1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenModule.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtVisitor.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/Module.h" 33 #include <cstdarg> 34 35 using namespace clang; 36 using namespace CodeGen; 37 using llvm::Value; 38 39 //===----------------------------------------------------------------------===// 40 // Scalar Expression Emitter 41 //===----------------------------------------------------------------------===// 42 43 namespace { 44 struct BinOpInfo { 45 Value *LHS; 46 Value *RHS; 47 QualType Ty; // Computation Type. 48 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 49 bool FPContractable; 50 const Expr *E; // Entire expr, for error unsupported. May not be binop. 51 }; 52 53 static bool MustVisitNullValue(const Expr *E) { 54 // If a null pointer expression's type is the C++0x nullptr_t, then 55 // it's not necessarily a simple constant and it must be evaluated 56 // for its potential side effects. 57 return E->getType()->isNullPtrType(); 58 } 59 60 class ScalarExprEmitter 61 : public StmtVisitor<ScalarExprEmitter, Value*> { 62 CodeGenFunction &CGF; 63 CGBuilderTy &Builder; 64 bool IgnoreResultAssign; 65 llvm::LLVMContext &VMContext; 66 public: 67 68 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 69 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 70 VMContext(cgf.getLLVMContext()) { 71 } 72 73 //===--------------------------------------------------------------------===// 74 // Utilities 75 //===--------------------------------------------------------------------===// 76 77 bool TestAndClearIgnoreResultAssign() { 78 bool I = IgnoreResultAssign; 79 IgnoreResultAssign = false; 80 return I; 81 } 82 83 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 84 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 85 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 86 return CGF.EmitCheckedLValue(E, TCK); 87 } 88 89 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 90 const BinOpInfo &Info); 91 92 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 93 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 94 } 95 96 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 97 const AlignValueAttr *AVAttr = nullptr; 98 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 99 const ValueDecl *VD = DRE->getDecl(); 100 101 if (VD->getType()->isReferenceType()) { 102 if (const auto *TTy = 103 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 104 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 105 } else { 106 // Assumptions for function parameters are emitted at the start of the 107 // function, so there is no need to repeat that here. 108 if (isa<ParmVarDecl>(VD)) 109 return; 110 111 AVAttr = VD->getAttr<AlignValueAttr>(); 112 } 113 } 114 115 if (!AVAttr) 116 if (const auto *TTy = 117 dyn_cast<TypedefType>(E->getType())) 118 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 119 120 if (!AVAttr) 121 return; 122 123 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 124 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 125 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); 126 } 127 128 /// EmitLoadOfLValue - Given an expression with complex type that represents a 129 /// value l-value, this method emits the address of the l-value, then loads 130 /// and returns the result. 131 Value *EmitLoadOfLValue(const Expr *E) { 132 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 133 E->getExprLoc()); 134 135 EmitLValueAlignmentAssumption(E, V); 136 return V; 137 } 138 139 /// EmitConversionToBool - Convert the specified expression value to a 140 /// boolean (i1) truth value. This is equivalent to "Val != 0". 141 Value *EmitConversionToBool(Value *Src, QualType DstTy); 142 143 /// Emit a check that a conversion to or from a floating-point type does not 144 /// overflow. 145 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 146 Value *Src, QualType SrcType, QualType DstType, 147 llvm::Type *DstTy, SourceLocation Loc); 148 149 /// Emit a conversion from the specified type to the specified destination 150 /// type, both of which are LLVM scalar types. 151 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 152 SourceLocation Loc); 153 154 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 155 SourceLocation Loc, bool TreatBooleanAsSigned); 156 157 /// Emit a conversion from the specified complex type to the specified 158 /// destination type, where the destination type is an LLVM scalar type. 159 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 160 QualType SrcTy, QualType DstTy, 161 SourceLocation Loc); 162 163 /// EmitNullValue - Emit a value that corresponds to null for the given type. 164 Value *EmitNullValue(QualType Ty); 165 166 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 167 Value *EmitFloatToBoolConversion(Value *V) { 168 // Compare against 0.0 for fp scalars. 169 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 170 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 171 } 172 173 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 174 Value *EmitPointerToBoolConversion(Value *V) { 175 Value *Zero = llvm::ConstantPointerNull::get( 176 cast<llvm::PointerType>(V->getType())); 177 return Builder.CreateICmpNE(V, Zero, "tobool"); 178 } 179 180 Value *EmitIntToBoolConversion(Value *V) { 181 // Because of the type rules of C, we often end up computing a 182 // logical value, then zero extending it to int, then wanting it 183 // as a logical value again. Optimize this common case. 184 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 185 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 186 Value *Result = ZI->getOperand(0); 187 // If there aren't any more uses, zap the instruction to save space. 188 // Note that there can be more uses, for example if this 189 // is the result of an assignment. 190 if (ZI->use_empty()) 191 ZI->eraseFromParent(); 192 return Result; 193 } 194 } 195 196 return Builder.CreateIsNotNull(V, "tobool"); 197 } 198 199 //===--------------------------------------------------------------------===// 200 // Visitor Methods 201 //===--------------------------------------------------------------------===// 202 203 Value *Visit(Expr *E) { 204 ApplyDebugLocation DL(CGF, E); 205 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 206 } 207 208 Value *VisitStmt(Stmt *S) { 209 S->dump(CGF.getContext().getSourceManager()); 210 llvm_unreachable("Stmt can't have complex result type!"); 211 } 212 Value *VisitExpr(Expr *S); 213 214 Value *VisitParenExpr(ParenExpr *PE) { 215 return Visit(PE->getSubExpr()); 216 } 217 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 218 return Visit(E->getReplacement()); 219 } 220 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 221 return Visit(GE->getResultExpr()); 222 } 223 224 // Leaves. 225 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 226 return Builder.getInt(E->getValue()); 227 } 228 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 229 return llvm::ConstantFP::get(VMContext, E->getValue()); 230 } 231 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 232 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 233 } 234 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 235 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 236 } 237 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 238 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 239 } 240 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 241 return EmitNullValue(E->getType()); 242 } 243 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 244 return EmitNullValue(E->getType()); 245 } 246 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 247 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 248 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 249 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 250 return Builder.CreateBitCast(V, ConvertType(E->getType())); 251 } 252 253 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 254 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 255 } 256 257 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 258 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 259 } 260 261 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 262 if (E->isGLValue()) 263 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 264 265 // Otherwise, assume the mapping is the scalar directly. 266 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 267 } 268 269 // l-values. 270 Value *VisitDeclRefExpr(DeclRefExpr *E) { 271 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 272 if (result.isReference()) 273 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 274 E->getExprLoc()); 275 return result.getValue(); 276 } 277 return EmitLoadOfLValue(E); 278 } 279 280 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 281 return CGF.EmitObjCSelectorExpr(E); 282 } 283 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 284 return CGF.EmitObjCProtocolExpr(E); 285 } 286 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 287 return EmitLoadOfLValue(E); 288 } 289 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 290 if (E->getMethodDecl() && 291 E->getMethodDecl()->getReturnType()->isReferenceType()) 292 return EmitLoadOfLValue(E); 293 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 294 } 295 296 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 297 LValue LV = CGF.EmitObjCIsaExpr(E); 298 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 299 return V; 300 } 301 302 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 303 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 304 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 305 Value *VisitMemberExpr(MemberExpr *E); 306 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 307 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 308 return EmitLoadOfLValue(E); 309 } 310 311 Value *VisitInitListExpr(InitListExpr *E); 312 313 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 314 return EmitNullValue(E->getType()); 315 } 316 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 317 if (E->getType()->isVariablyModifiedType()) 318 CGF.EmitVariablyModifiedType(E->getType()); 319 320 if (CGDebugInfo *DI = CGF.getDebugInfo()) 321 DI->EmitExplicitCastType(E->getType()); 322 323 return VisitCastExpr(E); 324 } 325 Value *VisitCastExpr(CastExpr *E); 326 327 Value *VisitCallExpr(const CallExpr *E) { 328 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 329 return EmitLoadOfLValue(E); 330 331 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 332 333 EmitLValueAlignmentAssumption(E, V); 334 return V; 335 } 336 337 Value *VisitStmtExpr(const StmtExpr *E); 338 339 // Unary Operators. 340 Value *VisitUnaryPostDec(const UnaryOperator *E) { 341 LValue LV = EmitLValue(E->getSubExpr()); 342 return EmitScalarPrePostIncDec(E, LV, false, false); 343 } 344 Value *VisitUnaryPostInc(const UnaryOperator *E) { 345 LValue LV = EmitLValue(E->getSubExpr()); 346 return EmitScalarPrePostIncDec(E, LV, true, false); 347 } 348 Value *VisitUnaryPreDec(const UnaryOperator *E) { 349 LValue LV = EmitLValue(E->getSubExpr()); 350 return EmitScalarPrePostIncDec(E, LV, false, true); 351 } 352 Value *VisitUnaryPreInc(const UnaryOperator *E) { 353 LValue LV = EmitLValue(E->getSubExpr()); 354 return EmitScalarPrePostIncDec(E, LV, true, true); 355 } 356 357 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 358 llvm::Value *InVal, 359 bool IsInc); 360 361 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 362 bool isInc, bool isPre); 363 364 365 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 366 if (isa<MemberPointerType>(E->getType())) // never sugared 367 return CGF.CGM.getMemberPointerConstant(E); 368 369 return EmitLValue(E->getSubExpr()).getPointer(); 370 } 371 Value *VisitUnaryDeref(const UnaryOperator *E) { 372 if (E->getType()->isVoidType()) 373 return Visit(E->getSubExpr()); // the actual value should be unused 374 return EmitLoadOfLValue(E); 375 } 376 Value *VisitUnaryPlus(const UnaryOperator *E) { 377 // This differs from gcc, though, most likely due to a bug in gcc. 378 TestAndClearIgnoreResultAssign(); 379 return Visit(E->getSubExpr()); 380 } 381 Value *VisitUnaryMinus (const UnaryOperator *E); 382 Value *VisitUnaryNot (const UnaryOperator *E); 383 Value *VisitUnaryLNot (const UnaryOperator *E); 384 Value *VisitUnaryReal (const UnaryOperator *E); 385 Value *VisitUnaryImag (const UnaryOperator *E); 386 Value *VisitUnaryExtension(const UnaryOperator *E) { 387 return Visit(E->getSubExpr()); 388 } 389 390 // C++ 391 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 392 return EmitLoadOfLValue(E); 393 } 394 395 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 396 return Visit(DAE->getExpr()); 397 } 398 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 399 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 400 return Visit(DIE->getExpr()); 401 } 402 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 403 return CGF.LoadCXXThis(); 404 } 405 406 Value *VisitExprWithCleanups(ExprWithCleanups *E) { 407 CGF.enterFullExpression(E); 408 CodeGenFunction::RunCleanupsScope Scope(CGF); 409 return Visit(E->getSubExpr()); 410 } 411 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 412 return CGF.EmitCXXNewExpr(E); 413 } 414 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 415 CGF.EmitCXXDeleteExpr(E); 416 return nullptr; 417 } 418 419 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 420 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 421 } 422 423 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 424 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 425 } 426 427 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 428 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 429 } 430 431 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 432 // C++ [expr.pseudo]p1: 433 // The result shall only be used as the operand for the function call 434 // operator (), and the result of such a call has type void. The only 435 // effect is the evaluation of the postfix-expression before the dot or 436 // arrow. 437 CGF.EmitScalarExpr(E->getBase()); 438 return nullptr; 439 } 440 441 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 442 return EmitNullValue(E->getType()); 443 } 444 445 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 446 CGF.EmitCXXThrowExpr(E); 447 return nullptr; 448 } 449 450 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 451 return Builder.getInt1(E->getValue()); 452 } 453 454 // Binary Operators. 455 Value *EmitMul(const BinOpInfo &Ops) { 456 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 457 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 458 case LangOptions::SOB_Defined: 459 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 460 case LangOptions::SOB_Undefined: 461 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 462 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 463 // Fall through. 464 case LangOptions::SOB_Trapping: 465 return EmitOverflowCheckedBinOp(Ops); 466 } 467 } 468 469 if (Ops.Ty->isUnsignedIntegerType() && 470 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 471 return EmitOverflowCheckedBinOp(Ops); 472 473 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 474 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 475 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 476 } 477 /// Create a binary op that checks for overflow. 478 /// Currently only supports +, - and *. 479 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 480 481 // Check for undefined division and modulus behaviors. 482 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 483 llvm::Value *Zero,bool isDiv); 484 // Common helper for getting how wide LHS of shift is. 485 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 486 Value *EmitDiv(const BinOpInfo &Ops); 487 Value *EmitRem(const BinOpInfo &Ops); 488 Value *EmitAdd(const BinOpInfo &Ops); 489 Value *EmitSub(const BinOpInfo &Ops); 490 Value *EmitShl(const BinOpInfo &Ops); 491 Value *EmitShr(const BinOpInfo &Ops); 492 Value *EmitAnd(const BinOpInfo &Ops) { 493 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 494 } 495 Value *EmitXor(const BinOpInfo &Ops) { 496 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 497 } 498 Value *EmitOr (const BinOpInfo &Ops) { 499 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 500 } 501 502 BinOpInfo EmitBinOps(const BinaryOperator *E); 503 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 504 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 505 Value *&Result); 506 507 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 508 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 509 510 // Binary operators and binary compound assignment operators. 511 #define HANDLEBINOP(OP) \ 512 Value *VisitBin ## OP(const BinaryOperator *E) { \ 513 return Emit ## OP(EmitBinOps(E)); \ 514 } \ 515 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 516 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 517 } 518 HANDLEBINOP(Mul) 519 HANDLEBINOP(Div) 520 HANDLEBINOP(Rem) 521 HANDLEBINOP(Add) 522 HANDLEBINOP(Sub) 523 HANDLEBINOP(Shl) 524 HANDLEBINOP(Shr) 525 HANDLEBINOP(And) 526 HANDLEBINOP(Xor) 527 HANDLEBINOP(Or) 528 #undef HANDLEBINOP 529 530 // Comparisons. 531 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, 532 unsigned SICmpOpc, unsigned FCmpOpc); 533 #define VISITCOMP(CODE, UI, SI, FP) \ 534 Value *VisitBin##CODE(const BinaryOperator *E) { \ 535 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 536 llvm::FCmpInst::FP); } 537 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 538 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 539 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 540 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 541 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 542 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 543 #undef VISITCOMP 544 545 Value *VisitBinAssign (const BinaryOperator *E); 546 547 Value *VisitBinLAnd (const BinaryOperator *E); 548 Value *VisitBinLOr (const BinaryOperator *E); 549 Value *VisitBinComma (const BinaryOperator *E); 550 551 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 552 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 553 554 // Other Operators. 555 Value *VisitBlockExpr(const BlockExpr *BE); 556 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 557 Value *VisitChooseExpr(ChooseExpr *CE); 558 Value *VisitVAArgExpr(VAArgExpr *VE); 559 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 560 return CGF.EmitObjCStringLiteral(E); 561 } 562 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 563 return CGF.EmitObjCBoxedExpr(E); 564 } 565 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 566 return CGF.EmitObjCArrayLiteral(E); 567 } 568 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 569 return CGF.EmitObjCDictionaryLiteral(E); 570 } 571 Value *VisitAsTypeExpr(AsTypeExpr *CE); 572 Value *VisitAtomicExpr(AtomicExpr *AE); 573 }; 574 } // end anonymous namespace. 575 576 //===----------------------------------------------------------------------===// 577 // Utilities 578 //===----------------------------------------------------------------------===// 579 580 /// EmitConversionToBool - Convert the specified expression value to a 581 /// boolean (i1) truth value. This is equivalent to "Val != 0". 582 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 583 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 584 585 if (SrcType->isRealFloatingType()) 586 return EmitFloatToBoolConversion(Src); 587 588 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 589 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 590 591 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 592 "Unknown scalar type to convert"); 593 594 if (isa<llvm::IntegerType>(Src->getType())) 595 return EmitIntToBoolConversion(Src); 596 597 assert(isa<llvm::PointerType>(Src->getType())); 598 return EmitPointerToBoolConversion(Src); 599 } 600 601 void ScalarExprEmitter::EmitFloatConversionCheck( 602 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 603 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 604 CodeGenFunction::SanitizerScope SanScope(&CGF); 605 using llvm::APFloat; 606 using llvm::APSInt; 607 608 llvm::Type *SrcTy = Src->getType(); 609 610 llvm::Value *Check = nullptr; 611 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 612 // Integer to floating-point. This can fail for unsigned short -> __half 613 // or unsigned __int128 -> float. 614 assert(DstType->isFloatingType()); 615 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 616 617 APFloat LargestFloat = 618 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 619 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 620 621 bool IsExact; 622 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 623 &IsExact) != APFloat::opOK) 624 // The range of representable values of this floating point type includes 625 // all values of this integer type. Don't need an overflow check. 626 return; 627 628 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 629 if (SrcIsUnsigned) 630 Check = Builder.CreateICmpULE(Src, Max); 631 else { 632 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 633 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 634 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 635 Check = Builder.CreateAnd(GE, LE); 636 } 637 } else { 638 const llvm::fltSemantics &SrcSema = 639 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 640 if (isa<llvm::IntegerType>(DstTy)) { 641 // Floating-point to integer. This has undefined behavior if the source is 642 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 643 // to an integer). 644 unsigned Width = CGF.getContext().getIntWidth(DstType); 645 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 646 647 APSInt Min = APSInt::getMinValue(Width, Unsigned); 648 APFloat MinSrc(SrcSema, APFloat::uninitialized); 649 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 650 APFloat::opOverflow) 651 // Don't need an overflow check for lower bound. Just check for 652 // -Inf/NaN. 653 MinSrc = APFloat::getInf(SrcSema, true); 654 else 655 // Find the largest value which is too small to represent (before 656 // truncation toward zero). 657 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 658 659 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 660 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 661 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 662 APFloat::opOverflow) 663 // Don't need an overflow check for upper bound. Just check for 664 // +Inf/NaN. 665 MaxSrc = APFloat::getInf(SrcSema, false); 666 else 667 // Find the smallest value which is too large to represent (before 668 // truncation toward zero). 669 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 670 671 // If we're converting from __half, convert the range to float to match 672 // the type of src. 673 if (OrigSrcType->isHalfType()) { 674 const llvm::fltSemantics &Sema = 675 CGF.getContext().getFloatTypeSemantics(SrcType); 676 bool IsInexact; 677 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 678 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 679 } 680 681 llvm::Value *GE = 682 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 683 llvm::Value *LE = 684 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 685 Check = Builder.CreateAnd(GE, LE); 686 } else { 687 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 688 // 689 // Floating-point to floating-point. This has undefined behavior if the 690 // source is not in the range of representable values of the destination 691 // type. The C and C++ standards are spectacularly unclear here. We 692 // diagnose finite out-of-range conversions, but allow infinities and NaNs 693 // to convert to the corresponding value in the smaller type. 694 // 695 // C11 Annex F gives all such conversions defined behavior for IEC 60559 696 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 697 // does not. 698 699 // Converting from a lower rank to a higher rank can never have 700 // undefined behavior, since higher-rank types must have a superset 701 // of values of lower-rank types. 702 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 703 return; 704 705 assert(!OrigSrcType->isHalfType() && 706 "should not check conversion from __half, it has the lowest rank"); 707 708 const llvm::fltSemantics &DstSema = 709 CGF.getContext().getFloatTypeSemantics(DstType); 710 APFloat MinBad = APFloat::getLargest(DstSema, false); 711 APFloat MaxBad = APFloat::getInf(DstSema, false); 712 713 bool IsInexact; 714 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 715 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 716 717 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 718 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 719 llvm::Value *GE = 720 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 721 llvm::Value *LE = 722 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 723 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 724 } 725 } 726 727 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 728 CGF.EmitCheckTypeDescriptor(OrigSrcType), 729 CGF.EmitCheckTypeDescriptor(DstType)}; 730 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 731 "float_cast_overflow", StaticArgs, OrigSrc); 732 } 733 734 /// Emit a conversion from the specified type to the specified destination type, 735 /// both of which are LLVM scalar types. 736 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 737 QualType DstType, 738 SourceLocation Loc) { 739 return EmitScalarConversion(Src, SrcType, DstType, Loc, false); 740 } 741 742 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 743 QualType DstType, 744 SourceLocation Loc, 745 bool TreatBooleanAsSigned) { 746 SrcType = CGF.getContext().getCanonicalType(SrcType); 747 DstType = CGF.getContext().getCanonicalType(DstType); 748 if (SrcType == DstType) return Src; 749 750 if (DstType->isVoidType()) return nullptr; 751 752 llvm::Value *OrigSrc = Src; 753 QualType OrigSrcType = SrcType; 754 llvm::Type *SrcTy = Src->getType(); 755 756 // Handle conversions to bool first, they are special: comparisons against 0. 757 if (DstType->isBooleanType()) 758 return EmitConversionToBool(Src, SrcType); 759 760 llvm::Type *DstTy = ConvertType(DstType); 761 762 // Cast from half through float if half isn't a native type. 763 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 764 // Cast to FP using the intrinsic if the half type itself isn't supported. 765 if (DstTy->isFloatingPointTy()) { 766 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 767 return Builder.CreateCall( 768 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 769 Src); 770 } else { 771 // Cast to other types through float, using either the intrinsic or FPExt, 772 // depending on whether the half type itself is supported 773 // (as opposed to operations on half, available with NativeHalfType). 774 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 775 Src = Builder.CreateCall( 776 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 777 CGF.CGM.FloatTy), 778 Src); 779 } else { 780 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 781 } 782 SrcType = CGF.getContext().FloatTy; 783 SrcTy = CGF.FloatTy; 784 } 785 } 786 787 // Ignore conversions like int -> uint. 788 if (SrcTy == DstTy) 789 return Src; 790 791 // Handle pointer conversions next: pointers can only be converted to/from 792 // other pointers and integers. Check for pointer types in terms of LLVM, as 793 // some native types (like Obj-C id) may map to a pointer type. 794 if (isa<llvm::PointerType>(DstTy)) { 795 // The source value may be an integer, or a pointer. 796 if (isa<llvm::PointerType>(SrcTy)) 797 return Builder.CreateBitCast(Src, DstTy, "conv"); 798 799 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 800 // First, convert to the correct width so that we control the kind of 801 // extension. 802 llvm::Type *MiddleTy = CGF.IntPtrTy; 803 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 804 llvm::Value* IntResult = 805 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 806 // Then, cast to pointer. 807 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 808 } 809 810 if (isa<llvm::PointerType>(SrcTy)) { 811 // Must be an ptr to int cast. 812 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 813 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 814 } 815 816 // A scalar can be splatted to an extended vector of the same element type 817 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 818 // Cast the scalar to element type 819 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType(); 820 llvm::Value *Elt = EmitScalarConversion( 821 Src, SrcType, EltTy, Loc, CGF.getContext().getLangOpts().OpenCL); 822 823 // Splat the element across to all elements 824 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 825 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 826 } 827 828 // Allow bitcast from vector to integer/fp of the same size. 829 if (isa<llvm::VectorType>(SrcTy) || 830 isa<llvm::VectorType>(DstTy)) 831 return Builder.CreateBitCast(Src, DstTy, "conv"); 832 833 // Finally, we have the arithmetic types: real int/float. 834 Value *Res = nullptr; 835 llvm::Type *ResTy = DstTy; 836 837 // An overflowing conversion has undefined behavior if either the source type 838 // or the destination type is a floating-point type. 839 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 840 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 841 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 842 Loc); 843 844 // Cast to half through float if half isn't a native type. 845 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 846 // Make sure we cast in a single step if from another FP type. 847 if (SrcTy->isFloatingPointTy()) { 848 // Use the intrinsic if the half type itself isn't supported 849 // (as opposed to operations on half, available with NativeHalfType). 850 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 851 return Builder.CreateCall( 852 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 853 // If the half type is supported, just use an fptrunc. 854 return Builder.CreateFPTrunc(Src, DstTy); 855 } 856 DstTy = CGF.FloatTy; 857 } 858 859 if (isa<llvm::IntegerType>(SrcTy)) { 860 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 861 if (SrcType->isBooleanType() && TreatBooleanAsSigned) { 862 InputSigned = true; 863 } 864 if (isa<llvm::IntegerType>(DstTy)) 865 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 866 else if (InputSigned) 867 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 868 else 869 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 870 } else if (isa<llvm::IntegerType>(DstTy)) { 871 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 872 if (DstType->isSignedIntegerOrEnumerationType()) 873 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 874 else 875 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 876 } else { 877 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 878 "Unknown real conversion"); 879 if (DstTy->getTypeID() < SrcTy->getTypeID()) 880 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 881 else 882 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 883 } 884 885 if (DstTy != ResTy) { 886 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 887 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 888 Res = Builder.CreateCall( 889 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 890 Res); 891 } else { 892 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 893 } 894 } 895 896 return Res; 897 } 898 899 /// Emit a conversion from the specified complex type to the specified 900 /// destination type, where the destination type is an LLVM scalar type. 901 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 902 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 903 SourceLocation Loc) { 904 // Get the source element type. 905 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 906 907 // Handle conversions to bool first, they are special: comparisons against 0. 908 if (DstTy->isBooleanType()) { 909 // Complex != 0 -> (Real != 0) | (Imag != 0) 910 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 911 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 912 return Builder.CreateOr(Src.first, Src.second, "tobool"); 913 } 914 915 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 916 // the imaginary part of the complex value is discarded and the value of the 917 // real part is converted according to the conversion rules for the 918 // corresponding real type. 919 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 920 } 921 922 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 923 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 924 } 925 926 /// \brief Emit a sanitization check for the given "binary" operation (which 927 /// might actually be a unary increment which has been lowered to a binary 928 /// operation). The check passes if all values in \p Checks (which are \c i1), 929 /// are \c true. 930 void ScalarExprEmitter::EmitBinOpCheck( 931 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 932 assert(CGF.IsSanitizerScope); 933 StringRef CheckName; 934 SmallVector<llvm::Constant *, 4> StaticData; 935 SmallVector<llvm::Value *, 2> DynamicData; 936 937 BinaryOperatorKind Opcode = Info.Opcode; 938 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 939 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 940 941 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 942 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 943 if (UO && UO->getOpcode() == UO_Minus) { 944 CheckName = "negate_overflow"; 945 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 946 DynamicData.push_back(Info.RHS); 947 } else { 948 if (BinaryOperator::isShiftOp(Opcode)) { 949 // Shift LHS negative or too large, or RHS out of bounds. 950 CheckName = "shift_out_of_bounds"; 951 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 952 StaticData.push_back( 953 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 954 StaticData.push_back( 955 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 956 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 957 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 958 CheckName = "divrem_overflow"; 959 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 960 } else { 961 // Arithmetic overflow (+, -, *). 962 switch (Opcode) { 963 case BO_Add: CheckName = "add_overflow"; break; 964 case BO_Sub: CheckName = "sub_overflow"; break; 965 case BO_Mul: CheckName = "mul_overflow"; break; 966 default: llvm_unreachable("unexpected opcode for bin op check"); 967 } 968 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 969 } 970 DynamicData.push_back(Info.LHS); 971 DynamicData.push_back(Info.RHS); 972 } 973 974 CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData); 975 } 976 977 //===----------------------------------------------------------------------===// 978 // Visitor Methods 979 //===----------------------------------------------------------------------===// 980 981 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 982 CGF.ErrorUnsupported(E, "scalar expression"); 983 if (E->getType()->isVoidType()) 984 return nullptr; 985 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 986 } 987 988 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 989 // Vector Mask Case 990 if (E->getNumSubExprs() == 2 || 991 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) { 992 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 993 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 994 Value *Mask; 995 996 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 997 unsigned LHSElts = LTy->getNumElements(); 998 999 if (E->getNumSubExprs() == 3) { 1000 Mask = CGF.EmitScalarExpr(E->getExpr(2)); 1001 1002 // Shuffle LHS & RHS into one input vector. 1003 SmallVector<llvm::Constant*, 32> concat; 1004 for (unsigned i = 0; i != LHSElts; ++i) { 1005 concat.push_back(Builder.getInt32(2*i)); 1006 concat.push_back(Builder.getInt32(2*i+1)); 1007 } 1008 1009 Value* CV = llvm::ConstantVector::get(concat); 1010 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat"); 1011 LHSElts *= 2; 1012 } else { 1013 Mask = RHS; 1014 } 1015 1016 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1017 1018 // Mask off the high bits of each shuffle index. 1019 Value *MaskBits = 1020 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1021 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1022 1023 // newv = undef 1024 // mask = mask & maskbits 1025 // for each elt 1026 // n = extract mask i 1027 // x = extract val n 1028 // newv = insert newv, x, i 1029 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1030 MTy->getNumElements()); 1031 Value* NewV = llvm::UndefValue::get(RTy); 1032 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1033 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1034 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1035 1036 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1037 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1038 } 1039 return NewV; 1040 } 1041 1042 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1043 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1044 1045 SmallVector<llvm::Constant*, 32> indices; 1046 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1047 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1048 // Check for -1 and output it as undef in the IR. 1049 if (Idx.isSigned() && Idx.isAllOnesValue()) 1050 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1051 else 1052 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1053 } 1054 1055 Value *SV = llvm::ConstantVector::get(indices); 1056 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1057 } 1058 1059 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1060 QualType SrcType = E->getSrcExpr()->getType(), 1061 DstType = E->getType(); 1062 1063 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1064 1065 SrcType = CGF.getContext().getCanonicalType(SrcType); 1066 DstType = CGF.getContext().getCanonicalType(DstType); 1067 if (SrcType == DstType) return Src; 1068 1069 assert(SrcType->isVectorType() && 1070 "ConvertVector source type must be a vector"); 1071 assert(DstType->isVectorType() && 1072 "ConvertVector destination type must be a vector"); 1073 1074 llvm::Type *SrcTy = Src->getType(); 1075 llvm::Type *DstTy = ConvertType(DstType); 1076 1077 // Ignore conversions like int -> uint. 1078 if (SrcTy == DstTy) 1079 return Src; 1080 1081 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1082 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1083 1084 assert(SrcTy->isVectorTy() && 1085 "ConvertVector source IR type must be a vector"); 1086 assert(DstTy->isVectorTy() && 1087 "ConvertVector destination IR type must be a vector"); 1088 1089 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1090 *DstEltTy = DstTy->getVectorElementType(); 1091 1092 if (DstEltType->isBooleanType()) { 1093 assert((SrcEltTy->isFloatingPointTy() || 1094 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1095 1096 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1097 if (SrcEltTy->isFloatingPointTy()) { 1098 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1099 } else { 1100 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1101 } 1102 } 1103 1104 // We have the arithmetic types: real int/float. 1105 Value *Res = nullptr; 1106 1107 if (isa<llvm::IntegerType>(SrcEltTy)) { 1108 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1109 if (isa<llvm::IntegerType>(DstEltTy)) 1110 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1111 else if (InputSigned) 1112 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1113 else 1114 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1115 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1116 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1117 if (DstEltType->isSignedIntegerOrEnumerationType()) 1118 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1119 else 1120 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1121 } else { 1122 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1123 "Unknown real conversion"); 1124 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1125 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1126 else 1127 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1128 } 1129 1130 return Res; 1131 } 1132 1133 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1134 llvm::APSInt Value; 1135 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1136 if (E->isArrow()) 1137 CGF.EmitScalarExpr(E->getBase()); 1138 else 1139 EmitLValue(E->getBase()); 1140 return Builder.getInt(Value); 1141 } 1142 1143 return EmitLoadOfLValue(E); 1144 } 1145 1146 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1147 TestAndClearIgnoreResultAssign(); 1148 1149 // Emit subscript expressions in rvalue context's. For most cases, this just 1150 // loads the lvalue formed by the subscript expr. However, we have to be 1151 // careful, because the base of a vector subscript is occasionally an rvalue, 1152 // so we can't get it as an lvalue. 1153 if (!E->getBase()->getType()->isVectorType()) 1154 return EmitLoadOfLValue(E); 1155 1156 // Handle the vector case. The base must be a vector, the index must be an 1157 // integer value. 1158 Value *Base = Visit(E->getBase()); 1159 Value *Idx = Visit(E->getIdx()); 1160 QualType IdxTy = E->getIdx()->getType(); 1161 1162 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1163 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1164 1165 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1166 } 1167 1168 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1169 unsigned Off, llvm::Type *I32Ty) { 1170 int MV = SVI->getMaskValue(Idx); 1171 if (MV == -1) 1172 return llvm::UndefValue::get(I32Ty); 1173 return llvm::ConstantInt::get(I32Ty, Off+MV); 1174 } 1175 1176 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1177 if (C->getBitWidth() != 32) { 1178 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1179 C->getZExtValue()) && 1180 "Index operand too large for shufflevector mask!"); 1181 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1182 } 1183 return C; 1184 } 1185 1186 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1187 bool Ignore = TestAndClearIgnoreResultAssign(); 1188 (void)Ignore; 1189 assert (Ignore == false && "init list ignored"); 1190 unsigned NumInitElements = E->getNumInits(); 1191 1192 if (E->hadArrayRangeDesignator()) 1193 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1194 1195 llvm::VectorType *VType = 1196 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1197 1198 if (!VType) { 1199 if (NumInitElements == 0) { 1200 // C++11 value-initialization for the scalar. 1201 return EmitNullValue(E->getType()); 1202 } 1203 // We have a scalar in braces. Just use the first element. 1204 return Visit(E->getInit(0)); 1205 } 1206 1207 unsigned ResElts = VType->getNumElements(); 1208 1209 // Loop over initializers collecting the Value for each, and remembering 1210 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1211 // us to fold the shuffle for the swizzle into the shuffle for the vector 1212 // initializer, since LLVM optimizers generally do not want to touch 1213 // shuffles. 1214 unsigned CurIdx = 0; 1215 bool VIsUndefShuffle = false; 1216 llvm::Value *V = llvm::UndefValue::get(VType); 1217 for (unsigned i = 0; i != NumInitElements; ++i) { 1218 Expr *IE = E->getInit(i); 1219 Value *Init = Visit(IE); 1220 SmallVector<llvm::Constant*, 16> Args; 1221 1222 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1223 1224 // Handle scalar elements. If the scalar initializer is actually one 1225 // element of a different vector of the same width, use shuffle instead of 1226 // extract+insert. 1227 if (!VVT) { 1228 if (isa<ExtVectorElementExpr>(IE)) { 1229 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1230 1231 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1232 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1233 Value *LHS = nullptr, *RHS = nullptr; 1234 if (CurIdx == 0) { 1235 // insert into undef -> shuffle (src, undef) 1236 // shufflemask must use an i32 1237 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1238 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1239 1240 LHS = EI->getVectorOperand(); 1241 RHS = V; 1242 VIsUndefShuffle = true; 1243 } else if (VIsUndefShuffle) { 1244 // insert into undefshuffle && size match -> shuffle (v, src) 1245 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1246 for (unsigned j = 0; j != CurIdx; ++j) 1247 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1248 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1249 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1250 1251 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1252 RHS = EI->getVectorOperand(); 1253 VIsUndefShuffle = false; 1254 } 1255 if (!Args.empty()) { 1256 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1257 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1258 ++CurIdx; 1259 continue; 1260 } 1261 } 1262 } 1263 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1264 "vecinit"); 1265 VIsUndefShuffle = false; 1266 ++CurIdx; 1267 continue; 1268 } 1269 1270 unsigned InitElts = VVT->getNumElements(); 1271 1272 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1273 // input is the same width as the vector being constructed, generate an 1274 // optimized shuffle of the swizzle input into the result. 1275 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1276 if (isa<ExtVectorElementExpr>(IE)) { 1277 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1278 Value *SVOp = SVI->getOperand(0); 1279 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1280 1281 if (OpTy->getNumElements() == ResElts) { 1282 for (unsigned j = 0; j != CurIdx; ++j) { 1283 // If the current vector initializer is a shuffle with undef, merge 1284 // this shuffle directly into it. 1285 if (VIsUndefShuffle) { 1286 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1287 CGF.Int32Ty)); 1288 } else { 1289 Args.push_back(Builder.getInt32(j)); 1290 } 1291 } 1292 for (unsigned j = 0, je = InitElts; j != je; ++j) 1293 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1294 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1295 1296 if (VIsUndefShuffle) 1297 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1298 1299 Init = SVOp; 1300 } 1301 } 1302 1303 // Extend init to result vector length, and then shuffle its contribution 1304 // to the vector initializer into V. 1305 if (Args.empty()) { 1306 for (unsigned j = 0; j != InitElts; ++j) 1307 Args.push_back(Builder.getInt32(j)); 1308 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1309 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1310 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1311 Mask, "vext"); 1312 1313 Args.clear(); 1314 for (unsigned j = 0; j != CurIdx; ++j) 1315 Args.push_back(Builder.getInt32(j)); 1316 for (unsigned j = 0; j != InitElts; ++j) 1317 Args.push_back(Builder.getInt32(j+Offset)); 1318 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1319 } 1320 1321 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1322 // merging subsequent shuffles into this one. 1323 if (CurIdx == 0) 1324 std::swap(V, Init); 1325 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1326 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1327 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1328 CurIdx += InitElts; 1329 } 1330 1331 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1332 // Emit remaining default initializers. 1333 llvm::Type *EltTy = VType->getElementType(); 1334 1335 // Emit remaining default initializers 1336 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1337 Value *Idx = Builder.getInt32(CurIdx); 1338 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1339 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1340 } 1341 return V; 1342 } 1343 1344 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1345 const Expr *E = CE->getSubExpr(); 1346 1347 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1348 return false; 1349 1350 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1351 // We always assume that 'this' is never null. 1352 return false; 1353 } 1354 1355 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1356 // And that glvalue casts are never null. 1357 if (ICE->getValueKind() != VK_RValue) 1358 return false; 1359 } 1360 1361 return true; 1362 } 1363 1364 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1365 // have to handle a more broad range of conversions than explicit casts, as they 1366 // handle things like function to ptr-to-function decay etc. 1367 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1368 Expr *E = CE->getSubExpr(); 1369 QualType DestTy = CE->getType(); 1370 CastKind Kind = CE->getCastKind(); 1371 1372 if (!DestTy->isVoidType()) 1373 TestAndClearIgnoreResultAssign(); 1374 1375 // Since almost all cast kinds apply to scalars, this switch doesn't have 1376 // a default case, so the compiler will warn on a missing case. The cases 1377 // are in the same order as in the CastKind enum. 1378 switch (Kind) { 1379 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1380 case CK_BuiltinFnToFnPtr: 1381 llvm_unreachable("builtin functions are handled elsewhere"); 1382 1383 case CK_LValueBitCast: 1384 case CK_ObjCObjectLValueCast: { 1385 Address Addr = EmitLValue(E).getAddress(); 1386 Addr = Builder.CreateElementBitCast(Addr, ConvertType(DestTy)); 1387 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1388 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1389 } 1390 1391 case CK_CPointerToObjCPointerCast: 1392 case CK_BlockPointerToObjCPointerCast: 1393 case CK_AnyPointerToBlockPointerCast: 1394 case CK_BitCast: { 1395 Value *Src = Visit(const_cast<Expr*>(E)); 1396 llvm::Type *SrcTy = Src->getType(); 1397 llvm::Type *DstTy = ConvertType(DestTy); 1398 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1399 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1400 llvm_unreachable("wrong cast for pointers in different address spaces" 1401 "(must be an address space cast)!"); 1402 } 1403 1404 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1405 if (auto PT = DestTy->getAs<PointerType>()) 1406 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1407 /*MayBeNull=*/true, 1408 CodeGenFunction::CFITCK_UnrelatedCast, 1409 CE->getLocStart()); 1410 } 1411 1412 return Builder.CreateBitCast(Src, DstTy); 1413 } 1414 case CK_AddressSpaceConversion: { 1415 Value *Src = Visit(const_cast<Expr*>(E)); 1416 return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy)); 1417 } 1418 case CK_AtomicToNonAtomic: 1419 case CK_NonAtomicToAtomic: 1420 case CK_NoOp: 1421 case CK_UserDefinedConversion: 1422 return Visit(const_cast<Expr*>(E)); 1423 1424 case CK_BaseToDerived: { 1425 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1426 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1427 1428 Address Base = CGF.EmitPointerWithAlignment(E); 1429 Address Derived = 1430 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 1431 CE->path_begin(), CE->path_end(), 1432 CGF.ShouldNullCheckClassCastValue(CE)); 1433 1434 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1435 // performed and the object is not of the derived type. 1436 if (CGF.sanitizePerformTypeCheck()) 1437 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1438 Derived.getPointer(), DestTy->getPointeeType()); 1439 1440 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 1441 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), 1442 Derived.getPointer(), 1443 /*MayBeNull=*/true, 1444 CodeGenFunction::CFITCK_DerivedCast, 1445 CE->getLocStart()); 1446 1447 return Derived.getPointer(); 1448 } 1449 case CK_UncheckedDerivedToBase: 1450 case CK_DerivedToBase: { 1451 // The EmitPointerWithAlignment path does this fine; just discard 1452 // the alignment. 1453 return CGF.EmitPointerWithAlignment(CE).getPointer(); 1454 } 1455 1456 case CK_Dynamic: { 1457 Address V = CGF.EmitPointerWithAlignment(E); 1458 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1459 return CGF.EmitDynamicCast(V, DCE); 1460 } 1461 1462 case CK_ArrayToPointerDecay: 1463 return CGF.EmitArrayToPointerDecay(E).getPointer(); 1464 case CK_FunctionToPointerDecay: 1465 return EmitLValue(E).getPointer(); 1466 1467 case CK_NullToPointer: 1468 if (MustVisitNullValue(E)) 1469 (void) Visit(E); 1470 1471 return llvm::ConstantPointerNull::get( 1472 cast<llvm::PointerType>(ConvertType(DestTy))); 1473 1474 case CK_NullToMemberPointer: { 1475 if (MustVisitNullValue(E)) 1476 (void) Visit(E); 1477 1478 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1479 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1480 } 1481 1482 case CK_ReinterpretMemberPointer: 1483 case CK_BaseToDerivedMemberPointer: 1484 case CK_DerivedToBaseMemberPointer: { 1485 Value *Src = Visit(E); 1486 1487 // Note that the AST doesn't distinguish between checked and 1488 // unchecked member pointer conversions, so we always have to 1489 // implement checked conversions here. This is inefficient when 1490 // actual control flow may be required in order to perform the 1491 // check, which it is for data member pointers (but not member 1492 // function pointers on Itanium and ARM). 1493 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1494 } 1495 1496 case CK_ARCProduceObject: 1497 return CGF.EmitARCRetainScalarExpr(E); 1498 case CK_ARCConsumeObject: 1499 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1500 case CK_ARCReclaimReturnedObject: { 1501 llvm::Value *value = Visit(E); 1502 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 1503 return CGF.EmitObjCConsumeObject(E->getType(), value); 1504 } 1505 case CK_ARCExtendBlockObject: 1506 return CGF.EmitARCExtendBlockObject(E); 1507 1508 case CK_CopyAndAutoreleaseBlockObject: 1509 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1510 1511 case CK_FloatingRealToComplex: 1512 case CK_FloatingComplexCast: 1513 case CK_IntegralRealToComplex: 1514 case CK_IntegralComplexCast: 1515 case CK_IntegralComplexToFloatingComplex: 1516 case CK_FloatingComplexToIntegralComplex: 1517 case CK_ConstructorConversion: 1518 case CK_ToUnion: 1519 llvm_unreachable("scalar cast to non-scalar value"); 1520 1521 case CK_LValueToRValue: 1522 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1523 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1524 return Visit(const_cast<Expr*>(E)); 1525 1526 case CK_IntegralToPointer: { 1527 Value *Src = Visit(const_cast<Expr*>(E)); 1528 1529 // First, convert to the correct width so that we control the kind of 1530 // extension. 1531 llvm::Type *MiddleTy = CGF.IntPtrTy; 1532 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1533 llvm::Value* IntResult = 1534 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1535 1536 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); 1537 } 1538 case CK_PointerToIntegral: 1539 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1540 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1541 1542 case CK_ToVoid: { 1543 CGF.EmitIgnoredExpr(E); 1544 return nullptr; 1545 } 1546 case CK_VectorSplat: { 1547 llvm::Type *DstTy = ConvertType(DestTy); 1548 // Need an IgnoreImpCasts here as by default a boolean will be promoted to 1549 // an int, which will not perform the sign extension, so if we know we are 1550 // going to cast to a vector we have to strip the implicit cast off. 1551 Value *Elt = Visit(const_cast<Expr*>(E->IgnoreImpCasts())); 1552 Elt = EmitScalarConversion(Elt, E->IgnoreImpCasts()->getType(), 1553 DestTy->getAs<VectorType>()->getElementType(), 1554 CE->getExprLoc(), 1555 CGF.getContext().getLangOpts().OpenCL); 1556 1557 // Splat the element across to all elements 1558 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 1559 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 1560 } 1561 1562 case CK_IntegralCast: 1563 case CK_IntegralToFloating: 1564 case CK_FloatingToIntegral: 1565 case CK_FloatingCast: 1566 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1567 CE->getExprLoc()); 1568 case CK_IntegralToBoolean: 1569 return EmitIntToBoolConversion(Visit(E)); 1570 case CK_PointerToBoolean: 1571 return EmitPointerToBoolConversion(Visit(E)); 1572 case CK_FloatingToBoolean: 1573 return EmitFloatToBoolConversion(Visit(E)); 1574 case CK_MemberPointerToBoolean: { 1575 llvm::Value *MemPtr = Visit(E); 1576 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1577 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1578 } 1579 1580 case CK_FloatingComplexToReal: 1581 case CK_IntegralComplexToReal: 1582 return CGF.EmitComplexExpr(E, false, true).first; 1583 1584 case CK_FloatingComplexToBoolean: 1585 case CK_IntegralComplexToBoolean: { 1586 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1587 1588 // TODO: kill this function off, inline appropriate case here 1589 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 1590 CE->getExprLoc()); 1591 } 1592 1593 case CK_ZeroToOCLEvent: { 1594 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); 1595 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1596 } 1597 1598 } 1599 1600 llvm_unreachable("unknown scalar cast"); 1601 } 1602 1603 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1604 CodeGenFunction::StmtExprEvaluation eval(CGF); 1605 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1606 !E->getType()->isVoidType()); 1607 if (!RetAlloca.isValid()) 1608 return nullptr; 1609 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 1610 E->getExprLoc()); 1611 } 1612 1613 //===----------------------------------------------------------------------===// 1614 // Unary Operators 1615 //===----------------------------------------------------------------------===// 1616 1617 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 1618 llvm::Value *InVal, bool IsInc) { 1619 BinOpInfo BinOp; 1620 BinOp.LHS = InVal; 1621 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 1622 BinOp.Ty = E->getType(); 1623 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 1624 BinOp.FPContractable = false; 1625 BinOp.E = E; 1626 return BinOp; 1627 } 1628 1629 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 1630 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 1631 llvm::Value *Amount = 1632 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 1633 StringRef Name = IsInc ? "inc" : "dec"; 1634 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1635 case LangOptions::SOB_Defined: 1636 return Builder.CreateAdd(InVal, Amount, Name); 1637 case LangOptions::SOB_Undefined: 1638 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 1639 return Builder.CreateNSWAdd(InVal, Amount, Name); 1640 // Fall through. 1641 case LangOptions::SOB_Trapping: 1642 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 1643 } 1644 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1645 } 1646 1647 llvm::Value * 1648 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1649 bool isInc, bool isPre) { 1650 1651 QualType type = E->getSubExpr()->getType(); 1652 llvm::PHINode *atomicPHI = nullptr; 1653 llvm::Value *value; 1654 llvm::Value *input; 1655 1656 int amount = (isInc ? 1 : -1); 1657 1658 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1659 type = atomicTy->getValueType(); 1660 if (isInc && type->isBooleanType()) { 1661 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1662 if (isPre) { 1663 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 1664 ->setAtomic(llvm::SequentiallyConsistent); 1665 return Builder.getTrue(); 1666 } 1667 // For atomic bool increment, we just store true and return it for 1668 // preincrement, do an atomic swap with true for postincrement 1669 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 1670 LV.getPointer(), True, llvm::SequentiallyConsistent); 1671 } 1672 // Special case for atomic increment / decrement on integers, emit 1673 // atomicrmw instructions. We skip this if we want to be doing overflow 1674 // checking, and fall into the slow path with the atomic cmpxchg loop. 1675 if (!type->isBooleanType() && type->isIntegerType() && 1676 !(type->isUnsignedIntegerType() && 1677 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 1678 CGF.getLangOpts().getSignedOverflowBehavior() != 1679 LangOptions::SOB_Trapping) { 1680 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1681 llvm::AtomicRMWInst::Sub; 1682 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1683 llvm::Instruction::Sub; 1684 llvm::Value *amt = CGF.EmitToMemory( 1685 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1686 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1687 LV.getPointer(), amt, llvm::SequentiallyConsistent); 1688 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1689 } 1690 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1691 input = value; 1692 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1693 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1694 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1695 value = CGF.EmitToMemory(value, type); 1696 Builder.CreateBr(opBB); 1697 Builder.SetInsertPoint(opBB); 1698 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1699 atomicPHI->addIncoming(value, startBB); 1700 value = atomicPHI; 1701 } else { 1702 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1703 input = value; 1704 } 1705 1706 // Special case of integer increment that we have to check first: bool++. 1707 // Due to promotion rules, we get: 1708 // bool++ -> bool = bool + 1 1709 // -> bool = (int)bool + 1 1710 // -> bool = ((int)bool + 1 != 0) 1711 // An interesting aspect of this is that increment is always true. 1712 // Decrement does not have this property. 1713 if (isInc && type->isBooleanType()) { 1714 value = Builder.getTrue(); 1715 1716 // Most common case by far: integer increment. 1717 } else if (type->isIntegerType()) { 1718 // Note that signed integer inc/dec with width less than int can't 1719 // overflow because of promotion rules; we're just eliding a few steps here. 1720 bool CanOverflow = value->getType()->getIntegerBitWidth() >= 1721 CGF.IntTy->getIntegerBitWidth(); 1722 if (CanOverflow && type->isSignedIntegerOrEnumerationType()) { 1723 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 1724 } else if (CanOverflow && type->isUnsignedIntegerType() && 1725 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 1726 value = 1727 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 1728 } else { 1729 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1730 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1731 } 1732 1733 // Next most common: pointer increment. 1734 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1735 QualType type = ptr->getPointeeType(); 1736 1737 // VLA types don't have constant size. 1738 if (const VariableArrayType *vla 1739 = CGF.getContext().getAsVariableArrayType(type)) { 1740 llvm::Value *numElts = CGF.getVLASize(vla).first; 1741 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1742 if (CGF.getLangOpts().isSignedOverflowDefined()) 1743 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1744 else 1745 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); 1746 1747 // Arithmetic on function pointers (!) is just +-1. 1748 } else if (type->isFunctionType()) { 1749 llvm::Value *amt = Builder.getInt32(amount); 1750 1751 value = CGF.EmitCastToVoidPtr(value); 1752 if (CGF.getLangOpts().isSignedOverflowDefined()) 1753 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1754 else 1755 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1756 value = Builder.CreateBitCast(value, input->getType()); 1757 1758 // For everything else, we can just do a simple increment. 1759 } else { 1760 llvm::Value *amt = Builder.getInt32(amount); 1761 if (CGF.getLangOpts().isSignedOverflowDefined()) 1762 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1763 else 1764 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1765 } 1766 1767 // Vector increment/decrement. 1768 } else if (type->isVectorType()) { 1769 if (type->hasIntegerRepresentation()) { 1770 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1771 1772 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1773 } else { 1774 value = Builder.CreateFAdd( 1775 value, 1776 llvm::ConstantFP::get(value->getType(), amount), 1777 isInc ? "inc" : "dec"); 1778 } 1779 1780 // Floating point. 1781 } else if (type->isRealFloatingType()) { 1782 // Add the inc/dec to the real part. 1783 llvm::Value *amt; 1784 1785 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1786 // Another special case: half FP increment should be done via float 1787 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1788 value = Builder.CreateCall( 1789 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1790 CGF.CGM.FloatTy), 1791 input, "incdec.conv"); 1792 } else { 1793 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 1794 } 1795 } 1796 1797 if (value->getType()->isFloatTy()) 1798 amt = llvm::ConstantFP::get(VMContext, 1799 llvm::APFloat(static_cast<float>(amount))); 1800 else if (value->getType()->isDoubleTy()) 1801 amt = llvm::ConstantFP::get(VMContext, 1802 llvm::APFloat(static_cast<double>(amount))); 1803 else { 1804 // Remaining types are either Half or LongDouble. Convert from float. 1805 llvm::APFloat F(static_cast<float>(amount)); 1806 bool ignored; 1807 // Don't use getFloatTypeSemantics because Half isn't 1808 // necessarily represented using the "half" LLVM type. 1809 F.convert(value->getType()->isHalfTy() 1810 ? CGF.getTarget().getHalfFormat() 1811 : CGF.getTarget().getLongDoubleFormat(), 1812 llvm::APFloat::rmTowardZero, &ignored); 1813 amt = llvm::ConstantFP::get(VMContext, F); 1814 } 1815 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 1816 1817 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1818 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1819 value = Builder.CreateCall( 1820 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 1821 CGF.CGM.FloatTy), 1822 value, "incdec.conv"); 1823 } else { 1824 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 1825 } 1826 } 1827 1828 // Objective-C pointer types. 1829 } else { 1830 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 1831 value = CGF.EmitCastToVoidPtr(value); 1832 1833 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 1834 if (!isInc) size = -size; 1835 llvm::Value *sizeValue = 1836 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 1837 1838 if (CGF.getLangOpts().isSignedOverflowDefined()) 1839 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 1840 else 1841 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 1842 value = Builder.CreateBitCast(value, input->getType()); 1843 } 1844 1845 if (atomicPHI) { 1846 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1847 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1848 auto Pair = CGF.EmitAtomicCompareExchange( 1849 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 1850 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 1851 llvm::Value *success = Pair.second; 1852 atomicPHI->addIncoming(old, opBB); 1853 Builder.CreateCondBr(success, contBB, opBB); 1854 Builder.SetInsertPoint(contBB); 1855 return isPre ? value : input; 1856 } 1857 1858 // Store the updated result through the lvalue. 1859 if (LV.isBitField()) 1860 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 1861 else 1862 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 1863 1864 // If this is a postinc, return the value read from memory, otherwise use the 1865 // updated value. 1866 return isPre ? value : input; 1867 } 1868 1869 1870 1871 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1872 TestAndClearIgnoreResultAssign(); 1873 // Emit unary minus with EmitSub so we handle overflow cases etc. 1874 BinOpInfo BinOp; 1875 BinOp.RHS = Visit(E->getSubExpr()); 1876 1877 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 1878 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 1879 else 1880 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 1881 BinOp.Ty = E->getType(); 1882 BinOp.Opcode = BO_Sub; 1883 BinOp.FPContractable = false; 1884 BinOp.E = E; 1885 return EmitSub(BinOp); 1886 } 1887 1888 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1889 TestAndClearIgnoreResultAssign(); 1890 Value *Op = Visit(E->getSubExpr()); 1891 return Builder.CreateNot(Op, "neg"); 1892 } 1893 1894 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1895 // Perform vector logical not on comparison with zero vector. 1896 if (E->getType()->isExtVectorType()) { 1897 Value *Oper = Visit(E->getSubExpr()); 1898 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 1899 Value *Result; 1900 if (Oper->getType()->isFPOrFPVectorTy()) 1901 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 1902 else 1903 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 1904 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 1905 } 1906 1907 // Compare operand to zero. 1908 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1909 1910 // Invert value. 1911 // TODO: Could dynamically modify easy computations here. For example, if 1912 // the operand is an icmp ne, turn into icmp eq. 1913 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1914 1915 // ZExt result to the expr type. 1916 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1917 } 1918 1919 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 1920 // Try folding the offsetof to a constant. 1921 llvm::APSInt Value; 1922 if (E->EvaluateAsInt(Value, CGF.getContext())) 1923 return Builder.getInt(Value); 1924 1925 // Loop over the components of the offsetof to compute the value. 1926 unsigned n = E->getNumComponents(); 1927 llvm::Type* ResultType = ConvertType(E->getType()); 1928 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 1929 QualType CurrentType = E->getTypeSourceInfo()->getType(); 1930 for (unsigned i = 0; i != n; ++i) { 1931 OffsetOfExpr::OffsetOfNode ON = E->getComponent(i); 1932 llvm::Value *Offset = nullptr; 1933 switch (ON.getKind()) { 1934 case OffsetOfExpr::OffsetOfNode::Array: { 1935 // Compute the index 1936 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 1937 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 1938 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 1939 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 1940 1941 // Save the element type 1942 CurrentType = 1943 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 1944 1945 // Compute the element size 1946 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 1947 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 1948 1949 // Multiply out to compute the result 1950 Offset = Builder.CreateMul(Idx, ElemSize); 1951 break; 1952 } 1953 1954 case OffsetOfExpr::OffsetOfNode::Field: { 1955 FieldDecl *MemberDecl = ON.getField(); 1956 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1957 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1958 1959 // Compute the index of the field in its parent. 1960 unsigned i = 0; 1961 // FIXME: It would be nice if we didn't have to loop here! 1962 for (RecordDecl::field_iterator Field = RD->field_begin(), 1963 FieldEnd = RD->field_end(); 1964 Field != FieldEnd; ++Field, ++i) { 1965 if (*Field == MemberDecl) 1966 break; 1967 } 1968 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 1969 1970 // Compute the offset to the field 1971 int64_t OffsetInt = RL.getFieldOffset(i) / 1972 CGF.getContext().getCharWidth(); 1973 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1974 1975 // Save the element type. 1976 CurrentType = MemberDecl->getType(); 1977 break; 1978 } 1979 1980 case OffsetOfExpr::OffsetOfNode::Identifier: 1981 llvm_unreachable("dependent __builtin_offsetof"); 1982 1983 case OffsetOfExpr::OffsetOfNode::Base: { 1984 if (ON.getBase()->isVirtual()) { 1985 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 1986 continue; 1987 } 1988 1989 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1990 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1991 1992 // Save the element type. 1993 CurrentType = ON.getBase()->getType(); 1994 1995 // Compute the offset to the base. 1996 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 1997 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 1998 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 1999 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2000 break; 2001 } 2002 } 2003 Result = Builder.CreateAdd(Result, Offset); 2004 } 2005 return Result; 2006 } 2007 2008 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2009 /// argument of the sizeof expression as an integer. 2010 Value * 2011 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2012 const UnaryExprOrTypeTraitExpr *E) { 2013 QualType TypeToSize = E->getTypeOfArgument(); 2014 if (E->getKind() == UETT_SizeOf) { 2015 if (const VariableArrayType *VAT = 2016 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2017 if (E->isArgumentType()) { 2018 // sizeof(type) - make sure to emit the VLA size. 2019 CGF.EmitVariablyModifiedType(TypeToSize); 2020 } else { 2021 // C99 6.5.3.4p2: If the argument is an expression of type 2022 // VLA, it is evaluated. 2023 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2024 } 2025 2026 QualType eltType; 2027 llvm::Value *numElts; 2028 std::tie(numElts, eltType) = CGF.getVLASize(VAT); 2029 2030 llvm::Value *size = numElts; 2031 2032 // Scale the number of non-VLA elements by the non-VLA element size. 2033 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 2034 if (!eltSize.isOne()) 2035 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 2036 2037 return size; 2038 } 2039 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2040 auto Alignment = 2041 CGF.getContext() 2042 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2043 E->getTypeOfArgument()->getPointeeType())) 2044 .getQuantity(); 2045 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2046 } 2047 2048 // If this isn't sizeof(vla), the result must be constant; use the constant 2049 // folding logic so we don't have to duplicate it here. 2050 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2051 } 2052 2053 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2054 Expr *Op = E->getSubExpr(); 2055 if (Op->getType()->isAnyComplexType()) { 2056 // If it's an l-value, load through the appropriate subobject l-value. 2057 // Note that we have to ask E because Op might be an l-value that 2058 // this won't work for, e.g. an Obj-C property. 2059 if (E->isGLValue()) 2060 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2061 E->getExprLoc()).getScalarVal(); 2062 2063 // Otherwise, calculate and project. 2064 return CGF.EmitComplexExpr(Op, false, true).first; 2065 } 2066 2067 return Visit(Op); 2068 } 2069 2070 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2071 Expr *Op = E->getSubExpr(); 2072 if (Op->getType()->isAnyComplexType()) { 2073 // If it's an l-value, load through the appropriate subobject l-value. 2074 // Note that we have to ask E because Op might be an l-value that 2075 // this won't work for, e.g. an Obj-C property. 2076 if (Op->isGLValue()) 2077 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2078 E->getExprLoc()).getScalarVal(); 2079 2080 // Otherwise, calculate and project. 2081 return CGF.EmitComplexExpr(Op, true, false).second; 2082 } 2083 2084 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2085 // effects are evaluated, but not the actual value. 2086 if (Op->isGLValue()) 2087 CGF.EmitLValue(Op); 2088 else 2089 CGF.EmitScalarExpr(Op, true); 2090 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2091 } 2092 2093 //===----------------------------------------------------------------------===// 2094 // Binary Operators 2095 //===----------------------------------------------------------------------===// 2096 2097 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2098 TestAndClearIgnoreResultAssign(); 2099 BinOpInfo Result; 2100 Result.LHS = Visit(E->getLHS()); 2101 Result.RHS = Visit(E->getRHS()); 2102 Result.Ty = E->getType(); 2103 Result.Opcode = E->getOpcode(); 2104 Result.FPContractable = E->isFPContractable(); 2105 Result.E = E; 2106 return Result; 2107 } 2108 2109 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2110 const CompoundAssignOperator *E, 2111 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2112 Value *&Result) { 2113 QualType LHSTy = E->getLHS()->getType(); 2114 BinOpInfo OpInfo; 2115 2116 if (E->getComputationResultType()->isAnyComplexType()) 2117 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2118 2119 // Emit the RHS first. __block variables need to have the rhs evaluated 2120 // first, plus this should improve codegen a little. 2121 OpInfo.RHS = Visit(E->getRHS()); 2122 OpInfo.Ty = E->getComputationResultType(); 2123 OpInfo.Opcode = E->getOpcode(); 2124 OpInfo.FPContractable = false; 2125 OpInfo.E = E; 2126 // Load/convert the LHS. 2127 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2128 2129 llvm::PHINode *atomicPHI = nullptr; 2130 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2131 QualType type = atomicTy->getValueType(); 2132 if (!type->isBooleanType() && type->isIntegerType() && 2133 !(type->isUnsignedIntegerType() && 2134 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2135 CGF.getLangOpts().getSignedOverflowBehavior() != 2136 LangOptions::SOB_Trapping) { 2137 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2138 switch (OpInfo.Opcode) { 2139 // We don't have atomicrmw operands for *, %, /, <<, >> 2140 case BO_MulAssign: case BO_DivAssign: 2141 case BO_RemAssign: 2142 case BO_ShlAssign: 2143 case BO_ShrAssign: 2144 break; 2145 case BO_AddAssign: 2146 aop = llvm::AtomicRMWInst::Add; 2147 break; 2148 case BO_SubAssign: 2149 aop = llvm::AtomicRMWInst::Sub; 2150 break; 2151 case BO_AndAssign: 2152 aop = llvm::AtomicRMWInst::And; 2153 break; 2154 case BO_XorAssign: 2155 aop = llvm::AtomicRMWInst::Xor; 2156 break; 2157 case BO_OrAssign: 2158 aop = llvm::AtomicRMWInst::Or; 2159 break; 2160 default: 2161 llvm_unreachable("Invalid compound assignment type"); 2162 } 2163 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2164 llvm::Value *amt = CGF.EmitToMemory( 2165 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2166 E->getExprLoc()), 2167 LHSTy); 2168 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2169 llvm::SequentiallyConsistent); 2170 return LHSLV; 2171 } 2172 } 2173 // FIXME: For floating point types, we should be saving and restoring the 2174 // floating point environment in the loop. 2175 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2176 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2177 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2178 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2179 Builder.CreateBr(opBB); 2180 Builder.SetInsertPoint(opBB); 2181 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2182 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2183 OpInfo.LHS = atomicPHI; 2184 } 2185 else 2186 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2187 2188 SourceLocation Loc = E->getExprLoc(); 2189 OpInfo.LHS = 2190 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2191 2192 // Expand the binary operator. 2193 Result = (this->*Func)(OpInfo); 2194 2195 // Convert the result back to the LHS type. 2196 Result = 2197 EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc); 2198 2199 if (atomicPHI) { 2200 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2201 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2202 auto Pair = CGF.EmitAtomicCompareExchange( 2203 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2204 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2205 llvm::Value *success = Pair.second; 2206 atomicPHI->addIncoming(old, opBB); 2207 Builder.CreateCondBr(success, contBB, opBB); 2208 Builder.SetInsertPoint(contBB); 2209 return LHSLV; 2210 } 2211 2212 // Store the result value into the LHS lvalue. Bit-fields are handled 2213 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2214 // 'An assignment expression has the value of the left operand after the 2215 // assignment...'. 2216 if (LHSLV.isBitField()) 2217 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2218 else 2219 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2220 2221 return LHSLV; 2222 } 2223 2224 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2225 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2226 bool Ignore = TestAndClearIgnoreResultAssign(); 2227 Value *RHS; 2228 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2229 2230 // If the result is clearly ignored, return now. 2231 if (Ignore) 2232 return nullptr; 2233 2234 // The result of an assignment in C is the assigned r-value. 2235 if (!CGF.getLangOpts().CPlusPlus) 2236 return RHS; 2237 2238 // If the lvalue is non-volatile, return the computed value of the assignment. 2239 if (!LHS.isVolatileQualified()) 2240 return RHS; 2241 2242 // Otherwise, reload the value. 2243 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2244 } 2245 2246 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2247 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2248 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2249 2250 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2251 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2252 SanitizerKind::IntegerDivideByZero)); 2253 } 2254 2255 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2256 Ops.Ty->hasSignedIntegerRepresentation()) { 2257 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2258 2259 llvm::Value *IntMin = 2260 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2261 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2262 2263 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2264 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2265 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2266 Checks.push_back( 2267 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2268 } 2269 2270 if (Checks.size() > 0) 2271 EmitBinOpCheck(Checks, Ops); 2272 } 2273 2274 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2275 { 2276 CodeGenFunction::SanitizerScope SanScope(&CGF); 2277 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2278 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2279 Ops.Ty->isIntegerType()) { 2280 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2281 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2282 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2283 Ops.Ty->isRealFloatingType()) { 2284 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2285 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2286 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2287 Ops); 2288 } 2289 } 2290 2291 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2292 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2293 if (CGF.getLangOpts().OpenCL) { 2294 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp 2295 llvm::Type *ValTy = Val->getType(); 2296 if (ValTy->isFloatTy() || 2297 (isa<llvm::VectorType>(ValTy) && 2298 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2299 CGF.SetFPAccuracy(Val, 2.5); 2300 } 2301 return Val; 2302 } 2303 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2304 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2305 else 2306 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2307 } 2308 2309 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2310 // Rem in C can't be a floating point type: C99 6.5.5p2. 2311 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2312 CodeGenFunction::SanitizerScope SanScope(&CGF); 2313 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2314 2315 if (Ops.Ty->isIntegerType()) 2316 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2317 } 2318 2319 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2320 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2321 else 2322 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2323 } 2324 2325 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2326 unsigned IID; 2327 unsigned OpID = 0; 2328 2329 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2330 switch (Ops.Opcode) { 2331 case BO_Add: 2332 case BO_AddAssign: 2333 OpID = 1; 2334 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2335 llvm::Intrinsic::uadd_with_overflow; 2336 break; 2337 case BO_Sub: 2338 case BO_SubAssign: 2339 OpID = 2; 2340 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2341 llvm::Intrinsic::usub_with_overflow; 2342 break; 2343 case BO_Mul: 2344 case BO_MulAssign: 2345 OpID = 3; 2346 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2347 llvm::Intrinsic::umul_with_overflow; 2348 break; 2349 default: 2350 llvm_unreachable("Unsupported operation for overflow detection"); 2351 } 2352 OpID <<= 1; 2353 if (isSigned) 2354 OpID |= 1; 2355 2356 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2357 2358 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2359 2360 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 2361 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2362 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2363 2364 // Handle overflow with llvm.trap if no custom handler has been specified. 2365 const std::string *handlerName = 2366 &CGF.getLangOpts().OverflowHandler; 2367 if (handlerName->empty()) { 2368 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2369 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2370 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 2371 CodeGenFunction::SanitizerScope SanScope(&CGF); 2372 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 2373 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 2374 : SanitizerKind::UnsignedIntegerOverflow; 2375 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 2376 } else 2377 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2378 return result; 2379 } 2380 2381 // Branch in case of overflow. 2382 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2383 llvm::Function::iterator insertPt = initialBB; 2384 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn, 2385 std::next(insertPt)); 2386 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2387 2388 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2389 2390 // If an overflow handler is set, then we want to call it and then use its 2391 // result, if it returns. 2392 Builder.SetInsertPoint(overflowBB); 2393 2394 // Get the overflow handler. 2395 llvm::Type *Int8Ty = CGF.Int8Ty; 2396 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2397 llvm::FunctionType *handlerTy = 2398 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2399 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2400 2401 // Sign extend the args to 64-bit, so that we can use the same handler for 2402 // all types of overflow. 2403 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2404 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2405 2406 // Call the handler with the two arguments, the operation, and the size of 2407 // the result. 2408 llvm::Value *handlerArgs[] = { 2409 lhs, 2410 rhs, 2411 Builder.getInt8(OpID), 2412 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2413 }; 2414 llvm::Value *handlerResult = 2415 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2416 2417 // Truncate the result back to the desired size. 2418 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2419 Builder.CreateBr(continueBB); 2420 2421 Builder.SetInsertPoint(continueBB); 2422 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2423 phi->addIncoming(result, initialBB); 2424 phi->addIncoming(handlerResult, overflowBB); 2425 2426 return phi; 2427 } 2428 2429 /// Emit pointer + index arithmetic. 2430 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2431 const BinOpInfo &op, 2432 bool isSubtraction) { 2433 // Must have binary (not unary) expr here. Unary pointer 2434 // increment/decrement doesn't use this path. 2435 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2436 2437 Value *pointer = op.LHS; 2438 Expr *pointerOperand = expr->getLHS(); 2439 Value *index = op.RHS; 2440 Expr *indexOperand = expr->getRHS(); 2441 2442 // In a subtraction, the LHS is always the pointer. 2443 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2444 std::swap(pointer, index); 2445 std::swap(pointerOperand, indexOperand); 2446 } 2447 2448 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2449 if (width != CGF.PointerWidthInBits) { 2450 // Zero-extend or sign-extend the pointer value according to 2451 // whether the index is signed or not. 2452 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2453 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned, 2454 "idx.ext"); 2455 } 2456 2457 // If this is subtraction, negate the index. 2458 if (isSubtraction) 2459 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2460 2461 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 2462 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2463 /*Accessed*/ false); 2464 2465 const PointerType *pointerType 2466 = pointerOperand->getType()->getAs<PointerType>(); 2467 if (!pointerType) { 2468 QualType objectType = pointerOperand->getType() 2469 ->castAs<ObjCObjectPointerType>() 2470 ->getPointeeType(); 2471 llvm::Value *objectSize 2472 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2473 2474 index = CGF.Builder.CreateMul(index, objectSize); 2475 2476 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2477 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2478 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2479 } 2480 2481 QualType elementType = pointerType->getPointeeType(); 2482 if (const VariableArrayType *vla 2483 = CGF.getContext().getAsVariableArrayType(elementType)) { 2484 // The element count here is the total number of non-VLA elements. 2485 llvm::Value *numElements = CGF.getVLASize(vla).first; 2486 2487 // Effectively, the multiply by the VLA size is part of the GEP. 2488 // GEP indexes are signed, and scaling an index isn't permitted to 2489 // signed-overflow, so we use the same semantics for our explicit 2490 // multiply. We suppress this if overflow is not undefined behavior. 2491 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2492 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2493 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2494 } else { 2495 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2496 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2497 } 2498 return pointer; 2499 } 2500 2501 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2502 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2503 // future proof. 2504 if (elementType->isVoidType() || elementType->isFunctionType()) { 2505 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2506 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2507 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2508 } 2509 2510 if (CGF.getLangOpts().isSignedOverflowDefined()) 2511 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2512 2513 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2514 } 2515 2516 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2517 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2518 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2519 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2520 // efficient operations. 2521 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2522 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2523 bool negMul, bool negAdd) { 2524 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2525 2526 Value *MulOp0 = MulOp->getOperand(0); 2527 Value *MulOp1 = MulOp->getOperand(1); 2528 if (negMul) { 2529 MulOp0 = 2530 Builder.CreateFSub( 2531 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2532 "neg"); 2533 } else if (negAdd) { 2534 Addend = 2535 Builder.CreateFSub( 2536 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2537 "neg"); 2538 } 2539 2540 Value *FMulAdd = Builder.CreateCall( 2541 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2542 {MulOp0, MulOp1, Addend}); 2543 MulOp->eraseFromParent(); 2544 2545 return FMulAdd; 2546 } 2547 2548 // Check whether it would be legal to emit an fmuladd intrinsic call to 2549 // represent op and if so, build the fmuladd. 2550 // 2551 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2552 // Does NOT check the type of the operation - it's assumed that this function 2553 // will be called from contexts where it's known that the type is contractable. 2554 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2555 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2556 bool isSub=false) { 2557 2558 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2559 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2560 "Only fadd/fsub can be the root of an fmuladd."); 2561 2562 // Check whether this op is marked as fusable. 2563 if (!op.FPContractable) 2564 return nullptr; 2565 2566 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is 2567 // either disabled, or handled entirely by the LLVM backend). 2568 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On) 2569 return nullptr; 2570 2571 // We have a potentially fusable op. Look for a mul on one of the operands. 2572 if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2573 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2574 assert(LHSBinOp->getNumUses() == 0 && 2575 "Operations with multiple uses shouldn't be contracted."); 2576 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2577 } 2578 } else if (llvm::BinaryOperator* RHSBinOp = 2579 dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2580 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2581 assert(RHSBinOp->getNumUses() == 0 && 2582 "Operations with multiple uses shouldn't be contracted."); 2583 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2584 } 2585 } 2586 2587 return nullptr; 2588 } 2589 2590 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2591 if (op.LHS->getType()->isPointerTy() || 2592 op.RHS->getType()->isPointerTy()) 2593 return emitPointerArithmetic(CGF, op, /*subtraction*/ false); 2594 2595 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2596 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2597 case LangOptions::SOB_Defined: 2598 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2599 case LangOptions::SOB_Undefined: 2600 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2601 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2602 // Fall through. 2603 case LangOptions::SOB_Trapping: 2604 return EmitOverflowCheckedBinOp(op); 2605 } 2606 } 2607 2608 if (op.Ty->isUnsignedIntegerType() && 2609 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2610 return EmitOverflowCheckedBinOp(op); 2611 2612 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2613 // Try to form an fmuladd. 2614 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2615 return FMulAdd; 2616 2617 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2618 } 2619 2620 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2621 } 2622 2623 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2624 // The LHS is always a pointer if either side is. 2625 if (!op.LHS->getType()->isPointerTy()) { 2626 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2627 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2628 case LangOptions::SOB_Defined: 2629 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2630 case LangOptions::SOB_Undefined: 2631 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2632 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2633 // Fall through. 2634 case LangOptions::SOB_Trapping: 2635 return EmitOverflowCheckedBinOp(op); 2636 } 2637 } 2638 2639 if (op.Ty->isUnsignedIntegerType() && 2640 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2641 return EmitOverflowCheckedBinOp(op); 2642 2643 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2644 // Try to form an fmuladd. 2645 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2646 return FMulAdd; 2647 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2648 } 2649 2650 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2651 } 2652 2653 // If the RHS is not a pointer, then we have normal pointer 2654 // arithmetic. 2655 if (!op.RHS->getType()->isPointerTy()) 2656 return emitPointerArithmetic(CGF, op, /*subtraction*/ true); 2657 2658 // Otherwise, this is a pointer subtraction. 2659 2660 // Do the raw subtraction part. 2661 llvm::Value *LHS 2662 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2663 llvm::Value *RHS 2664 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2665 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2666 2667 // Okay, figure out the element size. 2668 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2669 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2670 2671 llvm::Value *divisor = nullptr; 2672 2673 // For a variable-length array, this is going to be non-constant. 2674 if (const VariableArrayType *vla 2675 = CGF.getContext().getAsVariableArrayType(elementType)) { 2676 llvm::Value *numElements; 2677 std::tie(numElements, elementType) = CGF.getVLASize(vla); 2678 2679 divisor = numElements; 2680 2681 // Scale the number of non-VLA elements by the non-VLA element size. 2682 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2683 if (!eltSize.isOne()) 2684 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2685 2686 // For everything elese, we can just compute it, safe in the 2687 // assumption that Sema won't let anything through that we can't 2688 // safely compute the size of. 2689 } else { 2690 CharUnits elementSize; 2691 // Handle GCC extension for pointer arithmetic on void* and 2692 // function pointer types. 2693 if (elementType->isVoidType() || elementType->isFunctionType()) 2694 elementSize = CharUnits::One(); 2695 else 2696 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2697 2698 // Don't even emit the divide for element size of 1. 2699 if (elementSize.isOne()) 2700 return diffInChars; 2701 2702 divisor = CGF.CGM.getSize(elementSize); 2703 } 2704 2705 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2706 // pointer difference in C is only defined in the case where both operands 2707 // are pointing to elements of an array. 2708 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2709 } 2710 2711 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2712 llvm::IntegerType *Ty; 2713 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 2714 Ty = cast<llvm::IntegerType>(VT->getElementType()); 2715 else 2716 Ty = cast<llvm::IntegerType>(LHS->getType()); 2717 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 2718 } 2719 2720 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2721 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2722 // RHS to the same size as the LHS. 2723 Value *RHS = Ops.RHS; 2724 if (Ops.LHS->getType() != RHS->getType()) 2725 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2726 2727 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 2728 Ops.Ty->hasSignedIntegerRepresentation(); 2729 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 2730 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2731 if (CGF.getLangOpts().OpenCL) 2732 RHS = 2733 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 2734 else if ((SanitizeBase || SanitizeExponent) && 2735 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2736 CodeGenFunction::SanitizerScope SanScope(&CGF); 2737 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 2738 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS); 2739 llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne); 2740 2741 if (SanitizeExponent) { 2742 Checks.push_back( 2743 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 2744 } 2745 2746 if (SanitizeBase) { 2747 // Check whether we are shifting any non-zero bits off the top of the 2748 // integer. We only emit this check if exponent is valid - otherwise 2749 // instructions below will have undefined behavior themselves. 2750 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 2751 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2752 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 2753 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 2754 CGF.EmitBlock(CheckShiftBase); 2755 llvm::Value *BitsShiftedOff = 2756 Builder.CreateLShr(Ops.LHS, 2757 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros", 2758 /*NUW*/true, /*NSW*/true), 2759 "shl.check"); 2760 if (CGF.getLangOpts().CPlusPlus) { 2761 // In C99, we are not permitted to shift a 1 bit into the sign bit. 2762 // Under C++11's rules, shifting a 1 bit into the sign bit is 2763 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 2764 // define signed left shifts, so we use the C99 and C++11 rules there). 2765 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 2766 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 2767 } 2768 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 2769 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 2770 CGF.EmitBlock(Cont); 2771 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 2772 BaseCheck->addIncoming(Builder.getTrue(), Orig); 2773 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 2774 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 2775 } 2776 2777 assert(!Checks.empty()); 2778 EmitBinOpCheck(Checks, Ops); 2779 } 2780 2781 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2782 } 2783 2784 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2785 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2786 // RHS to the same size as the LHS. 2787 Value *RHS = Ops.RHS; 2788 if (Ops.LHS->getType() != RHS->getType()) 2789 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2790 2791 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2792 if (CGF.getLangOpts().OpenCL) 2793 RHS = 2794 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 2795 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 2796 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2797 CodeGenFunction::SanitizerScope SanScope(&CGF); 2798 llvm::Value *Valid = 2799 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 2800 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 2801 } 2802 2803 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2804 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 2805 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 2806 } 2807 2808 enum IntrinsicType { VCMPEQ, VCMPGT }; 2809 // return corresponding comparison intrinsic for given vector type 2810 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 2811 BuiltinType::Kind ElemKind) { 2812 switch (ElemKind) { 2813 default: llvm_unreachable("unexpected element type"); 2814 case BuiltinType::Char_U: 2815 case BuiltinType::UChar: 2816 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2817 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 2818 case BuiltinType::Char_S: 2819 case BuiltinType::SChar: 2820 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2821 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 2822 case BuiltinType::UShort: 2823 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2824 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 2825 case BuiltinType::Short: 2826 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2827 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 2828 case BuiltinType::UInt: 2829 case BuiltinType::ULong: 2830 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2831 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 2832 case BuiltinType::Int: 2833 case BuiltinType::Long: 2834 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2835 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 2836 case BuiltinType::Float: 2837 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 2838 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 2839 } 2840 } 2841 2842 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, 2843 unsigned SICmpOpc, unsigned FCmpOpc) { 2844 TestAndClearIgnoreResultAssign(); 2845 Value *Result; 2846 QualType LHSTy = E->getLHS()->getType(); 2847 QualType RHSTy = E->getRHS()->getType(); 2848 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 2849 assert(E->getOpcode() == BO_EQ || 2850 E->getOpcode() == BO_NE); 2851 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 2852 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 2853 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 2854 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 2855 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 2856 Value *LHS = Visit(E->getLHS()); 2857 Value *RHS = Visit(E->getRHS()); 2858 2859 // If AltiVec, the comparison results in a numeric type, so we use 2860 // intrinsics comparing vectors and giving 0 or 1 as a result 2861 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 2862 // constants for mapping CR6 register bits to predicate result 2863 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 2864 2865 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 2866 2867 // in several cases vector arguments order will be reversed 2868 Value *FirstVecArg = LHS, 2869 *SecondVecArg = RHS; 2870 2871 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 2872 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 2873 BuiltinType::Kind ElementKind = BTy->getKind(); 2874 2875 switch(E->getOpcode()) { 2876 default: llvm_unreachable("is not a comparison operation"); 2877 case BO_EQ: 2878 CR6 = CR6_LT; 2879 ID = GetIntrinsic(VCMPEQ, ElementKind); 2880 break; 2881 case BO_NE: 2882 CR6 = CR6_EQ; 2883 ID = GetIntrinsic(VCMPEQ, ElementKind); 2884 break; 2885 case BO_LT: 2886 CR6 = CR6_LT; 2887 ID = GetIntrinsic(VCMPGT, ElementKind); 2888 std::swap(FirstVecArg, SecondVecArg); 2889 break; 2890 case BO_GT: 2891 CR6 = CR6_LT; 2892 ID = GetIntrinsic(VCMPGT, ElementKind); 2893 break; 2894 case BO_LE: 2895 if (ElementKind == BuiltinType::Float) { 2896 CR6 = CR6_LT; 2897 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2898 std::swap(FirstVecArg, SecondVecArg); 2899 } 2900 else { 2901 CR6 = CR6_EQ; 2902 ID = GetIntrinsic(VCMPGT, ElementKind); 2903 } 2904 break; 2905 case BO_GE: 2906 if (ElementKind == BuiltinType::Float) { 2907 CR6 = CR6_LT; 2908 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2909 } 2910 else { 2911 CR6 = CR6_EQ; 2912 ID = GetIntrinsic(VCMPGT, ElementKind); 2913 std::swap(FirstVecArg, SecondVecArg); 2914 } 2915 break; 2916 } 2917 2918 Value *CR6Param = Builder.getInt32(CR6); 2919 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 2920 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 2921 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 2922 E->getExprLoc()); 2923 } 2924 2925 if (LHS->getType()->isFPOrFPVectorTy()) { 2926 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc, 2927 LHS, RHS, "cmp"); 2928 } else if (LHSTy->hasSignedIntegerRepresentation()) { 2929 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, 2930 LHS, RHS, "cmp"); 2931 } else { 2932 // Unsigned integers and pointers. 2933 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2934 LHS, RHS, "cmp"); 2935 } 2936 2937 // If this is a vector comparison, sign extend the result to the appropriate 2938 // vector integer type and return it (don't convert to bool). 2939 if (LHSTy->isVectorType()) 2940 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2941 2942 } else { 2943 // Complex Comparison: can only be an equality comparison. 2944 CodeGenFunction::ComplexPairTy LHS, RHS; 2945 QualType CETy; 2946 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 2947 LHS = CGF.EmitComplexExpr(E->getLHS()); 2948 CETy = CTy->getElementType(); 2949 } else { 2950 LHS.first = Visit(E->getLHS()); 2951 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 2952 CETy = LHSTy; 2953 } 2954 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 2955 RHS = CGF.EmitComplexExpr(E->getRHS()); 2956 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 2957 CTy->getElementType()) && 2958 "The element types must always match."); 2959 (void)CTy; 2960 } else { 2961 RHS.first = Visit(E->getRHS()); 2962 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 2963 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 2964 "The element types must always match."); 2965 } 2966 2967 Value *ResultR, *ResultI; 2968 if (CETy->isRealFloatingType()) { 2969 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2970 LHS.first, RHS.first, "cmp.r"); 2971 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2972 LHS.second, RHS.second, "cmp.i"); 2973 } else { 2974 // Complex comparisons can only be equality comparisons. As such, signed 2975 // and unsigned opcodes are the same. 2976 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2977 LHS.first, RHS.first, "cmp.r"); 2978 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2979 LHS.second, RHS.second, "cmp.i"); 2980 } 2981 2982 if (E->getOpcode() == BO_EQ) { 2983 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 2984 } else { 2985 assert(E->getOpcode() == BO_NE && 2986 "Complex comparison other than == or != ?"); 2987 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 2988 } 2989 } 2990 2991 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 2992 E->getExprLoc()); 2993 } 2994 2995 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 2996 bool Ignore = TestAndClearIgnoreResultAssign(); 2997 2998 Value *RHS; 2999 LValue LHS; 3000 3001 switch (E->getLHS()->getType().getObjCLifetime()) { 3002 case Qualifiers::OCL_Strong: 3003 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 3004 break; 3005 3006 case Qualifiers::OCL_Autoreleasing: 3007 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3008 break; 3009 3010 case Qualifiers::OCL_Weak: 3011 RHS = Visit(E->getRHS()); 3012 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3013 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3014 break; 3015 3016 // No reason to do any of these differently. 3017 case Qualifiers::OCL_None: 3018 case Qualifiers::OCL_ExplicitNone: 3019 // __block variables need to have the rhs evaluated first, plus 3020 // this should improve codegen just a little. 3021 RHS = Visit(E->getRHS()); 3022 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3023 3024 // Store the value into the LHS. Bit-fields are handled specially 3025 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3026 // 'An assignment expression has the value of the left operand after 3027 // the assignment...'. 3028 if (LHS.isBitField()) 3029 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3030 else 3031 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3032 } 3033 3034 // If the result is clearly ignored, return now. 3035 if (Ignore) 3036 return nullptr; 3037 3038 // The result of an assignment in C is the assigned r-value. 3039 if (!CGF.getLangOpts().CPlusPlus) 3040 return RHS; 3041 3042 // If the lvalue is non-volatile, return the computed value of the assignment. 3043 if (!LHS.isVolatileQualified()) 3044 return RHS; 3045 3046 // Otherwise, reload the value. 3047 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3048 } 3049 3050 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3051 // Perform vector logical and on comparisons with zero vectors. 3052 if (E->getType()->isVectorType()) { 3053 CGF.incrementProfileCounter(E); 3054 3055 Value *LHS = Visit(E->getLHS()); 3056 Value *RHS = Visit(E->getRHS()); 3057 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3058 if (LHS->getType()->isFPOrFPVectorTy()) { 3059 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3060 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3061 } else { 3062 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3063 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3064 } 3065 Value *And = Builder.CreateAnd(LHS, RHS); 3066 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3067 } 3068 3069 llvm::Type *ResTy = ConvertType(E->getType()); 3070 3071 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3072 // If we have 1 && X, just emit X without inserting the control flow. 3073 bool LHSCondVal; 3074 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3075 if (LHSCondVal) { // If we have 1 && X, just emit X. 3076 CGF.incrementProfileCounter(E); 3077 3078 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3079 // ZExt result to int or bool. 3080 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3081 } 3082 3083 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3084 if (!CGF.ContainsLabel(E->getRHS())) 3085 return llvm::Constant::getNullValue(ResTy); 3086 } 3087 3088 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3089 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3090 3091 CodeGenFunction::ConditionalEvaluation eval(CGF); 3092 3093 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3094 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 3095 CGF.getProfileCount(E->getRHS())); 3096 3097 // Any edges into the ContBlock are now from an (indeterminate number of) 3098 // edges from this first condition. All of these values will be false. Start 3099 // setting up the PHI node in the Cont Block for this. 3100 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3101 "", ContBlock); 3102 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3103 PI != PE; ++PI) 3104 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3105 3106 eval.begin(CGF); 3107 CGF.EmitBlock(RHSBlock); 3108 CGF.incrementProfileCounter(E); 3109 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3110 eval.end(CGF); 3111 3112 // Reaquire the RHS block, as there may be subblocks inserted. 3113 RHSBlock = Builder.GetInsertBlock(); 3114 3115 // Emit an unconditional branch from this block to ContBlock. 3116 { 3117 // There is no need to emit line number for unconditional branch. 3118 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3119 CGF.EmitBlock(ContBlock); 3120 } 3121 // Insert an entry into the phi node for the edge with the value of RHSCond. 3122 PN->addIncoming(RHSCond, RHSBlock); 3123 3124 // ZExt result to int. 3125 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3126 } 3127 3128 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3129 // Perform vector logical or on comparisons with zero vectors. 3130 if (E->getType()->isVectorType()) { 3131 CGF.incrementProfileCounter(E); 3132 3133 Value *LHS = Visit(E->getLHS()); 3134 Value *RHS = Visit(E->getRHS()); 3135 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3136 if (LHS->getType()->isFPOrFPVectorTy()) { 3137 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3138 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3139 } else { 3140 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3141 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3142 } 3143 Value *Or = Builder.CreateOr(LHS, RHS); 3144 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3145 } 3146 3147 llvm::Type *ResTy = ConvertType(E->getType()); 3148 3149 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3150 // If we have 0 || X, just emit X without inserting the control flow. 3151 bool LHSCondVal; 3152 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3153 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3154 CGF.incrementProfileCounter(E); 3155 3156 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3157 // ZExt result to int or bool. 3158 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3159 } 3160 3161 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3162 if (!CGF.ContainsLabel(E->getRHS())) 3163 return llvm::ConstantInt::get(ResTy, 1); 3164 } 3165 3166 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3167 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3168 3169 CodeGenFunction::ConditionalEvaluation eval(CGF); 3170 3171 // Branch on the LHS first. If it is true, go to the success (cont) block. 3172 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3173 CGF.getCurrentProfileCount() - 3174 CGF.getProfileCount(E->getRHS())); 3175 3176 // Any edges into the ContBlock are now from an (indeterminate number of) 3177 // edges from this first condition. All of these values will be true. Start 3178 // setting up the PHI node in the Cont Block for this. 3179 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3180 "", ContBlock); 3181 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3182 PI != PE; ++PI) 3183 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3184 3185 eval.begin(CGF); 3186 3187 // Emit the RHS condition as a bool value. 3188 CGF.EmitBlock(RHSBlock); 3189 CGF.incrementProfileCounter(E); 3190 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3191 3192 eval.end(CGF); 3193 3194 // Reaquire the RHS block, as there may be subblocks inserted. 3195 RHSBlock = Builder.GetInsertBlock(); 3196 3197 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3198 // into the phi node for the edge with the value of RHSCond. 3199 CGF.EmitBlock(ContBlock); 3200 PN->addIncoming(RHSCond, RHSBlock); 3201 3202 // ZExt result to int. 3203 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3204 } 3205 3206 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3207 CGF.EmitIgnoredExpr(E->getLHS()); 3208 CGF.EnsureInsertPoint(); 3209 return Visit(E->getRHS()); 3210 } 3211 3212 //===----------------------------------------------------------------------===// 3213 // Other Operators 3214 //===----------------------------------------------------------------------===// 3215 3216 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3217 /// expression is cheap enough and side-effect-free enough to evaluate 3218 /// unconditionally instead of conditionally. This is used to convert control 3219 /// flow into selects in some cases. 3220 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3221 CodeGenFunction &CGF) { 3222 // Anything that is an integer or floating point constant is fine. 3223 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3224 3225 // Even non-volatile automatic variables can't be evaluated unconditionally. 3226 // Referencing a thread_local may cause non-trivial initialization work to 3227 // occur. If we're inside a lambda and one of the variables is from the scope 3228 // outside the lambda, that function may have returned already. Reading its 3229 // locals is a bad idea. Also, these reads may introduce races there didn't 3230 // exist in the source-level program. 3231 } 3232 3233 3234 Value *ScalarExprEmitter:: 3235 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3236 TestAndClearIgnoreResultAssign(); 3237 3238 // Bind the common expression if necessary. 3239 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3240 3241 Expr *condExpr = E->getCond(); 3242 Expr *lhsExpr = E->getTrueExpr(); 3243 Expr *rhsExpr = E->getFalseExpr(); 3244 3245 // If the condition constant folds and can be elided, try to avoid emitting 3246 // the condition and the dead arm. 3247 bool CondExprBool; 3248 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3249 Expr *live = lhsExpr, *dead = rhsExpr; 3250 if (!CondExprBool) std::swap(live, dead); 3251 3252 // If the dead side doesn't have labels we need, just emit the Live part. 3253 if (!CGF.ContainsLabel(dead)) { 3254 if (CondExprBool) 3255 CGF.incrementProfileCounter(E); 3256 Value *Result = Visit(live); 3257 3258 // If the live part is a throw expression, it acts like it has a void 3259 // type, so evaluating it returns a null Value*. However, a conditional 3260 // with non-void type must return a non-null Value*. 3261 if (!Result && !E->getType()->isVoidType()) 3262 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3263 3264 return Result; 3265 } 3266 } 3267 3268 // OpenCL: If the condition is a vector, we can treat this condition like 3269 // the select function. 3270 if (CGF.getLangOpts().OpenCL 3271 && condExpr->getType()->isVectorType()) { 3272 CGF.incrementProfileCounter(E); 3273 3274 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3275 llvm::Value *LHS = Visit(lhsExpr); 3276 llvm::Value *RHS = Visit(rhsExpr); 3277 3278 llvm::Type *condType = ConvertType(condExpr->getType()); 3279 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3280 3281 unsigned numElem = vecTy->getNumElements(); 3282 llvm::Type *elemType = vecTy->getElementType(); 3283 3284 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3285 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3286 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3287 llvm::VectorType::get(elemType, 3288 numElem), 3289 "sext"); 3290 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3291 3292 // Cast float to int to perform ANDs if necessary. 3293 llvm::Value *RHSTmp = RHS; 3294 llvm::Value *LHSTmp = LHS; 3295 bool wasCast = false; 3296 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3297 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3298 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3299 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3300 wasCast = true; 3301 } 3302 3303 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3304 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3305 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3306 if (wasCast) 3307 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3308 3309 return tmp5; 3310 } 3311 3312 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3313 // select instead of as control flow. We can only do this if it is cheap and 3314 // safe to evaluate the LHS and RHS unconditionally. 3315 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3316 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3317 CGF.incrementProfileCounter(E); 3318 3319 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3320 llvm::Value *LHS = Visit(lhsExpr); 3321 llvm::Value *RHS = Visit(rhsExpr); 3322 if (!LHS) { 3323 // If the conditional has void type, make sure we return a null Value*. 3324 assert(!RHS && "LHS and RHS types must match"); 3325 return nullptr; 3326 } 3327 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3328 } 3329 3330 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3331 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3332 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3333 3334 CodeGenFunction::ConditionalEvaluation eval(CGF); 3335 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 3336 CGF.getProfileCount(lhsExpr)); 3337 3338 CGF.EmitBlock(LHSBlock); 3339 CGF.incrementProfileCounter(E); 3340 eval.begin(CGF); 3341 Value *LHS = Visit(lhsExpr); 3342 eval.end(CGF); 3343 3344 LHSBlock = Builder.GetInsertBlock(); 3345 Builder.CreateBr(ContBlock); 3346 3347 CGF.EmitBlock(RHSBlock); 3348 eval.begin(CGF); 3349 Value *RHS = Visit(rhsExpr); 3350 eval.end(CGF); 3351 3352 RHSBlock = Builder.GetInsertBlock(); 3353 CGF.EmitBlock(ContBlock); 3354 3355 // If the LHS or RHS is a throw expression, it will be legitimately null. 3356 if (!LHS) 3357 return RHS; 3358 if (!RHS) 3359 return LHS; 3360 3361 // Create a PHI node for the real part. 3362 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3363 PN->addIncoming(LHS, LHSBlock); 3364 PN->addIncoming(RHS, RHSBlock); 3365 return PN; 3366 } 3367 3368 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3369 return Visit(E->getChosenSubExpr()); 3370 } 3371 3372 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3373 QualType Ty = VE->getType(); 3374 3375 if (Ty->isVariablyModifiedType()) 3376 CGF.EmitVariablyModifiedType(Ty); 3377 3378 Address ArgValue = Address::invalid(); 3379 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 3380 3381 llvm::Type *ArgTy = ConvertType(VE->getType()); 3382 3383 // If EmitVAArg fails, we fall back to the LLVM instruction. 3384 if (!ArgPtr.isValid()) 3385 return Builder.CreateVAArg(ArgValue.getPointer(), ArgTy); 3386 3387 // FIXME Volatility. 3388 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 3389 3390 // If EmitVAArg promoted the type, we must truncate it. 3391 if (ArgTy != Val->getType()) { 3392 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 3393 Val = Builder.CreateIntToPtr(Val, ArgTy); 3394 else 3395 Val = Builder.CreateTrunc(Val, ArgTy); 3396 } 3397 3398 return Val; 3399 } 3400 3401 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3402 return CGF.EmitBlockLiteral(block); 3403 } 3404 3405 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3406 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3407 llvm::Type *DstTy = ConvertType(E->getType()); 3408 3409 // Going from vec4->vec3 or vec3->vec4 is a special case and requires 3410 // a shuffle vector instead of a bitcast. 3411 llvm::Type *SrcTy = Src->getType(); 3412 if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) { 3413 unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements(); 3414 unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements(); 3415 if ((numElementsDst == 3 && numElementsSrc == 4) 3416 || (numElementsDst == 4 && numElementsSrc == 3)) { 3417 3418 3419 // In the case of going from int4->float3, a bitcast is needed before 3420 // doing a shuffle. 3421 llvm::Type *srcElemTy = 3422 cast<llvm::VectorType>(SrcTy)->getElementType(); 3423 llvm::Type *dstElemTy = 3424 cast<llvm::VectorType>(DstTy)->getElementType(); 3425 3426 if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy()) 3427 || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) { 3428 // Create a float type of the same size as the source or destination. 3429 llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy, 3430 numElementsSrc); 3431 3432 Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast"); 3433 } 3434 3435 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3436 3437 SmallVector<llvm::Constant*, 3> Args; 3438 Args.push_back(Builder.getInt32(0)); 3439 Args.push_back(Builder.getInt32(1)); 3440 Args.push_back(Builder.getInt32(2)); 3441 3442 if (numElementsDst == 4) 3443 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3444 3445 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3446 3447 return Builder.CreateShuffleVector(Src, UnV, Mask, "astype"); 3448 } 3449 } 3450 3451 return Builder.CreateBitCast(Src, DstTy, "astype"); 3452 } 3453 3454 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3455 return CGF.EmitAtomicExpr(E).getScalarVal(); 3456 } 3457 3458 //===----------------------------------------------------------------------===// 3459 // Entry Point into this File 3460 //===----------------------------------------------------------------------===// 3461 3462 /// Emit the computation of the specified expression of scalar type, ignoring 3463 /// the result. 3464 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3465 assert(E && hasScalarEvaluationKind(E->getType()) && 3466 "Invalid scalar expression to emit"); 3467 3468 return ScalarExprEmitter(*this, IgnoreResultAssign) 3469 .Visit(const_cast<Expr *>(E)); 3470 } 3471 3472 /// Emit a conversion from the specified type to the specified destination type, 3473 /// both of which are LLVM scalar types. 3474 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3475 QualType DstTy, 3476 SourceLocation Loc) { 3477 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3478 "Invalid scalar expression to emit"); 3479 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 3480 } 3481 3482 /// Emit a conversion from the specified complex type to the specified 3483 /// destination type, where the destination type is an LLVM scalar type. 3484 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3485 QualType SrcTy, 3486 QualType DstTy, 3487 SourceLocation Loc) { 3488 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3489 "Invalid complex -> scalar conversion"); 3490 return ScalarExprEmitter(*this) 3491 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 3492 } 3493 3494 3495 llvm::Value *CodeGenFunction:: 3496 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3497 bool isInc, bool isPre) { 3498 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3499 } 3500 3501 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3502 // object->isa or (*object).isa 3503 // Generate code as for: *(Class*)object 3504 3505 Expr *BaseExpr = E->getBase(); 3506 Address Addr = Address::invalid(); 3507 if (BaseExpr->isRValue()) { 3508 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 3509 } else { 3510 Addr = EmitLValue(BaseExpr).getAddress(); 3511 } 3512 3513 // Cast the address to Class*. 3514 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 3515 return MakeAddrLValue(Addr, E->getType()); 3516 } 3517 3518 3519 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3520 const CompoundAssignOperator *E) { 3521 ScalarExprEmitter Scalar(*this); 3522 Value *Result = nullptr; 3523 switch (E->getOpcode()) { 3524 #define COMPOUND_OP(Op) \ 3525 case BO_##Op##Assign: \ 3526 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3527 Result) 3528 COMPOUND_OP(Mul); 3529 COMPOUND_OP(Div); 3530 COMPOUND_OP(Rem); 3531 COMPOUND_OP(Add); 3532 COMPOUND_OP(Sub); 3533 COMPOUND_OP(Shl); 3534 COMPOUND_OP(Shr); 3535 COMPOUND_OP(And); 3536 COMPOUND_OP(Xor); 3537 COMPOUND_OP(Or); 3538 #undef COMPOUND_OP 3539 3540 case BO_PtrMemD: 3541 case BO_PtrMemI: 3542 case BO_Mul: 3543 case BO_Div: 3544 case BO_Rem: 3545 case BO_Add: 3546 case BO_Sub: 3547 case BO_Shl: 3548 case BO_Shr: 3549 case BO_LT: 3550 case BO_GT: 3551 case BO_LE: 3552 case BO_GE: 3553 case BO_EQ: 3554 case BO_NE: 3555 case BO_And: 3556 case BO_Xor: 3557 case BO_Or: 3558 case BO_LAnd: 3559 case BO_LOr: 3560 case BO_Assign: 3561 case BO_Comma: 3562 llvm_unreachable("Not valid compound assignment operators"); 3563 } 3564 3565 llvm_unreachable("Unhandled compound assignment operator"); 3566 } 3567