1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/APFixedPoint.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/FixedPointBuilder.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/IntrinsicsPowerPC.h"
41 #include "llvm/IR/MatrixBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include <cstdarg>
44 
45 using namespace clang;
46 using namespace CodeGen;
47 using llvm::Value;
48 
49 //===----------------------------------------------------------------------===//
50 //                         Scalar Expression Emitter
51 //===----------------------------------------------------------------------===//
52 
53 namespace {
54 
55 /// Determine whether the given binary operation may overflow.
56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
58 /// the returned overflow check is precise. The returned value is 'true' for
59 /// all other opcodes, to be conservative.
60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
61                              BinaryOperator::Opcode Opcode, bool Signed,
62                              llvm::APInt &Result) {
63   // Assume overflow is possible, unless we can prove otherwise.
64   bool Overflow = true;
65   const auto &LHSAP = LHS->getValue();
66   const auto &RHSAP = RHS->getValue();
67   if (Opcode == BO_Add) {
68     if (Signed)
69       Result = LHSAP.sadd_ov(RHSAP, Overflow);
70     else
71       Result = LHSAP.uadd_ov(RHSAP, Overflow);
72   } else if (Opcode == BO_Sub) {
73     if (Signed)
74       Result = LHSAP.ssub_ov(RHSAP, Overflow);
75     else
76       Result = LHSAP.usub_ov(RHSAP, Overflow);
77   } else if (Opcode == BO_Mul) {
78     if (Signed)
79       Result = LHSAP.smul_ov(RHSAP, Overflow);
80     else
81       Result = LHSAP.umul_ov(RHSAP, Overflow);
82   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
83     if (Signed && !RHS->isZero())
84       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
85     else
86       return false;
87   }
88   return Overflow;
89 }
90 
91 struct BinOpInfo {
92   Value *LHS;
93   Value *RHS;
94   QualType Ty;  // Computation Type.
95   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
96   FPOptions FPFeatures;
97   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
98 
99   /// Check if the binop can result in integer overflow.
100   bool mayHaveIntegerOverflow() const {
101     // Without constant input, we can't rule out overflow.
102     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
103     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
104     if (!LHSCI || !RHSCI)
105       return true;
106 
107     llvm::APInt Result;
108     return ::mayHaveIntegerOverflow(
109         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
110   }
111 
112   /// Check if the binop computes a division or a remainder.
113   bool isDivremOp() const {
114     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
115            Opcode == BO_RemAssign;
116   }
117 
118   /// Check if the binop can result in an integer division by zero.
119   bool mayHaveIntegerDivisionByZero() const {
120     if (isDivremOp())
121       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
122         return CI->isZero();
123     return true;
124   }
125 
126   /// Check if the binop can result in a float division by zero.
127   bool mayHaveFloatDivisionByZero() const {
128     if (isDivremOp())
129       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
130         return CFP->isZero();
131     return true;
132   }
133 
134   /// Check if at least one operand is a fixed point type. In such cases, this
135   /// operation did not follow usual arithmetic conversion and both operands
136   /// might not be of the same type.
137   bool isFixedPointOp() const {
138     // We cannot simply check the result type since comparison operations return
139     // an int.
140     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
141       QualType LHSType = BinOp->getLHS()->getType();
142       QualType RHSType = BinOp->getRHS()->getType();
143       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
144     }
145     if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
146       return UnOp->getSubExpr()->getType()->isFixedPointType();
147     return false;
148   }
149 };
150 
151 static bool MustVisitNullValue(const Expr *E) {
152   // If a null pointer expression's type is the C++0x nullptr_t, then
153   // it's not necessarily a simple constant and it must be evaluated
154   // for its potential side effects.
155   return E->getType()->isNullPtrType();
156 }
157 
158 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
159 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
160                                                         const Expr *E) {
161   const Expr *Base = E->IgnoreImpCasts();
162   if (E == Base)
163     return llvm::None;
164 
165   QualType BaseTy = Base->getType();
166   if (!BaseTy->isPromotableIntegerType() ||
167       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
168     return llvm::None;
169 
170   return BaseTy;
171 }
172 
173 /// Check if \p E is a widened promoted integer.
174 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
175   return getUnwidenedIntegerType(Ctx, E).hasValue();
176 }
177 
178 /// Check if we can skip the overflow check for \p Op.
179 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
180   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
181          "Expected a unary or binary operator");
182 
183   // If the binop has constant inputs and we can prove there is no overflow,
184   // we can elide the overflow check.
185   if (!Op.mayHaveIntegerOverflow())
186     return true;
187 
188   // If a unary op has a widened operand, the op cannot overflow.
189   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
190     return !UO->canOverflow();
191 
192   // We usually don't need overflow checks for binops with widened operands.
193   // Multiplication with promoted unsigned operands is a special case.
194   const auto *BO = cast<BinaryOperator>(Op.E);
195   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
196   if (!OptionalLHSTy)
197     return false;
198 
199   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
200   if (!OptionalRHSTy)
201     return false;
202 
203   QualType LHSTy = *OptionalLHSTy;
204   QualType RHSTy = *OptionalRHSTy;
205 
206   // This is the simple case: binops without unsigned multiplication, and with
207   // widened operands. No overflow check is needed here.
208   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
209       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
210     return true;
211 
212   // For unsigned multiplication the overflow check can be elided if either one
213   // of the unpromoted types are less than half the size of the promoted type.
214   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
215   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
216          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
217 }
218 
219 class ScalarExprEmitter
220   : public StmtVisitor<ScalarExprEmitter, Value*> {
221   CodeGenFunction &CGF;
222   CGBuilderTy &Builder;
223   bool IgnoreResultAssign;
224   llvm::LLVMContext &VMContext;
225 public:
226 
227   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
228     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
229       VMContext(cgf.getLLVMContext()) {
230   }
231 
232   //===--------------------------------------------------------------------===//
233   //                               Utilities
234   //===--------------------------------------------------------------------===//
235 
236   bool TestAndClearIgnoreResultAssign() {
237     bool I = IgnoreResultAssign;
238     IgnoreResultAssign = false;
239     return I;
240   }
241 
242   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
243   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
244   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
245     return CGF.EmitCheckedLValue(E, TCK);
246   }
247 
248   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
249                       const BinOpInfo &Info);
250 
251   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
252     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
253   }
254 
255   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
256     const AlignValueAttr *AVAttr = nullptr;
257     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
258       const ValueDecl *VD = DRE->getDecl();
259 
260       if (VD->getType()->isReferenceType()) {
261         if (const auto *TTy =
262             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
263           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
264       } else {
265         // Assumptions for function parameters are emitted at the start of the
266         // function, so there is no need to repeat that here,
267         // unless the alignment-assumption sanitizer is enabled,
268         // then we prefer the assumption over alignment attribute
269         // on IR function param.
270         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
271           return;
272 
273         AVAttr = VD->getAttr<AlignValueAttr>();
274       }
275     }
276 
277     if (!AVAttr)
278       if (const auto *TTy =
279           dyn_cast<TypedefType>(E->getType()))
280         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
281 
282     if (!AVAttr)
283       return;
284 
285     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
286     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
287     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
288   }
289 
290   /// EmitLoadOfLValue - Given an expression with complex type that represents a
291   /// value l-value, this method emits the address of the l-value, then loads
292   /// and returns the result.
293   Value *EmitLoadOfLValue(const Expr *E) {
294     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
295                                 E->getExprLoc());
296 
297     EmitLValueAlignmentAssumption(E, V);
298     return V;
299   }
300 
301   /// EmitConversionToBool - Convert the specified expression value to a
302   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
303   Value *EmitConversionToBool(Value *Src, QualType DstTy);
304 
305   /// Emit a check that a conversion from a floating-point type does not
306   /// overflow.
307   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
308                                 Value *Src, QualType SrcType, QualType DstType,
309                                 llvm::Type *DstTy, SourceLocation Loc);
310 
311   /// Known implicit conversion check kinds.
312   /// Keep in sync with the enum of the same name in ubsan_handlers.h
313   enum ImplicitConversionCheckKind : unsigned char {
314     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
315     ICCK_UnsignedIntegerTruncation = 1,
316     ICCK_SignedIntegerTruncation = 2,
317     ICCK_IntegerSignChange = 3,
318     ICCK_SignedIntegerTruncationOrSignChange = 4,
319   };
320 
321   /// Emit a check that an [implicit] truncation of an integer  does not
322   /// discard any bits. It is not UB, so we use the value after truncation.
323   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
324                                   QualType DstType, SourceLocation Loc);
325 
326   /// Emit a check that an [implicit] conversion of an integer does not change
327   /// the sign of the value. It is not UB, so we use the value after conversion.
328   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
329   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
330                                   QualType DstType, SourceLocation Loc);
331 
332   /// Emit a conversion from the specified type to the specified destination
333   /// type, both of which are LLVM scalar types.
334   struct ScalarConversionOpts {
335     bool TreatBooleanAsSigned;
336     bool EmitImplicitIntegerTruncationChecks;
337     bool EmitImplicitIntegerSignChangeChecks;
338 
339     ScalarConversionOpts()
340         : TreatBooleanAsSigned(false),
341           EmitImplicitIntegerTruncationChecks(false),
342           EmitImplicitIntegerSignChangeChecks(false) {}
343 
344     ScalarConversionOpts(clang::SanitizerSet SanOpts)
345         : TreatBooleanAsSigned(false),
346           EmitImplicitIntegerTruncationChecks(
347               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
348           EmitImplicitIntegerSignChangeChecks(
349               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
350   };
351   Value *
352   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
353                        SourceLocation Loc,
354                        ScalarConversionOpts Opts = ScalarConversionOpts());
355 
356   /// Convert between either a fixed point and other fixed point or fixed point
357   /// and an integer.
358   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
359                                   SourceLocation Loc);
360 
361   /// Emit a conversion from the specified complex type to the specified
362   /// destination type, where the destination type is an LLVM scalar type.
363   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
364                                        QualType SrcTy, QualType DstTy,
365                                        SourceLocation Loc);
366 
367   /// EmitNullValue - Emit a value that corresponds to null for the given type.
368   Value *EmitNullValue(QualType Ty);
369 
370   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
371   Value *EmitFloatToBoolConversion(Value *V) {
372     // Compare against 0.0 for fp scalars.
373     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
374     return Builder.CreateFCmpUNE(V, Zero, "tobool");
375   }
376 
377   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
378   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
379     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
380 
381     return Builder.CreateICmpNE(V, Zero, "tobool");
382   }
383 
384   Value *EmitIntToBoolConversion(Value *V) {
385     // Because of the type rules of C, we often end up computing a
386     // logical value, then zero extending it to int, then wanting it
387     // as a logical value again.  Optimize this common case.
388     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
389       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
390         Value *Result = ZI->getOperand(0);
391         // If there aren't any more uses, zap the instruction to save space.
392         // Note that there can be more uses, for example if this
393         // is the result of an assignment.
394         if (ZI->use_empty())
395           ZI->eraseFromParent();
396         return Result;
397       }
398     }
399 
400     return Builder.CreateIsNotNull(V, "tobool");
401   }
402 
403   //===--------------------------------------------------------------------===//
404   //                            Visitor Methods
405   //===--------------------------------------------------------------------===//
406 
407   Value *Visit(Expr *E) {
408     ApplyDebugLocation DL(CGF, E);
409     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
410   }
411 
412   Value *VisitStmt(Stmt *S) {
413     S->dump(llvm::errs(), CGF.getContext());
414     llvm_unreachable("Stmt can't have complex result type!");
415   }
416   Value *VisitExpr(Expr *S);
417 
418   Value *VisitConstantExpr(ConstantExpr *E) {
419     if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
420       if (E->isGLValue())
421         return CGF.Builder.CreateLoad(Address(
422             Result, CGF.getContext().getTypeAlignInChars(E->getType())));
423       return Result;
424     }
425     return Visit(E->getSubExpr());
426   }
427   Value *VisitParenExpr(ParenExpr *PE) {
428     return Visit(PE->getSubExpr());
429   }
430   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
431     return Visit(E->getReplacement());
432   }
433   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
434     return Visit(GE->getResultExpr());
435   }
436   Value *VisitCoawaitExpr(CoawaitExpr *S) {
437     return CGF.EmitCoawaitExpr(*S).getScalarVal();
438   }
439   Value *VisitCoyieldExpr(CoyieldExpr *S) {
440     return CGF.EmitCoyieldExpr(*S).getScalarVal();
441   }
442   Value *VisitUnaryCoawait(const UnaryOperator *E) {
443     return Visit(E->getSubExpr());
444   }
445 
446   // Leaves.
447   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
448     return Builder.getInt(E->getValue());
449   }
450   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
451     return Builder.getInt(E->getValue());
452   }
453   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
454     return llvm::ConstantFP::get(VMContext, E->getValue());
455   }
456   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
457     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
458   }
459   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
460     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
461   }
462   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
463     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
464   }
465   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
466     return EmitNullValue(E->getType());
467   }
468   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
469     return EmitNullValue(E->getType());
470   }
471   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
472   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
473   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
474     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
475     return Builder.CreateBitCast(V, ConvertType(E->getType()));
476   }
477 
478   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
479     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
480   }
481 
482   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
483     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
484   }
485 
486   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
487     if (E->isGLValue())
488       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
489                               E->getExprLoc());
490 
491     // Otherwise, assume the mapping is the scalar directly.
492     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
493   }
494 
495   // l-values.
496   Value *VisitDeclRefExpr(DeclRefExpr *E) {
497     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
498       return CGF.emitScalarConstant(Constant, E);
499     return EmitLoadOfLValue(E);
500   }
501 
502   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
503     return CGF.EmitObjCSelectorExpr(E);
504   }
505   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
506     return CGF.EmitObjCProtocolExpr(E);
507   }
508   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
509     return EmitLoadOfLValue(E);
510   }
511   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
512     if (E->getMethodDecl() &&
513         E->getMethodDecl()->getReturnType()->isReferenceType())
514       return EmitLoadOfLValue(E);
515     return CGF.EmitObjCMessageExpr(E).getScalarVal();
516   }
517 
518   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
519     LValue LV = CGF.EmitObjCIsaExpr(E);
520     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
521     return V;
522   }
523 
524   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
525     VersionTuple Version = E->getVersion();
526 
527     // If we're checking for a platform older than our minimum deployment
528     // target, we can fold the check away.
529     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
530       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
531 
532     return CGF.EmitBuiltinAvailable(Version);
533   }
534 
535   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
536   Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
537   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
538   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
539   Value *VisitMemberExpr(MemberExpr *E);
540   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
541   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
542     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
543     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
544     // literals aren't l-values in C++. We do so simply because that's the
545     // cleanest way to handle compound literals in C++.
546     // See the discussion here: https://reviews.llvm.org/D64464
547     return EmitLoadOfLValue(E);
548   }
549 
550   Value *VisitInitListExpr(InitListExpr *E);
551 
552   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
553     assert(CGF.getArrayInitIndex() &&
554            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
555     return CGF.getArrayInitIndex();
556   }
557 
558   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
559     return EmitNullValue(E->getType());
560   }
561   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
562     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
563     return VisitCastExpr(E);
564   }
565   Value *VisitCastExpr(CastExpr *E);
566 
567   Value *VisitCallExpr(const CallExpr *E) {
568     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
569       return EmitLoadOfLValue(E);
570 
571     Value *V = CGF.EmitCallExpr(E).getScalarVal();
572 
573     EmitLValueAlignmentAssumption(E, V);
574     return V;
575   }
576 
577   Value *VisitStmtExpr(const StmtExpr *E);
578 
579   // Unary Operators.
580   Value *VisitUnaryPostDec(const UnaryOperator *E) {
581     LValue LV = EmitLValue(E->getSubExpr());
582     return EmitScalarPrePostIncDec(E, LV, false, false);
583   }
584   Value *VisitUnaryPostInc(const UnaryOperator *E) {
585     LValue LV = EmitLValue(E->getSubExpr());
586     return EmitScalarPrePostIncDec(E, LV, true, false);
587   }
588   Value *VisitUnaryPreDec(const UnaryOperator *E) {
589     LValue LV = EmitLValue(E->getSubExpr());
590     return EmitScalarPrePostIncDec(E, LV, false, true);
591   }
592   Value *VisitUnaryPreInc(const UnaryOperator *E) {
593     LValue LV = EmitLValue(E->getSubExpr());
594     return EmitScalarPrePostIncDec(E, LV, true, true);
595   }
596 
597   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
598                                                   llvm::Value *InVal,
599                                                   bool IsInc);
600 
601   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
602                                        bool isInc, bool isPre);
603 
604 
605   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
606     if (isa<MemberPointerType>(E->getType())) // never sugared
607       return CGF.CGM.getMemberPointerConstant(E);
608 
609     return EmitLValue(E->getSubExpr()).getPointer(CGF);
610   }
611   Value *VisitUnaryDeref(const UnaryOperator *E) {
612     if (E->getType()->isVoidType())
613       return Visit(E->getSubExpr()); // the actual value should be unused
614     return EmitLoadOfLValue(E);
615   }
616   Value *VisitUnaryPlus(const UnaryOperator *E) {
617     // This differs from gcc, though, most likely due to a bug in gcc.
618     TestAndClearIgnoreResultAssign();
619     return Visit(E->getSubExpr());
620   }
621   Value *VisitUnaryMinus    (const UnaryOperator *E);
622   Value *VisitUnaryNot      (const UnaryOperator *E);
623   Value *VisitUnaryLNot     (const UnaryOperator *E);
624   Value *VisitUnaryReal     (const UnaryOperator *E);
625   Value *VisitUnaryImag     (const UnaryOperator *E);
626   Value *VisitUnaryExtension(const UnaryOperator *E) {
627     return Visit(E->getSubExpr());
628   }
629 
630   // C++
631   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
632     return EmitLoadOfLValue(E);
633   }
634   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
635     auto &Ctx = CGF.getContext();
636     APValue Evaluated =
637         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
638     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
639                                              SLE->getType());
640   }
641 
642   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
643     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
644     return Visit(DAE->getExpr());
645   }
646   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
647     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
648     return Visit(DIE->getExpr());
649   }
650   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
651     return CGF.LoadCXXThis();
652   }
653 
654   Value *VisitExprWithCleanups(ExprWithCleanups *E);
655   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
656     return CGF.EmitCXXNewExpr(E);
657   }
658   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
659     CGF.EmitCXXDeleteExpr(E);
660     return nullptr;
661   }
662 
663   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
664     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
665   }
666 
667   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
668     return Builder.getInt1(E->isSatisfied());
669   }
670 
671   Value *VisitRequiresExpr(const RequiresExpr *E) {
672     return Builder.getInt1(E->isSatisfied());
673   }
674 
675   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
676     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
677   }
678 
679   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
680     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
681   }
682 
683   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
684     // C++ [expr.pseudo]p1:
685     //   The result shall only be used as the operand for the function call
686     //   operator (), and the result of such a call has type void. The only
687     //   effect is the evaluation of the postfix-expression before the dot or
688     //   arrow.
689     CGF.EmitScalarExpr(E->getBase());
690     return nullptr;
691   }
692 
693   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
694     return EmitNullValue(E->getType());
695   }
696 
697   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
698     CGF.EmitCXXThrowExpr(E);
699     return nullptr;
700   }
701 
702   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
703     return Builder.getInt1(E->getValue());
704   }
705 
706   // Binary Operators.
707   Value *EmitMul(const BinOpInfo &Ops) {
708     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
709       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
710       case LangOptions::SOB_Defined:
711         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
712       case LangOptions::SOB_Undefined:
713         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
714           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
715         LLVM_FALLTHROUGH;
716       case LangOptions::SOB_Trapping:
717         if (CanElideOverflowCheck(CGF.getContext(), Ops))
718           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
719         return EmitOverflowCheckedBinOp(Ops);
720       }
721     }
722 
723     if (Ops.Ty->isConstantMatrixType()) {
724       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
725       // We need to check the types of the operands of the operator to get the
726       // correct matrix dimensions.
727       auto *BO = cast<BinaryOperator>(Ops.E);
728       auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
729           BO->getLHS()->getType().getCanonicalType());
730       auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
731           BO->getRHS()->getType().getCanonicalType());
732       if (LHSMatTy && RHSMatTy)
733         return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
734                                        LHSMatTy->getNumColumns(),
735                                        RHSMatTy->getNumColumns());
736       return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
737     }
738 
739     if (Ops.Ty->isUnsignedIntegerType() &&
740         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
741         !CanElideOverflowCheck(CGF.getContext(), Ops))
742       return EmitOverflowCheckedBinOp(Ops);
743 
744     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
745       //  Preserve the old values
746       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
747       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
748     }
749     if (Ops.isFixedPointOp())
750       return EmitFixedPointBinOp(Ops);
751     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
752   }
753   /// Create a binary op that checks for overflow.
754   /// Currently only supports +, - and *.
755   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
756 
757   // Check for undefined division and modulus behaviors.
758   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
759                                                   llvm::Value *Zero,bool isDiv);
760   // Common helper for getting how wide LHS of shift is.
761   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
762 
763   // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
764   // non powers of two.
765   Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
766 
767   Value *EmitDiv(const BinOpInfo &Ops);
768   Value *EmitRem(const BinOpInfo &Ops);
769   Value *EmitAdd(const BinOpInfo &Ops);
770   Value *EmitSub(const BinOpInfo &Ops);
771   Value *EmitShl(const BinOpInfo &Ops);
772   Value *EmitShr(const BinOpInfo &Ops);
773   Value *EmitAnd(const BinOpInfo &Ops) {
774     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
775   }
776   Value *EmitXor(const BinOpInfo &Ops) {
777     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
778   }
779   Value *EmitOr (const BinOpInfo &Ops) {
780     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
781   }
782 
783   // Helper functions for fixed point binary operations.
784   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
785 
786   BinOpInfo EmitBinOps(const BinaryOperator *E);
787   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
788                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
789                                   Value *&Result);
790 
791   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
792                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
793 
794   // Binary operators and binary compound assignment operators.
795 #define HANDLEBINOP(OP) \
796   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
797     return Emit ## OP(EmitBinOps(E));                                      \
798   }                                                                        \
799   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
800     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
801   }
802   HANDLEBINOP(Mul)
803   HANDLEBINOP(Div)
804   HANDLEBINOP(Rem)
805   HANDLEBINOP(Add)
806   HANDLEBINOP(Sub)
807   HANDLEBINOP(Shl)
808   HANDLEBINOP(Shr)
809   HANDLEBINOP(And)
810   HANDLEBINOP(Xor)
811   HANDLEBINOP(Or)
812 #undef HANDLEBINOP
813 
814   // Comparisons.
815   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
816                      llvm::CmpInst::Predicate SICmpOpc,
817                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
818 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
819     Value *VisitBin##CODE(const BinaryOperator *E) { \
820       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
821                          llvm::FCmpInst::FP, SIG); }
822   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
823   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
824   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
825   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
826   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
827   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
828 #undef VISITCOMP
829 
830   Value *VisitBinAssign     (const BinaryOperator *E);
831 
832   Value *VisitBinLAnd       (const BinaryOperator *E);
833   Value *VisitBinLOr        (const BinaryOperator *E);
834   Value *VisitBinComma      (const BinaryOperator *E);
835 
836   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
837   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
838 
839   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
840     return Visit(E->getSemanticForm());
841   }
842 
843   // Other Operators.
844   Value *VisitBlockExpr(const BlockExpr *BE);
845   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
846   Value *VisitChooseExpr(ChooseExpr *CE);
847   Value *VisitVAArgExpr(VAArgExpr *VE);
848   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
849     return CGF.EmitObjCStringLiteral(E);
850   }
851   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
852     return CGF.EmitObjCBoxedExpr(E);
853   }
854   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
855     return CGF.EmitObjCArrayLiteral(E);
856   }
857   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
858     return CGF.EmitObjCDictionaryLiteral(E);
859   }
860   Value *VisitAsTypeExpr(AsTypeExpr *CE);
861   Value *VisitAtomicExpr(AtomicExpr *AE);
862 };
863 }  // end anonymous namespace.
864 
865 //===----------------------------------------------------------------------===//
866 //                                Utilities
867 //===----------------------------------------------------------------------===//
868 
869 /// EmitConversionToBool - Convert the specified expression value to a
870 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
871 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
872   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
873 
874   if (SrcType->isRealFloatingType())
875     return EmitFloatToBoolConversion(Src);
876 
877   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
878     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
879 
880   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
881          "Unknown scalar type to convert");
882 
883   if (isa<llvm::IntegerType>(Src->getType()))
884     return EmitIntToBoolConversion(Src);
885 
886   assert(isa<llvm::PointerType>(Src->getType()));
887   return EmitPointerToBoolConversion(Src, SrcType);
888 }
889 
890 void ScalarExprEmitter::EmitFloatConversionCheck(
891     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
892     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
893   assert(SrcType->isFloatingType() && "not a conversion from floating point");
894   if (!isa<llvm::IntegerType>(DstTy))
895     return;
896 
897   CodeGenFunction::SanitizerScope SanScope(&CGF);
898   using llvm::APFloat;
899   using llvm::APSInt;
900 
901   llvm::Value *Check = nullptr;
902   const llvm::fltSemantics &SrcSema =
903     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
904 
905   // Floating-point to integer. This has undefined behavior if the source is
906   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
907   // to an integer).
908   unsigned Width = CGF.getContext().getIntWidth(DstType);
909   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
910 
911   APSInt Min = APSInt::getMinValue(Width, Unsigned);
912   APFloat MinSrc(SrcSema, APFloat::uninitialized);
913   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
914       APFloat::opOverflow)
915     // Don't need an overflow check for lower bound. Just check for
916     // -Inf/NaN.
917     MinSrc = APFloat::getInf(SrcSema, true);
918   else
919     // Find the largest value which is too small to represent (before
920     // truncation toward zero).
921     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
922 
923   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
924   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
925   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
926       APFloat::opOverflow)
927     // Don't need an overflow check for upper bound. Just check for
928     // +Inf/NaN.
929     MaxSrc = APFloat::getInf(SrcSema, false);
930   else
931     // Find the smallest value which is too large to represent (before
932     // truncation toward zero).
933     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
934 
935   // If we're converting from __half, convert the range to float to match
936   // the type of src.
937   if (OrigSrcType->isHalfType()) {
938     const llvm::fltSemantics &Sema =
939       CGF.getContext().getFloatTypeSemantics(SrcType);
940     bool IsInexact;
941     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
942     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
943   }
944 
945   llvm::Value *GE =
946     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
947   llvm::Value *LE =
948     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
949   Check = Builder.CreateAnd(GE, LE);
950 
951   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
952                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
953                                   CGF.EmitCheckTypeDescriptor(DstType)};
954   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
955                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
956 }
957 
958 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
959 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
960 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
961                  std::pair<llvm::Value *, SanitizerMask>>
962 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
963                                  QualType DstType, CGBuilderTy &Builder) {
964   llvm::Type *SrcTy = Src->getType();
965   llvm::Type *DstTy = Dst->getType();
966   (void)DstTy; // Only used in assert()
967 
968   // This should be truncation of integral types.
969   assert(Src != Dst);
970   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
971   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
972          "non-integer llvm type");
973 
974   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
975   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
976 
977   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
978   // Else, it is a signed truncation.
979   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
980   SanitizerMask Mask;
981   if (!SrcSigned && !DstSigned) {
982     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
983     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
984   } else {
985     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
986     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
987   }
988 
989   llvm::Value *Check = nullptr;
990   // 1. Extend the truncated value back to the same width as the Src.
991   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
992   // 2. Equality-compare with the original source value
993   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
994   // If the comparison result is 'i1 false', then the truncation was lossy.
995   return std::make_pair(Kind, std::make_pair(Check, Mask));
996 }
997 
998 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
999     QualType SrcType, QualType DstType) {
1000   return SrcType->isIntegerType() && DstType->isIntegerType();
1001 }
1002 
1003 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1004                                                    Value *Dst, QualType DstType,
1005                                                    SourceLocation Loc) {
1006   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1007     return;
1008 
1009   // We only care about int->int conversions here.
1010   // We ignore conversions to/from pointer and/or bool.
1011   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1012                                                                        DstType))
1013     return;
1014 
1015   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1016   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1017   // This must be truncation. Else we do not care.
1018   if (SrcBits <= DstBits)
1019     return;
1020 
1021   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1022 
1023   // If the integer sign change sanitizer is enabled,
1024   // and we are truncating from larger unsigned type to smaller signed type,
1025   // let that next sanitizer deal with it.
1026   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1027   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1028   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1029       (!SrcSigned && DstSigned))
1030     return;
1031 
1032   CodeGenFunction::SanitizerScope SanScope(&CGF);
1033 
1034   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1035             std::pair<llvm::Value *, SanitizerMask>>
1036       Check =
1037           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1038   // If the comparison result is 'i1 false', then the truncation was lossy.
1039 
1040   // Do we care about this type of truncation?
1041   if (!CGF.SanOpts.has(Check.second.second))
1042     return;
1043 
1044   llvm::Constant *StaticArgs[] = {
1045       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1046       CGF.EmitCheckTypeDescriptor(DstType),
1047       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1048   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1049                 {Src, Dst});
1050 }
1051 
1052 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1053 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1054 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1055                  std::pair<llvm::Value *, SanitizerMask>>
1056 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1057                                  QualType DstType, CGBuilderTy &Builder) {
1058   llvm::Type *SrcTy = Src->getType();
1059   llvm::Type *DstTy = Dst->getType();
1060 
1061   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1062          "non-integer llvm type");
1063 
1064   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1065   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1066   (void)SrcSigned; // Only used in assert()
1067   (void)DstSigned; // Only used in assert()
1068   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1069   unsigned DstBits = DstTy->getScalarSizeInBits();
1070   (void)SrcBits; // Only used in assert()
1071   (void)DstBits; // Only used in assert()
1072 
1073   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1074          "either the widths should be different, or the signednesses.");
1075 
1076   // NOTE: zero value is considered to be non-negative.
1077   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1078                                        const char *Name) -> Value * {
1079     // Is this value a signed type?
1080     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1081     llvm::Type *VTy = V->getType();
1082     if (!VSigned) {
1083       // If the value is unsigned, then it is never negative.
1084       // FIXME: can we encounter non-scalar VTy here?
1085       return llvm::ConstantInt::getFalse(VTy->getContext());
1086     }
1087     // Get the zero of the same type with which we will be comparing.
1088     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1089     // %V.isnegative = icmp slt %V, 0
1090     // I.e is %V *strictly* less than zero, does it have negative value?
1091     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1092                               llvm::Twine(Name) + "." + V->getName() +
1093                                   ".negativitycheck");
1094   };
1095 
1096   // 1. Was the old Value negative?
1097   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1098   // 2. Is the new Value negative?
1099   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1100   // 3. Now, was the 'negativity status' preserved during the conversion?
1101   //    NOTE: conversion from negative to zero is considered to change the sign.
1102   //    (We want to get 'false' when the conversion changed the sign)
1103   //    So we should just equality-compare the negativity statuses.
1104   llvm::Value *Check = nullptr;
1105   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1106   // If the comparison result is 'false', then the conversion changed the sign.
1107   return std::make_pair(
1108       ScalarExprEmitter::ICCK_IntegerSignChange,
1109       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1110 }
1111 
1112 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1113                                                    Value *Dst, QualType DstType,
1114                                                    SourceLocation Loc) {
1115   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1116     return;
1117 
1118   llvm::Type *SrcTy = Src->getType();
1119   llvm::Type *DstTy = Dst->getType();
1120 
1121   // We only care about int->int conversions here.
1122   // We ignore conversions to/from pointer and/or bool.
1123   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1124                                                                        DstType))
1125     return;
1126 
1127   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1128   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1129   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1130   unsigned DstBits = DstTy->getScalarSizeInBits();
1131 
1132   // Now, we do not need to emit the check in *all* of the cases.
1133   // We can avoid emitting it in some obvious cases where it would have been
1134   // dropped by the opt passes (instcombine) always anyways.
1135   // If it's a cast between effectively the same type, no check.
1136   // NOTE: this is *not* equivalent to checking the canonical types.
1137   if (SrcSigned == DstSigned && SrcBits == DstBits)
1138     return;
1139   // At least one of the values needs to have signed type.
1140   // If both are unsigned, then obviously, neither of them can be negative.
1141   if (!SrcSigned && !DstSigned)
1142     return;
1143   // If the conversion is to *larger* *signed* type, then no check is needed.
1144   // Because either sign-extension happens (so the sign will remain),
1145   // or zero-extension will happen (the sign bit will be zero.)
1146   if ((DstBits > SrcBits) && DstSigned)
1147     return;
1148   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1149       (SrcBits > DstBits) && SrcSigned) {
1150     // If the signed integer truncation sanitizer is enabled,
1151     // and this is a truncation from signed type, then no check is needed.
1152     // Because here sign change check is interchangeable with truncation check.
1153     return;
1154   }
1155   // That's it. We can't rule out any more cases with the data we have.
1156 
1157   CodeGenFunction::SanitizerScope SanScope(&CGF);
1158 
1159   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1160             std::pair<llvm::Value *, SanitizerMask>>
1161       Check;
1162 
1163   // Each of these checks needs to return 'false' when an issue was detected.
1164   ImplicitConversionCheckKind CheckKind;
1165   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1166   // So we can 'and' all the checks together, and still get 'false',
1167   // if at least one of the checks detected an issue.
1168 
1169   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1170   CheckKind = Check.first;
1171   Checks.emplace_back(Check.second);
1172 
1173   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1174       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1175     // If the signed integer truncation sanitizer was enabled,
1176     // and we are truncating from larger unsigned type to smaller signed type,
1177     // let's handle the case we skipped in that check.
1178     Check =
1179         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1180     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1181     Checks.emplace_back(Check.second);
1182     // If the comparison result is 'i1 false', then the truncation was lossy.
1183   }
1184 
1185   llvm::Constant *StaticArgs[] = {
1186       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1187       CGF.EmitCheckTypeDescriptor(DstType),
1188       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1189   // EmitCheck() will 'and' all the checks together.
1190   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1191                 {Src, Dst});
1192 }
1193 
1194 /// Emit a conversion from the specified type to the specified destination type,
1195 /// both of which are LLVM scalar types.
1196 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1197                                                QualType DstType,
1198                                                SourceLocation Loc,
1199                                                ScalarConversionOpts Opts) {
1200   // All conversions involving fixed point types should be handled by the
1201   // EmitFixedPoint family functions. This is done to prevent bloating up this
1202   // function more, and although fixed point numbers are represented by
1203   // integers, we do not want to follow any logic that assumes they should be
1204   // treated as integers.
1205   // TODO(leonardchan): When necessary, add another if statement checking for
1206   // conversions to fixed point types from other types.
1207   if (SrcType->isFixedPointType()) {
1208     if (DstType->isBooleanType())
1209       // It is important that we check this before checking if the dest type is
1210       // an integer because booleans are technically integer types.
1211       // We do not need to check the padding bit on unsigned types if unsigned
1212       // padding is enabled because overflow into this bit is undefined
1213       // behavior.
1214       return Builder.CreateIsNotNull(Src, "tobool");
1215     if (DstType->isFixedPointType() || DstType->isIntegerType())
1216       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1217 
1218     llvm_unreachable(
1219         "Unhandled scalar conversion from a fixed point type to another type.");
1220   } else if (DstType->isFixedPointType()) {
1221     if (SrcType->isIntegerType())
1222       // This also includes converting booleans and enums to fixed point types.
1223       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1224 
1225     llvm_unreachable(
1226         "Unhandled scalar conversion to a fixed point type from another type.");
1227   }
1228 
1229   QualType NoncanonicalSrcType = SrcType;
1230   QualType NoncanonicalDstType = DstType;
1231 
1232   SrcType = CGF.getContext().getCanonicalType(SrcType);
1233   DstType = CGF.getContext().getCanonicalType(DstType);
1234   if (SrcType == DstType) return Src;
1235 
1236   if (DstType->isVoidType()) return nullptr;
1237 
1238   llvm::Value *OrigSrc = Src;
1239   QualType OrigSrcType = SrcType;
1240   llvm::Type *SrcTy = Src->getType();
1241 
1242   // Handle conversions to bool first, they are special: comparisons against 0.
1243   if (DstType->isBooleanType())
1244     return EmitConversionToBool(Src, SrcType);
1245 
1246   llvm::Type *DstTy = ConvertType(DstType);
1247 
1248   // Cast from half through float if half isn't a native type.
1249   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1250     // Cast to FP using the intrinsic if the half type itself isn't supported.
1251     if (DstTy->isFloatingPointTy()) {
1252       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1253         return Builder.CreateCall(
1254             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1255             Src);
1256     } else {
1257       // Cast to other types through float, using either the intrinsic or FPExt,
1258       // depending on whether the half type itself is supported
1259       // (as opposed to operations on half, available with NativeHalfType).
1260       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1261         Src = Builder.CreateCall(
1262             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1263                                  CGF.CGM.FloatTy),
1264             Src);
1265       } else {
1266         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1267       }
1268       SrcType = CGF.getContext().FloatTy;
1269       SrcTy = CGF.FloatTy;
1270     }
1271   }
1272 
1273   // Ignore conversions like int -> uint.
1274   if (SrcTy == DstTy) {
1275     if (Opts.EmitImplicitIntegerSignChangeChecks)
1276       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1277                                  NoncanonicalDstType, Loc);
1278 
1279     return Src;
1280   }
1281 
1282   // Handle pointer conversions next: pointers can only be converted to/from
1283   // other pointers and integers. Check for pointer types in terms of LLVM, as
1284   // some native types (like Obj-C id) may map to a pointer type.
1285   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1286     // The source value may be an integer, or a pointer.
1287     if (isa<llvm::PointerType>(SrcTy))
1288       return Builder.CreateBitCast(Src, DstTy, "conv");
1289 
1290     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1291     // First, convert to the correct width so that we control the kind of
1292     // extension.
1293     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1294     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1295     llvm::Value* IntResult =
1296         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1297     // Then, cast to pointer.
1298     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1299   }
1300 
1301   if (isa<llvm::PointerType>(SrcTy)) {
1302     // Must be an ptr to int cast.
1303     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1304     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1305   }
1306 
1307   // A scalar can be splatted to an extended vector of the same element type
1308   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1309     // Sema should add casts to make sure that the source expression's type is
1310     // the same as the vector's element type (sans qualifiers)
1311     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1312                SrcType.getTypePtr() &&
1313            "Splatted expr doesn't match with vector element type?");
1314 
1315     // Splat the element across to all elements
1316     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1317     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1318   }
1319 
1320   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1321     // Allow bitcast from vector to integer/fp of the same size.
1322     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1323     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1324     if (SrcSize == DstSize)
1325       return Builder.CreateBitCast(Src, DstTy, "conv");
1326 
1327     // Conversions between vectors of different sizes are not allowed except
1328     // when vectors of half are involved. Operations on storage-only half
1329     // vectors require promoting half vector operands to float vectors and
1330     // truncating the result, which is either an int or float vector, to a
1331     // short or half vector.
1332 
1333     // Source and destination are both expected to be vectors.
1334     llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1335     llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1336     (void)DstElementTy;
1337 
1338     assert(((SrcElementTy->isIntegerTy() &&
1339              DstElementTy->isIntegerTy()) ||
1340             (SrcElementTy->isFloatingPointTy() &&
1341              DstElementTy->isFloatingPointTy())) &&
1342            "unexpected conversion between a floating-point vector and an "
1343            "integer vector");
1344 
1345     // Truncate an i32 vector to an i16 vector.
1346     if (SrcElementTy->isIntegerTy())
1347       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1348 
1349     // Truncate a float vector to a half vector.
1350     if (SrcSize > DstSize)
1351       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1352 
1353     // Promote a half vector to a float vector.
1354     return Builder.CreateFPExt(Src, DstTy, "conv");
1355   }
1356 
1357   // Finally, we have the arithmetic types: real int/float.
1358   Value *Res = nullptr;
1359   llvm::Type *ResTy = DstTy;
1360 
1361   // An overflowing conversion has undefined behavior if either the source type
1362   // or the destination type is a floating-point type. However, we consider the
1363   // range of representable values for all floating-point types to be
1364   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1365   // floating-point type.
1366   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1367       OrigSrcType->isFloatingType())
1368     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1369                              Loc);
1370 
1371   // Cast to half through float if half isn't a native type.
1372   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1373     // Make sure we cast in a single step if from another FP type.
1374     if (SrcTy->isFloatingPointTy()) {
1375       // Use the intrinsic if the half type itself isn't supported
1376       // (as opposed to operations on half, available with NativeHalfType).
1377       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1378         return Builder.CreateCall(
1379             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1380       // If the half type is supported, just use an fptrunc.
1381       return Builder.CreateFPTrunc(Src, DstTy);
1382     }
1383     DstTy = CGF.FloatTy;
1384   }
1385 
1386   if (isa<llvm::IntegerType>(SrcTy)) {
1387     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1388     if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1389       InputSigned = true;
1390     }
1391     if (isa<llvm::IntegerType>(DstTy))
1392       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1393     else if (InputSigned)
1394       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1395     else
1396       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1397   } else if (isa<llvm::IntegerType>(DstTy)) {
1398     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1399     if (DstType->isSignedIntegerOrEnumerationType())
1400       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1401     else
1402       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1403   } else {
1404     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1405            "Unknown real conversion");
1406     if (DstTy->getTypeID() < SrcTy->getTypeID())
1407       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1408     else
1409       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1410   }
1411 
1412   if (DstTy != ResTy) {
1413     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1414       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1415       Res = Builder.CreateCall(
1416         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1417         Res);
1418     } else {
1419       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1420     }
1421   }
1422 
1423   if (Opts.EmitImplicitIntegerTruncationChecks)
1424     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1425                                NoncanonicalDstType, Loc);
1426 
1427   if (Opts.EmitImplicitIntegerSignChangeChecks)
1428     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1429                                NoncanonicalDstType, Loc);
1430 
1431   return Res;
1432 }
1433 
1434 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1435                                                    QualType DstTy,
1436                                                    SourceLocation Loc) {
1437   auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1438   auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1439   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1440   llvm::Value *Result;
1441   if (DstTy->isIntegerType())
1442     Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1443                                             DstFPSema.getWidth(),
1444                                             DstFPSema.isSigned());
1445   else if (SrcTy->isIntegerType())
1446     Result =  FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1447                                              DstFPSema);
1448   else
1449     Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1450   return Result;
1451 }
1452 
1453 /// Emit a conversion from the specified complex type to the specified
1454 /// destination type, where the destination type is an LLVM scalar type.
1455 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1456     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1457     SourceLocation Loc) {
1458   // Get the source element type.
1459   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1460 
1461   // Handle conversions to bool first, they are special: comparisons against 0.
1462   if (DstTy->isBooleanType()) {
1463     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1464     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1465     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1466     return Builder.CreateOr(Src.first, Src.second, "tobool");
1467   }
1468 
1469   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1470   // the imaginary part of the complex value is discarded and the value of the
1471   // real part is converted according to the conversion rules for the
1472   // corresponding real type.
1473   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1474 }
1475 
1476 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1477   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1478 }
1479 
1480 /// Emit a sanitization check for the given "binary" operation (which
1481 /// might actually be a unary increment which has been lowered to a binary
1482 /// operation). The check passes if all values in \p Checks (which are \c i1),
1483 /// are \c true.
1484 void ScalarExprEmitter::EmitBinOpCheck(
1485     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1486   assert(CGF.IsSanitizerScope);
1487   SanitizerHandler Check;
1488   SmallVector<llvm::Constant *, 4> StaticData;
1489   SmallVector<llvm::Value *, 2> DynamicData;
1490 
1491   BinaryOperatorKind Opcode = Info.Opcode;
1492   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1493     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1494 
1495   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1496   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1497   if (UO && UO->getOpcode() == UO_Minus) {
1498     Check = SanitizerHandler::NegateOverflow;
1499     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1500     DynamicData.push_back(Info.RHS);
1501   } else {
1502     if (BinaryOperator::isShiftOp(Opcode)) {
1503       // Shift LHS negative or too large, or RHS out of bounds.
1504       Check = SanitizerHandler::ShiftOutOfBounds;
1505       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1506       StaticData.push_back(
1507         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1508       StaticData.push_back(
1509         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1510     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1511       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1512       Check = SanitizerHandler::DivremOverflow;
1513       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1514     } else {
1515       // Arithmetic overflow (+, -, *).
1516       switch (Opcode) {
1517       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1518       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1519       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1520       default: llvm_unreachable("unexpected opcode for bin op check");
1521       }
1522       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1523     }
1524     DynamicData.push_back(Info.LHS);
1525     DynamicData.push_back(Info.RHS);
1526   }
1527 
1528   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1529 }
1530 
1531 //===----------------------------------------------------------------------===//
1532 //                            Visitor Methods
1533 //===----------------------------------------------------------------------===//
1534 
1535 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1536   CGF.ErrorUnsupported(E, "scalar expression");
1537   if (E->getType()->isVoidType())
1538     return nullptr;
1539   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1540 }
1541 
1542 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1543   // Vector Mask Case
1544   if (E->getNumSubExprs() == 2) {
1545     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1546     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1547     Value *Mask;
1548 
1549     auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1550     unsigned LHSElts = LTy->getNumElements();
1551 
1552     Mask = RHS;
1553 
1554     auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1555 
1556     // Mask off the high bits of each shuffle index.
1557     Value *MaskBits =
1558         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1559     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1560 
1561     // newv = undef
1562     // mask = mask & maskbits
1563     // for each elt
1564     //   n = extract mask i
1565     //   x = extract val n
1566     //   newv = insert newv, x, i
1567     auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1568                                            MTy->getNumElements());
1569     Value* NewV = llvm::UndefValue::get(RTy);
1570     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1571       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1572       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1573 
1574       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1575       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1576     }
1577     return NewV;
1578   }
1579 
1580   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1581   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1582 
1583   SmallVector<int, 32> Indices;
1584   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1585     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1586     // Check for -1 and output it as undef in the IR.
1587     if (Idx.isSigned() && Idx.isAllOnesValue())
1588       Indices.push_back(-1);
1589     else
1590       Indices.push_back(Idx.getZExtValue());
1591   }
1592 
1593   return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1594 }
1595 
1596 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1597   QualType SrcType = E->getSrcExpr()->getType(),
1598            DstType = E->getType();
1599 
1600   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1601 
1602   SrcType = CGF.getContext().getCanonicalType(SrcType);
1603   DstType = CGF.getContext().getCanonicalType(DstType);
1604   if (SrcType == DstType) return Src;
1605 
1606   assert(SrcType->isVectorType() &&
1607          "ConvertVector source type must be a vector");
1608   assert(DstType->isVectorType() &&
1609          "ConvertVector destination type must be a vector");
1610 
1611   llvm::Type *SrcTy = Src->getType();
1612   llvm::Type *DstTy = ConvertType(DstType);
1613 
1614   // Ignore conversions like int -> uint.
1615   if (SrcTy == DstTy)
1616     return Src;
1617 
1618   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1619            DstEltType = DstType->castAs<VectorType>()->getElementType();
1620 
1621   assert(SrcTy->isVectorTy() &&
1622          "ConvertVector source IR type must be a vector");
1623   assert(DstTy->isVectorTy() &&
1624          "ConvertVector destination IR type must be a vector");
1625 
1626   llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1627              *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1628 
1629   if (DstEltType->isBooleanType()) {
1630     assert((SrcEltTy->isFloatingPointTy() ||
1631             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1632 
1633     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1634     if (SrcEltTy->isFloatingPointTy()) {
1635       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1636     } else {
1637       return Builder.CreateICmpNE(Src, Zero, "tobool");
1638     }
1639   }
1640 
1641   // We have the arithmetic types: real int/float.
1642   Value *Res = nullptr;
1643 
1644   if (isa<llvm::IntegerType>(SrcEltTy)) {
1645     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1646     if (isa<llvm::IntegerType>(DstEltTy))
1647       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1648     else if (InputSigned)
1649       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1650     else
1651       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1652   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1653     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1654     if (DstEltType->isSignedIntegerOrEnumerationType())
1655       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1656     else
1657       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1658   } else {
1659     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1660            "Unknown real conversion");
1661     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1662       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1663     else
1664       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1665   }
1666 
1667   return Res;
1668 }
1669 
1670 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1671   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1672     CGF.EmitIgnoredExpr(E->getBase());
1673     return CGF.emitScalarConstant(Constant, E);
1674   } else {
1675     Expr::EvalResult Result;
1676     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1677       llvm::APSInt Value = Result.Val.getInt();
1678       CGF.EmitIgnoredExpr(E->getBase());
1679       return Builder.getInt(Value);
1680     }
1681   }
1682 
1683   return EmitLoadOfLValue(E);
1684 }
1685 
1686 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1687   TestAndClearIgnoreResultAssign();
1688 
1689   // Emit subscript expressions in rvalue context's.  For most cases, this just
1690   // loads the lvalue formed by the subscript expr.  However, we have to be
1691   // careful, because the base of a vector subscript is occasionally an rvalue,
1692   // so we can't get it as an lvalue.
1693   if (!E->getBase()->getType()->isVectorType())
1694     return EmitLoadOfLValue(E);
1695 
1696   // Handle the vector case.  The base must be a vector, the index must be an
1697   // integer value.
1698   Value *Base = Visit(E->getBase());
1699   Value *Idx  = Visit(E->getIdx());
1700   QualType IdxTy = E->getIdx()->getType();
1701 
1702   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1703     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1704 
1705   return Builder.CreateExtractElement(Base, Idx, "vecext");
1706 }
1707 
1708 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1709   TestAndClearIgnoreResultAssign();
1710 
1711   // Handle the vector case.  The base must be a vector, the index must be an
1712   // integer value.
1713   Value *RowIdx = Visit(E->getRowIdx());
1714   Value *ColumnIdx = Visit(E->getColumnIdx());
1715   Value *Matrix = Visit(E->getBase());
1716 
1717   // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1718   llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
1719   return MB.CreateExtractElement(
1720       Matrix, RowIdx, ColumnIdx,
1721       E->getBase()->getType()->getAs<ConstantMatrixType>()->getNumRows());
1722 }
1723 
1724 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1725                       unsigned Off) {
1726   int MV = SVI->getMaskValue(Idx);
1727   if (MV == -1)
1728     return -1;
1729   return Off + MV;
1730 }
1731 
1732 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1733   assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1734          "Index operand too large for shufflevector mask!");
1735   return C->getZExtValue();
1736 }
1737 
1738 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1739   bool Ignore = TestAndClearIgnoreResultAssign();
1740   (void)Ignore;
1741   assert (Ignore == false && "init list ignored");
1742   unsigned NumInitElements = E->getNumInits();
1743 
1744   if (E->hadArrayRangeDesignator())
1745     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1746 
1747   llvm::VectorType *VType =
1748     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1749 
1750   if (!VType) {
1751     if (NumInitElements == 0) {
1752       // C++11 value-initialization for the scalar.
1753       return EmitNullValue(E->getType());
1754     }
1755     // We have a scalar in braces. Just use the first element.
1756     return Visit(E->getInit(0));
1757   }
1758 
1759   unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
1760 
1761   // Loop over initializers collecting the Value for each, and remembering
1762   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1763   // us to fold the shuffle for the swizzle into the shuffle for the vector
1764   // initializer, since LLVM optimizers generally do not want to touch
1765   // shuffles.
1766   unsigned CurIdx = 0;
1767   bool VIsUndefShuffle = false;
1768   llvm::Value *V = llvm::UndefValue::get(VType);
1769   for (unsigned i = 0; i != NumInitElements; ++i) {
1770     Expr *IE = E->getInit(i);
1771     Value *Init = Visit(IE);
1772     SmallVector<int, 16> Args;
1773 
1774     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1775 
1776     // Handle scalar elements.  If the scalar initializer is actually one
1777     // element of a different vector of the same width, use shuffle instead of
1778     // extract+insert.
1779     if (!VVT) {
1780       if (isa<ExtVectorElementExpr>(IE)) {
1781         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1782 
1783         if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
1784                 ->getNumElements() == ResElts) {
1785           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1786           Value *LHS = nullptr, *RHS = nullptr;
1787           if (CurIdx == 0) {
1788             // insert into undef -> shuffle (src, undef)
1789             // shufflemask must use an i32
1790             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1791             Args.resize(ResElts, -1);
1792 
1793             LHS = EI->getVectorOperand();
1794             RHS = V;
1795             VIsUndefShuffle = true;
1796           } else if (VIsUndefShuffle) {
1797             // insert into undefshuffle && size match -> shuffle (v, src)
1798             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1799             for (unsigned j = 0; j != CurIdx; ++j)
1800               Args.push_back(getMaskElt(SVV, j, 0));
1801             Args.push_back(ResElts + C->getZExtValue());
1802             Args.resize(ResElts, -1);
1803 
1804             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1805             RHS = EI->getVectorOperand();
1806             VIsUndefShuffle = false;
1807           }
1808           if (!Args.empty()) {
1809             V = Builder.CreateShuffleVector(LHS, RHS, Args);
1810             ++CurIdx;
1811             continue;
1812           }
1813         }
1814       }
1815       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1816                                       "vecinit");
1817       VIsUndefShuffle = false;
1818       ++CurIdx;
1819       continue;
1820     }
1821 
1822     unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
1823 
1824     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1825     // input is the same width as the vector being constructed, generate an
1826     // optimized shuffle of the swizzle input into the result.
1827     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1828     if (isa<ExtVectorElementExpr>(IE)) {
1829       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1830       Value *SVOp = SVI->getOperand(0);
1831       auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
1832 
1833       if (OpTy->getNumElements() == ResElts) {
1834         for (unsigned j = 0; j != CurIdx; ++j) {
1835           // If the current vector initializer is a shuffle with undef, merge
1836           // this shuffle directly into it.
1837           if (VIsUndefShuffle) {
1838             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1839           } else {
1840             Args.push_back(j);
1841           }
1842         }
1843         for (unsigned j = 0, je = InitElts; j != je; ++j)
1844           Args.push_back(getMaskElt(SVI, j, Offset));
1845         Args.resize(ResElts, -1);
1846 
1847         if (VIsUndefShuffle)
1848           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1849 
1850         Init = SVOp;
1851       }
1852     }
1853 
1854     // Extend init to result vector length, and then shuffle its contribution
1855     // to the vector initializer into V.
1856     if (Args.empty()) {
1857       for (unsigned j = 0; j != InitElts; ++j)
1858         Args.push_back(j);
1859       Args.resize(ResElts, -1);
1860       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), Args,
1861                                          "vext");
1862 
1863       Args.clear();
1864       for (unsigned j = 0; j != CurIdx; ++j)
1865         Args.push_back(j);
1866       for (unsigned j = 0; j != InitElts; ++j)
1867         Args.push_back(j + Offset);
1868       Args.resize(ResElts, -1);
1869     }
1870 
1871     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1872     // merging subsequent shuffles into this one.
1873     if (CurIdx == 0)
1874       std::swap(V, Init);
1875     V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1876     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1877     CurIdx += InitElts;
1878   }
1879 
1880   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1881   // Emit remaining default initializers.
1882   llvm::Type *EltTy = VType->getElementType();
1883 
1884   // Emit remaining default initializers
1885   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1886     Value *Idx = Builder.getInt32(CurIdx);
1887     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1888     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1889   }
1890   return V;
1891 }
1892 
1893 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1894   const Expr *E = CE->getSubExpr();
1895 
1896   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1897     return false;
1898 
1899   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1900     // We always assume that 'this' is never null.
1901     return false;
1902   }
1903 
1904   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1905     // And that glvalue casts are never null.
1906     if (ICE->getValueKind() != VK_RValue)
1907       return false;
1908   }
1909 
1910   return true;
1911 }
1912 
1913 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1914 // have to handle a more broad range of conversions than explicit casts, as they
1915 // handle things like function to ptr-to-function decay etc.
1916 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1917   Expr *E = CE->getSubExpr();
1918   QualType DestTy = CE->getType();
1919   CastKind Kind = CE->getCastKind();
1920 
1921   // These cases are generally not written to ignore the result of
1922   // evaluating their sub-expressions, so we clear this now.
1923   bool Ignored = TestAndClearIgnoreResultAssign();
1924 
1925   // Since almost all cast kinds apply to scalars, this switch doesn't have
1926   // a default case, so the compiler will warn on a missing case.  The cases
1927   // are in the same order as in the CastKind enum.
1928   switch (Kind) {
1929   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1930   case CK_BuiltinFnToFnPtr:
1931     llvm_unreachable("builtin functions are handled elsewhere");
1932 
1933   case CK_LValueBitCast:
1934   case CK_ObjCObjectLValueCast: {
1935     Address Addr = EmitLValue(E).getAddress(CGF);
1936     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1937     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1938     return EmitLoadOfLValue(LV, CE->getExprLoc());
1939   }
1940 
1941   case CK_LValueToRValueBitCast: {
1942     LValue SourceLVal = CGF.EmitLValue(E);
1943     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
1944                                                 CGF.ConvertTypeForMem(DestTy));
1945     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
1946     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
1947     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
1948   }
1949 
1950   case CK_CPointerToObjCPointerCast:
1951   case CK_BlockPointerToObjCPointerCast:
1952   case CK_AnyPointerToBlockPointerCast:
1953   case CK_BitCast: {
1954     Value *Src = Visit(const_cast<Expr*>(E));
1955     llvm::Type *SrcTy = Src->getType();
1956     llvm::Type *DstTy = ConvertType(DestTy);
1957     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1958         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1959       llvm_unreachable("wrong cast for pointers in different address spaces"
1960                        "(must be an address space cast)!");
1961     }
1962 
1963     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1964       if (auto PT = DestTy->getAs<PointerType>())
1965         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1966                                       /*MayBeNull=*/true,
1967                                       CodeGenFunction::CFITCK_UnrelatedCast,
1968                                       CE->getBeginLoc());
1969     }
1970 
1971     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
1972       const QualType SrcType = E->getType();
1973 
1974       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
1975         // Casting to pointer that could carry dynamic information (provided by
1976         // invariant.group) requires launder.
1977         Src = Builder.CreateLaunderInvariantGroup(Src);
1978       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
1979         // Casting to pointer that does not carry dynamic information (provided
1980         // by invariant.group) requires stripping it.  Note that we don't do it
1981         // if the source could not be dynamic type and destination could be
1982         // dynamic because dynamic information is already laundered.  It is
1983         // because launder(strip(src)) == launder(src), so there is no need to
1984         // add extra strip before launder.
1985         Src = Builder.CreateStripInvariantGroup(Src);
1986       }
1987     }
1988 
1989     // Update heapallocsite metadata when there is an explicit pointer cast.
1990     if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
1991       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
1992         QualType PointeeType = DestTy->getPointeeType();
1993         if (!PointeeType.isNull())
1994           CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
1995                                                        CE->getExprLoc());
1996       }
1997     }
1998 
1999     // Perform VLAT <-> VLST bitcast through memory.
2000     if ((isa<llvm::FixedVectorType>(SrcTy) &&
2001          isa<llvm::ScalableVectorType>(DstTy)) ||
2002         (isa<llvm::ScalableVectorType>(SrcTy) &&
2003          isa<llvm::FixedVectorType>(DstTy))) {
2004       if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
2005         // Call expressions can't have a scalar return unless the return type
2006         // is a reference type so an lvalue can't be emitted. Create a temp
2007         // alloca to store the call, bitcast the address then load.
2008         QualType RetTy = CE->getCallReturnType(CGF.getContext());
2009         Address Addr =
2010             CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-call-rvalue");
2011         LValue LV = CGF.MakeAddrLValue(Addr, RetTy);
2012         CGF.EmitStoreOfScalar(Src, LV);
2013         Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy),
2014                                             "castFixedSve");
2015         LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2016         DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2017         return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2018       }
2019 
2020       Address Addr = EmitLValue(E).getAddress(CGF);
2021       Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2022       LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2023       DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2024       return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2025     }
2026 
2027     return Builder.CreateBitCast(Src, DstTy);
2028   }
2029   case CK_AddressSpaceConversion: {
2030     Expr::EvalResult Result;
2031     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2032         Result.Val.isNullPointer()) {
2033       // If E has side effect, it is emitted even if its final result is a
2034       // null pointer. In that case, a DCE pass should be able to
2035       // eliminate the useless instructions emitted during translating E.
2036       if (Result.HasSideEffects)
2037         Visit(E);
2038       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2039           ConvertType(DestTy)), DestTy);
2040     }
2041     // Since target may map different address spaces in AST to the same address
2042     // space, an address space conversion may end up as a bitcast.
2043     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2044         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2045         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2046   }
2047   case CK_AtomicToNonAtomic:
2048   case CK_NonAtomicToAtomic:
2049   case CK_NoOp:
2050   case CK_UserDefinedConversion:
2051     return Visit(const_cast<Expr*>(E));
2052 
2053   case CK_BaseToDerived: {
2054     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2055     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2056 
2057     Address Base = CGF.EmitPointerWithAlignment(E);
2058     Address Derived =
2059       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2060                                    CE->path_begin(), CE->path_end(),
2061                                    CGF.ShouldNullCheckClassCastValue(CE));
2062 
2063     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2064     // performed and the object is not of the derived type.
2065     if (CGF.sanitizePerformTypeCheck())
2066       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2067                         Derived.getPointer(), DestTy->getPointeeType());
2068 
2069     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2070       CGF.EmitVTablePtrCheckForCast(
2071           DestTy->getPointeeType(), Derived.getPointer(),
2072           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2073           CE->getBeginLoc());
2074 
2075     return Derived.getPointer();
2076   }
2077   case CK_UncheckedDerivedToBase:
2078   case CK_DerivedToBase: {
2079     // The EmitPointerWithAlignment path does this fine; just discard
2080     // the alignment.
2081     return CGF.EmitPointerWithAlignment(CE).getPointer();
2082   }
2083 
2084   case CK_Dynamic: {
2085     Address V = CGF.EmitPointerWithAlignment(E);
2086     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2087     return CGF.EmitDynamicCast(V, DCE);
2088   }
2089 
2090   case CK_ArrayToPointerDecay:
2091     return CGF.EmitArrayToPointerDecay(E).getPointer();
2092   case CK_FunctionToPointerDecay:
2093     return EmitLValue(E).getPointer(CGF);
2094 
2095   case CK_NullToPointer:
2096     if (MustVisitNullValue(E))
2097       CGF.EmitIgnoredExpr(E);
2098 
2099     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2100                               DestTy);
2101 
2102   case CK_NullToMemberPointer: {
2103     if (MustVisitNullValue(E))
2104       CGF.EmitIgnoredExpr(E);
2105 
2106     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2107     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2108   }
2109 
2110   case CK_ReinterpretMemberPointer:
2111   case CK_BaseToDerivedMemberPointer:
2112   case CK_DerivedToBaseMemberPointer: {
2113     Value *Src = Visit(E);
2114 
2115     // Note that the AST doesn't distinguish between checked and
2116     // unchecked member pointer conversions, so we always have to
2117     // implement checked conversions here.  This is inefficient when
2118     // actual control flow may be required in order to perform the
2119     // check, which it is for data member pointers (but not member
2120     // function pointers on Itanium and ARM).
2121     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2122   }
2123 
2124   case CK_ARCProduceObject:
2125     return CGF.EmitARCRetainScalarExpr(E);
2126   case CK_ARCConsumeObject:
2127     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2128   case CK_ARCReclaimReturnedObject:
2129     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2130   case CK_ARCExtendBlockObject:
2131     return CGF.EmitARCExtendBlockObject(E);
2132 
2133   case CK_CopyAndAutoreleaseBlockObject:
2134     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2135 
2136   case CK_FloatingRealToComplex:
2137   case CK_FloatingComplexCast:
2138   case CK_IntegralRealToComplex:
2139   case CK_IntegralComplexCast:
2140   case CK_IntegralComplexToFloatingComplex:
2141   case CK_FloatingComplexToIntegralComplex:
2142   case CK_ConstructorConversion:
2143   case CK_ToUnion:
2144     llvm_unreachable("scalar cast to non-scalar value");
2145 
2146   case CK_LValueToRValue:
2147     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2148     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2149     return Visit(const_cast<Expr*>(E));
2150 
2151   case CK_IntegralToPointer: {
2152     Value *Src = Visit(const_cast<Expr*>(E));
2153 
2154     // First, convert to the correct width so that we control the kind of
2155     // extension.
2156     auto DestLLVMTy = ConvertType(DestTy);
2157     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2158     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2159     llvm::Value* IntResult =
2160       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2161 
2162     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2163 
2164     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2165       // Going from integer to pointer that could be dynamic requires reloading
2166       // dynamic information from invariant.group.
2167       if (DestTy.mayBeDynamicClass())
2168         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2169     }
2170     return IntToPtr;
2171   }
2172   case CK_PointerToIntegral: {
2173     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2174     auto *PtrExpr = Visit(E);
2175 
2176     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2177       const QualType SrcType = E->getType();
2178 
2179       // Casting to integer requires stripping dynamic information as it does
2180       // not carries it.
2181       if (SrcType.mayBeDynamicClass())
2182         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2183     }
2184 
2185     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2186   }
2187   case CK_ToVoid: {
2188     CGF.EmitIgnoredExpr(E);
2189     return nullptr;
2190   }
2191   case CK_VectorSplat: {
2192     llvm::Type *DstTy = ConvertType(DestTy);
2193     Value *Elt = Visit(const_cast<Expr*>(E));
2194     // Splat the element across to all elements
2195     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
2196     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2197   }
2198 
2199   case CK_FixedPointCast:
2200     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2201                                 CE->getExprLoc());
2202 
2203   case CK_FixedPointToBoolean:
2204     assert(E->getType()->isFixedPointType() &&
2205            "Expected src type to be fixed point type");
2206     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2207     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2208                                 CE->getExprLoc());
2209 
2210   case CK_FixedPointToIntegral:
2211     assert(E->getType()->isFixedPointType() &&
2212            "Expected src type to be fixed point type");
2213     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2214     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2215                                 CE->getExprLoc());
2216 
2217   case CK_IntegralToFixedPoint:
2218     assert(E->getType()->isIntegerType() &&
2219            "Expected src type to be an integer");
2220     assert(DestTy->isFixedPointType() &&
2221            "Expected dest type to be fixed point type");
2222     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2223                                 CE->getExprLoc());
2224 
2225   case CK_IntegralCast: {
2226     ScalarConversionOpts Opts;
2227     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2228       if (!ICE->isPartOfExplicitCast())
2229         Opts = ScalarConversionOpts(CGF.SanOpts);
2230     }
2231     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2232                                 CE->getExprLoc(), Opts);
2233   }
2234   case CK_IntegralToFloating:
2235   case CK_FloatingToIntegral:
2236   case CK_FloatingCast:
2237   case CK_FixedPointToFloating:
2238   case CK_FloatingToFixedPoint:
2239     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2240                                 CE->getExprLoc());
2241   case CK_BooleanToSignedIntegral: {
2242     ScalarConversionOpts Opts;
2243     Opts.TreatBooleanAsSigned = true;
2244     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2245                                 CE->getExprLoc(), Opts);
2246   }
2247   case CK_IntegralToBoolean:
2248     return EmitIntToBoolConversion(Visit(E));
2249   case CK_PointerToBoolean:
2250     return EmitPointerToBoolConversion(Visit(E), E->getType());
2251   case CK_FloatingToBoolean:
2252     return EmitFloatToBoolConversion(Visit(E));
2253   case CK_MemberPointerToBoolean: {
2254     llvm::Value *MemPtr = Visit(E);
2255     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2256     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2257   }
2258 
2259   case CK_FloatingComplexToReal:
2260   case CK_IntegralComplexToReal:
2261     return CGF.EmitComplexExpr(E, false, true).first;
2262 
2263   case CK_FloatingComplexToBoolean:
2264   case CK_IntegralComplexToBoolean: {
2265     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2266 
2267     // TODO: kill this function off, inline appropriate case here
2268     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2269                                          CE->getExprLoc());
2270   }
2271 
2272   case CK_ZeroToOCLOpaqueType: {
2273     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2274             DestTy->isOCLIntelSubgroupAVCType()) &&
2275            "CK_ZeroToOCLEvent cast on non-event type");
2276     return llvm::Constant::getNullValue(ConvertType(DestTy));
2277   }
2278 
2279   case CK_IntToOCLSampler:
2280     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2281 
2282   } // end of switch
2283 
2284   llvm_unreachable("unknown scalar cast");
2285 }
2286 
2287 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2288   CodeGenFunction::StmtExprEvaluation eval(CGF);
2289   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2290                                            !E->getType()->isVoidType());
2291   if (!RetAlloca.isValid())
2292     return nullptr;
2293   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2294                               E->getExprLoc());
2295 }
2296 
2297 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2298   CodeGenFunction::RunCleanupsScope Scope(CGF);
2299   Value *V = Visit(E->getSubExpr());
2300   // Defend against dominance problems caused by jumps out of expression
2301   // evaluation through the shared cleanup block.
2302   Scope.ForceCleanup({&V});
2303   return V;
2304 }
2305 
2306 //===----------------------------------------------------------------------===//
2307 //                             Unary Operators
2308 //===----------------------------------------------------------------------===//
2309 
2310 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2311                                            llvm::Value *InVal, bool IsInc,
2312                                            FPOptions FPFeatures) {
2313   BinOpInfo BinOp;
2314   BinOp.LHS = InVal;
2315   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2316   BinOp.Ty = E->getType();
2317   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2318   BinOp.FPFeatures = FPFeatures;
2319   BinOp.E = E;
2320   return BinOp;
2321 }
2322 
2323 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2324     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2325   llvm::Value *Amount =
2326       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2327   StringRef Name = IsInc ? "inc" : "dec";
2328   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2329   case LangOptions::SOB_Defined:
2330     return Builder.CreateAdd(InVal, Amount, Name);
2331   case LangOptions::SOB_Undefined:
2332     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2333       return Builder.CreateNSWAdd(InVal, Amount, Name);
2334     LLVM_FALLTHROUGH;
2335   case LangOptions::SOB_Trapping:
2336     if (!E->canOverflow())
2337       return Builder.CreateNSWAdd(InVal, Amount, Name);
2338     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2339         E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2340   }
2341   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2342 }
2343 
2344 namespace {
2345 /// Handles check and update for lastprivate conditional variables.
2346 class OMPLastprivateConditionalUpdateRAII {
2347 private:
2348   CodeGenFunction &CGF;
2349   const UnaryOperator *E;
2350 
2351 public:
2352   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2353                                       const UnaryOperator *E)
2354       : CGF(CGF), E(E) {}
2355   ~OMPLastprivateConditionalUpdateRAII() {
2356     if (CGF.getLangOpts().OpenMP)
2357       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2358           CGF, E->getSubExpr());
2359   }
2360 };
2361 } // namespace
2362 
2363 llvm::Value *
2364 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2365                                            bool isInc, bool isPre) {
2366   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2367   QualType type = E->getSubExpr()->getType();
2368   llvm::PHINode *atomicPHI = nullptr;
2369   llvm::Value *value;
2370   llvm::Value *input;
2371 
2372   int amount = (isInc ? 1 : -1);
2373   bool isSubtraction = !isInc;
2374 
2375   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2376     type = atomicTy->getValueType();
2377     if (isInc && type->isBooleanType()) {
2378       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2379       if (isPre) {
2380         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2381             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2382         return Builder.getTrue();
2383       }
2384       // For atomic bool increment, we just store true and return it for
2385       // preincrement, do an atomic swap with true for postincrement
2386       return Builder.CreateAtomicRMW(
2387           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2388           llvm::AtomicOrdering::SequentiallyConsistent);
2389     }
2390     // Special case for atomic increment / decrement on integers, emit
2391     // atomicrmw instructions.  We skip this if we want to be doing overflow
2392     // checking, and fall into the slow path with the atomic cmpxchg loop.
2393     if (!type->isBooleanType() && type->isIntegerType() &&
2394         !(type->isUnsignedIntegerType() &&
2395           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2396         CGF.getLangOpts().getSignedOverflowBehavior() !=
2397             LangOptions::SOB_Trapping) {
2398       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2399         llvm::AtomicRMWInst::Sub;
2400       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2401         llvm::Instruction::Sub;
2402       llvm::Value *amt = CGF.EmitToMemory(
2403           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2404       llvm::Value *old =
2405           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2406                                   llvm::AtomicOrdering::SequentiallyConsistent);
2407       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2408     }
2409     value = EmitLoadOfLValue(LV, E->getExprLoc());
2410     input = value;
2411     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2412     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2413     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2414     value = CGF.EmitToMemory(value, type);
2415     Builder.CreateBr(opBB);
2416     Builder.SetInsertPoint(opBB);
2417     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2418     atomicPHI->addIncoming(value, startBB);
2419     value = atomicPHI;
2420   } else {
2421     value = EmitLoadOfLValue(LV, E->getExprLoc());
2422     input = value;
2423   }
2424 
2425   // Special case of integer increment that we have to check first: bool++.
2426   // Due to promotion rules, we get:
2427   //   bool++ -> bool = bool + 1
2428   //          -> bool = (int)bool + 1
2429   //          -> bool = ((int)bool + 1 != 0)
2430   // An interesting aspect of this is that increment is always true.
2431   // Decrement does not have this property.
2432   if (isInc && type->isBooleanType()) {
2433     value = Builder.getTrue();
2434 
2435   // Most common case by far: integer increment.
2436   } else if (type->isIntegerType()) {
2437     QualType promotedType;
2438     bool canPerformLossyDemotionCheck = false;
2439     if (type->isPromotableIntegerType()) {
2440       promotedType = CGF.getContext().getPromotedIntegerType(type);
2441       assert(promotedType != type && "Shouldn't promote to the same type.");
2442       canPerformLossyDemotionCheck = true;
2443       canPerformLossyDemotionCheck &=
2444           CGF.getContext().getCanonicalType(type) !=
2445           CGF.getContext().getCanonicalType(promotedType);
2446       canPerformLossyDemotionCheck &=
2447           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2448               type, promotedType);
2449       assert((!canPerformLossyDemotionCheck ||
2450               type->isSignedIntegerOrEnumerationType() ||
2451               promotedType->isSignedIntegerOrEnumerationType() ||
2452               ConvertType(type)->getScalarSizeInBits() ==
2453                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2454              "The following check expects that if we do promotion to different "
2455              "underlying canonical type, at least one of the types (either "
2456              "base or promoted) will be signed, or the bitwidths will match.");
2457     }
2458     if (CGF.SanOpts.hasOneOf(
2459             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2460         canPerformLossyDemotionCheck) {
2461       // While `x += 1` (for `x` with width less than int) is modeled as
2462       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2463       // ease; inc/dec with width less than int can't overflow because of
2464       // promotion rules, so we omit promotion+demotion, which means that we can
2465       // not catch lossy "demotion". Because we still want to catch these cases
2466       // when the sanitizer is enabled, we perform the promotion, then perform
2467       // the increment/decrement in the wider type, and finally
2468       // perform the demotion. This will catch lossy demotions.
2469 
2470       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2471       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2472       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2473       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2474       // emitted.
2475       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2476                                    ScalarConversionOpts(CGF.SanOpts));
2477 
2478       // Note that signed integer inc/dec with width less than int can't
2479       // overflow because of promotion rules; we're just eliding a few steps
2480       // here.
2481     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2482       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2483     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2484                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2485       value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2486           E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2487     } else {
2488       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2489       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2490     }
2491 
2492   // Next most common: pointer increment.
2493   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2494     QualType type = ptr->getPointeeType();
2495 
2496     // VLA types don't have constant size.
2497     if (const VariableArrayType *vla
2498           = CGF.getContext().getAsVariableArrayType(type)) {
2499       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2500       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2501       if (CGF.getLangOpts().isSignedOverflowDefined())
2502         value = Builder.CreateGEP(value, numElts, "vla.inc");
2503       else
2504         value = CGF.EmitCheckedInBoundsGEP(
2505             value, numElts, /*SignedIndices=*/false, isSubtraction,
2506             E->getExprLoc(), "vla.inc");
2507 
2508     // Arithmetic on function pointers (!) is just +-1.
2509     } else if (type->isFunctionType()) {
2510       llvm::Value *amt = Builder.getInt32(amount);
2511 
2512       value = CGF.EmitCastToVoidPtr(value);
2513       if (CGF.getLangOpts().isSignedOverflowDefined())
2514         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2515       else
2516         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2517                                            isSubtraction, E->getExprLoc(),
2518                                            "incdec.funcptr");
2519       value = Builder.CreateBitCast(value, input->getType());
2520 
2521     // For everything else, we can just do a simple increment.
2522     } else {
2523       llvm::Value *amt = Builder.getInt32(amount);
2524       if (CGF.getLangOpts().isSignedOverflowDefined())
2525         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2526       else
2527         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2528                                            isSubtraction, E->getExprLoc(),
2529                                            "incdec.ptr");
2530     }
2531 
2532   // Vector increment/decrement.
2533   } else if (type->isVectorType()) {
2534     if (type->hasIntegerRepresentation()) {
2535       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2536 
2537       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2538     } else {
2539       value = Builder.CreateFAdd(
2540                   value,
2541                   llvm::ConstantFP::get(value->getType(), amount),
2542                   isInc ? "inc" : "dec");
2543     }
2544 
2545   // Floating point.
2546   } else if (type->isRealFloatingType()) {
2547     // Add the inc/dec to the real part.
2548     llvm::Value *amt;
2549 
2550     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2551       // Another special case: half FP increment should be done via float
2552       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2553         value = Builder.CreateCall(
2554             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2555                                  CGF.CGM.FloatTy),
2556             input, "incdec.conv");
2557       } else {
2558         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2559       }
2560     }
2561 
2562     if (value->getType()->isFloatTy())
2563       amt = llvm::ConstantFP::get(VMContext,
2564                                   llvm::APFloat(static_cast<float>(amount)));
2565     else if (value->getType()->isDoubleTy())
2566       amt = llvm::ConstantFP::get(VMContext,
2567                                   llvm::APFloat(static_cast<double>(amount)));
2568     else {
2569       // Remaining types are Half, LongDouble or __float128. Convert from float.
2570       llvm::APFloat F(static_cast<float>(amount));
2571       bool ignored;
2572       const llvm::fltSemantics *FS;
2573       // Don't use getFloatTypeSemantics because Half isn't
2574       // necessarily represented using the "half" LLVM type.
2575       if (value->getType()->isFP128Ty())
2576         FS = &CGF.getTarget().getFloat128Format();
2577       else if (value->getType()->isHalfTy())
2578         FS = &CGF.getTarget().getHalfFormat();
2579       else
2580         FS = &CGF.getTarget().getLongDoubleFormat();
2581       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2582       amt = llvm::ConstantFP::get(VMContext, F);
2583     }
2584     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2585 
2586     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2587       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2588         value = Builder.CreateCall(
2589             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2590                                  CGF.CGM.FloatTy),
2591             value, "incdec.conv");
2592       } else {
2593         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2594       }
2595     }
2596 
2597   // Fixed-point types.
2598   } else if (type->isFixedPointType()) {
2599     // Fixed-point types are tricky. In some cases, it isn't possible to
2600     // represent a 1 or a -1 in the type at all. Piggyback off of
2601     // EmitFixedPointBinOp to avoid having to reimplement saturation.
2602     BinOpInfo Info;
2603     Info.E = E;
2604     Info.Ty = E->getType();
2605     Info.Opcode = isInc ? BO_Add : BO_Sub;
2606     Info.LHS = value;
2607     Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2608     // If the type is signed, it's better to represent this as +(-1) or -(-1),
2609     // since -1 is guaranteed to be representable.
2610     if (type->isSignedFixedPointType()) {
2611       Info.Opcode = isInc ? BO_Sub : BO_Add;
2612       Info.RHS = Builder.CreateNeg(Info.RHS);
2613     }
2614     // Now, convert from our invented integer literal to the type of the unary
2615     // op. This will upscale and saturate if necessary. This value can become
2616     // undef in some cases.
2617     llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
2618     auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
2619     Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
2620     value = EmitFixedPointBinOp(Info);
2621 
2622   // Objective-C pointer types.
2623   } else {
2624     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2625     value = CGF.EmitCastToVoidPtr(value);
2626 
2627     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2628     if (!isInc) size = -size;
2629     llvm::Value *sizeValue =
2630       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2631 
2632     if (CGF.getLangOpts().isSignedOverflowDefined())
2633       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2634     else
2635       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2636                                          /*SignedIndices=*/false, isSubtraction,
2637                                          E->getExprLoc(), "incdec.objptr");
2638     value = Builder.CreateBitCast(value, input->getType());
2639   }
2640 
2641   if (atomicPHI) {
2642     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2643     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2644     auto Pair = CGF.EmitAtomicCompareExchange(
2645         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2646     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2647     llvm::Value *success = Pair.second;
2648     atomicPHI->addIncoming(old, curBlock);
2649     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2650     Builder.SetInsertPoint(contBB);
2651     return isPre ? value : input;
2652   }
2653 
2654   // Store the updated result through the lvalue.
2655   if (LV.isBitField())
2656     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2657   else
2658     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2659 
2660   // If this is a postinc, return the value read from memory, otherwise use the
2661   // updated value.
2662   return isPre ? value : input;
2663 }
2664 
2665 
2666 
2667 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2668   TestAndClearIgnoreResultAssign();
2669   Value *Op = Visit(E->getSubExpr());
2670 
2671   // Generate a unary FNeg for FP ops.
2672   if (Op->getType()->isFPOrFPVectorTy())
2673     return Builder.CreateFNeg(Op, "fneg");
2674 
2675   // Emit unary minus with EmitSub so we handle overflow cases etc.
2676   BinOpInfo BinOp;
2677   BinOp.RHS = Op;
2678   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2679   BinOp.Ty = E->getType();
2680   BinOp.Opcode = BO_Sub;
2681   BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2682   BinOp.E = E;
2683   return EmitSub(BinOp);
2684 }
2685 
2686 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2687   TestAndClearIgnoreResultAssign();
2688   Value *Op = Visit(E->getSubExpr());
2689   return Builder.CreateNot(Op, "neg");
2690 }
2691 
2692 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2693   // Perform vector logical not on comparison with zero vector.
2694   if (E->getType()->isVectorType() &&
2695       E->getType()->castAs<VectorType>()->getVectorKind() ==
2696           VectorType::GenericVector) {
2697     Value *Oper = Visit(E->getSubExpr());
2698     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2699     Value *Result;
2700     if (Oper->getType()->isFPOrFPVectorTy()) {
2701       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
2702           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2703       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2704     } else
2705       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2706     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2707   }
2708 
2709   // Compare operand to zero.
2710   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2711 
2712   // Invert value.
2713   // TODO: Could dynamically modify easy computations here.  For example, if
2714   // the operand is an icmp ne, turn into icmp eq.
2715   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2716 
2717   // ZExt result to the expr type.
2718   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2719 }
2720 
2721 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2722   // Try folding the offsetof to a constant.
2723   Expr::EvalResult EVResult;
2724   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2725     llvm::APSInt Value = EVResult.Val.getInt();
2726     return Builder.getInt(Value);
2727   }
2728 
2729   // Loop over the components of the offsetof to compute the value.
2730   unsigned n = E->getNumComponents();
2731   llvm::Type* ResultType = ConvertType(E->getType());
2732   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2733   QualType CurrentType = E->getTypeSourceInfo()->getType();
2734   for (unsigned i = 0; i != n; ++i) {
2735     OffsetOfNode ON = E->getComponent(i);
2736     llvm::Value *Offset = nullptr;
2737     switch (ON.getKind()) {
2738     case OffsetOfNode::Array: {
2739       // Compute the index
2740       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2741       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2742       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2743       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2744 
2745       // Save the element type
2746       CurrentType =
2747           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2748 
2749       // Compute the element size
2750       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2751           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2752 
2753       // Multiply out to compute the result
2754       Offset = Builder.CreateMul(Idx, ElemSize);
2755       break;
2756     }
2757 
2758     case OffsetOfNode::Field: {
2759       FieldDecl *MemberDecl = ON.getField();
2760       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2761       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2762 
2763       // Compute the index of the field in its parent.
2764       unsigned i = 0;
2765       // FIXME: It would be nice if we didn't have to loop here!
2766       for (RecordDecl::field_iterator Field = RD->field_begin(),
2767                                       FieldEnd = RD->field_end();
2768            Field != FieldEnd; ++Field, ++i) {
2769         if (*Field == MemberDecl)
2770           break;
2771       }
2772       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2773 
2774       // Compute the offset to the field
2775       int64_t OffsetInt = RL.getFieldOffset(i) /
2776                           CGF.getContext().getCharWidth();
2777       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2778 
2779       // Save the element type.
2780       CurrentType = MemberDecl->getType();
2781       break;
2782     }
2783 
2784     case OffsetOfNode::Identifier:
2785       llvm_unreachable("dependent __builtin_offsetof");
2786 
2787     case OffsetOfNode::Base: {
2788       if (ON.getBase()->isVirtual()) {
2789         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2790         continue;
2791       }
2792 
2793       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2794       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2795 
2796       // Save the element type.
2797       CurrentType = ON.getBase()->getType();
2798 
2799       // Compute the offset to the base.
2800       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2801       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2802       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2803       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2804       break;
2805     }
2806     }
2807     Result = Builder.CreateAdd(Result, Offset);
2808   }
2809   return Result;
2810 }
2811 
2812 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2813 /// argument of the sizeof expression as an integer.
2814 Value *
2815 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2816                               const UnaryExprOrTypeTraitExpr *E) {
2817   QualType TypeToSize = E->getTypeOfArgument();
2818   if (E->getKind() == UETT_SizeOf) {
2819     if (const VariableArrayType *VAT =
2820           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2821       if (E->isArgumentType()) {
2822         // sizeof(type) - make sure to emit the VLA size.
2823         CGF.EmitVariablyModifiedType(TypeToSize);
2824       } else {
2825         // C99 6.5.3.4p2: If the argument is an expression of type
2826         // VLA, it is evaluated.
2827         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2828       }
2829 
2830       auto VlaSize = CGF.getVLASize(VAT);
2831       llvm::Value *size = VlaSize.NumElts;
2832 
2833       // Scale the number of non-VLA elements by the non-VLA element size.
2834       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2835       if (!eltSize.isOne())
2836         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2837 
2838       return size;
2839     }
2840   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2841     auto Alignment =
2842         CGF.getContext()
2843             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2844                 E->getTypeOfArgument()->getPointeeType()))
2845             .getQuantity();
2846     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2847   }
2848 
2849   // If this isn't sizeof(vla), the result must be constant; use the constant
2850   // folding logic so we don't have to duplicate it here.
2851   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2852 }
2853 
2854 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2855   Expr *Op = E->getSubExpr();
2856   if (Op->getType()->isAnyComplexType()) {
2857     // If it's an l-value, load through the appropriate subobject l-value.
2858     // Note that we have to ask E because Op might be an l-value that
2859     // this won't work for, e.g. an Obj-C property.
2860     if (E->isGLValue())
2861       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2862                                   E->getExprLoc()).getScalarVal();
2863 
2864     // Otherwise, calculate and project.
2865     return CGF.EmitComplexExpr(Op, false, true).first;
2866   }
2867 
2868   return Visit(Op);
2869 }
2870 
2871 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2872   Expr *Op = E->getSubExpr();
2873   if (Op->getType()->isAnyComplexType()) {
2874     // If it's an l-value, load through the appropriate subobject l-value.
2875     // Note that we have to ask E because Op might be an l-value that
2876     // this won't work for, e.g. an Obj-C property.
2877     if (Op->isGLValue())
2878       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2879                                   E->getExprLoc()).getScalarVal();
2880 
2881     // Otherwise, calculate and project.
2882     return CGF.EmitComplexExpr(Op, true, false).second;
2883   }
2884 
2885   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2886   // effects are evaluated, but not the actual value.
2887   if (Op->isGLValue())
2888     CGF.EmitLValue(Op);
2889   else
2890     CGF.EmitScalarExpr(Op, true);
2891   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2892 }
2893 
2894 //===----------------------------------------------------------------------===//
2895 //                           Binary Operators
2896 //===----------------------------------------------------------------------===//
2897 
2898 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2899   TestAndClearIgnoreResultAssign();
2900   BinOpInfo Result;
2901   Result.LHS = Visit(E->getLHS());
2902   Result.RHS = Visit(E->getRHS());
2903   Result.Ty  = E->getType();
2904   Result.Opcode = E->getOpcode();
2905   Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2906   Result.E = E;
2907   return Result;
2908 }
2909 
2910 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2911                                               const CompoundAssignOperator *E,
2912                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2913                                                    Value *&Result) {
2914   QualType LHSTy = E->getLHS()->getType();
2915   BinOpInfo OpInfo;
2916 
2917   if (E->getComputationResultType()->isAnyComplexType())
2918     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2919 
2920   // Emit the RHS first.  __block variables need to have the rhs evaluated
2921   // first, plus this should improve codegen a little.
2922   OpInfo.RHS = Visit(E->getRHS());
2923   OpInfo.Ty = E->getComputationResultType();
2924   OpInfo.Opcode = E->getOpcode();
2925   OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2926   OpInfo.E = E;
2927   // Load/convert the LHS.
2928   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2929 
2930   llvm::PHINode *atomicPHI = nullptr;
2931   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2932     QualType type = atomicTy->getValueType();
2933     if (!type->isBooleanType() && type->isIntegerType() &&
2934         !(type->isUnsignedIntegerType() &&
2935           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2936         CGF.getLangOpts().getSignedOverflowBehavior() !=
2937             LangOptions::SOB_Trapping) {
2938       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
2939       llvm::Instruction::BinaryOps Op;
2940       switch (OpInfo.Opcode) {
2941         // We don't have atomicrmw operands for *, %, /, <<, >>
2942         case BO_MulAssign: case BO_DivAssign:
2943         case BO_RemAssign:
2944         case BO_ShlAssign:
2945         case BO_ShrAssign:
2946           break;
2947         case BO_AddAssign:
2948           AtomicOp = llvm::AtomicRMWInst::Add;
2949           Op = llvm::Instruction::Add;
2950           break;
2951         case BO_SubAssign:
2952           AtomicOp = llvm::AtomicRMWInst::Sub;
2953           Op = llvm::Instruction::Sub;
2954           break;
2955         case BO_AndAssign:
2956           AtomicOp = llvm::AtomicRMWInst::And;
2957           Op = llvm::Instruction::And;
2958           break;
2959         case BO_XorAssign:
2960           AtomicOp = llvm::AtomicRMWInst::Xor;
2961           Op = llvm::Instruction::Xor;
2962           break;
2963         case BO_OrAssign:
2964           AtomicOp = llvm::AtomicRMWInst::Or;
2965           Op = llvm::Instruction::Or;
2966           break;
2967         default:
2968           llvm_unreachable("Invalid compound assignment type");
2969       }
2970       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
2971         llvm::Value *Amt = CGF.EmitToMemory(
2972             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2973                                  E->getExprLoc()),
2974             LHSTy);
2975         Value *OldVal = Builder.CreateAtomicRMW(
2976             AtomicOp, LHSLV.getPointer(CGF), Amt,
2977             llvm::AtomicOrdering::SequentiallyConsistent);
2978 
2979         // Since operation is atomic, the result type is guaranteed to be the
2980         // same as the input in LLVM terms.
2981         Result = Builder.CreateBinOp(Op, OldVal, Amt);
2982         return LHSLV;
2983       }
2984     }
2985     // FIXME: For floating point types, we should be saving and restoring the
2986     // floating point environment in the loop.
2987     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2988     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2989     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2990     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2991     Builder.CreateBr(opBB);
2992     Builder.SetInsertPoint(opBB);
2993     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2994     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2995     OpInfo.LHS = atomicPHI;
2996   }
2997   else
2998     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2999 
3000   SourceLocation Loc = E->getExprLoc();
3001   OpInfo.LHS =
3002       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
3003 
3004   // Expand the binary operator.
3005   Result = (this->*Func)(OpInfo);
3006 
3007   // Convert the result back to the LHS type,
3008   // potentially with Implicit Conversion sanitizer check.
3009   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
3010                                 Loc, ScalarConversionOpts(CGF.SanOpts));
3011 
3012   if (atomicPHI) {
3013     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3014     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3015     auto Pair = CGF.EmitAtomicCompareExchange(
3016         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3017     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3018     llvm::Value *success = Pair.second;
3019     atomicPHI->addIncoming(old, curBlock);
3020     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3021     Builder.SetInsertPoint(contBB);
3022     return LHSLV;
3023   }
3024 
3025   // Store the result value into the LHS lvalue. Bit-fields are handled
3026   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3027   // 'An assignment expression has the value of the left operand after the
3028   // assignment...'.
3029   if (LHSLV.isBitField())
3030     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3031   else
3032     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3033 
3034   if (CGF.getLangOpts().OpenMP)
3035     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3036                                                                   E->getLHS());
3037   return LHSLV;
3038 }
3039 
3040 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3041                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3042   bool Ignore = TestAndClearIgnoreResultAssign();
3043   Value *RHS = nullptr;
3044   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3045 
3046   // If the result is clearly ignored, return now.
3047   if (Ignore)
3048     return nullptr;
3049 
3050   // The result of an assignment in C is the assigned r-value.
3051   if (!CGF.getLangOpts().CPlusPlus)
3052     return RHS;
3053 
3054   // If the lvalue is non-volatile, return the computed value of the assignment.
3055   if (!LHS.isVolatileQualified())
3056     return RHS;
3057 
3058   // Otherwise, reload the value.
3059   return EmitLoadOfLValue(LHS, E->getExprLoc());
3060 }
3061 
3062 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3063     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3064   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3065 
3066   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3067     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3068                                     SanitizerKind::IntegerDivideByZero));
3069   }
3070 
3071   const auto *BO = cast<BinaryOperator>(Ops.E);
3072   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3073       Ops.Ty->hasSignedIntegerRepresentation() &&
3074       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3075       Ops.mayHaveIntegerOverflow()) {
3076     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3077 
3078     llvm::Value *IntMin =
3079       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3080     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
3081 
3082     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3083     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3084     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3085     Checks.push_back(
3086         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3087   }
3088 
3089   if (Checks.size() > 0)
3090     EmitBinOpCheck(Checks, Ops);
3091 }
3092 
3093 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3094   {
3095     CodeGenFunction::SanitizerScope SanScope(&CGF);
3096     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3097          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3098         Ops.Ty->isIntegerType() &&
3099         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3100       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3101       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3102     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3103                Ops.Ty->isRealFloatingType() &&
3104                Ops.mayHaveFloatDivisionByZero()) {
3105       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3106       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3107       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3108                      Ops);
3109     }
3110   }
3111 
3112   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3113     llvm::Value *Val;
3114     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3115     Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3116     if (CGF.getLangOpts().OpenCL &&
3117         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
3118       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3119       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3120       // build option allows an application to specify that single precision
3121       // floating-point divide (x/y and 1/x) and sqrt used in the program
3122       // source are correctly rounded.
3123       llvm::Type *ValTy = Val->getType();
3124       if (ValTy->isFloatTy() ||
3125           (isa<llvm::VectorType>(ValTy) &&
3126            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3127         CGF.SetFPAccuracy(Val, 2.5);
3128     }
3129     return Val;
3130   }
3131   else if (Ops.isFixedPointOp())
3132     return EmitFixedPointBinOp(Ops);
3133   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3134     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3135   else
3136     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3137 }
3138 
3139 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3140   // Rem in C can't be a floating point type: C99 6.5.5p2.
3141   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3142        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3143       Ops.Ty->isIntegerType() &&
3144       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3145     CodeGenFunction::SanitizerScope SanScope(&CGF);
3146     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3147     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3148   }
3149 
3150   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3151     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3152   else
3153     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3154 }
3155 
3156 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3157   unsigned IID;
3158   unsigned OpID = 0;
3159 
3160   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3161   switch (Ops.Opcode) {
3162   case BO_Add:
3163   case BO_AddAssign:
3164     OpID = 1;
3165     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3166                      llvm::Intrinsic::uadd_with_overflow;
3167     break;
3168   case BO_Sub:
3169   case BO_SubAssign:
3170     OpID = 2;
3171     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3172                      llvm::Intrinsic::usub_with_overflow;
3173     break;
3174   case BO_Mul:
3175   case BO_MulAssign:
3176     OpID = 3;
3177     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3178                      llvm::Intrinsic::umul_with_overflow;
3179     break;
3180   default:
3181     llvm_unreachable("Unsupported operation for overflow detection");
3182   }
3183   OpID <<= 1;
3184   if (isSigned)
3185     OpID |= 1;
3186 
3187   CodeGenFunction::SanitizerScope SanScope(&CGF);
3188   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3189 
3190   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3191 
3192   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3193   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3194   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3195 
3196   // Handle overflow with llvm.trap if no custom handler has been specified.
3197   const std::string *handlerName =
3198     &CGF.getLangOpts().OverflowHandler;
3199   if (handlerName->empty()) {
3200     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3201     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3202     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3203       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3204       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3205                               : SanitizerKind::UnsignedIntegerOverflow;
3206       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3207     } else
3208       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
3209     return result;
3210   }
3211 
3212   // Branch in case of overflow.
3213   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3214   llvm::BasicBlock *continueBB =
3215       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3216   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3217 
3218   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3219 
3220   // If an overflow handler is set, then we want to call it and then use its
3221   // result, if it returns.
3222   Builder.SetInsertPoint(overflowBB);
3223 
3224   // Get the overflow handler.
3225   llvm::Type *Int8Ty = CGF.Int8Ty;
3226   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3227   llvm::FunctionType *handlerTy =
3228       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3229   llvm::FunctionCallee handler =
3230       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3231 
3232   // Sign extend the args to 64-bit, so that we can use the same handler for
3233   // all types of overflow.
3234   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3235   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3236 
3237   // Call the handler with the two arguments, the operation, and the size of
3238   // the result.
3239   llvm::Value *handlerArgs[] = {
3240     lhs,
3241     rhs,
3242     Builder.getInt8(OpID),
3243     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3244   };
3245   llvm::Value *handlerResult =
3246     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3247 
3248   // Truncate the result back to the desired size.
3249   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3250   Builder.CreateBr(continueBB);
3251 
3252   Builder.SetInsertPoint(continueBB);
3253   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3254   phi->addIncoming(result, initialBB);
3255   phi->addIncoming(handlerResult, overflowBB);
3256 
3257   return phi;
3258 }
3259 
3260 /// Emit pointer + index arithmetic.
3261 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3262                                     const BinOpInfo &op,
3263                                     bool isSubtraction) {
3264   // Must have binary (not unary) expr here.  Unary pointer
3265   // increment/decrement doesn't use this path.
3266   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3267 
3268   Value *pointer = op.LHS;
3269   Expr *pointerOperand = expr->getLHS();
3270   Value *index = op.RHS;
3271   Expr *indexOperand = expr->getRHS();
3272 
3273   // In a subtraction, the LHS is always the pointer.
3274   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3275     std::swap(pointer, index);
3276     std::swap(pointerOperand, indexOperand);
3277   }
3278 
3279   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3280 
3281   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3282   auto &DL = CGF.CGM.getDataLayout();
3283   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3284 
3285   // Some versions of glibc and gcc use idioms (particularly in their malloc
3286   // routines) that add a pointer-sized integer (known to be a pointer value)
3287   // to a null pointer in order to cast the value back to an integer or as
3288   // part of a pointer alignment algorithm.  This is undefined behavior, but
3289   // we'd like to be able to compile programs that use it.
3290   //
3291   // Normally, we'd generate a GEP with a null-pointer base here in response
3292   // to that code, but it's also UB to dereference a pointer created that
3293   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3294   // generate a direct cast of the integer value to a pointer.
3295   //
3296   // The idiom (p = nullptr + N) is not met if any of the following are true:
3297   //
3298   //   The operation is subtraction.
3299   //   The index is not pointer-sized.
3300   //   The pointer type is not byte-sized.
3301   //
3302   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3303                                                        op.Opcode,
3304                                                        expr->getLHS(),
3305                                                        expr->getRHS()))
3306     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3307 
3308   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3309     // Zero-extend or sign-extend the pointer value according to
3310     // whether the index is signed or not.
3311     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3312                                       "idx.ext");
3313   }
3314 
3315   // If this is subtraction, negate the index.
3316   if (isSubtraction)
3317     index = CGF.Builder.CreateNeg(index, "idx.neg");
3318 
3319   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3320     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3321                         /*Accessed*/ false);
3322 
3323   const PointerType *pointerType
3324     = pointerOperand->getType()->getAs<PointerType>();
3325   if (!pointerType) {
3326     QualType objectType = pointerOperand->getType()
3327                                         ->castAs<ObjCObjectPointerType>()
3328                                         ->getPointeeType();
3329     llvm::Value *objectSize
3330       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3331 
3332     index = CGF.Builder.CreateMul(index, objectSize);
3333 
3334     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3335     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3336     return CGF.Builder.CreateBitCast(result, pointer->getType());
3337   }
3338 
3339   QualType elementType = pointerType->getPointeeType();
3340   if (const VariableArrayType *vla
3341         = CGF.getContext().getAsVariableArrayType(elementType)) {
3342     // The element count here is the total number of non-VLA elements.
3343     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3344 
3345     // Effectively, the multiply by the VLA size is part of the GEP.
3346     // GEP indexes are signed, and scaling an index isn't permitted to
3347     // signed-overflow, so we use the same semantics for our explicit
3348     // multiply.  We suppress this if overflow is not undefined behavior.
3349     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3350       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3351       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3352     } else {
3353       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3354       pointer =
3355           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3356                                      op.E->getExprLoc(), "add.ptr");
3357     }
3358     return pointer;
3359   }
3360 
3361   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3362   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3363   // future proof.
3364   if (elementType->isVoidType() || elementType->isFunctionType()) {
3365     Value *result = CGF.EmitCastToVoidPtr(pointer);
3366     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3367     return CGF.Builder.CreateBitCast(result, pointer->getType());
3368   }
3369 
3370   if (CGF.getLangOpts().isSignedOverflowDefined())
3371     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3372 
3373   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3374                                     op.E->getExprLoc(), "add.ptr");
3375 }
3376 
3377 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3378 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3379 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3380 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3381 // efficient operations.
3382 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3383                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3384                            bool negMul, bool negAdd) {
3385   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3386 
3387   Value *MulOp0 = MulOp->getOperand(0);
3388   Value *MulOp1 = MulOp->getOperand(1);
3389   if (negMul)
3390     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3391   if (negAdd)
3392     Addend = Builder.CreateFNeg(Addend, "neg");
3393 
3394   Value *FMulAdd = nullptr;
3395   if (Builder.getIsFPConstrained()) {
3396     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3397            "Only constrained operation should be created when Builder is in FP "
3398            "constrained mode");
3399     FMulAdd = Builder.CreateConstrainedFPCall(
3400         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3401                              Addend->getType()),
3402         {MulOp0, MulOp1, Addend});
3403   } else {
3404     FMulAdd = Builder.CreateCall(
3405         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3406         {MulOp0, MulOp1, Addend});
3407   }
3408   MulOp->eraseFromParent();
3409 
3410   return FMulAdd;
3411 }
3412 
3413 // Check whether it would be legal to emit an fmuladd intrinsic call to
3414 // represent op and if so, build the fmuladd.
3415 //
3416 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3417 // Does NOT check the type of the operation - it's assumed that this function
3418 // will be called from contexts where it's known that the type is contractable.
3419 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3420                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3421                          bool isSub=false) {
3422 
3423   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3424           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3425          "Only fadd/fsub can be the root of an fmuladd.");
3426 
3427   // Check whether this op is marked as fusable.
3428   if (!op.FPFeatures.allowFPContractWithinStatement())
3429     return nullptr;
3430 
3431   // We have a potentially fusable op. Look for a mul on one of the operands.
3432   // Also, make sure that the mul result isn't used directly. In that case,
3433   // there's no point creating a muladd operation.
3434   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3435     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3436         LHSBinOp->use_empty())
3437       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3438   }
3439   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3440     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3441         RHSBinOp->use_empty())
3442       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3443   }
3444 
3445   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3446     if (LHSBinOp->getIntrinsicID() ==
3447             llvm::Intrinsic::experimental_constrained_fmul &&
3448         LHSBinOp->use_empty())
3449       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3450   }
3451   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3452     if (RHSBinOp->getIntrinsicID() ==
3453             llvm::Intrinsic::experimental_constrained_fmul &&
3454         RHSBinOp->use_empty())
3455       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3456   }
3457 
3458   return nullptr;
3459 }
3460 
3461 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3462   if (op.LHS->getType()->isPointerTy() ||
3463       op.RHS->getType()->isPointerTy())
3464     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3465 
3466   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3467     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3468     case LangOptions::SOB_Defined:
3469       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3470     case LangOptions::SOB_Undefined:
3471       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3472         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3473       LLVM_FALLTHROUGH;
3474     case LangOptions::SOB_Trapping:
3475       if (CanElideOverflowCheck(CGF.getContext(), op))
3476         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3477       return EmitOverflowCheckedBinOp(op);
3478     }
3479   }
3480 
3481   if (op.Ty->isConstantMatrixType()) {
3482     llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3483     return MB.CreateAdd(op.LHS, op.RHS);
3484   }
3485 
3486   if (op.Ty->isUnsignedIntegerType() &&
3487       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3488       !CanElideOverflowCheck(CGF.getContext(), op))
3489     return EmitOverflowCheckedBinOp(op);
3490 
3491   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3492     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3493     // Try to form an fmuladd.
3494     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3495       return FMulAdd;
3496 
3497     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3498   }
3499 
3500   if (op.isFixedPointOp())
3501     return EmitFixedPointBinOp(op);
3502 
3503   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3504 }
3505 
3506 /// The resulting value must be calculated with exact precision, so the operands
3507 /// may not be the same type.
3508 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3509   using llvm::APSInt;
3510   using llvm::ConstantInt;
3511 
3512   // This is either a binary operation where at least one of the operands is
3513   // a fixed-point type, or a unary operation where the operand is a fixed-point
3514   // type. The result type of a binary operation is determined by
3515   // Sema::handleFixedPointConversions().
3516   QualType ResultTy = op.Ty;
3517   QualType LHSTy, RHSTy;
3518   if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3519     RHSTy = BinOp->getRHS()->getType();
3520     if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3521       // For compound assignment, the effective type of the LHS at this point
3522       // is the computation LHS type, not the actual LHS type, and the final
3523       // result type is not the type of the expression but rather the
3524       // computation result type.
3525       LHSTy = CAO->getComputationLHSType();
3526       ResultTy = CAO->getComputationResultType();
3527     } else
3528       LHSTy = BinOp->getLHS()->getType();
3529   } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3530     LHSTy = UnOp->getSubExpr()->getType();
3531     RHSTy = UnOp->getSubExpr()->getType();
3532   }
3533   ASTContext &Ctx = CGF.getContext();
3534   Value *LHS = op.LHS;
3535   Value *RHS = op.RHS;
3536 
3537   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3538   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3539   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3540   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3541 
3542   // Perform the actual operation.
3543   Value *Result;
3544   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3545   switch (op.Opcode) {
3546   case BO_AddAssign:
3547   case BO_Add:
3548     Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
3549     break;
3550   case BO_SubAssign:
3551   case BO_Sub:
3552     Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
3553     break;
3554   case BO_MulAssign:
3555   case BO_Mul:
3556     Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
3557     break;
3558   case BO_DivAssign:
3559   case BO_Div:
3560     Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
3561     break;
3562   case BO_ShlAssign:
3563   case BO_Shl:
3564     Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
3565     break;
3566   case BO_ShrAssign:
3567   case BO_Shr:
3568     Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
3569     break;
3570   case BO_LT:
3571     return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3572   case BO_GT:
3573     return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3574   case BO_LE:
3575     return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3576   case BO_GE:
3577     return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3578   case BO_EQ:
3579     // For equality operations, we assume any padding bits on unsigned types are
3580     // zero'd out. They could be overwritten through non-saturating operations
3581     // that cause overflow, but this leads to undefined behavior.
3582     return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
3583   case BO_NE:
3584     return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3585   case BO_Cmp:
3586   case BO_LAnd:
3587   case BO_LOr:
3588     llvm_unreachable("Found unimplemented fixed point binary operation");
3589   case BO_PtrMemD:
3590   case BO_PtrMemI:
3591   case BO_Rem:
3592   case BO_Xor:
3593   case BO_And:
3594   case BO_Or:
3595   case BO_Assign:
3596   case BO_RemAssign:
3597   case BO_AndAssign:
3598   case BO_XorAssign:
3599   case BO_OrAssign:
3600   case BO_Comma:
3601     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3602   }
3603 
3604   bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
3605                  BinaryOperator::isShiftAssignOp(op.Opcode);
3606   // Convert to the result type.
3607   return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
3608                                                       : CommonFixedSema,
3609                                       ResultFixedSema);
3610 }
3611 
3612 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3613   // The LHS is always a pointer if either side is.
3614   if (!op.LHS->getType()->isPointerTy()) {
3615     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3616       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3617       case LangOptions::SOB_Defined:
3618         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3619       case LangOptions::SOB_Undefined:
3620         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3621           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3622         LLVM_FALLTHROUGH;
3623       case LangOptions::SOB_Trapping:
3624         if (CanElideOverflowCheck(CGF.getContext(), op))
3625           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3626         return EmitOverflowCheckedBinOp(op);
3627       }
3628     }
3629 
3630     if (op.Ty->isConstantMatrixType()) {
3631       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3632       return MB.CreateSub(op.LHS, op.RHS);
3633     }
3634 
3635     if (op.Ty->isUnsignedIntegerType() &&
3636         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3637         !CanElideOverflowCheck(CGF.getContext(), op))
3638       return EmitOverflowCheckedBinOp(op);
3639 
3640     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3641       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3642       // Try to form an fmuladd.
3643       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3644         return FMulAdd;
3645       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
3646     }
3647 
3648     if (op.isFixedPointOp())
3649       return EmitFixedPointBinOp(op);
3650 
3651     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3652   }
3653 
3654   // If the RHS is not a pointer, then we have normal pointer
3655   // arithmetic.
3656   if (!op.RHS->getType()->isPointerTy())
3657     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3658 
3659   // Otherwise, this is a pointer subtraction.
3660 
3661   // Do the raw subtraction part.
3662   llvm::Value *LHS
3663     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3664   llvm::Value *RHS
3665     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3666   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3667 
3668   // Okay, figure out the element size.
3669   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3670   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3671 
3672   llvm::Value *divisor = nullptr;
3673 
3674   // For a variable-length array, this is going to be non-constant.
3675   if (const VariableArrayType *vla
3676         = CGF.getContext().getAsVariableArrayType(elementType)) {
3677     auto VlaSize = CGF.getVLASize(vla);
3678     elementType = VlaSize.Type;
3679     divisor = VlaSize.NumElts;
3680 
3681     // Scale the number of non-VLA elements by the non-VLA element size.
3682     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3683     if (!eltSize.isOne())
3684       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3685 
3686   // For everything elese, we can just compute it, safe in the
3687   // assumption that Sema won't let anything through that we can't
3688   // safely compute the size of.
3689   } else {
3690     CharUnits elementSize;
3691     // Handle GCC extension for pointer arithmetic on void* and
3692     // function pointer types.
3693     if (elementType->isVoidType() || elementType->isFunctionType())
3694       elementSize = CharUnits::One();
3695     else
3696       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3697 
3698     // Don't even emit the divide for element size of 1.
3699     if (elementSize.isOne())
3700       return diffInChars;
3701 
3702     divisor = CGF.CGM.getSize(elementSize);
3703   }
3704 
3705   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3706   // pointer difference in C is only defined in the case where both operands
3707   // are pointing to elements of an array.
3708   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3709 }
3710 
3711 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3712   llvm::IntegerType *Ty;
3713   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3714     Ty = cast<llvm::IntegerType>(VT->getElementType());
3715   else
3716     Ty = cast<llvm::IntegerType>(LHS->getType());
3717   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3718 }
3719 
3720 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
3721                                               const Twine &Name) {
3722   llvm::IntegerType *Ty;
3723   if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3724     Ty = cast<llvm::IntegerType>(VT->getElementType());
3725   else
3726     Ty = cast<llvm::IntegerType>(LHS->getType());
3727 
3728   if (llvm::isPowerOf2_64(Ty->getBitWidth()))
3729         return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
3730 
3731   return Builder.CreateURem(
3732       RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
3733 }
3734 
3735 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3736   // TODO: This misses out on the sanitizer check below.
3737   if (Ops.isFixedPointOp())
3738     return EmitFixedPointBinOp(Ops);
3739 
3740   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3741   // RHS to the same size as the LHS.
3742   Value *RHS = Ops.RHS;
3743   if (Ops.LHS->getType() != RHS->getType())
3744     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3745 
3746   bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3747                             Ops.Ty->hasSignedIntegerRepresentation() &&
3748                             !CGF.getLangOpts().isSignedOverflowDefined() &&
3749                             !CGF.getLangOpts().CPlusPlus20;
3750   bool SanitizeUnsignedBase =
3751       CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
3752       Ops.Ty->hasUnsignedIntegerRepresentation();
3753   bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
3754   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3755   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3756   if (CGF.getLangOpts().OpenCL)
3757     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
3758   else if ((SanitizeBase || SanitizeExponent) &&
3759            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3760     CodeGenFunction::SanitizerScope SanScope(&CGF);
3761     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3762     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3763     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3764 
3765     if (SanitizeExponent) {
3766       Checks.push_back(
3767           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3768     }
3769 
3770     if (SanitizeBase) {
3771       // Check whether we are shifting any non-zero bits off the top of the
3772       // integer. We only emit this check if exponent is valid - otherwise
3773       // instructions below will have undefined behavior themselves.
3774       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3775       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3776       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3777       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3778       llvm::Value *PromotedWidthMinusOne =
3779           (RHS == Ops.RHS) ? WidthMinusOne
3780                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3781       CGF.EmitBlock(CheckShiftBase);
3782       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3783           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3784                                      /*NUW*/ true, /*NSW*/ true),
3785           "shl.check");
3786       if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
3787         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3788         // Under C++11's rules, shifting a 1 bit into the sign bit is
3789         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3790         // define signed left shifts, so we use the C99 and C++11 rules there).
3791         // Unsigned shifts can always shift into the top bit.
3792         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3793         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3794       }
3795       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3796       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3797       CGF.EmitBlock(Cont);
3798       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3799       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3800       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3801       Checks.push_back(std::make_pair(
3802           BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
3803                                         : SanitizerKind::UnsignedShiftBase));
3804     }
3805 
3806     assert(!Checks.empty());
3807     EmitBinOpCheck(Checks, Ops);
3808   }
3809 
3810   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3811 }
3812 
3813 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3814   // TODO: This misses out on the sanitizer check below.
3815   if (Ops.isFixedPointOp())
3816     return EmitFixedPointBinOp(Ops);
3817 
3818   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3819   // RHS to the same size as the LHS.
3820   Value *RHS = Ops.RHS;
3821   if (Ops.LHS->getType() != RHS->getType())
3822     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3823 
3824   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3825   if (CGF.getLangOpts().OpenCL)
3826     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
3827   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3828            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3829     CodeGenFunction::SanitizerScope SanScope(&CGF);
3830     llvm::Value *Valid =
3831         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3832     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3833   }
3834 
3835   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3836     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3837   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3838 }
3839 
3840 enum IntrinsicType { VCMPEQ, VCMPGT };
3841 // return corresponding comparison intrinsic for given vector type
3842 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3843                                         BuiltinType::Kind ElemKind) {
3844   switch (ElemKind) {
3845   default: llvm_unreachable("unexpected element type");
3846   case BuiltinType::Char_U:
3847   case BuiltinType::UChar:
3848     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3849                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3850   case BuiltinType::Char_S:
3851   case BuiltinType::SChar:
3852     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3853                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3854   case BuiltinType::UShort:
3855     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3856                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3857   case BuiltinType::Short:
3858     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3859                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3860   case BuiltinType::UInt:
3861     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3862                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3863   case BuiltinType::Int:
3864     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3865                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3866   case BuiltinType::ULong:
3867   case BuiltinType::ULongLong:
3868     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3869                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3870   case BuiltinType::Long:
3871   case BuiltinType::LongLong:
3872     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3873                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3874   case BuiltinType::Float:
3875     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3876                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3877   case BuiltinType::Double:
3878     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3879                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3880   case BuiltinType::UInt128:
3881     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
3882                           : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
3883   case BuiltinType::Int128:
3884     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
3885                           : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
3886   }
3887 }
3888 
3889 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3890                                       llvm::CmpInst::Predicate UICmpOpc,
3891                                       llvm::CmpInst::Predicate SICmpOpc,
3892                                       llvm::CmpInst::Predicate FCmpOpc,
3893                                       bool IsSignaling) {
3894   TestAndClearIgnoreResultAssign();
3895   Value *Result;
3896   QualType LHSTy = E->getLHS()->getType();
3897   QualType RHSTy = E->getRHS()->getType();
3898   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3899     assert(E->getOpcode() == BO_EQ ||
3900            E->getOpcode() == BO_NE);
3901     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3902     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3903     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3904                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3905   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3906     BinOpInfo BOInfo = EmitBinOps(E);
3907     Value *LHS = BOInfo.LHS;
3908     Value *RHS = BOInfo.RHS;
3909 
3910     // If AltiVec, the comparison results in a numeric type, so we use
3911     // intrinsics comparing vectors and giving 0 or 1 as a result
3912     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3913       // constants for mapping CR6 register bits to predicate result
3914       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3915 
3916       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3917 
3918       // in several cases vector arguments order will be reversed
3919       Value *FirstVecArg = LHS,
3920             *SecondVecArg = RHS;
3921 
3922       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
3923       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
3924 
3925       switch(E->getOpcode()) {
3926       default: llvm_unreachable("is not a comparison operation");
3927       case BO_EQ:
3928         CR6 = CR6_LT;
3929         ID = GetIntrinsic(VCMPEQ, ElementKind);
3930         break;
3931       case BO_NE:
3932         CR6 = CR6_EQ;
3933         ID = GetIntrinsic(VCMPEQ, ElementKind);
3934         break;
3935       case BO_LT:
3936         CR6 = CR6_LT;
3937         ID = GetIntrinsic(VCMPGT, ElementKind);
3938         std::swap(FirstVecArg, SecondVecArg);
3939         break;
3940       case BO_GT:
3941         CR6 = CR6_LT;
3942         ID = GetIntrinsic(VCMPGT, ElementKind);
3943         break;
3944       case BO_LE:
3945         if (ElementKind == BuiltinType::Float) {
3946           CR6 = CR6_LT;
3947           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3948           std::swap(FirstVecArg, SecondVecArg);
3949         }
3950         else {
3951           CR6 = CR6_EQ;
3952           ID = GetIntrinsic(VCMPGT, ElementKind);
3953         }
3954         break;
3955       case BO_GE:
3956         if (ElementKind == BuiltinType::Float) {
3957           CR6 = CR6_LT;
3958           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3959         }
3960         else {
3961           CR6 = CR6_EQ;
3962           ID = GetIntrinsic(VCMPGT, ElementKind);
3963           std::swap(FirstVecArg, SecondVecArg);
3964         }
3965         break;
3966       }
3967 
3968       Value *CR6Param = Builder.getInt32(CR6);
3969       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3970       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3971 
3972       // The result type of intrinsic may not be same as E->getType().
3973       // If E->getType() is not BoolTy, EmitScalarConversion will do the
3974       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3975       // do nothing, if ResultTy is not i1 at the same time, it will cause
3976       // crash later.
3977       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3978       if (ResultTy->getBitWidth() > 1 &&
3979           E->getType() == CGF.getContext().BoolTy)
3980         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3981       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3982                                   E->getExprLoc());
3983     }
3984 
3985     if (BOInfo.isFixedPointOp()) {
3986       Result = EmitFixedPointBinOp(BOInfo);
3987     } else if (LHS->getType()->isFPOrFPVectorTy()) {
3988       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
3989       if (!IsSignaling)
3990         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3991       else
3992         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
3993     } else if (LHSTy->hasSignedIntegerRepresentation()) {
3994       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3995     } else {
3996       // Unsigned integers and pointers.
3997 
3998       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
3999           !isa<llvm::ConstantPointerNull>(LHS) &&
4000           !isa<llvm::ConstantPointerNull>(RHS)) {
4001 
4002         // Dynamic information is required to be stripped for comparisons,
4003         // because it could leak the dynamic information.  Based on comparisons
4004         // of pointers to dynamic objects, the optimizer can replace one pointer
4005         // with another, which might be incorrect in presence of invariant
4006         // groups. Comparison with null is safe because null does not carry any
4007         // dynamic information.
4008         if (LHSTy.mayBeDynamicClass())
4009           LHS = Builder.CreateStripInvariantGroup(LHS);
4010         if (RHSTy.mayBeDynamicClass())
4011           RHS = Builder.CreateStripInvariantGroup(RHS);
4012       }
4013 
4014       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4015     }
4016 
4017     // If this is a vector comparison, sign extend the result to the appropriate
4018     // vector integer type and return it (don't convert to bool).
4019     if (LHSTy->isVectorType())
4020       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4021 
4022   } else {
4023     // Complex Comparison: can only be an equality comparison.
4024     CodeGenFunction::ComplexPairTy LHS, RHS;
4025     QualType CETy;
4026     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4027       LHS = CGF.EmitComplexExpr(E->getLHS());
4028       CETy = CTy->getElementType();
4029     } else {
4030       LHS.first = Visit(E->getLHS());
4031       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4032       CETy = LHSTy;
4033     }
4034     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4035       RHS = CGF.EmitComplexExpr(E->getRHS());
4036       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4037                                                      CTy->getElementType()) &&
4038              "The element types must always match.");
4039       (void)CTy;
4040     } else {
4041       RHS.first = Visit(E->getRHS());
4042       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4043       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4044              "The element types must always match.");
4045     }
4046 
4047     Value *ResultR, *ResultI;
4048     if (CETy->isRealFloatingType()) {
4049       // As complex comparisons can only be equality comparisons, they
4050       // are never signaling comparisons.
4051       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4052       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4053     } else {
4054       // Complex comparisons can only be equality comparisons.  As such, signed
4055       // and unsigned opcodes are the same.
4056       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4057       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4058     }
4059 
4060     if (E->getOpcode() == BO_EQ) {
4061       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4062     } else {
4063       assert(E->getOpcode() == BO_NE &&
4064              "Complex comparison other than == or != ?");
4065       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4066     }
4067   }
4068 
4069   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4070                               E->getExprLoc());
4071 }
4072 
4073 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4074   bool Ignore = TestAndClearIgnoreResultAssign();
4075 
4076   Value *RHS;
4077   LValue LHS;
4078 
4079   switch (E->getLHS()->getType().getObjCLifetime()) {
4080   case Qualifiers::OCL_Strong:
4081     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4082     break;
4083 
4084   case Qualifiers::OCL_Autoreleasing:
4085     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4086     break;
4087 
4088   case Qualifiers::OCL_ExplicitNone:
4089     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4090     break;
4091 
4092   case Qualifiers::OCL_Weak:
4093     RHS = Visit(E->getRHS());
4094     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4095     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4096     break;
4097 
4098   case Qualifiers::OCL_None:
4099     // __block variables need to have the rhs evaluated first, plus
4100     // this should improve codegen just a little.
4101     RHS = Visit(E->getRHS());
4102     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4103 
4104     // Store the value into the LHS.  Bit-fields are handled specially
4105     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4106     // 'An assignment expression has the value of the left operand after
4107     // the assignment...'.
4108     if (LHS.isBitField()) {
4109       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4110     } else {
4111       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4112       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4113     }
4114   }
4115 
4116   // If the result is clearly ignored, return now.
4117   if (Ignore)
4118     return nullptr;
4119 
4120   // The result of an assignment in C is the assigned r-value.
4121   if (!CGF.getLangOpts().CPlusPlus)
4122     return RHS;
4123 
4124   // If the lvalue is non-volatile, return the computed value of the assignment.
4125   if (!LHS.isVolatileQualified())
4126     return RHS;
4127 
4128   // Otherwise, reload the value.
4129   return EmitLoadOfLValue(LHS, E->getExprLoc());
4130 }
4131 
4132 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4133   // Perform vector logical and on comparisons with zero vectors.
4134   if (E->getType()->isVectorType()) {
4135     CGF.incrementProfileCounter(E);
4136 
4137     Value *LHS = Visit(E->getLHS());
4138     Value *RHS = Visit(E->getRHS());
4139     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4140     if (LHS->getType()->isFPOrFPVectorTy()) {
4141       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4142           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4143       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4144       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4145     } else {
4146       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4147       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4148     }
4149     Value *And = Builder.CreateAnd(LHS, RHS);
4150     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4151   }
4152 
4153   llvm::Type *ResTy = ConvertType(E->getType());
4154 
4155   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4156   // If we have 1 && X, just emit X without inserting the control flow.
4157   bool LHSCondVal;
4158   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4159     if (LHSCondVal) { // If we have 1 && X, just emit X.
4160       CGF.incrementProfileCounter(E);
4161 
4162       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4163       // ZExt result to int or bool.
4164       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4165     }
4166 
4167     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4168     if (!CGF.ContainsLabel(E->getRHS()))
4169       return llvm::Constant::getNullValue(ResTy);
4170   }
4171 
4172   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4173   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4174 
4175   CodeGenFunction::ConditionalEvaluation eval(CGF);
4176 
4177   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4178   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4179                            CGF.getProfileCount(E->getRHS()));
4180 
4181   // Any edges into the ContBlock are now from an (indeterminate number of)
4182   // edges from this first condition.  All of these values will be false.  Start
4183   // setting up the PHI node in the Cont Block for this.
4184   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4185                                             "", ContBlock);
4186   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4187        PI != PE; ++PI)
4188     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4189 
4190   eval.begin(CGF);
4191   CGF.EmitBlock(RHSBlock);
4192   CGF.incrementProfileCounter(E);
4193   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4194   eval.end(CGF);
4195 
4196   // Reaquire the RHS block, as there may be subblocks inserted.
4197   RHSBlock = Builder.GetInsertBlock();
4198 
4199   // Emit an unconditional branch from this block to ContBlock.
4200   {
4201     // There is no need to emit line number for unconditional branch.
4202     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4203     CGF.EmitBlock(ContBlock);
4204   }
4205   // Insert an entry into the phi node for the edge with the value of RHSCond.
4206   PN->addIncoming(RHSCond, RHSBlock);
4207 
4208   // Artificial location to preserve the scope information
4209   {
4210     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4211     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4212   }
4213 
4214   // ZExt result to int.
4215   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4216 }
4217 
4218 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4219   // Perform vector logical or on comparisons with zero vectors.
4220   if (E->getType()->isVectorType()) {
4221     CGF.incrementProfileCounter(E);
4222 
4223     Value *LHS = Visit(E->getLHS());
4224     Value *RHS = Visit(E->getRHS());
4225     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4226     if (LHS->getType()->isFPOrFPVectorTy()) {
4227       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4228           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4229       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4230       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4231     } else {
4232       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4233       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4234     }
4235     Value *Or = Builder.CreateOr(LHS, RHS);
4236     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4237   }
4238 
4239   llvm::Type *ResTy = ConvertType(E->getType());
4240 
4241   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4242   // If we have 0 || X, just emit X without inserting the control flow.
4243   bool LHSCondVal;
4244   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4245     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4246       CGF.incrementProfileCounter(E);
4247 
4248       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4249       // ZExt result to int or bool.
4250       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4251     }
4252 
4253     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4254     if (!CGF.ContainsLabel(E->getRHS()))
4255       return llvm::ConstantInt::get(ResTy, 1);
4256   }
4257 
4258   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4259   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4260 
4261   CodeGenFunction::ConditionalEvaluation eval(CGF);
4262 
4263   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4264   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4265                            CGF.getCurrentProfileCount() -
4266                                CGF.getProfileCount(E->getRHS()));
4267 
4268   // Any edges into the ContBlock are now from an (indeterminate number of)
4269   // edges from this first condition.  All of these values will be true.  Start
4270   // setting up the PHI node in the Cont Block for this.
4271   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4272                                             "", ContBlock);
4273   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4274        PI != PE; ++PI)
4275     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4276 
4277   eval.begin(CGF);
4278 
4279   // Emit the RHS condition as a bool value.
4280   CGF.EmitBlock(RHSBlock);
4281   CGF.incrementProfileCounter(E);
4282   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4283 
4284   eval.end(CGF);
4285 
4286   // Reaquire the RHS block, as there may be subblocks inserted.
4287   RHSBlock = Builder.GetInsertBlock();
4288 
4289   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4290   // into the phi node for the edge with the value of RHSCond.
4291   CGF.EmitBlock(ContBlock);
4292   PN->addIncoming(RHSCond, RHSBlock);
4293 
4294   // ZExt result to int.
4295   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4296 }
4297 
4298 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4299   CGF.EmitIgnoredExpr(E->getLHS());
4300   CGF.EnsureInsertPoint();
4301   return Visit(E->getRHS());
4302 }
4303 
4304 //===----------------------------------------------------------------------===//
4305 //                             Other Operators
4306 //===----------------------------------------------------------------------===//
4307 
4308 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4309 /// expression is cheap enough and side-effect-free enough to evaluate
4310 /// unconditionally instead of conditionally.  This is used to convert control
4311 /// flow into selects in some cases.
4312 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4313                                                    CodeGenFunction &CGF) {
4314   // Anything that is an integer or floating point constant is fine.
4315   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4316 
4317   // Even non-volatile automatic variables can't be evaluated unconditionally.
4318   // Referencing a thread_local may cause non-trivial initialization work to
4319   // occur. If we're inside a lambda and one of the variables is from the scope
4320   // outside the lambda, that function may have returned already. Reading its
4321   // locals is a bad idea. Also, these reads may introduce races there didn't
4322   // exist in the source-level program.
4323 }
4324 
4325 
4326 Value *ScalarExprEmitter::
4327 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4328   TestAndClearIgnoreResultAssign();
4329 
4330   // Bind the common expression if necessary.
4331   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4332 
4333   Expr *condExpr = E->getCond();
4334   Expr *lhsExpr = E->getTrueExpr();
4335   Expr *rhsExpr = E->getFalseExpr();
4336 
4337   // If the condition constant folds and can be elided, try to avoid emitting
4338   // the condition and the dead arm.
4339   bool CondExprBool;
4340   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4341     Expr *live = lhsExpr, *dead = rhsExpr;
4342     if (!CondExprBool) std::swap(live, dead);
4343 
4344     // If the dead side doesn't have labels we need, just emit the Live part.
4345     if (!CGF.ContainsLabel(dead)) {
4346       if (CondExprBool)
4347         CGF.incrementProfileCounter(E);
4348       Value *Result = Visit(live);
4349 
4350       // If the live part is a throw expression, it acts like it has a void
4351       // type, so evaluating it returns a null Value*.  However, a conditional
4352       // with non-void type must return a non-null Value*.
4353       if (!Result && !E->getType()->isVoidType())
4354         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4355 
4356       return Result;
4357     }
4358   }
4359 
4360   // OpenCL: If the condition is a vector, we can treat this condition like
4361   // the select function.
4362   if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4363       condExpr->getType()->isExtVectorType()) {
4364     CGF.incrementProfileCounter(E);
4365 
4366     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4367     llvm::Value *LHS = Visit(lhsExpr);
4368     llvm::Value *RHS = Visit(rhsExpr);
4369 
4370     llvm::Type *condType = ConvertType(condExpr->getType());
4371     auto *vecTy = cast<llvm::FixedVectorType>(condType);
4372 
4373     unsigned numElem = vecTy->getNumElements();
4374     llvm::Type *elemType = vecTy->getElementType();
4375 
4376     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4377     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4378     llvm::Value *tmp = Builder.CreateSExt(
4379         TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4380     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4381 
4382     // Cast float to int to perform ANDs if necessary.
4383     llvm::Value *RHSTmp = RHS;
4384     llvm::Value *LHSTmp = LHS;
4385     bool wasCast = false;
4386     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4387     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4388       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4389       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4390       wasCast = true;
4391     }
4392 
4393     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4394     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4395     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4396     if (wasCast)
4397       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4398 
4399     return tmp5;
4400   }
4401 
4402   if (condExpr->getType()->isVectorType()) {
4403     CGF.incrementProfileCounter(E);
4404 
4405     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4406     llvm::Value *LHS = Visit(lhsExpr);
4407     llvm::Value *RHS = Visit(rhsExpr);
4408 
4409     llvm::Type *CondType = ConvertType(condExpr->getType());
4410     auto *VecTy = cast<llvm::VectorType>(CondType);
4411     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4412 
4413     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4414     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4415   }
4416 
4417   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4418   // select instead of as control flow.  We can only do this if it is cheap and
4419   // safe to evaluate the LHS and RHS unconditionally.
4420   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4421       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4422     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4423     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4424 
4425     CGF.incrementProfileCounter(E, StepV);
4426 
4427     llvm::Value *LHS = Visit(lhsExpr);
4428     llvm::Value *RHS = Visit(rhsExpr);
4429     if (!LHS) {
4430       // If the conditional has void type, make sure we return a null Value*.
4431       assert(!RHS && "LHS and RHS types must match");
4432       return nullptr;
4433     }
4434     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4435   }
4436 
4437   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4438   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4439   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4440 
4441   CodeGenFunction::ConditionalEvaluation eval(CGF);
4442   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4443                            CGF.getProfileCount(lhsExpr));
4444 
4445   CGF.EmitBlock(LHSBlock);
4446   CGF.incrementProfileCounter(E);
4447   eval.begin(CGF);
4448   Value *LHS = Visit(lhsExpr);
4449   eval.end(CGF);
4450 
4451   LHSBlock = Builder.GetInsertBlock();
4452   Builder.CreateBr(ContBlock);
4453 
4454   CGF.EmitBlock(RHSBlock);
4455   eval.begin(CGF);
4456   Value *RHS = Visit(rhsExpr);
4457   eval.end(CGF);
4458 
4459   RHSBlock = Builder.GetInsertBlock();
4460   CGF.EmitBlock(ContBlock);
4461 
4462   // If the LHS or RHS is a throw expression, it will be legitimately null.
4463   if (!LHS)
4464     return RHS;
4465   if (!RHS)
4466     return LHS;
4467 
4468   // Create a PHI node for the real part.
4469   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4470   PN->addIncoming(LHS, LHSBlock);
4471   PN->addIncoming(RHS, RHSBlock);
4472   return PN;
4473 }
4474 
4475 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4476   return Visit(E->getChosenSubExpr());
4477 }
4478 
4479 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4480   QualType Ty = VE->getType();
4481 
4482   if (Ty->isVariablyModifiedType())
4483     CGF.EmitVariablyModifiedType(Ty);
4484 
4485   Address ArgValue = Address::invalid();
4486   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4487 
4488   llvm::Type *ArgTy = ConvertType(VE->getType());
4489 
4490   // If EmitVAArg fails, emit an error.
4491   if (!ArgPtr.isValid()) {
4492     CGF.ErrorUnsupported(VE, "va_arg expression");
4493     return llvm::UndefValue::get(ArgTy);
4494   }
4495 
4496   // FIXME Volatility.
4497   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4498 
4499   // If EmitVAArg promoted the type, we must truncate it.
4500   if (ArgTy != Val->getType()) {
4501     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4502       Val = Builder.CreateIntToPtr(Val, ArgTy);
4503     else
4504       Val = Builder.CreateTrunc(Val, ArgTy);
4505   }
4506 
4507   return Val;
4508 }
4509 
4510 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4511   return CGF.EmitBlockLiteral(block);
4512 }
4513 
4514 // Convert a vec3 to vec4, or vice versa.
4515 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4516                                  Value *Src, unsigned NumElementsDst) {
4517   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
4518   static constexpr int Mask[] = {0, 1, 2, -1};
4519   return Builder.CreateShuffleVector(Src, UnV,
4520                                      llvm::makeArrayRef(Mask, NumElementsDst));
4521 }
4522 
4523 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4524 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4525 // but could be scalar or vectors of different lengths, and either can be
4526 // pointer.
4527 // There are 4 cases:
4528 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4529 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4530 // 3. pointer -> non-pointer
4531 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4532 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4533 // 4. non-pointer -> pointer
4534 //   a) intptr_t -> pointer       : needs 1 inttoptr
4535 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4536 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4537 // allow casting directly between pointer types and non-integer non-pointer
4538 // types.
4539 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4540                                            const llvm::DataLayout &DL,
4541                                            Value *Src, llvm::Type *DstTy,
4542                                            StringRef Name = "") {
4543   auto SrcTy = Src->getType();
4544 
4545   // Case 1.
4546   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4547     return Builder.CreateBitCast(Src, DstTy, Name);
4548 
4549   // Case 2.
4550   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4551     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4552 
4553   // Case 3.
4554   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4555     // Case 3b.
4556     if (!DstTy->isIntegerTy())
4557       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4558     // Cases 3a and 3b.
4559     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4560   }
4561 
4562   // Case 4b.
4563   if (!SrcTy->isIntegerTy())
4564     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4565   // Cases 4a and 4b.
4566   return Builder.CreateIntToPtr(Src, DstTy, Name);
4567 }
4568 
4569 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4570   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4571   llvm::Type *DstTy = ConvertType(E->getType());
4572 
4573   llvm::Type *SrcTy = Src->getType();
4574   unsigned NumElementsSrc =
4575       isa<llvm::VectorType>(SrcTy)
4576           ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
4577           : 0;
4578   unsigned NumElementsDst =
4579       isa<llvm::VectorType>(DstTy)
4580           ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
4581           : 0;
4582 
4583   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4584   // vector to get a vec4, then a bitcast if the target type is different.
4585   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4586     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4587 
4588     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4589       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4590                                          DstTy);
4591     }
4592 
4593     Src->setName("astype");
4594     return Src;
4595   }
4596 
4597   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4598   // to vec4 if the original type is not vec4, then a shuffle vector to
4599   // get a vec3.
4600   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4601     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4602       auto *Vec4Ty = llvm::FixedVectorType::get(
4603           cast<llvm::VectorType>(DstTy)->getElementType(), 4);
4604       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4605                                          Vec4Ty);
4606     }
4607 
4608     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4609     Src->setName("astype");
4610     return Src;
4611   }
4612 
4613   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4614                                       Src, DstTy, "astype");
4615 }
4616 
4617 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4618   return CGF.EmitAtomicExpr(E).getScalarVal();
4619 }
4620 
4621 //===----------------------------------------------------------------------===//
4622 //                         Entry Point into this File
4623 //===----------------------------------------------------------------------===//
4624 
4625 /// Emit the computation of the specified expression of scalar type, ignoring
4626 /// the result.
4627 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4628   assert(E && hasScalarEvaluationKind(E->getType()) &&
4629          "Invalid scalar expression to emit");
4630 
4631   return ScalarExprEmitter(*this, IgnoreResultAssign)
4632       .Visit(const_cast<Expr *>(E));
4633 }
4634 
4635 /// Emit a conversion from the specified type to the specified destination type,
4636 /// both of which are LLVM scalar types.
4637 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4638                                              QualType DstTy,
4639                                              SourceLocation Loc) {
4640   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4641          "Invalid scalar expression to emit");
4642   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4643 }
4644 
4645 /// Emit a conversion from the specified complex type to the specified
4646 /// destination type, where the destination type is an LLVM scalar type.
4647 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4648                                                       QualType SrcTy,
4649                                                       QualType DstTy,
4650                                                       SourceLocation Loc) {
4651   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4652          "Invalid complex -> scalar conversion");
4653   return ScalarExprEmitter(*this)
4654       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4655 }
4656 
4657 
4658 llvm::Value *CodeGenFunction::
4659 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4660                         bool isInc, bool isPre) {
4661   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4662 }
4663 
4664 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4665   // object->isa or (*object).isa
4666   // Generate code as for: *(Class*)object
4667 
4668   Expr *BaseExpr = E->getBase();
4669   Address Addr = Address::invalid();
4670   if (BaseExpr->isRValue()) {
4671     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4672   } else {
4673     Addr = EmitLValue(BaseExpr).getAddress(*this);
4674   }
4675 
4676   // Cast the address to Class*.
4677   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4678   return MakeAddrLValue(Addr, E->getType());
4679 }
4680 
4681 
4682 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4683                                             const CompoundAssignOperator *E) {
4684   ScalarExprEmitter Scalar(*this);
4685   Value *Result = nullptr;
4686   switch (E->getOpcode()) {
4687 #define COMPOUND_OP(Op)                                                       \
4688     case BO_##Op##Assign:                                                     \
4689       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4690                                              Result)
4691   COMPOUND_OP(Mul);
4692   COMPOUND_OP(Div);
4693   COMPOUND_OP(Rem);
4694   COMPOUND_OP(Add);
4695   COMPOUND_OP(Sub);
4696   COMPOUND_OP(Shl);
4697   COMPOUND_OP(Shr);
4698   COMPOUND_OP(And);
4699   COMPOUND_OP(Xor);
4700   COMPOUND_OP(Or);
4701 #undef COMPOUND_OP
4702 
4703   case BO_PtrMemD:
4704   case BO_PtrMemI:
4705   case BO_Mul:
4706   case BO_Div:
4707   case BO_Rem:
4708   case BO_Add:
4709   case BO_Sub:
4710   case BO_Shl:
4711   case BO_Shr:
4712   case BO_LT:
4713   case BO_GT:
4714   case BO_LE:
4715   case BO_GE:
4716   case BO_EQ:
4717   case BO_NE:
4718   case BO_Cmp:
4719   case BO_And:
4720   case BO_Xor:
4721   case BO_Or:
4722   case BO_LAnd:
4723   case BO_LOr:
4724   case BO_Assign:
4725   case BO_Comma:
4726     llvm_unreachable("Not valid compound assignment operators");
4727   }
4728 
4729   llvm_unreachable("Unhandled compound assignment operator");
4730 }
4731 
4732 struct GEPOffsetAndOverflow {
4733   // The total (signed) byte offset for the GEP.
4734   llvm::Value *TotalOffset;
4735   // The offset overflow flag - true if the total offset overflows.
4736   llvm::Value *OffsetOverflows;
4737 };
4738 
4739 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4740 /// and compute the total offset it applies from it's base pointer BasePtr.
4741 /// Returns offset in bytes and a boolean flag whether an overflow happened
4742 /// during evaluation.
4743 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4744                                                  llvm::LLVMContext &VMContext,
4745                                                  CodeGenModule &CGM,
4746                                                  CGBuilderTy &Builder) {
4747   const auto &DL = CGM.getDataLayout();
4748 
4749   // The total (signed) byte offset for the GEP.
4750   llvm::Value *TotalOffset = nullptr;
4751 
4752   // Was the GEP already reduced to a constant?
4753   if (isa<llvm::Constant>(GEPVal)) {
4754     // Compute the offset by casting both pointers to integers and subtracting:
4755     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4756     Value *BasePtr_int =
4757         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4758     Value *GEPVal_int =
4759         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4760     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4761     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4762   }
4763 
4764   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4765   assert(GEP->getPointerOperand() == BasePtr &&
4766          "BasePtr must be the the base of the GEP.");
4767   assert(GEP->isInBounds() && "Expected inbounds GEP");
4768 
4769   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4770 
4771   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4772   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4773   auto *SAddIntrinsic =
4774       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4775   auto *SMulIntrinsic =
4776       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4777 
4778   // The offset overflow flag - true if the total offset overflows.
4779   llvm::Value *OffsetOverflows = Builder.getFalse();
4780 
4781   /// Return the result of the given binary operation.
4782   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4783                   llvm::Value *RHS) -> llvm::Value * {
4784     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4785 
4786     // If the operands are constants, return a constant result.
4787     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4788       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4789         llvm::APInt N;
4790         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4791                                                   /*Signed=*/true, N);
4792         if (HasOverflow)
4793           OffsetOverflows = Builder.getTrue();
4794         return llvm::ConstantInt::get(VMContext, N);
4795       }
4796     }
4797 
4798     // Otherwise, compute the result with checked arithmetic.
4799     auto *ResultAndOverflow = Builder.CreateCall(
4800         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4801     OffsetOverflows = Builder.CreateOr(
4802         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4803     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4804   };
4805 
4806   // Determine the total byte offset by looking at each GEP operand.
4807   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4808        GTI != GTE; ++GTI) {
4809     llvm::Value *LocalOffset;
4810     auto *Index = GTI.getOperand();
4811     // Compute the local offset contributed by this indexing step:
4812     if (auto *STy = GTI.getStructTypeOrNull()) {
4813       // For struct indexing, the local offset is the byte position of the
4814       // specified field.
4815       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4816       LocalOffset = llvm::ConstantInt::get(
4817           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4818     } else {
4819       // Otherwise this is array-like indexing. The local offset is the index
4820       // multiplied by the element size.
4821       auto *ElementSize = llvm::ConstantInt::get(
4822           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4823       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4824       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4825     }
4826 
4827     // If this is the first offset, set it as the total offset. Otherwise, add
4828     // the local offset into the running total.
4829     if (!TotalOffset || TotalOffset == Zero)
4830       TotalOffset = LocalOffset;
4831     else
4832       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4833   }
4834 
4835   return {TotalOffset, OffsetOverflows};
4836 }
4837 
4838 Value *
4839 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
4840                                         bool SignedIndices, bool IsSubtraction,
4841                                         SourceLocation Loc, const Twine &Name) {
4842   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4843 
4844   // If the pointer overflow sanitizer isn't enabled, do nothing.
4845   if (!SanOpts.has(SanitizerKind::PointerOverflow))
4846     return GEPVal;
4847 
4848   llvm::Type *PtrTy = Ptr->getType();
4849 
4850   // Perform nullptr-and-offset check unless the nullptr is defined.
4851   bool PerformNullCheck = !NullPointerIsDefined(
4852       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
4853   // Check for overflows unless the GEP got constant-folded,
4854   // and only in the default address space
4855   bool PerformOverflowCheck =
4856       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
4857 
4858   if (!(PerformNullCheck || PerformOverflowCheck))
4859     return GEPVal;
4860 
4861   const auto &DL = CGM.getDataLayout();
4862 
4863   SanitizerScope SanScope(this);
4864   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
4865 
4866   GEPOffsetAndOverflow EvaluatedGEP =
4867       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
4868 
4869   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
4870           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
4871          "If the offset got constant-folded, we don't expect that there was an "
4872          "overflow.");
4873 
4874   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4875 
4876   // Common case: if the total offset is zero, and we are using C++ semantics,
4877   // where nullptr+0 is defined, don't emit a check.
4878   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
4879     return GEPVal;
4880 
4881   // Now that we've computed the total offset, add it to the base pointer (with
4882   // wrapping semantics).
4883   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
4884   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
4885 
4886   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
4887 
4888   if (PerformNullCheck) {
4889     // In C++, if the base pointer evaluates to a null pointer value,
4890     // the only valid  pointer this inbounds GEP can produce is also
4891     // a null pointer, so the offset must also evaluate to zero.
4892     // Likewise, if we have non-zero base pointer, we can not get null pointer
4893     // as a result, so the offset can not be -intptr_t(BasePtr).
4894     // In other words, both pointers are either null, or both are non-null,
4895     // or the behaviour is undefined.
4896     //
4897     // C, however, is more strict in this regard, and gives more
4898     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
4899     // So both the input to the 'gep inbounds' AND the output must not be null.
4900     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
4901     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
4902     auto *Valid =
4903         CGM.getLangOpts().CPlusPlus
4904             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
4905             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
4906     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
4907   }
4908 
4909   if (PerformOverflowCheck) {
4910     // The GEP is valid if:
4911     // 1) The total offset doesn't overflow, and
4912     // 2) The sign of the difference between the computed address and the base
4913     // pointer matches the sign of the total offset.
4914     llvm::Value *ValidGEP;
4915     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
4916     if (SignedIndices) {
4917       // GEP is computed as `unsigned base + signed offset`, therefore:
4918       // * If offset was positive, then the computed pointer can not be
4919       //   [unsigned] less than the base pointer, unless it overflowed.
4920       // * If offset was negative, then the computed pointer can not be
4921       //   [unsigned] greater than the bas pointere, unless it overflowed.
4922       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4923       auto *PosOrZeroOffset =
4924           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
4925       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4926       ValidGEP =
4927           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
4928     } else if (!IsSubtraction) {
4929       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
4930       // computed pointer can not be [unsigned] less than base pointer,
4931       // unless there was an overflow.
4932       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
4933       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4934     } else {
4935       // GEP is computed as `unsigned base - unsigned offset`, therefore the
4936       // computed pointer can not be [unsigned] greater than base pointer,
4937       // unless there was an overflow.
4938       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
4939       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4940     }
4941     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
4942     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
4943   }
4944 
4945   assert(!Checks.empty() && "Should have produced some checks.");
4946 
4947   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4948   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4949   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4950   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4951 
4952   return GEPVal;
4953 }
4954