1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Module.h"
33 #include <cstdarg>
34 
35 using namespace clang;
36 using namespace CodeGen;
37 using llvm::Value;
38 
39 //===----------------------------------------------------------------------===//
40 //                         Scalar Expression Emitter
41 //===----------------------------------------------------------------------===//
42 
43 namespace {
44 struct BinOpInfo {
45   Value *LHS;
46   Value *RHS;
47   QualType Ty;  // Computation Type.
48   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
49   bool FPContractable;
50   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
51 };
52 
53 static bool MustVisitNullValue(const Expr *E) {
54   // If a null pointer expression's type is the C++0x nullptr_t, then
55   // it's not necessarily a simple constant and it must be evaluated
56   // for its potential side effects.
57   return E->getType()->isNullPtrType();
58 }
59 
60 class ScalarExprEmitter
61   : public StmtVisitor<ScalarExprEmitter, Value*> {
62   CodeGenFunction &CGF;
63   CGBuilderTy &Builder;
64   bool IgnoreResultAssign;
65   llvm::LLVMContext &VMContext;
66 public:
67 
68   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
69     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
70       VMContext(cgf.getLLVMContext()) {
71   }
72 
73   //===--------------------------------------------------------------------===//
74   //                               Utilities
75   //===--------------------------------------------------------------------===//
76 
77   bool TestAndClearIgnoreResultAssign() {
78     bool I = IgnoreResultAssign;
79     IgnoreResultAssign = false;
80     return I;
81   }
82 
83   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
84   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
85   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
86     return CGF.EmitCheckedLValue(E, TCK);
87   }
88 
89   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
90                       const BinOpInfo &Info);
91 
92   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
93     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
94   }
95 
96   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
97     const AlignValueAttr *AVAttr = nullptr;
98     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
99       const ValueDecl *VD = DRE->getDecl();
100 
101       if (VD->getType()->isReferenceType()) {
102         if (const auto *TTy =
103             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
104           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
105       } else {
106         // Assumptions for function parameters are emitted at the start of the
107         // function, so there is no need to repeat that here.
108         if (isa<ParmVarDecl>(VD))
109           return;
110 
111         AVAttr = VD->getAttr<AlignValueAttr>();
112       }
113     }
114 
115     if (!AVAttr)
116       if (const auto *TTy =
117           dyn_cast<TypedefType>(E->getType()))
118         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
119 
120     if (!AVAttr)
121       return;
122 
123     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
124     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
125     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
126   }
127 
128   /// EmitLoadOfLValue - Given an expression with complex type that represents a
129   /// value l-value, this method emits the address of the l-value, then loads
130   /// and returns the result.
131   Value *EmitLoadOfLValue(const Expr *E) {
132     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
133                                 E->getExprLoc());
134 
135     EmitLValueAlignmentAssumption(E, V);
136     return V;
137   }
138 
139   /// EmitConversionToBool - Convert the specified expression value to a
140   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
141   Value *EmitConversionToBool(Value *Src, QualType DstTy);
142 
143   /// Emit a check that a conversion to or from a floating-point type does not
144   /// overflow.
145   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
146                                 Value *Src, QualType SrcType, QualType DstType,
147                                 llvm::Type *DstTy, SourceLocation Loc);
148 
149   /// Emit a conversion from the specified type to the specified destination
150   /// type, both of which are LLVM scalar types.
151   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
152                               SourceLocation Loc);
153 
154   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
155                               SourceLocation Loc, bool TreatBooleanAsSigned);
156 
157   /// Emit a conversion from the specified complex type to the specified
158   /// destination type, where the destination type is an LLVM scalar type.
159   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
160                                        QualType SrcTy, QualType DstTy,
161                                        SourceLocation Loc);
162 
163   /// EmitNullValue - Emit a value that corresponds to null for the given type.
164   Value *EmitNullValue(QualType Ty);
165 
166   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
167   Value *EmitFloatToBoolConversion(Value *V) {
168     // Compare against 0.0 for fp scalars.
169     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
170     return Builder.CreateFCmpUNE(V, Zero, "tobool");
171   }
172 
173   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
174   Value *EmitPointerToBoolConversion(Value *V) {
175     Value *Zero = llvm::ConstantPointerNull::get(
176                                       cast<llvm::PointerType>(V->getType()));
177     return Builder.CreateICmpNE(V, Zero, "tobool");
178   }
179 
180   Value *EmitIntToBoolConversion(Value *V) {
181     // Because of the type rules of C, we often end up computing a
182     // logical value, then zero extending it to int, then wanting it
183     // as a logical value again.  Optimize this common case.
184     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
185       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
186         Value *Result = ZI->getOperand(0);
187         // If there aren't any more uses, zap the instruction to save space.
188         // Note that there can be more uses, for example if this
189         // is the result of an assignment.
190         if (ZI->use_empty())
191           ZI->eraseFromParent();
192         return Result;
193       }
194     }
195 
196     return Builder.CreateIsNotNull(V, "tobool");
197   }
198 
199   //===--------------------------------------------------------------------===//
200   //                            Visitor Methods
201   //===--------------------------------------------------------------------===//
202 
203   Value *Visit(Expr *E) {
204     ApplyDebugLocation DL(CGF, E);
205     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
206   }
207 
208   Value *VisitStmt(Stmt *S) {
209     S->dump(CGF.getContext().getSourceManager());
210     llvm_unreachable("Stmt can't have complex result type!");
211   }
212   Value *VisitExpr(Expr *S);
213 
214   Value *VisitParenExpr(ParenExpr *PE) {
215     return Visit(PE->getSubExpr());
216   }
217   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
218     return Visit(E->getReplacement());
219   }
220   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
221     return Visit(GE->getResultExpr());
222   }
223 
224   // Leaves.
225   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
226     return Builder.getInt(E->getValue());
227   }
228   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
229     return llvm::ConstantFP::get(VMContext, E->getValue());
230   }
231   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
232     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
233   }
234   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
235     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
236   }
237   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
238     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
239   }
240   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
241     return EmitNullValue(E->getType());
242   }
243   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
244     return EmitNullValue(E->getType());
245   }
246   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
247   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
248   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
249     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
250     return Builder.CreateBitCast(V, ConvertType(E->getType()));
251   }
252 
253   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
254     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
255   }
256 
257   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
258     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
259   }
260 
261   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
262     if (E->isGLValue())
263       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
264 
265     // Otherwise, assume the mapping is the scalar directly.
266     return CGF.getOpaqueRValueMapping(E).getScalarVal();
267   }
268 
269   // l-values.
270   Value *VisitDeclRefExpr(DeclRefExpr *E) {
271     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
272       if (result.isReference())
273         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
274                                 E->getExprLoc());
275       return result.getValue();
276     }
277     return EmitLoadOfLValue(E);
278   }
279 
280   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
281     return CGF.EmitObjCSelectorExpr(E);
282   }
283   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
284     return CGF.EmitObjCProtocolExpr(E);
285   }
286   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
287     return EmitLoadOfLValue(E);
288   }
289   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
290     if (E->getMethodDecl() &&
291         E->getMethodDecl()->getReturnType()->isReferenceType())
292       return EmitLoadOfLValue(E);
293     return CGF.EmitObjCMessageExpr(E).getScalarVal();
294   }
295 
296   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
297     LValue LV = CGF.EmitObjCIsaExpr(E);
298     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
299     return V;
300   }
301 
302   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
303   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
304   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
305   Value *VisitMemberExpr(MemberExpr *E);
306   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
307   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
308     return EmitLoadOfLValue(E);
309   }
310 
311   Value *VisitInitListExpr(InitListExpr *E);
312 
313   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
314     return EmitNullValue(E->getType());
315   }
316   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
317     if (E->getType()->isVariablyModifiedType())
318       CGF.EmitVariablyModifiedType(E->getType());
319 
320     if (CGDebugInfo *DI = CGF.getDebugInfo())
321       DI->EmitExplicitCastType(E->getType());
322 
323     return VisitCastExpr(E);
324   }
325   Value *VisitCastExpr(CastExpr *E);
326 
327   Value *VisitCallExpr(const CallExpr *E) {
328     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
329       return EmitLoadOfLValue(E);
330 
331     Value *V = CGF.EmitCallExpr(E).getScalarVal();
332 
333     EmitLValueAlignmentAssumption(E, V);
334     return V;
335   }
336 
337   Value *VisitStmtExpr(const StmtExpr *E);
338 
339   // Unary Operators.
340   Value *VisitUnaryPostDec(const UnaryOperator *E) {
341     LValue LV = EmitLValue(E->getSubExpr());
342     return EmitScalarPrePostIncDec(E, LV, false, false);
343   }
344   Value *VisitUnaryPostInc(const UnaryOperator *E) {
345     LValue LV = EmitLValue(E->getSubExpr());
346     return EmitScalarPrePostIncDec(E, LV, true, false);
347   }
348   Value *VisitUnaryPreDec(const UnaryOperator *E) {
349     LValue LV = EmitLValue(E->getSubExpr());
350     return EmitScalarPrePostIncDec(E, LV, false, true);
351   }
352   Value *VisitUnaryPreInc(const UnaryOperator *E) {
353     LValue LV = EmitLValue(E->getSubExpr());
354     return EmitScalarPrePostIncDec(E, LV, true, true);
355   }
356 
357   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
358                                                   llvm::Value *InVal,
359                                                   bool IsInc);
360 
361   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
362                                        bool isInc, bool isPre);
363 
364 
365   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
366     if (isa<MemberPointerType>(E->getType())) // never sugared
367       return CGF.CGM.getMemberPointerConstant(E);
368 
369     return EmitLValue(E->getSubExpr()).getPointer();
370   }
371   Value *VisitUnaryDeref(const UnaryOperator *E) {
372     if (E->getType()->isVoidType())
373       return Visit(E->getSubExpr()); // the actual value should be unused
374     return EmitLoadOfLValue(E);
375   }
376   Value *VisitUnaryPlus(const UnaryOperator *E) {
377     // This differs from gcc, though, most likely due to a bug in gcc.
378     TestAndClearIgnoreResultAssign();
379     return Visit(E->getSubExpr());
380   }
381   Value *VisitUnaryMinus    (const UnaryOperator *E);
382   Value *VisitUnaryNot      (const UnaryOperator *E);
383   Value *VisitUnaryLNot     (const UnaryOperator *E);
384   Value *VisitUnaryReal     (const UnaryOperator *E);
385   Value *VisitUnaryImag     (const UnaryOperator *E);
386   Value *VisitUnaryExtension(const UnaryOperator *E) {
387     return Visit(E->getSubExpr());
388   }
389 
390   // C++
391   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
392     return EmitLoadOfLValue(E);
393   }
394 
395   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
396     return Visit(DAE->getExpr());
397   }
398   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
399     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
400     return Visit(DIE->getExpr());
401   }
402   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
403     return CGF.LoadCXXThis();
404   }
405 
406   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
407     CGF.enterFullExpression(E);
408     CodeGenFunction::RunCleanupsScope Scope(CGF);
409     return Visit(E->getSubExpr());
410   }
411   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
412     return CGF.EmitCXXNewExpr(E);
413   }
414   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
415     CGF.EmitCXXDeleteExpr(E);
416     return nullptr;
417   }
418 
419   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
420     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
421   }
422 
423   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
424     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
425   }
426 
427   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
428     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
429   }
430 
431   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
432     // C++ [expr.pseudo]p1:
433     //   The result shall only be used as the operand for the function call
434     //   operator (), and the result of such a call has type void. The only
435     //   effect is the evaluation of the postfix-expression before the dot or
436     //   arrow.
437     CGF.EmitScalarExpr(E->getBase());
438     return nullptr;
439   }
440 
441   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
442     return EmitNullValue(E->getType());
443   }
444 
445   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
446     CGF.EmitCXXThrowExpr(E);
447     return nullptr;
448   }
449 
450   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
451     return Builder.getInt1(E->getValue());
452   }
453 
454   // Binary Operators.
455   Value *EmitMul(const BinOpInfo &Ops) {
456     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
457       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
458       case LangOptions::SOB_Defined:
459         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
460       case LangOptions::SOB_Undefined:
461         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
462           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
463         // Fall through.
464       case LangOptions::SOB_Trapping:
465         return EmitOverflowCheckedBinOp(Ops);
466       }
467     }
468 
469     if (Ops.Ty->isUnsignedIntegerType() &&
470         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
471       return EmitOverflowCheckedBinOp(Ops);
472 
473     if (Ops.LHS->getType()->isFPOrFPVectorTy())
474       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
475     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
476   }
477   /// Create a binary op that checks for overflow.
478   /// Currently only supports +, - and *.
479   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
480 
481   // Check for undefined division and modulus behaviors.
482   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
483                                                   llvm::Value *Zero,bool isDiv);
484   // Common helper for getting how wide LHS of shift is.
485   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
486   Value *EmitDiv(const BinOpInfo &Ops);
487   Value *EmitRem(const BinOpInfo &Ops);
488   Value *EmitAdd(const BinOpInfo &Ops);
489   Value *EmitSub(const BinOpInfo &Ops);
490   Value *EmitShl(const BinOpInfo &Ops);
491   Value *EmitShr(const BinOpInfo &Ops);
492   Value *EmitAnd(const BinOpInfo &Ops) {
493     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
494   }
495   Value *EmitXor(const BinOpInfo &Ops) {
496     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
497   }
498   Value *EmitOr (const BinOpInfo &Ops) {
499     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
500   }
501 
502   BinOpInfo EmitBinOps(const BinaryOperator *E);
503   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
504                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
505                                   Value *&Result);
506 
507   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
508                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
509 
510   // Binary operators and binary compound assignment operators.
511 #define HANDLEBINOP(OP) \
512   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
513     return Emit ## OP(EmitBinOps(E));                                      \
514   }                                                                        \
515   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
516     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
517   }
518   HANDLEBINOP(Mul)
519   HANDLEBINOP(Div)
520   HANDLEBINOP(Rem)
521   HANDLEBINOP(Add)
522   HANDLEBINOP(Sub)
523   HANDLEBINOP(Shl)
524   HANDLEBINOP(Shr)
525   HANDLEBINOP(And)
526   HANDLEBINOP(Xor)
527   HANDLEBINOP(Or)
528 #undef HANDLEBINOP
529 
530   // Comparisons.
531   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
532                      unsigned SICmpOpc, unsigned FCmpOpc);
533 #define VISITCOMP(CODE, UI, SI, FP) \
534     Value *VisitBin##CODE(const BinaryOperator *E) { \
535       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
536                          llvm::FCmpInst::FP); }
537   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
538   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
539   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
540   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
541   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
542   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
543 #undef VISITCOMP
544 
545   Value *VisitBinAssign     (const BinaryOperator *E);
546 
547   Value *VisitBinLAnd       (const BinaryOperator *E);
548   Value *VisitBinLOr        (const BinaryOperator *E);
549   Value *VisitBinComma      (const BinaryOperator *E);
550 
551   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
552   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
553 
554   // Other Operators.
555   Value *VisitBlockExpr(const BlockExpr *BE);
556   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
557   Value *VisitChooseExpr(ChooseExpr *CE);
558   Value *VisitVAArgExpr(VAArgExpr *VE);
559   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
560     return CGF.EmitObjCStringLiteral(E);
561   }
562   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
563     return CGF.EmitObjCBoxedExpr(E);
564   }
565   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
566     return CGF.EmitObjCArrayLiteral(E);
567   }
568   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
569     return CGF.EmitObjCDictionaryLiteral(E);
570   }
571   Value *VisitAsTypeExpr(AsTypeExpr *CE);
572   Value *VisitAtomicExpr(AtomicExpr *AE);
573 };
574 }  // end anonymous namespace.
575 
576 //===----------------------------------------------------------------------===//
577 //                                Utilities
578 //===----------------------------------------------------------------------===//
579 
580 /// EmitConversionToBool - Convert the specified expression value to a
581 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
582 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
583   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
584 
585   if (SrcType->isRealFloatingType())
586     return EmitFloatToBoolConversion(Src);
587 
588   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
589     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
590 
591   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
592          "Unknown scalar type to convert");
593 
594   if (isa<llvm::IntegerType>(Src->getType()))
595     return EmitIntToBoolConversion(Src);
596 
597   assert(isa<llvm::PointerType>(Src->getType()));
598   return EmitPointerToBoolConversion(Src);
599 }
600 
601 void ScalarExprEmitter::EmitFloatConversionCheck(
602     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
603     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
604   CodeGenFunction::SanitizerScope SanScope(&CGF);
605   using llvm::APFloat;
606   using llvm::APSInt;
607 
608   llvm::Type *SrcTy = Src->getType();
609 
610   llvm::Value *Check = nullptr;
611   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
612     // Integer to floating-point. This can fail for unsigned short -> __half
613     // or unsigned __int128 -> float.
614     assert(DstType->isFloatingType());
615     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
616 
617     APFloat LargestFloat =
618       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
619     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
620 
621     bool IsExact;
622     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
623                                       &IsExact) != APFloat::opOK)
624       // The range of representable values of this floating point type includes
625       // all values of this integer type. Don't need an overflow check.
626       return;
627 
628     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
629     if (SrcIsUnsigned)
630       Check = Builder.CreateICmpULE(Src, Max);
631     else {
632       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
633       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
634       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
635       Check = Builder.CreateAnd(GE, LE);
636     }
637   } else {
638     const llvm::fltSemantics &SrcSema =
639       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
640     if (isa<llvm::IntegerType>(DstTy)) {
641       // Floating-point to integer. This has undefined behavior if the source is
642       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
643       // to an integer).
644       unsigned Width = CGF.getContext().getIntWidth(DstType);
645       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
646 
647       APSInt Min = APSInt::getMinValue(Width, Unsigned);
648       APFloat MinSrc(SrcSema, APFloat::uninitialized);
649       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
650           APFloat::opOverflow)
651         // Don't need an overflow check for lower bound. Just check for
652         // -Inf/NaN.
653         MinSrc = APFloat::getInf(SrcSema, true);
654       else
655         // Find the largest value which is too small to represent (before
656         // truncation toward zero).
657         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
658 
659       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
660       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
661       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
662           APFloat::opOverflow)
663         // Don't need an overflow check for upper bound. Just check for
664         // +Inf/NaN.
665         MaxSrc = APFloat::getInf(SrcSema, false);
666       else
667         // Find the smallest value which is too large to represent (before
668         // truncation toward zero).
669         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
670 
671       // If we're converting from __half, convert the range to float to match
672       // the type of src.
673       if (OrigSrcType->isHalfType()) {
674         const llvm::fltSemantics &Sema =
675           CGF.getContext().getFloatTypeSemantics(SrcType);
676         bool IsInexact;
677         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
678         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
679       }
680 
681       llvm::Value *GE =
682         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
683       llvm::Value *LE =
684         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
685       Check = Builder.CreateAnd(GE, LE);
686     } else {
687       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
688       //
689       // Floating-point to floating-point. This has undefined behavior if the
690       // source is not in the range of representable values of the destination
691       // type. The C and C++ standards are spectacularly unclear here. We
692       // diagnose finite out-of-range conversions, but allow infinities and NaNs
693       // to convert to the corresponding value in the smaller type.
694       //
695       // C11 Annex F gives all such conversions defined behavior for IEC 60559
696       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
697       // does not.
698 
699       // Converting from a lower rank to a higher rank can never have
700       // undefined behavior, since higher-rank types must have a superset
701       // of values of lower-rank types.
702       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
703         return;
704 
705       assert(!OrigSrcType->isHalfType() &&
706              "should not check conversion from __half, it has the lowest rank");
707 
708       const llvm::fltSemantics &DstSema =
709         CGF.getContext().getFloatTypeSemantics(DstType);
710       APFloat MinBad = APFloat::getLargest(DstSema, false);
711       APFloat MaxBad = APFloat::getInf(DstSema, false);
712 
713       bool IsInexact;
714       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
715       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
716 
717       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
718         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
719       llvm::Value *GE =
720         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
721       llvm::Value *LE =
722         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
723       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
724     }
725   }
726 
727   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
728                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
729                                   CGF.EmitCheckTypeDescriptor(DstType)};
730   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
731                 "float_cast_overflow", StaticArgs, OrigSrc);
732 }
733 
734 /// Emit a conversion from the specified type to the specified destination type,
735 /// both of which are LLVM scalar types.
736 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
737                                                QualType DstType,
738                                                SourceLocation Loc) {
739   return EmitScalarConversion(Src, SrcType, DstType, Loc, false);
740 }
741 
742 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
743                                                QualType DstType,
744                                                SourceLocation Loc,
745                                                bool TreatBooleanAsSigned) {
746   SrcType = CGF.getContext().getCanonicalType(SrcType);
747   DstType = CGF.getContext().getCanonicalType(DstType);
748   if (SrcType == DstType) return Src;
749 
750   if (DstType->isVoidType()) return nullptr;
751 
752   llvm::Value *OrigSrc = Src;
753   QualType OrigSrcType = SrcType;
754   llvm::Type *SrcTy = Src->getType();
755 
756   // Handle conversions to bool first, they are special: comparisons against 0.
757   if (DstType->isBooleanType())
758     return EmitConversionToBool(Src, SrcType);
759 
760   llvm::Type *DstTy = ConvertType(DstType);
761 
762   // Cast from half through float if half isn't a native type.
763   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
764     // Cast to FP using the intrinsic if the half type itself isn't supported.
765     if (DstTy->isFloatingPointTy()) {
766       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
767         return Builder.CreateCall(
768             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
769             Src);
770     } else {
771       // Cast to other types through float, using either the intrinsic or FPExt,
772       // depending on whether the half type itself is supported
773       // (as opposed to operations on half, available with NativeHalfType).
774       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
775         Src = Builder.CreateCall(
776             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
777                                  CGF.CGM.FloatTy),
778             Src);
779       } else {
780         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
781       }
782       SrcType = CGF.getContext().FloatTy;
783       SrcTy = CGF.FloatTy;
784     }
785   }
786 
787   // Ignore conversions like int -> uint.
788   if (SrcTy == DstTy)
789     return Src;
790 
791   // Handle pointer conversions next: pointers can only be converted to/from
792   // other pointers and integers. Check for pointer types in terms of LLVM, as
793   // some native types (like Obj-C id) may map to a pointer type.
794   if (isa<llvm::PointerType>(DstTy)) {
795     // The source value may be an integer, or a pointer.
796     if (isa<llvm::PointerType>(SrcTy))
797       return Builder.CreateBitCast(Src, DstTy, "conv");
798 
799     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
800     // First, convert to the correct width so that we control the kind of
801     // extension.
802     llvm::Type *MiddleTy = CGF.IntPtrTy;
803     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
804     llvm::Value* IntResult =
805         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
806     // Then, cast to pointer.
807     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
808   }
809 
810   if (isa<llvm::PointerType>(SrcTy)) {
811     // Must be an ptr to int cast.
812     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
813     return Builder.CreatePtrToInt(Src, DstTy, "conv");
814   }
815 
816   // A scalar can be splatted to an extended vector of the same element type
817   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
818     // Cast the scalar to element type
819     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
820     llvm::Value *Elt = EmitScalarConversion(
821         Src, SrcType, EltTy, Loc, CGF.getContext().getLangOpts().OpenCL);
822 
823     // Splat the element across to all elements
824     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
825     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
826   }
827 
828   // Allow bitcast from vector to integer/fp of the same size.
829   if (isa<llvm::VectorType>(SrcTy) ||
830       isa<llvm::VectorType>(DstTy))
831     return Builder.CreateBitCast(Src, DstTy, "conv");
832 
833   // Finally, we have the arithmetic types: real int/float.
834   Value *Res = nullptr;
835   llvm::Type *ResTy = DstTy;
836 
837   // An overflowing conversion has undefined behavior if either the source type
838   // or the destination type is a floating-point type.
839   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
840       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
841     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
842                              Loc);
843 
844   // Cast to half through float if half isn't a native type.
845   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
846     // Make sure we cast in a single step if from another FP type.
847     if (SrcTy->isFloatingPointTy()) {
848       // Use the intrinsic if the half type itself isn't supported
849       // (as opposed to operations on half, available with NativeHalfType).
850       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
851         return Builder.CreateCall(
852             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
853       // If the half type is supported, just use an fptrunc.
854       return Builder.CreateFPTrunc(Src, DstTy);
855     }
856     DstTy = CGF.FloatTy;
857   }
858 
859   if (isa<llvm::IntegerType>(SrcTy)) {
860     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
861     if (SrcType->isBooleanType() && TreatBooleanAsSigned) {
862       InputSigned = true;
863     }
864     if (isa<llvm::IntegerType>(DstTy))
865       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
866     else if (InputSigned)
867       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
868     else
869       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
870   } else if (isa<llvm::IntegerType>(DstTy)) {
871     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
872     if (DstType->isSignedIntegerOrEnumerationType())
873       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
874     else
875       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
876   } else {
877     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
878            "Unknown real conversion");
879     if (DstTy->getTypeID() < SrcTy->getTypeID())
880       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
881     else
882       Res = Builder.CreateFPExt(Src, DstTy, "conv");
883   }
884 
885   if (DstTy != ResTy) {
886     if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
887       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
888       Res = Builder.CreateCall(
889         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
890         Res);
891     } else {
892       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
893     }
894   }
895 
896   return Res;
897 }
898 
899 /// Emit a conversion from the specified complex type to the specified
900 /// destination type, where the destination type is an LLVM scalar type.
901 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
902     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
903     SourceLocation Loc) {
904   // Get the source element type.
905   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
906 
907   // Handle conversions to bool first, they are special: comparisons against 0.
908   if (DstTy->isBooleanType()) {
909     //  Complex != 0  -> (Real != 0) | (Imag != 0)
910     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
911     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
912     return Builder.CreateOr(Src.first, Src.second, "tobool");
913   }
914 
915   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
916   // the imaginary part of the complex value is discarded and the value of the
917   // real part is converted according to the conversion rules for the
918   // corresponding real type.
919   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
920 }
921 
922 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
923   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
924 }
925 
926 /// \brief Emit a sanitization check for the given "binary" operation (which
927 /// might actually be a unary increment which has been lowered to a binary
928 /// operation). The check passes if all values in \p Checks (which are \c i1),
929 /// are \c true.
930 void ScalarExprEmitter::EmitBinOpCheck(
931     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
932   assert(CGF.IsSanitizerScope);
933   StringRef CheckName;
934   SmallVector<llvm::Constant *, 4> StaticData;
935   SmallVector<llvm::Value *, 2> DynamicData;
936 
937   BinaryOperatorKind Opcode = Info.Opcode;
938   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
939     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
940 
941   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
942   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
943   if (UO && UO->getOpcode() == UO_Minus) {
944     CheckName = "negate_overflow";
945     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
946     DynamicData.push_back(Info.RHS);
947   } else {
948     if (BinaryOperator::isShiftOp(Opcode)) {
949       // Shift LHS negative or too large, or RHS out of bounds.
950       CheckName = "shift_out_of_bounds";
951       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
952       StaticData.push_back(
953         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
954       StaticData.push_back(
955         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
956     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
957       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
958       CheckName = "divrem_overflow";
959       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
960     } else {
961       // Arithmetic overflow (+, -, *).
962       switch (Opcode) {
963       case BO_Add: CheckName = "add_overflow"; break;
964       case BO_Sub: CheckName = "sub_overflow"; break;
965       case BO_Mul: CheckName = "mul_overflow"; break;
966       default: llvm_unreachable("unexpected opcode for bin op check");
967       }
968       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
969     }
970     DynamicData.push_back(Info.LHS);
971     DynamicData.push_back(Info.RHS);
972   }
973 
974   CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
975 }
976 
977 //===----------------------------------------------------------------------===//
978 //                            Visitor Methods
979 //===----------------------------------------------------------------------===//
980 
981 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
982   CGF.ErrorUnsupported(E, "scalar expression");
983   if (E->getType()->isVoidType())
984     return nullptr;
985   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
986 }
987 
988 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
989   // Vector Mask Case
990   if (E->getNumSubExprs() == 2 ||
991       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
992     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
993     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
994     Value *Mask;
995 
996     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
997     unsigned LHSElts = LTy->getNumElements();
998 
999     if (E->getNumSubExprs() == 3) {
1000       Mask = CGF.EmitScalarExpr(E->getExpr(2));
1001 
1002       // Shuffle LHS & RHS into one input vector.
1003       SmallVector<llvm::Constant*, 32> concat;
1004       for (unsigned i = 0; i != LHSElts; ++i) {
1005         concat.push_back(Builder.getInt32(2*i));
1006         concat.push_back(Builder.getInt32(2*i+1));
1007       }
1008 
1009       Value* CV = llvm::ConstantVector::get(concat);
1010       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
1011       LHSElts *= 2;
1012     } else {
1013       Mask = RHS;
1014     }
1015 
1016     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1017 
1018     // Mask off the high bits of each shuffle index.
1019     Value *MaskBits =
1020         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1021     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1022 
1023     // newv = undef
1024     // mask = mask & maskbits
1025     // for each elt
1026     //   n = extract mask i
1027     //   x = extract val n
1028     //   newv = insert newv, x, i
1029     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1030                                                   MTy->getNumElements());
1031     Value* NewV = llvm::UndefValue::get(RTy);
1032     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1033       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1034       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1035 
1036       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1037       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1038     }
1039     return NewV;
1040   }
1041 
1042   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1043   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1044 
1045   SmallVector<llvm::Constant*, 32> indices;
1046   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1047     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1048     // Check for -1 and output it as undef in the IR.
1049     if (Idx.isSigned() && Idx.isAllOnesValue())
1050       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1051     else
1052       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1053   }
1054 
1055   Value *SV = llvm::ConstantVector::get(indices);
1056   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1057 }
1058 
1059 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1060   QualType SrcType = E->getSrcExpr()->getType(),
1061            DstType = E->getType();
1062 
1063   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1064 
1065   SrcType = CGF.getContext().getCanonicalType(SrcType);
1066   DstType = CGF.getContext().getCanonicalType(DstType);
1067   if (SrcType == DstType) return Src;
1068 
1069   assert(SrcType->isVectorType() &&
1070          "ConvertVector source type must be a vector");
1071   assert(DstType->isVectorType() &&
1072          "ConvertVector destination type must be a vector");
1073 
1074   llvm::Type *SrcTy = Src->getType();
1075   llvm::Type *DstTy = ConvertType(DstType);
1076 
1077   // Ignore conversions like int -> uint.
1078   if (SrcTy == DstTy)
1079     return Src;
1080 
1081   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1082            DstEltType = DstType->getAs<VectorType>()->getElementType();
1083 
1084   assert(SrcTy->isVectorTy() &&
1085          "ConvertVector source IR type must be a vector");
1086   assert(DstTy->isVectorTy() &&
1087          "ConvertVector destination IR type must be a vector");
1088 
1089   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1090              *DstEltTy = DstTy->getVectorElementType();
1091 
1092   if (DstEltType->isBooleanType()) {
1093     assert((SrcEltTy->isFloatingPointTy() ||
1094             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1095 
1096     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1097     if (SrcEltTy->isFloatingPointTy()) {
1098       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1099     } else {
1100       return Builder.CreateICmpNE(Src, Zero, "tobool");
1101     }
1102   }
1103 
1104   // We have the arithmetic types: real int/float.
1105   Value *Res = nullptr;
1106 
1107   if (isa<llvm::IntegerType>(SrcEltTy)) {
1108     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1109     if (isa<llvm::IntegerType>(DstEltTy))
1110       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1111     else if (InputSigned)
1112       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1113     else
1114       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1115   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1116     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1117     if (DstEltType->isSignedIntegerOrEnumerationType())
1118       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1119     else
1120       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1121   } else {
1122     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1123            "Unknown real conversion");
1124     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1125       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1126     else
1127       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1128   }
1129 
1130   return Res;
1131 }
1132 
1133 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1134   llvm::APSInt Value;
1135   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1136     if (E->isArrow())
1137       CGF.EmitScalarExpr(E->getBase());
1138     else
1139       EmitLValue(E->getBase());
1140     return Builder.getInt(Value);
1141   }
1142 
1143   return EmitLoadOfLValue(E);
1144 }
1145 
1146 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1147   TestAndClearIgnoreResultAssign();
1148 
1149   // Emit subscript expressions in rvalue context's.  For most cases, this just
1150   // loads the lvalue formed by the subscript expr.  However, we have to be
1151   // careful, because the base of a vector subscript is occasionally an rvalue,
1152   // so we can't get it as an lvalue.
1153   if (!E->getBase()->getType()->isVectorType())
1154     return EmitLoadOfLValue(E);
1155 
1156   // Handle the vector case.  The base must be a vector, the index must be an
1157   // integer value.
1158   Value *Base = Visit(E->getBase());
1159   Value *Idx  = Visit(E->getIdx());
1160   QualType IdxTy = E->getIdx()->getType();
1161 
1162   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1163     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1164 
1165   return Builder.CreateExtractElement(Base, Idx, "vecext");
1166 }
1167 
1168 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1169                                   unsigned Off, llvm::Type *I32Ty) {
1170   int MV = SVI->getMaskValue(Idx);
1171   if (MV == -1)
1172     return llvm::UndefValue::get(I32Ty);
1173   return llvm::ConstantInt::get(I32Ty, Off+MV);
1174 }
1175 
1176 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1177   if (C->getBitWidth() != 32) {
1178       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1179                                                     C->getZExtValue()) &&
1180              "Index operand too large for shufflevector mask!");
1181       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1182   }
1183   return C;
1184 }
1185 
1186 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1187   bool Ignore = TestAndClearIgnoreResultAssign();
1188   (void)Ignore;
1189   assert (Ignore == false && "init list ignored");
1190   unsigned NumInitElements = E->getNumInits();
1191 
1192   if (E->hadArrayRangeDesignator())
1193     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1194 
1195   llvm::VectorType *VType =
1196     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1197 
1198   if (!VType) {
1199     if (NumInitElements == 0) {
1200       // C++11 value-initialization for the scalar.
1201       return EmitNullValue(E->getType());
1202     }
1203     // We have a scalar in braces. Just use the first element.
1204     return Visit(E->getInit(0));
1205   }
1206 
1207   unsigned ResElts = VType->getNumElements();
1208 
1209   // Loop over initializers collecting the Value for each, and remembering
1210   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1211   // us to fold the shuffle for the swizzle into the shuffle for the vector
1212   // initializer, since LLVM optimizers generally do not want to touch
1213   // shuffles.
1214   unsigned CurIdx = 0;
1215   bool VIsUndefShuffle = false;
1216   llvm::Value *V = llvm::UndefValue::get(VType);
1217   for (unsigned i = 0; i != NumInitElements; ++i) {
1218     Expr *IE = E->getInit(i);
1219     Value *Init = Visit(IE);
1220     SmallVector<llvm::Constant*, 16> Args;
1221 
1222     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1223 
1224     // Handle scalar elements.  If the scalar initializer is actually one
1225     // element of a different vector of the same width, use shuffle instead of
1226     // extract+insert.
1227     if (!VVT) {
1228       if (isa<ExtVectorElementExpr>(IE)) {
1229         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1230 
1231         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1232           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1233           Value *LHS = nullptr, *RHS = nullptr;
1234           if (CurIdx == 0) {
1235             // insert into undef -> shuffle (src, undef)
1236             // shufflemask must use an i32
1237             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1238             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1239 
1240             LHS = EI->getVectorOperand();
1241             RHS = V;
1242             VIsUndefShuffle = true;
1243           } else if (VIsUndefShuffle) {
1244             // insert into undefshuffle && size match -> shuffle (v, src)
1245             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1246             for (unsigned j = 0; j != CurIdx; ++j)
1247               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1248             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1249             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1250 
1251             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1252             RHS = EI->getVectorOperand();
1253             VIsUndefShuffle = false;
1254           }
1255           if (!Args.empty()) {
1256             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1257             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1258             ++CurIdx;
1259             continue;
1260           }
1261         }
1262       }
1263       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1264                                       "vecinit");
1265       VIsUndefShuffle = false;
1266       ++CurIdx;
1267       continue;
1268     }
1269 
1270     unsigned InitElts = VVT->getNumElements();
1271 
1272     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1273     // input is the same width as the vector being constructed, generate an
1274     // optimized shuffle of the swizzle input into the result.
1275     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1276     if (isa<ExtVectorElementExpr>(IE)) {
1277       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1278       Value *SVOp = SVI->getOperand(0);
1279       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1280 
1281       if (OpTy->getNumElements() == ResElts) {
1282         for (unsigned j = 0; j != CurIdx; ++j) {
1283           // If the current vector initializer is a shuffle with undef, merge
1284           // this shuffle directly into it.
1285           if (VIsUndefShuffle) {
1286             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1287                                       CGF.Int32Ty));
1288           } else {
1289             Args.push_back(Builder.getInt32(j));
1290           }
1291         }
1292         for (unsigned j = 0, je = InitElts; j != je; ++j)
1293           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1294         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1295 
1296         if (VIsUndefShuffle)
1297           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1298 
1299         Init = SVOp;
1300       }
1301     }
1302 
1303     // Extend init to result vector length, and then shuffle its contribution
1304     // to the vector initializer into V.
1305     if (Args.empty()) {
1306       for (unsigned j = 0; j != InitElts; ++j)
1307         Args.push_back(Builder.getInt32(j));
1308       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1309       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1310       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1311                                          Mask, "vext");
1312 
1313       Args.clear();
1314       for (unsigned j = 0; j != CurIdx; ++j)
1315         Args.push_back(Builder.getInt32(j));
1316       for (unsigned j = 0; j != InitElts; ++j)
1317         Args.push_back(Builder.getInt32(j+Offset));
1318       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1319     }
1320 
1321     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1322     // merging subsequent shuffles into this one.
1323     if (CurIdx == 0)
1324       std::swap(V, Init);
1325     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1326     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1327     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1328     CurIdx += InitElts;
1329   }
1330 
1331   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1332   // Emit remaining default initializers.
1333   llvm::Type *EltTy = VType->getElementType();
1334 
1335   // Emit remaining default initializers
1336   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1337     Value *Idx = Builder.getInt32(CurIdx);
1338     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1339     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1340   }
1341   return V;
1342 }
1343 
1344 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1345   const Expr *E = CE->getSubExpr();
1346 
1347   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1348     return false;
1349 
1350   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1351     // We always assume that 'this' is never null.
1352     return false;
1353   }
1354 
1355   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1356     // And that glvalue casts are never null.
1357     if (ICE->getValueKind() != VK_RValue)
1358       return false;
1359   }
1360 
1361   return true;
1362 }
1363 
1364 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1365 // have to handle a more broad range of conversions than explicit casts, as they
1366 // handle things like function to ptr-to-function decay etc.
1367 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1368   Expr *E = CE->getSubExpr();
1369   QualType DestTy = CE->getType();
1370   CastKind Kind = CE->getCastKind();
1371 
1372   if (!DestTy->isVoidType())
1373     TestAndClearIgnoreResultAssign();
1374 
1375   // Since almost all cast kinds apply to scalars, this switch doesn't have
1376   // a default case, so the compiler will warn on a missing case.  The cases
1377   // are in the same order as in the CastKind enum.
1378   switch (Kind) {
1379   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1380   case CK_BuiltinFnToFnPtr:
1381     llvm_unreachable("builtin functions are handled elsewhere");
1382 
1383   case CK_LValueBitCast:
1384   case CK_ObjCObjectLValueCast: {
1385     Address Addr = EmitLValue(E).getAddress();
1386     Addr = Builder.CreateElementBitCast(Addr, ConvertType(DestTy));
1387     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1388     return EmitLoadOfLValue(LV, CE->getExprLoc());
1389   }
1390 
1391   case CK_CPointerToObjCPointerCast:
1392   case CK_BlockPointerToObjCPointerCast:
1393   case CK_AnyPointerToBlockPointerCast:
1394   case CK_BitCast: {
1395     Value *Src = Visit(const_cast<Expr*>(E));
1396     llvm::Type *SrcTy = Src->getType();
1397     llvm::Type *DstTy = ConvertType(DestTy);
1398     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1399         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1400       llvm_unreachable("wrong cast for pointers in different address spaces"
1401                        "(must be an address space cast)!");
1402     }
1403 
1404     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1405       if (auto PT = DestTy->getAs<PointerType>())
1406         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1407                                       /*MayBeNull=*/true,
1408                                       CodeGenFunction::CFITCK_UnrelatedCast,
1409                                       CE->getLocStart());
1410     }
1411 
1412     return Builder.CreateBitCast(Src, DstTy);
1413   }
1414   case CK_AddressSpaceConversion: {
1415     Value *Src = Visit(const_cast<Expr*>(E));
1416     return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
1417   }
1418   case CK_AtomicToNonAtomic:
1419   case CK_NonAtomicToAtomic:
1420   case CK_NoOp:
1421   case CK_UserDefinedConversion:
1422     return Visit(const_cast<Expr*>(E));
1423 
1424   case CK_BaseToDerived: {
1425     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1426     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1427 
1428     Address Base = CGF.EmitPointerWithAlignment(E);
1429     Address Derived =
1430       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
1431                                    CE->path_begin(), CE->path_end(),
1432                                    CGF.ShouldNullCheckClassCastValue(CE));
1433 
1434     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1435     // performed and the object is not of the derived type.
1436     if (CGF.sanitizePerformTypeCheck())
1437       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1438                         Derived.getPointer(), DestTy->getPointeeType());
1439 
1440     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1441       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
1442                                     Derived.getPointer(),
1443                                     /*MayBeNull=*/true,
1444                                     CodeGenFunction::CFITCK_DerivedCast,
1445                                     CE->getLocStart());
1446 
1447     return Derived.getPointer();
1448   }
1449   case CK_UncheckedDerivedToBase:
1450   case CK_DerivedToBase: {
1451     // The EmitPointerWithAlignment path does this fine; just discard
1452     // the alignment.
1453     return CGF.EmitPointerWithAlignment(CE).getPointer();
1454   }
1455 
1456   case CK_Dynamic: {
1457     Address V = CGF.EmitPointerWithAlignment(E);
1458     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1459     return CGF.EmitDynamicCast(V, DCE);
1460   }
1461 
1462   case CK_ArrayToPointerDecay:
1463     return CGF.EmitArrayToPointerDecay(E).getPointer();
1464   case CK_FunctionToPointerDecay:
1465     return EmitLValue(E).getPointer();
1466 
1467   case CK_NullToPointer:
1468     if (MustVisitNullValue(E))
1469       (void) Visit(E);
1470 
1471     return llvm::ConstantPointerNull::get(
1472                                cast<llvm::PointerType>(ConvertType(DestTy)));
1473 
1474   case CK_NullToMemberPointer: {
1475     if (MustVisitNullValue(E))
1476       (void) Visit(E);
1477 
1478     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1479     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1480   }
1481 
1482   case CK_ReinterpretMemberPointer:
1483   case CK_BaseToDerivedMemberPointer:
1484   case CK_DerivedToBaseMemberPointer: {
1485     Value *Src = Visit(E);
1486 
1487     // Note that the AST doesn't distinguish between checked and
1488     // unchecked member pointer conversions, so we always have to
1489     // implement checked conversions here.  This is inefficient when
1490     // actual control flow may be required in order to perform the
1491     // check, which it is for data member pointers (but not member
1492     // function pointers on Itanium and ARM).
1493     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1494   }
1495 
1496   case CK_ARCProduceObject:
1497     return CGF.EmitARCRetainScalarExpr(E);
1498   case CK_ARCConsumeObject:
1499     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1500   case CK_ARCReclaimReturnedObject: {
1501     llvm::Value *value = Visit(E);
1502     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1503     return CGF.EmitObjCConsumeObject(E->getType(), value);
1504   }
1505   case CK_ARCExtendBlockObject:
1506     return CGF.EmitARCExtendBlockObject(E);
1507 
1508   case CK_CopyAndAutoreleaseBlockObject:
1509     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1510 
1511   case CK_FloatingRealToComplex:
1512   case CK_FloatingComplexCast:
1513   case CK_IntegralRealToComplex:
1514   case CK_IntegralComplexCast:
1515   case CK_IntegralComplexToFloatingComplex:
1516   case CK_FloatingComplexToIntegralComplex:
1517   case CK_ConstructorConversion:
1518   case CK_ToUnion:
1519     llvm_unreachable("scalar cast to non-scalar value");
1520 
1521   case CK_LValueToRValue:
1522     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1523     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1524     return Visit(const_cast<Expr*>(E));
1525 
1526   case CK_IntegralToPointer: {
1527     Value *Src = Visit(const_cast<Expr*>(E));
1528 
1529     // First, convert to the correct width so that we control the kind of
1530     // extension.
1531     llvm::Type *MiddleTy = CGF.IntPtrTy;
1532     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1533     llvm::Value* IntResult =
1534       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1535 
1536     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1537   }
1538   case CK_PointerToIntegral:
1539     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1540     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1541 
1542   case CK_ToVoid: {
1543     CGF.EmitIgnoredExpr(E);
1544     return nullptr;
1545   }
1546   case CK_VectorSplat: {
1547     llvm::Type *DstTy = ConvertType(DestTy);
1548     // Need an IgnoreImpCasts here as by default a boolean will be promoted to
1549     // an int, which will not perform the sign extension, so if we know we are
1550     // going to cast to a vector we have to strip the implicit cast off.
1551     Value *Elt = Visit(const_cast<Expr*>(E->IgnoreImpCasts()));
1552     Elt = EmitScalarConversion(Elt, E->IgnoreImpCasts()->getType(),
1553                                DestTy->getAs<VectorType>()->getElementType(),
1554                                CE->getExprLoc(),
1555                                CGF.getContext().getLangOpts().OpenCL);
1556 
1557     // Splat the element across to all elements
1558     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1559     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1560   }
1561 
1562   case CK_IntegralCast:
1563   case CK_IntegralToFloating:
1564   case CK_FloatingToIntegral:
1565   case CK_FloatingCast:
1566     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1567                                 CE->getExprLoc());
1568   case CK_IntegralToBoolean:
1569     return EmitIntToBoolConversion(Visit(E));
1570   case CK_PointerToBoolean:
1571     return EmitPointerToBoolConversion(Visit(E));
1572   case CK_FloatingToBoolean:
1573     return EmitFloatToBoolConversion(Visit(E));
1574   case CK_MemberPointerToBoolean: {
1575     llvm::Value *MemPtr = Visit(E);
1576     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1577     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1578   }
1579 
1580   case CK_FloatingComplexToReal:
1581   case CK_IntegralComplexToReal:
1582     return CGF.EmitComplexExpr(E, false, true).first;
1583 
1584   case CK_FloatingComplexToBoolean:
1585   case CK_IntegralComplexToBoolean: {
1586     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1587 
1588     // TODO: kill this function off, inline appropriate case here
1589     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
1590                                          CE->getExprLoc());
1591   }
1592 
1593   case CK_ZeroToOCLEvent: {
1594     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1595     return llvm::Constant::getNullValue(ConvertType(DestTy));
1596   }
1597 
1598   }
1599 
1600   llvm_unreachable("unknown scalar cast");
1601 }
1602 
1603 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1604   CodeGenFunction::StmtExprEvaluation eval(CGF);
1605   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1606                                            !E->getType()->isVoidType());
1607   if (!RetAlloca.isValid())
1608     return nullptr;
1609   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1610                               E->getExprLoc());
1611 }
1612 
1613 //===----------------------------------------------------------------------===//
1614 //                             Unary Operators
1615 //===----------------------------------------------------------------------===//
1616 
1617 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1618                                            llvm::Value *InVal, bool IsInc) {
1619   BinOpInfo BinOp;
1620   BinOp.LHS = InVal;
1621   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1622   BinOp.Ty = E->getType();
1623   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1624   BinOp.FPContractable = false;
1625   BinOp.E = E;
1626   return BinOp;
1627 }
1628 
1629 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1630     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1631   llvm::Value *Amount =
1632       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1633   StringRef Name = IsInc ? "inc" : "dec";
1634   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1635   case LangOptions::SOB_Defined:
1636     return Builder.CreateAdd(InVal, Amount, Name);
1637   case LangOptions::SOB_Undefined:
1638     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1639       return Builder.CreateNSWAdd(InVal, Amount, Name);
1640     // Fall through.
1641   case LangOptions::SOB_Trapping:
1642     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1643   }
1644   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1645 }
1646 
1647 llvm::Value *
1648 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1649                                            bool isInc, bool isPre) {
1650 
1651   QualType type = E->getSubExpr()->getType();
1652   llvm::PHINode *atomicPHI = nullptr;
1653   llvm::Value *value;
1654   llvm::Value *input;
1655 
1656   int amount = (isInc ? 1 : -1);
1657 
1658   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1659     type = atomicTy->getValueType();
1660     if (isInc && type->isBooleanType()) {
1661       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1662       if (isPre) {
1663         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
1664           ->setAtomic(llvm::SequentiallyConsistent);
1665         return Builder.getTrue();
1666       }
1667       // For atomic bool increment, we just store true and return it for
1668       // preincrement, do an atomic swap with true for postincrement
1669         return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1670             LV.getPointer(), True, llvm::SequentiallyConsistent);
1671     }
1672     // Special case for atomic increment / decrement on integers, emit
1673     // atomicrmw instructions.  We skip this if we want to be doing overflow
1674     // checking, and fall into the slow path with the atomic cmpxchg loop.
1675     if (!type->isBooleanType() && type->isIntegerType() &&
1676         !(type->isUnsignedIntegerType() &&
1677           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1678         CGF.getLangOpts().getSignedOverflowBehavior() !=
1679             LangOptions::SOB_Trapping) {
1680       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1681         llvm::AtomicRMWInst::Sub;
1682       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1683         llvm::Instruction::Sub;
1684       llvm::Value *amt = CGF.EmitToMemory(
1685           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1686       llvm::Value *old = Builder.CreateAtomicRMW(aop,
1687           LV.getPointer(), amt, llvm::SequentiallyConsistent);
1688       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1689     }
1690     value = EmitLoadOfLValue(LV, E->getExprLoc());
1691     input = value;
1692     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1693     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1694     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1695     value = CGF.EmitToMemory(value, type);
1696     Builder.CreateBr(opBB);
1697     Builder.SetInsertPoint(opBB);
1698     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1699     atomicPHI->addIncoming(value, startBB);
1700     value = atomicPHI;
1701   } else {
1702     value = EmitLoadOfLValue(LV, E->getExprLoc());
1703     input = value;
1704   }
1705 
1706   // Special case of integer increment that we have to check first: bool++.
1707   // Due to promotion rules, we get:
1708   //   bool++ -> bool = bool + 1
1709   //          -> bool = (int)bool + 1
1710   //          -> bool = ((int)bool + 1 != 0)
1711   // An interesting aspect of this is that increment is always true.
1712   // Decrement does not have this property.
1713   if (isInc && type->isBooleanType()) {
1714     value = Builder.getTrue();
1715 
1716   // Most common case by far: integer increment.
1717   } else if (type->isIntegerType()) {
1718     // Note that signed integer inc/dec with width less than int can't
1719     // overflow because of promotion rules; we're just eliding a few steps here.
1720     bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1721                        CGF.IntTy->getIntegerBitWidth();
1722     if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1723       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1724     } else if (CanOverflow && type->isUnsignedIntegerType() &&
1725                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1726       value =
1727           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1728     } else {
1729       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1730       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1731     }
1732 
1733   // Next most common: pointer increment.
1734   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1735     QualType type = ptr->getPointeeType();
1736 
1737     // VLA types don't have constant size.
1738     if (const VariableArrayType *vla
1739           = CGF.getContext().getAsVariableArrayType(type)) {
1740       llvm::Value *numElts = CGF.getVLASize(vla).first;
1741       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1742       if (CGF.getLangOpts().isSignedOverflowDefined())
1743         value = Builder.CreateGEP(value, numElts, "vla.inc");
1744       else
1745         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1746 
1747     // Arithmetic on function pointers (!) is just +-1.
1748     } else if (type->isFunctionType()) {
1749       llvm::Value *amt = Builder.getInt32(amount);
1750 
1751       value = CGF.EmitCastToVoidPtr(value);
1752       if (CGF.getLangOpts().isSignedOverflowDefined())
1753         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1754       else
1755         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1756       value = Builder.CreateBitCast(value, input->getType());
1757 
1758     // For everything else, we can just do a simple increment.
1759     } else {
1760       llvm::Value *amt = Builder.getInt32(amount);
1761       if (CGF.getLangOpts().isSignedOverflowDefined())
1762         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1763       else
1764         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1765     }
1766 
1767   // Vector increment/decrement.
1768   } else if (type->isVectorType()) {
1769     if (type->hasIntegerRepresentation()) {
1770       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1771 
1772       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1773     } else {
1774       value = Builder.CreateFAdd(
1775                   value,
1776                   llvm::ConstantFP::get(value->getType(), amount),
1777                   isInc ? "inc" : "dec");
1778     }
1779 
1780   // Floating point.
1781   } else if (type->isRealFloatingType()) {
1782     // Add the inc/dec to the real part.
1783     llvm::Value *amt;
1784 
1785     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1786       // Another special case: half FP increment should be done via float
1787       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1788         value = Builder.CreateCall(
1789             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1790                                  CGF.CGM.FloatTy),
1791             input, "incdec.conv");
1792       } else {
1793         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
1794       }
1795     }
1796 
1797     if (value->getType()->isFloatTy())
1798       amt = llvm::ConstantFP::get(VMContext,
1799                                   llvm::APFloat(static_cast<float>(amount)));
1800     else if (value->getType()->isDoubleTy())
1801       amt = llvm::ConstantFP::get(VMContext,
1802                                   llvm::APFloat(static_cast<double>(amount)));
1803     else {
1804       // Remaining types are either Half or LongDouble.  Convert from float.
1805       llvm::APFloat F(static_cast<float>(amount));
1806       bool ignored;
1807       // Don't use getFloatTypeSemantics because Half isn't
1808       // necessarily represented using the "half" LLVM type.
1809       F.convert(value->getType()->isHalfTy()
1810                     ? CGF.getTarget().getHalfFormat()
1811                     : CGF.getTarget().getLongDoubleFormat(),
1812                 llvm::APFloat::rmTowardZero, &ignored);
1813       amt = llvm::ConstantFP::get(VMContext, F);
1814     }
1815     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1816 
1817     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1818       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1819         value = Builder.CreateCall(
1820             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
1821                                  CGF.CGM.FloatTy),
1822             value, "incdec.conv");
1823       } else {
1824         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
1825       }
1826     }
1827 
1828   // Objective-C pointer types.
1829   } else {
1830     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1831     value = CGF.EmitCastToVoidPtr(value);
1832 
1833     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1834     if (!isInc) size = -size;
1835     llvm::Value *sizeValue =
1836       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1837 
1838     if (CGF.getLangOpts().isSignedOverflowDefined())
1839       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1840     else
1841       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1842     value = Builder.CreateBitCast(value, input->getType());
1843   }
1844 
1845   if (atomicPHI) {
1846     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1847     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1848     auto Pair = CGF.EmitAtomicCompareExchange(
1849         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
1850     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
1851     llvm::Value *success = Pair.second;
1852     atomicPHI->addIncoming(old, opBB);
1853     Builder.CreateCondBr(success, contBB, opBB);
1854     Builder.SetInsertPoint(contBB);
1855     return isPre ? value : input;
1856   }
1857 
1858   // Store the updated result through the lvalue.
1859   if (LV.isBitField())
1860     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1861   else
1862     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1863 
1864   // If this is a postinc, return the value read from memory, otherwise use the
1865   // updated value.
1866   return isPre ? value : input;
1867 }
1868 
1869 
1870 
1871 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1872   TestAndClearIgnoreResultAssign();
1873   // Emit unary minus with EmitSub so we handle overflow cases etc.
1874   BinOpInfo BinOp;
1875   BinOp.RHS = Visit(E->getSubExpr());
1876 
1877   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1878     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1879   else
1880     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1881   BinOp.Ty = E->getType();
1882   BinOp.Opcode = BO_Sub;
1883   BinOp.FPContractable = false;
1884   BinOp.E = E;
1885   return EmitSub(BinOp);
1886 }
1887 
1888 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1889   TestAndClearIgnoreResultAssign();
1890   Value *Op = Visit(E->getSubExpr());
1891   return Builder.CreateNot(Op, "neg");
1892 }
1893 
1894 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1895   // Perform vector logical not on comparison with zero vector.
1896   if (E->getType()->isExtVectorType()) {
1897     Value *Oper = Visit(E->getSubExpr());
1898     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1899     Value *Result;
1900     if (Oper->getType()->isFPOrFPVectorTy())
1901       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1902     else
1903       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1904     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1905   }
1906 
1907   // Compare operand to zero.
1908   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1909 
1910   // Invert value.
1911   // TODO: Could dynamically modify easy computations here.  For example, if
1912   // the operand is an icmp ne, turn into icmp eq.
1913   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1914 
1915   // ZExt result to the expr type.
1916   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1917 }
1918 
1919 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1920   // Try folding the offsetof to a constant.
1921   llvm::APSInt Value;
1922   if (E->EvaluateAsInt(Value, CGF.getContext()))
1923     return Builder.getInt(Value);
1924 
1925   // Loop over the components of the offsetof to compute the value.
1926   unsigned n = E->getNumComponents();
1927   llvm::Type* ResultType = ConvertType(E->getType());
1928   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1929   QualType CurrentType = E->getTypeSourceInfo()->getType();
1930   for (unsigned i = 0; i != n; ++i) {
1931     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1932     llvm::Value *Offset = nullptr;
1933     switch (ON.getKind()) {
1934     case OffsetOfExpr::OffsetOfNode::Array: {
1935       // Compute the index
1936       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1937       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1938       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1939       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1940 
1941       // Save the element type
1942       CurrentType =
1943           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1944 
1945       // Compute the element size
1946       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1947           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1948 
1949       // Multiply out to compute the result
1950       Offset = Builder.CreateMul(Idx, ElemSize);
1951       break;
1952     }
1953 
1954     case OffsetOfExpr::OffsetOfNode::Field: {
1955       FieldDecl *MemberDecl = ON.getField();
1956       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1957       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1958 
1959       // Compute the index of the field in its parent.
1960       unsigned i = 0;
1961       // FIXME: It would be nice if we didn't have to loop here!
1962       for (RecordDecl::field_iterator Field = RD->field_begin(),
1963                                       FieldEnd = RD->field_end();
1964            Field != FieldEnd; ++Field, ++i) {
1965         if (*Field == MemberDecl)
1966           break;
1967       }
1968       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1969 
1970       // Compute the offset to the field
1971       int64_t OffsetInt = RL.getFieldOffset(i) /
1972                           CGF.getContext().getCharWidth();
1973       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1974 
1975       // Save the element type.
1976       CurrentType = MemberDecl->getType();
1977       break;
1978     }
1979 
1980     case OffsetOfExpr::OffsetOfNode::Identifier:
1981       llvm_unreachable("dependent __builtin_offsetof");
1982 
1983     case OffsetOfExpr::OffsetOfNode::Base: {
1984       if (ON.getBase()->isVirtual()) {
1985         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1986         continue;
1987       }
1988 
1989       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1990       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1991 
1992       // Save the element type.
1993       CurrentType = ON.getBase()->getType();
1994 
1995       // Compute the offset to the base.
1996       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1997       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1998       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1999       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2000       break;
2001     }
2002     }
2003     Result = Builder.CreateAdd(Result, Offset);
2004   }
2005   return Result;
2006 }
2007 
2008 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2009 /// argument of the sizeof expression as an integer.
2010 Value *
2011 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2012                               const UnaryExprOrTypeTraitExpr *E) {
2013   QualType TypeToSize = E->getTypeOfArgument();
2014   if (E->getKind() == UETT_SizeOf) {
2015     if (const VariableArrayType *VAT =
2016           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2017       if (E->isArgumentType()) {
2018         // sizeof(type) - make sure to emit the VLA size.
2019         CGF.EmitVariablyModifiedType(TypeToSize);
2020       } else {
2021         // C99 6.5.3.4p2: If the argument is an expression of type
2022         // VLA, it is evaluated.
2023         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2024       }
2025 
2026       QualType eltType;
2027       llvm::Value *numElts;
2028       std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2029 
2030       llvm::Value *size = numElts;
2031 
2032       // Scale the number of non-VLA elements by the non-VLA element size.
2033       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2034       if (!eltSize.isOne())
2035         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2036 
2037       return size;
2038     }
2039   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2040     auto Alignment =
2041         CGF.getContext()
2042             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2043                 E->getTypeOfArgument()->getPointeeType()))
2044             .getQuantity();
2045     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2046   }
2047 
2048   // If this isn't sizeof(vla), the result must be constant; use the constant
2049   // folding logic so we don't have to duplicate it here.
2050   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2051 }
2052 
2053 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2054   Expr *Op = E->getSubExpr();
2055   if (Op->getType()->isAnyComplexType()) {
2056     // If it's an l-value, load through the appropriate subobject l-value.
2057     // Note that we have to ask E because Op might be an l-value that
2058     // this won't work for, e.g. an Obj-C property.
2059     if (E->isGLValue())
2060       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2061                                   E->getExprLoc()).getScalarVal();
2062 
2063     // Otherwise, calculate and project.
2064     return CGF.EmitComplexExpr(Op, false, true).first;
2065   }
2066 
2067   return Visit(Op);
2068 }
2069 
2070 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2071   Expr *Op = E->getSubExpr();
2072   if (Op->getType()->isAnyComplexType()) {
2073     // If it's an l-value, load through the appropriate subobject l-value.
2074     // Note that we have to ask E because Op might be an l-value that
2075     // this won't work for, e.g. an Obj-C property.
2076     if (Op->isGLValue())
2077       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2078                                   E->getExprLoc()).getScalarVal();
2079 
2080     // Otherwise, calculate and project.
2081     return CGF.EmitComplexExpr(Op, true, false).second;
2082   }
2083 
2084   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2085   // effects are evaluated, but not the actual value.
2086   if (Op->isGLValue())
2087     CGF.EmitLValue(Op);
2088   else
2089     CGF.EmitScalarExpr(Op, true);
2090   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2091 }
2092 
2093 //===----------------------------------------------------------------------===//
2094 //                           Binary Operators
2095 //===----------------------------------------------------------------------===//
2096 
2097 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2098   TestAndClearIgnoreResultAssign();
2099   BinOpInfo Result;
2100   Result.LHS = Visit(E->getLHS());
2101   Result.RHS = Visit(E->getRHS());
2102   Result.Ty  = E->getType();
2103   Result.Opcode = E->getOpcode();
2104   Result.FPContractable = E->isFPContractable();
2105   Result.E = E;
2106   return Result;
2107 }
2108 
2109 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2110                                               const CompoundAssignOperator *E,
2111                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2112                                                    Value *&Result) {
2113   QualType LHSTy = E->getLHS()->getType();
2114   BinOpInfo OpInfo;
2115 
2116   if (E->getComputationResultType()->isAnyComplexType())
2117     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2118 
2119   // Emit the RHS first.  __block variables need to have the rhs evaluated
2120   // first, plus this should improve codegen a little.
2121   OpInfo.RHS = Visit(E->getRHS());
2122   OpInfo.Ty = E->getComputationResultType();
2123   OpInfo.Opcode = E->getOpcode();
2124   OpInfo.FPContractable = false;
2125   OpInfo.E = E;
2126   // Load/convert the LHS.
2127   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2128 
2129   llvm::PHINode *atomicPHI = nullptr;
2130   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2131     QualType type = atomicTy->getValueType();
2132     if (!type->isBooleanType() && type->isIntegerType() &&
2133         !(type->isUnsignedIntegerType() &&
2134           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2135         CGF.getLangOpts().getSignedOverflowBehavior() !=
2136             LangOptions::SOB_Trapping) {
2137       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2138       switch (OpInfo.Opcode) {
2139         // We don't have atomicrmw operands for *, %, /, <<, >>
2140         case BO_MulAssign: case BO_DivAssign:
2141         case BO_RemAssign:
2142         case BO_ShlAssign:
2143         case BO_ShrAssign:
2144           break;
2145         case BO_AddAssign:
2146           aop = llvm::AtomicRMWInst::Add;
2147           break;
2148         case BO_SubAssign:
2149           aop = llvm::AtomicRMWInst::Sub;
2150           break;
2151         case BO_AndAssign:
2152           aop = llvm::AtomicRMWInst::And;
2153           break;
2154         case BO_XorAssign:
2155           aop = llvm::AtomicRMWInst::Xor;
2156           break;
2157         case BO_OrAssign:
2158           aop = llvm::AtomicRMWInst::Or;
2159           break;
2160         default:
2161           llvm_unreachable("Invalid compound assignment type");
2162       }
2163       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2164         llvm::Value *amt = CGF.EmitToMemory(
2165             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2166                                  E->getExprLoc()),
2167             LHSTy);
2168         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2169             llvm::SequentiallyConsistent);
2170         return LHSLV;
2171       }
2172     }
2173     // FIXME: For floating point types, we should be saving and restoring the
2174     // floating point environment in the loop.
2175     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2176     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2177     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2178     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2179     Builder.CreateBr(opBB);
2180     Builder.SetInsertPoint(opBB);
2181     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2182     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2183     OpInfo.LHS = atomicPHI;
2184   }
2185   else
2186     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2187 
2188   SourceLocation Loc = E->getExprLoc();
2189   OpInfo.LHS =
2190       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2191 
2192   // Expand the binary operator.
2193   Result = (this->*Func)(OpInfo);
2194 
2195   // Convert the result back to the LHS type.
2196   Result =
2197       EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2198 
2199   if (atomicPHI) {
2200     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2201     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2202     auto Pair = CGF.EmitAtomicCompareExchange(
2203         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2204     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2205     llvm::Value *success = Pair.second;
2206     atomicPHI->addIncoming(old, opBB);
2207     Builder.CreateCondBr(success, contBB, opBB);
2208     Builder.SetInsertPoint(contBB);
2209     return LHSLV;
2210   }
2211 
2212   // Store the result value into the LHS lvalue. Bit-fields are handled
2213   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2214   // 'An assignment expression has the value of the left operand after the
2215   // assignment...'.
2216   if (LHSLV.isBitField())
2217     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2218   else
2219     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2220 
2221   return LHSLV;
2222 }
2223 
2224 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2225                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2226   bool Ignore = TestAndClearIgnoreResultAssign();
2227   Value *RHS;
2228   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2229 
2230   // If the result is clearly ignored, return now.
2231   if (Ignore)
2232     return nullptr;
2233 
2234   // The result of an assignment in C is the assigned r-value.
2235   if (!CGF.getLangOpts().CPlusPlus)
2236     return RHS;
2237 
2238   // If the lvalue is non-volatile, return the computed value of the assignment.
2239   if (!LHS.isVolatileQualified())
2240     return RHS;
2241 
2242   // Otherwise, reload the value.
2243   return EmitLoadOfLValue(LHS, E->getExprLoc());
2244 }
2245 
2246 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2247     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2248   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2249 
2250   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2251     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2252                                     SanitizerKind::IntegerDivideByZero));
2253   }
2254 
2255   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2256       Ops.Ty->hasSignedIntegerRepresentation()) {
2257     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2258 
2259     llvm::Value *IntMin =
2260       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2261     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2262 
2263     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2264     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2265     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2266     Checks.push_back(
2267         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2268   }
2269 
2270   if (Checks.size() > 0)
2271     EmitBinOpCheck(Checks, Ops);
2272 }
2273 
2274 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2275   {
2276     CodeGenFunction::SanitizerScope SanScope(&CGF);
2277     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2278          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2279         Ops.Ty->isIntegerType()) {
2280       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2281       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2282     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2283                Ops.Ty->isRealFloatingType()) {
2284       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2285       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2286       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2287                      Ops);
2288     }
2289   }
2290 
2291   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2292     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2293     if (CGF.getLangOpts().OpenCL) {
2294       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
2295       llvm::Type *ValTy = Val->getType();
2296       if (ValTy->isFloatTy() ||
2297           (isa<llvm::VectorType>(ValTy) &&
2298            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2299         CGF.SetFPAccuracy(Val, 2.5);
2300     }
2301     return Val;
2302   }
2303   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2304     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2305   else
2306     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2307 }
2308 
2309 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2310   // Rem in C can't be a floating point type: C99 6.5.5p2.
2311   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2312     CodeGenFunction::SanitizerScope SanScope(&CGF);
2313     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2314 
2315     if (Ops.Ty->isIntegerType())
2316       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2317   }
2318 
2319   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2320     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2321   else
2322     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2323 }
2324 
2325 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2326   unsigned IID;
2327   unsigned OpID = 0;
2328 
2329   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2330   switch (Ops.Opcode) {
2331   case BO_Add:
2332   case BO_AddAssign:
2333     OpID = 1;
2334     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2335                      llvm::Intrinsic::uadd_with_overflow;
2336     break;
2337   case BO_Sub:
2338   case BO_SubAssign:
2339     OpID = 2;
2340     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2341                      llvm::Intrinsic::usub_with_overflow;
2342     break;
2343   case BO_Mul:
2344   case BO_MulAssign:
2345     OpID = 3;
2346     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2347                      llvm::Intrinsic::umul_with_overflow;
2348     break;
2349   default:
2350     llvm_unreachable("Unsupported operation for overflow detection");
2351   }
2352   OpID <<= 1;
2353   if (isSigned)
2354     OpID |= 1;
2355 
2356   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2357 
2358   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2359 
2360   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2361   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2362   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2363 
2364   // Handle overflow with llvm.trap if no custom handler has been specified.
2365   const std::string *handlerName =
2366     &CGF.getLangOpts().OverflowHandler;
2367   if (handlerName->empty()) {
2368     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2369     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2370     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2371       CodeGenFunction::SanitizerScope SanScope(&CGF);
2372       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2373       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2374                               : SanitizerKind::UnsignedIntegerOverflow;
2375       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2376     } else
2377       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2378     return result;
2379   }
2380 
2381   // Branch in case of overflow.
2382   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2383   llvm::Function::iterator insertPt = initialBB;
2384   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2385                                                       std::next(insertPt));
2386   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2387 
2388   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2389 
2390   // If an overflow handler is set, then we want to call it and then use its
2391   // result, if it returns.
2392   Builder.SetInsertPoint(overflowBB);
2393 
2394   // Get the overflow handler.
2395   llvm::Type *Int8Ty = CGF.Int8Ty;
2396   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2397   llvm::FunctionType *handlerTy =
2398       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2399   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2400 
2401   // Sign extend the args to 64-bit, so that we can use the same handler for
2402   // all types of overflow.
2403   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2404   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2405 
2406   // Call the handler with the two arguments, the operation, and the size of
2407   // the result.
2408   llvm::Value *handlerArgs[] = {
2409     lhs,
2410     rhs,
2411     Builder.getInt8(OpID),
2412     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2413   };
2414   llvm::Value *handlerResult =
2415     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2416 
2417   // Truncate the result back to the desired size.
2418   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2419   Builder.CreateBr(continueBB);
2420 
2421   Builder.SetInsertPoint(continueBB);
2422   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2423   phi->addIncoming(result, initialBB);
2424   phi->addIncoming(handlerResult, overflowBB);
2425 
2426   return phi;
2427 }
2428 
2429 /// Emit pointer + index arithmetic.
2430 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2431                                     const BinOpInfo &op,
2432                                     bool isSubtraction) {
2433   // Must have binary (not unary) expr here.  Unary pointer
2434   // increment/decrement doesn't use this path.
2435   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2436 
2437   Value *pointer = op.LHS;
2438   Expr *pointerOperand = expr->getLHS();
2439   Value *index = op.RHS;
2440   Expr *indexOperand = expr->getRHS();
2441 
2442   // In a subtraction, the LHS is always the pointer.
2443   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2444     std::swap(pointer, index);
2445     std::swap(pointerOperand, indexOperand);
2446   }
2447 
2448   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2449   if (width != CGF.PointerWidthInBits) {
2450     // Zero-extend or sign-extend the pointer value according to
2451     // whether the index is signed or not.
2452     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2453     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2454                                       "idx.ext");
2455   }
2456 
2457   // If this is subtraction, negate the index.
2458   if (isSubtraction)
2459     index = CGF.Builder.CreateNeg(index, "idx.neg");
2460 
2461   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2462     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2463                         /*Accessed*/ false);
2464 
2465   const PointerType *pointerType
2466     = pointerOperand->getType()->getAs<PointerType>();
2467   if (!pointerType) {
2468     QualType objectType = pointerOperand->getType()
2469                                         ->castAs<ObjCObjectPointerType>()
2470                                         ->getPointeeType();
2471     llvm::Value *objectSize
2472       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2473 
2474     index = CGF.Builder.CreateMul(index, objectSize);
2475 
2476     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2477     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2478     return CGF.Builder.CreateBitCast(result, pointer->getType());
2479   }
2480 
2481   QualType elementType = pointerType->getPointeeType();
2482   if (const VariableArrayType *vla
2483         = CGF.getContext().getAsVariableArrayType(elementType)) {
2484     // The element count here is the total number of non-VLA elements.
2485     llvm::Value *numElements = CGF.getVLASize(vla).first;
2486 
2487     // Effectively, the multiply by the VLA size is part of the GEP.
2488     // GEP indexes are signed, and scaling an index isn't permitted to
2489     // signed-overflow, so we use the same semantics for our explicit
2490     // multiply.  We suppress this if overflow is not undefined behavior.
2491     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2492       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2493       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2494     } else {
2495       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2496       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2497     }
2498     return pointer;
2499   }
2500 
2501   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2502   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2503   // future proof.
2504   if (elementType->isVoidType() || elementType->isFunctionType()) {
2505     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2506     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2507     return CGF.Builder.CreateBitCast(result, pointer->getType());
2508   }
2509 
2510   if (CGF.getLangOpts().isSignedOverflowDefined())
2511     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2512 
2513   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2514 }
2515 
2516 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2517 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2518 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2519 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2520 // efficient operations.
2521 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2522                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2523                            bool negMul, bool negAdd) {
2524   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2525 
2526   Value *MulOp0 = MulOp->getOperand(0);
2527   Value *MulOp1 = MulOp->getOperand(1);
2528   if (negMul) {
2529     MulOp0 =
2530       Builder.CreateFSub(
2531         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2532         "neg");
2533   } else if (negAdd) {
2534     Addend =
2535       Builder.CreateFSub(
2536         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2537         "neg");
2538   }
2539 
2540   Value *FMulAdd = Builder.CreateCall(
2541       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2542       {MulOp0, MulOp1, Addend});
2543    MulOp->eraseFromParent();
2544 
2545    return FMulAdd;
2546 }
2547 
2548 // Check whether it would be legal to emit an fmuladd intrinsic call to
2549 // represent op and if so, build the fmuladd.
2550 //
2551 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2552 // Does NOT check the type of the operation - it's assumed that this function
2553 // will be called from contexts where it's known that the type is contractable.
2554 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2555                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2556                          bool isSub=false) {
2557 
2558   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2559           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2560          "Only fadd/fsub can be the root of an fmuladd.");
2561 
2562   // Check whether this op is marked as fusable.
2563   if (!op.FPContractable)
2564     return nullptr;
2565 
2566   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2567   // either disabled, or handled entirely by the LLVM backend).
2568   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2569     return nullptr;
2570 
2571   // We have a potentially fusable op. Look for a mul on one of the operands.
2572   if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2573     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2574       assert(LHSBinOp->getNumUses() == 0 &&
2575              "Operations with multiple uses shouldn't be contracted.");
2576       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2577     }
2578   } else if (llvm::BinaryOperator* RHSBinOp =
2579                dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2580     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2581       assert(RHSBinOp->getNumUses() == 0 &&
2582              "Operations with multiple uses shouldn't be contracted.");
2583       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2584     }
2585   }
2586 
2587   return nullptr;
2588 }
2589 
2590 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2591   if (op.LHS->getType()->isPointerTy() ||
2592       op.RHS->getType()->isPointerTy())
2593     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2594 
2595   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2596     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2597     case LangOptions::SOB_Defined:
2598       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2599     case LangOptions::SOB_Undefined:
2600       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2601         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2602       // Fall through.
2603     case LangOptions::SOB_Trapping:
2604       return EmitOverflowCheckedBinOp(op);
2605     }
2606   }
2607 
2608   if (op.Ty->isUnsignedIntegerType() &&
2609       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2610     return EmitOverflowCheckedBinOp(op);
2611 
2612   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2613     // Try to form an fmuladd.
2614     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2615       return FMulAdd;
2616 
2617     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2618   }
2619 
2620   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2621 }
2622 
2623 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2624   // The LHS is always a pointer if either side is.
2625   if (!op.LHS->getType()->isPointerTy()) {
2626     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2627       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2628       case LangOptions::SOB_Defined:
2629         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2630       case LangOptions::SOB_Undefined:
2631         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2632           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2633         // Fall through.
2634       case LangOptions::SOB_Trapping:
2635         return EmitOverflowCheckedBinOp(op);
2636       }
2637     }
2638 
2639     if (op.Ty->isUnsignedIntegerType() &&
2640         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2641       return EmitOverflowCheckedBinOp(op);
2642 
2643     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2644       // Try to form an fmuladd.
2645       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2646         return FMulAdd;
2647       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2648     }
2649 
2650     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2651   }
2652 
2653   // If the RHS is not a pointer, then we have normal pointer
2654   // arithmetic.
2655   if (!op.RHS->getType()->isPointerTy())
2656     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2657 
2658   // Otherwise, this is a pointer subtraction.
2659 
2660   // Do the raw subtraction part.
2661   llvm::Value *LHS
2662     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2663   llvm::Value *RHS
2664     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2665   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2666 
2667   // Okay, figure out the element size.
2668   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2669   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2670 
2671   llvm::Value *divisor = nullptr;
2672 
2673   // For a variable-length array, this is going to be non-constant.
2674   if (const VariableArrayType *vla
2675         = CGF.getContext().getAsVariableArrayType(elementType)) {
2676     llvm::Value *numElements;
2677     std::tie(numElements, elementType) = CGF.getVLASize(vla);
2678 
2679     divisor = numElements;
2680 
2681     // Scale the number of non-VLA elements by the non-VLA element size.
2682     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2683     if (!eltSize.isOne())
2684       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2685 
2686   // For everything elese, we can just compute it, safe in the
2687   // assumption that Sema won't let anything through that we can't
2688   // safely compute the size of.
2689   } else {
2690     CharUnits elementSize;
2691     // Handle GCC extension for pointer arithmetic on void* and
2692     // function pointer types.
2693     if (elementType->isVoidType() || elementType->isFunctionType())
2694       elementSize = CharUnits::One();
2695     else
2696       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2697 
2698     // Don't even emit the divide for element size of 1.
2699     if (elementSize.isOne())
2700       return diffInChars;
2701 
2702     divisor = CGF.CGM.getSize(elementSize);
2703   }
2704 
2705   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2706   // pointer difference in C is only defined in the case where both operands
2707   // are pointing to elements of an array.
2708   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2709 }
2710 
2711 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2712   llvm::IntegerType *Ty;
2713   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2714     Ty = cast<llvm::IntegerType>(VT->getElementType());
2715   else
2716     Ty = cast<llvm::IntegerType>(LHS->getType());
2717   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2718 }
2719 
2720 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2721   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2722   // RHS to the same size as the LHS.
2723   Value *RHS = Ops.RHS;
2724   if (Ops.LHS->getType() != RHS->getType())
2725     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2726 
2727   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
2728                       Ops.Ty->hasSignedIntegerRepresentation();
2729   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
2730   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2731   if (CGF.getLangOpts().OpenCL)
2732     RHS =
2733         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2734   else if ((SanitizeBase || SanitizeExponent) &&
2735            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2736     CodeGenFunction::SanitizerScope SanScope(&CGF);
2737     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
2738     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2739     llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
2740 
2741     if (SanitizeExponent) {
2742       Checks.push_back(
2743           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
2744     }
2745 
2746     if (SanitizeBase) {
2747       // Check whether we are shifting any non-zero bits off the top of the
2748       // integer. We only emit this check if exponent is valid - otherwise
2749       // instructions below will have undefined behavior themselves.
2750       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2751       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2752       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
2753       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
2754       CGF.EmitBlock(CheckShiftBase);
2755       llvm::Value *BitsShiftedOff =
2756         Builder.CreateLShr(Ops.LHS,
2757                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2758                                              /*NUW*/true, /*NSW*/true),
2759                            "shl.check");
2760       if (CGF.getLangOpts().CPlusPlus) {
2761         // In C99, we are not permitted to shift a 1 bit into the sign bit.
2762         // Under C++11's rules, shifting a 1 bit into the sign bit is
2763         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2764         // define signed left shifts, so we use the C99 and C++11 rules there).
2765         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2766         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2767       }
2768       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2769       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2770       CGF.EmitBlock(Cont);
2771       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
2772       BaseCheck->addIncoming(Builder.getTrue(), Orig);
2773       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
2774       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
2775     }
2776 
2777     assert(!Checks.empty());
2778     EmitBinOpCheck(Checks, Ops);
2779   }
2780 
2781   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2782 }
2783 
2784 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2785   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2786   // RHS to the same size as the LHS.
2787   Value *RHS = Ops.RHS;
2788   if (Ops.LHS->getType() != RHS->getType())
2789     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2790 
2791   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2792   if (CGF.getLangOpts().OpenCL)
2793     RHS =
2794         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2795   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
2796            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2797     CodeGenFunction::SanitizerScope SanScope(&CGF);
2798     llvm::Value *Valid =
2799         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
2800     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
2801   }
2802 
2803   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2804     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2805   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2806 }
2807 
2808 enum IntrinsicType { VCMPEQ, VCMPGT };
2809 // return corresponding comparison intrinsic for given vector type
2810 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2811                                         BuiltinType::Kind ElemKind) {
2812   switch (ElemKind) {
2813   default: llvm_unreachable("unexpected element type");
2814   case BuiltinType::Char_U:
2815   case BuiltinType::UChar:
2816     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2817                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2818   case BuiltinType::Char_S:
2819   case BuiltinType::SChar:
2820     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2821                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2822   case BuiltinType::UShort:
2823     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2824                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2825   case BuiltinType::Short:
2826     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2827                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2828   case BuiltinType::UInt:
2829   case BuiltinType::ULong:
2830     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2831                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2832   case BuiltinType::Int:
2833   case BuiltinType::Long:
2834     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2835                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2836   case BuiltinType::Float:
2837     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2838                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2839   }
2840 }
2841 
2842 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2843                                       unsigned SICmpOpc, unsigned FCmpOpc) {
2844   TestAndClearIgnoreResultAssign();
2845   Value *Result;
2846   QualType LHSTy = E->getLHS()->getType();
2847   QualType RHSTy = E->getRHS()->getType();
2848   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2849     assert(E->getOpcode() == BO_EQ ||
2850            E->getOpcode() == BO_NE);
2851     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2852     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2853     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2854                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2855   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
2856     Value *LHS = Visit(E->getLHS());
2857     Value *RHS = Visit(E->getRHS());
2858 
2859     // If AltiVec, the comparison results in a numeric type, so we use
2860     // intrinsics comparing vectors and giving 0 or 1 as a result
2861     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2862       // constants for mapping CR6 register bits to predicate result
2863       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2864 
2865       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2866 
2867       // in several cases vector arguments order will be reversed
2868       Value *FirstVecArg = LHS,
2869             *SecondVecArg = RHS;
2870 
2871       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2872       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2873       BuiltinType::Kind ElementKind = BTy->getKind();
2874 
2875       switch(E->getOpcode()) {
2876       default: llvm_unreachable("is not a comparison operation");
2877       case BO_EQ:
2878         CR6 = CR6_LT;
2879         ID = GetIntrinsic(VCMPEQ, ElementKind);
2880         break;
2881       case BO_NE:
2882         CR6 = CR6_EQ;
2883         ID = GetIntrinsic(VCMPEQ, ElementKind);
2884         break;
2885       case BO_LT:
2886         CR6 = CR6_LT;
2887         ID = GetIntrinsic(VCMPGT, ElementKind);
2888         std::swap(FirstVecArg, SecondVecArg);
2889         break;
2890       case BO_GT:
2891         CR6 = CR6_LT;
2892         ID = GetIntrinsic(VCMPGT, ElementKind);
2893         break;
2894       case BO_LE:
2895         if (ElementKind == BuiltinType::Float) {
2896           CR6 = CR6_LT;
2897           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2898           std::swap(FirstVecArg, SecondVecArg);
2899         }
2900         else {
2901           CR6 = CR6_EQ;
2902           ID = GetIntrinsic(VCMPGT, ElementKind);
2903         }
2904         break;
2905       case BO_GE:
2906         if (ElementKind == BuiltinType::Float) {
2907           CR6 = CR6_LT;
2908           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2909         }
2910         else {
2911           CR6 = CR6_EQ;
2912           ID = GetIntrinsic(VCMPGT, ElementKind);
2913           std::swap(FirstVecArg, SecondVecArg);
2914         }
2915         break;
2916       }
2917 
2918       Value *CR6Param = Builder.getInt32(CR6);
2919       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2920       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
2921       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2922                                   E->getExprLoc());
2923     }
2924 
2925     if (LHS->getType()->isFPOrFPVectorTy()) {
2926       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2927                                   LHS, RHS, "cmp");
2928     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2929       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2930                                   LHS, RHS, "cmp");
2931     } else {
2932       // Unsigned integers and pointers.
2933       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2934                                   LHS, RHS, "cmp");
2935     }
2936 
2937     // If this is a vector comparison, sign extend the result to the appropriate
2938     // vector integer type and return it (don't convert to bool).
2939     if (LHSTy->isVectorType())
2940       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2941 
2942   } else {
2943     // Complex Comparison: can only be an equality comparison.
2944     CodeGenFunction::ComplexPairTy LHS, RHS;
2945     QualType CETy;
2946     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
2947       LHS = CGF.EmitComplexExpr(E->getLHS());
2948       CETy = CTy->getElementType();
2949     } else {
2950       LHS.first = Visit(E->getLHS());
2951       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
2952       CETy = LHSTy;
2953     }
2954     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
2955       RHS = CGF.EmitComplexExpr(E->getRHS());
2956       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
2957                                                      CTy->getElementType()) &&
2958              "The element types must always match.");
2959       (void)CTy;
2960     } else {
2961       RHS.first = Visit(E->getRHS());
2962       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
2963       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
2964              "The element types must always match.");
2965     }
2966 
2967     Value *ResultR, *ResultI;
2968     if (CETy->isRealFloatingType()) {
2969       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2970                                    LHS.first, RHS.first, "cmp.r");
2971       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2972                                    LHS.second, RHS.second, "cmp.i");
2973     } else {
2974       // Complex comparisons can only be equality comparisons.  As such, signed
2975       // and unsigned opcodes are the same.
2976       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2977                                    LHS.first, RHS.first, "cmp.r");
2978       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2979                                    LHS.second, RHS.second, "cmp.i");
2980     }
2981 
2982     if (E->getOpcode() == BO_EQ) {
2983       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2984     } else {
2985       assert(E->getOpcode() == BO_NE &&
2986              "Complex comparison other than == or != ?");
2987       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2988     }
2989   }
2990 
2991   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2992                               E->getExprLoc());
2993 }
2994 
2995 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2996   bool Ignore = TestAndClearIgnoreResultAssign();
2997 
2998   Value *RHS;
2999   LValue LHS;
3000 
3001   switch (E->getLHS()->getType().getObjCLifetime()) {
3002   case Qualifiers::OCL_Strong:
3003     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3004     break;
3005 
3006   case Qualifiers::OCL_Autoreleasing:
3007     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3008     break;
3009 
3010   case Qualifiers::OCL_Weak:
3011     RHS = Visit(E->getRHS());
3012     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3013     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3014     break;
3015 
3016   // No reason to do any of these differently.
3017   case Qualifiers::OCL_None:
3018   case Qualifiers::OCL_ExplicitNone:
3019     // __block variables need to have the rhs evaluated first, plus
3020     // this should improve codegen just a little.
3021     RHS = Visit(E->getRHS());
3022     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3023 
3024     // Store the value into the LHS.  Bit-fields are handled specially
3025     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3026     // 'An assignment expression has the value of the left operand after
3027     // the assignment...'.
3028     if (LHS.isBitField())
3029       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3030     else
3031       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3032   }
3033 
3034   // If the result is clearly ignored, return now.
3035   if (Ignore)
3036     return nullptr;
3037 
3038   // The result of an assignment in C is the assigned r-value.
3039   if (!CGF.getLangOpts().CPlusPlus)
3040     return RHS;
3041 
3042   // If the lvalue is non-volatile, return the computed value of the assignment.
3043   if (!LHS.isVolatileQualified())
3044     return RHS;
3045 
3046   // Otherwise, reload the value.
3047   return EmitLoadOfLValue(LHS, E->getExprLoc());
3048 }
3049 
3050 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3051   // Perform vector logical and on comparisons with zero vectors.
3052   if (E->getType()->isVectorType()) {
3053     CGF.incrementProfileCounter(E);
3054 
3055     Value *LHS = Visit(E->getLHS());
3056     Value *RHS = Visit(E->getRHS());
3057     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3058     if (LHS->getType()->isFPOrFPVectorTy()) {
3059       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3060       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3061     } else {
3062       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3063       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3064     }
3065     Value *And = Builder.CreateAnd(LHS, RHS);
3066     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3067   }
3068 
3069   llvm::Type *ResTy = ConvertType(E->getType());
3070 
3071   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3072   // If we have 1 && X, just emit X without inserting the control flow.
3073   bool LHSCondVal;
3074   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3075     if (LHSCondVal) { // If we have 1 && X, just emit X.
3076       CGF.incrementProfileCounter(E);
3077 
3078       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3079       // ZExt result to int or bool.
3080       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3081     }
3082 
3083     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3084     if (!CGF.ContainsLabel(E->getRHS()))
3085       return llvm::Constant::getNullValue(ResTy);
3086   }
3087 
3088   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3089   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3090 
3091   CodeGenFunction::ConditionalEvaluation eval(CGF);
3092 
3093   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3094   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3095                            CGF.getProfileCount(E->getRHS()));
3096 
3097   // Any edges into the ContBlock are now from an (indeterminate number of)
3098   // edges from this first condition.  All of these values will be false.  Start
3099   // setting up the PHI node in the Cont Block for this.
3100   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3101                                             "", ContBlock);
3102   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3103        PI != PE; ++PI)
3104     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3105 
3106   eval.begin(CGF);
3107   CGF.EmitBlock(RHSBlock);
3108   CGF.incrementProfileCounter(E);
3109   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3110   eval.end(CGF);
3111 
3112   // Reaquire the RHS block, as there may be subblocks inserted.
3113   RHSBlock = Builder.GetInsertBlock();
3114 
3115   // Emit an unconditional branch from this block to ContBlock.
3116   {
3117     // There is no need to emit line number for unconditional branch.
3118     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3119     CGF.EmitBlock(ContBlock);
3120   }
3121   // Insert an entry into the phi node for the edge with the value of RHSCond.
3122   PN->addIncoming(RHSCond, RHSBlock);
3123 
3124   // ZExt result to int.
3125   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3126 }
3127 
3128 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3129   // Perform vector logical or on comparisons with zero vectors.
3130   if (E->getType()->isVectorType()) {
3131     CGF.incrementProfileCounter(E);
3132 
3133     Value *LHS = Visit(E->getLHS());
3134     Value *RHS = Visit(E->getRHS());
3135     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3136     if (LHS->getType()->isFPOrFPVectorTy()) {
3137       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3138       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3139     } else {
3140       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3141       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3142     }
3143     Value *Or = Builder.CreateOr(LHS, RHS);
3144     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3145   }
3146 
3147   llvm::Type *ResTy = ConvertType(E->getType());
3148 
3149   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3150   // If we have 0 || X, just emit X without inserting the control flow.
3151   bool LHSCondVal;
3152   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3153     if (!LHSCondVal) { // If we have 0 || X, just emit X.
3154       CGF.incrementProfileCounter(E);
3155 
3156       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3157       // ZExt result to int or bool.
3158       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3159     }
3160 
3161     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3162     if (!CGF.ContainsLabel(E->getRHS()))
3163       return llvm::ConstantInt::get(ResTy, 1);
3164   }
3165 
3166   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3167   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3168 
3169   CodeGenFunction::ConditionalEvaluation eval(CGF);
3170 
3171   // Branch on the LHS first.  If it is true, go to the success (cont) block.
3172   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3173                            CGF.getCurrentProfileCount() -
3174                                CGF.getProfileCount(E->getRHS()));
3175 
3176   // Any edges into the ContBlock are now from an (indeterminate number of)
3177   // edges from this first condition.  All of these values will be true.  Start
3178   // setting up the PHI node in the Cont Block for this.
3179   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3180                                             "", ContBlock);
3181   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3182        PI != PE; ++PI)
3183     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3184 
3185   eval.begin(CGF);
3186 
3187   // Emit the RHS condition as a bool value.
3188   CGF.EmitBlock(RHSBlock);
3189   CGF.incrementProfileCounter(E);
3190   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3191 
3192   eval.end(CGF);
3193 
3194   // Reaquire the RHS block, as there may be subblocks inserted.
3195   RHSBlock = Builder.GetInsertBlock();
3196 
3197   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3198   // into the phi node for the edge with the value of RHSCond.
3199   CGF.EmitBlock(ContBlock);
3200   PN->addIncoming(RHSCond, RHSBlock);
3201 
3202   // ZExt result to int.
3203   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3204 }
3205 
3206 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3207   CGF.EmitIgnoredExpr(E->getLHS());
3208   CGF.EnsureInsertPoint();
3209   return Visit(E->getRHS());
3210 }
3211 
3212 //===----------------------------------------------------------------------===//
3213 //                             Other Operators
3214 //===----------------------------------------------------------------------===//
3215 
3216 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3217 /// expression is cheap enough and side-effect-free enough to evaluate
3218 /// unconditionally instead of conditionally.  This is used to convert control
3219 /// flow into selects in some cases.
3220 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3221                                                    CodeGenFunction &CGF) {
3222   // Anything that is an integer or floating point constant is fine.
3223   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3224 
3225   // Even non-volatile automatic variables can't be evaluated unconditionally.
3226   // Referencing a thread_local may cause non-trivial initialization work to
3227   // occur. If we're inside a lambda and one of the variables is from the scope
3228   // outside the lambda, that function may have returned already. Reading its
3229   // locals is a bad idea. Also, these reads may introduce races there didn't
3230   // exist in the source-level program.
3231 }
3232 
3233 
3234 Value *ScalarExprEmitter::
3235 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3236   TestAndClearIgnoreResultAssign();
3237 
3238   // Bind the common expression if necessary.
3239   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3240 
3241   Expr *condExpr = E->getCond();
3242   Expr *lhsExpr = E->getTrueExpr();
3243   Expr *rhsExpr = E->getFalseExpr();
3244 
3245   // If the condition constant folds and can be elided, try to avoid emitting
3246   // the condition and the dead arm.
3247   bool CondExprBool;
3248   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3249     Expr *live = lhsExpr, *dead = rhsExpr;
3250     if (!CondExprBool) std::swap(live, dead);
3251 
3252     // If the dead side doesn't have labels we need, just emit the Live part.
3253     if (!CGF.ContainsLabel(dead)) {
3254       if (CondExprBool)
3255         CGF.incrementProfileCounter(E);
3256       Value *Result = Visit(live);
3257 
3258       // If the live part is a throw expression, it acts like it has a void
3259       // type, so evaluating it returns a null Value*.  However, a conditional
3260       // with non-void type must return a non-null Value*.
3261       if (!Result && !E->getType()->isVoidType())
3262         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3263 
3264       return Result;
3265     }
3266   }
3267 
3268   // OpenCL: If the condition is a vector, we can treat this condition like
3269   // the select function.
3270   if (CGF.getLangOpts().OpenCL
3271       && condExpr->getType()->isVectorType()) {
3272     CGF.incrementProfileCounter(E);
3273 
3274     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3275     llvm::Value *LHS = Visit(lhsExpr);
3276     llvm::Value *RHS = Visit(rhsExpr);
3277 
3278     llvm::Type *condType = ConvertType(condExpr->getType());
3279     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3280 
3281     unsigned numElem = vecTy->getNumElements();
3282     llvm::Type *elemType = vecTy->getElementType();
3283 
3284     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3285     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3286     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3287                                           llvm::VectorType::get(elemType,
3288                                                                 numElem),
3289                                           "sext");
3290     llvm::Value *tmp2 = Builder.CreateNot(tmp);
3291 
3292     // Cast float to int to perform ANDs if necessary.
3293     llvm::Value *RHSTmp = RHS;
3294     llvm::Value *LHSTmp = LHS;
3295     bool wasCast = false;
3296     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3297     if (rhsVTy->getElementType()->isFloatingPointTy()) {
3298       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3299       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3300       wasCast = true;
3301     }
3302 
3303     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3304     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3305     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3306     if (wasCast)
3307       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3308 
3309     return tmp5;
3310   }
3311 
3312   // If this is a really simple expression (like x ? 4 : 5), emit this as a
3313   // select instead of as control flow.  We can only do this if it is cheap and
3314   // safe to evaluate the LHS and RHS unconditionally.
3315   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3316       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3317     CGF.incrementProfileCounter(E);
3318 
3319     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3320     llvm::Value *LHS = Visit(lhsExpr);
3321     llvm::Value *RHS = Visit(rhsExpr);
3322     if (!LHS) {
3323       // If the conditional has void type, make sure we return a null Value*.
3324       assert(!RHS && "LHS and RHS types must match");
3325       return nullptr;
3326     }
3327     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3328   }
3329 
3330   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3331   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3332   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3333 
3334   CodeGenFunction::ConditionalEvaluation eval(CGF);
3335   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3336                            CGF.getProfileCount(lhsExpr));
3337 
3338   CGF.EmitBlock(LHSBlock);
3339   CGF.incrementProfileCounter(E);
3340   eval.begin(CGF);
3341   Value *LHS = Visit(lhsExpr);
3342   eval.end(CGF);
3343 
3344   LHSBlock = Builder.GetInsertBlock();
3345   Builder.CreateBr(ContBlock);
3346 
3347   CGF.EmitBlock(RHSBlock);
3348   eval.begin(CGF);
3349   Value *RHS = Visit(rhsExpr);
3350   eval.end(CGF);
3351 
3352   RHSBlock = Builder.GetInsertBlock();
3353   CGF.EmitBlock(ContBlock);
3354 
3355   // If the LHS or RHS is a throw expression, it will be legitimately null.
3356   if (!LHS)
3357     return RHS;
3358   if (!RHS)
3359     return LHS;
3360 
3361   // Create a PHI node for the real part.
3362   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3363   PN->addIncoming(LHS, LHSBlock);
3364   PN->addIncoming(RHS, RHSBlock);
3365   return PN;
3366 }
3367 
3368 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3369   return Visit(E->getChosenSubExpr());
3370 }
3371 
3372 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3373   QualType Ty = VE->getType();
3374 
3375   if (Ty->isVariablyModifiedType())
3376     CGF.EmitVariablyModifiedType(Ty);
3377 
3378   Address ArgValue = Address::invalid();
3379   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
3380 
3381   llvm::Type *ArgTy = ConvertType(VE->getType());
3382 
3383   // If EmitVAArg fails, we fall back to the LLVM instruction.
3384   if (!ArgPtr.isValid())
3385     return Builder.CreateVAArg(ArgValue.getPointer(), ArgTy);
3386 
3387   // FIXME Volatility.
3388   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3389 
3390   // If EmitVAArg promoted the type, we must truncate it.
3391   if (ArgTy != Val->getType()) {
3392     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3393       Val = Builder.CreateIntToPtr(Val, ArgTy);
3394     else
3395       Val = Builder.CreateTrunc(Val, ArgTy);
3396   }
3397 
3398   return Val;
3399 }
3400 
3401 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3402   return CGF.EmitBlockLiteral(block);
3403 }
3404 
3405 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3406   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3407   llvm::Type *DstTy = ConvertType(E->getType());
3408 
3409   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
3410   // a shuffle vector instead of a bitcast.
3411   llvm::Type *SrcTy = Src->getType();
3412   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
3413     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
3414     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
3415     if ((numElementsDst == 3 && numElementsSrc == 4)
3416         || (numElementsDst == 4 && numElementsSrc == 3)) {
3417 
3418 
3419       // In the case of going from int4->float3, a bitcast is needed before
3420       // doing a shuffle.
3421       llvm::Type *srcElemTy =
3422       cast<llvm::VectorType>(SrcTy)->getElementType();
3423       llvm::Type *dstElemTy =
3424       cast<llvm::VectorType>(DstTy)->getElementType();
3425 
3426       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
3427           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
3428         // Create a float type of the same size as the source or destination.
3429         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
3430                                                                  numElementsSrc);
3431 
3432         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
3433       }
3434 
3435       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3436 
3437       SmallVector<llvm::Constant*, 3> Args;
3438       Args.push_back(Builder.getInt32(0));
3439       Args.push_back(Builder.getInt32(1));
3440       Args.push_back(Builder.getInt32(2));
3441 
3442       if (numElementsDst == 4)
3443         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3444 
3445       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3446 
3447       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
3448     }
3449   }
3450 
3451   return Builder.CreateBitCast(Src, DstTy, "astype");
3452 }
3453 
3454 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3455   return CGF.EmitAtomicExpr(E).getScalarVal();
3456 }
3457 
3458 //===----------------------------------------------------------------------===//
3459 //                         Entry Point into this File
3460 //===----------------------------------------------------------------------===//
3461 
3462 /// Emit the computation of the specified expression of scalar type, ignoring
3463 /// the result.
3464 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3465   assert(E && hasScalarEvaluationKind(E->getType()) &&
3466          "Invalid scalar expression to emit");
3467 
3468   return ScalarExprEmitter(*this, IgnoreResultAssign)
3469       .Visit(const_cast<Expr *>(E));
3470 }
3471 
3472 /// Emit a conversion from the specified type to the specified destination type,
3473 /// both of which are LLVM scalar types.
3474 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3475                                              QualType DstTy,
3476                                              SourceLocation Loc) {
3477   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3478          "Invalid scalar expression to emit");
3479   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
3480 }
3481 
3482 /// Emit a conversion from the specified complex type to the specified
3483 /// destination type, where the destination type is an LLVM scalar type.
3484 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3485                                                       QualType SrcTy,
3486                                                       QualType DstTy,
3487                                                       SourceLocation Loc) {
3488   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3489          "Invalid complex -> scalar conversion");
3490   return ScalarExprEmitter(*this)
3491       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
3492 }
3493 
3494 
3495 llvm::Value *CodeGenFunction::
3496 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3497                         bool isInc, bool isPre) {
3498   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3499 }
3500 
3501 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3502   // object->isa or (*object).isa
3503   // Generate code as for: *(Class*)object
3504 
3505   Expr *BaseExpr = E->getBase();
3506   Address Addr = Address::invalid();
3507   if (BaseExpr->isRValue()) {
3508     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
3509   } else {
3510     Addr = EmitLValue(BaseExpr).getAddress();
3511   }
3512 
3513   // Cast the address to Class*.
3514   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
3515   return MakeAddrLValue(Addr, E->getType());
3516 }
3517 
3518 
3519 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3520                                             const CompoundAssignOperator *E) {
3521   ScalarExprEmitter Scalar(*this);
3522   Value *Result = nullptr;
3523   switch (E->getOpcode()) {
3524 #define COMPOUND_OP(Op)                                                       \
3525     case BO_##Op##Assign:                                                     \
3526       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3527                                              Result)
3528   COMPOUND_OP(Mul);
3529   COMPOUND_OP(Div);
3530   COMPOUND_OP(Rem);
3531   COMPOUND_OP(Add);
3532   COMPOUND_OP(Sub);
3533   COMPOUND_OP(Shl);
3534   COMPOUND_OP(Shr);
3535   COMPOUND_OP(And);
3536   COMPOUND_OP(Xor);
3537   COMPOUND_OP(Or);
3538 #undef COMPOUND_OP
3539 
3540   case BO_PtrMemD:
3541   case BO_PtrMemI:
3542   case BO_Mul:
3543   case BO_Div:
3544   case BO_Rem:
3545   case BO_Add:
3546   case BO_Sub:
3547   case BO_Shl:
3548   case BO_Shr:
3549   case BO_LT:
3550   case BO_GT:
3551   case BO_LE:
3552   case BO_GE:
3553   case BO_EQ:
3554   case BO_NE:
3555   case BO_And:
3556   case BO_Xor:
3557   case BO_Or:
3558   case BO_LAnd:
3559   case BO_LOr:
3560   case BO_Assign:
3561   case BO_Comma:
3562     llvm_unreachable("Not valid compound assignment operators");
3563   }
3564 
3565   llvm_unreachable("Unhandled compound assignment operator");
3566 }
3567