1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenModule.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtVisitor.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/Module.h" 33 #include <cstdarg> 34 35 using namespace clang; 36 using namespace CodeGen; 37 using llvm::Value; 38 39 //===----------------------------------------------------------------------===// 40 // Scalar Expression Emitter 41 //===----------------------------------------------------------------------===// 42 43 namespace { 44 struct BinOpInfo { 45 Value *LHS; 46 Value *RHS; 47 QualType Ty; // Computation Type. 48 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 49 bool FPContractable; 50 const Expr *E; // Entire expr, for error unsupported. May not be binop. 51 }; 52 53 static bool MustVisitNullValue(const Expr *E) { 54 // If a null pointer expression's type is the C++0x nullptr_t, then 55 // it's not necessarily a simple constant and it must be evaluated 56 // for its potential side effects. 57 return E->getType()->isNullPtrType(); 58 } 59 60 class ScalarExprEmitter 61 : public StmtVisitor<ScalarExprEmitter, Value*> { 62 CodeGenFunction &CGF; 63 CGBuilderTy &Builder; 64 bool IgnoreResultAssign; 65 llvm::LLVMContext &VMContext; 66 public: 67 68 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 69 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 70 VMContext(cgf.getLLVMContext()) { 71 } 72 73 //===--------------------------------------------------------------------===// 74 // Utilities 75 //===--------------------------------------------------------------------===// 76 77 bool TestAndClearIgnoreResultAssign() { 78 bool I = IgnoreResultAssign; 79 IgnoreResultAssign = false; 80 return I; 81 } 82 83 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 84 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 85 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 86 return CGF.EmitCheckedLValue(E, TCK); 87 } 88 89 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 90 const BinOpInfo &Info); 91 92 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 93 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 94 } 95 96 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 97 const AlignValueAttr *AVAttr = nullptr; 98 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 99 const ValueDecl *VD = DRE->getDecl(); 100 101 if (VD->getType()->isReferenceType()) { 102 if (const auto *TTy = 103 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 104 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 105 } else { 106 // Assumptions for function parameters are emitted at the start of the 107 // function, so there is no need to repeat that here. 108 if (isa<ParmVarDecl>(VD)) 109 return; 110 111 AVAttr = VD->getAttr<AlignValueAttr>(); 112 } 113 } 114 115 if (!AVAttr) 116 if (const auto *TTy = 117 dyn_cast<TypedefType>(E->getType())) 118 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 119 120 if (!AVAttr) 121 return; 122 123 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 124 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 125 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); 126 } 127 128 /// EmitLoadOfLValue - Given an expression with complex type that represents a 129 /// value l-value, this method emits the address of the l-value, then loads 130 /// and returns the result. 131 Value *EmitLoadOfLValue(const Expr *E) { 132 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 133 E->getExprLoc()); 134 135 EmitLValueAlignmentAssumption(E, V); 136 return V; 137 } 138 139 /// EmitConversionToBool - Convert the specified expression value to a 140 /// boolean (i1) truth value. This is equivalent to "Val != 0". 141 Value *EmitConversionToBool(Value *Src, QualType DstTy); 142 143 /// Emit a check that a conversion to or from a floating-point type does not 144 /// overflow. 145 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 146 Value *Src, QualType SrcType, QualType DstType, 147 llvm::Type *DstTy, SourceLocation Loc); 148 149 /// Emit a conversion from the specified type to the specified destination 150 /// type, both of which are LLVM scalar types. 151 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 152 SourceLocation Loc); 153 154 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 155 SourceLocation Loc, bool TreatBooleanAsSigned); 156 157 /// Emit a conversion from the specified complex type to the specified 158 /// destination type, where the destination type is an LLVM scalar type. 159 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 160 QualType SrcTy, QualType DstTy, 161 SourceLocation Loc); 162 163 /// EmitNullValue - Emit a value that corresponds to null for the given type. 164 Value *EmitNullValue(QualType Ty); 165 166 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 167 Value *EmitFloatToBoolConversion(Value *V) { 168 // Compare against 0.0 for fp scalars. 169 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 170 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 171 } 172 173 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 174 Value *EmitPointerToBoolConversion(Value *V) { 175 Value *Zero = llvm::ConstantPointerNull::get( 176 cast<llvm::PointerType>(V->getType())); 177 return Builder.CreateICmpNE(V, Zero, "tobool"); 178 } 179 180 Value *EmitIntToBoolConversion(Value *V) { 181 // Because of the type rules of C, we often end up computing a 182 // logical value, then zero extending it to int, then wanting it 183 // as a logical value again. Optimize this common case. 184 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 185 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 186 Value *Result = ZI->getOperand(0); 187 // If there aren't any more uses, zap the instruction to save space. 188 // Note that there can be more uses, for example if this 189 // is the result of an assignment. 190 if (ZI->use_empty()) 191 ZI->eraseFromParent(); 192 return Result; 193 } 194 } 195 196 return Builder.CreateIsNotNull(V, "tobool"); 197 } 198 199 //===--------------------------------------------------------------------===// 200 // Visitor Methods 201 //===--------------------------------------------------------------------===// 202 203 Value *Visit(Expr *E) { 204 ApplyDebugLocation DL(CGF, E); 205 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 206 } 207 208 Value *VisitStmt(Stmt *S) { 209 S->dump(CGF.getContext().getSourceManager()); 210 llvm_unreachable("Stmt can't have complex result type!"); 211 } 212 Value *VisitExpr(Expr *S); 213 214 Value *VisitParenExpr(ParenExpr *PE) { 215 return Visit(PE->getSubExpr()); 216 } 217 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 218 return Visit(E->getReplacement()); 219 } 220 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 221 return Visit(GE->getResultExpr()); 222 } 223 224 // Leaves. 225 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 226 return Builder.getInt(E->getValue()); 227 } 228 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 229 return llvm::ConstantFP::get(VMContext, E->getValue()); 230 } 231 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 232 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 233 } 234 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 235 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 236 } 237 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 238 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 239 } 240 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 241 return EmitNullValue(E->getType()); 242 } 243 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 244 return EmitNullValue(E->getType()); 245 } 246 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 247 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 248 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 249 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 250 return Builder.CreateBitCast(V, ConvertType(E->getType())); 251 } 252 253 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 254 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 255 } 256 257 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 258 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 259 } 260 261 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 262 if (E->isGLValue()) 263 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 264 265 // Otherwise, assume the mapping is the scalar directly. 266 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 267 } 268 269 // l-values. 270 Value *VisitDeclRefExpr(DeclRefExpr *E) { 271 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 272 if (result.isReference()) 273 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 274 E->getExprLoc()); 275 return result.getValue(); 276 } 277 return EmitLoadOfLValue(E); 278 } 279 280 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 281 return CGF.EmitObjCSelectorExpr(E); 282 } 283 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 284 return CGF.EmitObjCProtocolExpr(E); 285 } 286 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 287 return EmitLoadOfLValue(E); 288 } 289 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 290 if (E->getMethodDecl() && 291 E->getMethodDecl()->getReturnType()->isReferenceType()) 292 return EmitLoadOfLValue(E); 293 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 294 } 295 296 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 297 LValue LV = CGF.EmitObjCIsaExpr(E); 298 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 299 return V; 300 } 301 302 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 303 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 304 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 305 Value *VisitMemberExpr(MemberExpr *E); 306 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 307 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 308 return EmitLoadOfLValue(E); 309 } 310 311 Value *VisitInitListExpr(InitListExpr *E); 312 313 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 314 assert(CGF.getArrayInitIndex() && 315 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 316 return CGF.getArrayInitIndex(); 317 } 318 319 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 320 return EmitNullValue(E->getType()); 321 } 322 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 323 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 324 return VisitCastExpr(E); 325 } 326 Value *VisitCastExpr(CastExpr *E); 327 328 Value *VisitCallExpr(const CallExpr *E) { 329 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 330 return EmitLoadOfLValue(E); 331 332 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 333 334 EmitLValueAlignmentAssumption(E, V); 335 return V; 336 } 337 338 Value *VisitStmtExpr(const StmtExpr *E); 339 340 // Unary Operators. 341 Value *VisitUnaryPostDec(const UnaryOperator *E) { 342 LValue LV = EmitLValue(E->getSubExpr()); 343 return EmitScalarPrePostIncDec(E, LV, false, false); 344 } 345 Value *VisitUnaryPostInc(const UnaryOperator *E) { 346 LValue LV = EmitLValue(E->getSubExpr()); 347 return EmitScalarPrePostIncDec(E, LV, true, false); 348 } 349 Value *VisitUnaryPreDec(const UnaryOperator *E) { 350 LValue LV = EmitLValue(E->getSubExpr()); 351 return EmitScalarPrePostIncDec(E, LV, false, true); 352 } 353 Value *VisitUnaryPreInc(const UnaryOperator *E) { 354 LValue LV = EmitLValue(E->getSubExpr()); 355 return EmitScalarPrePostIncDec(E, LV, true, true); 356 } 357 358 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 359 llvm::Value *InVal, 360 bool IsInc); 361 362 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 363 bool isInc, bool isPre); 364 365 366 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 367 if (isa<MemberPointerType>(E->getType())) // never sugared 368 return CGF.CGM.getMemberPointerConstant(E); 369 370 return EmitLValue(E->getSubExpr()).getPointer(); 371 } 372 Value *VisitUnaryDeref(const UnaryOperator *E) { 373 if (E->getType()->isVoidType()) 374 return Visit(E->getSubExpr()); // the actual value should be unused 375 return EmitLoadOfLValue(E); 376 } 377 Value *VisitUnaryPlus(const UnaryOperator *E) { 378 // This differs from gcc, though, most likely due to a bug in gcc. 379 TestAndClearIgnoreResultAssign(); 380 return Visit(E->getSubExpr()); 381 } 382 Value *VisitUnaryMinus (const UnaryOperator *E); 383 Value *VisitUnaryNot (const UnaryOperator *E); 384 Value *VisitUnaryLNot (const UnaryOperator *E); 385 Value *VisitUnaryReal (const UnaryOperator *E); 386 Value *VisitUnaryImag (const UnaryOperator *E); 387 Value *VisitUnaryExtension(const UnaryOperator *E) { 388 return Visit(E->getSubExpr()); 389 } 390 391 // C++ 392 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 393 return EmitLoadOfLValue(E); 394 } 395 396 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 397 return Visit(DAE->getExpr()); 398 } 399 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 400 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 401 return Visit(DIE->getExpr()); 402 } 403 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 404 return CGF.LoadCXXThis(); 405 } 406 407 Value *VisitExprWithCleanups(ExprWithCleanups *E) { 408 CGF.enterFullExpression(E); 409 CodeGenFunction::RunCleanupsScope Scope(CGF); 410 return Visit(E->getSubExpr()); 411 } 412 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 413 return CGF.EmitCXXNewExpr(E); 414 } 415 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 416 CGF.EmitCXXDeleteExpr(E); 417 return nullptr; 418 } 419 420 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 421 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 422 } 423 424 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 425 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 426 } 427 428 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 429 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 430 } 431 432 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 433 // C++ [expr.pseudo]p1: 434 // The result shall only be used as the operand for the function call 435 // operator (), and the result of such a call has type void. The only 436 // effect is the evaluation of the postfix-expression before the dot or 437 // arrow. 438 CGF.EmitScalarExpr(E->getBase()); 439 return nullptr; 440 } 441 442 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 443 return EmitNullValue(E->getType()); 444 } 445 446 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 447 CGF.EmitCXXThrowExpr(E); 448 return nullptr; 449 } 450 451 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 452 return Builder.getInt1(E->getValue()); 453 } 454 455 // Binary Operators. 456 Value *EmitMul(const BinOpInfo &Ops) { 457 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 458 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 459 case LangOptions::SOB_Defined: 460 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 461 case LangOptions::SOB_Undefined: 462 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 463 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 464 // Fall through. 465 case LangOptions::SOB_Trapping: 466 return EmitOverflowCheckedBinOp(Ops); 467 } 468 } 469 470 if (Ops.Ty->isUnsignedIntegerType() && 471 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 472 return EmitOverflowCheckedBinOp(Ops); 473 474 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 475 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 476 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 477 } 478 /// Create a binary op that checks for overflow. 479 /// Currently only supports +, - and *. 480 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 481 482 // Check for undefined division and modulus behaviors. 483 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 484 llvm::Value *Zero,bool isDiv); 485 // Common helper for getting how wide LHS of shift is. 486 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 487 Value *EmitDiv(const BinOpInfo &Ops); 488 Value *EmitRem(const BinOpInfo &Ops); 489 Value *EmitAdd(const BinOpInfo &Ops); 490 Value *EmitSub(const BinOpInfo &Ops); 491 Value *EmitShl(const BinOpInfo &Ops); 492 Value *EmitShr(const BinOpInfo &Ops); 493 Value *EmitAnd(const BinOpInfo &Ops) { 494 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 495 } 496 Value *EmitXor(const BinOpInfo &Ops) { 497 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 498 } 499 Value *EmitOr (const BinOpInfo &Ops) { 500 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 501 } 502 503 BinOpInfo EmitBinOps(const BinaryOperator *E); 504 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 505 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 506 Value *&Result); 507 508 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 509 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 510 511 // Binary operators and binary compound assignment operators. 512 #define HANDLEBINOP(OP) \ 513 Value *VisitBin ## OP(const BinaryOperator *E) { \ 514 return Emit ## OP(EmitBinOps(E)); \ 515 } \ 516 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 517 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 518 } 519 HANDLEBINOP(Mul) 520 HANDLEBINOP(Div) 521 HANDLEBINOP(Rem) 522 HANDLEBINOP(Add) 523 HANDLEBINOP(Sub) 524 HANDLEBINOP(Shl) 525 HANDLEBINOP(Shr) 526 HANDLEBINOP(And) 527 HANDLEBINOP(Xor) 528 HANDLEBINOP(Or) 529 #undef HANDLEBINOP 530 531 // Comparisons. 532 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 533 llvm::CmpInst::Predicate SICmpOpc, 534 llvm::CmpInst::Predicate FCmpOpc); 535 #define VISITCOMP(CODE, UI, SI, FP) \ 536 Value *VisitBin##CODE(const BinaryOperator *E) { \ 537 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 538 llvm::FCmpInst::FP); } 539 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 540 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 541 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 542 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 543 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 544 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 545 #undef VISITCOMP 546 547 Value *VisitBinAssign (const BinaryOperator *E); 548 549 Value *VisitBinLAnd (const BinaryOperator *E); 550 Value *VisitBinLOr (const BinaryOperator *E); 551 Value *VisitBinComma (const BinaryOperator *E); 552 553 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 554 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 555 556 // Other Operators. 557 Value *VisitBlockExpr(const BlockExpr *BE); 558 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 559 Value *VisitChooseExpr(ChooseExpr *CE); 560 Value *VisitVAArgExpr(VAArgExpr *VE); 561 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 562 return CGF.EmitObjCStringLiteral(E); 563 } 564 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 565 return CGF.EmitObjCBoxedExpr(E); 566 } 567 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 568 return CGF.EmitObjCArrayLiteral(E); 569 } 570 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 571 return CGF.EmitObjCDictionaryLiteral(E); 572 } 573 Value *VisitAsTypeExpr(AsTypeExpr *CE); 574 Value *VisitAtomicExpr(AtomicExpr *AE); 575 }; 576 } // end anonymous namespace. 577 578 //===----------------------------------------------------------------------===// 579 // Utilities 580 //===----------------------------------------------------------------------===// 581 582 /// EmitConversionToBool - Convert the specified expression value to a 583 /// boolean (i1) truth value. This is equivalent to "Val != 0". 584 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 585 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 586 587 if (SrcType->isRealFloatingType()) 588 return EmitFloatToBoolConversion(Src); 589 590 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 591 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 592 593 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 594 "Unknown scalar type to convert"); 595 596 if (isa<llvm::IntegerType>(Src->getType())) 597 return EmitIntToBoolConversion(Src); 598 599 assert(isa<llvm::PointerType>(Src->getType())); 600 return EmitPointerToBoolConversion(Src); 601 } 602 603 void ScalarExprEmitter::EmitFloatConversionCheck( 604 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 605 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 606 CodeGenFunction::SanitizerScope SanScope(&CGF); 607 using llvm::APFloat; 608 using llvm::APSInt; 609 610 llvm::Type *SrcTy = Src->getType(); 611 612 llvm::Value *Check = nullptr; 613 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 614 // Integer to floating-point. This can fail for unsigned short -> __half 615 // or unsigned __int128 -> float. 616 assert(DstType->isFloatingType()); 617 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 618 619 APFloat LargestFloat = 620 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 621 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 622 623 bool IsExact; 624 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 625 &IsExact) != APFloat::opOK) 626 // The range of representable values of this floating point type includes 627 // all values of this integer type. Don't need an overflow check. 628 return; 629 630 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 631 if (SrcIsUnsigned) 632 Check = Builder.CreateICmpULE(Src, Max); 633 else { 634 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 635 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 636 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 637 Check = Builder.CreateAnd(GE, LE); 638 } 639 } else { 640 const llvm::fltSemantics &SrcSema = 641 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 642 if (isa<llvm::IntegerType>(DstTy)) { 643 // Floating-point to integer. This has undefined behavior if the source is 644 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 645 // to an integer). 646 unsigned Width = CGF.getContext().getIntWidth(DstType); 647 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 648 649 APSInt Min = APSInt::getMinValue(Width, Unsigned); 650 APFloat MinSrc(SrcSema, APFloat::uninitialized); 651 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 652 APFloat::opOverflow) 653 // Don't need an overflow check for lower bound. Just check for 654 // -Inf/NaN. 655 MinSrc = APFloat::getInf(SrcSema, true); 656 else 657 // Find the largest value which is too small to represent (before 658 // truncation toward zero). 659 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 660 661 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 662 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 663 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 664 APFloat::opOverflow) 665 // Don't need an overflow check for upper bound. Just check for 666 // +Inf/NaN. 667 MaxSrc = APFloat::getInf(SrcSema, false); 668 else 669 // Find the smallest value which is too large to represent (before 670 // truncation toward zero). 671 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 672 673 // If we're converting from __half, convert the range to float to match 674 // the type of src. 675 if (OrigSrcType->isHalfType()) { 676 const llvm::fltSemantics &Sema = 677 CGF.getContext().getFloatTypeSemantics(SrcType); 678 bool IsInexact; 679 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 680 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 681 } 682 683 llvm::Value *GE = 684 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 685 llvm::Value *LE = 686 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 687 Check = Builder.CreateAnd(GE, LE); 688 } else { 689 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 690 // 691 // Floating-point to floating-point. This has undefined behavior if the 692 // source is not in the range of representable values of the destination 693 // type. The C and C++ standards are spectacularly unclear here. We 694 // diagnose finite out-of-range conversions, but allow infinities and NaNs 695 // to convert to the corresponding value in the smaller type. 696 // 697 // C11 Annex F gives all such conversions defined behavior for IEC 60559 698 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 699 // does not. 700 701 // Converting from a lower rank to a higher rank can never have 702 // undefined behavior, since higher-rank types must have a superset 703 // of values of lower-rank types. 704 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 705 return; 706 707 assert(!OrigSrcType->isHalfType() && 708 "should not check conversion from __half, it has the lowest rank"); 709 710 const llvm::fltSemantics &DstSema = 711 CGF.getContext().getFloatTypeSemantics(DstType); 712 APFloat MinBad = APFloat::getLargest(DstSema, false); 713 APFloat MaxBad = APFloat::getInf(DstSema, false); 714 715 bool IsInexact; 716 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 717 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 718 719 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 720 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 721 llvm::Value *GE = 722 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 723 llvm::Value *LE = 724 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 725 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 726 } 727 } 728 729 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 730 CGF.EmitCheckTypeDescriptor(OrigSrcType), 731 CGF.EmitCheckTypeDescriptor(DstType)}; 732 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 733 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 734 } 735 736 /// Emit a conversion from the specified type to the specified destination type, 737 /// both of which are LLVM scalar types. 738 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 739 QualType DstType, 740 SourceLocation Loc) { 741 return EmitScalarConversion(Src, SrcType, DstType, Loc, false); 742 } 743 744 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 745 QualType DstType, 746 SourceLocation Loc, 747 bool TreatBooleanAsSigned) { 748 SrcType = CGF.getContext().getCanonicalType(SrcType); 749 DstType = CGF.getContext().getCanonicalType(DstType); 750 if (SrcType == DstType) return Src; 751 752 if (DstType->isVoidType()) return nullptr; 753 754 llvm::Value *OrigSrc = Src; 755 QualType OrigSrcType = SrcType; 756 llvm::Type *SrcTy = Src->getType(); 757 758 // Handle conversions to bool first, they are special: comparisons against 0. 759 if (DstType->isBooleanType()) 760 return EmitConversionToBool(Src, SrcType); 761 762 llvm::Type *DstTy = ConvertType(DstType); 763 764 // Cast from half through float if half isn't a native type. 765 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 766 // Cast to FP using the intrinsic if the half type itself isn't supported. 767 if (DstTy->isFloatingPointTy()) { 768 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 769 return Builder.CreateCall( 770 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 771 Src); 772 } else { 773 // Cast to other types through float, using either the intrinsic or FPExt, 774 // depending on whether the half type itself is supported 775 // (as opposed to operations on half, available with NativeHalfType). 776 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 777 Src = Builder.CreateCall( 778 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 779 CGF.CGM.FloatTy), 780 Src); 781 } else { 782 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 783 } 784 SrcType = CGF.getContext().FloatTy; 785 SrcTy = CGF.FloatTy; 786 } 787 } 788 789 // Ignore conversions like int -> uint. 790 if (SrcTy == DstTy) 791 return Src; 792 793 // Handle pointer conversions next: pointers can only be converted to/from 794 // other pointers and integers. Check for pointer types in terms of LLVM, as 795 // some native types (like Obj-C id) may map to a pointer type. 796 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 797 // The source value may be an integer, or a pointer. 798 if (isa<llvm::PointerType>(SrcTy)) 799 return Builder.CreateBitCast(Src, DstTy, "conv"); 800 801 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 802 // First, convert to the correct width so that we control the kind of 803 // extension. 804 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 805 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 806 llvm::Value* IntResult = 807 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 808 // Then, cast to pointer. 809 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 810 } 811 812 if (isa<llvm::PointerType>(SrcTy)) { 813 // Must be an ptr to int cast. 814 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 815 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 816 } 817 818 // A scalar can be splatted to an extended vector of the same element type 819 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 820 // Sema should add casts to make sure that the source expression's type is 821 // the same as the vector's element type (sans qualifiers) 822 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 823 SrcType.getTypePtr() && 824 "Splatted expr doesn't match with vector element type?"); 825 826 // Splat the element across to all elements 827 unsigned NumElements = DstTy->getVectorNumElements(); 828 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 829 } 830 831 // Allow bitcast from vector to integer/fp of the same size. 832 if (isa<llvm::VectorType>(SrcTy) || 833 isa<llvm::VectorType>(DstTy)) 834 return Builder.CreateBitCast(Src, DstTy, "conv"); 835 836 // Finally, we have the arithmetic types: real int/float. 837 Value *Res = nullptr; 838 llvm::Type *ResTy = DstTy; 839 840 // An overflowing conversion has undefined behavior if either the source type 841 // or the destination type is a floating-point type. 842 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 843 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 844 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 845 Loc); 846 847 // Cast to half through float if half isn't a native type. 848 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 849 // Make sure we cast in a single step if from another FP type. 850 if (SrcTy->isFloatingPointTy()) { 851 // Use the intrinsic if the half type itself isn't supported 852 // (as opposed to operations on half, available with NativeHalfType). 853 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 854 return Builder.CreateCall( 855 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 856 // If the half type is supported, just use an fptrunc. 857 return Builder.CreateFPTrunc(Src, DstTy); 858 } 859 DstTy = CGF.FloatTy; 860 } 861 862 if (isa<llvm::IntegerType>(SrcTy)) { 863 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 864 if (SrcType->isBooleanType() && TreatBooleanAsSigned) { 865 InputSigned = true; 866 } 867 if (isa<llvm::IntegerType>(DstTy)) 868 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 869 else if (InputSigned) 870 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 871 else 872 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 873 } else if (isa<llvm::IntegerType>(DstTy)) { 874 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 875 if (DstType->isSignedIntegerOrEnumerationType()) 876 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 877 else 878 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 879 } else { 880 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 881 "Unknown real conversion"); 882 if (DstTy->getTypeID() < SrcTy->getTypeID()) 883 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 884 else 885 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 886 } 887 888 if (DstTy != ResTy) { 889 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 890 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 891 Res = Builder.CreateCall( 892 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 893 Res); 894 } else { 895 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 896 } 897 } 898 899 return Res; 900 } 901 902 /// Emit a conversion from the specified complex type to the specified 903 /// destination type, where the destination type is an LLVM scalar type. 904 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 905 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 906 SourceLocation Loc) { 907 // Get the source element type. 908 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 909 910 // Handle conversions to bool first, they are special: comparisons against 0. 911 if (DstTy->isBooleanType()) { 912 // Complex != 0 -> (Real != 0) | (Imag != 0) 913 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 914 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 915 return Builder.CreateOr(Src.first, Src.second, "tobool"); 916 } 917 918 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 919 // the imaginary part of the complex value is discarded and the value of the 920 // real part is converted according to the conversion rules for the 921 // corresponding real type. 922 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 923 } 924 925 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 926 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 927 } 928 929 /// \brief Emit a sanitization check for the given "binary" operation (which 930 /// might actually be a unary increment which has been lowered to a binary 931 /// operation). The check passes if all values in \p Checks (which are \c i1), 932 /// are \c true. 933 void ScalarExprEmitter::EmitBinOpCheck( 934 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 935 assert(CGF.IsSanitizerScope); 936 SanitizerHandler Check; 937 SmallVector<llvm::Constant *, 4> StaticData; 938 SmallVector<llvm::Value *, 2> DynamicData; 939 940 BinaryOperatorKind Opcode = Info.Opcode; 941 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 942 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 943 944 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 945 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 946 if (UO && UO->getOpcode() == UO_Minus) { 947 Check = SanitizerHandler::NegateOverflow; 948 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 949 DynamicData.push_back(Info.RHS); 950 } else { 951 if (BinaryOperator::isShiftOp(Opcode)) { 952 // Shift LHS negative or too large, or RHS out of bounds. 953 Check = SanitizerHandler::ShiftOutOfBounds; 954 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 955 StaticData.push_back( 956 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 957 StaticData.push_back( 958 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 959 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 960 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 961 Check = SanitizerHandler::DivremOverflow; 962 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 963 } else { 964 // Arithmetic overflow (+, -, *). 965 switch (Opcode) { 966 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 967 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 968 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 969 default: llvm_unreachable("unexpected opcode for bin op check"); 970 } 971 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 972 } 973 DynamicData.push_back(Info.LHS); 974 DynamicData.push_back(Info.RHS); 975 } 976 977 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 978 } 979 980 //===----------------------------------------------------------------------===// 981 // Visitor Methods 982 //===----------------------------------------------------------------------===// 983 984 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 985 CGF.ErrorUnsupported(E, "scalar expression"); 986 if (E->getType()->isVoidType()) 987 return nullptr; 988 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 989 } 990 991 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 992 // Vector Mask Case 993 if (E->getNumSubExprs() == 2) { 994 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 995 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 996 Value *Mask; 997 998 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 999 unsigned LHSElts = LTy->getNumElements(); 1000 1001 Mask = RHS; 1002 1003 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1004 1005 // Mask off the high bits of each shuffle index. 1006 Value *MaskBits = 1007 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1008 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1009 1010 // newv = undef 1011 // mask = mask & maskbits 1012 // for each elt 1013 // n = extract mask i 1014 // x = extract val n 1015 // newv = insert newv, x, i 1016 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1017 MTy->getNumElements()); 1018 Value* NewV = llvm::UndefValue::get(RTy); 1019 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1020 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1021 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1022 1023 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1024 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1025 } 1026 return NewV; 1027 } 1028 1029 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1030 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1031 1032 SmallVector<llvm::Constant*, 32> indices; 1033 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1034 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1035 // Check for -1 and output it as undef in the IR. 1036 if (Idx.isSigned() && Idx.isAllOnesValue()) 1037 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1038 else 1039 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1040 } 1041 1042 Value *SV = llvm::ConstantVector::get(indices); 1043 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1044 } 1045 1046 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1047 QualType SrcType = E->getSrcExpr()->getType(), 1048 DstType = E->getType(); 1049 1050 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1051 1052 SrcType = CGF.getContext().getCanonicalType(SrcType); 1053 DstType = CGF.getContext().getCanonicalType(DstType); 1054 if (SrcType == DstType) return Src; 1055 1056 assert(SrcType->isVectorType() && 1057 "ConvertVector source type must be a vector"); 1058 assert(DstType->isVectorType() && 1059 "ConvertVector destination type must be a vector"); 1060 1061 llvm::Type *SrcTy = Src->getType(); 1062 llvm::Type *DstTy = ConvertType(DstType); 1063 1064 // Ignore conversions like int -> uint. 1065 if (SrcTy == DstTy) 1066 return Src; 1067 1068 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1069 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1070 1071 assert(SrcTy->isVectorTy() && 1072 "ConvertVector source IR type must be a vector"); 1073 assert(DstTy->isVectorTy() && 1074 "ConvertVector destination IR type must be a vector"); 1075 1076 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1077 *DstEltTy = DstTy->getVectorElementType(); 1078 1079 if (DstEltType->isBooleanType()) { 1080 assert((SrcEltTy->isFloatingPointTy() || 1081 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1082 1083 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1084 if (SrcEltTy->isFloatingPointTy()) { 1085 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1086 } else { 1087 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1088 } 1089 } 1090 1091 // We have the arithmetic types: real int/float. 1092 Value *Res = nullptr; 1093 1094 if (isa<llvm::IntegerType>(SrcEltTy)) { 1095 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1096 if (isa<llvm::IntegerType>(DstEltTy)) 1097 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1098 else if (InputSigned) 1099 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1100 else 1101 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1102 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1103 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1104 if (DstEltType->isSignedIntegerOrEnumerationType()) 1105 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1106 else 1107 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1108 } else { 1109 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1110 "Unknown real conversion"); 1111 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1112 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1113 else 1114 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1115 } 1116 1117 return Res; 1118 } 1119 1120 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1121 llvm::APSInt Value; 1122 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1123 if (E->isArrow()) 1124 CGF.EmitScalarExpr(E->getBase()); 1125 else 1126 EmitLValue(E->getBase()); 1127 return Builder.getInt(Value); 1128 } 1129 1130 return EmitLoadOfLValue(E); 1131 } 1132 1133 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1134 TestAndClearIgnoreResultAssign(); 1135 1136 // Emit subscript expressions in rvalue context's. For most cases, this just 1137 // loads the lvalue formed by the subscript expr. However, we have to be 1138 // careful, because the base of a vector subscript is occasionally an rvalue, 1139 // so we can't get it as an lvalue. 1140 if (!E->getBase()->getType()->isVectorType()) 1141 return EmitLoadOfLValue(E); 1142 1143 // Handle the vector case. The base must be a vector, the index must be an 1144 // integer value. 1145 Value *Base = Visit(E->getBase()); 1146 Value *Idx = Visit(E->getIdx()); 1147 QualType IdxTy = E->getIdx()->getType(); 1148 1149 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1150 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1151 1152 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1153 } 1154 1155 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1156 unsigned Off, llvm::Type *I32Ty) { 1157 int MV = SVI->getMaskValue(Idx); 1158 if (MV == -1) 1159 return llvm::UndefValue::get(I32Ty); 1160 return llvm::ConstantInt::get(I32Ty, Off+MV); 1161 } 1162 1163 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1164 if (C->getBitWidth() != 32) { 1165 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1166 C->getZExtValue()) && 1167 "Index operand too large for shufflevector mask!"); 1168 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1169 } 1170 return C; 1171 } 1172 1173 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1174 bool Ignore = TestAndClearIgnoreResultAssign(); 1175 (void)Ignore; 1176 assert (Ignore == false && "init list ignored"); 1177 unsigned NumInitElements = E->getNumInits(); 1178 1179 if (E->hadArrayRangeDesignator()) 1180 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1181 1182 llvm::VectorType *VType = 1183 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1184 1185 if (!VType) { 1186 if (NumInitElements == 0) { 1187 // C++11 value-initialization for the scalar. 1188 return EmitNullValue(E->getType()); 1189 } 1190 // We have a scalar in braces. Just use the first element. 1191 return Visit(E->getInit(0)); 1192 } 1193 1194 unsigned ResElts = VType->getNumElements(); 1195 1196 // Loop over initializers collecting the Value for each, and remembering 1197 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1198 // us to fold the shuffle for the swizzle into the shuffle for the vector 1199 // initializer, since LLVM optimizers generally do not want to touch 1200 // shuffles. 1201 unsigned CurIdx = 0; 1202 bool VIsUndefShuffle = false; 1203 llvm::Value *V = llvm::UndefValue::get(VType); 1204 for (unsigned i = 0; i != NumInitElements; ++i) { 1205 Expr *IE = E->getInit(i); 1206 Value *Init = Visit(IE); 1207 SmallVector<llvm::Constant*, 16> Args; 1208 1209 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1210 1211 // Handle scalar elements. If the scalar initializer is actually one 1212 // element of a different vector of the same width, use shuffle instead of 1213 // extract+insert. 1214 if (!VVT) { 1215 if (isa<ExtVectorElementExpr>(IE)) { 1216 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1217 1218 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1219 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1220 Value *LHS = nullptr, *RHS = nullptr; 1221 if (CurIdx == 0) { 1222 // insert into undef -> shuffle (src, undef) 1223 // shufflemask must use an i32 1224 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1225 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1226 1227 LHS = EI->getVectorOperand(); 1228 RHS = V; 1229 VIsUndefShuffle = true; 1230 } else if (VIsUndefShuffle) { 1231 // insert into undefshuffle && size match -> shuffle (v, src) 1232 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1233 for (unsigned j = 0; j != CurIdx; ++j) 1234 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1235 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1236 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1237 1238 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1239 RHS = EI->getVectorOperand(); 1240 VIsUndefShuffle = false; 1241 } 1242 if (!Args.empty()) { 1243 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1244 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1245 ++CurIdx; 1246 continue; 1247 } 1248 } 1249 } 1250 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1251 "vecinit"); 1252 VIsUndefShuffle = false; 1253 ++CurIdx; 1254 continue; 1255 } 1256 1257 unsigned InitElts = VVT->getNumElements(); 1258 1259 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1260 // input is the same width as the vector being constructed, generate an 1261 // optimized shuffle of the swizzle input into the result. 1262 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1263 if (isa<ExtVectorElementExpr>(IE)) { 1264 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1265 Value *SVOp = SVI->getOperand(0); 1266 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1267 1268 if (OpTy->getNumElements() == ResElts) { 1269 for (unsigned j = 0; j != CurIdx; ++j) { 1270 // If the current vector initializer is a shuffle with undef, merge 1271 // this shuffle directly into it. 1272 if (VIsUndefShuffle) { 1273 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1274 CGF.Int32Ty)); 1275 } else { 1276 Args.push_back(Builder.getInt32(j)); 1277 } 1278 } 1279 for (unsigned j = 0, je = InitElts; j != je; ++j) 1280 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1281 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1282 1283 if (VIsUndefShuffle) 1284 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1285 1286 Init = SVOp; 1287 } 1288 } 1289 1290 // Extend init to result vector length, and then shuffle its contribution 1291 // to the vector initializer into V. 1292 if (Args.empty()) { 1293 for (unsigned j = 0; j != InitElts; ++j) 1294 Args.push_back(Builder.getInt32(j)); 1295 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1296 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1297 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1298 Mask, "vext"); 1299 1300 Args.clear(); 1301 for (unsigned j = 0; j != CurIdx; ++j) 1302 Args.push_back(Builder.getInt32(j)); 1303 for (unsigned j = 0; j != InitElts; ++j) 1304 Args.push_back(Builder.getInt32(j+Offset)); 1305 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1306 } 1307 1308 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1309 // merging subsequent shuffles into this one. 1310 if (CurIdx == 0) 1311 std::swap(V, Init); 1312 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1313 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1314 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1315 CurIdx += InitElts; 1316 } 1317 1318 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1319 // Emit remaining default initializers. 1320 llvm::Type *EltTy = VType->getElementType(); 1321 1322 // Emit remaining default initializers 1323 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1324 Value *Idx = Builder.getInt32(CurIdx); 1325 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1326 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1327 } 1328 return V; 1329 } 1330 1331 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1332 const Expr *E = CE->getSubExpr(); 1333 1334 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1335 return false; 1336 1337 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1338 // We always assume that 'this' is never null. 1339 return false; 1340 } 1341 1342 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1343 // And that glvalue casts are never null. 1344 if (ICE->getValueKind() != VK_RValue) 1345 return false; 1346 } 1347 1348 return true; 1349 } 1350 1351 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1352 // have to handle a more broad range of conversions than explicit casts, as they 1353 // handle things like function to ptr-to-function decay etc. 1354 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1355 Expr *E = CE->getSubExpr(); 1356 QualType DestTy = CE->getType(); 1357 CastKind Kind = CE->getCastKind(); 1358 1359 // These cases are generally not written to ignore the result of 1360 // evaluating their sub-expressions, so we clear this now. 1361 bool Ignored = TestAndClearIgnoreResultAssign(); 1362 1363 // Since almost all cast kinds apply to scalars, this switch doesn't have 1364 // a default case, so the compiler will warn on a missing case. The cases 1365 // are in the same order as in the CastKind enum. 1366 switch (Kind) { 1367 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1368 case CK_BuiltinFnToFnPtr: 1369 llvm_unreachable("builtin functions are handled elsewhere"); 1370 1371 case CK_LValueBitCast: 1372 case CK_ObjCObjectLValueCast: { 1373 Address Addr = EmitLValue(E).getAddress(); 1374 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1375 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1376 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1377 } 1378 1379 case CK_CPointerToObjCPointerCast: 1380 case CK_BlockPointerToObjCPointerCast: 1381 case CK_AnyPointerToBlockPointerCast: 1382 case CK_BitCast: { 1383 Value *Src = Visit(const_cast<Expr*>(E)); 1384 llvm::Type *SrcTy = Src->getType(); 1385 llvm::Type *DstTy = ConvertType(DestTy); 1386 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1387 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1388 llvm_unreachable("wrong cast for pointers in different address spaces" 1389 "(must be an address space cast)!"); 1390 } 1391 1392 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1393 if (auto PT = DestTy->getAs<PointerType>()) 1394 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1395 /*MayBeNull=*/true, 1396 CodeGenFunction::CFITCK_UnrelatedCast, 1397 CE->getLocStart()); 1398 } 1399 1400 return Builder.CreateBitCast(Src, DstTy); 1401 } 1402 case CK_AddressSpaceConversion: { 1403 Value *Src = Visit(const_cast<Expr*>(E)); 1404 // Since target may map different address spaces in AST to the same address 1405 // space, an address space conversion may end up as a bitcast. 1406 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, 1407 ConvertType(DestTy)); 1408 } 1409 case CK_AtomicToNonAtomic: 1410 case CK_NonAtomicToAtomic: 1411 case CK_NoOp: 1412 case CK_UserDefinedConversion: 1413 return Visit(const_cast<Expr*>(E)); 1414 1415 case CK_BaseToDerived: { 1416 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1417 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1418 1419 Address Base = CGF.EmitPointerWithAlignment(E); 1420 Address Derived = 1421 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 1422 CE->path_begin(), CE->path_end(), 1423 CGF.ShouldNullCheckClassCastValue(CE)); 1424 1425 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1426 // performed and the object is not of the derived type. 1427 if (CGF.sanitizePerformTypeCheck()) 1428 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1429 Derived.getPointer(), DestTy->getPointeeType()); 1430 1431 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 1432 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), 1433 Derived.getPointer(), 1434 /*MayBeNull=*/true, 1435 CodeGenFunction::CFITCK_DerivedCast, 1436 CE->getLocStart()); 1437 1438 return Derived.getPointer(); 1439 } 1440 case CK_UncheckedDerivedToBase: 1441 case CK_DerivedToBase: { 1442 // The EmitPointerWithAlignment path does this fine; just discard 1443 // the alignment. 1444 return CGF.EmitPointerWithAlignment(CE).getPointer(); 1445 } 1446 1447 case CK_Dynamic: { 1448 Address V = CGF.EmitPointerWithAlignment(E); 1449 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1450 return CGF.EmitDynamicCast(V, DCE); 1451 } 1452 1453 case CK_ArrayToPointerDecay: 1454 return CGF.EmitArrayToPointerDecay(E).getPointer(); 1455 case CK_FunctionToPointerDecay: 1456 return EmitLValue(E).getPointer(); 1457 1458 case CK_NullToPointer: 1459 if (MustVisitNullValue(E)) 1460 (void) Visit(E); 1461 1462 return llvm::ConstantPointerNull::get( 1463 cast<llvm::PointerType>(ConvertType(DestTy))); 1464 1465 case CK_NullToMemberPointer: { 1466 if (MustVisitNullValue(E)) 1467 (void) Visit(E); 1468 1469 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1470 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1471 } 1472 1473 case CK_ReinterpretMemberPointer: 1474 case CK_BaseToDerivedMemberPointer: 1475 case CK_DerivedToBaseMemberPointer: { 1476 Value *Src = Visit(E); 1477 1478 // Note that the AST doesn't distinguish between checked and 1479 // unchecked member pointer conversions, so we always have to 1480 // implement checked conversions here. This is inefficient when 1481 // actual control flow may be required in order to perform the 1482 // check, which it is for data member pointers (but not member 1483 // function pointers on Itanium and ARM). 1484 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1485 } 1486 1487 case CK_ARCProduceObject: 1488 return CGF.EmitARCRetainScalarExpr(E); 1489 case CK_ARCConsumeObject: 1490 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1491 case CK_ARCReclaimReturnedObject: 1492 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 1493 case CK_ARCExtendBlockObject: 1494 return CGF.EmitARCExtendBlockObject(E); 1495 1496 case CK_CopyAndAutoreleaseBlockObject: 1497 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1498 1499 case CK_FloatingRealToComplex: 1500 case CK_FloatingComplexCast: 1501 case CK_IntegralRealToComplex: 1502 case CK_IntegralComplexCast: 1503 case CK_IntegralComplexToFloatingComplex: 1504 case CK_FloatingComplexToIntegralComplex: 1505 case CK_ConstructorConversion: 1506 case CK_ToUnion: 1507 llvm_unreachable("scalar cast to non-scalar value"); 1508 1509 case CK_LValueToRValue: 1510 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1511 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1512 return Visit(const_cast<Expr*>(E)); 1513 1514 case CK_IntegralToPointer: { 1515 Value *Src = Visit(const_cast<Expr*>(E)); 1516 1517 // First, convert to the correct width so that we control the kind of 1518 // extension. 1519 auto DestLLVMTy = ConvertType(DestTy); 1520 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 1521 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1522 llvm::Value* IntResult = 1523 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1524 1525 return Builder.CreateIntToPtr(IntResult, DestLLVMTy); 1526 } 1527 case CK_PointerToIntegral: 1528 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1529 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1530 1531 case CK_ToVoid: { 1532 CGF.EmitIgnoredExpr(E); 1533 return nullptr; 1534 } 1535 case CK_VectorSplat: { 1536 llvm::Type *DstTy = ConvertType(DestTy); 1537 Value *Elt = Visit(const_cast<Expr*>(E)); 1538 // Splat the element across to all elements 1539 unsigned NumElements = DstTy->getVectorNumElements(); 1540 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 1541 } 1542 1543 case CK_IntegralCast: 1544 case CK_IntegralToFloating: 1545 case CK_FloatingToIntegral: 1546 case CK_FloatingCast: 1547 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1548 CE->getExprLoc()); 1549 case CK_BooleanToSignedIntegral: 1550 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1551 CE->getExprLoc(), 1552 /*TreatBooleanAsSigned=*/true); 1553 case CK_IntegralToBoolean: 1554 return EmitIntToBoolConversion(Visit(E)); 1555 case CK_PointerToBoolean: 1556 return EmitPointerToBoolConversion(Visit(E)); 1557 case CK_FloatingToBoolean: 1558 return EmitFloatToBoolConversion(Visit(E)); 1559 case CK_MemberPointerToBoolean: { 1560 llvm::Value *MemPtr = Visit(E); 1561 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1562 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1563 } 1564 1565 case CK_FloatingComplexToReal: 1566 case CK_IntegralComplexToReal: 1567 return CGF.EmitComplexExpr(E, false, true).first; 1568 1569 case CK_FloatingComplexToBoolean: 1570 case CK_IntegralComplexToBoolean: { 1571 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1572 1573 // TODO: kill this function off, inline appropriate case here 1574 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 1575 CE->getExprLoc()); 1576 } 1577 1578 case CK_ZeroToOCLEvent: { 1579 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); 1580 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1581 } 1582 1583 case CK_IntToOCLSampler: 1584 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 1585 1586 } // end of switch 1587 1588 llvm_unreachable("unknown scalar cast"); 1589 } 1590 1591 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1592 CodeGenFunction::StmtExprEvaluation eval(CGF); 1593 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1594 !E->getType()->isVoidType()); 1595 if (!RetAlloca.isValid()) 1596 return nullptr; 1597 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 1598 E->getExprLoc()); 1599 } 1600 1601 //===----------------------------------------------------------------------===// 1602 // Unary Operators 1603 //===----------------------------------------------------------------------===// 1604 1605 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 1606 llvm::Value *InVal, bool IsInc) { 1607 BinOpInfo BinOp; 1608 BinOp.LHS = InVal; 1609 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 1610 BinOp.Ty = E->getType(); 1611 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 1612 BinOp.FPContractable = false; 1613 BinOp.E = E; 1614 return BinOp; 1615 } 1616 1617 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 1618 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 1619 llvm::Value *Amount = 1620 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 1621 StringRef Name = IsInc ? "inc" : "dec"; 1622 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1623 case LangOptions::SOB_Defined: 1624 return Builder.CreateAdd(InVal, Amount, Name); 1625 case LangOptions::SOB_Undefined: 1626 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 1627 return Builder.CreateNSWAdd(InVal, Amount, Name); 1628 // Fall through. 1629 case LangOptions::SOB_Trapping: 1630 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 1631 } 1632 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1633 } 1634 1635 llvm::Value * 1636 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1637 bool isInc, bool isPre) { 1638 1639 QualType type = E->getSubExpr()->getType(); 1640 llvm::PHINode *atomicPHI = nullptr; 1641 llvm::Value *value; 1642 llvm::Value *input; 1643 1644 int amount = (isInc ? 1 : -1); 1645 1646 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1647 type = atomicTy->getValueType(); 1648 if (isInc && type->isBooleanType()) { 1649 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1650 if (isPre) { 1651 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 1652 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 1653 return Builder.getTrue(); 1654 } 1655 // For atomic bool increment, we just store true and return it for 1656 // preincrement, do an atomic swap with true for postincrement 1657 return Builder.CreateAtomicRMW( 1658 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, 1659 llvm::AtomicOrdering::SequentiallyConsistent); 1660 } 1661 // Special case for atomic increment / decrement on integers, emit 1662 // atomicrmw instructions. We skip this if we want to be doing overflow 1663 // checking, and fall into the slow path with the atomic cmpxchg loop. 1664 if (!type->isBooleanType() && type->isIntegerType() && 1665 !(type->isUnsignedIntegerType() && 1666 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 1667 CGF.getLangOpts().getSignedOverflowBehavior() != 1668 LangOptions::SOB_Trapping) { 1669 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1670 llvm::AtomicRMWInst::Sub; 1671 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1672 llvm::Instruction::Sub; 1673 llvm::Value *amt = CGF.EmitToMemory( 1674 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1675 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1676 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); 1677 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1678 } 1679 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1680 input = value; 1681 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1682 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1683 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1684 value = CGF.EmitToMemory(value, type); 1685 Builder.CreateBr(opBB); 1686 Builder.SetInsertPoint(opBB); 1687 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1688 atomicPHI->addIncoming(value, startBB); 1689 value = atomicPHI; 1690 } else { 1691 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1692 input = value; 1693 } 1694 1695 // Special case of integer increment that we have to check first: bool++. 1696 // Due to promotion rules, we get: 1697 // bool++ -> bool = bool + 1 1698 // -> bool = (int)bool + 1 1699 // -> bool = ((int)bool + 1 != 0) 1700 // An interesting aspect of this is that increment is always true. 1701 // Decrement does not have this property. 1702 if (isInc && type->isBooleanType()) { 1703 value = Builder.getTrue(); 1704 1705 // Most common case by far: integer increment. 1706 } else if (type->isIntegerType()) { 1707 // Note that signed integer inc/dec with width less than int can't 1708 // overflow because of promotion rules; we're just eliding a few steps here. 1709 bool CanOverflow = value->getType()->getIntegerBitWidth() >= 1710 CGF.IntTy->getIntegerBitWidth(); 1711 if (CanOverflow && type->isSignedIntegerOrEnumerationType()) { 1712 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 1713 } else if (CanOverflow && type->isUnsignedIntegerType() && 1714 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 1715 value = 1716 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 1717 } else { 1718 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1719 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1720 } 1721 1722 // Next most common: pointer increment. 1723 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1724 QualType type = ptr->getPointeeType(); 1725 1726 // VLA types don't have constant size. 1727 if (const VariableArrayType *vla 1728 = CGF.getContext().getAsVariableArrayType(type)) { 1729 llvm::Value *numElts = CGF.getVLASize(vla).first; 1730 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1731 if (CGF.getLangOpts().isSignedOverflowDefined()) 1732 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1733 else 1734 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); 1735 1736 // Arithmetic on function pointers (!) is just +-1. 1737 } else if (type->isFunctionType()) { 1738 llvm::Value *amt = Builder.getInt32(amount); 1739 1740 value = CGF.EmitCastToVoidPtr(value); 1741 if (CGF.getLangOpts().isSignedOverflowDefined()) 1742 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1743 else 1744 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1745 value = Builder.CreateBitCast(value, input->getType()); 1746 1747 // For everything else, we can just do a simple increment. 1748 } else { 1749 llvm::Value *amt = Builder.getInt32(amount); 1750 if (CGF.getLangOpts().isSignedOverflowDefined()) 1751 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1752 else 1753 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1754 } 1755 1756 // Vector increment/decrement. 1757 } else if (type->isVectorType()) { 1758 if (type->hasIntegerRepresentation()) { 1759 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1760 1761 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1762 } else { 1763 value = Builder.CreateFAdd( 1764 value, 1765 llvm::ConstantFP::get(value->getType(), amount), 1766 isInc ? "inc" : "dec"); 1767 } 1768 1769 // Floating point. 1770 } else if (type->isRealFloatingType()) { 1771 // Add the inc/dec to the real part. 1772 llvm::Value *amt; 1773 1774 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1775 // Another special case: half FP increment should be done via float 1776 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1777 value = Builder.CreateCall( 1778 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1779 CGF.CGM.FloatTy), 1780 input, "incdec.conv"); 1781 } else { 1782 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 1783 } 1784 } 1785 1786 if (value->getType()->isFloatTy()) 1787 amt = llvm::ConstantFP::get(VMContext, 1788 llvm::APFloat(static_cast<float>(amount))); 1789 else if (value->getType()->isDoubleTy()) 1790 amt = llvm::ConstantFP::get(VMContext, 1791 llvm::APFloat(static_cast<double>(amount))); 1792 else { 1793 // Remaining types are Half, LongDouble or __float128. Convert from float. 1794 llvm::APFloat F(static_cast<float>(amount)); 1795 bool ignored; 1796 const llvm::fltSemantics *FS; 1797 // Don't use getFloatTypeSemantics because Half isn't 1798 // necessarily represented using the "half" LLVM type. 1799 if (value->getType()->isFP128Ty()) 1800 FS = &CGF.getTarget().getFloat128Format(); 1801 else if (value->getType()->isHalfTy()) 1802 FS = &CGF.getTarget().getHalfFormat(); 1803 else 1804 FS = &CGF.getTarget().getLongDoubleFormat(); 1805 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 1806 amt = llvm::ConstantFP::get(VMContext, F); 1807 } 1808 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 1809 1810 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1811 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1812 value = Builder.CreateCall( 1813 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 1814 CGF.CGM.FloatTy), 1815 value, "incdec.conv"); 1816 } else { 1817 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 1818 } 1819 } 1820 1821 // Objective-C pointer types. 1822 } else { 1823 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 1824 value = CGF.EmitCastToVoidPtr(value); 1825 1826 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 1827 if (!isInc) size = -size; 1828 llvm::Value *sizeValue = 1829 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 1830 1831 if (CGF.getLangOpts().isSignedOverflowDefined()) 1832 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 1833 else 1834 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 1835 value = Builder.CreateBitCast(value, input->getType()); 1836 } 1837 1838 if (atomicPHI) { 1839 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1840 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1841 auto Pair = CGF.EmitAtomicCompareExchange( 1842 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 1843 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 1844 llvm::Value *success = Pair.second; 1845 atomicPHI->addIncoming(old, opBB); 1846 Builder.CreateCondBr(success, contBB, opBB); 1847 Builder.SetInsertPoint(contBB); 1848 return isPre ? value : input; 1849 } 1850 1851 // Store the updated result through the lvalue. 1852 if (LV.isBitField()) 1853 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 1854 else 1855 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 1856 1857 // If this is a postinc, return the value read from memory, otherwise use the 1858 // updated value. 1859 return isPre ? value : input; 1860 } 1861 1862 1863 1864 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1865 TestAndClearIgnoreResultAssign(); 1866 // Emit unary minus with EmitSub so we handle overflow cases etc. 1867 BinOpInfo BinOp; 1868 BinOp.RHS = Visit(E->getSubExpr()); 1869 1870 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 1871 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 1872 else 1873 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 1874 BinOp.Ty = E->getType(); 1875 BinOp.Opcode = BO_Sub; 1876 BinOp.FPContractable = false; 1877 BinOp.E = E; 1878 return EmitSub(BinOp); 1879 } 1880 1881 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1882 TestAndClearIgnoreResultAssign(); 1883 Value *Op = Visit(E->getSubExpr()); 1884 return Builder.CreateNot(Op, "neg"); 1885 } 1886 1887 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1888 // Perform vector logical not on comparison with zero vector. 1889 if (E->getType()->isExtVectorType()) { 1890 Value *Oper = Visit(E->getSubExpr()); 1891 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 1892 Value *Result; 1893 if (Oper->getType()->isFPOrFPVectorTy()) 1894 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 1895 else 1896 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 1897 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 1898 } 1899 1900 // Compare operand to zero. 1901 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1902 1903 // Invert value. 1904 // TODO: Could dynamically modify easy computations here. For example, if 1905 // the operand is an icmp ne, turn into icmp eq. 1906 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1907 1908 // ZExt result to the expr type. 1909 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1910 } 1911 1912 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 1913 // Try folding the offsetof to a constant. 1914 llvm::APSInt Value; 1915 if (E->EvaluateAsInt(Value, CGF.getContext())) 1916 return Builder.getInt(Value); 1917 1918 // Loop over the components of the offsetof to compute the value. 1919 unsigned n = E->getNumComponents(); 1920 llvm::Type* ResultType = ConvertType(E->getType()); 1921 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 1922 QualType CurrentType = E->getTypeSourceInfo()->getType(); 1923 for (unsigned i = 0; i != n; ++i) { 1924 OffsetOfNode ON = E->getComponent(i); 1925 llvm::Value *Offset = nullptr; 1926 switch (ON.getKind()) { 1927 case OffsetOfNode::Array: { 1928 // Compute the index 1929 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 1930 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 1931 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 1932 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 1933 1934 // Save the element type 1935 CurrentType = 1936 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 1937 1938 // Compute the element size 1939 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 1940 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 1941 1942 // Multiply out to compute the result 1943 Offset = Builder.CreateMul(Idx, ElemSize); 1944 break; 1945 } 1946 1947 case OffsetOfNode::Field: { 1948 FieldDecl *MemberDecl = ON.getField(); 1949 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1950 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1951 1952 // Compute the index of the field in its parent. 1953 unsigned i = 0; 1954 // FIXME: It would be nice if we didn't have to loop here! 1955 for (RecordDecl::field_iterator Field = RD->field_begin(), 1956 FieldEnd = RD->field_end(); 1957 Field != FieldEnd; ++Field, ++i) { 1958 if (*Field == MemberDecl) 1959 break; 1960 } 1961 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 1962 1963 // Compute the offset to the field 1964 int64_t OffsetInt = RL.getFieldOffset(i) / 1965 CGF.getContext().getCharWidth(); 1966 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1967 1968 // Save the element type. 1969 CurrentType = MemberDecl->getType(); 1970 break; 1971 } 1972 1973 case OffsetOfNode::Identifier: 1974 llvm_unreachable("dependent __builtin_offsetof"); 1975 1976 case OffsetOfNode::Base: { 1977 if (ON.getBase()->isVirtual()) { 1978 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 1979 continue; 1980 } 1981 1982 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1983 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1984 1985 // Save the element type. 1986 CurrentType = ON.getBase()->getType(); 1987 1988 // Compute the offset to the base. 1989 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 1990 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 1991 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 1992 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 1993 break; 1994 } 1995 } 1996 Result = Builder.CreateAdd(Result, Offset); 1997 } 1998 return Result; 1999 } 2000 2001 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2002 /// argument of the sizeof expression as an integer. 2003 Value * 2004 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2005 const UnaryExprOrTypeTraitExpr *E) { 2006 QualType TypeToSize = E->getTypeOfArgument(); 2007 if (E->getKind() == UETT_SizeOf) { 2008 if (const VariableArrayType *VAT = 2009 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2010 if (E->isArgumentType()) { 2011 // sizeof(type) - make sure to emit the VLA size. 2012 CGF.EmitVariablyModifiedType(TypeToSize); 2013 } else { 2014 // C99 6.5.3.4p2: If the argument is an expression of type 2015 // VLA, it is evaluated. 2016 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2017 } 2018 2019 QualType eltType; 2020 llvm::Value *numElts; 2021 std::tie(numElts, eltType) = CGF.getVLASize(VAT); 2022 2023 llvm::Value *size = numElts; 2024 2025 // Scale the number of non-VLA elements by the non-VLA element size. 2026 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 2027 if (!eltSize.isOne()) 2028 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 2029 2030 return size; 2031 } 2032 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2033 auto Alignment = 2034 CGF.getContext() 2035 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2036 E->getTypeOfArgument()->getPointeeType())) 2037 .getQuantity(); 2038 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2039 } 2040 2041 // If this isn't sizeof(vla), the result must be constant; use the constant 2042 // folding logic so we don't have to duplicate it here. 2043 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2044 } 2045 2046 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2047 Expr *Op = E->getSubExpr(); 2048 if (Op->getType()->isAnyComplexType()) { 2049 // If it's an l-value, load through the appropriate subobject l-value. 2050 // Note that we have to ask E because Op might be an l-value that 2051 // this won't work for, e.g. an Obj-C property. 2052 if (E->isGLValue()) 2053 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2054 E->getExprLoc()).getScalarVal(); 2055 2056 // Otherwise, calculate and project. 2057 return CGF.EmitComplexExpr(Op, false, true).first; 2058 } 2059 2060 return Visit(Op); 2061 } 2062 2063 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2064 Expr *Op = E->getSubExpr(); 2065 if (Op->getType()->isAnyComplexType()) { 2066 // If it's an l-value, load through the appropriate subobject l-value. 2067 // Note that we have to ask E because Op might be an l-value that 2068 // this won't work for, e.g. an Obj-C property. 2069 if (Op->isGLValue()) 2070 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2071 E->getExprLoc()).getScalarVal(); 2072 2073 // Otherwise, calculate and project. 2074 return CGF.EmitComplexExpr(Op, true, false).second; 2075 } 2076 2077 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2078 // effects are evaluated, but not the actual value. 2079 if (Op->isGLValue()) 2080 CGF.EmitLValue(Op); 2081 else 2082 CGF.EmitScalarExpr(Op, true); 2083 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2084 } 2085 2086 //===----------------------------------------------------------------------===// 2087 // Binary Operators 2088 //===----------------------------------------------------------------------===// 2089 2090 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2091 TestAndClearIgnoreResultAssign(); 2092 BinOpInfo Result; 2093 Result.LHS = Visit(E->getLHS()); 2094 Result.RHS = Visit(E->getRHS()); 2095 Result.Ty = E->getType(); 2096 Result.Opcode = E->getOpcode(); 2097 Result.FPContractable = E->isFPContractable(); 2098 Result.E = E; 2099 return Result; 2100 } 2101 2102 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2103 const CompoundAssignOperator *E, 2104 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2105 Value *&Result) { 2106 QualType LHSTy = E->getLHS()->getType(); 2107 BinOpInfo OpInfo; 2108 2109 if (E->getComputationResultType()->isAnyComplexType()) 2110 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2111 2112 // Emit the RHS first. __block variables need to have the rhs evaluated 2113 // first, plus this should improve codegen a little. 2114 OpInfo.RHS = Visit(E->getRHS()); 2115 OpInfo.Ty = E->getComputationResultType(); 2116 OpInfo.Opcode = E->getOpcode(); 2117 OpInfo.FPContractable = E->isFPContractable(); 2118 OpInfo.E = E; 2119 // Load/convert the LHS. 2120 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2121 2122 llvm::PHINode *atomicPHI = nullptr; 2123 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2124 QualType type = atomicTy->getValueType(); 2125 if (!type->isBooleanType() && type->isIntegerType() && 2126 !(type->isUnsignedIntegerType() && 2127 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2128 CGF.getLangOpts().getSignedOverflowBehavior() != 2129 LangOptions::SOB_Trapping) { 2130 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2131 switch (OpInfo.Opcode) { 2132 // We don't have atomicrmw operands for *, %, /, <<, >> 2133 case BO_MulAssign: case BO_DivAssign: 2134 case BO_RemAssign: 2135 case BO_ShlAssign: 2136 case BO_ShrAssign: 2137 break; 2138 case BO_AddAssign: 2139 aop = llvm::AtomicRMWInst::Add; 2140 break; 2141 case BO_SubAssign: 2142 aop = llvm::AtomicRMWInst::Sub; 2143 break; 2144 case BO_AndAssign: 2145 aop = llvm::AtomicRMWInst::And; 2146 break; 2147 case BO_XorAssign: 2148 aop = llvm::AtomicRMWInst::Xor; 2149 break; 2150 case BO_OrAssign: 2151 aop = llvm::AtomicRMWInst::Or; 2152 break; 2153 default: 2154 llvm_unreachable("Invalid compound assignment type"); 2155 } 2156 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2157 llvm::Value *amt = CGF.EmitToMemory( 2158 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2159 E->getExprLoc()), 2160 LHSTy); 2161 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2162 llvm::AtomicOrdering::SequentiallyConsistent); 2163 return LHSLV; 2164 } 2165 } 2166 // FIXME: For floating point types, we should be saving and restoring the 2167 // floating point environment in the loop. 2168 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2169 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2170 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2171 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2172 Builder.CreateBr(opBB); 2173 Builder.SetInsertPoint(opBB); 2174 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2175 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2176 OpInfo.LHS = atomicPHI; 2177 } 2178 else 2179 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2180 2181 SourceLocation Loc = E->getExprLoc(); 2182 OpInfo.LHS = 2183 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2184 2185 // Expand the binary operator. 2186 Result = (this->*Func)(OpInfo); 2187 2188 // Convert the result back to the LHS type. 2189 Result = 2190 EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc); 2191 2192 if (atomicPHI) { 2193 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2194 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2195 auto Pair = CGF.EmitAtomicCompareExchange( 2196 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2197 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2198 llvm::Value *success = Pair.second; 2199 atomicPHI->addIncoming(old, opBB); 2200 Builder.CreateCondBr(success, contBB, opBB); 2201 Builder.SetInsertPoint(contBB); 2202 return LHSLV; 2203 } 2204 2205 // Store the result value into the LHS lvalue. Bit-fields are handled 2206 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2207 // 'An assignment expression has the value of the left operand after the 2208 // assignment...'. 2209 if (LHSLV.isBitField()) 2210 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2211 else 2212 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2213 2214 return LHSLV; 2215 } 2216 2217 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2218 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2219 bool Ignore = TestAndClearIgnoreResultAssign(); 2220 Value *RHS; 2221 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2222 2223 // If the result is clearly ignored, return now. 2224 if (Ignore) 2225 return nullptr; 2226 2227 // The result of an assignment in C is the assigned r-value. 2228 if (!CGF.getLangOpts().CPlusPlus) 2229 return RHS; 2230 2231 // If the lvalue is non-volatile, return the computed value of the assignment. 2232 if (!LHS.isVolatileQualified()) 2233 return RHS; 2234 2235 // Otherwise, reload the value. 2236 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2237 } 2238 2239 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2240 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2241 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2242 2243 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2244 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2245 SanitizerKind::IntegerDivideByZero)); 2246 } 2247 2248 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2249 Ops.Ty->hasSignedIntegerRepresentation()) { 2250 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2251 2252 llvm::Value *IntMin = 2253 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2254 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2255 2256 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2257 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2258 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2259 Checks.push_back( 2260 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2261 } 2262 2263 if (Checks.size() > 0) 2264 EmitBinOpCheck(Checks, Ops); 2265 } 2266 2267 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2268 { 2269 CodeGenFunction::SanitizerScope SanScope(&CGF); 2270 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2271 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2272 Ops.Ty->isIntegerType()) { 2273 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2274 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2275 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2276 Ops.Ty->isRealFloatingType()) { 2277 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2278 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2279 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2280 Ops); 2281 } 2282 } 2283 2284 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2285 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2286 if (CGF.getLangOpts().OpenCL && 2287 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 2288 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 2289 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 2290 // build option allows an application to specify that single precision 2291 // floating-point divide (x/y and 1/x) and sqrt used in the program 2292 // source are correctly rounded. 2293 llvm::Type *ValTy = Val->getType(); 2294 if (ValTy->isFloatTy() || 2295 (isa<llvm::VectorType>(ValTy) && 2296 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2297 CGF.SetFPAccuracy(Val, 2.5); 2298 } 2299 return Val; 2300 } 2301 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2302 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2303 else 2304 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2305 } 2306 2307 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2308 // Rem in C can't be a floating point type: C99 6.5.5p2. 2309 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2310 CodeGenFunction::SanitizerScope SanScope(&CGF); 2311 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2312 2313 if (Ops.Ty->isIntegerType()) 2314 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2315 } 2316 2317 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2318 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2319 else 2320 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2321 } 2322 2323 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2324 unsigned IID; 2325 unsigned OpID = 0; 2326 2327 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2328 switch (Ops.Opcode) { 2329 case BO_Add: 2330 case BO_AddAssign: 2331 OpID = 1; 2332 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2333 llvm::Intrinsic::uadd_with_overflow; 2334 break; 2335 case BO_Sub: 2336 case BO_SubAssign: 2337 OpID = 2; 2338 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2339 llvm::Intrinsic::usub_with_overflow; 2340 break; 2341 case BO_Mul: 2342 case BO_MulAssign: 2343 OpID = 3; 2344 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2345 llvm::Intrinsic::umul_with_overflow; 2346 break; 2347 default: 2348 llvm_unreachable("Unsupported operation for overflow detection"); 2349 } 2350 OpID <<= 1; 2351 if (isSigned) 2352 OpID |= 1; 2353 2354 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2355 2356 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2357 2358 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 2359 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2360 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2361 2362 // Handle overflow with llvm.trap if no custom handler has been specified. 2363 const std::string *handlerName = 2364 &CGF.getLangOpts().OverflowHandler; 2365 if (handlerName->empty()) { 2366 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2367 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2368 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 2369 CodeGenFunction::SanitizerScope SanScope(&CGF); 2370 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 2371 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 2372 : SanitizerKind::UnsignedIntegerOverflow; 2373 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 2374 } else 2375 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2376 return result; 2377 } 2378 2379 // Branch in case of overflow. 2380 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2381 llvm::BasicBlock *continueBB = 2382 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 2383 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2384 2385 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2386 2387 // If an overflow handler is set, then we want to call it and then use its 2388 // result, if it returns. 2389 Builder.SetInsertPoint(overflowBB); 2390 2391 // Get the overflow handler. 2392 llvm::Type *Int8Ty = CGF.Int8Ty; 2393 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2394 llvm::FunctionType *handlerTy = 2395 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2396 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2397 2398 // Sign extend the args to 64-bit, so that we can use the same handler for 2399 // all types of overflow. 2400 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2401 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2402 2403 // Call the handler with the two arguments, the operation, and the size of 2404 // the result. 2405 llvm::Value *handlerArgs[] = { 2406 lhs, 2407 rhs, 2408 Builder.getInt8(OpID), 2409 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2410 }; 2411 llvm::Value *handlerResult = 2412 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2413 2414 // Truncate the result back to the desired size. 2415 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2416 Builder.CreateBr(continueBB); 2417 2418 Builder.SetInsertPoint(continueBB); 2419 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2420 phi->addIncoming(result, initialBB); 2421 phi->addIncoming(handlerResult, overflowBB); 2422 2423 return phi; 2424 } 2425 2426 /// Emit pointer + index arithmetic. 2427 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2428 const BinOpInfo &op, 2429 bool isSubtraction) { 2430 // Must have binary (not unary) expr here. Unary pointer 2431 // increment/decrement doesn't use this path. 2432 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2433 2434 Value *pointer = op.LHS; 2435 Expr *pointerOperand = expr->getLHS(); 2436 Value *index = op.RHS; 2437 Expr *indexOperand = expr->getRHS(); 2438 2439 // In a subtraction, the LHS is always the pointer. 2440 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2441 std::swap(pointer, index); 2442 std::swap(pointerOperand, indexOperand); 2443 } 2444 2445 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2446 auto &DL = CGF.CGM.getDataLayout(); 2447 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 2448 if (width != DL.getTypeSizeInBits(PtrTy)) { 2449 // Zero-extend or sign-extend the pointer value according to 2450 // whether the index is signed or not. 2451 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2452 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned, 2453 "idx.ext"); 2454 } 2455 2456 // If this is subtraction, negate the index. 2457 if (isSubtraction) 2458 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2459 2460 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 2461 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2462 /*Accessed*/ false); 2463 2464 const PointerType *pointerType 2465 = pointerOperand->getType()->getAs<PointerType>(); 2466 if (!pointerType) { 2467 QualType objectType = pointerOperand->getType() 2468 ->castAs<ObjCObjectPointerType>() 2469 ->getPointeeType(); 2470 llvm::Value *objectSize 2471 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2472 2473 index = CGF.Builder.CreateMul(index, objectSize); 2474 2475 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2476 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2477 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2478 } 2479 2480 QualType elementType = pointerType->getPointeeType(); 2481 if (const VariableArrayType *vla 2482 = CGF.getContext().getAsVariableArrayType(elementType)) { 2483 // The element count here is the total number of non-VLA elements. 2484 llvm::Value *numElements = CGF.getVLASize(vla).first; 2485 2486 // Effectively, the multiply by the VLA size is part of the GEP. 2487 // GEP indexes are signed, and scaling an index isn't permitted to 2488 // signed-overflow, so we use the same semantics for our explicit 2489 // multiply. We suppress this if overflow is not undefined behavior. 2490 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2491 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2492 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2493 } else { 2494 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2495 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2496 } 2497 return pointer; 2498 } 2499 2500 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2501 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2502 // future proof. 2503 if (elementType->isVoidType() || elementType->isFunctionType()) { 2504 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2505 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2506 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2507 } 2508 2509 if (CGF.getLangOpts().isSignedOverflowDefined()) 2510 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2511 2512 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2513 } 2514 2515 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2516 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2517 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2518 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2519 // efficient operations. 2520 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2521 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2522 bool negMul, bool negAdd) { 2523 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2524 2525 Value *MulOp0 = MulOp->getOperand(0); 2526 Value *MulOp1 = MulOp->getOperand(1); 2527 if (negMul) { 2528 MulOp0 = 2529 Builder.CreateFSub( 2530 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2531 "neg"); 2532 } else if (negAdd) { 2533 Addend = 2534 Builder.CreateFSub( 2535 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2536 "neg"); 2537 } 2538 2539 Value *FMulAdd = Builder.CreateCall( 2540 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2541 {MulOp0, MulOp1, Addend}); 2542 MulOp->eraseFromParent(); 2543 2544 return FMulAdd; 2545 } 2546 2547 // Check whether it would be legal to emit an fmuladd intrinsic call to 2548 // represent op and if so, build the fmuladd. 2549 // 2550 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2551 // Does NOT check the type of the operation - it's assumed that this function 2552 // will be called from contexts where it's known that the type is contractable. 2553 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2554 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2555 bool isSub=false) { 2556 2557 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2558 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2559 "Only fadd/fsub can be the root of an fmuladd."); 2560 2561 // Check whether this op is marked as fusable. 2562 if (!op.FPContractable) 2563 return nullptr; 2564 2565 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is 2566 // either disabled, or handled entirely by the LLVM backend). 2567 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On) 2568 return nullptr; 2569 2570 // We have a potentially fusable op. Look for a mul on one of the operands. 2571 // Also, make sure that the mul result isn't used directly. In that case, 2572 // there's no point creating a muladd operation. 2573 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2574 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 2575 LHSBinOp->use_empty()) 2576 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2577 } 2578 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2579 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 2580 RHSBinOp->use_empty()) 2581 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2582 } 2583 2584 return nullptr; 2585 } 2586 2587 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2588 if (op.LHS->getType()->isPointerTy() || 2589 op.RHS->getType()->isPointerTy()) 2590 return emitPointerArithmetic(CGF, op, /*subtraction*/ false); 2591 2592 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2593 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2594 case LangOptions::SOB_Defined: 2595 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2596 case LangOptions::SOB_Undefined: 2597 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2598 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2599 // Fall through. 2600 case LangOptions::SOB_Trapping: 2601 return EmitOverflowCheckedBinOp(op); 2602 } 2603 } 2604 2605 if (op.Ty->isUnsignedIntegerType() && 2606 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2607 return EmitOverflowCheckedBinOp(op); 2608 2609 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2610 // Try to form an fmuladd. 2611 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2612 return FMulAdd; 2613 2614 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2615 } 2616 2617 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2618 } 2619 2620 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2621 // The LHS is always a pointer if either side is. 2622 if (!op.LHS->getType()->isPointerTy()) { 2623 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2624 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2625 case LangOptions::SOB_Defined: 2626 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2627 case LangOptions::SOB_Undefined: 2628 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2629 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2630 // Fall through. 2631 case LangOptions::SOB_Trapping: 2632 return EmitOverflowCheckedBinOp(op); 2633 } 2634 } 2635 2636 if (op.Ty->isUnsignedIntegerType() && 2637 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2638 return EmitOverflowCheckedBinOp(op); 2639 2640 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2641 // Try to form an fmuladd. 2642 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2643 return FMulAdd; 2644 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2645 } 2646 2647 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2648 } 2649 2650 // If the RHS is not a pointer, then we have normal pointer 2651 // arithmetic. 2652 if (!op.RHS->getType()->isPointerTy()) 2653 return emitPointerArithmetic(CGF, op, /*subtraction*/ true); 2654 2655 // Otherwise, this is a pointer subtraction. 2656 2657 // Do the raw subtraction part. 2658 llvm::Value *LHS 2659 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2660 llvm::Value *RHS 2661 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2662 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2663 2664 // Okay, figure out the element size. 2665 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2666 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2667 2668 llvm::Value *divisor = nullptr; 2669 2670 // For a variable-length array, this is going to be non-constant. 2671 if (const VariableArrayType *vla 2672 = CGF.getContext().getAsVariableArrayType(elementType)) { 2673 llvm::Value *numElements; 2674 std::tie(numElements, elementType) = CGF.getVLASize(vla); 2675 2676 divisor = numElements; 2677 2678 // Scale the number of non-VLA elements by the non-VLA element size. 2679 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2680 if (!eltSize.isOne()) 2681 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2682 2683 // For everything elese, we can just compute it, safe in the 2684 // assumption that Sema won't let anything through that we can't 2685 // safely compute the size of. 2686 } else { 2687 CharUnits elementSize; 2688 // Handle GCC extension for pointer arithmetic on void* and 2689 // function pointer types. 2690 if (elementType->isVoidType() || elementType->isFunctionType()) 2691 elementSize = CharUnits::One(); 2692 else 2693 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2694 2695 // Don't even emit the divide for element size of 1. 2696 if (elementSize.isOne()) 2697 return diffInChars; 2698 2699 divisor = CGF.CGM.getSize(elementSize); 2700 } 2701 2702 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2703 // pointer difference in C is only defined in the case where both operands 2704 // are pointing to elements of an array. 2705 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2706 } 2707 2708 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2709 llvm::IntegerType *Ty; 2710 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 2711 Ty = cast<llvm::IntegerType>(VT->getElementType()); 2712 else 2713 Ty = cast<llvm::IntegerType>(LHS->getType()); 2714 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 2715 } 2716 2717 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2718 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2719 // RHS to the same size as the LHS. 2720 Value *RHS = Ops.RHS; 2721 if (Ops.LHS->getType() != RHS->getType()) 2722 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2723 2724 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 2725 Ops.Ty->hasSignedIntegerRepresentation() && 2726 !CGF.getLangOpts().isSignedOverflowDefined(); 2727 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 2728 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2729 if (CGF.getLangOpts().OpenCL) 2730 RHS = 2731 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 2732 else if ((SanitizeBase || SanitizeExponent) && 2733 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2734 CodeGenFunction::SanitizerScope SanScope(&CGF); 2735 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 2736 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS); 2737 llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne); 2738 2739 if (SanitizeExponent) { 2740 Checks.push_back( 2741 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 2742 } 2743 2744 if (SanitizeBase) { 2745 // Check whether we are shifting any non-zero bits off the top of the 2746 // integer. We only emit this check if exponent is valid - otherwise 2747 // instructions below will have undefined behavior themselves. 2748 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 2749 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2750 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 2751 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 2752 CGF.EmitBlock(CheckShiftBase); 2753 llvm::Value *BitsShiftedOff = 2754 Builder.CreateLShr(Ops.LHS, 2755 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros", 2756 /*NUW*/true, /*NSW*/true), 2757 "shl.check"); 2758 if (CGF.getLangOpts().CPlusPlus) { 2759 // In C99, we are not permitted to shift a 1 bit into the sign bit. 2760 // Under C++11's rules, shifting a 1 bit into the sign bit is 2761 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 2762 // define signed left shifts, so we use the C99 and C++11 rules there). 2763 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 2764 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 2765 } 2766 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 2767 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 2768 CGF.EmitBlock(Cont); 2769 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 2770 BaseCheck->addIncoming(Builder.getTrue(), Orig); 2771 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 2772 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 2773 } 2774 2775 assert(!Checks.empty()); 2776 EmitBinOpCheck(Checks, Ops); 2777 } 2778 2779 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2780 } 2781 2782 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2783 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2784 // RHS to the same size as the LHS. 2785 Value *RHS = Ops.RHS; 2786 if (Ops.LHS->getType() != RHS->getType()) 2787 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2788 2789 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2790 if (CGF.getLangOpts().OpenCL) 2791 RHS = 2792 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 2793 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 2794 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2795 CodeGenFunction::SanitizerScope SanScope(&CGF); 2796 llvm::Value *Valid = 2797 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 2798 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 2799 } 2800 2801 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2802 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 2803 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 2804 } 2805 2806 enum IntrinsicType { VCMPEQ, VCMPGT }; 2807 // return corresponding comparison intrinsic for given vector type 2808 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 2809 BuiltinType::Kind ElemKind) { 2810 switch (ElemKind) { 2811 default: llvm_unreachable("unexpected element type"); 2812 case BuiltinType::Char_U: 2813 case BuiltinType::UChar: 2814 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2815 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 2816 case BuiltinType::Char_S: 2817 case BuiltinType::SChar: 2818 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2819 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 2820 case BuiltinType::UShort: 2821 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2822 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 2823 case BuiltinType::Short: 2824 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2825 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 2826 case BuiltinType::UInt: 2827 case BuiltinType::ULong: 2828 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2829 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 2830 case BuiltinType::Int: 2831 case BuiltinType::Long: 2832 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2833 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 2834 case BuiltinType::Float: 2835 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 2836 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 2837 } 2838 } 2839 2840 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 2841 llvm::CmpInst::Predicate UICmpOpc, 2842 llvm::CmpInst::Predicate SICmpOpc, 2843 llvm::CmpInst::Predicate FCmpOpc) { 2844 TestAndClearIgnoreResultAssign(); 2845 Value *Result; 2846 QualType LHSTy = E->getLHS()->getType(); 2847 QualType RHSTy = E->getRHS()->getType(); 2848 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 2849 assert(E->getOpcode() == BO_EQ || 2850 E->getOpcode() == BO_NE); 2851 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 2852 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 2853 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 2854 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 2855 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 2856 Value *LHS = Visit(E->getLHS()); 2857 Value *RHS = Visit(E->getRHS()); 2858 2859 // If AltiVec, the comparison results in a numeric type, so we use 2860 // intrinsics comparing vectors and giving 0 or 1 as a result 2861 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 2862 // constants for mapping CR6 register bits to predicate result 2863 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 2864 2865 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 2866 2867 // in several cases vector arguments order will be reversed 2868 Value *FirstVecArg = LHS, 2869 *SecondVecArg = RHS; 2870 2871 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 2872 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 2873 BuiltinType::Kind ElementKind = BTy->getKind(); 2874 2875 switch(E->getOpcode()) { 2876 default: llvm_unreachable("is not a comparison operation"); 2877 case BO_EQ: 2878 CR6 = CR6_LT; 2879 ID = GetIntrinsic(VCMPEQ, ElementKind); 2880 break; 2881 case BO_NE: 2882 CR6 = CR6_EQ; 2883 ID = GetIntrinsic(VCMPEQ, ElementKind); 2884 break; 2885 case BO_LT: 2886 CR6 = CR6_LT; 2887 ID = GetIntrinsic(VCMPGT, ElementKind); 2888 std::swap(FirstVecArg, SecondVecArg); 2889 break; 2890 case BO_GT: 2891 CR6 = CR6_LT; 2892 ID = GetIntrinsic(VCMPGT, ElementKind); 2893 break; 2894 case BO_LE: 2895 if (ElementKind == BuiltinType::Float) { 2896 CR6 = CR6_LT; 2897 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2898 std::swap(FirstVecArg, SecondVecArg); 2899 } 2900 else { 2901 CR6 = CR6_EQ; 2902 ID = GetIntrinsic(VCMPGT, ElementKind); 2903 } 2904 break; 2905 case BO_GE: 2906 if (ElementKind == BuiltinType::Float) { 2907 CR6 = CR6_LT; 2908 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2909 } 2910 else { 2911 CR6 = CR6_EQ; 2912 ID = GetIntrinsic(VCMPGT, ElementKind); 2913 std::swap(FirstVecArg, SecondVecArg); 2914 } 2915 break; 2916 } 2917 2918 Value *CR6Param = Builder.getInt32(CR6); 2919 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 2920 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 2921 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 2922 E->getExprLoc()); 2923 } 2924 2925 if (LHS->getType()->isFPOrFPVectorTy()) { 2926 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 2927 } else if (LHSTy->hasSignedIntegerRepresentation()) { 2928 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 2929 } else { 2930 // Unsigned integers and pointers. 2931 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 2932 } 2933 2934 // If this is a vector comparison, sign extend the result to the appropriate 2935 // vector integer type and return it (don't convert to bool). 2936 if (LHSTy->isVectorType()) 2937 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2938 2939 } else { 2940 // Complex Comparison: can only be an equality comparison. 2941 CodeGenFunction::ComplexPairTy LHS, RHS; 2942 QualType CETy; 2943 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 2944 LHS = CGF.EmitComplexExpr(E->getLHS()); 2945 CETy = CTy->getElementType(); 2946 } else { 2947 LHS.first = Visit(E->getLHS()); 2948 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 2949 CETy = LHSTy; 2950 } 2951 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 2952 RHS = CGF.EmitComplexExpr(E->getRHS()); 2953 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 2954 CTy->getElementType()) && 2955 "The element types must always match."); 2956 (void)CTy; 2957 } else { 2958 RHS.first = Visit(E->getRHS()); 2959 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 2960 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 2961 "The element types must always match."); 2962 } 2963 2964 Value *ResultR, *ResultI; 2965 if (CETy->isRealFloatingType()) { 2966 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 2967 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 2968 } else { 2969 // Complex comparisons can only be equality comparisons. As such, signed 2970 // and unsigned opcodes are the same. 2971 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 2972 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 2973 } 2974 2975 if (E->getOpcode() == BO_EQ) { 2976 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 2977 } else { 2978 assert(E->getOpcode() == BO_NE && 2979 "Complex comparison other than == or != ?"); 2980 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 2981 } 2982 } 2983 2984 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 2985 E->getExprLoc()); 2986 } 2987 2988 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 2989 bool Ignore = TestAndClearIgnoreResultAssign(); 2990 2991 Value *RHS; 2992 LValue LHS; 2993 2994 switch (E->getLHS()->getType().getObjCLifetime()) { 2995 case Qualifiers::OCL_Strong: 2996 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 2997 break; 2998 2999 case Qualifiers::OCL_Autoreleasing: 3000 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3001 break; 3002 3003 case Qualifiers::OCL_ExplicitNone: 3004 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 3005 break; 3006 3007 case Qualifiers::OCL_Weak: 3008 RHS = Visit(E->getRHS()); 3009 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3010 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3011 break; 3012 3013 case Qualifiers::OCL_None: 3014 // __block variables need to have the rhs evaluated first, plus 3015 // this should improve codegen just a little. 3016 RHS = Visit(E->getRHS()); 3017 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3018 3019 // Store the value into the LHS. Bit-fields are handled specially 3020 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3021 // 'An assignment expression has the value of the left operand after 3022 // the assignment...'. 3023 if (LHS.isBitField()) 3024 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3025 else 3026 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3027 } 3028 3029 // If the result is clearly ignored, return now. 3030 if (Ignore) 3031 return nullptr; 3032 3033 // The result of an assignment in C is the assigned r-value. 3034 if (!CGF.getLangOpts().CPlusPlus) 3035 return RHS; 3036 3037 // If the lvalue is non-volatile, return the computed value of the assignment. 3038 if (!LHS.isVolatileQualified()) 3039 return RHS; 3040 3041 // Otherwise, reload the value. 3042 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3043 } 3044 3045 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3046 // Perform vector logical and on comparisons with zero vectors. 3047 if (E->getType()->isVectorType()) { 3048 CGF.incrementProfileCounter(E); 3049 3050 Value *LHS = Visit(E->getLHS()); 3051 Value *RHS = Visit(E->getRHS()); 3052 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3053 if (LHS->getType()->isFPOrFPVectorTy()) { 3054 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3055 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3056 } else { 3057 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3058 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3059 } 3060 Value *And = Builder.CreateAnd(LHS, RHS); 3061 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3062 } 3063 3064 llvm::Type *ResTy = ConvertType(E->getType()); 3065 3066 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3067 // If we have 1 && X, just emit X without inserting the control flow. 3068 bool LHSCondVal; 3069 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3070 if (LHSCondVal) { // If we have 1 && X, just emit X. 3071 CGF.incrementProfileCounter(E); 3072 3073 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3074 // ZExt result to int or bool. 3075 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3076 } 3077 3078 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3079 if (!CGF.ContainsLabel(E->getRHS())) 3080 return llvm::Constant::getNullValue(ResTy); 3081 } 3082 3083 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3084 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3085 3086 CodeGenFunction::ConditionalEvaluation eval(CGF); 3087 3088 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3089 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 3090 CGF.getProfileCount(E->getRHS())); 3091 3092 // Any edges into the ContBlock are now from an (indeterminate number of) 3093 // edges from this first condition. All of these values will be false. Start 3094 // setting up the PHI node in the Cont Block for this. 3095 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3096 "", ContBlock); 3097 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3098 PI != PE; ++PI) 3099 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3100 3101 eval.begin(CGF); 3102 CGF.EmitBlock(RHSBlock); 3103 CGF.incrementProfileCounter(E); 3104 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3105 eval.end(CGF); 3106 3107 // Reaquire the RHS block, as there may be subblocks inserted. 3108 RHSBlock = Builder.GetInsertBlock(); 3109 3110 // Emit an unconditional branch from this block to ContBlock. 3111 { 3112 // There is no need to emit line number for unconditional branch. 3113 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3114 CGF.EmitBlock(ContBlock); 3115 } 3116 // Insert an entry into the phi node for the edge with the value of RHSCond. 3117 PN->addIncoming(RHSCond, RHSBlock); 3118 3119 // ZExt result to int. 3120 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3121 } 3122 3123 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3124 // Perform vector logical or on comparisons with zero vectors. 3125 if (E->getType()->isVectorType()) { 3126 CGF.incrementProfileCounter(E); 3127 3128 Value *LHS = Visit(E->getLHS()); 3129 Value *RHS = Visit(E->getRHS()); 3130 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3131 if (LHS->getType()->isFPOrFPVectorTy()) { 3132 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3133 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3134 } else { 3135 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3136 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3137 } 3138 Value *Or = Builder.CreateOr(LHS, RHS); 3139 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3140 } 3141 3142 llvm::Type *ResTy = ConvertType(E->getType()); 3143 3144 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3145 // If we have 0 || X, just emit X without inserting the control flow. 3146 bool LHSCondVal; 3147 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3148 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3149 CGF.incrementProfileCounter(E); 3150 3151 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3152 // ZExt result to int or bool. 3153 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3154 } 3155 3156 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3157 if (!CGF.ContainsLabel(E->getRHS())) 3158 return llvm::ConstantInt::get(ResTy, 1); 3159 } 3160 3161 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3162 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3163 3164 CodeGenFunction::ConditionalEvaluation eval(CGF); 3165 3166 // Branch on the LHS first. If it is true, go to the success (cont) block. 3167 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3168 CGF.getCurrentProfileCount() - 3169 CGF.getProfileCount(E->getRHS())); 3170 3171 // Any edges into the ContBlock are now from an (indeterminate number of) 3172 // edges from this first condition. All of these values will be true. Start 3173 // setting up the PHI node in the Cont Block for this. 3174 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3175 "", ContBlock); 3176 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3177 PI != PE; ++PI) 3178 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3179 3180 eval.begin(CGF); 3181 3182 // Emit the RHS condition as a bool value. 3183 CGF.EmitBlock(RHSBlock); 3184 CGF.incrementProfileCounter(E); 3185 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3186 3187 eval.end(CGF); 3188 3189 // Reaquire the RHS block, as there may be subblocks inserted. 3190 RHSBlock = Builder.GetInsertBlock(); 3191 3192 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3193 // into the phi node for the edge with the value of RHSCond. 3194 CGF.EmitBlock(ContBlock); 3195 PN->addIncoming(RHSCond, RHSBlock); 3196 3197 // ZExt result to int. 3198 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3199 } 3200 3201 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3202 CGF.EmitIgnoredExpr(E->getLHS()); 3203 CGF.EnsureInsertPoint(); 3204 return Visit(E->getRHS()); 3205 } 3206 3207 //===----------------------------------------------------------------------===// 3208 // Other Operators 3209 //===----------------------------------------------------------------------===// 3210 3211 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3212 /// expression is cheap enough and side-effect-free enough to evaluate 3213 /// unconditionally instead of conditionally. This is used to convert control 3214 /// flow into selects in some cases. 3215 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3216 CodeGenFunction &CGF) { 3217 // Anything that is an integer or floating point constant is fine. 3218 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3219 3220 // Even non-volatile automatic variables can't be evaluated unconditionally. 3221 // Referencing a thread_local may cause non-trivial initialization work to 3222 // occur. If we're inside a lambda and one of the variables is from the scope 3223 // outside the lambda, that function may have returned already. Reading its 3224 // locals is a bad idea. Also, these reads may introduce races there didn't 3225 // exist in the source-level program. 3226 } 3227 3228 3229 Value *ScalarExprEmitter:: 3230 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3231 TestAndClearIgnoreResultAssign(); 3232 3233 // Bind the common expression if necessary. 3234 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3235 3236 Expr *condExpr = E->getCond(); 3237 Expr *lhsExpr = E->getTrueExpr(); 3238 Expr *rhsExpr = E->getFalseExpr(); 3239 3240 // If the condition constant folds and can be elided, try to avoid emitting 3241 // the condition and the dead arm. 3242 bool CondExprBool; 3243 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3244 Expr *live = lhsExpr, *dead = rhsExpr; 3245 if (!CondExprBool) std::swap(live, dead); 3246 3247 // If the dead side doesn't have labels we need, just emit the Live part. 3248 if (!CGF.ContainsLabel(dead)) { 3249 if (CondExprBool) 3250 CGF.incrementProfileCounter(E); 3251 Value *Result = Visit(live); 3252 3253 // If the live part is a throw expression, it acts like it has a void 3254 // type, so evaluating it returns a null Value*. However, a conditional 3255 // with non-void type must return a non-null Value*. 3256 if (!Result && !E->getType()->isVoidType()) 3257 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3258 3259 return Result; 3260 } 3261 } 3262 3263 // OpenCL: If the condition is a vector, we can treat this condition like 3264 // the select function. 3265 if (CGF.getLangOpts().OpenCL 3266 && condExpr->getType()->isVectorType()) { 3267 CGF.incrementProfileCounter(E); 3268 3269 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3270 llvm::Value *LHS = Visit(lhsExpr); 3271 llvm::Value *RHS = Visit(rhsExpr); 3272 3273 llvm::Type *condType = ConvertType(condExpr->getType()); 3274 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3275 3276 unsigned numElem = vecTy->getNumElements(); 3277 llvm::Type *elemType = vecTy->getElementType(); 3278 3279 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3280 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3281 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3282 llvm::VectorType::get(elemType, 3283 numElem), 3284 "sext"); 3285 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3286 3287 // Cast float to int to perform ANDs if necessary. 3288 llvm::Value *RHSTmp = RHS; 3289 llvm::Value *LHSTmp = LHS; 3290 bool wasCast = false; 3291 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3292 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3293 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3294 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3295 wasCast = true; 3296 } 3297 3298 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3299 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3300 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3301 if (wasCast) 3302 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3303 3304 return tmp5; 3305 } 3306 3307 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3308 // select instead of as control flow. We can only do this if it is cheap and 3309 // safe to evaluate the LHS and RHS unconditionally. 3310 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3311 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3312 CGF.incrementProfileCounter(E); 3313 3314 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3315 llvm::Value *LHS = Visit(lhsExpr); 3316 llvm::Value *RHS = Visit(rhsExpr); 3317 if (!LHS) { 3318 // If the conditional has void type, make sure we return a null Value*. 3319 assert(!RHS && "LHS and RHS types must match"); 3320 return nullptr; 3321 } 3322 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3323 } 3324 3325 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3326 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3327 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3328 3329 CodeGenFunction::ConditionalEvaluation eval(CGF); 3330 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 3331 CGF.getProfileCount(lhsExpr)); 3332 3333 CGF.EmitBlock(LHSBlock); 3334 CGF.incrementProfileCounter(E); 3335 eval.begin(CGF); 3336 Value *LHS = Visit(lhsExpr); 3337 eval.end(CGF); 3338 3339 LHSBlock = Builder.GetInsertBlock(); 3340 Builder.CreateBr(ContBlock); 3341 3342 CGF.EmitBlock(RHSBlock); 3343 eval.begin(CGF); 3344 Value *RHS = Visit(rhsExpr); 3345 eval.end(CGF); 3346 3347 RHSBlock = Builder.GetInsertBlock(); 3348 CGF.EmitBlock(ContBlock); 3349 3350 // If the LHS or RHS is a throw expression, it will be legitimately null. 3351 if (!LHS) 3352 return RHS; 3353 if (!RHS) 3354 return LHS; 3355 3356 // Create a PHI node for the real part. 3357 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3358 PN->addIncoming(LHS, LHSBlock); 3359 PN->addIncoming(RHS, RHSBlock); 3360 return PN; 3361 } 3362 3363 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3364 return Visit(E->getChosenSubExpr()); 3365 } 3366 3367 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3368 QualType Ty = VE->getType(); 3369 3370 if (Ty->isVariablyModifiedType()) 3371 CGF.EmitVariablyModifiedType(Ty); 3372 3373 Address ArgValue = Address::invalid(); 3374 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 3375 3376 llvm::Type *ArgTy = ConvertType(VE->getType()); 3377 3378 // If EmitVAArg fails, emit an error. 3379 if (!ArgPtr.isValid()) { 3380 CGF.ErrorUnsupported(VE, "va_arg expression"); 3381 return llvm::UndefValue::get(ArgTy); 3382 } 3383 3384 // FIXME Volatility. 3385 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 3386 3387 // If EmitVAArg promoted the type, we must truncate it. 3388 if (ArgTy != Val->getType()) { 3389 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 3390 Val = Builder.CreateIntToPtr(Val, ArgTy); 3391 else 3392 Val = Builder.CreateTrunc(Val, ArgTy); 3393 } 3394 3395 return Val; 3396 } 3397 3398 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3399 return CGF.EmitBlockLiteral(block); 3400 } 3401 3402 // Convert a vec3 to vec4, or vice versa. 3403 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 3404 Value *Src, unsigned NumElementsDst) { 3405 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3406 SmallVector<llvm::Constant*, 4> Args; 3407 Args.push_back(Builder.getInt32(0)); 3408 Args.push_back(Builder.getInt32(1)); 3409 Args.push_back(Builder.getInt32(2)); 3410 if (NumElementsDst == 4) 3411 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3412 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3413 return Builder.CreateShuffleVector(Src, UnV, Mask); 3414 } 3415 3416 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 3417 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 3418 // but could be scalar or vectors of different lengths, and either can be 3419 // pointer. 3420 // There are 4 cases: 3421 // 1. non-pointer -> non-pointer : needs 1 bitcast 3422 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 3423 // 3. pointer -> non-pointer 3424 // a) pointer -> intptr_t : needs 1 ptrtoint 3425 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 3426 // 4. non-pointer -> pointer 3427 // a) intptr_t -> pointer : needs 1 inttoptr 3428 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 3429 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 3430 // allow casting directly between pointer types and non-integer non-pointer 3431 // types. 3432 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 3433 const llvm::DataLayout &DL, 3434 Value *Src, llvm::Type *DstTy, 3435 StringRef Name = "") { 3436 auto SrcTy = Src->getType(); 3437 3438 // Case 1. 3439 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 3440 return Builder.CreateBitCast(Src, DstTy, Name); 3441 3442 // Case 2. 3443 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 3444 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 3445 3446 // Case 3. 3447 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 3448 // Case 3b. 3449 if (!DstTy->isIntegerTy()) 3450 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 3451 // Cases 3a and 3b. 3452 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 3453 } 3454 3455 // Case 4b. 3456 if (!SrcTy->isIntegerTy()) 3457 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 3458 // Cases 4a and 4b. 3459 return Builder.CreateIntToPtr(Src, DstTy, Name); 3460 } 3461 3462 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3463 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3464 llvm::Type *DstTy = ConvertType(E->getType()); 3465 3466 llvm::Type *SrcTy = Src->getType(); 3467 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 3468 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 3469 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 3470 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 3471 3472 // Going from vec3 to non-vec3 is a special case and requires a shuffle 3473 // vector to get a vec4, then a bitcast if the target type is different. 3474 if (NumElementsSrc == 3 && NumElementsDst != 3) { 3475 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 3476 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 3477 DstTy); 3478 Src->setName("astype"); 3479 return Src; 3480 } 3481 3482 // Going from non-vec3 to vec3 is a special case and requires a bitcast 3483 // to vec4 if the original type is not vec4, then a shuffle vector to 3484 // get a vec3. 3485 if (NumElementsSrc != 3 && NumElementsDst == 3) { 3486 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 3487 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 3488 Vec4Ty); 3489 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 3490 Src->setName("astype"); 3491 return Src; 3492 } 3493 3494 return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 3495 Src, DstTy, "astype"); 3496 } 3497 3498 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3499 return CGF.EmitAtomicExpr(E).getScalarVal(); 3500 } 3501 3502 //===----------------------------------------------------------------------===// 3503 // Entry Point into this File 3504 //===----------------------------------------------------------------------===// 3505 3506 /// Emit the computation of the specified expression of scalar type, ignoring 3507 /// the result. 3508 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3509 assert(E && hasScalarEvaluationKind(E->getType()) && 3510 "Invalid scalar expression to emit"); 3511 3512 return ScalarExprEmitter(*this, IgnoreResultAssign) 3513 .Visit(const_cast<Expr *>(E)); 3514 } 3515 3516 /// Emit a conversion from the specified type to the specified destination type, 3517 /// both of which are LLVM scalar types. 3518 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3519 QualType DstTy, 3520 SourceLocation Loc) { 3521 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3522 "Invalid scalar expression to emit"); 3523 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 3524 } 3525 3526 /// Emit a conversion from the specified complex type to the specified 3527 /// destination type, where the destination type is an LLVM scalar type. 3528 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3529 QualType SrcTy, 3530 QualType DstTy, 3531 SourceLocation Loc) { 3532 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3533 "Invalid complex -> scalar conversion"); 3534 return ScalarExprEmitter(*this) 3535 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 3536 } 3537 3538 3539 llvm::Value *CodeGenFunction:: 3540 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3541 bool isInc, bool isPre) { 3542 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3543 } 3544 3545 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3546 // object->isa or (*object).isa 3547 // Generate code as for: *(Class*)object 3548 3549 Expr *BaseExpr = E->getBase(); 3550 Address Addr = Address::invalid(); 3551 if (BaseExpr->isRValue()) { 3552 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 3553 } else { 3554 Addr = EmitLValue(BaseExpr).getAddress(); 3555 } 3556 3557 // Cast the address to Class*. 3558 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 3559 return MakeAddrLValue(Addr, E->getType()); 3560 } 3561 3562 3563 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3564 const CompoundAssignOperator *E) { 3565 ScalarExprEmitter Scalar(*this); 3566 Value *Result = nullptr; 3567 switch (E->getOpcode()) { 3568 #define COMPOUND_OP(Op) \ 3569 case BO_##Op##Assign: \ 3570 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3571 Result) 3572 COMPOUND_OP(Mul); 3573 COMPOUND_OP(Div); 3574 COMPOUND_OP(Rem); 3575 COMPOUND_OP(Add); 3576 COMPOUND_OP(Sub); 3577 COMPOUND_OP(Shl); 3578 COMPOUND_OP(Shr); 3579 COMPOUND_OP(And); 3580 COMPOUND_OP(Xor); 3581 COMPOUND_OP(Or); 3582 #undef COMPOUND_OP 3583 3584 case BO_PtrMemD: 3585 case BO_PtrMemI: 3586 case BO_Mul: 3587 case BO_Div: 3588 case BO_Rem: 3589 case BO_Add: 3590 case BO_Sub: 3591 case BO_Shl: 3592 case BO_Shr: 3593 case BO_LT: 3594 case BO_GT: 3595 case BO_LE: 3596 case BO_GE: 3597 case BO_EQ: 3598 case BO_NE: 3599 case BO_And: 3600 case BO_Xor: 3601 case BO_Or: 3602 case BO_LAnd: 3603 case BO_LOr: 3604 case BO_Assign: 3605 case BO_Comma: 3606 llvm_unreachable("Not valid compound assignment operators"); 3607 } 3608 3609 llvm_unreachable("Unhandled compound assignment operator"); 3610 } 3611