j = 0; j != CurIdx; ++j) 1831 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1832 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1833 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1834 1835 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1836 RHS = EI->getVectorOperand(); 1837 VIsUndefShuffle = false; 1838 } 1839 if (!Args.empty()) { 1840 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1841 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1842 ++CurIdx; 1843 continue; 1844 } 1845 } 1846 } 1847 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1848 "vecinit"); 1849 VIsUndefShuffle = false; 1850 ++CurIdx; 1851 continue; 1852 } 1853 1854 unsigned InitElts = VVT->getNumElements(); 1855 1856 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1857 // input is the same width as the vector being constructed, generate an 1858 // optimized shuffle of the swizzle input into the result. 1859 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1860 if (isa<ExtVectorElementExpr>(IE)) { 1861 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1862 Value *SVOp = SVI->getOperand(0); 1863 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1864 1865 if (OpTy->getNumElements() == ResElts) { 1866 for (unsigned j = 0; j != CurIdx; ++j) { 1867 // If the current vector initializer is a shuffle with undef, merge 1868 // this shuffle directly into it. 1869 if (VIsUndefShuffle) { 1870 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1871 CGF.Int32Ty)); 1872 } else { 1873 Args.push_back(Builder.getInt32(j)); 1874 } 1875 } 1876 for (unsigned j = 0, je = InitElts; j != je; ++j) 1877 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1878 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1879 1880 if (VIsUndefShuffle) 1881 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1882 1883 Init = SVOp; 1884 } 1885 } 1886 1887 // Extend init to result vector length, and then shuffle its contribution 1888 // to the vector initializer into V. 1889 if (Args.empty()) { 1890 for (unsigned j = 0; j != InitElts; ++j) 1891 Args.push_back(Builder.getInt32(j)); 1892 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1893 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1894 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1895 Mask, "vext"); 1896 1897 Args.clear(); 1898 for (unsigned j = 0; j != CurIdx; ++j) 1899 Args.push_back(Builder.getInt32(j)); 1900 for (unsigned j = 0; j != InitElts; ++j) 1901 Args.push_back(Builder.getInt32(j+Offset)); 1902 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1903 } 1904 1905 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1906 // merging subsequent shuffles into this one. 1907 if (CurIdx == 0) 1908 std::swap(V, Init); 1909 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1910 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1911 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1912 CurIdx += InitElts; 1913 } 1914 1915 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1916 // Emit remaining default initializers. 1917 llvm::Type *EltTy = VType->getElementType(); 1918 1919 // Emit remaining default initializers 1920 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1921 Value *Idx = Builder.getInt32(CurIdx); 1922 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1923 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1924 } 1925 return V; 1926 } 1927 1928 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1929 const Expr *E = CE->getSubExpr(); 1930 1931 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1932 return false; 1933 1934 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1935 // We always assume that 'this' is never null. 1936 return false; 1937 } 1938 1939 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1940 // And that glvalue casts are never null. 1941 if (ICE->getValueKind() != VK_RValue) 1942 return false; 1943 } 1944 1945 return true; 1946 } 1947 1948 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1949 // have to handle a more broad range of conversions than explicit casts, as they 1950 // handle things like function to ptr-to-function decay etc. 1951 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1952 Expr *E = CE->getSubExpr(); 1953 QualType DestTy = CE->getType(); 1954 CastKind Kind = CE->getCastKind(); 1955 1956 // These cases are generally not written to ignore the result of 1957 // evaluating their sub-expressions, so we clear this now. 1958 bool Ignored = TestAndClearIgnoreResultAssign(); 1959 1960 // Since almost all cast kinds apply to scalars, this switch doesn't have 1961 // a default case, so the compiler will warn on a missing case. The cases 1962 // are in the same order as in the CastKind enum. 1963 switch (Kind) { 1964 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1965 case CK_BuiltinFnToFnPtr: 1966 llvm_unreachable("builtin functions are handled elsewhere"); 1967 1968 case CK_LValueBitCast: 1969 case CK_ObjCObjectLValueCast: { 1970 Address Addr = EmitLValue(E).getAddress(); 1971 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1972 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1973 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1974 } 1975 1976 case CK_CPointerToObjCPointerCast: 1977 case CK_BlockPointerToObjCPointerCast: 1978 case CK_AnyPointerToBlockPointerCast: 1979 case CK_BitCast: { 1980 Value *Src = Visit(const_cast<Expr*>(E)); 1981 llvm::Type *SrcTy = Src->getType(); 1982 llvm::Type *DstTy = ConvertType(DestTy); 1983 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1984 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1985 llvm_unreachable("wrong cast for pointers in different address spaces" 1986 "(must be an address space cast)!"); 1987 } 1988 1989 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1990 if (auto PT = DestTy->getAs<PointerType>()) 1991 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1992 /*MayBeNull=*/true, 1993 CodeGenFunction::CFITCK_UnrelatedCast, 1994 CE->getBeginLoc()); 1995 } 1996 1997 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 1998 const QualType SrcType = E->getType(); 1999 2000 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 2001 // Casting to pointer that could carry dynamic information (provided by 2002 // invariant.group) requires launder. 2003 Src = Builder.CreateLaunderInvariantGroup(Src); 2004 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 2005 // Casting to pointer that does not carry dynamic information (provided 2006 // by invariant.group) requires stripping it. Note that we don't do it 2007 // if the source could not be dynamic type and destination could be 2008 // dynamic because dynamic information is already laundered. It is 2009 // because launder(strip(src)) == launder(src), so there is no need to 2010 // add extra strip before launder. 2011 Src = Builder.CreateStripInvariantGroup(Src); 2012 } 2013 } 2014 2015 return Builder.CreateBitCast(Src, DstTy); 2016 } 2017 case CK_AddressSpaceConversion: { 2018 Expr::EvalResult Result; 2019 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2020 Result.Val.isNullPointer()) { 2021 // If E has side effect, it is emitted even if its final result is a 2022 // null pointer. In that case, a DCE pass should be able to 2023 // eliminate the useless instructions emitted during translating E. 2024 if (Result.HasSideEffects) 2025 Visit(E); 2026 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2027 ConvertType(DestTy)), DestTy); 2028 } 2029 // Since target may map different address spaces in AST to the same address 2030 // space, an address space conversion may end up as a bitcast. 2031 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2032 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2033 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2034 } 2035 case CK_AtomicToNonAtomic: 2036 case CK_NonAtomicToAtomic: 2037 case CK_NoOp: 2038 case CK_UserDefinedConversion: 2039 return Visit(const_cast<Expr*>(E)); 2040 2041 case CK_BaseToDerived: { 2042 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2043 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2044 2045 Address Base = CGF.EmitPointerWithAlignment(E); 2046 Address Derived = 2047 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2048 CE->path_begin(), CE->path_end(), 2049 CGF.ShouldNullCheckClassCastValue(CE)); 2050 2051 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2052 // performed and the object is not of the derived type. 2053 if (CGF.sanitizePerformTypeCheck()) 2054 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2055 Derived.getPointer(), DestTy->getPointeeType()); 2056 2057 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2058 CGF.EmitVTablePtrCheckForCast( 2059 DestTy->getPointeeType(), Derived.getPointer(), 2060 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 2061 CE->getBeginLoc()); 2062 2063 return Derived.getPointer(); 2064 } 2065 case CK_UncheckedDerivedToBase: 2066 case CK_DerivedToBase: { 2067 // The EmitPointerWithAlignment path does this fine; just discard 2068 // the alignment. 2069 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2070 } 2071 2072 case CK_Dynamic: { 2073 Address V = CGF.EmitPointerWithAlignment(E); 2074 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2075 return CGF.EmitDynamicCast(V, DCE); 2076 } 2077 2078 case CK_ArrayToPointerDecay: 2079 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2080 case CK_FunctionToPointerDecay: 2081 return EmitLValue(E).getPointer(); 2082 2083 case CK_NullToPointer: 2084 if (MustVisitNullValue(E)) 2085 (void) Visit(E); 2086 2087 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2088 DestTy); 2089 2090 case CK_NullToMemberPointer: { 2091 if (MustVisitNullValue(E)) 2092 (void) Visit(E); 2093 2094 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2095 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2096 } 2097 2098 case CK_ReinterpretMemberPointer: 2099 case CK_BaseToDerivedMemberPointer: 2100 case CK_DerivedToBaseMemberPointer: { 2101 Value *Src = Visit(E); 2102 2103 // Note that the AST doesn't distinguish between checked and 2104 // unchecked member pointer conversions, so we always have to 2105 // implement checked conversions here. This is inefficient when 2106 // actual control flow may be required in order to perform the 2107 // check, which it is for data member pointers (but not member 2108 // function pointers on Itanium and ARM). 2109 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2110 } 2111 2112 case CK_ARCProduceObject: 2113 return CGF.EmitARCRetainScalarExpr(E); 2114 case CK_ARCConsumeObject: 2115 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2116 case CK_ARCReclaimReturnedObject: 2117 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2118 case CK_ARCExtendBlockObject: 2119 return CGF.EmitARCExtendBlockObject(E); 2120 2121 case CK_CopyAndAutoreleaseBlockObject: 2122 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2123 2124 case CK_FloatingRealToComplex: 2125 case CK_FloatingComplexCast: 2126 case CK_IntegralRealToComplex: 2127 case CK_IntegralComplexCast: 2128 case CK_IntegralComplexToFloatingComplex: 2129 case CK_FloatingComplexToIntegralComplex: 2130 case CK_ConstructorConversion: 2131 case CK_ToUnion: 2132 llvm_unreachable("scalar cast to non-scalar value"); 2133 2134 case CK_LValueToRValue: 2135 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2136 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2137 return Visit(const_cast<Expr*>(E)); 2138 2139 case CK_IntegralToPointer: { 2140 Value *Src = Visit(const_cast<Expr*>(E)); 2141 2142 // First, convert to the correct width so that we control the kind of 2143 // extension. 2144 auto DestLLVMTy = ConvertType(DestTy); 2145 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2146 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2147 llvm::Value* IntResult = 2148 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2149 2150 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2151 2152 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2153 // Going from integer to pointer that could be dynamic requires reloading 2154 // dynamic information from invariant.group. 2155 if (DestTy.mayBeDynamicClass()) 2156 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2157 } 2158 return IntToPtr; 2159 } 2160 case CK_PointerToIntegral: { 2161 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2162 auto *PtrExpr = Visit(E); 2163 2164 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2165 const QualType SrcType = E->getType(); 2166 2167 // Casting to integer requires stripping dynamic information as it does 2168 // not carries it. 2169 if (SrcType.mayBeDynamicClass()) 2170 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2171 } 2172 2173 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2174 } 2175 case CK_ToVoid: { 2176 CGF.EmitIgnoredExpr(E); 2177 return nullptr; 2178 } 2179 case CK_VectorSplat: { 2180 llvm::Type *DstTy = ConvertType(DestTy); 2181 Value *Elt = Visit(const_cast<Expr*>(E)); 2182 // Splat the element across to all elements 2183 unsigned NumElements = DstTy->getVectorNumElements(); 2184 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2185 } 2186 2187 case CK_FixedPointCast: 2188 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2189 CE->getExprLoc()); 2190 2191 case CK_FixedPointToBoolean: 2192 assert(E->getType()->isFixedPointType() && 2193 "Expected src type to be fixed point type"); 2194 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2195 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2196 CE->getExprLoc()); 2197 2198 case CK_IntegralCast: { 2199 ScalarConversionOpts Opts; 2200 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2201 if (!ICE->isPartOfExplicitCast()) 2202 Opts = ScalarConversionOpts(CGF.SanOpts); 2203 } 2204 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2205 CE->getExprLoc(), Opts); 2206 } 2207 case CK_IntegralToFloating: 2208 case CK_FloatingToIntegral: 2209 case CK_FloatingCast: 2210 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2211 CE->getExprLoc()); 2212 case CK_BooleanToSignedIntegral: { 2213 ScalarConversionOpts Opts; 2214 Opts.TreatBooleanAsSigned = true; 2215 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2216 CE->getExprLoc(), Opts); 2217 } 2218 case CK_IntegralToBoolean: 2219 return EmitIntToBoolConversion(Visit(E)); 2220 case CK_PointerToBoolean: 2221 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2222 case CK_FloatingToBoolean: 2223 return EmitFloatToBoolConversion(Visit(E)); 2224 case CK_MemberPointerToBoolean: { 2225 llvm::Value *MemPtr = Visit(E); 2226 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2227 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2228 } 2229 2230 case CK_FloatingComplexToReal: 2231 case CK_IntegralComplexToReal: 2232 return CGF.EmitComplexExpr(E, false, true).first; 2233 2234 case CK_FloatingComplexToBoolean: 2235 case CK_IntegralComplexToBoolean: { 2236 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2237 2238 // TODO: kill this function off, inline appropriate case here 2239 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2240 CE->getExprLoc()); 2241 } 2242 2243 case CK_ZeroToOCLOpaqueType: { 2244 assert((DestTy->isEventT() || DestTy->isQueueT() || 2245 DestTy->isOCLIntelSubgroupAVCType()) && 2246 "CK_ZeroToOCLEvent cast on non-event type"); 2247 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2248 } 2249 2250 case CK_IntToOCLSampler: 2251 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2252 2253 } // end of switch 2254 2255 llvm_unreachable("unknown scalar cast"); 2256 } 2257 2258 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2259 CodeGenFunction::StmtExprEvaluation eval(CGF); 2260 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2261 !E->getType()->isVoidType()); 2262 if (!RetAlloca.isValid()) 2263 return nullptr; 2264 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2265 E->getExprLoc()); 2266 } 2267 2268 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2269 CGF.enterFullExpression(E); 2270 CodeGenFunction::RunCleanupsScope Scope(CGF); 2271 Value *V = Visit(E->getSubExpr()); 2272 // Defend against dominance problems caused by jumps out of expression 2273 // evaluation through the shared cleanup block. 2274 Scope.ForceCleanup({&V}); 2275 return V; 2276 } 2277 2278 //===----------------------------------------------------------------------===// 2279 // Unary Operators 2280 //===----------------------------------------------------------------------===// 2281 2282 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2283 llvm::Value *InVal, bool IsInc) { 2284 BinOpInfo BinOp; 2285 BinOp.LHS = InVal; 2286 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2287 BinOp.Ty = E->getType(); 2288 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2289 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2290 BinOp.E = E; 2291 return BinOp; 2292 } 2293 2294 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2295 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2296 llvm::Value *Amount = 2297 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2298 StringRef Name = IsInc ? "inc" : "dec"; 2299 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2300 case LangOptions::SOB_Defined: 2301 return Builder.CreateAdd(InVal, Amount, Name); 2302 case LangOptions::SOB_Undefined: 2303 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2304 return Builder.CreateNSWAdd(InVal, Amount, Name); 2305 LLVM_FALLTHROUGH; 2306 case LangOptions::SOB_Trapping: 2307 if (!E->canOverflow()) 2308 return Builder.CreateNSWAdd(InVal, Amount, Name); 2309 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 2310 } 2311 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2312 } 2313 2314 llvm::Value * 2315 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2316 bool isInc, bool isPre) { 2317 2318 QualType type = E->getSubExpr()->getType(); 2319 llvm::PHINode *atomicPHI = nullptr; 2320 llvm::Value *value; 2321 llvm::Value *input; 2322 2323 int amount = (isInc ? 1 : -1); 2324 bool isSubtraction = !isInc; 2325 2326 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2327 type = atomicTy->getValueType(); 2328 if (isInc && type->isBooleanType()) { 2329 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2330 if (isPre) { 2331 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 2332 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2333 return Builder.getTrue(); 2334 } 2335 // For atomic bool increment, we just store true and return it for 2336 // preincrement, do an atomic swap with true for postincrement 2337 return Builder.CreateAtomicRMW( 2338 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, 2339 llvm::AtomicOrdering::SequentiallyConsistent); 2340 } 2341 // Special case for atomic increment / decrement on integers, emit 2342 // atomicrmw instructions. We skip this if we want to be doing overflow 2343 // checking, and fall into the slow path with the atomic cmpxchg loop. 2344 if (!type->isBooleanType() && type->isIntegerType() && 2345 !(type->isUnsignedIntegerType() && 2346 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2347 CGF.getLangOpts().getSignedOverflowBehavior() != 2348 LangOptions::SOB_Trapping) { 2349 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2350 llvm::AtomicRMWInst::Sub; 2351 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2352 llvm::Instruction::Sub; 2353 llvm::Value *amt = CGF.EmitToMemory( 2354 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2355 llvm::Value *old = Builder.CreateAtomicRMW(aop, 2356 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); 2357 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2358 } 2359 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2360 input = value; 2361 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2362 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2363 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2364 value = CGF.EmitToMemory(value, type); 2365 Builder.CreateBr(opBB); 2366 Builder.SetInsertPoint(opBB); 2367 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2368 atomicPHI->addIncoming(value, startBB); 2369 value = atomicPHI; 2370 } else { 2371 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2372 input = value; 2373 } 2374 2375 // Special case of integer increment that we have to check first: bool++. 2376 // Due to promotion rules, we get: 2377 // bool++ -> bool = bool + 1 2378 // -> bool = (int)bool + 1 2379 // -> bool = ((int)bool + 1 != 0) 2380 // An interesting aspect of this is that increment is always true. 2381 // Decrement does not have this property. 2382 if (isInc && type->isBooleanType()) { 2383 value = Builder.getTrue(); 2384 2385 // Most common case by far: integer increment. 2386 } else if (type->isIntegerType()) { 2387 // Note that signed integer inc/dec with width less than int can't 2388 // overflow because of promotion rules; we're just eliding a few steps here. 2389 if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2390 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2391 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2392 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2393 value = 2394 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 2395 } else { 2396 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2397 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2398 } 2399 2400 // Next most common: pointer increment. 2401 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2402 QualType type = ptr->getPointeeType(); 2403 2404 // VLA types don't have constant size. 2405 if (const VariableArrayType *vla 2406 = CGF.getContext().getAsVariableArrayType(type)) { 2407 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2408 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2409 if (CGF.getLangOpts().isSignedOverflowDefined()) 2410 value = Builder.CreateGEP(value, numElts, "vla.inc"); 2411 else 2412 value = CGF.EmitCheckedInBoundsGEP( 2413 value, numElts, /*SignedIndices=*/false, isSubtraction, 2414 E->getExprLoc(), "vla.inc"); 2415 2416 // Arithmetic on function pointers (!) is just +-1. 2417 } else if (type->isFunctionType()) { 2418 llvm::Value *amt = Builder.getInt32(amount); 2419 2420 value = CGF.EmitCastToVoidPtr(value); 2421 if (CGF.getLangOpts().isSignedOverflowDefined()) 2422 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 2423 else 2424 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2425 isSubtraction, E->getExprLoc(), 2426 "incdec.funcptr"); 2427 value = Builder.CreateBitCast(value, input->getType()); 2428 2429 // For everything else, we can just do a simple increment. 2430 } else { 2431 llvm::Value *amt = Builder.getInt32(amount); 2432 if (CGF.getLangOpts().isSignedOverflowDefined()) 2433 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 2434 else 2435 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2436 isSubtraction, E->getExprLoc(), 2437 "incdec.ptr"); 2438 } 2439 2440 // Vector increment/decrement. 2441 } else if (type->isVectorType()) { 2442 if (type->hasIntegerRepresentation()) { 2443 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2444 2445 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2446 } else { 2447 value = Builder.CreateFAdd( 2448 value, 2449 llvm::ConstantFP::get(value->getType(), amount), 2450 isInc ? "inc" : "dec"); 2451 } 2452 2453 // Floating point. 2454 } else if (type->isRealFloatingType()) { 2455 // Add the inc/dec to the real part. 2456 llvm::Value *amt; 2457 2458 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2459 // Another special case: half FP increment should be done via float 2460 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2461 value = Builder.CreateCall( 2462 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2463 CGF.CGM.FloatTy), 2464 input, "incdec.conv"); 2465 } else { 2466 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2467 } 2468 } 2469 2470 if (value->getType()->isFloatTy()) 2471 amt = llvm::ConstantFP::get(VMContext, 2472 llvm::APFloat(static_cast<float>(amount))); 2473 else if (value->getType()->isDoubleTy()) 2474 amt = llvm::ConstantFP::get(VMContext, 2475 llvm::APFloat(static_cast<double>(amount))); 2476 else { 2477 // Remaining types are Half, LongDouble or __float128. Convert from float. 2478 llvm::APFloat F(static_cast<float>(amount)); 2479 bool ignored; 2480 const llvm::fltSemantics *FS; 2481 // Don't use getFloatTypeSemantics because Half isn't 2482 // necessarily represented using the "half" LLVM type. 2483 if (value->getType()->isFP128Ty()) 2484 FS = &CGF.getTarget().getFloat128Format(); 2485 else if (value->getType()->isHalfTy()) 2486 FS = &CGF.getTarget().getHalfFormat(); 2487 else 2488 FS = &CGF.getTarget().getLongDoubleFormat(); 2489 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2490 amt = llvm::ConstantFP::get(VMContext, F); 2491 } 2492 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2493 2494 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2495 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2496 value = Builder.CreateCall( 2497 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2498 CGF.CGM.FloatTy), 2499 value, "incdec.conv"); 2500 } else { 2501 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2502 } 2503 } 2504 2505 // Objective-C pointer types. 2506 } else { 2507 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2508 value = CGF.EmitCastToVoidPtr(value); 2509 2510 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2511 if (!isInc) size = -size; 2512 llvm::Value *sizeValue = 2513 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2514 2515 if (CGF.getLangOpts().isSignedOverflowDefined()) 2516 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2517 else 2518 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2519 /*SignedIndices=*/false, isSubtraction, 2520 E->getExprLoc(), "incdec.objptr"); 2521 value = Builder.CreateBitCast(value, input->getType()); 2522 } 2523 2524 if (atomicPHI) { 2525 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2526 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2527 auto Pair = CGF.EmitAtomicCompareExchange( 2528 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2529 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2530 llvm::Value *success = Pair.second; 2531 atomicPHI->addIncoming(old, opBB); 2532 Builder.CreateCondBr(success, contBB, opBB); 2533 Builder.SetInsertPoint(contBB); 2534 return isPre ? value : input; 2535 } 2536 2537 // Store the updated result through the lvalue. 2538 if (LV.isBitField()) 2539 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2540 else 2541 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2542 2543 // If this is a postinc, return the value read from memory, otherwise use the 2544 // updated value. 2545 return isPre ? value : input; 2546 } 2547 2548 2549 2550 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2551 TestAndClearIgnoreResultAssign(); 2552 // Emit unary minus with EmitSub so we handle overflow cases etc. 2553 BinOpInfo BinOp; 2554 BinOp.RHS = Visit(E->getSubExpr()); 2555 2556 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 2557 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 2558 else 2559 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2560 BinOp.Ty = E->getType(); 2561 BinOp.Opcode = BO_Sub; 2562 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2563 BinOp.E = E; 2564 return EmitSub(BinOp); 2565 } 2566 2567 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2568 TestAndClearIgnoreResultAssign(); 2569 Value *Op = Visit(E->getSubExpr()); 2570 return Builder.CreateNot(Op, "neg"); 2571 } 2572 2573 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2574 // Perform vector logical not on comparison with zero vector. 2575 if (E->getType()->isExtVectorType()) { 2576 Value *Oper = Visit(E->getSubExpr()); 2577 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2578 Value *Result; 2579 if (Oper->getType()->isFPOrFPVectorTy()) 2580 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2581 else 2582 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2583 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2584 } 2585 2586 // Compare operand to zero. 2587 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2588 2589 // Invert value. 2590 // TODO: Could dynamically modify easy computations here. For example, if 2591 // the operand is an icmp ne, turn into icmp eq. 2592 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2593 2594 // ZExt result to the expr type. 2595 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2596 } 2597 2598 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2599 // Try folding the offsetof to a constant. 2600 llvm::APSInt Value; 2601 if (E->EvaluateAsInt(Value, CGF.getContext())) 2602 return Builder.getInt(Value); 2603 2604 // Loop over the components of the offsetof to compute the value. 2605 unsigned n = E->getNumComponents(); 2606 llvm::Type* ResultType = ConvertType(E->getType()); 2607 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2608 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2609 for (unsigned i = 0; i != n; ++i) { 2610 OffsetOfNode ON = E->getComponent(i); 2611 llvm::Value *Offset = nullptr; 2612 switch (ON.getKind()) { 2613 case OffsetOfNode::Array: { 2614 // Compute the index 2615 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2616 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2617 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2618 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2619 2620 // Save the element type 2621 CurrentType = 2622 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2623 2624 // Compute the element size 2625 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2626 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2627 2628 // Multiply out to compute the result 2629 Offset = Builder.CreateMul(Idx, ElemSize); 2630 break; 2631 } 2632 2633 case OffsetOfNode::Field: { 2634 FieldDecl *MemberDecl = ON.getField(); 2635 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2636 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2637 2638 // Compute the index of the field in its parent. 2639 unsigned i = 0; 2640 // FIXME: It would be nice if we didn't have to loop here! 2641 for (RecordDecl::field_iterator Field = RD->field_begin(), 2642 FieldEnd = RD->field_end(); 2643 Field != FieldEnd; ++Field, ++i) { 2644 if (*Field == MemberDecl) 2645 break; 2646 } 2647 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2648 2649 // Compute the offset to the field 2650 int64_t OffsetInt = RL.getFieldOffset(i) / 2651 CGF.getContext().getCharWidth(); 2652 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2653 2654 // Save the element type. 2655 CurrentType = MemberDecl->getType(); 2656 break; 2657 } 2658 2659 case OffsetOfNode::Identifier: 2660 llvm_unreachable("dependent __builtin_offsetof"); 2661 2662 case OffsetOfNode::Base: { 2663 if (ON.getBase()->isVirtual()) { 2664 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2665 continue; 2666 } 2667 2668 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2669 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2670 2671 // Save the element type. 2672 CurrentType = ON.getBase()->getType(); 2673 2674 // Compute the offset to the base. 2675 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2676 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2677 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2678 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2679 break; 2680 } 2681 } 2682 Result = Builder.CreateAdd(Result, Offset); 2683 } 2684 return Result; 2685 } 2686 2687 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2688 /// argument of the sizeof expression as an integer. 2689 Value * 2690 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2691 const UnaryExprOrTypeTraitExpr *E) { 2692 QualType TypeToSize = E->getTypeOfArgument(); 2693 if (E->getKind() == UETT_SizeOf) { 2694 if (const VariableArrayType *VAT = 2695 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2696 if (E->isArgumentType()) { 2697 // sizeof(type) - make sure to emit the VLA size. 2698 CGF.EmitVariablyModifiedType(TypeToSize); 2699 } else { 2700 // C99 6.5.3.4p2: If the argument is an expression of type 2701 // VLA, it is evaluated. 2702 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2703 } 2704 2705 auto VlaSize = CGF.getVLASize(VAT); 2706 llvm::Value *size = VlaSize.NumElts; 2707 2708 // Scale the number of non-VLA elements by the non-VLA element size. 2709 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2710 if (!eltSize.isOne()) 2711 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2712 2713 return size; 2714 } 2715 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2716 auto Alignment = 2717 CGF.getContext() 2718 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2719 E->getTypeOfArgument()->getPointeeType())) 2720 .getQuantity(); 2721 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2722 } 2723 2724 // If this isn't sizeof(vla), the result must be constant; use the constant 2725 // folding logic so we don't have to duplicate it here. 2726 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2727 } 2728 2729 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2730 Expr *Op = E->getSubExpr(); 2731 if (Op->getType()->isAnyComplexType()) { 2732 // If it's an l-value, load through the appropriate subobject l-value. 2733 // Note that we have to ask E because Op might be an l-value that 2734 // this won't work for, e.g. an Obj-C property. 2735 if (E->isGLValue()) 2736 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2737 E->getExprLoc()).getScalarVal(); 2738 2739 // Otherwise, calculate and project. 2740 return CGF.EmitComplexExpr(Op, false, true).first; 2741 } 2742 2743 return Visit(Op); 2744 } 2745 2746 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2747 Expr *Op = E->getSubExpr(); 2748 if (Op->getType()->isAnyComplexType()) { 2749 // If it's an l-value, load through the appropriate subobject l-value. 2750 // Note that we have to ask E because Op might be an l-value that 2751 // this won't work for, e.g. an Obj-C property. 2752 if (Op->isGLValue()) 2753 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2754 E->getExprLoc()).getScalarVal(); 2755 2756 // Otherwise, calculate and project. 2757 return CGF.EmitComplexExpr(Op, true, false).second; 2758 } 2759 2760 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2761 // effects are evaluated, but not the actual value. 2762 if (Op->isGLValue()) 2763 CGF.EmitLValue(Op); 2764 else 2765 CGF.EmitScalarExpr(Op, true); 2766 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2767 } 2768 2769 //===----------------------------------------------------------------------===// 2770 // Binary Operators 2771 //===----------------------------------------------------------------------===// 2772 2773 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2774 TestAndClearIgnoreResultAssign(); 2775 BinOpInfo Result; 2776 Result.LHS = Visit(E->getLHS()); 2777 Result.RHS = Visit(E->getRHS()); 2778 Result.Ty = E->getType(); 2779 Result.Opcode = E->getOpcode(); 2780 Result.FPFeatures = E->getFPFeatures(); 2781 Result.E = E; 2782 return Result; 2783 } 2784 2785 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2786 const CompoundAssignOperator *E, 2787 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2788 Value *&Result) { 2789 QualType LHSTy = E->getLHS()->getType(); 2790 BinOpInfo OpInfo; 2791 2792 if (E->getComputationResultType()->isAnyComplexType()) 2793 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2794 2795 // Emit the RHS first. __block variables need to have the rhs evaluated 2796 // first, plus this should improve codegen a little. 2797 OpInfo.RHS = Visit(E->getRHS()); 2798 OpInfo.Ty = E->getComputationResultType(); 2799 OpInfo.Opcode = E->getOpcode(); 2800 OpInfo.FPFeatures = E->getFPFeatures(); 2801 OpInfo.E = E; 2802 // Load/convert the LHS. 2803 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2804 2805 llvm::PHINode *atomicPHI = nullptr; 2806 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2807 QualType type = atomicTy->getValueType(); 2808 if (!type->isBooleanType() && type->isIntegerType() && 2809 !(type->isUnsignedIntegerType() && 2810 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2811 CGF.getLangOpts().getSignedOverflowBehavior() != 2812 LangOptions::SOB_Trapping) { 2813 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2814 switch (OpInfo.Opcode) { 2815 // We don't have atomicrmw operands for *, %, /, <<, >> 2816 case BO_MulAssign: case BO_DivAssign: 2817 case BO_RemAssign: 2818 case BO_ShlAssign: 2819 case BO_ShrAssign: 2820 break; 2821 case BO_AddAssign: 2822 aop = llvm::AtomicRMWInst::Add; 2823 break; 2824 case BO_SubAssign: 2825 aop = llvm::AtomicRMWInst::Sub; 2826 break; 2827 case BO_AndAssign: 2828 aop = llvm::AtomicRMWInst::And; 2829 break; 2830 case BO_XorAssign: 2831 aop = llvm::AtomicRMWInst::Xor; 2832 break; 2833 case BO_OrAssign: 2834 aop = llvm::AtomicRMWInst::Or; 2835 break; 2836 default: 2837 llvm_unreachable("Invalid compound assignment type"); 2838 } 2839 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2840 llvm::Value *amt = CGF.EmitToMemory( 2841 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2842 E->getExprLoc()), 2843 LHSTy); 2844 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2845 llvm::AtomicOrdering::SequentiallyConsistent); 2846 return LHSLV; 2847 } 2848 } 2849 // FIXME: For floating point types, we should be saving and restoring the 2850 // floating point environment in the loop. 2851 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2852 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2853 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2854 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2855 Builder.CreateBr(opBB); 2856 Builder.SetInsertPoint(opBB); 2857 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2858 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2859 OpInfo.LHS = atomicPHI; 2860 } 2861 else 2862 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2863 2864 SourceLocation Loc = E->getExprLoc(); 2865 OpInfo.LHS = 2866 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2867 2868 // Expand the binary operator. 2869 Result = (this->*Func)(OpInfo); 2870 2871 // Convert the result back to the LHS type, 2872 // potentially with Implicit Conversion sanitizer check. 2873 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, 2874 Loc, ScalarConversionOpts(CGF.SanOpts)); 2875 2876 if (atomicPHI) { 2877 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2878 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2879 auto Pair = CGF.EmitAtomicCompareExchange( 2880 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2881 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2882 llvm::Value *success = Pair.second; 2883 atomicPHI->addIncoming(old, opBB); 2884 Builder.CreateCondBr(success, contBB, opBB); 2885 Builder.SetInsertPoint(contBB); 2886 return LHSLV; 2887 } 2888 2889 // Store the result value into the LHS lvalue. Bit-fields are handled 2890 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2891 // 'An assignment expression has the value of the left operand after the 2892 // assignment...'. 2893 if (LHSLV.isBitField()) 2894 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2895 else 2896 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2897 2898 return LHSLV; 2899 } 2900 2901 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2902 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2903 bool Ignore = TestAndClearIgnoreResultAssign(); 2904 Value *RHS; 2905 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2906 2907 // If the result is clearly ignored, return now. 2908 if (Ignore) 2909 return nullptr; 2910 2911 // The result of an assignment in C is the assigned r-value. 2912 if (!CGF.getLangOpts().CPlusPlus) 2913 return RHS; 2914 2915 // If the lvalue is non-volatile, return the computed value of the assignment. 2916 if (!LHS.isVolatileQualified()) 2917 return RHS; 2918 2919 // Otherwise, reload the value. 2920 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2921 } 2922 2923 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2924 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2925 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2926 2927 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2928 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2929 SanitizerKind::IntegerDivideByZero)); 2930 } 2931 2932 const auto *BO = cast<BinaryOperator>(Ops.E); 2933 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2934 Ops.Ty->hasSignedIntegerRepresentation() && 2935 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 2936 Ops.mayHaveIntegerOverflow()) { 2937 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2938 2939 llvm::Value *IntMin = 2940 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2941 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2942 2943 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2944 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2945 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2946 Checks.push_back( 2947 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2948 } 2949 2950 if (Checks.size() > 0) 2951 EmitBinOpCheck(Checks, Ops); 2952 } 2953 2954 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2955 { 2956 CodeGenFunction::SanitizerScope SanScope(&CGF); 2957 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2958 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2959 Ops.Ty->isIntegerType() && 2960 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 2961 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2962 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2963 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2964 Ops.Ty->isRealFloatingType() && 2965 Ops.mayHaveFloatDivisionByZero()) { 2966 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2967 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2968 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2969 Ops); 2970 } 2971 } 2972 2973 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2974 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2975 if (CGF.getLangOpts().OpenCL && 2976 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 2977 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 2978 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 2979 // build option allows an application to specify that single precision 2980 // floating-point divide (x/y and 1/x) and sqrt used in the program 2981 // source are correctly rounded. 2982 llvm::Type *ValTy = Val->getType(); 2983 if (ValTy->isFloatTy() || 2984 (isa<llvm::VectorType>(ValTy) && 2985 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2986 CGF.SetFPAccuracy(Val, 2.5); 2987 } 2988 return Val; 2989 } 2990 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2991 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2992 else 2993 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2994 } 2995 2996 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2997 // Rem in C can't be a floating point type: C99 6.5.5p2. 2998 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2999 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3000 Ops.Ty->isIntegerType() && 3001 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3002 CodeGenFunction::SanitizerScope SanScope(&CGF); 3003 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3004 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3005 } 3006 3007 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3008 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3009 else 3010 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3011 } 3012 3013 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3014 unsigned IID; 3015 unsigned OpID = 0; 3016 3017 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3018 switch (Ops.Opcode) { 3019 case BO_Add: 3020 case BO_AddAssign: 3021 OpID = 1; 3022 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3023 llvm::Intrinsic::uadd_with_overflow; 3024 break; 3025 case BO_Sub: 3026 case BO_SubAssign: 3027 OpID = 2; 3028 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3029 llvm::Intrinsic::usub_with_overflow; 3030 break; 3031 case BO_Mul: 3032 case BO_MulAssign: 3033 OpID = 3; 3034 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3035 llvm::Intrinsic::umul_with_overflow; 3036 break; 3037 default: 3038 llvm_unreachable("Unsupported operation for overflow detection"); 3039 } 3040 OpID <<= 1; 3041 if (isSigned) 3042 OpID |= 1; 3043 3044 CodeGenFunction::SanitizerScope SanScope(&CGF); 3045 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3046 3047 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3048 3049 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3050 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3051 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3052 3053 // Handle overflow with llvm.trap if no custom handler has been specified. 3054 const std::string *handlerName = 3055 &CGF.getLangOpts().OverflowHandler; 3056 if (handlerName->empty()) { 3057 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3058 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3059 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3060 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3061 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3062 : SanitizerKind::UnsignedIntegerOverflow; 3063 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3064 } else 3065 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 3066 return result; 3067 } 3068 3069 // Branch in case of overflow. 3070 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3071 llvm::BasicBlock *continueBB = 3072 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3073 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3074 3075 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3076 3077 // If an overflow handler is set, then we want to call it and then use its 3078 // result, if it returns. 3079 Builder.SetInsertPoint(overflowBB); 3080 3081 // Get the overflow handler. 3082 llvm::Type *Int8Ty = CGF.Int8Ty; 3083 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3084 llvm::FunctionType *handlerTy = 3085 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3086 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3087 3088 // Sign extend the args to 64-bit, so that we can use the same handler for 3089 // all types of overflow. 3090 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3091 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3092 3093 // Call the handler with the two arguments, the operation, and the size of 3094 // the result. 3095 llvm::Value *handlerArgs[] = { 3096 lhs, 3097 rhs, 3098 Builder.getInt8(OpID), 3099 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3100 }; 3101 llvm::Value *handlerResult = 3102 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3103 3104 // Truncate the result back to the desired size. 3105 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3106 Builder.CreateBr(continueBB); 3107 3108 Builder.SetInsertPoint(continueBB); 3109 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3110 phi->addIncoming(result, initialBB); 3111 phi->addIncoming(handlerResult, overflowBB); 3112 3113 return phi; 3114 } 3115 3116 /// Emit pointer + index arithmetic. 3117 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3118 const BinOpInfo &op, 3119 bool isSubtraction) { 3120 // Must have binary (not unary) expr here. Unary pointer 3121 // increment/decrement doesn't use this path. 3122 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3123 3124 Value *pointer = op.LHS; 3125 Expr *pointerOperand = expr->getLHS(); 3126 Value *index = op.RHS; 3127 Expr *indexOperand = expr->getRHS(); 3128 3129 // In a subtraction, the LHS is always the pointer. 3130 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3131 std::swap(pointer, index); 3132 std::swap(pointerOperand, indexOperand); 3133 } 3134 3135 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3136 3137 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3138 auto &DL = CGF.CGM.getDataLayout(); 3139 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3140 3141 // Some versions of glibc and gcc use idioms (particularly in their malloc 3142 // routines) that add a pointer-sized integer (known to be a pointer value) 3143 // to a null pointer in order to cast the value back to an integer or as 3144 // part of a pointer alignment algorithm. This is undefined behavior, but 3145 // we'd like to be able to compile programs that use it. 3146 // 3147 // Normally, we'd generate a GEP with a null-pointer base here in response 3148 // to that code, but it's also UB to dereference a pointer created that 3149 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3150 // generate a direct cast of the integer value to a pointer. 3151 // 3152 // The idiom (p = nullptr + N) is not met if any of the following are true: 3153 // 3154 // The operation is subtraction. 3155 // The index is not pointer-sized. 3156 // The pointer type is not byte-sized. 3157 // 3158 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3159 op.Opcode, 3160 expr->getLHS(), 3161 expr->getRHS())) 3162 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3163 3164 if (width != DL.getTypeSizeInBits(PtrTy)) { 3165 // Zero-extend or sign-extend the pointer value according to 3166 // whether the index is signed or not. 3167 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned, 3168 "idx.ext"); 3169 } 3170 3171 // If this is subtraction, negate the index. 3172 if (isSubtraction) 3173 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3174 3175 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3176 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3177 /*Accessed*/ false); 3178 3179 const PointerType *pointerType 3180 = pointerOperand->getType()->getAs<PointerType>(); 3181 if (!pointerType) { 3182 QualType objectType = pointerOperand->getType() 3183 ->castAs<ObjCObjectPointerType>() 3184 ->getPointeeType(); 3185 llvm::Value *objectSize 3186 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3187 3188 index = CGF.Builder.CreateMul(index, objectSize); 3189 3190 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3191 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3192 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3193 } 3194 3195 QualType elementType = pointerType->getPointeeType(); 3196 if (const VariableArrayType *vla 3197 = CGF.getContext().getAsVariableArrayType(elementType)) { 3198 // The element count here is the total number of non-VLA elements. 3199 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3200 3201 // Effectively, the multiply by the VLA size is part of the GEP. 3202 // GEP indexes are signed, and scaling an index isn't permitted to 3203 // signed-overflow, so we use the same semantics for our explicit 3204 // multiply. We suppress this if overflow is not undefined behavior. 3205 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3206 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3207 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3208 } else { 3209 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3210 pointer = 3211 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3212 op.E->getExprLoc(), "add.ptr"); 3213 } 3214 return pointer; 3215 } 3216 3217 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3218 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3219 // future proof. 3220 if (elementType->isVoidType() || elementType->isFunctionType()) { 3221 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3222 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3223 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3224 } 3225 3226 if (CGF.getLangOpts().isSignedOverflowDefined()) 3227 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3228 3229 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3230 op.E->getExprLoc(), "add.ptr"); 3231 } 3232 3233 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3234 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3235 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3236 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3237 // efficient operations. 3238 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 3239 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3240 bool negMul, bool negAdd) { 3241 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3242 3243 Value *MulOp0 = MulOp->getOperand(0); 3244 Value *MulOp1 = MulOp->getOperand(1); 3245 if (negMul) { 3246 MulOp0 = 3247 Builder.CreateFSub( 3248 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 3249 "neg"); 3250 } else if (negAdd) { 3251 Addend = 3252 Builder.CreateFSub( 3253 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 3254 "neg"); 3255 } 3256 3257 Value *FMulAdd = Builder.CreateCall( 3258 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3259 {MulOp0, MulOp1, Addend}); 3260 MulOp->eraseFromParent(); 3261 3262 return FMulAdd; 3263 } 3264 3265 // Check whether it would be legal to emit an fmuladd intrinsic call to 3266 // represent op and if so, build the fmuladd. 3267 // 3268 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3269 // Does NOT check the type of the operation - it's assumed that this function 3270 // will be called from contexts where it's known that the type is contractable. 3271 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3272 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3273 bool isSub=false) { 3274 3275 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3276 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3277 "Only fadd/fsub can be the root of an fmuladd."); 3278 3279 // Check whether this op is marked as fusable. 3280 if (!op.FPFeatures.allowFPContractWithinStatement()) 3281 return nullptr; 3282 3283 // We have a potentially fusable op. Look for a mul on one of the operands. 3284 // Also, make sure that the mul result isn't used directly. In that case, 3285 // there's no point creating a muladd operation. 3286 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3287 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3288 LHSBinOp->use_empty()) 3289 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3290 } 3291 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3292 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3293 RHSBinOp->use_empty()) 3294 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3295 } 3296 3297 return nullptr; 3298 } 3299 3300 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3301 if (op.LHS->getType()->isPointerTy() || 3302 op.RHS->getType()->isPointerTy()) 3303 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3304 3305 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3306 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3307 case LangOptions::SOB_Defined: 3308 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3309 case LangOptions::SOB_Undefined: 3310 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3311 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3312 LLVM_FALLTHROUGH; 3313 case LangOptions::SOB_Trapping: 3314 if (CanElideOverflowCheck(CGF.getContext(), op)) 3315 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3316 return EmitOverflowCheckedBinOp(op); 3317 } 3318 } 3319 3320 if (op.Ty->isUnsignedIntegerType() && 3321 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3322 !CanElideOverflowCheck(CGF.getContext(), op)) 3323 return EmitOverflowCheckedBinOp(op); 3324 3325 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3326 // Try to form an fmuladd. 3327 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3328 return FMulAdd; 3329 3330 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3331 return propagateFMFlags(V, op); 3332 } 3333 3334 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3335 } 3336 3337 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3338 // The LHS is always a pointer if either side is. 3339 if (!op.LHS->getType()->isPointerTy()) { 3340 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3341 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3342 case LangOptions::SOB_Defined: 3343 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3344 case LangOptions::SOB_Undefined: 3345 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3346 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3347 LLVM_FALLTHROUGH; 3348 case LangOptions::SOB_Trapping: 3349 if (CanElideOverflowCheck(CGF.getContext(), op)) 3350 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3351 return EmitOverflowCheckedBinOp(op); 3352 } 3353 } 3354 3355 if (op.Ty->isUnsignedIntegerType() && 3356 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3357 !CanElideOverflowCheck(CGF.getContext(), op)) 3358 return EmitOverflowCheckedBinOp(op); 3359 3360 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3361 // Try to form an fmuladd. 3362 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3363 return FMulAdd; 3364 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3365 return propagateFMFlags(V, op); 3366 } 3367 3368 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3369 } 3370 3371 // If the RHS is not a pointer, then we have normal pointer 3372 // arithmetic. 3373 if (!op.RHS->getType()->isPointerTy()) 3374 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3375 3376 // Otherwise, this is a pointer subtraction. 3377 3378 // Do the raw subtraction part. 3379 llvm::Value *LHS 3380 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3381 llvm::Value *RHS 3382 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3383 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3384 3385 // Okay, figure out the element size. 3386 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3387 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3388 3389 llvm::Value *divisor = nullptr; 3390 3391 // For a variable-length array, this is going to be non-constant. 3392 if (const VariableArrayType *vla 3393 = CGF.getContext().getAsVariableArrayType(elementType)) { 3394 auto VlaSize = CGF.getVLASize(vla); 3395 elementType = VlaSize.Type; 3396 divisor = VlaSize.NumElts; 3397 3398 // Scale the number of non-VLA elements by the non-VLA element size. 3399 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3400 if (!eltSize.isOne()) 3401 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3402 3403 // For everything elese, we can just compute it, safe in the 3404 // assumption that Sema won't let anything through that we can't 3405 // safely compute the size of. 3406 } else { 3407 CharUnits elementSize; 3408 // Handle GCC extension for pointer arithmetic on void* and 3409 // function pointer types. 3410 if (elementType->isVoidType() || elementType->isFunctionType()) 3411 elementSize = CharUnits::One(); 3412 else 3413 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3414 3415 // Don't even emit the divide for element size of 1. 3416 if (elementSize.isOne()) 3417 return diffInChars; 3418 3419 divisor = CGF.CGM.getSize(elementSize); 3420 } 3421 3422 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3423 // pointer difference in C is only defined in the case where both operands 3424 // are pointing to elements of an array. 3425 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3426 } 3427 3428 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3429 llvm::IntegerType *Ty; 3430 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3431 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3432 else 3433 Ty = cast<llvm::IntegerType>(LHS->getType()); 3434 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3435 } 3436 3437 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3438 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3439 // RHS to the same size as the LHS. 3440 Value *RHS = Ops.RHS; 3441 if (Ops.LHS->getType() != RHS->getType()) 3442 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3443 3444 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3445 Ops.Ty->hasSignedIntegerRepresentation() && 3446 !CGF.getLangOpts().isSignedOverflowDefined(); 3447 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3448 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3449 if (CGF.getLangOpts().OpenCL) 3450 RHS = 3451 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 3452 else if ((SanitizeBase || SanitizeExponent) && 3453 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3454 CodeGenFunction::SanitizerScope SanScope(&CGF); 3455 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3456 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3457 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3458 3459 if (SanitizeExponent) { 3460 Checks.push_back( 3461 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3462 } 3463 3464 if (SanitizeBase) { 3465 // Check whether we are shifting any non-zero bits off the top of the 3466 // integer. We only emit this check if exponent is valid - otherwise 3467 // instructions below will have undefined behavior themselves. 3468 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3469 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3470 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3471 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3472 llvm::Value *PromotedWidthMinusOne = 3473 (RHS == Ops.RHS) ? WidthMinusOne 3474 : GetWidthMinusOneValue(Ops.LHS, RHS); 3475 CGF.EmitBlock(CheckShiftBase); 3476 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3477 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3478 /*NUW*/ true, /*NSW*/ true), 3479 "shl.check"); 3480 if (CGF.getLangOpts().CPlusPlus) { 3481 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3482 // Under C++11's rules, shifting a 1 bit into the sign bit is 3483 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3484 // define signed left shifts, so we use the C99 and C++11 rules there). 3485 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3486 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3487 } 3488 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3489 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3490 CGF.EmitBlock(Cont); 3491 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3492 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3493 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3494 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 3495 } 3496 3497 assert(!Checks.empty()); 3498 EmitBinOpCheck(Checks, Ops); 3499 } 3500 3501 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3502 } 3503 3504 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3505 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3506 // RHS to the same size as the LHS. 3507 Value *RHS = Ops.RHS; 3508 if (Ops.LHS->getType() != RHS->getType()) 3509 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3510 3511 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3512 if (CGF.getLangOpts().OpenCL) 3513 RHS = 3514 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 3515 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3516 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3517 CodeGenFunction::SanitizerScope SanScope(&CGF); 3518 llvm::Value *Valid = 3519 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3520 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3521 } 3522 3523 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3524 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3525 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3526 } 3527 3528 enum IntrinsicType { VCMPEQ, VCMPGT }; 3529 // return corresponding comparison intrinsic for given vector type 3530 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3531 BuiltinType::Kind ElemKind) { 3532 switch (ElemKind) { 3533 default: llvm_unreachable("unexpected element type"); 3534 case BuiltinType::Char_U: 3535 case BuiltinType::UChar: 3536 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3537 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3538 case BuiltinType::Char_S: 3539 case BuiltinType::SChar: 3540 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3541 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3542 case BuiltinType::UShort: 3543 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3544 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3545 case BuiltinType::Short: 3546 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3547 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3548 case BuiltinType::UInt: 3549 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3550 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3551 case BuiltinType::Int: 3552 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3553 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3554 case BuiltinType::ULong: 3555 case BuiltinType::ULongLong: 3556 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3557 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 3558 case BuiltinType::Long: 3559 case BuiltinType::LongLong: 3560 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3561 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 3562 case BuiltinType::Float: 3563 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3564 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3565 case BuiltinType::Double: 3566 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 3567 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 3568 } 3569 } 3570 3571 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3572 llvm::CmpInst::Predicate UICmpOpc, 3573 llvm::CmpInst::Predicate SICmpOpc, 3574 llvm::CmpInst::Predicate FCmpOpc) { 3575 TestAndClearIgnoreResultAssign(); 3576 Value *Result; 3577 QualType LHSTy = E->getLHS()->getType(); 3578 QualType RHSTy = E->getRHS()->getType(); 3579 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3580 assert(E->getOpcode() == BO_EQ || 3581 E->getOpcode() == BO_NE); 3582 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3583 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3584 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3585 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3586 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3587 Value *LHS = Visit(E->getLHS()); 3588 Value *RHS = Visit(E->getRHS()); 3589 3590 // If AltiVec, the comparison results in a numeric type, so we use 3591 // intrinsics comparing vectors and giving 0 or 1 as a result 3592 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3593 // constants for mapping CR6 register bits to predicate result 3594 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3595 3596 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3597 3598 // in several cases vector arguments order will be reversed 3599 Value *FirstVecArg = LHS, 3600 *SecondVecArg = RHS; 3601 3602 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 3603 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 3604 BuiltinType::Kind ElementKind = BTy->getKind(); 3605 3606 switch(E->getOpcode()) { 3607 default: llvm_unreachable("is not a comparison operation"); 3608 case BO_EQ: 3609 CR6 = CR6_LT; 3610 ID = GetIntrinsic(VCMPEQ, ElementKind); 3611 break; 3612 case BO_NE: 3613 CR6 = CR6_EQ; 3614 ID = GetIntrinsic(VCMPEQ, ElementKind); 3615 break; 3616 case BO_LT: 3617 CR6 = CR6_LT; 3618 ID = GetIntrinsic(VCMPGT, ElementKind); 3619 std::swap(FirstVecArg, SecondVecArg); 3620 break; 3621 case BO_GT: 3622 CR6 = CR6_LT; 3623 ID = GetIntrinsic(VCMPGT, ElementKind); 3624 break; 3625 case BO_LE: 3626 if (ElementKind == BuiltinType::Float) { 3627 CR6 = CR6_LT; 3628 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3629 std::swap(FirstVecArg, SecondVecArg); 3630 } 3631 else { 3632 CR6 = CR6_EQ; 3633 ID = GetIntrinsic(VCMPGT, ElementKind); 3634 } 3635 break; 3636 case BO_GE: 3637 if (ElementKind == BuiltinType::Float) { 3638 CR6 = CR6_LT; 3639 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3640 } 3641 else { 3642 CR6 = CR6_EQ; 3643 ID = GetIntrinsic(VCMPGT, ElementKind); 3644 std::swap(FirstVecArg, SecondVecArg); 3645 } 3646 break; 3647 } 3648 3649 Value *CR6Param = Builder.getInt32(CR6); 3650 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 3651 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 3652 3653 // The result type of intrinsic may not be same as E->getType(). 3654 // If E->getType() is not BoolTy, EmitScalarConversion will do the 3655 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 3656 // do nothing, if ResultTy is not i1 at the same time, it will cause 3657 // crash later. 3658 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 3659 if (ResultTy->getBitWidth() > 1 && 3660 E->getType() == CGF.getContext().BoolTy) 3661 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 3662 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3663 E->getExprLoc()); 3664 } 3665 3666 if (LHS->getType()->isFPOrFPVectorTy()) { 3667 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 3668 } else if (LHSTy->hasSignedIntegerRepresentation()) { 3669 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 3670 } else { 3671 // Unsigned integers and pointers. 3672 3673 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 3674 !isa<llvm::ConstantPointerNull>(LHS) && 3675 !isa<llvm::ConstantPointerNull>(RHS)) { 3676 3677 // Dynamic information is required to be stripped for comparisons, 3678 // because it could leak the dynamic information. Based on comparisons 3679 // of pointers to dynamic objects, the optimizer can replace one pointer 3680 // with another, which might be incorrect in presence of invariant 3681 // groups. Comparison with null is safe because null does not carry any 3682 // dynamic information. 3683 if (LHSTy.mayBeDynamicClass()) 3684 LHS = Builder.CreateStripInvariantGroup(LHS); 3685 if (RHSTy.mayBeDynamicClass()) 3686 RHS = Builder.CreateStripInvariantGroup(RHS); 3687 } 3688 3689 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 3690 } 3691 3692 // If this is a vector comparison, sign extend the result to the appropriate 3693 // vector integer type and return it (don't convert to bool). 3694 if (LHSTy->isVectorType()) 3695 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 3696 3697 } else { 3698 // Complex Comparison: can only be an equality comparison. 3699 CodeGenFunction::ComplexPairTy LHS, RHS; 3700 QualType CETy; 3701 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 3702 LHS = CGF.EmitComplexExpr(E->getLHS()); 3703 CETy = CTy->getElementType(); 3704 } else { 3705 LHS.first = Visit(E->getLHS()); 3706 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 3707 CETy = LHSTy; 3708 } 3709 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 3710 RHS = CGF.EmitComplexExpr(E->getRHS()); 3711 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 3712 CTy->getElementType()) && 3713 "The element types must always match."); 3714 (void)CTy; 3715 } else { 3716 RHS.first = Visit(E->getRHS()); 3717 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 3718 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 3719 "The element types must always match."); 3720 } 3721 3722 Value *ResultR, *ResultI; 3723 if (CETy->isRealFloatingType()) { 3724 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 3725 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 3726 } else { 3727 // Complex comparisons can only be equality comparisons. As such, signed 3728 // and unsigned opcodes are the same. 3729 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 3730 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 3731 } 3732 3733 if (E->getOpcode() == BO_EQ) { 3734 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 3735 } else { 3736 assert(E->getOpcode() == BO_NE && 3737 "Complex comparison other than == or != ?"); 3738 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 3739 } 3740 } 3741 3742 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3743 E->getExprLoc()); 3744 } 3745 3746 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 3747 bool Ignore = TestAndClearIgnoreResultAssign(); 3748 3749 Value *RHS; 3750 LValue LHS; 3751 3752 switch (E->getLHS()->getType().getObjCLifetime()) { 3753 case Qualifiers::OCL_Strong: 3754 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 3755 break; 3756 3757 case Qualifiers::OCL_Autoreleasing: 3758 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3759 break; 3760 3761 case Qualifiers::OCL_ExplicitNone: 3762 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 3763 break; 3764 3765 case Qualifiers::OCL_Weak: 3766 RHS = Visit(E->getRHS()); 3767 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3768 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3769 break; 3770 3771 case Qualifiers::OCL_None: 3772 // __block variables need to have the rhs evaluated first, plus 3773 // this should improve codegen just a little. 3774 RHS = Visit(E->getRHS()); 3775 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3776 3777 // Store the value into the LHS. Bit-fields are handled specially 3778 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3779 // 'An assignment expression has the value of the left operand after 3780 // the assignment...'. 3781 if (LHS.isBitField()) { 3782 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3783 } else { 3784 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 3785 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3786 } 3787 } 3788 3789 // If the result is clearly ignored, return now. 3790 if (Ignore) 3791 return nullptr; 3792 3793 // The result of an assignment in C is the assigned r-value. 3794 if (!CGF.getLangOpts().CPlusPlus) 3795 return RHS; 3796 3797 // If the lvalue is non-volatile, return the computed value of the assignment. 3798 if (!LHS.isVolatileQualified()) 3799 return RHS; 3800 3801 // Otherwise, reload the value. 3802 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3803 } 3804 3805 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3806 // Perform vector logical and on comparisons with zero vectors. 3807 if (E->getType()->isVectorType()) { 3808 CGF.incrementProfileCounter(E); 3809 3810 Value *LHS = Visit(E->getLHS()); 3811 Value *RHS = Visit(E->getRHS()); 3812 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3813 if (LHS->getType()->isFPOrFPVectorTy()) { 3814 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3815 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3816 } else { 3817 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3818 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3819 } 3820 Value *And = Builder.CreateAnd(LHS, RHS); 3821 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3822 } 3823 3824 llvm::Type *ResTy = ConvertType(E->getType()); 3825 3826 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3827 // If we have 1 && X, just emit X without inserting the control flow. 3828 bool LHSCondVal; 3829 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3830 if (LHSCondVal) { // If we have 1 && X, just emit X. 3831 CGF.incrementProfileCounter(E); 3832 3833 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3834 // ZExt result to int or bool. 3835 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3836 } 3837 3838 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3839 if (!CGF.ContainsLabel(E->getRHS())) 3840 return llvm::Constant::getNullValue(ResTy); 3841 } 3842 3843 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3844 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3845 3846 CodeGenFunction::ConditionalEvaluation eval(CGF); 3847 3848 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3849 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 3850 CGF.getProfileCount(E->getRHS())); 3851 3852 // Any edges into the ContBlock are now from an (indeterminate number of) 3853 // edges from this first condition. All of these values will be false. Start 3854 // setting up the PHI node in the Cont Block for this. 3855 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3856 "", ContBlock); 3857 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3858 PI != PE; ++PI) 3859 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3860 3861 eval.begin(CGF); 3862 CGF.EmitBlock(RHSBlock); 3863 CGF.incrementProfileCounter(E); 3864 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3865 eval.end(CGF); 3866 3867 // Reaquire the RHS block, as there may be subblocks inserted. 3868 RHSBlock = Builder.GetInsertBlock(); 3869 3870 // Emit an unconditional branch from this block to ContBlock. 3871 { 3872 // There is no need to emit line number for unconditional branch. 3873 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3874 CGF.EmitBlock(ContBlock); 3875 } 3876 // Insert an entry into the phi node for the edge with the value of RHSCond. 3877 PN->addIncoming(RHSCond, RHSBlock); 3878 3879 // Artificial location to preserve the scope information 3880 { 3881 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 3882 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 3883 } 3884 3885 // ZExt result to int. 3886 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3887 } 3888 3889 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3890 // Perform vector logical or on comparisons with zero vectors. 3891 if (E->getType()->isVectorType()) { 3892 CGF.incrementProfileCounter(E); 3893 3894 Value *LHS = Visit(E->getLHS()); 3895 Value *RHS = Visit(E->getRHS()); 3896 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3897 if (LHS->getType()->isFPOrFPVectorTy()) { 3898 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3899 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3900 } else { 3901 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3902 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3903 } 3904 Value *Or = Builder.CreateOr(LHS, RHS); 3905 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3906 } 3907 3908 llvm::Type *ResTy = ConvertType(E->getType()); 3909 3910 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3911 // If we have 0 || X, just emit X without inserting the control flow. 3912 bool LHSCondVal; 3913 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3914 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3915 CGF.incrementProfileCounter(E); 3916 3917 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3918 // ZExt result to int or bool. 3919 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3920 } 3921 3922 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3923 if (!CGF.ContainsLabel(E->getRHS())) 3924 return llvm::ConstantInt::get(ResTy, 1); 3925 } 3926 3927 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3928 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3929 3930 CodeGenFunction::ConditionalEvaluation eval(CGF); 3931 3932 // Branch on the LHS first. If it is true, go to the success (cont) block. 3933 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3934 CGF.getCurrentProfileCount() - 3935 CGF.getProfileCount(E->getRHS())); 3936 3937 // Any edges into the ContBlock are now from an (indeterminate number of) 3938 // edges from this first condition. All of these values will be true. Start 3939 // setting up the PHI node in the Cont Block for this. 3940 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3941 "", ContBlock); 3942 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3943 PI != PE; ++PI) 3944 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3945 3946 eval.begin(CGF); 3947 3948 // Emit the RHS condition as a bool value. 3949 CGF.EmitBlock(RHSBlock); 3950 CGF.incrementProfileCounter(E); 3951 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3952 3953 eval.end(CGF); 3954 3955 // Reaquire the RHS block, as there may be subblocks inserted. 3956 RHSBlock = Builder.GetInsertBlock(); 3957 3958 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3959 // into the phi node for the edge with the value of RHSCond. 3960 CGF.EmitBlock(ContBlock); 3961 PN->addIncoming(RHSCond, RHSBlock); 3962 3963 // ZExt result to int. 3964 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3965 } 3966 3967 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3968 CGF.EmitIgnoredExpr(E->getLHS()); 3969 CGF.EnsureInsertPoint(); 3970 return Visit(E->getRHS()); 3971 } 3972 3973 //===----------------------------------------------------------------------===// 3974 // Other Operators 3975 //===----------------------------------------------------------------------===// 3976 3977 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3978 /// expression is cheap enough and side-effect-free enough to evaluate 3979 /// unconditionally instead of conditionally. This is used to convert control 3980 /// flow into selects in some cases. 3981 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3982 CodeGenFunction &CGF) { 3983 // Anything that is an integer or floating point constant is fine. 3984 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3985 3986 // Even non-volatile automatic variables can't be evaluated unconditionally. 3987 // Referencing a thread_local may cause non-trivial initialization work to 3988 // occur. If we're inside a lambda and one of the variables is from the scope 3989 // outside the lambda, that function may have returned already. Reading its 3990 // locals is a bad idea. Also, these reads may introduce races there didn't 3991 // exist in the source-level program. 3992 } 3993 3994 3995 Value *ScalarExprEmitter:: 3996 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3997 TestAndClearIgnoreResultAssign(); 3998 3999 // Bind the common expression if necessary. 4000 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4001 4002 Expr *condExpr = E->getCond(); 4003 Expr *lhsExpr = E->getTrueExpr(); 4004 Expr *rhsExpr = E->getFalseExpr(); 4005 4006 // If the condition constant folds and can be elided, try to avoid emitting 4007 // the condition and the dead arm. 4008 bool CondExprBool; 4009 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4010 Expr *live = lhsExpr, *dead = rhsExpr; 4011 if (!CondExprBool) std::swap(live, dead); 4012 4013 // If the dead side doesn't have labels we need, just emit the Live part. 4014 if (!CGF.ContainsLabel(dead)) { 4015 if (CondExprBool) 4016 CGF.incrementProfileCounter(E); 4017 Value *Result = Visit(live); 4018 4019 // If the live part is a throw expression, it acts like it has a void 4020 // type, so evaluating it returns a null Value*. However, a conditional 4021 // with non-void type must return a non-null Value*. 4022 if (!Result && !E->getType()->isVoidType()) 4023 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4024 4025 return Result; 4026 } 4027 } 4028 4029 // OpenCL: If the condition is a vector, we can treat this condition like 4030 // the select function. 4031 if (CGF.getLangOpts().OpenCL 4032 && condExpr->getType()->isVectorType()) { 4033 CGF.incrementProfileCounter(E); 4034 4035 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4036 llvm::Value *LHS = Visit(lhsExpr); 4037 llvm::Value *RHS = Visit(rhsExpr); 4038 4039 llvm::Type *condType = ConvertType(condExpr->getType()); 4040 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 4041 4042 unsigned numElem = vecTy->getNumElements(); 4043 llvm::Type *elemType = vecTy->getElementType(); 4044 4045 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4046 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4047 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 4048 llvm::VectorType::get(elemType, 4049 numElem), 4050 "sext"); 4051 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4052 4053 // Cast float to int to perform ANDs if necessary. 4054 llvm::Value *RHSTmp = RHS; 4055 llvm::Value *LHSTmp = LHS; 4056 bool wasCast = false; 4057 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4058 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4059 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4060 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4061 wasCast = true; 4062 } 4063 4064 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4065 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4066 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4067 if (wasCast) 4068 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4069 4070 return tmp5; 4071 } 4072 4073 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4074 // select instead of as control flow. We can only do this if it is cheap and 4075 // safe to evaluate the LHS and RHS unconditionally. 4076 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4077 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4078 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4079 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4080 4081 CGF.incrementProfileCounter(E, StepV); 4082 4083 llvm::Value *LHS = Visit(lhsExpr); 4084 llvm::Value *RHS = Visit(rhsExpr); 4085 if (!LHS) { 4086 // If the conditional has void type, make sure we return a null Value*. 4087 assert(!RHS && "LHS and RHS types must match"); 4088 return nullptr; 4089 } 4090 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4091 } 4092 4093 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4094 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4095 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4096 4097 CodeGenFunction::ConditionalEvaluation eval(CGF); 4098 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4099 CGF.getProfileCount(lhsExpr)); 4100 4101 CGF.EmitBlock(LHSBlock); 4102 CGF.incrementProfileCounter(E); 4103 eval.begin(CGF); 4104 Value *LHS = Visit(lhsExpr); 4105 eval.end(CGF); 4106 4107 LHSBlock = Builder.GetInsertBlock(); 4108 Builder.CreateBr(ContBlock); 4109 4110 CGF.EmitBlock(RHSBlock); 4111 eval.begin(CGF); 4112 Value *RHS = Visit(rhsExpr); 4113 eval.end(CGF); 4114 4115 RHSBlock = Builder.GetInsertBlock(); 4116 CGF.EmitBlock(ContBlock); 4117 4118 // If the LHS or RHS is a throw expression, it will be legitimately null. 4119 if (!LHS) 4120 return RHS; 4121 if (!RHS) 4122 return LHS; 4123 4124 // Create a PHI node for the real part. 4125 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4126 PN->addIncoming(LHS, LHSBlock); 4127 PN->addIncoming(RHS, RHSBlock); 4128 return PN; 4129 } 4130 4131 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4132 return Visit(E->getChosenSubExpr()); 4133 } 4134 4135 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4136 QualType Ty = VE->getType(); 4137 4138 if (Ty->isVariablyModifiedType()) 4139 CGF.EmitVariablyModifiedType(Ty); 4140 4141 Address ArgValue = Address::invalid(); 4142 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4143 4144 llvm::Type *ArgTy = ConvertType(VE->getType()); 4145 4146 // If EmitVAArg fails, emit an error. 4147 if (!ArgPtr.isValid()) { 4148 CGF.ErrorUnsupported(VE, "va_arg expression"); 4149 return llvm::UndefValue::get(ArgTy); 4150 } 4151 4152 // FIXME Volatility. 4153 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4154 4155 // If EmitVAArg promoted the type, we must truncate it. 4156 if (ArgTy != Val->getType()) { 4157 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4158 Val = Builder.CreateIntToPtr(Val, ArgTy); 4159 else 4160 Val = Builder.CreateTrunc(Val, ArgTy); 4161 } 4162 4163 return Val; 4164 } 4165 4166 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4167 return CGF.EmitBlockLiteral(block); 4168 } 4169 4170 // Convert a vec3 to vec4, or vice versa. 4171 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4172 Value *Src, unsigned NumElementsDst) { 4173 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 4174 SmallVector<llvm::Constant*, 4> Args; 4175 Args.push_back(Builder.getInt32(0)); 4176 Args.push_back(Builder.getInt32(1)); 4177 Args.push_back(Builder.getInt32(2)); 4178 if (NumElementsDst == 4) 4179 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 4180 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 4181 return Builder.CreateShuffleVector(Src, UnV, Mask); 4182 } 4183 4184 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4185 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4186 // but could be scalar or vectors of different lengths, and either can be 4187 // pointer. 4188 // There are 4 cases: 4189 // 1. non-pointer -> non-pointer : needs 1 bitcast 4190 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4191 // 3. pointer -> non-pointer 4192 // a) pointer -> intptr_t : needs 1 ptrtoint 4193 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4194 // 4. non-pointer -> pointer 4195 // a) intptr_t -> pointer : needs 1 inttoptr 4196 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4197 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4198 // allow casting directly between pointer types and non-integer non-pointer 4199 // types. 4200 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4201 const llvm::DataLayout &DL, 4202 Value *Src, llvm::Type *DstTy, 4203 StringRef Name = "") { 4204 auto SrcTy = Src->getType(); 4205 4206 // Case 1. 4207 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4208 return Builder.CreateBitCast(Src, DstTy, Name); 4209 4210 // Case 2. 4211 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4212 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4213 4214 // Case 3. 4215 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4216 // Case 3b. 4217 if (!DstTy->isIntegerTy()) 4218 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4219 // Cases 3a and 3b. 4220 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4221 } 4222 4223 // Case 4b. 4224 if (!SrcTy->isIntegerTy()) 4225 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4226 // Cases 4a and 4b. 4227 return Builder.CreateIntToPtr(Src, DstTy, Name); 4228 } 4229 4230 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4231 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4232 llvm::Type *DstTy = ConvertType(E->getType()); 4233 4234 llvm::Type *SrcTy = Src->getType(); 4235 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 4236 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 4237 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 4238 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 4239 4240 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4241 // vector to get a vec4, then a bitcast if the target type is different. 4242 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4243 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4244 4245 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4246 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4247 DstTy); 4248 } 4249 4250 Src->setName("astype"); 4251 return Src; 4252 } 4253 4254 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4255 // to vec4 if the original type is not vec4, then a shuffle vector to 4256 // get a vec3. 4257 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4258 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4259 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 4260 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4261 Vec4Ty); 4262 } 4263 4264 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4265 Src->setName("astype"); 4266 return Src; 4267 } 4268 4269 return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4270 Src, DstTy, "astype"); 4271 } 4272 4273 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4274 return CGF.EmitAtomicExpr(E).getScalarVal(); 4275 } 4276 4277 //===----------------------------------------------------------------------===// 4278 // Entry Point into this File 4279 //===----------------------------------------------------------------------===// 4280 4281 /// Emit the computation of the specified expression of scalar type, ignoring 4282 /// the result. 4283 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4284 assert(E && hasScalarEvaluationKind(E->getType()) && 4285 "Invalid scalar expression to emit"); 4286 4287 return ScalarExprEmitter(*this, IgnoreResultAssign) 4288 .Visit(const_cast<Expr *>(E)); 4289 } 4290 4291 /// Emit a conversion from the specified type to the specified destination type, 4292 /// both of which are LLVM scalar types. 4293 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4294 QualType DstTy, 4295 SourceLocation Loc) { 4296 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4297 "Invalid scalar expression to emit"); 4298 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4299 } 4300 4301 /// Emit a conversion from the specified complex type to the specified 4302 /// destination type, where the destination type is an LLVM scalar type. 4303 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4304 QualType SrcTy, 4305 QualType DstTy, 4306 SourceLocation Loc) { 4307 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4308 "Invalid complex -> scalar conversion"); 4309 return ScalarExprEmitter(*this) 4310 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4311 } 4312 4313 4314 llvm::Value *CodeGenFunction:: 4315 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4316 bool isInc, bool isPre) { 4317 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4318 } 4319 4320 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4321 // object->isa or (*object).isa 4322 // Generate code as for: *(Class*)object 4323 4324 Expr *BaseExpr = E->getBase(); 4325 Address Addr = Address::invalid(); 4326 if (BaseExpr->isRValue()) { 4327 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4328 } else { 4329 Addr = EmitLValue(BaseExpr).getAddress(); 4330 } 4331 4332 // Cast the address to Class*. 4333 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4334 return MakeAddrLValue(Addr, E->getType()); 4335 } 4336 4337 4338 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4339 const CompoundAssignOperator *E) { 4340 ScalarExprEmitter Scalar(*this); 4341 Value *Result = nullptr; 4342 switch (E->getOpcode()) { 4343 #define COMPOUND_OP(Op) \ 4344 case BO_##Op##Assign: \ 4345 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4346 Result) 4347 COMPOUND_OP(Mul); 4348 COMPOUND_OP(Div); 4349 COMPOUND_OP(Rem); 4350 COMPOUND_OP(Add); 4351 COMPOUND_OP(Sub); 4352 COMPOUND_OP(Shl); 4353 COMPOUND_OP(Shr); 4354 COMPOUND_OP(And); 4355 COMPOUND_OP(Xor); 4356 COMPOUND_OP(Or); 4357 #undef COMPOUND_OP 4358 4359 case BO_PtrMemD: 4360 case BO_PtrMemI: 4361 case BO_Mul: 4362 case BO_Div: 4363 case BO_Rem: 4364 case BO_Add: 4365 case BO_Sub: 4366 case BO_Shl: 4367 case BO_Shr: 4368 case BO_LT: 4369 case BO_GT: 4370 case BO_LE: 4371 case BO_GE: 4372 case BO_EQ: 4373 case BO_NE: 4374 case BO_Cmp: 4375 case BO_And: 4376 case BO_Xor: 4377 case BO_Or: 4378 case BO_LAnd: 4379 case BO_LOr: 4380 case BO_Assign: 4381 case BO_Comma: 4382 llvm_unreachable("Not valid compound assignment operators"); 4383 } 4384 4385 llvm_unreachable("Unhandled compound assignment operator"); 4386 } 4387 4388 Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, 4389 ArrayRef<Value *> IdxList, 4390 bool SignedIndices, 4391 bool IsSubtraction, 4392 SourceLocation Loc, 4393 const Twine &Name) { 4394 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 4395 4396 // If the pointer overflow sanitizer isn't enabled, do nothing. 4397 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 4398 return GEPVal; 4399 4400 // If the GEP has already been reduced to a constant, leave it be. 4401 if (isa<llvm::Constant>(GEPVal)) 4402 return GEPVal; 4403 4404 // Only check for overflows in the default address space. 4405 if (GEPVal->getType()->getPointerAddressSpace()) 4406 return GEPVal; 4407 4408 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4409 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4410 4411 SanitizerScope SanScope(this); 4412 auto &VMContext = getLLVMContext(); 4413 const auto &DL = CGM.getDataLayout(); 4414 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4415 4416 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4417 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4418 auto *SAddIntrinsic = 4419 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4420 auto *SMulIntrinsic = 4421 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4422 4423 // The total (signed) byte offset for the GEP. 4424 llvm::Value *TotalOffset = nullptr; 4425 // The offset overflow flag - true if the total offset overflows. 4426 llvm::Value *OffsetOverflows = Builder.getFalse(); 4427 4428 /// Return the result of the given binary operation. 4429 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 4430 llvm::Value *RHS) -> llvm::Value * { 4431 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 4432 4433 // If the operands are constants, return a constant result. 4434 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 4435 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 4436 llvm::APInt N; 4437 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 4438 /*Signed=*/true, N); 4439 if (HasOverflow) 4440 OffsetOverflows = Builder.getTrue(); 4441 return llvm::ConstantInt::get(VMContext, N); 4442 } 4443 } 4444 4445 // Otherwise, compute the result with checked arithmetic. 4446 auto *ResultAndOverflow = Builder.CreateCall( 4447 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 4448 OffsetOverflows = Builder.CreateOr( 4449 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 4450 return Builder.CreateExtractValue(ResultAndOverflow, 0); 4451 }; 4452 4453 // Determine the total byte offset by looking at each GEP operand. 4454 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 4455 GTI != GTE; ++GTI) { 4456 llvm::Value *LocalOffset; 4457 auto *Index = GTI.getOperand(); 4458 // Compute the local offset contributed by this indexing step: 4459 if (auto *STy = GTI.getStructTypeOrNull()) { 4460 // For struct indexing, the local offset is the byte position of the 4461 // specified field. 4462 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 4463 LocalOffset = llvm::ConstantInt::get( 4464 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 4465 } else { 4466 // Otherwise this is array-like indexing. The local offset is the index 4467 // multiplied by the element size. 4468 auto *ElementSize = llvm::ConstantInt::get( 4469 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 4470 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 4471 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 4472 } 4473 4474 // If this is the first offset, set it as the total offset. Otherwise, add 4475 // the local offset into the running total. 4476 if (!TotalOffset || TotalOffset == Zero) 4477 TotalOffset = LocalOffset; 4478 else 4479 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 4480 } 4481 4482 // Common case: if the total offset is zero, don't emit a check. 4483 if (TotalOffset == Zero) 4484 return GEPVal; 4485 4486 // Now that we've computed the total offset, add it to the base pointer (with 4487 // wrapping semantics). 4488 auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy); 4489 auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset); 4490 4491 // The GEP is valid if: 4492 // 1) The total offset doesn't overflow, and 4493 // 2) The sign of the difference between the computed address and the base 4494 // pointer matches the sign of the total offset. 4495 llvm::Value *ValidGEP; 4496 auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows); 4497 if (SignedIndices) { 4498 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4499 auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero); 4500 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 4501 ValidGEP = Builder.CreateAnd( 4502 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid), 4503 NoOffsetOverflow); 4504 } else if (!SignedIndices && !IsSubtraction) { 4505 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4506 ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow); 4507 } else { 4508 auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr); 4509 ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow); 4510 } 4511 4512 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 4513 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 4514 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 4515 EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow), 4516 SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 4517 4518 return GEPVal; 4519 } 4520