1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Module.h"
33 #include <cstdarg>
34 
35 using namespace clang;
36 using namespace CodeGen;
37 using llvm::Value;
38 
39 //===----------------------------------------------------------------------===//
40 //                         Scalar Expression Emitter
41 //===----------------------------------------------------------------------===//
42 
43 namespace {
44 struct BinOpInfo {
45   Value *LHS;
46   Value *RHS;
47   QualType Ty;  // Computation Type.
48   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
49   bool FPContractable;
50   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
51 };
52 
53 static bool MustVisitNullValue(const Expr *E) {
54   // If a null pointer expression's type is the C++0x nullptr_t, then
55   // it's not necessarily a simple constant and it must be evaluated
56   // for its potential side effects.
57   return E->getType()->isNullPtrType();
58 }
59 
60 class ScalarExprEmitter
61   : public StmtVisitor<ScalarExprEmitter, Value*> {
62   CodeGenFunction &CGF;
63   CGBuilderTy &Builder;
64   bool IgnoreResultAssign;
65   llvm::LLVMContext &VMContext;
66 public:
67 
68   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
69     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
70       VMContext(cgf.getLLVMContext()) {
71   }
72 
73   //===--------------------------------------------------------------------===//
74   //                               Utilities
75   //===--------------------------------------------------------------------===//
76 
77   bool TestAndClearIgnoreResultAssign() {
78     bool I = IgnoreResultAssign;
79     IgnoreResultAssign = false;
80     return I;
81   }
82 
83   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
84   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
85   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
86     return CGF.EmitCheckedLValue(E, TCK);
87   }
88 
89   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
90                       const BinOpInfo &Info);
91 
92   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
93     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
94   }
95 
96   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
97     const AlignValueAttr *AVAttr = nullptr;
98     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
99       const ValueDecl *VD = DRE->getDecl();
100 
101       if (VD->getType()->isReferenceType()) {
102         if (const auto *TTy =
103             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
104           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
105       } else {
106         // Assumptions for function parameters are emitted at the start of the
107         // function, so there is no need to repeat that here.
108         if (isa<ParmVarDecl>(VD))
109           return;
110 
111         AVAttr = VD->getAttr<AlignValueAttr>();
112       }
113     }
114 
115     if (!AVAttr)
116       if (const auto *TTy =
117           dyn_cast<TypedefType>(E->getType()))
118         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
119 
120     if (!AVAttr)
121       return;
122 
123     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
124     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
125     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
126   }
127 
128   /// EmitLoadOfLValue - Given an expression with complex type that represents a
129   /// value l-value, this method emits the address of the l-value, then loads
130   /// and returns the result.
131   Value *EmitLoadOfLValue(const Expr *E) {
132     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
133                                 E->getExprLoc());
134 
135     EmitLValueAlignmentAssumption(E, V);
136     return V;
137   }
138 
139   /// EmitConversionToBool - Convert the specified expression value to a
140   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
141   Value *EmitConversionToBool(Value *Src, QualType DstTy);
142 
143   /// Emit a check that a conversion to or from a floating-point type does not
144   /// overflow.
145   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
146                                 Value *Src, QualType SrcType, QualType DstType,
147                                 llvm::Type *DstTy, SourceLocation Loc);
148 
149   /// Emit a conversion from the specified type to the specified destination
150   /// type, both of which are LLVM scalar types.
151   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
152                               SourceLocation Loc);
153 
154   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
155                               SourceLocation Loc, bool TreatBooleanAsSigned);
156 
157   /// Emit a conversion from the specified complex type to the specified
158   /// destination type, where the destination type is an LLVM scalar type.
159   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
160                                        QualType SrcTy, QualType DstTy,
161                                        SourceLocation Loc);
162 
163   /// EmitNullValue - Emit a value that corresponds to null for the given type.
164   Value *EmitNullValue(QualType Ty);
165 
166   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
167   Value *EmitFloatToBoolConversion(Value *V) {
168     // Compare against 0.0 for fp scalars.
169     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
170     return Builder.CreateFCmpUNE(V, Zero, "tobool");
171   }
172 
173   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
174   Value *EmitPointerToBoolConversion(Value *V) {
175     Value *Zero = llvm::ConstantPointerNull::get(
176                                       cast<llvm::PointerType>(V->getType()));
177     return Builder.CreateICmpNE(V, Zero, "tobool");
178   }
179 
180   Value *EmitIntToBoolConversion(Value *V) {
181     // Because of the type rules of C, we often end up computing a
182     // logical value, then zero extending it to int, then wanting it
183     // as a logical value again.  Optimize this common case.
184     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
185       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
186         Value *Result = ZI->getOperand(0);
187         // If there aren't any more uses, zap the instruction to save space.
188         // Note that there can be more uses, for example if this
189         // is the result of an assignment.
190         if (ZI->use_empty())
191           ZI->eraseFromParent();
192         return Result;
193       }
194     }
195 
196     return Builder.CreateIsNotNull(V, "tobool");
197   }
198 
199   //===--------------------------------------------------------------------===//
200   //                            Visitor Methods
201   //===--------------------------------------------------------------------===//
202 
203   Value *Visit(Expr *E) {
204     ApplyDebugLocation DL(CGF, E);
205     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
206   }
207 
208   Value *VisitStmt(Stmt *S) {
209     S->dump(CGF.getContext().getSourceManager());
210     llvm_unreachable("Stmt can't have complex result type!");
211   }
212   Value *VisitExpr(Expr *S);
213 
214   Value *VisitParenExpr(ParenExpr *PE) {
215     return Visit(PE->getSubExpr());
216   }
217   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
218     return Visit(E->getReplacement());
219   }
220   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
221     return Visit(GE->getResultExpr());
222   }
223 
224   // Leaves.
225   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
226     return Builder.getInt(E->getValue());
227   }
228   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
229     return llvm::ConstantFP::get(VMContext, E->getValue());
230   }
231   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
232     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
233   }
234   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
235     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
236   }
237   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
238     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
239   }
240   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
241     return EmitNullValue(E->getType());
242   }
243   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
244     return EmitNullValue(E->getType());
245   }
246   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
247   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
248   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
249     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
250     return Builder.CreateBitCast(V, ConvertType(E->getType()));
251   }
252 
253   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
254     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
255   }
256 
257   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
258     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
259   }
260 
261   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
262     if (E->isGLValue())
263       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
264 
265     // Otherwise, assume the mapping is the scalar directly.
266     return CGF.getOpaqueRValueMapping(E).getScalarVal();
267   }
268 
269   // l-values.
270   Value *VisitDeclRefExpr(DeclRefExpr *E) {
271     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
272       if (result.isReference())
273         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
274                                 E->getExprLoc());
275       return result.getValue();
276     }
277     return EmitLoadOfLValue(E);
278   }
279 
280   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
281     return CGF.EmitObjCSelectorExpr(E);
282   }
283   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
284     return CGF.EmitObjCProtocolExpr(E);
285   }
286   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
287     return EmitLoadOfLValue(E);
288   }
289   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
290     if (E->getMethodDecl() &&
291         E->getMethodDecl()->getReturnType()->isReferenceType())
292       return EmitLoadOfLValue(E);
293     return CGF.EmitObjCMessageExpr(E).getScalarVal();
294   }
295 
296   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
297     LValue LV = CGF.EmitObjCIsaExpr(E);
298     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
299     return V;
300   }
301 
302   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
303   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
304   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
305   Value *VisitMemberExpr(MemberExpr *E);
306   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
307   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
308     return EmitLoadOfLValue(E);
309   }
310 
311   Value *VisitInitListExpr(InitListExpr *E);
312 
313   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
314     assert(CGF.getArrayInitIndex() &&
315            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
316     return CGF.getArrayInitIndex();
317   }
318 
319   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
320     return EmitNullValue(E->getType());
321   }
322   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
323     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
324     return VisitCastExpr(E);
325   }
326   Value *VisitCastExpr(CastExpr *E);
327 
328   Value *VisitCallExpr(const CallExpr *E) {
329     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
330       return EmitLoadOfLValue(E);
331 
332     Value *V = CGF.EmitCallExpr(E).getScalarVal();
333 
334     EmitLValueAlignmentAssumption(E, V);
335     return V;
336   }
337 
338   Value *VisitStmtExpr(const StmtExpr *E);
339 
340   // Unary Operators.
341   Value *VisitUnaryPostDec(const UnaryOperator *E) {
342     LValue LV = EmitLValue(E->getSubExpr());
343     return EmitScalarPrePostIncDec(E, LV, false, false);
344   }
345   Value *VisitUnaryPostInc(const UnaryOperator *E) {
346     LValue LV = EmitLValue(E->getSubExpr());
347     return EmitScalarPrePostIncDec(E, LV, true, false);
348   }
349   Value *VisitUnaryPreDec(const UnaryOperator *E) {
350     LValue LV = EmitLValue(E->getSubExpr());
351     return EmitScalarPrePostIncDec(E, LV, false, true);
352   }
353   Value *VisitUnaryPreInc(const UnaryOperator *E) {
354     LValue LV = EmitLValue(E->getSubExpr());
355     return EmitScalarPrePostIncDec(E, LV, true, true);
356   }
357 
358   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
359                                                   llvm::Value *InVal,
360                                                   bool IsInc);
361 
362   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
363                                        bool isInc, bool isPre);
364 
365 
366   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
367     if (isa<MemberPointerType>(E->getType())) // never sugared
368       return CGF.CGM.getMemberPointerConstant(E);
369 
370     return EmitLValue(E->getSubExpr()).getPointer();
371   }
372   Value *VisitUnaryDeref(const UnaryOperator *E) {
373     if (E->getType()->isVoidType())
374       return Visit(E->getSubExpr()); // the actual value should be unused
375     return EmitLoadOfLValue(E);
376   }
377   Value *VisitUnaryPlus(const UnaryOperator *E) {
378     // This differs from gcc, though, most likely due to a bug in gcc.
379     TestAndClearIgnoreResultAssign();
380     return Visit(E->getSubExpr());
381   }
382   Value *VisitUnaryMinus    (const UnaryOperator *E);
383   Value *VisitUnaryNot      (const UnaryOperator *E);
384   Value *VisitUnaryLNot     (const UnaryOperator *E);
385   Value *VisitUnaryReal     (const UnaryOperator *E);
386   Value *VisitUnaryImag     (const UnaryOperator *E);
387   Value *VisitUnaryExtension(const UnaryOperator *E) {
388     return Visit(E->getSubExpr());
389   }
390 
391   // C++
392   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
393     return EmitLoadOfLValue(E);
394   }
395 
396   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
397     return Visit(DAE->getExpr());
398   }
399   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
400     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
401     return Visit(DIE->getExpr());
402   }
403   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
404     return CGF.LoadCXXThis();
405   }
406 
407   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
408     CGF.enterFullExpression(E);
409     CodeGenFunction::RunCleanupsScope Scope(CGF);
410     return Visit(E->getSubExpr());
411   }
412   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
413     return CGF.EmitCXXNewExpr(E);
414   }
415   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
416     CGF.EmitCXXDeleteExpr(E);
417     return nullptr;
418   }
419 
420   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
421     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
422   }
423 
424   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
425     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
426   }
427 
428   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
429     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
430   }
431 
432   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
433     // C++ [expr.pseudo]p1:
434     //   The result shall only be used as the operand for the function call
435     //   operator (), and the result of such a call has type void. The only
436     //   effect is the evaluation of the postfix-expression before the dot or
437     //   arrow.
438     CGF.EmitScalarExpr(E->getBase());
439     return nullptr;
440   }
441 
442   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
443     return EmitNullValue(E->getType());
444   }
445 
446   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
447     CGF.EmitCXXThrowExpr(E);
448     return nullptr;
449   }
450 
451   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
452     return Builder.getInt1(E->getValue());
453   }
454 
455   // Binary Operators.
456   Value *EmitMul(const BinOpInfo &Ops) {
457     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
458       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
459       case LangOptions::SOB_Defined:
460         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
461       case LangOptions::SOB_Undefined:
462         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
463           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
464         // Fall through.
465       case LangOptions::SOB_Trapping:
466         return EmitOverflowCheckedBinOp(Ops);
467       }
468     }
469 
470     if (Ops.Ty->isUnsignedIntegerType() &&
471         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
472       return EmitOverflowCheckedBinOp(Ops);
473 
474     if (Ops.LHS->getType()->isFPOrFPVectorTy())
475       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
476     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
477   }
478   /// Create a binary op that checks for overflow.
479   /// Currently only supports +, - and *.
480   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
481 
482   // Check for undefined division and modulus behaviors.
483   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
484                                                   llvm::Value *Zero,bool isDiv);
485   // Common helper for getting how wide LHS of shift is.
486   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
487   Value *EmitDiv(const BinOpInfo &Ops);
488   Value *EmitRem(const BinOpInfo &Ops);
489   Value *EmitAdd(const BinOpInfo &Ops);
490   Value *EmitSub(const BinOpInfo &Ops);
491   Value *EmitShl(const BinOpInfo &Ops);
492   Value *EmitShr(const BinOpInfo &Ops);
493   Value *EmitAnd(const BinOpInfo &Ops) {
494     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
495   }
496   Value *EmitXor(const BinOpInfo &Ops) {
497     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
498   }
499   Value *EmitOr (const BinOpInfo &Ops) {
500     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
501   }
502 
503   BinOpInfo EmitBinOps(const BinaryOperator *E);
504   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
505                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
506                                   Value *&Result);
507 
508   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
509                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
510 
511   // Binary operators and binary compound assignment operators.
512 #define HANDLEBINOP(OP) \
513   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
514     return Emit ## OP(EmitBinOps(E));                                      \
515   }                                                                        \
516   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
517     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
518   }
519   HANDLEBINOP(Mul)
520   HANDLEBINOP(Div)
521   HANDLEBINOP(Rem)
522   HANDLEBINOP(Add)
523   HANDLEBINOP(Sub)
524   HANDLEBINOP(Shl)
525   HANDLEBINOP(Shr)
526   HANDLEBINOP(And)
527   HANDLEBINOP(Xor)
528   HANDLEBINOP(Or)
529 #undef HANDLEBINOP
530 
531   // Comparisons.
532   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
533                      llvm::CmpInst::Predicate SICmpOpc,
534                      llvm::CmpInst::Predicate FCmpOpc);
535 #define VISITCOMP(CODE, UI, SI, FP) \
536     Value *VisitBin##CODE(const BinaryOperator *E) { \
537       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
538                          llvm::FCmpInst::FP); }
539   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
540   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
541   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
542   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
543   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
544   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
545 #undef VISITCOMP
546 
547   Value *VisitBinAssign     (const BinaryOperator *E);
548 
549   Value *VisitBinLAnd       (const BinaryOperator *E);
550   Value *VisitBinLOr        (const BinaryOperator *E);
551   Value *VisitBinComma      (const BinaryOperator *E);
552 
553   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
554   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
555 
556   // Other Operators.
557   Value *VisitBlockExpr(const BlockExpr *BE);
558   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
559   Value *VisitChooseExpr(ChooseExpr *CE);
560   Value *VisitVAArgExpr(VAArgExpr *VE);
561   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
562     return CGF.EmitObjCStringLiteral(E);
563   }
564   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
565     return CGF.EmitObjCBoxedExpr(E);
566   }
567   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
568     return CGF.EmitObjCArrayLiteral(E);
569   }
570   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
571     return CGF.EmitObjCDictionaryLiteral(E);
572   }
573   Value *VisitAsTypeExpr(AsTypeExpr *CE);
574   Value *VisitAtomicExpr(AtomicExpr *AE);
575 };
576 }  // end anonymous namespace.
577 
578 //===----------------------------------------------------------------------===//
579 //                                Utilities
580 //===----------------------------------------------------------------------===//
581 
582 /// EmitConversionToBool - Convert the specified expression value to a
583 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
584 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
585   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
586 
587   if (SrcType->isRealFloatingType())
588     return EmitFloatToBoolConversion(Src);
589 
590   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
591     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
592 
593   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
594          "Unknown scalar type to convert");
595 
596   if (isa<llvm::IntegerType>(Src->getType()))
597     return EmitIntToBoolConversion(Src);
598 
599   assert(isa<llvm::PointerType>(Src->getType()));
600   return EmitPointerToBoolConversion(Src);
601 }
602 
603 void ScalarExprEmitter::EmitFloatConversionCheck(
604     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
605     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
606   CodeGenFunction::SanitizerScope SanScope(&CGF);
607   using llvm::APFloat;
608   using llvm::APSInt;
609 
610   llvm::Type *SrcTy = Src->getType();
611 
612   llvm::Value *Check = nullptr;
613   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
614     // Integer to floating-point. This can fail for unsigned short -> __half
615     // or unsigned __int128 -> float.
616     assert(DstType->isFloatingType());
617     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
618 
619     APFloat LargestFloat =
620       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
621     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
622 
623     bool IsExact;
624     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
625                                       &IsExact) != APFloat::opOK)
626       // The range of representable values of this floating point type includes
627       // all values of this integer type. Don't need an overflow check.
628       return;
629 
630     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
631     if (SrcIsUnsigned)
632       Check = Builder.CreateICmpULE(Src, Max);
633     else {
634       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
635       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
636       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
637       Check = Builder.CreateAnd(GE, LE);
638     }
639   } else {
640     const llvm::fltSemantics &SrcSema =
641       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
642     if (isa<llvm::IntegerType>(DstTy)) {
643       // Floating-point to integer. This has undefined behavior if the source is
644       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
645       // to an integer).
646       unsigned Width = CGF.getContext().getIntWidth(DstType);
647       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
648 
649       APSInt Min = APSInt::getMinValue(Width, Unsigned);
650       APFloat MinSrc(SrcSema, APFloat::uninitialized);
651       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
652           APFloat::opOverflow)
653         // Don't need an overflow check for lower bound. Just check for
654         // -Inf/NaN.
655         MinSrc = APFloat::getInf(SrcSema, true);
656       else
657         // Find the largest value which is too small to represent (before
658         // truncation toward zero).
659         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
660 
661       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
662       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
663       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
664           APFloat::opOverflow)
665         // Don't need an overflow check for upper bound. Just check for
666         // +Inf/NaN.
667         MaxSrc = APFloat::getInf(SrcSema, false);
668       else
669         // Find the smallest value which is too large to represent (before
670         // truncation toward zero).
671         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
672 
673       // If we're converting from __half, convert the range to float to match
674       // the type of src.
675       if (OrigSrcType->isHalfType()) {
676         const llvm::fltSemantics &Sema =
677           CGF.getContext().getFloatTypeSemantics(SrcType);
678         bool IsInexact;
679         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
680         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
681       }
682 
683       llvm::Value *GE =
684         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
685       llvm::Value *LE =
686         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
687       Check = Builder.CreateAnd(GE, LE);
688     } else {
689       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
690       //
691       // Floating-point to floating-point. This has undefined behavior if the
692       // source is not in the range of representable values of the destination
693       // type. The C and C++ standards are spectacularly unclear here. We
694       // diagnose finite out-of-range conversions, but allow infinities and NaNs
695       // to convert to the corresponding value in the smaller type.
696       //
697       // C11 Annex F gives all such conversions defined behavior for IEC 60559
698       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
699       // does not.
700 
701       // Converting from a lower rank to a higher rank can never have
702       // undefined behavior, since higher-rank types must have a superset
703       // of values of lower-rank types.
704       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
705         return;
706 
707       assert(!OrigSrcType->isHalfType() &&
708              "should not check conversion from __half, it has the lowest rank");
709 
710       const llvm::fltSemantics &DstSema =
711         CGF.getContext().getFloatTypeSemantics(DstType);
712       APFloat MinBad = APFloat::getLargest(DstSema, false);
713       APFloat MaxBad = APFloat::getInf(DstSema, false);
714 
715       bool IsInexact;
716       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
717       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
718 
719       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
720         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
721       llvm::Value *GE =
722         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
723       llvm::Value *LE =
724         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
725       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
726     }
727   }
728 
729   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
730                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
731                                   CGF.EmitCheckTypeDescriptor(DstType)};
732   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
733                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
734 }
735 
736 /// Emit a conversion from the specified type to the specified destination type,
737 /// both of which are LLVM scalar types.
738 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
739                                                QualType DstType,
740                                                SourceLocation Loc) {
741   return EmitScalarConversion(Src, SrcType, DstType, Loc, false);
742 }
743 
744 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
745                                                QualType DstType,
746                                                SourceLocation Loc,
747                                                bool TreatBooleanAsSigned) {
748   SrcType = CGF.getContext().getCanonicalType(SrcType);
749   DstType = CGF.getContext().getCanonicalType(DstType);
750   if (SrcType == DstType) return Src;
751 
752   if (DstType->isVoidType()) return nullptr;
753 
754   llvm::Value *OrigSrc = Src;
755   QualType OrigSrcType = SrcType;
756   llvm::Type *SrcTy = Src->getType();
757 
758   // Handle conversions to bool first, they are special: comparisons against 0.
759   if (DstType->isBooleanType())
760     return EmitConversionToBool(Src, SrcType);
761 
762   llvm::Type *DstTy = ConvertType(DstType);
763 
764   // Cast from half through float if half isn't a native type.
765   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
766     // Cast to FP using the intrinsic if the half type itself isn't supported.
767     if (DstTy->isFloatingPointTy()) {
768       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
769         return Builder.CreateCall(
770             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
771             Src);
772     } else {
773       // Cast to other types through float, using either the intrinsic or FPExt,
774       // depending on whether the half type itself is supported
775       // (as opposed to operations on half, available with NativeHalfType).
776       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
777         Src = Builder.CreateCall(
778             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
779                                  CGF.CGM.FloatTy),
780             Src);
781       } else {
782         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
783       }
784       SrcType = CGF.getContext().FloatTy;
785       SrcTy = CGF.FloatTy;
786     }
787   }
788 
789   // Ignore conversions like int -> uint.
790   if (SrcTy == DstTy)
791     return Src;
792 
793   // Handle pointer conversions next: pointers can only be converted to/from
794   // other pointers and integers. Check for pointer types in terms of LLVM, as
795   // some native types (like Obj-C id) may map to a pointer type.
796   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
797     // The source value may be an integer, or a pointer.
798     if (isa<llvm::PointerType>(SrcTy))
799       return Builder.CreateBitCast(Src, DstTy, "conv");
800 
801     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
802     // First, convert to the correct width so that we control the kind of
803     // extension.
804     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
805     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
806     llvm::Value* IntResult =
807         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
808     // Then, cast to pointer.
809     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
810   }
811 
812   if (isa<llvm::PointerType>(SrcTy)) {
813     // Must be an ptr to int cast.
814     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
815     return Builder.CreatePtrToInt(Src, DstTy, "conv");
816   }
817 
818   // A scalar can be splatted to an extended vector of the same element type
819   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
820     // Sema should add casts to make sure that the source expression's type is
821     // the same as the vector's element type (sans qualifiers)
822     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
823                SrcType.getTypePtr() &&
824            "Splatted expr doesn't match with vector element type?");
825 
826     // Splat the element across to all elements
827     unsigned NumElements = DstTy->getVectorNumElements();
828     return Builder.CreateVectorSplat(NumElements, Src, "splat");
829   }
830 
831   // Allow bitcast from vector to integer/fp of the same size.
832   if (isa<llvm::VectorType>(SrcTy) ||
833       isa<llvm::VectorType>(DstTy))
834     return Builder.CreateBitCast(Src, DstTy, "conv");
835 
836   // Finally, we have the arithmetic types: real int/float.
837   Value *Res = nullptr;
838   llvm::Type *ResTy = DstTy;
839 
840   // An overflowing conversion has undefined behavior if either the source type
841   // or the destination type is a floating-point type.
842   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
843       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
844     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
845                              Loc);
846 
847   // Cast to half through float if half isn't a native type.
848   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
849     // Make sure we cast in a single step if from another FP type.
850     if (SrcTy->isFloatingPointTy()) {
851       // Use the intrinsic if the half type itself isn't supported
852       // (as opposed to operations on half, available with NativeHalfType).
853       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
854         return Builder.CreateCall(
855             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
856       // If the half type is supported, just use an fptrunc.
857       return Builder.CreateFPTrunc(Src, DstTy);
858     }
859     DstTy = CGF.FloatTy;
860   }
861 
862   if (isa<llvm::IntegerType>(SrcTy)) {
863     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
864     if (SrcType->isBooleanType() && TreatBooleanAsSigned) {
865       InputSigned = true;
866     }
867     if (isa<llvm::IntegerType>(DstTy))
868       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
869     else if (InputSigned)
870       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
871     else
872       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
873   } else if (isa<llvm::IntegerType>(DstTy)) {
874     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
875     if (DstType->isSignedIntegerOrEnumerationType())
876       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
877     else
878       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
879   } else {
880     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
881            "Unknown real conversion");
882     if (DstTy->getTypeID() < SrcTy->getTypeID())
883       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
884     else
885       Res = Builder.CreateFPExt(Src, DstTy, "conv");
886   }
887 
888   if (DstTy != ResTy) {
889     if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
890       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
891       Res = Builder.CreateCall(
892         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
893         Res);
894     } else {
895       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
896     }
897   }
898 
899   return Res;
900 }
901 
902 /// Emit a conversion from the specified complex type to the specified
903 /// destination type, where the destination type is an LLVM scalar type.
904 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
905     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
906     SourceLocation Loc) {
907   // Get the source element type.
908   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
909 
910   // Handle conversions to bool first, they are special: comparisons against 0.
911   if (DstTy->isBooleanType()) {
912     //  Complex != 0  -> (Real != 0) | (Imag != 0)
913     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
914     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
915     return Builder.CreateOr(Src.first, Src.second, "tobool");
916   }
917 
918   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
919   // the imaginary part of the complex value is discarded and the value of the
920   // real part is converted according to the conversion rules for the
921   // corresponding real type.
922   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
923 }
924 
925 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
926   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
927 }
928 
929 /// \brief Emit a sanitization check for the given "binary" operation (which
930 /// might actually be a unary increment which has been lowered to a binary
931 /// operation). The check passes if all values in \p Checks (which are \c i1),
932 /// are \c true.
933 void ScalarExprEmitter::EmitBinOpCheck(
934     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
935   assert(CGF.IsSanitizerScope);
936   SanitizerHandler Check;
937   SmallVector<llvm::Constant *, 4> StaticData;
938   SmallVector<llvm::Value *, 2> DynamicData;
939 
940   BinaryOperatorKind Opcode = Info.Opcode;
941   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
942     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
943 
944   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
945   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
946   if (UO && UO->getOpcode() == UO_Minus) {
947     Check = SanitizerHandler::NegateOverflow;
948     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
949     DynamicData.push_back(Info.RHS);
950   } else {
951     if (BinaryOperator::isShiftOp(Opcode)) {
952       // Shift LHS negative or too large, or RHS out of bounds.
953       Check = SanitizerHandler::ShiftOutOfBounds;
954       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
955       StaticData.push_back(
956         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
957       StaticData.push_back(
958         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
959     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
960       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
961       Check = SanitizerHandler::DivremOverflow;
962       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
963     } else {
964       // Arithmetic overflow (+, -, *).
965       switch (Opcode) {
966       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
967       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
968       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
969       default: llvm_unreachable("unexpected opcode for bin op check");
970       }
971       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
972     }
973     DynamicData.push_back(Info.LHS);
974     DynamicData.push_back(Info.RHS);
975   }
976 
977   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
978 }
979 
980 //===----------------------------------------------------------------------===//
981 //                            Visitor Methods
982 //===----------------------------------------------------------------------===//
983 
984 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
985   CGF.ErrorUnsupported(E, "scalar expression");
986   if (E->getType()->isVoidType())
987     return nullptr;
988   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
989 }
990 
991 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
992   // Vector Mask Case
993   if (E->getNumSubExprs() == 2) {
994     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
995     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
996     Value *Mask;
997 
998     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
999     unsigned LHSElts = LTy->getNumElements();
1000 
1001     Mask = RHS;
1002 
1003     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1004 
1005     // Mask off the high bits of each shuffle index.
1006     Value *MaskBits =
1007         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1008     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1009 
1010     // newv = undef
1011     // mask = mask & maskbits
1012     // for each elt
1013     //   n = extract mask i
1014     //   x = extract val n
1015     //   newv = insert newv, x, i
1016     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1017                                                   MTy->getNumElements());
1018     Value* NewV = llvm::UndefValue::get(RTy);
1019     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1020       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1021       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1022 
1023       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1024       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1025     }
1026     return NewV;
1027   }
1028 
1029   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1030   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1031 
1032   SmallVector<llvm::Constant*, 32> indices;
1033   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1034     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1035     // Check for -1 and output it as undef in the IR.
1036     if (Idx.isSigned() && Idx.isAllOnesValue())
1037       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1038     else
1039       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1040   }
1041 
1042   Value *SV = llvm::ConstantVector::get(indices);
1043   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1044 }
1045 
1046 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1047   QualType SrcType = E->getSrcExpr()->getType(),
1048            DstType = E->getType();
1049 
1050   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1051 
1052   SrcType = CGF.getContext().getCanonicalType(SrcType);
1053   DstType = CGF.getContext().getCanonicalType(DstType);
1054   if (SrcType == DstType) return Src;
1055 
1056   assert(SrcType->isVectorType() &&
1057          "ConvertVector source type must be a vector");
1058   assert(DstType->isVectorType() &&
1059          "ConvertVector destination type must be a vector");
1060 
1061   llvm::Type *SrcTy = Src->getType();
1062   llvm::Type *DstTy = ConvertType(DstType);
1063 
1064   // Ignore conversions like int -> uint.
1065   if (SrcTy == DstTy)
1066     return Src;
1067 
1068   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1069            DstEltType = DstType->getAs<VectorType>()->getElementType();
1070 
1071   assert(SrcTy->isVectorTy() &&
1072          "ConvertVector source IR type must be a vector");
1073   assert(DstTy->isVectorTy() &&
1074          "ConvertVector destination IR type must be a vector");
1075 
1076   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1077              *DstEltTy = DstTy->getVectorElementType();
1078 
1079   if (DstEltType->isBooleanType()) {
1080     assert((SrcEltTy->isFloatingPointTy() ||
1081             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1082 
1083     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1084     if (SrcEltTy->isFloatingPointTy()) {
1085       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1086     } else {
1087       return Builder.CreateICmpNE(Src, Zero, "tobool");
1088     }
1089   }
1090 
1091   // We have the arithmetic types: real int/float.
1092   Value *Res = nullptr;
1093 
1094   if (isa<llvm::IntegerType>(SrcEltTy)) {
1095     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1096     if (isa<llvm::IntegerType>(DstEltTy))
1097       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1098     else if (InputSigned)
1099       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1100     else
1101       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1102   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1103     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1104     if (DstEltType->isSignedIntegerOrEnumerationType())
1105       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1106     else
1107       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1108   } else {
1109     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1110            "Unknown real conversion");
1111     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1112       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1113     else
1114       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1115   }
1116 
1117   return Res;
1118 }
1119 
1120 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1121   llvm::APSInt Value;
1122   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1123     if (E->isArrow())
1124       CGF.EmitScalarExpr(E->getBase());
1125     else
1126       EmitLValue(E->getBase());
1127     return Builder.getInt(Value);
1128   }
1129 
1130   return EmitLoadOfLValue(E);
1131 }
1132 
1133 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1134   TestAndClearIgnoreResultAssign();
1135 
1136   // Emit subscript expressions in rvalue context's.  For most cases, this just
1137   // loads the lvalue formed by the subscript expr.  However, we have to be
1138   // careful, because the base of a vector subscript is occasionally an rvalue,
1139   // so we can't get it as an lvalue.
1140   if (!E->getBase()->getType()->isVectorType())
1141     return EmitLoadOfLValue(E);
1142 
1143   // Handle the vector case.  The base must be a vector, the index must be an
1144   // integer value.
1145   Value *Base = Visit(E->getBase());
1146   Value *Idx  = Visit(E->getIdx());
1147   QualType IdxTy = E->getIdx()->getType();
1148 
1149   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1150     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1151 
1152   return Builder.CreateExtractElement(Base, Idx, "vecext");
1153 }
1154 
1155 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1156                                   unsigned Off, llvm::Type *I32Ty) {
1157   int MV = SVI->getMaskValue(Idx);
1158   if (MV == -1)
1159     return llvm::UndefValue::get(I32Ty);
1160   return llvm::ConstantInt::get(I32Ty, Off+MV);
1161 }
1162 
1163 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1164   if (C->getBitWidth() != 32) {
1165       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1166                                                     C->getZExtValue()) &&
1167              "Index operand too large for shufflevector mask!");
1168       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1169   }
1170   return C;
1171 }
1172 
1173 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1174   bool Ignore = TestAndClearIgnoreResultAssign();
1175   (void)Ignore;
1176   assert (Ignore == false && "init list ignored");
1177   unsigned NumInitElements = E->getNumInits();
1178 
1179   if (E->hadArrayRangeDesignator())
1180     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1181 
1182   llvm::VectorType *VType =
1183     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1184 
1185   if (!VType) {
1186     if (NumInitElements == 0) {
1187       // C++11 value-initialization for the scalar.
1188       return EmitNullValue(E->getType());
1189     }
1190     // We have a scalar in braces. Just use the first element.
1191     return Visit(E->getInit(0));
1192   }
1193 
1194   unsigned ResElts = VType->getNumElements();
1195 
1196   // Loop over initializers collecting the Value for each, and remembering
1197   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1198   // us to fold the shuffle for the swizzle into the shuffle for the vector
1199   // initializer, since LLVM optimizers generally do not want to touch
1200   // shuffles.
1201   unsigned CurIdx = 0;
1202   bool VIsUndefShuffle = false;
1203   llvm::Value *V = llvm::UndefValue::get(VType);
1204   for (unsigned i = 0; i != NumInitElements; ++i) {
1205     Expr *IE = E->getInit(i);
1206     Value *Init = Visit(IE);
1207     SmallVector<llvm::Constant*, 16> Args;
1208 
1209     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1210 
1211     // Handle scalar elements.  If the scalar initializer is actually one
1212     // element of a different vector of the same width, use shuffle instead of
1213     // extract+insert.
1214     if (!VVT) {
1215       if (isa<ExtVectorElementExpr>(IE)) {
1216         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1217 
1218         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1219           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1220           Value *LHS = nullptr, *RHS = nullptr;
1221           if (CurIdx == 0) {
1222             // insert into undef -> shuffle (src, undef)
1223             // shufflemask must use an i32
1224             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1225             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1226 
1227             LHS = EI->getVectorOperand();
1228             RHS = V;
1229             VIsUndefShuffle = true;
1230           } else if (VIsUndefShuffle) {
1231             // insert into undefshuffle && size match -> shuffle (v, src)
1232             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1233             for (unsigned j = 0; j != CurIdx; ++j)
1234               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1235             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1236             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1237 
1238             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1239             RHS = EI->getVectorOperand();
1240             VIsUndefShuffle = false;
1241           }
1242           if (!Args.empty()) {
1243             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1244             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1245             ++CurIdx;
1246             continue;
1247           }
1248         }
1249       }
1250       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1251                                       "vecinit");
1252       VIsUndefShuffle = false;
1253       ++CurIdx;
1254       continue;
1255     }
1256 
1257     unsigned InitElts = VVT->getNumElements();
1258 
1259     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1260     // input is the same width as the vector being constructed, generate an
1261     // optimized shuffle of the swizzle input into the result.
1262     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1263     if (isa<ExtVectorElementExpr>(IE)) {
1264       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1265       Value *SVOp = SVI->getOperand(0);
1266       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1267 
1268       if (OpTy->getNumElements() == ResElts) {
1269         for (unsigned j = 0; j != CurIdx; ++j) {
1270           // If the current vector initializer is a shuffle with undef, merge
1271           // this shuffle directly into it.
1272           if (VIsUndefShuffle) {
1273             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1274                                       CGF.Int32Ty));
1275           } else {
1276             Args.push_back(Builder.getInt32(j));
1277           }
1278         }
1279         for (unsigned j = 0, je = InitElts; j != je; ++j)
1280           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1281         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1282 
1283         if (VIsUndefShuffle)
1284           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1285 
1286         Init = SVOp;
1287       }
1288     }
1289 
1290     // Extend init to result vector length, and then shuffle its contribution
1291     // to the vector initializer into V.
1292     if (Args.empty()) {
1293       for (unsigned j = 0; j != InitElts; ++j)
1294         Args.push_back(Builder.getInt32(j));
1295       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1296       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1297       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1298                                          Mask, "vext");
1299 
1300       Args.clear();
1301       for (unsigned j = 0; j != CurIdx; ++j)
1302         Args.push_back(Builder.getInt32(j));
1303       for (unsigned j = 0; j != InitElts; ++j)
1304         Args.push_back(Builder.getInt32(j+Offset));
1305       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1306     }
1307 
1308     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1309     // merging subsequent shuffles into this one.
1310     if (CurIdx == 0)
1311       std::swap(V, Init);
1312     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1313     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1314     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1315     CurIdx += InitElts;
1316   }
1317 
1318   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1319   // Emit remaining default initializers.
1320   llvm::Type *EltTy = VType->getElementType();
1321 
1322   // Emit remaining default initializers
1323   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1324     Value *Idx = Builder.getInt32(CurIdx);
1325     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1326     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1327   }
1328   return V;
1329 }
1330 
1331 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1332   const Expr *E = CE->getSubExpr();
1333 
1334   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1335     return false;
1336 
1337   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1338     // We always assume that 'this' is never null.
1339     return false;
1340   }
1341 
1342   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1343     // And that glvalue casts are never null.
1344     if (ICE->getValueKind() != VK_RValue)
1345       return false;
1346   }
1347 
1348   return true;
1349 }
1350 
1351 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1352 // have to handle a more broad range of conversions than explicit casts, as they
1353 // handle things like function to ptr-to-function decay etc.
1354 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1355   Expr *E = CE->getSubExpr();
1356   QualType DestTy = CE->getType();
1357   CastKind Kind = CE->getCastKind();
1358 
1359   // These cases are generally not written to ignore the result of
1360   // evaluating their sub-expressions, so we clear this now.
1361   bool Ignored = TestAndClearIgnoreResultAssign();
1362 
1363   // Since almost all cast kinds apply to scalars, this switch doesn't have
1364   // a default case, so the compiler will warn on a missing case.  The cases
1365   // are in the same order as in the CastKind enum.
1366   switch (Kind) {
1367   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1368   case CK_BuiltinFnToFnPtr:
1369     llvm_unreachable("builtin functions are handled elsewhere");
1370 
1371   case CK_LValueBitCast:
1372   case CK_ObjCObjectLValueCast: {
1373     Address Addr = EmitLValue(E).getAddress();
1374     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1375     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1376     return EmitLoadOfLValue(LV, CE->getExprLoc());
1377   }
1378 
1379   case CK_CPointerToObjCPointerCast:
1380   case CK_BlockPointerToObjCPointerCast:
1381   case CK_AnyPointerToBlockPointerCast:
1382   case CK_BitCast: {
1383     Value *Src = Visit(const_cast<Expr*>(E));
1384     llvm::Type *SrcTy = Src->getType();
1385     llvm::Type *DstTy = ConvertType(DestTy);
1386     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1387         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1388       llvm_unreachable("wrong cast for pointers in different address spaces"
1389                        "(must be an address space cast)!");
1390     }
1391 
1392     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1393       if (auto PT = DestTy->getAs<PointerType>())
1394         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1395                                       /*MayBeNull=*/true,
1396                                       CodeGenFunction::CFITCK_UnrelatedCast,
1397                                       CE->getLocStart());
1398     }
1399 
1400     return Builder.CreateBitCast(Src, DstTy);
1401   }
1402   case CK_AddressSpaceConversion: {
1403     Value *Src = Visit(const_cast<Expr*>(E));
1404     // Since target may map different address spaces in AST to the same address
1405     // space, an address space conversion may end up as a bitcast.
1406     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src,
1407                                                        ConvertType(DestTy));
1408   }
1409   case CK_AtomicToNonAtomic:
1410   case CK_NonAtomicToAtomic:
1411   case CK_NoOp:
1412   case CK_UserDefinedConversion:
1413     return Visit(const_cast<Expr*>(E));
1414 
1415   case CK_BaseToDerived: {
1416     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1417     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1418 
1419     Address Base = CGF.EmitPointerWithAlignment(E);
1420     Address Derived =
1421       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
1422                                    CE->path_begin(), CE->path_end(),
1423                                    CGF.ShouldNullCheckClassCastValue(CE));
1424 
1425     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1426     // performed and the object is not of the derived type.
1427     if (CGF.sanitizePerformTypeCheck())
1428       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1429                         Derived.getPointer(), DestTy->getPointeeType());
1430 
1431     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1432       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
1433                                     Derived.getPointer(),
1434                                     /*MayBeNull=*/true,
1435                                     CodeGenFunction::CFITCK_DerivedCast,
1436                                     CE->getLocStart());
1437 
1438     return Derived.getPointer();
1439   }
1440   case CK_UncheckedDerivedToBase:
1441   case CK_DerivedToBase: {
1442     // The EmitPointerWithAlignment path does this fine; just discard
1443     // the alignment.
1444     return CGF.EmitPointerWithAlignment(CE).getPointer();
1445   }
1446 
1447   case CK_Dynamic: {
1448     Address V = CGF.EmitPointerWithAlignment(E);
1449     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1450     return CGF.EmitDynamicCast(V, DCE);
1451   }
1452 
1453   case CK_ArrayToPointerDecay:
1454     return CGF.EmitArrayToPointerDecay(E).getPointer();
1455   case CK_FunctionToPointerDecay:
1456     return EmitLValue(E).getPointer();
1457 
1458   case CK_NullToPointer:
1459     if (MustVisitNullValue(E))
1460       (void) Visit(E);
1461 
1462     return llvm::ConstantPointerNull::get(
1463                                cast<llvm::PointerType>(ConvertType(DestTy)));
1464 
1465   case CK_NullToMemberPointer: {
1466     if (MustVisitNullValue(E))
1467       (void) Visit(E);
1468 
1469     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1470     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1471   }
1472 
1473   case CK_ReinterpretMemberPointer:
1474   case CK_BaseToDerivedMemberPointer:
1475   case CK_DerivedToBaseMemberPointer: {
1476     Value *Src = Visit(E);
1477 
1478     // Note that the AST doesn't distinguish between checked and
1479     // unchecked member pointer conversions, so we always have to
1480     // implement checked conversions here.  This is inefficient when
1481     // actual control flow may be required in order to perform the
1482     // check, which it is for data member pointers (but not member
1483     // function pointers on Itanium and ARM).
1484     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1485   }
1486 
1487   case CK_ARCProduceObject:
1488     return CGF.EmitARCRetainScalarExpr(E);
1489   case CK_ARCConsumeObject:
1490     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1491   case CK_ARCReclaimReturnedObject:
1492     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
1493   case CK_ARCExtendBlockObject:
1494     return CGF.EmitARCExtendBlockObject(E);
1495 
1496   case CK_CopyAndAutoreleaseBlockObject:
1497     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1498 
1499   case CK_FloatingRealToComplex:
1500   case CK_FloatingComplexCast:
1501   case CK_IntegralRealToComplex:
1502   case CK_IntegralComplexCast:
1503   case CK_IntegralComplexToFloatingComplex:
1504   case CK_FloatingComplexToIntegralComplex:
1505   case CK_ConstructorConversion:
1506   case CK_ToUnion:
1507     llvm_unreachable("scalar cast to non-scalar value");
1508 
1509   case CK_LValueToRValue:
1510     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1511     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1512     return Visit(const_cast<Expr*>(E));
1513 
1514   case CK_IntegralToPointer: {
1515     Value *Src = Visit(const_cast<Expr*>(E));
1516 
1517     // First, convert to the correct width so that we control the kind of
1518     // extension.
1519     auto DestLLVMTy = ConvertType(DestTy);
1520     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
1521     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1522     llvm::Value* IntResult =
1523       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1524 
1525     return Builder.CreateIntToPtr(IntResult, DestLLVMTy);
1526   }
1527   case CK_PointerToIntegral:
1528     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1529     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1530 
1531   case CK_ToVoid: {
1532     CGF.EmitIgnoredExpr(E);
1533     return nullptr;
1534   }
1535   case CK_VectorSplat: {
1536     llvm::Type *DstTy = ConvertType(DestTy);
1537     Value *Elt = Visit(const_cast<Expr*>(E));
1538     // Splat the element across to all elements
1539     unsigned NumElements = DstTy->getVectorNumElements();
1540     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1541   }
1542 
1543   case CK_IntegralCast:
1544   case CK_IntegralToFloating:
1545   case CK_FloatingToIntegral:
1546   case CK_FloatingCast:
1547     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1548                                 CE->getExprLoc());
1549   case CK_BooleanToSignedIntegral:
1550     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1551                                 CE->getExprLoc(),
1552                                 /*TreatBooleanAsSigned=*/true);
1553   case CK_IntegralToBoolean:
1554     return EmitIntToBoolConversion(Visit(E));
1555   case CK_PointerToBoolean:
1556     return EmitPointerToBoolConversion(Visit(E));
1557   case CK_FloatingToBoolean:
1558     return EmitFloatToBoolConversion(Visit(E));
1559   case CK_MemberPointerToBoolean: {
1560     llvm::Value *MemPtr = Visit(E);
1561     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1562     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1563   }
1564 
1565   case CK_FloatingComplexToReal:
1566   case CK_IntegralComplexToReal:
1567     return CGF.EmitComplexExpr(E, false, true).first;
1568 
1569   case CK_FloatingComplexToBoolean:
1570   case CK_IntegralComplexToBoolean: {
1571     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1572 
1573     // TODO: kill this function off, inline appropriate case here
1574     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
1575                                          CE->getExprLoc());
1576   }
1577 
1578   case CK_ZeroToOCLEvent: {
1579     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1580     return llvm::Constant::getNullValue(ConvertType(DestTy));
1581   }
1582 
1583   case CK_IntToOCLSampler:
1584     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
1585 
1586   } // end of switch
1587 
1588   llvm_unreachable("unknown scalar cast");
1589 }
1590 
1591 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1592   CodeGenFunction::StmtExprEvaluation eval(CGF);
1593   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1594                                            !E->getType()->isVoidType());
1595   if (!RetAlloca.isValid())
1596     return nullptr;
1597   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1598                               E->getExprLoc());
1599 }
1600 
1601 //===----------------------------------------------------------------------===//
1602 //                             Unary Operators
1603 //===----------------------------------------------------------------------===//
1604 
1605 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1606                                            llvm::Value *InVal, bool IsInc) {
1607   BinOpInfo BinOp;
1608   BinOp.LHS = InVal;
1609   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1610   BinOp.Ty = E->getType();
1611   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1612   BinOp.FPContractable = false;
1613   BinOp.E = E;
1614   return BinOp;
1615 }
1616 
1617 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1618     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1619   llvm::Value *Amount =
1620       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1621   StringRef Name = IsInc ? "inc" : "dec";
1622   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1623   case LangOptions::SOB_Defined:
1624     return Builder.CreateAdd(InVal, Amount, Name);
1625   case LangOptions::SOB_Undefined:
1626     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1627       return Builder.CreateNSWAdd(InVal, Amount, Name);
1628     // Fall through.
1629   case LangOptions::SOB_Trapping:
1630     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1631   }
1632   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1633 }
1634 
1635 llvm::Value *
1636 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1637                                            bool isInc, bool isPre) {
1638 
1639   QualType type = E->getSubExpr()->getType();
1640   llvm::PHINode *atomicPHI = nullptr;
1641   llvm::Value *value;
1642   llvm::Value *input;
1643 
1644   int amount = (isInc ? 1 : -1);
1645 
1646   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1647     type = atomicTy->getValueType();
1648     if (isInc && type->isBooleanType()) {
1649       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1650       if (isPre) {
1651         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
1652           ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
1653         return Builder.getTrue();
1654       }
1655       // For atomic bool increment, we just store true and return it for
1656       // preincrement, do an atomic swap with true for postincrement
1657       return Builder.CreateAtomicRMW(
1658           llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
1659           llvm::AtomicOrdering::SequentiallyConsistent);
1660     }
1661     // Special case for atomic increment / decrement on integers, emit
1662     // atomicrmw instructions.  We skip this if we want to be doing overflow
1663     // checking, and fall into the slow path with the atomic cmpxchg loop.
1664     if (!type->isBooleanType() && type->isIntegerType() &&
1665         !(type->isUnsignedIntegerType() &&
1666           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1667         CGF.getLangOpts().getSignedOverflowBehavior() !=
1668             LangOptions::SOB_Trapping) {
1669       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1670         llvm::AtomicRMWInst::Sub;
1671       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1672         llvm::Instruction::Sub;
1673       llvm::Value *amt = CGF.EmitToMemory(
1674           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1675       llvm::Value *old = Builder.CreateAtomicRMW(aop,
1676           LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
1677       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1678     }
1679     value = EmitLoadOfLValue(LV, E->getExprLoc());
1680     input = value;
1681     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1682     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1683     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1684     value = CGF.EmitToMemory(value, type);
1685     Builder.CreateBr(opBB);
1686     Builder.SetInsertPoint(opBB);
1687     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1688     atomicPHI->addIncoming(value, startBB);
1689     value = atomicPHI;
1690   } else {
1691     value = EmitLoadOfLValue(LV, E->getExprLoc());
1692     input = value;
1693   }
1694 
1695   // Special case of integer increment that we have to check first: bool++.
1696   // Due to promotion rules, we get:
1697   //   bool++ -> bool = bool + 1
1698   //          -> bool = (int)bool + 1
1699   //          -> bool = ((int)bool + 1 != 0)
1700   // An interesting aspect of this is that increment is always true.
1701   // Decrement does not have this property.
1702   if (isInc && type->isBooleanType()) {
1703     value = Builder.getTrue();
1704 
1705   // Most common case by far: integer increment.
1706   } else if (type->isIntegerType()) {
1707     // Note that signed integer inc/dec with width less than int can't
1708     // overflow because of promotion rules; we're just eliding a few steps here.
1709     bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1710                        CGF.IntTy->getIntegerBitWidth();
1711     if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1712       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1713     } else if (CanOverflow && type->isUnsignedIntegerType() &&
1714                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1715       value =
1716           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1717     } else {
1718       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1719       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1720     }
1721 
1722   // Next most common: pointer increment.
1723   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1724     QualType type = ptr->getPointeeType();
1725 
1726     // VLA types don't have constant size.
1727     if (const VariableArrayType *vla
1728           = CGF.getContext().getAsVariableArrayType(type)) {
1729       llvm::Value *numElts = CGF.getVLASize(vla).first;
1730       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1731       if (CGF.getLangOpts().isSignedOverflowDefined())
1732         value = Builder.CreateGEP(value, numElts, "vla.inc");
1733       else
1734         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1735 
1736     // Arithmetic on function pointers (!) is just +-1.
1737     } else if (type->isFunctionType()) {
1738       llvm::Value *amt = Builder.getInt32(amount);
1739 
1740       value = CGF.EmitCastToVoidPtr(value);
1741       if (CGF.getLangOpts().isSignedOverflowDefined())
1742         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1743       else
1744         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1745       value = Builder.CreateBitCast(value, input->getType());
1746 
1747     // For everything else, we can just do a simple increment.
1748     } else {
1749       llvm::Value *amt = Builder.getInt32(amount);
1750       if (CGF.getLangOpts().isSignedOverflowDefined())
1751         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1752       else
1753         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1754     }
1755 
1756   // Vector increment/decrement.
1757   } else if (type->isVectorType()) {
1758     if (type->hasIntegerRepresentation()) {
1759       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1760 
1761       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1762     } else {
1763       value = Builder.CreateFAdd(
1764                   value,
1765                   llvm::ConstantFP::get(value->getType(), amount),
1766                   isInc ? "inc" : "dec");
1767     }
1768 
1769   // Floating point.
1770   } else if (type->isRealFloatingType()) {
1771     // Add the inc/dec to the real part.
1772     llvm::Value *amt;
1773 
1774     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1775       // Another special case: half FP increment should be done via float
1776       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1777         value = Builder.CreateCall(
1778             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1779                                  CGF.CGM.FloatTy),
1780             input, "incdec.conv");
1781       } else {
1782         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
1783       }
1784     }
1785 
1786     if (value->getType()->isFloatTy())
1787       amt = llvm::ConstantFP::get(VMContext,
1788                                   llvm::APFloat(static_cast<float>(amount)));
1789     else if (value->getType()->isDoubleTy())
1790       amt = llvm::ConstantFP::get(VMContext,
1791                                   llvm::APFloat(static_cast<double>(amount)));
1792     else {
1793       // Remaining types are Half, LongDouble or __float128. Convert from float.
1794       llvm::APFloat F(static_cast<float>(amount));
1795       bool ignored;
1796       const llvm::fltSemantics *FS;
1797       // Don't use getFloatTypeSemantics because Half isn't
1798       // necessarily represented using the "half" LLVM type.
1799       if (value->getType()->isFP128Ty())
1800         FS = &CGF.getTarget().getFloat128Format();
1801       else if (value->getType()->isHalfTy())
1802         FS = &CGF.getTarget().getHalfFormat();
1803       else
1804         FS = &CGF.getTarget().getLongDoubleFormat();
1805       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
1806       amt = llvm::ConstantFP::get(VMContext, F);
1807     }
1808     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1809 
1810     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1811       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1812         value = Builder.CreateCall(
1813             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
1814                                  CGF.CGM.FloatTy),
1815             value, "incdec.conv");
1816       } else {
1817         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
1818       }
1819     }
1820 
1821   // Objective-C pointer types.
1822   } else {
1823     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1824     value = CGF.EmitCastToVoidPtr(value);
1825 
1826     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1827     if (!isInc) size = -size;
1828     llvm::Value *sizeValue =
1829       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1830 
1831     if (CGF.getLangOpts().isSignedOverflowDefined())
1832       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1833     else
1834       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1835     value = Builder.CreateBitCast(value, input->getType());
1836   }
1837 
1838   if (atomicPHI) {
1839     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1840     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1841     auto Pair = CGF.EmitAtomicCompareExchange(
1842         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
1843     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
1844     llvm::Value *success = Pair.second;
1845     atomicPHI->addIncoming(old, opBB);
1846     Builder.CreateCondBr(success, contBB, opBB);
1847     Builder.SetInsertPoint(contBB);
1848     return isPre ? value : input;
1849   }
1850 
1851   // Store the updated result through the lvalue.
1852   if (LV.isBitField())
1853     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1854   else
1855     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1856 
1857   // If this is a postinc, return the value read from memory, otherwise use the
1858   // updated value.
1859   return isPre ? value : input;
1860 }
1861 
1862 
1863 
1864 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1865   TestAndClearIgnoreResultAssign();
1866   // Emit unary minus with EmitSub so we handle overflow cases etc.
1867   BinOpInfo BinOp;
1868   BinOp.RHS = Visit(E->getSubExpr());
1869 
1870   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1871     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1872   else
1873     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1874   BinOp.Ty = E->getType();
1875   BinOp.Opcode = BO_Sub;
1876   BinOp.FPContractable = false;
1877   BinOp.E = E;
1878   return EmitSub(BinOp);
1879 }
1880 
1881 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1882   TestAndClearIgnoreResultAssign();
1883   Value *Op = Visit(E->getSubExpr());
1884   return Builder.CreateNot(Op, "neg");
1885 }
1886 
1887 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1888   // Perform vector logical not on comparison with zero vector.
1889   if (E->getType()->isExtVectorType()) {
1890     Value *Oper = Visit(E->getSubExpr());
1891     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1892     Value *Result;
1893     if (Oper->getType()->isFPOrFPVectorTy())
1894       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1895     else
1896       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1897     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1898   }
1899 
1900   // Compare operand to zero.
1901   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1902 
1903   // Invert value.
1904   // TODO: Could dynamically modify easy computations here.  For example, if
1905   // the operand is an icmp ne, turn into icmp eq.
1906   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1907 
1908   // ZExt result to the expr type.
1909   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1910 }
1911 
1912 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1913   // Try folding the offsetof to a constant.
1914   llvm::APSInt Value;
1915   if (E->EvaluateAsInt(Value, CGF.getContext()))
1916     return Builder.getInt(Value);
1917 
1918   // Loop over the components of the offsetof to compute the value.
1919   unsigned n = E->getNumComponents();
1920   llvm::Type* ResultType = ConvertType(E->getType());
1921   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1922   QualType CurrentType = E->getTypeSourceInfo()->getType();
1923   for (unsigned i = 0; i != n; ++i) {
1924     OffsetOfNode ON = E->getComponent(i);
1925     llvm::Value *Offset = nullptr;
1926     switch (ON.getKind()) {
1927     case OffsetOfNode::Array: {
1928       // Compute the index
1929       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1930       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1931       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1932       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1933 
1934       // Save the element type
1935       CurrentType =
1936           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1937 
1938       // Compute the element size
1939       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1940           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1941 
1942       // Multiply out to compute the result
1943       Offset = Builder.CreateMul(Idx, ElemSize);
1944       break;
1945     }
1946 
1947     case OffsetOfNode::Field: {
1948       FieldDecl *MemberDecl = ON.getField();
1949       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1950       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1951 
1952       // Compute the index of the field in its parent.
1953       unsigned i = 0;
1954       // FIXME: It would be nice if we didn't have to loop here!
1955       for (RecordDecl::field_iterator Field = RD->field_begin(),
1956                                       FieldEnd = RD->field_end();
1957            Field != FieldEnd; ++Field, ++i) {
1958         if (*Field == MemberDecl)
1959           break;
1960       }
1961       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1962 
1963       // Compute the offset to the field
1964       int64_t OffsetInt = RL.getFieldOffset(i) /
1965                           CGF.getContext().getCharWidth();
1966       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1967 
1968       // Save the element type.
1969       CurrentType = MemberDecl->getType();
1970       break;
1971     }
1972 
1973     case OffsetOfNode::Identifier:
1974       llvm_unreachable("dependent __builtin_offsetof");
1975 
1976     case OffsetOfNode::Base: {
1977       if (ON.getBase()->isVirtual()) {
1978         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1979         continue;
1980       }
1981 
1982       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1983       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1984 
1985       // Save the element type.
1986       CurrentType = ON.getBase()->getType();
1987 
1988       // Compute the offset to the base.
1989       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1990       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1991       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1992       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1993       break;
1994     }
1995     }
1996     Result = Builder.CreateAdd(Result, Offset);
1997   }
1998   return Result;
1999 }
2000 
2001 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2002 /// argument of the sizeof expression as an integer.
2003 Value *
2004 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2005                               const UnaryExprOrTypeTraitExpr *E) {
2006   QualType TypeToSize = E->getTypeOfArgument();
2007   if (E->getKind() == UETT_SizeOf) {
2008     if (const VariableArrayType *VAT =
2009           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2010       if (E->isArgumentType()) {
2011         // sizeof(type) - make sure to emit the VLA size.
2012         CGF.EmitVariablyModifiedType(TypeToSize);
2013       } else {
2014         // C99 6.5.3.4p2: If the argument is an expression of type
2015         // VLA, it is evaluated.
2016         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2017       }
2018 
2019       QualType eltType;
2020       llvm::Value *numElts;
2021       std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2022 
2023       llvm::Value *size = numElts;
2024 
2025       // Scale the number of non-VLA elements by the non-VLA element size.
2026       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2027       if (!eltSize.isOne())
2028         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2029 
2030       return size;
2031     }
2032   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2033     auto Alignment =
2034         CGF.getContext()
2035             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2036                 E->getTypeOfArgument()->getPointeeType()))
2037             .getQuantity();
2038     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2039   }
2040 
2041   // If this isn't sizeof(vla), the result must be constant; use the constant
2042   // folding logic so we don't have to duplicate it here.
2043   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2044 }
2045 
2046 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2047   Expr *Op = E->getSubExpr();
2048   if (Op->getType()->isAnyComplexType()) {
2049     // If it's an l-value, load through the appropriate subobject l-value.
2050     // Note that we have to ask E because Op might be an l-value that
2051     // this won't work for, e.g. an Obj-C property.
2052     if (E->isGLValue())
2053       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2054                                   E->getExprLoc()).getScalarVal();
2055 
2056     // Otherwise, calculate and project.
2057     return CGF.EmitComplexExpr(Op, false, true).first;
2058   }
2059 
2060   return Visit(Op);
2061 }
2062 
2063 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2064   Expr *Op = E->getSubExpr();
2065   if (Op->getType()->isAnyComplexType()) {
2066     // If it's an l-value, load through the appropriate subobject l-value.
2067     // Note that we have to ask E because Op might be an l-value that
2068     // this won't work for, e.g. an Obj-C property.
2069     if (Op->isGLValue())
2070       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2071                                   E->getExprLoc()).getScalarVal();
2072 
2073     // Otherwise, calculate and project.
2074     return CGF.EmitComplexExpr(Op, true, false).second;
2075   }
2076 
2077   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2078   // effects are evaluated, but not the actual value.
2079   if (Op->isGLValue())
2080     CGF.EmitLValue(Op);
2081   else
2082     CGF.EmitScalarExpr(Op, true);
2083   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2084 }
2085 
2086 //===----------------------------------------------------------------------===//
2087 //                           Binary Operators
2088 //===----------------------------------------------------------------------===//
2089 
2090 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2091   TestAndClearIgnoreResultAssign();
2092   BinOpInfo Result;
2093   Result.LHS = Visit(E->getLHS());
2094   Result.RHS = Visit(E->getRHS());
2095   Result.Ty  = E->getType();
2096   Result.Opcode = E->getOpcode();
2097   Result.FPContractable = E->isFPContractable();
2098   Result.E = E;
2099   return Result;
2100 }
2101 
2102 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2103                                               const CompoundAssignOperator *E,
2104                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2105                                                    Value *&Result) {
2106   QualType LHSTy = E->getLHS()->getType();
2107   BinOpInfo OpInfo;
2108 
2109   if (E->getComputationResultType()->isAnyComplexType())
2110     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2111 
2112   // Emit the RHS first.  __block variables need to have the rhs evaluated
2113   // first, plus this should improve codegen a little.
2114   OpInfo.RHS = Visit(E->getRHS());
2115   OpInfo.Ty = E->getComputationResultType();
2116   OpInfo.Opcode = E->getOpcode();
2117   OpInfo.FPContractable = E->isFPContractable();
2118   OpInfo.E = E;
2119   // Load/convert the LHS.
2120   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2121 
2122   llvm::PHINode *atomicPHI = nullptr;
2123   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2124     QualType type = atomicTy->getValueType();
2125     if (!type->isBooleanType() && type->isIntegerType() &&
2126         !(type->isUnsignedIntegerType() &&
2127           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2128         CGF.getLangOpts().getSignedOverflowBehavior() !=
2129             LangOptions::SOB_Trapping) {
2130       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2131       switch (OpInfo.Opcode) {
2132         // We don't have atomicrmw operands for *, %, /, <<, >>
2133         case BO_MulAssign: case BO_DivAssign:
2134         case BO_RemAssign:
2135         case BO_ShlAssign:
2136         case BO_ShrAssign:
2137           break;
2138         case BO_AddAssign:
2139           aop = llvm::AtomicRMWInst::Add;
2140           break;
2141         case BO_SubAssign:
2142           aop = llvm::AtomicRMWInst::Sub;
2143           break;
2144         case BO_AndAssign:
2145           aop = llvm::AtomicRMWInst::And;
2146           break;
2147         case BO_XorAssign:
2148           aop = llvm::AtomicRMWInst::Xor;
2149           break;
2150         case BO_OrAssign:
2151           aop = llvm::AtomicRMWInst::Or;
2152           break;
2153         default:
2154           llvm_unreachable("Invalid compound assignment type");
2155       }
2156       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2157         llvm::Value *amt = CGF.EmitToMemory(
2158             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2159                                  E->getExprLoc()),
2160             LHSTy);
2161         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2162             llvm::AtomicOrdering::SequentiallyConsistent);
2163         return LHSLV;
2164       }
2165     }
2166     // FIXME: For floating point types, we should be saving and restoring the
2167     // floating point environment in the loop.
2168     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2169     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2170     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2171     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2172     Builder.CreateBr(opBB);
2173     Builder.SetInsertPoint(opBB);
2174     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2175     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2176     OpInfo.LHS = atomicPHI;
2177   }
2178   else
2179     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2180 
2181   SourceLocation Loc = E->getExprLoc();
2182   OpInfo.LHS =
2183       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2184 
2185   // Expand the binary operator.
2186   Result = (this->*Func)(OpInfo);
2187 
2188   // Convert the result back to the LHS type.
2189   Result =
2190       EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2191 
2192   if (atomicPHI) {
2193     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2194     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2195     auto Pair = CGF.EmitAtomicCompareExchange(
2196         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2197     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2198     llvm::Value *success = Pair.second;
2199     atomicPHI->addIncoming(old, opBB);
2200     Builder.CreateCondBr(success, contBB, opBB);
2201     Builder.SetInsertPoint(contBB);
2202     return LHSLV;
2203   }
2204 
2205   // Store the result value into the LHS lvalue. Bit-fields are handled
2206   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2207   // 'An assignment expression has the value of the left operand after the
2208   // assignment...'.
2209   if (LHSLV.isBitField())
2210     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2211   else
2212     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2213 
2214   return LHSLV;
2215 }
2216 
2217 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2218                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2219   bool Ignore = TestAndClearIgnoreResultAssign();
2220   Value *RHS;
2221   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2222 
2223   // If the result is clearly ignored, return now.
2224   if (Ignore)
2225     return nullptr;
2226 
2227   // The result of an assignment in C is the assigned r-value.
2228   if (!CGF.getLangOpts().CPlusPlus)
2229     return RHS;
2230 
2231   // If the lvalue is non-volatile, return the computed value of the assignment.
2232   if (!LHS.isVolatileQualified())
2233     return RHS;
2234 
2235   // Otherwise, reload the value.
2236   return EmitLoadOfLValue(LHS, E->getExprLoc());
2237 }
2238 
2239 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2240     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2241   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2242 
2243   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2244     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2245                                     SanitizerKind::IntegerDivideByZero));
2246   }
2247 
2248   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2249       Ops.Ty->hasSignedIntegerRepresentation()) {
2250     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2251 
2252     llvm::Value *IntMin =
2253       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2254     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2255 
2256     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2257     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2258     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2259     Checks.push_back(
2260         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2261   }
2262 
2263   if (Checks.size() > 0)
2264     EmitBinOpCheck(Checks, Ops);
2265 }
2266 
2267 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2268   {
2269     CodeGenFunction::SanitizerScope SanScope(&CGF);
2270     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2271          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2272         Ops.Ty->isIntegerType()) {
2273       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2274       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2275     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2276                Ops.Ty->isRealFloatingType()) {
2277       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2278       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2279       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2280                      Ops);
2281     }
2282   }
2283 
2284   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2285     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2286     if (CGF.getLangOpts().OpenCL &&
2287         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
2288       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
2289       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
2290       // build option allows an application to specify that single precision
2291       // floating-point divide (x/y and 1/x) and sqrt used in the program
2292       // source are correctly rounded.
2293       llvm::Type *ValTy = Val->getType();
2294       if (ValTy->isFloatTy() ||
2295           (isa<llvm::VectorType>(ValTy) &&
2296            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2297         CGF.SetFPAccuracy(Val, 2.5);
2298     }
2299     return Val;
2300   }
2301   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2302     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2303   else
2304     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2305 }
2306 
2307 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2308   // Rem in C can't be a floating point type: C99 6.5.5p2.
2309   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2310     CodeGenFunction::SanitizerScope SanScope(&CGF);
2311     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2312 
2313     if (Ops.Ty->isIntegerType())
2314       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2315   }
2316 
2317   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2318     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2319   else
2320     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2321 }
2322 
2323 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2324   unsigned IID;
2325   unsigned OpID = 0;
2326 
2327   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2328   switch (Ops.Opcode) {
2329   case BO_Add:
2330   case BO_AddAssign:
2331     OpID = 1;
2332     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2333                      llvm::Intrinsic::uadd_with_overflow;
2334     break;
2335   case BO_Sub:
2336   case BO_SubAssign:
2337     OpID = 2;
2338     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2339                      llvm::Intrinsic::usub_with_overflow;
2340     break;
2341   case BO_Mul:
2342   case BO_MulAssign:
2343     OpID = 3;
2344     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2345                      llvm::Intrinsic::umul_with_overflow;
2346     break;
2347   default:
2348     llvm_unreachable("Unsupported operation for overflow detection");
2349   }
2350   OpID <<= 1;
2351   if (isSigned)
2352     OpID |= 1;
2353 
2354   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2355 
2356   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2357 
2358   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2359   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2360   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2361 
2362   // Handle overflow with llvm.trap if no custom handler has been specified.
2363   const std::string *handlerName =
2364     &CGF.getLangOpts().OverflowHandler;
2365   if (handlerName->empty()) {
2366     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2367     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2368     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2369       CodeGenFunction::SanitizerScope SanScope(&CGF);
2370       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2371       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2372                               : SanitizerKind::UnsignedIntegerOverflow;
2373       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2374     } else
2375       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2376     return result;
2377   }
2378 
2379   // Branch in case of overflow.
2380   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2381   llvm::BasicBlock *continueBB =
2382       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
2383   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2384 
2385   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2386 
2387   // If an overflow handler is set, then we want to call it and then use its
2388   // result, if it returns.
2389   Builder.SetInsertPoint(overflowBB);
2390 
2391   // Get the overflow handler.
2392   llvm::Type *Int8Ty = CGF.Int8Ty;
2393   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2394   llvm::FunctionType *handlerTy =
2395       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2396   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2397 
2398   // Sign extend the args to 64-bit, so that we can use the same handler for
2399   // all types of overflow.
2400   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2401   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2402 
2403   // Call the handler with the two arguments, the operation, and the size of
2404   // the result.
2405   llvm::Value *handlerArgs[] = {
2406     lhs,
2407     rhs,
2408     Builder.getInt8(OpID),
2409     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2410   };
2411   llvm::Value *handlerResult =
2412     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2413 
2414   // Truncate the result back to the desired size.
2415   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2416   Builder.CreateBr(continueBB);
2417 
2418   Builder.SetInsertPoint(continueBB);
2419   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2420   phi->addIncoming(result, initialBB);
2421   phi->addIncoming(handlerResult, overflowBB);
2422 
2423   return phi;
2424 }
2425 
2426 /// Emit pointer + index arithmetic.
2427 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2428                                     const BinOpInfo &op,
2429                                     bool isSubtraction) {
2430   // Must have binary (not unary) expr here.  Unary pointer
2431   // increment/decrement doesn't use this path.
2432   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2433 
2434   Value *pointer = op.LHS;
2435   Expr *pointerOperand = expr->getLHS();
2436   Value *index = op.RHS;
2437   Expr *indexOperand = expr->getRHS();
2438 
2439   // In a subtraction, the LHS is always the pointer.
2440   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2441     std::swap(pointer, index);
2442     std::swap(pointerOperand, indexOperand);
2443   }
2444 
2445   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2446   auto &DL = CGF.CGM.getDataLayout();
2447   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
2448   if (width != DL.getTypeSizeInBits(PtrTy)) {
2449     // Zero-extend or sign-extend the pointer value according to
2450     // whether the index is signed or not.
2451     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2452     index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
2453                                       "idx.ext");
2454   }
2455 
2456   // If this is subtraction, negate the index.
2457   if (isSubtraction)
2458     index = CGF.Builder.CreateNeg(index, "idx.neg");
2459 
2460   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2461     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2462                         /*Accessed*/ false);
2463 
2464   const PointerType *pointerType
2465     = pointerOperand->getType()->getAs<PointerType>();
2466   if (!pointerType) {
2467     QualType objectType = pointerOperand->getType()
2468                                         ->castAs<ObjCObjectPointerType>()
2469                                         ->getPointeeType();
2470     llvm::Value *objectSize
2471       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2472 
2473     index = CGF.Builder.CreateMul(index, objectSize);
2474 
2475     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2476     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2477     return CGF.Builder.CreateBitCast(result, pointer->getType());
2478   }
2479 
2480   QualType elementType = pointerType->getPointeeType();
2481   if (const VariableArrayType *vla
2482         = CGF.getContext().getAsVariableArrayType(elementType)) {
2483     // The element count here is the total number of non-VLA elements.
2484     llvm::Value *numElements = CGF.getVLASize(vla).first;
2485 
2486     // Effectively, the multiply by the VLA size is part of the GEP.
2487     // GEP indexes are signed, and scaling an index isn't permitted to
2488     // signed-overflow, so we use the same semantics for our explicit
2489     // multiply.  We suppress this if overflow is not undefined behavior.
2490     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2491       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2492       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2493     } else {
2494       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2495       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2496     }
2497     return pointer;
2498   }
2499 
2500   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2501   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2502   // future proof.
2503   if (elementType->isVoidType() || elementType->isFunctionType()) {
2504     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2505     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2506     return CGF.Builder.CreateBitCast(result, pointer->getType());
2507   }
2508 
2509   if (CGF.getLangOpts().isSignedOverflowDefined())
2510     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2511 
2512   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2513 }
2514 
2515 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2516 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2517 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2518 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2519 // efficient operations.
2520 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2521                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2522                            bool negMul, bool negAdd) {
2523   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2524 
2525   Value *MulOp0 = MulOp->getOperand(0);
2526   Value *MulOp1 = MulOp->getOperand(1);
2527   if (negMul) {
2528     MulOp0 =
2529       Builder.CreateFSub(
2530         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2531         "neg");
2532   } else if (negAdd) {
2533     Addend =
2534       Builder.CreateFSub(
2535         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2536         "neg");
2537   }
2538 
2539   Value *FMulAdd = Builder.CreateCall(
2540       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2541       {MulOp0, MulOp1, Addend});
2542    MulOp->eraseFromParent();
2543 
2544    return FMulAdd;
2545 }
2546 
2547 // Check whether it would be legal to emit an fmuladd intrinsic call to
2548 // represent op and if so, build the fmuladd.
2549 //
2550 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2551 // Does NOT check the type of the operation - it's assumed that this function
2552 // will be called from contexts where it's known that the type is contractable.
2553 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2554                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2555                          bool isSub=false) {
2556 
2557   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2558           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2559          "Only fadd/fsub can be the root of an fmuladd.");
2560 
2561   // Check whether this op is marked as fusable.
2562   if (!op.FPContractable)
2563     return nullptr;
2564 
2565   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2566   // either disabled, or handled entirely by the LLVM backend).
2567   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2568     return nullptr;
2569 
2570   // We have a potentially fusable op. Look for a mul on one of the operands.
2571   // Also, make sure that the mul result isn't used directly. In that case,
2572   // there's no point creating a muladd operation.
2573   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2574     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2575         LHSBinOp->use_empty())
2576       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2577   }
2578   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2579     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2580         RHSBinOp->use_empty())
2581       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2582   }
2583 
2584   return nullptr;
2585 }
2586 
2587 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2588   if (op.LHS->getType()->isPointerTy() ||
2589       op.RHS->getType()->isPointerTy())
2590     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2591 
2592   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2593     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2594     case LangOptions::SOB_Defined:
2595       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2596     case LangOptions::SOB_Undefined:
2597       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2598         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2599       // Fall through.
2600     case LangOptions::SOB_Trapping:
2601       return EmitOverflowCheckedBinOp(op);
2602     }
2603   }
2604 
2605   if (op.Ty->isUnsignedIntegerType() &&
2606       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2607     return EmitOverflowCheckedBinOp(op);
2608 
2609   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2610     // Try to form an fmuladd.
2611     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2612       return FMulAdd;
2613 
2614     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2615   }
2616 
2617   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2618 }
2619 
2620 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2621   // The LHS is always a pointer if either side is.
2622   if (!op.LHS->getType()->isPointerTy()) {
2623     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2624       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2625       case LangOptions::SOB_Defined:
2626         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2627       case LangOptions::SOB_Undefined:
2628         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2629           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2630         // Fall through.
2631       case LangOptions::SOB_Trapping:
2632         return EmitOverflowCheckedBinOp(op);
2633       }
2634     }
2635 
2636     if (op.Ty->isUnsignedIntegerType() &&
2637         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2638       return EmitOverflowCheckedBinOp(op);
2639 
2640     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2641       // Try to form an fmuladd.
2642       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2643         return FMulAdd;
2644       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2645     }
2646 
2647     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2648   }
2649 
2650   // If the RHS is not a pointer, then we have normal pointer
2651   // arithmetic.
2652   if (!op.RHS->getType()->isPointerTy())
2653     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2654 
2655   // Otherwise, this is a pointer subtraction.
2656 
2657   // Do the raw subtraction part.
2658   llvm::Value *LHS
2659     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2660   llvm::Value *RHS
2661     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2662   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2663 
2664   // Okay, figure out the element size.
2665   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2666   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2667 
2668   llvm::Value *divisor = nullptr;
2669 
2670   // For a variable-length array, this is going to be non-constant.
2671   if (const VariableArrayType *vla
2672         = CGF.getContext().getAsVariableArrayType(elementType)) {
2673     llvm::Value *numElements;
2674     std::tie(numElements, elementType) = CGF.getVLASize(vla);
2675 
2676     divisor = numElements;
2677 
2678     // Scale the number of non-VLA elements by the non-VLA element size.
2679     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2680     if (!eltSize.isOne())
2681       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2682 
2683   // For everything elese, we can just compute it, safe in the
2684   // assumption that Sema won't let anything through that we can't
2685   // safely compute the size of.
2686   } else {
2687     CharUnits elementSize;
2688     // Handle GCC extension for pointer arithmetic on void* and
2689     // function pointer types.
2690     if (elementType->isVoidType() || elementType->isFunctionType())
2691       elementSize = CharUnits::One();
2692     else
2693       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2694 
2695     // Don't even emit the divide for element size of 1.
2696     if (elementSize.isOne())
2697       return diffInChars;
2698 
2699     divisor = CGF.CGM.getSize(elementSize);
2700   }
2701 
2702   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2703   // pointer difference in C is only defined in the case where both operands
2704   // are pointing to elements of an array.
2705   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2706 }
2707 
2708 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2709   llvm::IntegerType *Ty;
2710   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2711     Ty = cast<llvm::IntegerType>(VT->getElementType());
2712   else
2713     Ty = cast<llvm::IntegerType>(LHS->getType());
2714   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2715 }
2716 
2717 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2718   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2719   // RHS to the same size as the LHS.
2720   Value *RHS = Ops.RHS;
2721   if (Ops.LHS->getType() != RHS->getType())
2722     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2723 
2724   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
2725                       Ops.Ty->hasSignedIntegerRepresentation() &&
2726                       !CGF.getLangOpts().isSignedOverflowDefined();
2727   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
2728   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2729   if (CGF.getLangOpts().OpenCL)
2730     RHS =
2731         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2732   else if ((SanitizeBase || SanitizeExponent) &&
2733            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2734     CodeGenFunction::SanitizerScope SanScope(&CGF);
2735     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
2736     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2737     llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
2738 
2739     if (SanitizeExponent) {
2740       Checks.push_back(
2741           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
2742     }
2743 
2744     if (SanitizeBase) {
2745       // Check whether we are shifting any non-zero bits off the top of the
2746       // integer. We only emit this check if exponent is valid - otherwise
2747       // instructions below will have undefined behavior themselves.
2748       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2749       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2750       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
2751       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
2752       CGF.EmitBlock(CheckShiftBase);
2753       llvm::Value *BitsShiftedOff =
2754         Builder.CreateLShr(Ops.LHS,
2755                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2756                                              /*NUW*/true, /*NSW*/true),
2757                            "shl.check");
2758       if (CGF.getLangOpts().CPlusPlus) {
2759         // In C99, we are not permitted to shift a 1 bit into the sign bit.
2760         // Under C++11's rules, shifting a 1 bit into the sign bit is
2761         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2762         // define signed left shifts, so we use the C99 and C++11 rules there).
2763         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2764         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2765       }
2766       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2767       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2768       CGF.EmitBlock(Cont);
2769       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
2770       BaseCheck->addIncoming(Builder.getTrue(), Orig);
2771       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
2772       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
2773     }
2774 
2775     assert(!Checks.empty());
2776     EmitBinOpCheck(Checks, Ops);
2777   }
2778 
2779   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2780 }
2781 
2782 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2783   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2784   // RHS to the same size as the LHS.
2785   Value *RHS = Ops.RHS;
2786   if (Ops.LHS->getType() != RHS->getType())
2787     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2788 
2789   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2790   if (CGF.getLangOpts().OpenCL)
2791     RHS =
2792         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2793   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
2794            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2795     CodeGenFunction::SanitizerScope SanScope(&CGF);
2796     llvm::Value *Valid =
2797         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
2798     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
2799   }
2800 
2801   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2802     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2803   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2804 }
2805 
2806 enum IntrinsicType { VCMPEQ, VCMPGT };
2807 // return corresponding comparison intrinsic for given vector type
2808 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2809                                         BuiltinType::Kind ElemKind) {
2810   switch (ElemKind) {
2811   default: llvm_unreachable("unexpected element type");
2812   case BuiltinType::Char_U:
2813   case BuiltinType::UChar:
2814     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2815                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2816   case BuiltinType::Char_S:
2817   case BuiltinType::SChar:
2818     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2819                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2820   case BuiltinType::UShort:
2821     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2822                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2823   case BuiltinType::Short:
2824     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2825                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2826   case BuiltinType::UInt:
2827   case BuiltinType::ULong:
2828     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2829                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2830   case BuiltinType::Int:
2831   case BuiltinType::Long:
2832     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2833                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2834   case BuiltinType::Float:
2835     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2836                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2837   }
2838 }
2839 
2840 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
2841                                       llvm::CmpInst::Predicate UICmpOpc,
2842                                       llvm::CmpInst::Predicate SICmpOpc,
2843                                       llvm::CmpInst::Predicate FCmpOpc) {
2844   TestAndClearIgnoreResultAssign();
2845   Value *Result;
2846   QualType LHSTy = E->getLHS()->getType();
2847   QualType RHSTy = E->getRHS()->getType();
2848   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2849     assert(E->getOpcode() == BO_EQ ||
2850            E->getOpcode() == BO_NE);
2851     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2852     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2853     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2854                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2855   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
2856     Value *LHS = Visit(E->getLHS());
2857     Value *RHS = Visit(E->getRHS());
2858 
2859     // If AltiVec, the comparison results in a numeric type, so we use
2860     // intrinsics comparing vectors and giving 0 or 1 as a result
2861     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2862       // constants for mapping CR6 register bits to predicate result
2863       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2864 
2865       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2866 
2867       // in several cases vector arguments order will be reversed
2868       Value *FirstVecArg = LHS,
2869             *SecondVecArg = RHS;
2870 
2871       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2872       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2873       BuiltinType::Kind ElementKind = BTy->getKind();
2874 
2875       switch(E->getOpcode()) {
2876       default: llvm_unreachable("is not a comparison operation");
2877       case BO_EQ:
2878         CR6 = CR6_LT;
2879         ID = GetIntrinsic(VCMPEQ, ElementKind);
2880         break;
2881       case BO_NE:
2882         CR6 = CR6_EQ;
2883         ID = GetIntrinsic(VCMPEQ, ElementKind);
2884         break;
2885       case BO_LT:
2886         CR6 = CR6_LT;
2887         ID = GetIntrinsic(VCMPGT, ElementKind);
2888         std::swap(FirstVecArg, SecondVecArg);
2889         break;
2890       case BO_GT:
2891         CR6 = CR6_LT;
2892         ID = GetIntrinsic(VCMPGT, ElementKind);
2893         break;
2894       case BO_LE:
2895         if (ElementKind == BuiltinType::Float) {
2896           CR6 = CR6_LT;
2897           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2898           std::swap(FirstVecArg, SecondVecArg);
2899         }
2900         else {
2901           CR6 = CR6_EQ;
2902           ID = GetIntrinsic(VCMPGT, ElementKind);
2903         }
2904         break;
2905       case BO_GE:
2906         if (ElementKind == BuiltinType::Float) {
2907           CR6 = CR6_LT;
2908           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2909         }
2910         else {
2911           CR6 = CR6_EQ;
2912           ID = GetIntrinsic(VCMPGT, ElementKind);
2913           std::swap(FirstVecArg, SecondVecArg);
2914         }
2915         break;
2916       }
2917 
2918       Value *CR6Param = Builder.getInt32(CR6);
2919       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2920       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
2921       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2922                                   E->getExprLoc());
2923     }
2924 
2925     if (LHS->getType()->isFPOrFPVectorTy()) {
2926       Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
2927     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2928       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
2929     } else {
2930       // Unsigned integers and pointers.
2931       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
2932     }
2933 
2934     // If this is a vector comparison, sign extend the result to the appropriate
2935     // vector integer type and return it (don't convert to bool).
2936     if (LHSTy->isVectorType())
2937       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2938 
2939   } else {
2940     // Complex Comparison: can only be an equality comparison.
2941     CodeGenFunction::ComplexPairTy LHS, RHS;
2942     QualType CETy;
2943     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
2944       LHS = CGF.EmitComplexExpr(E->getLHS());
2945       CETy = CTy->getElementType();
2946     } else {
2947       LHS.first = Visit(E->getLHS());
2948       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
2949       CETy = LHSTy;
2950     }
2951     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
2952       RHS = CGF.EmitComplexExpr(E->getRHS());
2953       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
2954                                                      CTy->getElementType()) &&
2955              "The element types must always match.");
2956       (void)CTy;
2957     } else {
2958       RHS.first = Visit(E->getRHS());
2959       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
2960       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
2961              "The element types must always match.");
2962     }
2963 
2964     Value *ResultR, *ResultI;
2965     if (CETy->isRealFloatingType()) {
2966       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
2967       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
2968     } else {
2969       // Complex comparisons can only be equality comparisons.  As such, signed
2970       // and unsigned opcodes are the same.
2971       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
2972       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
2973     }
2974 
2975     if (E->getOpcode() == BO_EQ) {
2976       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2977     } else {
2978       assert(E->getOpcode() == BO_NE &&
2979              "Complex comparison other than == or != ?");
2980       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2981     }
2982   }
2983 
2984   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2985                               E->getExprLoc());
2986 }
2987 
2988 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2989   bool Ignore = TestAndClearIgnoreResultAssign();
2990 
2991   Value *RHS;
2992   LValue LHS;
2993 
2994   switch (E->getLHS()->getType().getObjCLifetime()) {
2995   case Qualifiers::OCL_Strong:
2996     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2997     break;
2998 
2999   case Qualifiers::OCL_Autoreleasing:
3000     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3001     break;
3002 
3003   case Qualifiers::OCL_ExplicitNone:
3004     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3005     break;
3006 
3007   case Qualifiers::OCL_Weak:
3008     RHS = Visit(E->getRHS());
3009     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3010     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3011     break;
3012 
3013   case Qualifiers::OCL_None:
3014     // __block variables need to have the rhs evaluated first, plus
3015     // this should improve codegen just a little.
3016     RHS = Visit(E->getRHS());
3017     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3018 
3019     // Store the value into the LHS.  Bit-fields are handled specially
3020     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3021     // 'An assignment expression has the value of the left operand after
3022     // the assignment...'.
3023     if (LHS.isBitField())
3024       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3025     else
3026       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3027   }
3028 
3029   // If the result is clearly ignored, return now.
3030   if (Ignore)
3031     return nullptr;
3032 
3033   // The result of an assignment in C is the assigned r-value.
3034   if (!CGF.getLangOpts().CPlusPlus)
3035     return RHS;
3036 
3037   // If the lvalue is non-volatile, return the computed value of the assignment.
3038   if (!LHS.isVolatileQualified())
3039     return RHS;
3040 
3041   // Otherwise, reload the value.
3042   return EmitLoadOfLValue(LHS, E->getExprLoc());
3043 }
3044 
3045 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3046   // Perform vector logical and on comparisons with zero vectors.
3047   if (E->getType()->isVectorType()) {
3048     CGF.incrementProfileCounter(E);
3049 
3050     Value *LHS = Visit(E->getLHS());
3051     Value *RHS = Visit(E->getRHS());
3052     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3053     if (LHS->getType()->isFPOrFPVectorTy()) {
3054       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3055       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3056     } else {
3057       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3058       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3059     }
3060     Value *And = Builder.CreateAnd(LHS, RHS);
3061     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3062   }
3063 
3064   llvm::Type *ResTy = ConvertType(E->getType());
3065 
3066   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3067   // If we have 1 && X, just emit X without inserting the control flow.
3068   bool LHSCondVal;
3069   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3070     if (LHSCondVal) { // If we have 1 && X, just emit X.
3071       CGF.incrementProfileCounter(E);
3072 
3073       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3074       // ZExt result to int or bool.
3075       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3076     }
3077 
3078     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3079     if (!CGF.ContainsLabel(E->getRHS()))
3080       return llvm::Constant::getNullValue(ResTy);
3081   }
3082 
3083   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3084   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3085 
3086   CodeGenFunction::ConditionalEvaluation eval(CGF);
3087 
3088   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3089   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3090                            CGF.getProfileCount(E->getRHS()));
3091 
3092   // Any edges into the ContBlock are now from an (indeterminate number of)
3093   // edges from this first condition.  All of these values will be false.  Start
3094   // setting up the PHI node in the Cont Block for this.
3095   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3096                                             "", ContBlock);
3097   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3098        PI != PE; ++PI)
3099     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3100 
3101   eval.begin(CGF);
3102   CGF.EmitBlock(RHSBlock);
3103   CGF.incrementProfileCounter(E);
3104   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3105   eval.end(CGF);
3106 
3107   // Reaquire the RHS block, as there may be subblocks inserted.
3108   RHSBlock = Builder.GetInsertBlock();
3109 
3110   // Emit an unconditional branch from this block to ContBlock.
3111   {
3112     // There is no need to emit line number for unconditional branch.
3113     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3114     CGF.EmitBlock(ContBlock);
3115   }
3116   // Insert an entry into the phi node for the edge with the value of RHSCond.
3117   PN->addIncoming(RHSCond, RHSBlock);
3118 
3119   // ZExt result to int.
3120   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3121 }
3122 
3123 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3124   // Perform vector logical or on comparisons with zero vectors.
3125   if (E->getType()->isVectorType()) {
3126     CGF.incrementProfileCounter(E);
3127 
3128     Value *LHS = Visit(E->getLHS());
3129     Value *RHS = Visit(E->getRHS());
3130     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3131     if (LHS->getType()->isFPOrFPVectorTy()) {
3132       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3133       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3134     } else {
3135       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3136       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3137     }
3138     Value *Or = Builder.CreateOr(LHS, RHS);
3139     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3140   }
3141 
3142   llvm::Type *ResTy = ConvertType(E->getType());
3143 
3144   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3145   // If we have 0 || X, just emit X without inserting the control flow.
3146   bool LHSCondVal;
3147   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3148     if (!LHSCondVal) { // If we have 0 || X, just emit X.
3149       CGF.incrementProfileCounter(E);
3150 
3151       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3152       // ZExt result to int or bool.
3153       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3154     }
3155 
3156     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3157     if (!CGF.ContainsLabel(E->getRHS()))
3158       return llvm::ConstantInt::get(ResTy, 1);
3159   }
3160 
3161   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3162   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3163 
3164   CodeGenFunction::ConditionalEvaluation eval(CGF);
3165 
3166   // Branch on the LHS first.  If it is true, go to the success (cont) block.
3167   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3168                            CGF.getCurrentProfileCount() -
3169                                CGF.getProfileCount(E->getRHS()));
3170 
3171   // Any edges into the ContBlock are now from an (indeterminate number of)
3172   // edges from this first condition.  All of these values will be true.  Start
3173   // setting up the PHI node in the Cont Block for this.
3174   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3175                                             "", ContBlock);
3176   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3177        PI != PE; ++PI)
3178     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3179 
3180   eval.begin(CGF);
3181 
3182   // Emit the RHS condition as a bool value.
3183   CGF.EmitBlock(RHSBlock);
3184   CGF.incrementProfileCounter(E);
3185   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3186 
3187   eval.end(CGF);
3188 
3189   // Reaquire the RHS block, as there may be subblocks inserted.
3190   RHSBlock = Builder.GetInsertBlock();
3191 
3192   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3193   // into the phi node for the edge with the value of RHSCond.
3194   CGF.EmitBlock(ContBlock);
3195   PN->addIncoming(RHSCond, RHSBlock);
3196 
3197   // ZExt result to int.
3198   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3199 }
3200 
3201 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3202   CGF.EmitIgnoredExpr(E->getLHS());
3203   CGF.EnsureInsertPoint();
3204   return Visit(E->getRHS());
3205 }
3206 
3207 //===----------------------------------------------------------------------===//
3208 //                             Other Operators
3209 //===----------------------------------------------------------------------===//
3210 
3211 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3212 /// expression is cheap enough and side-effect-free enough to evaluate
3213 /// unconditionally instead of conditionally.  This is used to convert control
3214 /// flow into selects in some cases.
3215 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3216                                                    CodeGenFunction &CGF) {
3217   // Anything that is an integer or floating point constant is fine.
3218   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3219 
3220   // Even non-volatile automatic variables can't be evaluated unconditionally.
3221   // Referencing a thread_local may cause non-trivial initialization work to
3222   // occur. If we're inside a lambda and one of the variables is from the scope
3223   // outside the lambda, that function may have returned already. Reading its
3224   // locals is a bad idea. Also, these reads may introduce races there didn't
3225   // exist in the source-level program.
3226 }
3227 
3228 
3229 Value *ScalarExprEmitter::
3230 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3231   TestAndClearIgnoreResultAssign();
3232 
3233   // Bind the common expression if necessary.
3234   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3235 
3236   Expr *condExpr = E->getCond();
3237   Expr *lhsExpr = E->getTrueExpr();
3238   Expr *rhsExpr = E->getFalseExpr();
3239 
3240   // If the condition constant folds and can be elided, try to avoid emitting
3241   // the condition and the dead arm.
3242   bool CondExprBool;
3243   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3244     Expr *live = lhsExpr, *dead = rhsExpr;
3245     if (!CondExprBool) std::swap(live, dead);
3246 
3247     // If the dead side doesn't have labels we need, just emit the Live part.
3248     if (!CGF.ContainsLabel(dead)) {
3249       if (CondExprBool)
3250         CGF.incrementProfileCounter(E);
3251       Value *Result = Visit(live);
3252 
3253       // If the live part is a throw expression, it acts like it has a void
3254       // type, so evaluating it returns a null Value*.  However, a conditional
3255       // with non-void type must return a non-null Value*.
3256       if (!Result && !E->getType()->isVoidType())
3257         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3258 
3259       return Result;
3260     }
3261   }
3262 
3263   // OpenCL: If the condition is a vector, we can treat this condition like
3264   // the select function.
3265   if (CGF.getLangOpts().OpenCL
3266       && condExpr->getType()->isVectorType()) {
3267     CGF.incrementProfileCounter(E);
3268 
3269     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3270     llvm::Value *LHS = Visit(lhsExpr);
3271     llvm::Value *RHS = Visit(rhsExpr);
3272 
3273     llvm::Type *condType = ConvertType(condExpr->getType());
3274     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3275 
3276     unsigned numElem = vecTy->getNumElements();
3277     llvm::Type *elemType = vecTy->getElementType();
3278 
3279     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3280     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3281     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3282                                           llvm::VectorType::get(elemType,
3283                                                                 numElem),
3284                                           "sext");
3285     llvm::Value *tmp2 = Builder.CreateNot(tmp);
3286 
3287     // Cast float to int to perform ANDs if necessary.
3288     llvm::Value *RHSTmp = RHS;
3289     llvm::Value *LHSTmp = LHS;
3290     bool wasCast = false;
3291     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3292     if (rhsVTy->getElementType()->isFloatingPointTy()) {
3293       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3294       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3295       wasCast = true;
3296     }
3297 
3298     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3299     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3300     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3301     if (wasCast)
3302       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3303 
3304     return tmp5;
3305   }
3306 
3307   // If this is a really simple expression (like x ? 4 : 5), emit this as a
3308   // select instead of as control flow.  We can only do this if it is cheap and
3309   // safe to evaluate the LHS and RHS unconditionally.
3310   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3311       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3312     CGF.incrementProfileCounter(E);
3313 
3314     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3315     llvm::Value *LHS = Visit(lhsExpr);
3316     llvm::Value *RHS = Visit(rhsExpr);
3317     if (!LHS) {
3318       // If the conditional has void type, make sure we return a null Value*.
3319       assert(!RHS && "LHS and RHS types must match");
3320       return nullptr;
3321     }
3322     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3323   }
3324 
3325   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3326   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3327   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3328 
3329   CodeGenFunction::ConditionalEvaluation eval(CGF);
3330   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3331                            CGF.getProfileCount(lhsExpr));
3332 
3333   CGF.EmitBlock(LHSBlock);
3334   CGF.incrementProfileCounter(E);
3335   eval.begin(CGF);
3336   Value *LHS = Visit(lhsExpr);
3337   eval.end(CGF);
3338 
3339   LHSBlock = Builder.GetInsertBlock();
3340   Builder.CreateBr(ContBlock);
3341 
3342   CGF.EmitBlock(RHSBlock);
3343   eval.begin(CGF);
3344   Value *RHS = Visit(rhsExpr);
3345   eval.end(CGF);
3346 
3347   RHSBlock = Builder.GetInsertBlock();
3348   CGF.EmitBlock(ContBlock);
3349 
3350   // If the LHS or RHS is a throw expression, it will be legitimately null.
3351   if (!LHS)
3352     return RHS;
3353   if (!RHS)
3354     return LHS;
3355 
3356   // Create a PHI node for the real part.
3357   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3358   PN->addIncoming(LHS, LHSBlock);
3359   PN->addIncoming(RHS, RHSBlock);
3360   return PN;
3361 }
3362 
3363 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3364   return Visit(E->getChosenSubExpr());
3365 }
3366 
3367 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3368   QualType Ty = VE->getType();
3369 
3370   if (Ty->isVariablyModifiedType())
3371     CGF.EmitVariablyModifiedType(Ty);
3372 
3373   Address ArgValue = Address::invalid();
3374   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
3375 
3376   llvm::Type *ArgTy = ConvertType(VE->getType());
3377 
3378   // If EmitVAArg fails, emit an error.
3379   if (!ArgPtr.isValid()) {
3380     CGF.ErrorUnsupported(VE, "va_arg expression");
3381     return llvm::UndefValue::get(ArgTy);
3382   }
3383 
3384   // FIXME Volatility.
3385   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3386 
3387   // If EmitVAArg promoted the type, we must truncate it.
3388   if (ArgTy != Val->getType()) {
3389     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3390       Val = Builder.CreateIntToPtr(Val, ArgTy);
3391     else
3392       Val = Builder.CreateTrunc(Val, ArgTy);
3393   }
3394 
3395   return Val;
3396 }
3397 
3398 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3399   return CGF.EmitBlockLiteral(block);
3400 }
3401 
3402 // Convert a vec3 to vec4, or vice versa.
3403 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
3404                                  Value *Src, unsigned NumElementsDst) {
3405   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3406   SmallVector<llvm::Constant*, 4> Args;
3407   Args.push_back(Builder.getInt32(0));
3408   Args.push_back(Builder.getInt32(1));
3409   Args.push_back(Builder.getInt32(2));
3410   if (NumElementsDst == 4)
3411     Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3412   llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3413   return Builder.CreateShuffleVector(Src, UnV, Mask);
3414 }
3415 
3416 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
3417 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
3418 // but could be scalar or vectors of different lengths, and either can be
3419 // pointer.
3420 // There are 4 cases:
3421 // 1. non-pointer -> non-pointer  : needs 1 bitcast
3422 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
3423 // 3. pointer -> non-pointer
3424 //   a) pointer -> intptr_t       : needs 1 ptrtoint
3425 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
3426 // 4. non-pointer -> pointer
3427 //   a) intptr_t -> pointer       : needs 1 inttoptr
3428 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
3429 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
3430 // allow casting directly between pointer types and non-integer non-pointer
3431 // types.
3432 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
3433                                            const llvm::DataLayout &DL,
3434                                            Value *Src, llvm::Type *DstTy,
3435                                            StringRef Name = "") {
3436   auto SrcTy = Src->getType();
3437 
3438   // Case 1.
3439   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
3440     return Builder.CreateBitCast(Src, DstTy, Name);
3441 
3442   // Case 2.
3443   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
3444     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
3445 
3446   // Case 3.
3447   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
3448     // Case 3b.
3449     if (!DstTy->isIntegerTy())
3450       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
3451     // Cases 3a and 3b.
3452     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
3453   }
3454 
3455   // Case 4b.
3456   if (!SrcTy->isIntegerTy())
3457     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
3458   // Cases 4a and 4b.
3459   return Builder.CreateIntToPtr(Src, DstTy, Name);
3460 }
3461 
3462 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3463   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3464   llvm::Type *DstTy = ConvertType(E->getType());
3465 
3466   llvm::Type *SrcTy = Src->getType();
3467   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
3468     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
3469   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
3470     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
3471 
3472   // Going from vec3 to non-vec3 is a special case and requires a shuffle
3473   // vector to get a vec4, then a bitcast if the target type is different.
3474   if (NumElementsSrc == 3 && NumElementsDst != 3) {
3475     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
3476     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3477                                        DstTy);
3478     Src->setName("astype");
3479     return Src;
3480   }
3481 
3482   // Going from non-vec3 to vec3 is a special case and requires a bitcast
3483   // to vec4 if the original type is not vec4, then a shuffle vector to
3484   // get a vec3.
3485   if (NumElementsSrc != 3 && NumElementsDst == 3) {
3486     auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
3487     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3488                                        Vec4Ty);
3489     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
3490     Src->setName("astype");
3491     return Src;
3492   }
3493 
3494   return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
3495                                             Src, DstTy, "astype");
3496 }
3497 
3498 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3499   return CGF.EmitAtomicExpr(E).getScalarVal();
3500 }
3501 
3502 //===----------------------------------------------------------------------===//
3503 //                         Entry Point into this File
3504 //===----------------------------------------------------------------------===//
3505 
3506 /// Emit the computation of the specified expression of scalar type, ignoring
3507 /// the result.
3508 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3509   assert(E && hasScalarEvaluationKind(E->getType()) &&
3510          "Invalid scalar expression to emit");
3511 
3512   return ScalarExprEmitter(*this, IgnoreResultAssign)
3513       .Visit(const_cast<Expr *>(E));
3514 }
3515 
3516 /// Emit a conversion from the specified type to the specified destination type,
3517 /// both of which are LLVM scalar types.
3518 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3519                                              QualType DstTy,
3520                                              SourceLocation Loc) {
3521   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3522          "Invalid scalar expression to emit");
3523   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
3524 }
3525 
3526 /// Emit a conversion from the specified complex type to the specified
3527 /// destination type, where the destination type is an LLVM scalar type.
3528 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3529                                                       QualType SrcTy,
3530                                                       QualType DstTy,
3531                                                       SourceLocation Loc) {
3532   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3533          "Invalid complex -> scalar conversion");
3534   return ScalarExprEmitter(*this)
3535       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
3536 }
3537 
3538 
3539 llvm::Value *CodeGenFunction::
3540 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3541                         bool isInc, bool isPre) {
3542   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3543 }
3544 
3545 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3546   // object->isa or (*object).isa
3547   // Generate code as for: *(Class*)object
3548 
3549   Expr *BaseExpr = E->getBase();
3550   Address Addr = Address::invalid();
3551   if (BaseExpr->isRValue()) {
3552     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
3553   } else {
3554     Addr = EmitLValue(BaseExpr).getAddress();
3555   }
3556 
3557   // Cast the address to Class*.
3558   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
3559   return MakeAddrLValue(Addr, E->getType());
3560 }
3561 
3562 
3563 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3564                                             const CompoundAssignOperator *E) {
3565   ScalarExprEmitter Scalar(*this);
3566   Value *Result = nullptr;
3567   switch (E->getOpcode()) {
3568 #define COMPOUND_OP(Op)                                                       \
3569     case BO_##Op##Assign:                                                     \
3570       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3571                                              Result)
3572   COMPOUND_OP(Mul);
3573   COMPOUND_OP(Div);
3574   COMPOUND_OP(Rem);
3575   COMPOUND_OP(Add);
3576   COMPOUND_OP(Sub);
3577   COMPOUND_OP(Shl);
3578   COMPOUND_OP(Shr);
3579   COMPOUND_OP(And);
3580   COMPOUND_OP(Xor);
3581   COMPOUND_OP(Or);
3582 #undef COMPOUND_OP
3583 
3584   case BO_PtrMemD:
3585   case BO_PtrMemI:
3586   case BO_Mul:
3587   case BO_Div:
3588   case BO_Rem:
3589   case BO_Add:
3590   case BO_Sub:
3591   case BO_Shl:
3592   case BO_Shr:
3593   case BO_LT:
3594   case BO_GT:
3595   case BO_LE:
3596   case BO_GE:
3597   case BO_EQ:
3598   case BO_NE:
3599   case BO_And:
3600   case BO_Xor:
3601   case BO_Or:
3602   case BO_LAnd:
3603   case BO_LOr:
3604   case BO_Assign:
3605   case BO_Comma:
3606     llvm_unreachable("Not valid compound assignment operators");
3607   }
3608 
3609   llvm_unreachable("Unhandled compound assignment operator");
3610 }
3611