1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/FixedPoint.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GetElementPtrTypeIterator.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/IntrinsicsPowerPC.h"
40 #include "llvm/IR/Module.h"
41 #include <cstdarg>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 using llvm::Value;
46 
47 //===----------------------------------------------------------------------===//
48 //                         Scalar Expression Emitter
49 //===----------------------------------------------------------------------===//
50 
51 namespace {
52 
53 /// Determine whether the given binary operation may overflow.
54 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
55 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
56 /// the returned overflow check is precise. The returned value is 'true' for
57 /// all other opcodes, to be conservative.
58 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
59                              BinaryOperator::Opcode Opcode, bool Signed,
60                              llvm::APInt &Result) {
61   // Assume overflow is possible, unless we can prove otherwise.
62   bool Overflow = true;
63   const auto &LHSAP = LHS->getValue();
64   const auto &RHSAP = RHS->getValue();
65   if (Opcode == BO_Add) {
66     if (Signed)
67       Result = LHSAP.sadd_ov(RHSAP, Overflow);
68     else
69       Result = LHSAP.uadd_ov(RHSAP, Overflow);
70   } else if (Opcode == BO_Sub) {
71     if (Signed)
72       Result = LHSAP.ssub_ov(RHSAP, Overflow);
73     else
74       Result = LHSAP.usub_ov(RHSAP, Overflow);
75   } else if (Opcode == BO_Mul) {
76     if (Signed)
77       Result = LHSAP.smul_ov(RHSAP, Overflow);
78     else
79       Result = LHSAP.umul_ov(RHSAP, Overflow);
80   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
81     if (Signed && !RHS->isZero())
82       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
83     else
84       return false;
85   }
86   return Overflow;
87 }
88 
89 struct BinOpInfo {
90   Value *LHS;
91   Value *RHS;
92   QualType Ty;  // Computation Type.
93   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
94   FPOptions FPFeatures;
95   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
96 
97   /// Check if the binop can result in integer overflow.
98   bool mayHaveIntegerOverflow() const {
99     // Without constant input, we can't rule out overflow.
100     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
101     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
102     if (!LHSCI || !RHSCI)
103       return true;
104 
105     llvm::APInt Result;
106     return ::mayHaveIntegerOverflow(
107         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
108   }
109 
110   /// Check if the binop computes a division or a remainder.
111   bool isDivremOp() const {
112     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
113            Opcode == BO_RemAssign;
114   }
115 
116   /// Check if the binop can result in an integer division by zero.
117   bool mayHaveIntegerDivisionByZero() const {
118     if (isDivremOp())
119       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
120         return CI->isZero();
121     return true;
122   }
123 
124   /// Check if the binop can result in a float division by zero.
125   bool mayHaveFloatDivisionByZero() const {
126     if (isDivremOp())
127       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
128         return CFP->isZero();
129     return true;
130   }
131 
132   /// Check if at least one operand is a fixed point type. In such cases, this
133   /// operation did not follow usual arithmetic conversion and both operands
134   /// might not be of the same type.
135   bool isFixedPointOp() const {
136     // We cannot simply check the result type since comparison operations return
137     // an int.
138     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
139       QualType LHSType = BinOp->getLHS()->getType();
140       QualType RHSType = BinOp->getRHS()->getType();
141       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
142     }
143     if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
144       return UnOp->getSubExpr()->getType()->isFixedPointType();
145     return false;
146   }
147 };
148 
149 static bool MustVisitNullValue(const Expr *E) {
150   // If a null pointer expression's type is the C++0x nullptr_t, then
151   // it's not necessarily a simple constant and it must be evaluated
152   // for its potential side effects.
153   return E->getType()->isNullPtrType();
154 }
155 
156 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
157 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
158                                                         const Expr *E) {
159   const Expr *Base = E->IgnoreImpCasts();
160   if (E == Base)
161     return llvm::None;
162 
163   QualType BaseTy = Base->getType();
164   if (!BaseTy->isPromotableIntegerType() ||
165       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
166     return llvm::None;
167 
168   return BaseTy;
169 }
170 
171 /// Check if \p E is a widened promoted integer.
172 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
173   return getUnwidenedIntegerType(Ctx, E).hasValue();
174 }
175 
176 /// Check if we can skip the overflow check for \p Op.
177 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
178   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
179          "Expected a unary or binary operator");
180 
181   // If the binop has constant inputs and we can prove there is no overflow,
182   // we can elide the overflow check.
183   if (!Op.mayHaveIntegerOverflow())
184     return true;
185 
186   // If a unary op has a widened operand, the op cannot overflow.
187   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
188     return !UO->canOverflow();
189 
190   // We usually don't need overflow checks for binops with widened operands.
191   // Multiplication with promoted unsigned operands is a special case.
192   const auto *BO = cast<BinaryOperator>(Op.E);
193   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
194   if (!OptionalLHSTy)
195     return false;
196 
197   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
198   if (!OptionalRHSTy)
199     return false;
200 
201   QualType LHSTy = *OptionalLHSTy;
202   QualType RHSTy = *OptionalRHSTy;
203 
204   // This is the simple case: binops without unsigned multiplication, and with
205   // widened operands. No overflow check is needed here.
206   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
207       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
208     return true;
209 
210   // For unsigned multiplication the overflow check can be elided if either one
211   // of the unpromoted types are less than half the size of the promoted type.
212   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
213   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
214          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
215 }
216 
217 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
218 static void updateFastMathFlags(llvm::FastMathFlags &FMF,
219                                 FPOptions FPFeatures) {
220   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
221 }
222 
223 /// Propagate fast-math flags from \p Op to the instruction in \p V.
224 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
225   if (auto *I = dyn_cast<llvm::Instruction>(V)) {
226     llvm::FastMathFlags FMF = I->getFastMathFlags();
227     updateFastMathFlags(FMF, Op.FPFeatures);
228     I->setFastMathFlags(FMF);
229   }
230   return V;
231 }
232 
233 class ScalarExprEmitter
234   : public StmtVisitor<ScalarExprEmitter, Value*> {
235   CodeGenFunction &CGF;
236   CGBuilderTy &Builder;
237   bool IgnoreResultAssign;
238   llvm::LLVMContext &VMContext;
239 public:
240 
241   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
242     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
243       VMContext(cgf.getLLVMContext()) {
244   }
245 
246   //===--------------------------------------------------------------------===//
247   //                               Utilities
248   //===--------------------------------------------------------------------===//
249 
250   bool TestAndClearIgnoreResultAssign() {
251     bool I = IgnoreResultAssign;
252     IgnoreResultAssign = false;
253     return I;
254   }
255 
256   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
257   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
258   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
259     return CGF.EmitCheckedLValue(E, TCK);
260   }
261 
262   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
263                       const BinOpInfo &Info);
264 
265   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
266     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
267   }
268 
269   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
270     const AlignValueAttr *AVAttr = nullptr;
271     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
272       const ValueDecl *VD = DRE->getDecl();
273 
274       if (VD->getType()->isReferenceType()) {
275         if (const auto *TTy =
276             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
277           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
278       } else {
279         // Assumptions for function parameters are emitted at the start of the
280         // function, so there is no need to repeat that here,
281         // unless the alignment-assumption sanitizer is enabled,
282         // then we prefer the assumption over alignment attribute
283         // on IR function param.
284         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
285           return;
286 
287         AVAttr = VD->getAttr<AlignValueAttr>();
288       }
289     }
290 
291     if (!AVAttr)
292       if (const auto *TTy =
293           dyn_cast<TypedefType>(E->getType()))
294         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
295 
296     if (!AVAttr)
297       return;
298 
299     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
300     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
301     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
302   }
303 
304   /// EmitLoadOfLValue - Given an expression with complex type that represents a
305   /// value l-value, this method emits the address of the l-value, then loads
306   /// and returns the result.
307   Value *EmitLoadOfLValue(const Expr *E) {
308     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
309                                 E->getExprLoc());
310 
311     EmitLValueAlignmentAssumption(E, V);
312     return V;
313   }
314 
315   /// EmitConversionToBool - Convert the specified expression value to a
316   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
317   Value *EmitConversionToBool(Value *Src, QualType DstTy);
318 
319   /// Emit a check that a conversion from a floating-point type does not
320   /// overflow.
321   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
322                                 Value *Src, QualType SrcType, QualType DstType,
323                                 llvm::Type *DstTy, SourceLocation Loc);
324 
325   /// Known implicit conversion check kinds.
326   /// Keep in sync with the enum of the same name in ubsan_handlers.h
327   enum ImplicitConversionCheckKind : unsigned char {
328     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
329     ICCK_UnsignedIntegerTruncation = 1,
330     ICCK_SignedIntegerTruncation = 2,
331     ICCK_IntegerSignChange = 3,
332     ICCK_SignedIntegerTruncationOrSignChange = 4,
333   };
334 
335   /// Emit a check that an [implicit] truncation of an integer  does not
336   /// discard any bits. It is not UB, so we use the value after truncation.
337   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
338                                   QualType DstType, SourceLocation Loc);
339 
340   /// Emit a check that an [implicit] conversion of an integer does not change
341   /// the sign of the value. It is not UB, so we use the value after conversion.
342   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
343   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
344                                   QualType DstType, SourceLocation Loc);
345 
346   /// Emit a conversion from the specified type to the specified destination
347   /// type, both of which are LLVM scalar types.
348   struct ScalarConversionOpts {
349     bool TreatBooleanAsSigned;
350     bool EmitImplicitIntegerTruncationChecks;
351     bool EmitImplicitIntegerSignChangeChecks;
352 
353     ScalarConversionOpts()
354         : TreatBooleanAsSigned(false),
355           EmitImplicitIntegerTruncationChecks(false),
356           EmitImplicitIntegerSignChangeChecks(false) {}
357 
358     ScalarConversionOpts(clang::SanitizerSet SanOpts)
359         : TreatBooleanAsSigned(false),
360           EmitImplicitIntegerTruncationChecks(
361               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
362           EmitImplicitIntegerSignChangeChecks(
363               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
364   };
365   Value *
366   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
367                        SourceLocation Loc,
368                        ScalarConversionOpts Opts = ScalarConversionOpts());
369 
370   /// Convert between either a fixed point and other fixed point or fixed point
371   /// and an integer.
372   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
373                                   SourceLocation Loc);
374   Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema,
375                                   FixedPointSemantics &DstFixedSema,
376                                   SourceLocation Loc,
377                                   bool DstIsInteger = false);
378 
379   /// Emit a conversion from the specified complex type to the specified
380   /// destination type, where the destination type is an LLVM scalar type.
381   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
382                                        QualType SrcTy, QualType DstTy,
383                                        SourceLocation Loc);
384 
385   /// EmitNullValue - Emit a value that corresponds to null for the given type.
386   Value *EmitNullValue(QualType Ty);
387 
388   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
389   Value *EmitFloatToBoolConversion(Value *V) {
390     // Compare against 0.0 for fp scalars.
391     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
392     return Builder.CreateFCmpUNE(V, Zero, "tobool");
393   }
394 
395   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
396   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
397     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
398 
399     return Builder.CreateICmpNE(V, Zero, "tobool");
400   }
401 
402   Value *EmitIntToBoolConversion(Value *V) {
403     // Because of the type rules of C, we often end up computing a
404     // logical value, then zero extending it to int, then wanting it
405     // as a logical value again.  Optimize this common case.
406     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
407       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
408         Value *Result = ZI->getOperand(0);
409         // If there aren't any more uses, zap the instruction to save space.
410         // Note that there can be more uses, for example if this
411         // is the result of an assignment.
412         if (ZI->use_empty())
413           ZI->eraseFromParent();
414         return Result;
415       }
416     }
417 
418     return Builder.CreateIsNotNull(V, "tobool");
419   }
420 
421   //===--------------------------------------------------------------------===//
422   //                            Visitor Methods
423   //===--------------------------------------------------------------------===//
424 
425   Value *Visit(Expr *E) {
426     ApplyDebugLocation DL(CGF, E);
427     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
428   }
429 
430   Value *VisitStmt(Stmt *S) {
431     S->dump(CGF.getContext().getSourceManager());
432     llvm_unreachable("Stmt can't have complex result type!");
433   }
434   Value *VisitExpr(Expr *S);
435 
436   Value *VisitConstantExpr(ConstantExpr *E) {
437     return Visit(E->getSubExpr());
438   }
439   Value *VisitParenExpr(ParenExpr *PE) {
440     return Visit(PE->getSubExpr());
441   }
442   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
443     return Visit(E->getReplacement());
444   }
445   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
446     return Visit(GE->getResultExpr());
447   }
448   Value *VisitCoawaitExpr(CoawaitExpr *S) {
449     return CGF.EmitCoawaitExpr(*S).getScalarVal();
450   }
451   Value *VisitCoyieldExpr(CoyieldExpr *S) {
452     return CGF.EmitCoyieldExpr(*S).getScalarVal();
453   }
454   Value *VisitUnaryCoawait(const UnaryOperator *E) {
455     return Visit(E->getSubExpr());
456   }
457 
458   // Leaves.
459   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
460     return Builder.getInt(E->getValue());
461   }
462   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
463     return Builder.getInt(E->getValue());
464   }
465   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
466     return llvm::ConstantFP::get(VMContext, E->getValue());
467   }
468   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
469     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
470   }
471   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
472     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
473   }
474   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
475     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
476   }
477   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
478     return EmitNullValue(E->getType());
479   }
480   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
481     return EmitNullValue(E->getType());
482   }
483   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
484   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
485   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
486     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
487     return Builder.CreateBitCast(V, ConvertType(E->getType()));
488   }
489 
490   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
491     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
492   }
493 
494   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
495     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
496   }
497 
498   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
499     if (E->isGLValue())
500       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
501                               E->getExprLoc());
502 
503     // Otherwise, assume the mapping is the scalar directly.
504     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
505   }
506 
507   // l-values.
508   Value *VisitDeclRefExpr(DeclRefExpr *E) {
509     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
510       return CGF.emitScalarConstant(Constant, E);
511     return EmitLoadOfLValue(E);
512   }
513 
514   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
515     return CGF.EmitObjCSelectorExpr(E);
516   }
517   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
518     return CGF.EmitObjCProtocolExpr(E);
519   }
520   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
521     return EmitLoadOfLValue(E);
522   }
523   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
524     if (E->getMethodDecl() &&
525         E->getMethodDecl()->getReturnType()->isReferenceType())
526       return EmitLoadOfLValue(E);
527     return CGF.EmitObjCMessageExpr(E).getScalarVal();
528   }
529 
530   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
531     LValue LV = CGF.EmitObjCIsaExpr(E);
532     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
533     return V;
534   }
535 
536   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
537     VersionTuple Version = E->getVersion();
538 
539     // If we're checking for a platform older than our minimum deployment
540     // target, we can fold the check away.
541     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
542       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
543 
544     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
545     llvm::Value *Args[] = {
546         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
547         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
548         llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
549     };
550 
551     return CGF.EmitBuiltinAvailable(Args);
552   }
553 
554   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
555   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
556   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
557   Value *VisitMemberExpr(MemberExpr *E);
558   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
559   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
560     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
561     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
562     // literals aren't l-values in C++. We do so simply because that's the
563     // cleanest way to handle compound literals in C++.
564     // See the discussion here: https://reviews.llvm.org/D64464
565     return EmitLoadOfLValue(E);
566   }
567 
568   Value *VisitInitListExpr(InitListExpr *E);
569 
570   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
571     assert(CGF.getArrayInitIndex() &&
572            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
573     return CGF.getArrayInitIndex();
574   }
575 
576   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
577     return EmitNullValue(E->getType());
578   }
579   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
580     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
581     return VisitCastExpr(E);
582   }
583   Value *VisitCastExpr(CastExpr *E);
584 
585   Value *VisitCallExpr(const CallExpr *E) {
586     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
587       return EmitLoadOfLValue(E);
588 
589     Value *V = CGF.EmitCallExpr(E).getScalarVal();
590 
591     EmitLValueAlignmentAssumption(E, V);
592     return V;
593   }
594 
595   Value *VisitStmtExpr(const StmtExpr *E);
596 
597   // Unary Operators.
598   Value *VisitUnaryPostDec(const UnaryOperator *E) {
599     LValue LV = EmitLValue(E->getSubExpr());
600     return EmitScalarPrePostIncDec(E, LV, false, false);
601   }
602   Value *VisitUnaryPostInc(const UnaryOperator *E) {
603     LValue LV = EmitLValue(E->getSubExpr());
604     return EmitScalarPrePostIncDec(E, LV, true, false);
605   }
606   Value *VisitUnaryPreDec(const UnaryOperator *E) {
607     LValue LV = EmitLValue(E->getSubExpr());
608     return EmitScalarPrePostIncDec(E, LV, false, true);
609   }
610   Value *VisitUnaryPreInc(const UnaryOperator *E) {
611     LValue LV = EmitLValue(E->getSubExpr());
612     return EmitScalarPrePostIncDec(E, LV, true, true);
613   }
614 
615   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
616                                                   llvm::Value *InVal,
617                                                   bool IsInc);
618 
619   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
620                                        bool isInc, bool isPre);
621 
622 
623   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
624     if (isa<MemberPointerType>(E->getType())) // never sugared
625       return CGF.CGM.getMemberPointerConstant(E);
626 
627     return EmitLValue(E->getSubExpr()).getPointer(CGF);
628   }
629   Value *VisitUnaryDeref(const UnaryOperator *E) {
630     if (E->getType()->isVoidType())
631       return Visit(E->getSubExpr()); // the actual value should be unused
632     return EmitLoadOfLValue(E);
633   }
634   Value *VisitUnaryPlus(const UnaryOperator *E) {
635     // This differs from gcc, though, most likely due to a bug in gcc.
636     TestAndClearIgnoreResultAssign();
637     return Visit(E->getSubExpr());
638   }
639   Value *VisitUnaryMinus    (const UnaryOperator *E);
640   Value *VisitUnaryNot      (const UnaryOperator *E);
641   Value *VisitUnaryLNot     (const UnaryOperator *E);
642   Value *VisitUnaryReal     (const UnaryOperator *E);
643   Value *VisitUnaryImag     (const UnaryOperator *E);
644   Value *VisitUnaryExtension(const UnaryOperator *E) {
645     return Visit(E->getSubExpr());
646   }
647 
648   // C++
649   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
650     return EmitLoadOfLValue(E);
651   }
652   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
653     auto &Ctx = CGF.getContext();
654     APValue Evaluated =
655         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
656     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
657                                              SLE->getType());
658   }
659 
660   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
661     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
662     return Visit(DAE->getExpr());
663   }
664   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
665     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
666     return Visit(DIE->getExpr());
667   }
668   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
669     return CGF.LoadCXXThis();
670   }
671 
672   Value *VisitExprWithCleanups(ExprWithCleanups *E);
673   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
674     return CGF.EmitCXXNewExpr(E);
675   }
676   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
677     CGF.EmitCXXDeleteExpr(E);
678     return nullptr;
679   }
680 
681   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
682     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
683   }
684 
685   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
686     return Builder.getInt1(E->isSatisfied());
687   }
688 
689   Value *VisitRequiresExpr(const RequiresExpr *E) {
690     return Builder.getInt1(E->isSatisfied());
691   }
692 
693   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
694     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
695   }
696 
697   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
698     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
699   }
700 
701   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
702     // C++ [expr.pseudo]p1:
703     //   The result shall only be used as the operand for the function call
704     //   operator (), and the result of such a call has type void. The only
705     //   effect is the evaluation of the postfix-expression before the dot or
706     //   arrow.
707     CGF.EmitScalarExpr(E->getBase());
708     return nullptr;
709   }
710 
711   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
712     return EmitNullValue(E->getType());
713   }
714 
715   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
716     CGF.EmitCXXThrowExpr(E);
717     return nullptr;
718   }
719 
720   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
721     return Builder.getInt1(E->getValue());
722   }
723 
724   // Binary Operators.
725   Value *EmitMul(const BinOpInfo &Ops) {
726     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
727       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
728       case LangOptions::SOB_Defined:
729         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
730       case LangOptions::SOB_Undefined:
731         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
732           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
733         LLVM_FALLTHROUGH;
734       case LangOptions::SOB_Trapping:
735         if (CanElideOverflowCheck(CGF.getContext(), Ops))
736           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
737         return EmitOverflowCheckedBinOp(Ops);
738       }
739     }
740 
741     if (Ops.Ty->isUnsignedIntegerType() &&
742         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
743         !CanElideOverflowCheck(CGF.getContext(), Ops))
744       return EmitOverflowCheckedBinOp(Ops);
745 
746     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
747       Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
748       return propagateFMFlags(V, Ops);
749     }
750     if (Ops.isFixedPointOp())
751       return EmitFixedPointBinOp(Ops);
752     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
753   }
754   /// Create a binary op that checks for overflow.
755   /// Currently only supports +, - and *.
756   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
757 
758   // Check for undefined division and modulus behaviors.
759   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
760                                                   llvm::Value *Zero,bool isDiv);
761   // Common helper for getting how wide LHS of shift is.
762   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
763 
764   // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
765   // non powers of two.
766   Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
767 
768   Value *EmitDiv(const BinOpInfo &Ops);
769   Value *EmitRem(const BinOpInfo &Ops);
770   Value *EmitAdd(const BinOpInfo &Ops);
771   Value *EmitSub(const BinOpInfo &Ops);
772   Value *EmitShl(const BinOpInfo &Ops);
773   Value *EmitShr(const BinOpInfo &Ops);
774   Value *EmitAnd(const BinOpInfo &Ops) {
775     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
776   }
777   Value *EmitXor(const BinOpInfo &Ops) {
778     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
779   }
780   Value *EmitOr (const BinOpInfo &Ops) {
781     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
782   }
783 
784   // Helper functions for fixed point binary operations.
785   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
786 
787   BinOpInfo EmitBinOps(const BinaryOperator *E);
788   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
789                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
790                                   Value *&Result);
791 
792   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
793                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
794 
795   // Binary operators and binary compound assignment operators.
796 #define HANDLEBINOP(OP) \
797   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
798     return Emit ## OP(EmitBinOps(E));                                      \
799   }                                                                        \
800   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
801     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
802   }
803   HANDLEBINOP(Mul)
804   HANDLEBINOP(Div)
805   HANDLEBINOP(Rem)
806   HANDLEBINOP(Add)
807   HANDLEBINOP(Sub)
808   HANDLEBINOP(Shl)
809   HANDLEBINOP(Shr)
810   HANDLEBINOP(And)
811   HANDLEBINOP(Xor)
812   HANDLEBINOP(Or)
813 #undef HANDLEBINOP
814 
815   // Comparisons.
816   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
817                      llvm::CmpInst::Predicate SICmpOpc,
818                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
819 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
820     Value *VisitBin##CODE(const BinaryOperator *E) { \
821       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
822                          llvm::FCmpInst::FP, SIG); }
823   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
824   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
825   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
826   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
827   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
828   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
829 #undef VISITCOMP
830 
831   Value *VisitBinAssign     (const BinaryOperator *E);
832 
833   Value *VisitBinLAnd       (const BinaryOperator *E);
834   Value *VisitBinLOr        (const BinaryOperator *E);
835   Value *VisitBinComma      (const BinaryOperator *E);
836 
837   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
838   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
839 
840   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
841     return Visit(E->getSemanticForm());
842   }
843 
844   // Other Operators.
845   Value *VisitBlockExpr(const BlockExpr *BE);
846   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
847   Value *VisitChooseExpr(ChooseExpr *CE);
848   Value *VisitVAArgExpr(VAArgExpr *VE);
849   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
850     return CGF.EmitObjCStringLiteral(E);
851   }
852   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
853     return CGF.EmitObjCBoxedExpr(E);
854   }
855   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
856     return CGF.EmitObjCArrayLiteral(E);
857   }
858   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
859     return CGF.EmitObjCDictionaryLiteral(E);
860   }
861   Value *VisitAsTypeExpr(AsTypeExpr *CE);
862   Value *VisitAtomicExpr(AtomicExpr *AE);
863 };
864 }  // end anonymous namespace.
865 
866 //===----------------------------------------------------------------------===//
867 //                                Utilities
868 //===----------------------------------------------------------------------===//
869 
870 /// EmitConversionToBool - Convert the specified expression value to a
871 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
872 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
873   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
874 
875   if (SrcType->isRealFloatingType())
876     return EmitFloatToBoolConversion(Src);
877 
878   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
879     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
880 
881   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
882          "Unknown scalar type to convert");
883 
884   if (isa<llvm::IntegerType>(Src->getType()))
885     return EmitIntToBoolConversion(Src);
886 
887   assert(isa<llvm::PointerType>(Src->getType()));
888   return EmitPointerToBoolConversion(Src, SrcType);
889 }
890 
891 void ScalarExprEmitter::EmitFloatConversionCheck(
892     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
893     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
894   assert(SrcType->isFloatingType() && "not a conversion from floating point");
895   if (!isa<llvm::IntegerType>(DstTy))
896     return;
897 
898   CodeGenFunction::SanitizerScope SanScope(&CGF);
899   using llvm::APFloat;
900   using llvm::APSInt;
901 
902   llvm::Value *Check = nullptr;
903   const llvm::fltSemantics &SrcSema =
904     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
905 
906   // Floating-point to integer. This has undefined behavior if the source is
907   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
908   // to an integer).
909   unsigned Width = CGF.getContext().getIntWidth(DstType);
910   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
911 
912   APSInt Min = APSInt::getMinValue(Width, Unsigned);
913   APFloat MinSrc(SrcSema, APFloat::uninitialized);
914   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
915       APFloat::opOverflow)
916     // Don't need an overflow check for lower bound. Just check for
917     // -Inf/NaN.
918     MinSrc = APFloat::getInf(SrcSema, true);
919   else
920     // Find the largest value which is too small to represent (before
921     // truncation toward zero).
922     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
923 
924   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
925   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
926   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
927       APFloat::opOverflow)
928     // Don't need an overflow check for upper bound. Just check for
929     // +Inf/NaN.
930     MaxSrc = APFloat::getInf(SrcSema, false);
931   else
932     // Find the smallest value which is too large to represent (before
933     // truncation toward zero).
934     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
935 
936   // If we're converting from __half, convert the range to float to match
937   // the type of src.
938   if (OrigSrcType->isHalfType()) {
939     const llvm::fltSemantics &Sema =
940       CGF.getContext().getFloatTypeSemantics(SrcType);
941     bool IsInexact;
942     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
943     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
944   }
945 
946   llvm::Value *GE =
947     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
948   llvm::Value *LE =
949     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
950   Check = Builder.CreateAnd(GE, LE);
951 
952   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
953                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
954                                   CGF.EmitCheckTypeDescriptor(DstType)};
955   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
956                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
957 }
958 
959 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
960 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
961 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
962                  std::pair<llvm::Value *, SanitizerMask>>
963 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
964                                  QualType DstType, CGBuilderTy &Builder) {
965   llvm::Type *SrcTy = Src->getType();
966   llvm::Type *DstTy = Dst->getType();
967   (void)DstTy; // Only used in assert()
968 
969   // This should be truncation of integral types.
970   assert(Src != Dst);
971   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
972   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
973          "non-integer llvm type");
974 
975   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
976   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
977 
978   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
979   // Else, it is a signed truncation.
980   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
981   SanitizerMask Mask;
982   if (!SrcSigned && !DstSigned) {
983     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
984     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
985   } else {
986     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
987     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
988   }
989 
990   llvm::Value *Check = nullptr;
991   // 1. Extend the truncated value back to the same width as the Src.
992   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
993   // 2. Equality-compare with the original source value
994   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
995   // If the comparison result is 'i1 false', then the truncation was lossy.
996   return std::make_pair(Kind, std::make_pair(Check, Mask));
997 }
998 
999 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1000     QualType SrcType, QualType DstType) {
1001   return SrcType->isIntegerType() && DstType->isIntegerType();
1002 }
1003 
1004 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1005                                                    Value *Dst, QualType DstType,
1006                                                    SourceLocation Loc) {
1007   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1008     return;
1009 
1010   // We only care about int->int conversions here.
1011   // We ignore conversions to/from pointer and/or bool.
1012   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1013                                                                        DstType))
1014     return;
1015 
1016   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1017   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1018   // This must be truncation. Else we do not care.
1019   if (SrcBits <= DstBits)
1020     return;
1021 
1022   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1023 
1024   // If the integer sign change sanitizer is enabled,
1025   // and we are truncating from larger unsigned type to smaller signed type,
1026   // let that next sanitizer deal with it.
1027   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1028   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1029   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1030       (!SrcSigned && DstSigned))
1031     return;
1032 
1033   CodeGenFunction::SanitizerScope SanScope(&CGF);
1034 
1035   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1036             std::pair<llvm::Value *, SanitizerMask>>
1037       Check =
1038           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1039   // If the comparison result is 'i1 false', then the truncation was lossy.
1040 
1041   // Do we care about this type of truncation?
1042   if (!CGF.SanOpts.has(Check.second.second))
1043     return;
1044 
1045   llvm::Constant *StaticArgs[] = {
1046       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1047       CGF.EmitCheckTypeDescriptor(DstType),
1048       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1049   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1050                 {Src, Dst});
1051 }
1052 
1053 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1054 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1055 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1056                  std::pair<llvm::Value *, SanitizerMask>>
1057 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1058                                  QualType DstType, CGBuilderTy &Builder) {
1059   llvm::Type *SrcTy = Src->getType();
1060   llvm::Type *DstTy = Dst->getType();
1061 
1062   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1063          "non-integer llvm type");
1064 
1065   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1066   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1067   (void)SrcSigned; // Only used in assert()
1068   (void)DstSigned; // Only used in assert()
1069   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1070   unsigned DstBits = DstTy->getScalarSizeInBits();
1071   (void)SrcBits; // Only used in assert()
1072   (void)DstBits; // Only used in assert()
1073 
1074   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1075          "either the widths should be different, or the signednesses.");
1076 
1077   // NOTE: zero value is considered to be non-negative.
1078   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1079                                        const char *Name) -> Value * {
1080     // Is this value a signed type?
1081     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1082     llvm::Type *VTy = V->getType();
1083     if (!VSigned) {
1084       // If the value is unsigned, then it is never negative.
1085       // FIXME: can we encounter non-scalar VTy here?
1086       return llvm::ConstantInt::getFalse(VTy->getContext());
1087     }
1088     // Get the zero of the same type with which we will be comparing.
1089     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1090     // %V.isnegative = icmp slt %V, 0
1091     // I.e is %V *strictly* less than zero, does it have negative value?
1092     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1093                               llvm::Twine(Name) + "." + V->getName() +
1094                                   ".negativitycheck");
1095   };
1096 
1097   // 1. Was the old Value negative?
1098   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1099   // 2. Is the new Value negative?
1100   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1101   // 3. Now, was the 'negativity status' preserved during the conversion?
1102   //    NOTE: conversion from negative to zero is considered to change the sign.
1103   //    (We want to get 'false' when the conversion changed the sign)
1104   //    So we should just equality-compare the negativity statuses.
1105   llvm::Value *Check = nullptr;
1106   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1107   // If the comparison result is 'false', then the conversion changed the sign.
1108   return std::make_pair(
1109       ScalarExprEmitter::ICCK_IntegerSignChange,
1110       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1111 }
1112 
1113 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1114                                                    Value *Dst, QualType DstType,
1115                                                    SourceLocation Loc) {
1116   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1117     return;
1118 
1119   llvm::Type *SrcTy = Src->getType();
1120   llvm::Type *DstTy = Dst->getType();
1121 
1122   // We only care about int->int conversions here.
1123   // We ignore conversions to/from pointer and/or bool.
1124   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1125                                                                        DstType))
1126     return;
1127 
1128   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1129   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1130   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1131   unsigned DstBits = DstTy->getScalarSizeInBits();
1132 
1133   // Now, we do not need to emit the check in *all* of the cases.
1134   // We can avoid emitting it in some obvious cases where it would have been
1135   // dropped by the opt passes (instcombine) always anyways.
1136   // If it's a cast between effectively the same type, no check.
1137   // NOTE: this is *not* equivalent to checking the canonical types.
1138   if (SrcSigned == DstSigned && SrcBits == DstBits)
1139     return;
1140   // At least one of the values needs to have signed type.
1141   // If both are unsigned, then obviously, neither of them can be negative.
1142   if (!SrcSigned && !DstSigned)
1143     return;
1144   // If the conversion is to *larger* *signed* type, then no check is needed.
1145   // Because either sign-extension happens (so the sign will remain),
1146   // or zero-extension will happen (the sign bit will be zero.)
1147   if ((DstBits > SrcBits) && DstSigned)
1148     return;
1149   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1150       (SrcBits > DstBits) && SrcSigned) {
1151     // If the signed integer truncation sanitizer is enabled,
1152     // and this is a truncation from signed type, then no check is needed.
1153     // Because here sign change check is interchangeable with truncation check.
1154     return;
1155   }
1156   // That's it. We can't rule out any more cases with the data we have.
1157 
1158   CodeGenFunction::SanitizerScope SanScope(&CGF);
1159 
1160   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1161             std::pair<llvm::Value *, SanitizerMask>>
1162       Check;
1163 
1164   // Each of these checks needs to return 'false' when an issue was detected.
1165   ImplicitConversionCheckKind CheckKind;
1166   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1167   // So we can 'and' all the checks together, and still get 'false',
1168   // if at least one of the checks detected an issue.
1169 
1170   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1171   CheckKind = Check.first;
1172   Checks.emplace_back(Check.second);
1173 
1174   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1175       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1176     // If the signed integer truncation sanitizer was enabled,
1177     // and we are truncating from larger unsigned type to smaller signed type,
1178     // let's handle the case we skipped in that check.
1179     Check =
1180         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1181     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1182     Checks.emplace_back(Check.second);
1183     // If the comparison result is 'i1 false', then the truncation was lossy.
1184   }
1185 
1186   llvm::Constant *StaticArgs[] = {
1187       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1188       CGF.EmitCheckTypeDescriptor(DstType),
1189       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1190   // EmitCheck() will 'and' all the checks together.
1191   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1192                 {Src, Dst});
1193 }
1194 
1195 /// Emit a conversion from the specified type to the specified destination type,
1196 /// both of which are LLVM scalar types.
1197 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1198                                                QualType DstType,
1199                                                SourceLocation Loc,
1200                                                ScalarConversionOpts Opts) {
1201   // All conversions involving fixed point types should be handled by the
1202   // EmitFixedPoint family functions. This is done to prevent bloating up this
1203   // function more, and although fixed point numbers are represented by
1204   // integers, we do not want to follow any logic that assumes they should be
1205   // treated as integers.
1206   // TODO(leonardchan): When necessary, add another if statement checking for
1207   // conversions to fixed point types from other types.
1208   if (SrcType->isFixedPointType()) {
1209     if (DstType->isBooleanType())
1210       // It is important that we check this before checking if the dest type is
1211       // an integer because booleans are technically integer types.
1212       // We do not need to check the padding bit on unsigned types if unsigned
1213       // padding is enabled because overflow into this bit is undefined
1214       // behavior.
1215       return Builder.CreateIsNotNull(Src, "tobool");
1216     if (DstType->isFixedPointType() || DstType->isIntegerType())
1217       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1218 
1219     llvm_unreachable(
1220         "Unhandled scalar conversion from a fixed point type to another type.");
1221   } else if (DstType->isFixedPointType()) {
1222     if (SrcType->isIntegerType())
1223       // This also includes converting booleans and enums to fixed point types.
1224       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1225 
1226     llvm_unreachable(
1227         "Unhandled scalar conversion to a fixed point type from another type.");
1228   }
1229 
1230   QualType NoncanonicalSrcType = SrcType;
1231   QualType NoncanonicalDstType = DstType;
1232 
1233   SrcType = CGF.getContext().getCanonicalType(SrcType);
1234   DstType = CGF.getContext().getCanonicalType(DstType);
1235   if (SrcType == DstType) return Src;
1236 
1237   if (DstType->isVoidType()) return nullptr;
1238 
1239   llvm::Value *OrigSrc = Src;
1240   QualType OrigSrcType = SrcType;
1241   llvm::Type *SrcTy = Src->getType();
1242 
1243   // Handle conversions to bool first, they are special: comparisons against 0.
1244   if (DstType->isBooleanType())
1245     return EmitConversionToBool(Src, SrcType);
1246 
1247   llvm::Type *DstTy = ConvertType(DstType);
1248 
1249   // Cast from half through float if half isn't a native type.
1250   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1251     // Cast to FP using the intrinsic if the half type itself isn't supported.
1252     if (DstTy->isFloatingPointTy()) {
1253       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1254         return Builder.CreateCall(
1255             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1256             Src);
1257     } else {
1258       // Cast to other types through float, using either the intrinsic or FPExt,
1259       // depending on whether the half type itself is supported
1260       // (as opposed to operations on half, available with NativeHalfType).
1261       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1262         Src = Builder.CreateCall(
1263             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1264                                  CGF.CGM.FloatTy),
1265             Src);
1266       } else {
1267         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1268       }
1269       SrcType = CGF.getContext().FloatTy;
1270       SrcTy = CGF.FloatTy;
1271     }
1272   }
1273 
1274   // Ignore conversions like int -> uint.
1275   if (SrcTy == DstTy) {
1276     if (Opts.EmitImplicitIntegerSignChangeChecks)
1277       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1278                                  NoncanonicalDstType, Loc);
1279 
1280     return Src;
1281   }
1282 
1283   // Handle pointer conversions next: pointers can only be converted to/from
1284   // other pointers and integers. Check for pointer types in terms of LLVM, as
1285   // some native types (like Obj-C id) may map to a pointer type.
1286   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1287     // The source value may be an integer, or a pointer.
1288     if (isa<llvm::PointerType>(SrcTy))
1289       return Builder.CreateBitCast(Src, DstTy, "conv");
1290 
1291     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1292     // First, convert to the correct width so that we control the kind of
1293     // extension.
1294     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1295     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1296     llvm::Value* IntResult =
1297         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1298     // Then, cast to pointer.
1299     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1300   }
1301 
1302   if (isa<llvm::PointerType>(SrcTy)) {
1303     // Must be an ptr to int cast.
1304     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1305     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1306   }
1307 
1308   // A scalar can be splatted to an extended vector of the same element type
1309   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1310     // Sema should add casts to make sure that the source expression's type is
1311     // the same as the vector's element type (sans qualifiers)
1312     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1313                SrcType.getTypePtr() &&
1314            "Splatted expr doesn't match with vector element type?");
1315 
1316     // Splat the element across to all elements
1317     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1318     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1319   }
1320 
1321   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1322     // Allow bitcast from vector to integer/fp of the same size.
1323     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1324     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1325     if (SrcSize == DstSize)
1326       return Builder.CreateBitCast(Src, DstTy, "conv");
1327 
1328     // Conversions between vectors of different sizes are not allowed except
1329     // when vectors of half are involved. Operations on storage-only half
1330     // vectors require promoting half vector operands to float vectors and
1331     // truncating the result, which is either an int or float vector, to a
1332     // short or half vector.
1333 
1334     // Source and destination are both expected to be vectors.
1335     llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1336     llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1337     (void)DstElementTy;
1338 
1339     assert(((SrcElementTy->isIntegerTy() &&
1340              DstElementTy->isIntegerTy()) ||
1341             (SrcElementTy->isFloatingPointTy() &&
1342              DstElementTy->isFloatingPointTy())) &&
1343            "unexpected conversion between a floating-point vector and an "
1344            "integer vector");
1345 
1346     // Truncate an i32 vector to an i16 vector.
1347     if (SrcElementTy->isIntegerTy())
1348       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1349 
1350     // Truncate a float vector to a half vector.
1351     if (SrcSize > DstSize)
1352       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1353 
1354     // Promote a half vector to a float vector.
1355     return Builder.CreateFPExt(Src, DstTy, "conv");
1356   }
1357 
1358   // Finally, we have the arithmetic types: real int/float.
1359   Value *Res = nullptr;
1360   llvm::Type *ResTy = DstTy;
1361 
1362   // An overflowing conversion has undefined behavior if either the source type
1363   // or the destination type is a floating-point type. However, we consider the
1364   // range of representable values for all floating-point types to be
1365   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1366   // floating-point type.
1367   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1368       OrigSrcType->isFloatingType())
1369     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1370                              Loc);
1371 
1372   // Cast to half through float if half isn't a native type.
1373   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1374     // Make sure we cast in a single step if from another FP type.
1375     if (SrcTy->isFloatingPointTy()) {
1376       // Use the intrinsic if the half type itself isn't supported
1377       // (as opposed to operations on half, available with NativeHalfType).
1378       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1379         return Builder.CreateCall(
1380             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1381       // If the half type is supported, just use an fptrunc.
1382       return Builder.CreateFPTrunc(Src, DstTy);
1383     }
1384     DstTy = CGF.FloatTy;
1385   }
1386 
1387   if (isa<llvm::IntegerType>(SrcTy)) {
1388     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1389     if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1390       InputSigned = true;
1391     }
1392     if (isa<llvm::IntegerType>(DstTy))
1393       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1394     else if (InputSigned)
1395       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1396     else
1397       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1398   } else if (isa<llvm::IntegerType>(DstTy)) {
1399     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1400     if (DstType->isSignedIntegerOrEnumerationType())
1401       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1402     else
1403       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1404   } else {
1405     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1406            "Unknown real conversion");
1407     if (DstTy->getTypeID() < SrcTy->getTypeID())
1408       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1409     else
1410       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1411   }
1412 
1413   if (DstTy != ResTy) {
1414     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1415       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1416       Res = Builder.CreateCall(
1417         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1418         Res);
1419     } else {
1420       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1421     }
1422   }
1423 
1424   if (Opts.EmitImplicitIntegerTruncationChecks)
1425     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1426                                NoncanonicalDstType, Loc);
1427 
1428   if (Opts.EmitImplicitIntegerSignChangeChecks)
1429     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1430                                NoncanonicalDstType, Loc);
1431 
1432   return Res;
1433 }
1434 
1435 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1436                                                    QualType DstTy,
1437                                                    SourceLocation Loc) {
1438   FixedPointSemantics SrcFPSema =
1439       CGF.getContext().getFixedPointSemantics(SrcTy);
1440   FixedPointSemantics DstFPSema =
1441       CGF.getContext().getFixedPointSemantics(DstTy);
1442   return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc,
1443                                   DstTy->isIntegerType());
1444 }
1445 
1446 Value *ScalarExprEmitter::EmitFixedPointConversion(
1447     Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema,
1448     SourceLocation Loc, bool DstIsInteger) {
1449   using llvm::APInt;
1450   using llvm::ConstantInt;
1451   using llvm::Value;
1452 
1453   unsigned SrcWidth = SrcFPSema.getWidth();
1454   unsigned DstWidth = DstFPSema.getWidth();
1455   unsigned SrcScale = SrcFPSema.getScale();
1456   unsigned DstScale = DstFPSema.getScale();
1457   bool SrcIsSigned = SrcFPSema.isSigned();
1458   bool DstIsSigned = DstFPSema.isSigned();
1459 
1460   llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth);
1461 
1462   Value *Result = Src;
1463   unsigned ResultWidth = SrcWidth;
1464 
1465   // Downscale.
1466   if (DstScale < SrcScale) {
1467     // When converting to integers, we round towards zero. For negative numbers,
1468     // right shifting rounds towards negative infinity. In this case, we can
1469     // just round up before shifting.
1470     if (DstIsInteger && SrcIsSigned) {
1471       Value *Zero = llvm::Constant::getNullValue(Result->getType());
1472       Value *IsNegative = Builder.CreateICmpSLT(Result, Zero);
1473       Value *LowBits = ConstantInt::get(
1474           CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale));
1475       Value *Rounded = Builder.CreateAdd(Result, LowBits);
1476       Result = Builder.CreateSelect(IsNegative, Rounded, Result);
1477     }
1478 
1479     Result = SrcIsSigned
1480                  ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale")
1481                  : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale");
1482   }
1483 
1484   if (!DstFPSema.isSaturated()) {
1485     // Resize.
1486     Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1487 
1488     // Upscale.
1489     if (DstScale > SrcScale)
1490       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1491   } else {
1492     // Adjust the number of fractional bits.
1493     if (DstScale > SrcScale) {
1494       // Compare to DstWidth to prevent resizing twice.
1495       ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth);
1496       llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth);
1497       Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize");
1498       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1499     }
1500 
1501     // Handle saturation.
1502     bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits();
1503     if (LessIntBits) {
1504       Value *Max = ConstantInt::get(
1505           CGF.getLLVMContext(),
1506           APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth));
1507       Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max)
1508                                    : Builder.CreateICmpUGT(Result, Max);
1509       Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax");
1510     }
1511     // Cannot overflow min to dest type if src is unsigned since all fixed
1512     // point types can cover the unsigned min of 0.
1513     if (SrcIsSigned && (LessIntBits || !DstIsSigned)) {
1514       Value *Min = ConstantInt::get(
1515           CGF.getLLVMContext(),
1516           APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth));
1517       Value *TooLow = Builder.CreateICmpSLT(Result, Min);
1518       Result = Builder.CreateSelect(TooLow, Min, Result, "satmin");
1519     }
1520 
1521     // Resize the integer part to get the final destination size.
1522     if (ResultWidth != DstWidth)
1523       Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1524   }
1525   return Result;
1526 }
1527 
1528 /// Emit a conversion from the specified complex type to the specified
1529 /// destination type, where the destination type is an LLVM scalar type.
1530 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1531     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1532     SourceLocation Loc) {
1533   // Get the source element type.
1534   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1535 
1536   // Handle conversions to bool first, they are special: comparisons against 0.
1537   if (DstTy->isBooleanType()) {
1538     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1539     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1540     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1541     return Builder.CreateOr(Src.first, Src.second, "tobool");
1542   }
1543 
1544   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1545   // the imaginary part of the complex value is discarded and the value of the
1546   // real part is converted according to the conversion rules for the
1547   // corresponding real type.
1548   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1549 }
1550 
1551 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1552   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1553 }
1554 
1555 /// Emit a sanitization check for the given "binary" operation (which
1556 /// might actually be a unary increment which has been lowered to a binary
1557 /// operation). The check passes if all values in \p Checks (which are \c i1),
1558 /// are \c true.
1559 void ScalarExprEmitter::EmitBinOpCheck(
1560     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1561   assert(CGF.IsSanitizerScope);
1562   SanitizerHandler Check;
1563   SmallVector<llvm::Constant *, 4> StaticData;
1564   SmallVector<llvm::Value *, 2> DynamicData;
1565 
1566   BinaryOperatorKind Opcode = Info.Opcode;
1567   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1568     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1569 
1570   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1571   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1572   if (UO && UO->getOpcode() == UO_Minus) {
1573     Check = SanitizerHandler::NegateOverflow;
1574     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1575     DynamicData.push_back(Info.RHS);
1576   } else {
1577     if (BinaryOperator::isShiftOp(Opcode)) {
1578       // Shift LHS negative or too large, or RHS out of bounds.
1579       Check = SanitizerHandler::ShiftOutOfBounds;
1580       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1581       StaticData.push_back(
1582         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1583       StaticData.push_back(
1584         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1585     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1586       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1587       Check = SanitizerHandler::DivremOverflow;
1588       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1589     } else {
1590       // Arithmetic overflow (+, -, *).
1591       switch (Opcode) {
1592       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1593       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1594       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1595       default: llvm_unreachable("unexpected opcode for bin op check");
1596       }
1597       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1598     }
1599     DynamicData.push_back(Info.LHS);
1600     DynamicData.push_back(Info.RHS);
1601   }
1602 
1603   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1604 }
1605 
1606 //===----------------------------------------------------------------------===//
1607 //                            Visitor Methods
1608 //===----------------------------------------------------------------------===//
1609 
1610 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1611   CGF.ErrorUnsupported(E, "scalar expression");
1612   if (E->getType()->isVoidType())
1613     return nullptr;
1614   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1615 }
1616 
1617 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1618   // Vector Mask Case
1619   if (E->getNumSubExprs() == 2) {
1620     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1621     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1622     Value *Mask;
1623 
1624     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1625     unsigned LHSElts = LTy->getNumElements();
1626 
1627     Mask = RHS;
1628 
1629     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1630 
1631     // Mask off the high bits of each shuffle index.
1632     Value *MaskBits =
1633         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1634     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1635 
1636     // newv = undef
1637     // mask = mask & maskbits
1638     // for each elt
1639     //   n = extract mask i
1640     //   x = extract val n
1641     //   newv = insert newv, x, i
1642     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1643                                                   MTy->getNumElements());
1644     Value* NewV = llvm::UndefValue::get(RTy);
1645     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1646       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1647       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1648 
1649       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1650       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1651     }
1652     return NewV;
1653   }
1654 
1655   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1656   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1657 
1658   SmallVector<int, 32> Indices;
1659   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1660     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1661     // Check for -1 and output it as undef in the IR.
1662     if (Idx.isSigned() && Idx.isAllOnesValue())
1663       Indices.push_back(-1);
1664     else
1665       Indices.push_back(Idx.getZExtValue());
1666   }
1667 
1668   return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1669 }
1670 
1671 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1672   QualType SrcType = E->getSrcExpr()->getType(),
1673            DstType = E->getType();
1674 
1675   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1676 
1677   SrcType = CGF.getContext().getCanonicalType(SrcType);
1678   DstType = CGF.getContext().getCanonicalType(DstType);
1679   if (SrcType == DstType) return Src;
1680 
1681   assert(SrcType->isVectorType() &&
1682          "ConvertVector source type must be a vector");
1683   assert(DstType->isVectorType() &&
1684          "ConvertVector destination type must be a vector");
1685 
1686   llvm::Type *SrcTy = Src->getType();
1687   llvm::Type *DstTy = ConvertType(DstType);
1688 
1689   // Ignore conversions like int -> uint.
1690   if (SrcTy == DstTy)
1691     return Src;
1692 
1693   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1694            DstEltType = DstType->castAs<VectorType>()->getElementType();
1695 
1696   assert(SrcTy->isVectorTy() &&
1697          "ConvertVector source IR type must be a vector");
1698   assert(DstTy->isVectorTy() &&
1699          "ConvertVector destination IR type must be a vector");
1700 
1701   llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1702              *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1703 
1704   if (DstEltType->isBooleanType()) {
1705     assert((SrcEltTy->isFloatingPointTy() ||
1706             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1707 
1708     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1709     if (SrcEltTy->isFloatingPointTy()) {
1710       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1711     } else {
1712       return Builder.CreateICmpNE(Src, Zero, "tobool");
1713     }
1714   }
1715 
1716   // We have the arithmetic types: real int/float.
1717   Value *Res = nullptr;
1718 
1719   if (isa<llvm::IntegerType>(SrcEltTy)) {
1720     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1721     if (isa<llvm::IntegerType>(DstEltTy))
1722       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1723     else if (InputSigned)
1724       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1725     else
1726       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1727   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1728     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1729     if (DstEltType->isSignedIntegerOrEnumerationType())
1730       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1731     else
1732       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1733   } else {
1734     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1735            "Unknown real conversion");
1736     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1737       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1738     else
1739       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1740   }
1741 
1742   return Res;
1743 }
1744 
1745 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1746   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1747     CGF.EmitIgnoredExpr(E->getBase());
1748     return CGF.emitScalarConstant(Constant, E);
1749   } else {
1750     Expr::EvalResult Result;
1751     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1752       llvm::APSInt Value = Result.Val.getInt();
1753       CGF.EmitIgnoredExpr(E->getBase());
1754       return Builder.getInt(Value);
1755     }
1756   }
1757 
1758   return EmitLoadOfLValue(E);
1759 }
1760 
1761 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1762   TestAndClearIgnoreResultAssign();
1763 
1764   // Emit subscript expressions in rvalue context's.  For most cases, this just
1765   // loads the lvalue formed by the subscript expr.  However, we have to be
1766   // careful, because the base of a vector subscript is occasionally an rvalue,
1767   // so we can't get it as an lvalue.
1768   if (!E->getBase()->getType()->isVectorType())
1769     return EmitLoadOfLValue(E);
1770 
1771   // Handle the vector case.  The base must be a vector, the index must be an
1772   // integer value.
1773   Value *Base = Visit(E->getBase());
1774   Value *Idx  = Visit(E->getIdx());
1775   QualType IdxTy = E->getIdx()->getType();
1776 
1777   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1778     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1779 
1780   return Builder.CreateExtractElement(Base, Idx, "vecext");
1781 }
1782 
1783 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1784                       unsigned Off) {
1785   int MV = SVI->getMaskValue(Idx);
1786   if (MV == -1)
1787     return -1;
1788   return Off + MV;
1789 }
1790 
1791 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1792   assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1793          "Index operand too large for shufflevector mask!");
1794   return C->getZExtValue();
1795 }
1796 
1797 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1798   bool Ignore = TestAndClearIgnoreResultAssign();
1799   (void)Ignore;
1800   assert (Ignore == false && "init list ignored");
1801   unsigned NumInitElements = E->getNumInits();
1802 
1803   if (E->hadArrayRangeDesignator())
1804     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1805 
1806   llvm::VectorType *VType =
1807     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1808 
1809   if (!VType) {
1810     if (NumInitElements == 0) {
1811       // C++11 value-initialization for the scalar.
1812       return EmitNullValue(E->getType());
1813     }
1814     // We have a scalar in braces. Just use the first element.
1815     return Visit(E->getInit(0));
1816   }
1817 
1818   unsigned ResElts = VType->getNumElements();
1819 
1820   // Loop over initializers collecting the Value for each, and remembering
1821   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1822   // us to fold the shuffle for the swizzle into the shuffle for the vector
1823   // initializer, since LLVM optimizers generally do not want to touch
1824   // shuffles.
1825   unsigned CurIdx = 0;
1826   bool VIsUndefShuffle = false;
1827   llvm::Value *V = llvm::UndefValue::get(VType);
1828   for (unsigned i = 0; i != NumInitElements; ++i) {
1829     Expr *IE = E->getInit(i);
1830     Value *Init = Visit(IE);
1831     SmallVector<int, 16> Args;
1832 
1833     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1834 
1835     // Handle scalar elements.  If the scalar initializer is actually one
1836     // element of a different vector of the same width, use shuffle instead of
1837     // extract+insert.
1838     if (!VVT) {
1839       if (isa<ExtVectorElementExpr>(IE)) {
1840         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1841 
1842         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1843           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1844           Value *LHS = nullptr, *RHS = nullptr;
1845           if (CurIdx == 0) {
1846             // insert into undef -> shuffle (src, undef)
1847             // shufflemask must use an i32
1848             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1849             Args.resize(ResElts, -1);
1850 
1851             LHS = EI->getVectorOperand();
1852             RHS = V;
1853             VIsUndefShuffle = true;
1854           } else if (VIsUndefShuffle) {
1855             // insert into undefshuffle && size match -> shuffle (v, src)
1856             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1857             for (unsigned j = 0; j != CurIdx; ++j)
1858               Args.push_back(getMaskElt(SVV, j, 0));
1859             Args.push_back(ResElts + C->getZExtValue());
1860             Args.resize(ResElts, -1);
1861 
1862             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1863             RHS = EI->getVectorOperand();
1864             VIsUndefShuffle = false;
1865           }
1866           if (!Args.empty()) {
1867             V = Builder.CreateShuffleVector(LHS, RHS, Args);
1868             ++CurIdx;
1869             continue;
1870           }
1871         }
1872       }
1873       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1874                                       "vecinit");
1875       VIsUndefShuffle = false;
1876       ++CurIdx;
1877       continue;
1878     }
1879 
1880     unsigned InitElts = VVT->getNumElements();
1881 
1882     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1883     // input is the same width as the vector being constructed, generate an
1884     // optimized shuffle of the swizzle input into the result.
1885     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1886     if (isa<ExtVectorElementExpr>(IE)) {
1887       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1888       Value *SVOp = SVI->getOperand(0);
1889       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1890 
1891       if (OpTy->getNumElements() == ResElts) {
1892         for (unsigned j = 0; j != CurIdx; ++j) {
1893           // If the current vector initializer is a shuffle with undef, merge
1894           // this shuffle directly into it.
1895           if (VIsUndefShuffle) {
1896             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1897           } else {
1898             Args.push_back(j);
1899           }
1900         }
1901         for (unsigned j = 0, je = InitElts; j != je; ++j)
1902           Args.push_back(getMaskElt(SVI, j, Offset));
1903         Args.resize(ResElts, -1);
1904 
1905         if (VIsUndefShuffle)
1906           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1907 
1908         Init = SVOp;
1909       }
1910     }
1911 
1912     // Extend init to result vector length, and then shuffle its contribution
1913     // to the vector initializer into V.
1914     if (Args.empty()) {
1915       for (unsigned j = 0; j != InitElts; ++j)
1916         Args.push_back(j);
1917       Args.resize(ResElts, -1);
1918       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), Args,
1919                                          "vext");
1920 
1921       Args.clear();
1922       for (unsigned j = 0; j != CurIdx; ++j)
1923         Args.push_back(j);
1924       for (unsigned j = 0; j != InitElts; ++j)
1925         Args.push_back(j + Offset);
1926       Args.resize(ResElts, -1);
1927     }
1928 
1929     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1930     // merging subsequent shuffles into this one.
1931     if (CurIdx == 0)
1932       std::swap(V, Init);
1933     V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1934     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1935     CurIdx += InitElts;
1936   }
1937 
1938   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1939   // Emit remaining default initializers.
1940   llvm::Type *EltTy = VType->getElementType();
1941 
1942   // Emit remaining default initializers
1943   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1944     Value *Idx = Builder.getInt32(CurIdx);
1945     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1946     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1947   }
1948   return V;
1949 }
1950 
1951 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1952   const Expr *E = CE->getSubExpr();
1953 
1954   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1955     return false;
1956 
1957   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1958     // We always assume that 'this' is never null.
1959     return false;
1960   }
1961 
1962   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1963     // And that glvalue casts are never null.
1964     if (ICE->getValueKind() != VK_RValue)
1965       return false;
1966   }
1967 
1968   return true;
1969 }
1970 
1971 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1972 // have to handle a more broad range of conversions than explicit casts, as they
1973 // handle things like function to ptr-to-function decay etc.
1974 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1975   Expr *E = CE->getSubExpr();
1976   QualType DestTy = CE->getType();
1977   CastKind Kind = CE->getCastKind();
1978 
1979   // These cases are generally not written to ignore the result of
1980   // evaluating their sub-expressions, so we clear this now.
1981   bool Ignored = TestAndClearIgnoreResultAssign();
1982 
1983   // Since almost all cast kinds apply to scalars, this switch doesn't have
1984   // a default case, so the compiler will warn on a missing case.  The cases
1985   // are in the same order as in the CastKind enum.
1986   switch (Kind) {
1987   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1988   case CK_BuiltinFnToFnPtr:
1989     llvm_unreachable("builtin functions are handled elsewhere");
1990 
1991   case CK_LValueBitCast:
1992   case CK_ObjCObjectLValueCast: {
1993     Address Addr = EmitLValue(E).getAddress(CGF);
1994     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1995     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1996     return EmitLoadOfLValue(LV, CE->getExprLoc());
1997   }
1998 
1999   case CK_LValueToRValueBitCast: {
2000     LValue SourceLVal = CGF.EmitLValue(E);
2001     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
2002                                                 CGF.ConvertTypeForMem(DestTy));
2003     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2004     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2005     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2006   }
2007 
2008   case CK_CPointerToObjCPointerCast:
2009   case CK_BlockPointerToObjCPointerCast:
2010   case CK_AnyPointerToBlockPointerCast:
2011   case CK_BitCast: {
2012     Value *Src = Visit(const_cast<Expr*>(E));
2013     llvm::Type *SrcTy = Src->getType();
2014     llvm::Type *DstTy = ConvertType(DestTy);
2015     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2016         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2017       llvm_unreachable("wrong cast for pointers in different address spaces"
2018                        "(must be an address space cast)!");
2019     }
2020 
2021     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2022       if (auto PT = DestTy->getAs<PointerType>())
2023         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
2024                                       /*MayBeNull=*/true,
2025                                       CodeGenFunction::CFITCK_UnrelatedCast,
2026                                       CE->getBeginLoc());
2027     }
2028 
2029     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2030       const QualType SrcType = E->getType();
2031 
2032       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2033         // Casting to pointer that could carry dynamic information (provided by
2034         // invariant.group) requires launder.
2035         Src = Builder.CreateLaunderInvariantGroup(Src);
2036       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2037         // Casting to pointer that does not carry dynamic information (provided
2038         // by invariant.group) requires stripping it.  Note that we don't do it
2039         // if the source could not be dynamic type and destination could be
2040         // dynamic because dynamic information is already laundered.  It is
2041         // because launder(strip(src)) == launder(src), so there is no need to
2042         // add extra strip before launder.
2043         Src = Builder.CreateStripInvariantGroup(Src);
2044       }
2045     }
2046 
2047     // Update heapallocsite metadata when there is an explicit cast.
2048     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src))
2049       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE))
2050           CGF.getDebugInfo()->
2051               addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc());
2052 
2053     return Builder.CreateBitCast(Src, DstTy);
2054   }
2055   case CK_AddressSpaceConversion: {
2056     Expr::EvalResult Result;
2057     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2058         Result.Val.isNullPointer()) {
2059       // If E has side effect, it is emitted even if its final result is a
2060       // null pointer. In that case, a DCE pass should be able to
2061       // eliminate the useless instructions emitted during translating E.
2062       if (Result.HasSideEffects)
2063         Visit(E);
2064       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2065           ConvertType(DestTy)), DestTy);
2066     }
2067     // Since target may map different address spaces in AST to the same address
2068     // space, an address space conversion may end up as a bitcast.
2069     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2070         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2071         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2072   }
2073   case CK_AtomicToNonAtomic:
2074   case CK_NonAtomicToAtomic:
2075   case CK_NoOp:
2076   case CK_UserDefinedConversion:
2077     return Visit(const_cast<Expr*>(E));
2078 
2079   case CK_BaseToDerived: {
2080     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2081     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2082 
2083     Address Base = CGF.EmitPointerWithAlignment(E);
2084     Address Derived =
2085       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2086                                    CE->path_begin(), CE->path_end(),
2087                                    CGF.ShouldNullCheckClassCastValue(CE));
2088 
2089     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2090     // performed and the object is not of the derived type.
2091     if (CGF.sanitizePerformTypeCheck())
2092       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2093                         Derived.getPointer(), DestTy->getPointeeType());
2094 
2095     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2096       CGF.EmitVTablePtrCheckForCast(
2097           DestTy->getPointeeType(), Derived.getPointer(),
2098           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2099           CE->getBeginLoc());
2100 
2101     return Derived.getPointer();
2102   }
2103   case CK_UncheckedDerivedToBase:
2104   case CK_DerivedToBase: {
2105     // The EmitPointerWithAlignment path does this fine; just discard
2106     // the alignment.
2107     return CGF.EmitPointerWithAlignment(CE).getPointer();
2108   }
2109 
2110   case CK_Dynamic: {
2111     Address V = CGF.EmitPointerWithAlignment(E);
2112     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2113     return CGF.EmitDynamicCast(V, DCE);
2114   }
2115 
2116   case CK_ArrayToPointerDecay:
2117     return CGF.EmitArrayToPointerDecay(E).getPointer();
2118   case CK_FunctionToPointerDecay:
2119     return EmitLValue(E).getPointer(CGF);
2120 
2121   case CK_NullToPointer:
2122     if (MustVisitNullValue(E))
2123       CGF.EmitIgnoredExpr(E);
2124 
2125     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2126                               DestTy);
2127 
2128   case CK_NullToMemberPointer: {
2129     if (MustVisitNullValue(E))
2130       CGF.EmitIgnoredExpr(E);
2131 
2132     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2133     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2134   }
2135 
2136   case CK_ReinterpretMemberPointer:
2137   case CK_BaseToDerivedMemberPointer:
2138   case CK_DerivedToBaseMemberPointer: {
2139     Value *Src = Visit(E);
2140 
2141     // Note that the AST doesn't distinguish between checked and
2142     // unchecked member pointer conversions, so we always have to
2143     // implement checked conversions here.  This is inefficient when
2144     // actual control flow may be required in order to perform the
2145     // check, which it is for data member pointers (but not member
2146     // function pointers on Itanium and ARM).
2147     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2148   }
2149 
2150   case CK_ARCProduceObject:
2151     return CGF.EmitARCRetainScalarExpr(E);
2152   case CK_ARCConsumeObject:
2153     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2154   case CK_ARCReclaimReturnedObject:
2155     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2156   case CK_ARCExtendBlockObject:
2157     return CGF.EmitARCExtendBlockObject(E);
2158 
2159   case CK_CopyAndAutoreleaseBlockObject:
2160     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2161 
2162   case CK_FloatingRealToComplex:
2163   case CK_FloatingComplexCast:
2164   case CK_IntegralRealToComplex:
2165   case CK_IntegralComplexCast:
2166   case CK_IntegralComplexToFloatingComplex:
2167   case CK_FloatingComplexToIntegralComplex:
2168   case CK_ConstructorConversion:
2169   case CK_ToUnion:
2170     llvm_unreachable("scalar cast to non-scalar value");
2171 
2172   case CK_LValueToRValue:
2173     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2174     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2175     return Visit(const_cast<Expr*>(E));
2176 
2177   case CK_IntegralToPointer: {
2178     Value *Src = Visit(const_cast<Expr*>(E));
2179 
2180     // First, convert to the correct width so that we control the kind of
2181     // extension.
2182     auto DestLLVMTy = ConvertType(DestTy);
2183     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2184     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2185     llvm::Value* IntResult =
2186       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2187 
2188     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2189 
2190     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2191       // Going from integer to pointer that could be dynamic requires reloading
2192       // dynamic information from invariant.group.
2193       if (DestTy.mayBeDynamicClass())
2194         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2195     }
2196     return IntToPtr;
2197   }
2198   case CK_PointerToIntegral: {
2199     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2200     auto *PtrExpr = Visit(E);
2201 
2202     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2203       const QualType SrcType = E->getType();
2204 
2205       // Casting to integer requires stripping dynamic information as it does
2206       // not carries it.
2207       if (SrcType.mayBeDynamicClass())
2208         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2209     }
2210 
2211     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2212   }
2213   case CK_ToVoid: {
2214     CGF.EmitIgnoredExpr(E);
2215     return nullptr;
2216   }
2217   case CK_VectorSplat: {
2218     llvm::Type *DstTy = ConvertType(DestTy);
2219     Value *Elt = Visit(const_cast<Expr*>(E));
2220     // Splat the element across to all elements
2221     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
2222     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2223   }
2224 
2225   case CK_FixedPointCast:
2226     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2227                                 CE->getExprLoc());
2228 
2229   case CK_FixedPointToBoolean:
2230     assert(E->getType()->isFixedPointType() &&
2231            "Expected src type to be fixed point type");
2232     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2233     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2234                                 CE->getExprLoc());
2235 
2236   case CK_FixedPointToIntegral:
2237     assert(E->getType()->isFixedPointType() &&
2238            "Expected src type to be fixed point type");
2239     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2240     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2241                                 CE->getExprLoc());
2242 
2243   case CK_IntegralToFixedPoint:
2244     assert(E->getType()->isIntegerType() &&
2245            "Expected src type to be an integer");
2246     assert(DestTy->isFixedPointType() &&
2247            "Expected dest type to be fixed point type");
2248     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2249                                 CE->getExprLoc());
2250 
2251   case CK_IntegralCast: {
2252     ScalarConversionOpts Opts;
2253     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2254       if (!ICE->isPartOfExplicitCast())
2255         Opts = ScalarConversionOpts(CGF.SanOpts);
2256     }
2257     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2258                                 CE->getExprLoc(), Opts);
2259   }
2260   case CK_IntegralToFloating:
2261   case CK_FloatingToIntegral:
2262   case CK_FloatingCast:
2263     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2264                                 CE->getExprLoc());
2265   case CK_BooleanToSignedIntegral: {
2266     ScalarConversionOpts Opts;
2267     Opts.TreatBooleanAsSigned = true;
2268     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2269                                 CE->getExprLoc(), Opts);
2270   }
2271   case CK_IntegralToBoolean:
2272     return EmitIntToBoolConversion(Visit(E));
2273   case CK_PointerToBoolean:
2274     return EmitPointerToBoolConversion(Visit(E), E->getType());
2275   case CK_FloatingToBoolean:
2276     return EmitFloatToBoolConversion(Visit(E));
2277   case CK_MemberPointerToBoolean: {
2278     llvm::Value *MemPtr = Visit(E);
2279     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2280     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2281   }
2282 
2283   case CK_FloatingComplexToReal:
2284   case CK_IntegralComplexToReal:
2285     return CGF.EmitComplexExpr(E, false, true).first;
2286 
2287   case CK_FloatingComplexToBoolean:
2288   case CK_IntegralComplexToBoolean: {
2289     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2290 
2291     // TODO: kill this function off, inline appropriate case here
2292     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2293                                          CE->getExprLoc());
2294   }
2295 
2296   case CK_ZeroToOCLOpaqueType: {
2297     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2298             DestTy->isOCLIntelSubgroupAVCType()) &&
2299            "CK_ZeroToOCLEvent cast on non-event type");
2300     return llvm::Constant::getNullValue(ConvertType(DestTy));
2301   }
2302 
2303   case CK_IntToOCLSampler:
2304     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2305 
2306   } // end of switch
2307 
2308   llvm_unreachable("unknown scalar cast");
2309 }
2310 
2311 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2312   CodeGenFunction::StmtExprEvaluation eval(CGF);
2313   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2314                                            !E->getType()->isVoidType());
2315   if (!RetAlloca.isValid())
2316     return nullptr;
2317   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2318                               E->getExprLoc());
2319 }
2320 
2321 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2322   CGF.enterFullExpression(E);
2323   CodeGenFunction::RunCleanupsScope Scope(CGF);
2324   Value *V = Visit(E->getSubExpr());
2325   // Defend against dominance problems caused by jumps out of expression
2326   // evaluation through the shared cleanup block.
2327   Scope.ForceCleanup({&V});
2328   return V;
2329 }
2330 
2331 //===----------------------------------------------------------------------===//
2332 //                             Unary Operators
2333 //===----------------------------------------------------------------------===//
2334 
2335 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2336                                            llvm::Value *InVal, bool IsInc) {
2337   BinOpInfo BinOp;
2338   BinOp.LHS = InVal;
2339   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2340   BinOp.Ty = E->getType();
2341   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2342   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2343   BinOp.E = E;
2344   return BinOp;
2345 }
2346 
2347 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2348     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2349   llvm::Value *Amount =
2350       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2351   StringRef Name = IsInc ? "inc" : "dec";
2352   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2353   case LangOptions::SOB_Defined:
2354     return Builder.CreateAdd(InVal, Amount, Name);
2355   case LangOptions::SOB_Undefined:
2356     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2357       return Builder.CreateNSWAdd(InVal, Amount, Name);
2358     LLVM_FALLTHROUGH;
2359   case LangOptions::SOB_Trapping:
2360     if (!E->canOverflow())
2361       return Builder.CreateNSWAdd(InVal, Amount, Name);
2362     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
2363   }
2364   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2365 }
2366 
2367 namespace {
2368 /// Handles check and update for lastprivate conditional variables.
2369 class OMPLastprivateConditionalUpdateRAII {
2370 private:
2371   CodeGenFunction &CGF;
2372   const UnaryOperator *E;
2373 
2374 public:
2375   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2376                                       const UnaryOperator *E)
2377       : CGF(CGF), E(E) {}
2378   ~OMPLastprivateConditionalUpdateRAII() {
2379     if (CGF.getLangOpts().OpenMP)
2380       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2381           CGF, E->getSubExpr());
2382   }
2383 };
2384 } // namespace
2385 
2386 llvm::Value *
2387 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2388                                            bool isInc, bool isPre) {
2389   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2390   QualType type = E->getSubExpr()->getType();
2391   llvm::PHINode *atomicPHI = nullptr;
2392   llvm::Value *value;
2393   llvm::Value *input;
2394 
2395   int amount = (isInc ? 1 : -1);
2396   bool isSubtraction = !isInc;
2397 
2398   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2399     type = atomicTy->getValueType();
2400     if (isInc && type->isBooleanType()) {
2401       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2402       if (isPre) {
2403         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2404             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2405         return Builder.getTrue();
2406       }
2407       // For atomic bool increment, we just store true and return it for
2408       // preincrement, do an atomic swap with true for postincrement
2409       return Builder.CreateAtomicRMW(
2410           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2411           llvm::AtomicOrdering::SequentiallyConsistent);
2412     }
2413     // Special case for atomic increment / decrement on integers, emit
2414     // atomicrmw instructions.  We skip this if we want to be doing overflow
2415     // checking, and fall into the slow path with the atomic cmpxchg loop.
2416     if (!type->isBooleanType() && type->isIntegerType() &&
2417         !(type->isUnsignedIntegerType() &&
2418           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2419         CGF.getLangOpts().getSignedOverflowBehavior() !=
2420             LangOptions::SOB_Trapping) {
2421       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2422         llvm::AtomicRMWInst::Sub;
2423       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2424         llvm::Instruction::Sub;
2425       llvm::Value *amt = CGF.EmitToMemory(
2426           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2427       llvm::Value *old =
2428           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2429                                   llvm::AtomicOrdering::SequentiallyConsistent);
2430       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2431     }
2432     value = EmitLoadOfLValue(LV, E->getExprLoc());
2433     input = value;
2434     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2435     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2436     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2437     value = CGF.EmitToMemory(value, type);
2438     Builder.CreateBr(opBB);
2439     Builder.SetInsertPoint(opBB);
2440     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2441     atomicPHI->addIncoming(value, startBB);
2442     value = atomicPHI;
2443   } else {
2444     value = EmitLoadOfLValue(LV, E->getExprLoc());
2445     input = value;
2446   }
2447 
2448   // Special case of integer increment that we have to check first: bool++.
2449   // Due to promotion rules, we get:
2450   //   bool++ -> bool = bool + 1
2451   //          -> bool = (int)bool + 1
2452   //          -> bool = ((int)bool + 1 != 0)
2453   // An interesting aspect of this is that increment is always true.
2454   // Decrement does not have this property.
2455   if (isInc && type->isBooleanType()) {
2456     value = Builder.getTrue();
2457 
2458   // Most common case by far: integer increment.
2459   } else if (type->isIntegerType()) {
2460     QualType promotedType;
2461     bool canPerformLossyDemotionCheck = false;
2462     if (type->isPromotableIntegerType()) {
2463       promotedType = CGF.getContext().getPromotedIntegerType(type);
2464       assert(promotedType != type && "Shouldn't promote to the same type.");
2465       canPerformLossyDemotionCheck = true;
2466       canPerformLossyDemotionCheck &=
2467           CGF.getContext().getCanonicalType(type) !=
2468           CGF.getContext().getCanonicalType(promotedType);
2469       canPerformLossyDemotionCheck &=
2470           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2471               type, promotedType);
2472       assert((!canPerformLossyDemotionCheck ||
2473               type->isSignedIntegerOrEnumerationType() ||
2474               promotedType->isSignedIntegerOrEnumerationType() ||
2475               ConvertType(type)->getScalarSizeInBits() ==
2476                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2477              "The following check expects that if we do promotion to different "
2478              "underlying canonical type, at least one of the types (either "
2479              "base or promoted) will be signed, or the bitwidths will match.");
2480     }
2481     if (CGF.SanOpts.hasOneOf(
2482             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2483         canPerformLossyDemotionCheck) {
2484       // While `x += 1` (for `x` with width less than int) is modeled as
2485       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2486       // ease; inc/dec with width less than int can't overflow because of
2487       // promotion rules, so we omit promotion+demotion, which means that we can
2488       // not catch lossy "demotion". Because we still want to catch these cases
2489       // when the sanitizer is enabled, we perform the promotion, then perform
2490       // the increment/decrement in the wider type, and finally
2491       // perform the demotion. This will catch lossy demotions.
2492 
2493       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2494       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2495       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2496       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2497       // emitted.
2498       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2499                                    ScalarConversionOpts(CGF.SanOpts));
2500 
2501       // Note that signed integer inc/dec with width less than int can't
2502       // overflow because of promotion rules; we're just eliding a few steps
2503       // here.
2504     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2505       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2506     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2507                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2508       value =
2509           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
2510     } else {
2511       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2512       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2513     }
2514 
2515   // Next most common: pointer increment.
2516   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2517     QualType type = ptr->getPointeeType();
2518 
2519     // VLA types don't have constant size.
2520     if (const VariableArrayType *vla
2521           = CGF.getContext().getAsVariableArrayType(type)) {
2522       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2523       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2524       if (CGF.getLangOpts().isSignedOverflowDefined())
2525         value = Builder.CreateGEP(value, numElts, "vla.inc");
2526       else
2527         value = CGF.EmitCheckedInBoundsGEP(
2528             value, numElts, /*SignedIndices=*/false, isSubtraction,
2529             E->getExprLoc(), "vla.inc");
2530 
2531     // Arithmetic on function pointers (!) is just +-1.
2532     } else if (type->isFunctionType()) {
2533       llvm::Value *amt = Builder.getInt32(amount);
2534 
2535       value = CGF.EmitCastToVoidPtr(value);
2536       if (CGF.getLangOpts().isSignedOverflowDefined())
2537         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2538       else
2539         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2540                                            isSubtraction, E->getExprLoc(),
2541                                            "incdec.funcptr");
2542       value = Builder.CreateBitCast(value, input->getType());
2543 
2544     // For everything else, we can just do a simple increment.
2545     } else {
2546       llvm::Value *amt = Builder.getInt32(amount);
2547       if (CGF.getLangOpts().isSignedOverflowDefined())
2548         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2549       else
2550         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2551                                            isSubtraction, E->getExprLoc(),
2552                                            "incdec.ptr");
2553     }
2554 
2555   // Vector increment/decrement.
2556   } else if (type->isVectorType()) {
2557     if (type->hasIntegerRepresentation()) {
2558       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2559 
2560       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2561     } else {
2562       value = Builder.CreateFAdd(
2563                   value,
2564                   llvm::ConstantFP::get(value->getType(), amount),
2565                   isInc ? "inc" : "dec");
2566     }
2567 
2568   // Floating point.
2569   } else if (type->isRealFloatingType()) {
2570     // Add the inc/dec to the real part.
2571     llvm::Value *amt;
2572 
2573     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2574       // Another special case: half FP increment should be done via float
2575       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2576         value = Builder.CreateCall(
2577             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2578                                  CGF.CGM.FloatTy),
2579             input, "incdec.conv");
2580       } else {
2581         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2582       }
2583     }
2584 
2585     if (value->getType()->isFloatTy())
2586       amt = llvm::ConstantFP::get(VMContext,
2587                                   llvm::APFloat(static_cast<float>(amount)));
2588     else if (value->getType()->isDoubleTy())
2589       amt = llvm::ConstantFP::get(VMContext,
2590                                   llvm::APFloat(static_cast<double>(amount)));
2591     else {
2592       // Remaining types are Half, LongDouble or __float128. Convert from float.
2593       llvm::APFloat F(static_cast<float>(amount));
2594       bool ignored;
2595       const llvm::fltSemantics *FS;
2596       // Don't use getFloatTypeSemantics because Half isn't
2597       // necessarily represented using the "half" LLVM type.
2598       if (value->getType()->isFP128Ty())
2599         FS = &CGF.getTarget().getFloat128Format();
2600       else if (value->getType()->isHalfTy())
2601         FS = &CGF.getTarget().getHalfFormat();
2602       else
2603         FS = &CGF.getTarget().getLongDoubleFormat();
2604       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2605       amt = llvm::ConstantFP::get(VMContext, F);
2606     }
2607     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2608 
2609     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2610       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2611         value = Builder.CreateCall(
2612             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2613                                  CGF.CGM.FloatTy),
2614             value, "incdec.conv");
2615       } else {
2616         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2617       }
2618     }
2619 
2620   // Fixed-point types.
2621   } else if (type->isFixedPointType()) {
2622     // Fixed-point types are tricky. In some cases, it isn't possible to
2623     // represent a 1 or a -1 in the type at all. Piggyback off of
2624     // EmitFixedPointBinOp to avoid having to reimplement saturation.
2625     BinOpInfo Info;
2626     Info.E = E;
2627     Info.Ty = E->getType();
2628     Info.Opcode = isInc ? BO_Add : BO_Sub;
2629     Info.LHS = value;
2630     Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2631     // If the type is signed, it's better to represent this as +(-1) or -(-1),
2632     // since -1 is guaranteed to be representable.
2633     if (type->isSignedFixedPointType()) {
2634       Info.Opcode = isInc ? BO_Sub : BO_Add;
2635       Info.RHS = Builder.CreateNeg(Info.RHS);
2636     }
2637     // Now, convert from our invented integer literal to the type of the unary
2638     // op. This will upscale and saturate if necessary. This value can become
2639     // undef in some cases.
2640     FixedPointSemantics SrcSema =
2641         FixedPointSemantics::GetIntegerSemantics(value->getType()
2642                                                       ->getScalarSizeInBits(),
2643                                                  /*IsSigned=*/true);
2644     FixedPointSemantics DstSema =
2645         CGF.getContext().getFixedPointSemantics(Info.Ty);
2646     Info.RHS = EmitFixedPointConversion(Info.RHS, SrcSema, DstSema,
2647                                         E->getExprLoc());
2648     value = EmitFixedPointBinOp(Info);
2649 
2650   // Objective-C pointer types.
2651   } else {
2652     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2653     value = CGF.EmitCastToVoidPtr(value);
2654 
2655     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2656     if (!isInc) size = -size;
2657     llvm::Value *sizeValue =
2658       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2659 
2660     if (CGF.getLangOpts().isSignedOverflowDefined())
2661       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2662     else
2663       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2664                                          /*SignedIndices=*/false, isSubtraction,
2665                                          E->getExprLoc(), "incdec.objptr");
2666     value = Builder.CreateBitCast(value, input->getType());
2667   }
2668 
2669   if (atomicPHI) {
2670     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2671     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2672     auto Pair = CGF.EmitAtomicCompareExchange(
2673         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2674     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2675     llvm::Value *success = Pair.second;
2676     atomicPHI->addIncoming(old, curBlock);
2677     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2678     Builder.SetInsertPoint(contBB);
2679     return isPre ? value : input;
2680   }
2681 
2682   // Store the updated result through the lvalue.
2683   if (LV.isBitField())
2684     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2685   else
2686     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2687 
2688   // If this is a postinc, return the value read from memory, otherwise use the
2689   // updated value.
2690   return isPre ? value : input;
2691 }
2692 
2693 
2694 
2695 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2696   TestAndClearIgnoreResultAssign();
2697   Value *Op = Visit(E->getSubExpr());
2698 
2699   // Generate a unary FNeg for FP ops.
2700   if (Op->getType()->isFPOrFPVectorTy())
2701     return Builder.CreateFNeg(Op, "fneg");
2702 
2703   // Emit unary minus with EmitSub so we handle overflow cases etc.
2704   BinOpInfo BinOp;
2705   BinOp.RHS = Op;
2706   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2707   BinOp.Ty = E->getType();
2708   BinOp.Opcode = BO_Sub;
2709   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2710   BinOp.E = E;
2711   return EmitSub(BinOp);
2712 }
2713 
2714 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2715   TestAndClearIgnoreResultAssign();
2716   Value *Op = Visit(E->getSubExpr());
2717   return Builder.CreateNot(Op, "neg");
2718 }
2719 
2720 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2721   // Perform vector logical not on comparison with zero vector.
2722   if (E->getType()->isExtVectorType()) {
2723     Value *Oper = Visit(E->getSubExpr());
2724     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2725     Value *Result;
2726     if (Oper->getType()->isFPOrFPVectorTy())
2727       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2728     else
2729       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2730     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2731   }
2732 
2733   // Compare operand to zero.
2734   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2735 
2736   // Invert value.
2737   // TODO: Could dynamically modify easy computations here.  For example, if
2738   // the operand is an icmp ne, turn into icmp eq.
2739   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2740 
2741   // ZExt result to the expr type.
2742   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2743 }
2744 
2745 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2746   // Try folding the offsetof to a constant.
2747   Expr::EvalResult EVResult;
2748   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2749     llvm::APSInt Value = EVResult.Val.getInt();
2750     return Builder.getInt(Value);
2751   }
2752 
2753   // Loop over the components of the offsetof to compute the value.
2754   unsigned n = E->getNumComponents();
2755   llvm::Type* ResultType = ConvertType(E->getType());
2756   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2757   QualType CurrentType = E->getTypeSourceInfo()->getType();
2758   for (unsigned i = 0; i != n; ++i) {
2759     OffsetOfNode ON = E->getComponent(i);
2760     llvm::Value *Offset = nullptr;
2761     switch (ON.getKind()) {
2762     case OffsetOfNode::Array: {
2763       // Compute the index
2764       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2765       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2766       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2767       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2768 
2769       // Save the element type
2770       CurrentType =
2771           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2772 
2773       // Compute the element size
2774       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2775           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2776 
2777       // Multiply out to compute the result
2778       Offset = Builder.CreateMul(Idx, ElemSize);
2779       break;
2780     }
2781 
2782     case OffsetOfNode::Field: {
2783       FieldDecl *MemberDecl = ON.getField();
2784       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2785       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2786 
2787       // Compute the index of the field in its parent.
2788       unsigned i = 0;
2789       // FIXME: It would be nice if we didn't have to loop here!
2790       for (RecordDecl::field_iterator Field = RD->field_begin(),
2791                                       FieldEnd = RD->field_end();
2792            Field != FieldEnd; ++Field, ++i) {
2793         if (*Field == MemberDecl)
2794           break;
2795       }
2796       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2797 
2798       // Compute the offset to the field
2799       int64_t OffsetInt = RL.getFieldOffset(i) /
2800                           CGF.getContext().getCharWidth();
2801       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2802 
2803       // Save the element type.
2804       CurrentType = MemberDecl->getType();
2805       break;
2806     }
2807 
2808     case OffsetOfNode::Identifier:
2809       llvm_unreachable("dependent __builtin_offsetof");
2810 
2811     case OffsetOfNode::Base: {
2812       if (ON.getBase()->isVirtual()) {
2813         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2814         continue;
2815       }
2816 
2817       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2818       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2819 
2820       // Save the element type.
2821       CurrentType = ON.getBase()->getType();
2822 
2823       // Compute the offset to the base.
2824       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2825       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2826       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2827       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2828       break;
2829     }
2830     }
2831     Result = Builder.CreateAdd(Result, Offset);
2832   }
2833   return Result;
2834 }
2835 
2836 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2837 /// argument of the sizeof expression as an integer.
2838 Value *
2839 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2840                               const UnaryExprOrTypeTraitExpr *E) {
2841   QualType TypeToSize = E->getTypeOfArgument();
2842   if (E->getKind() == UETT_SizeOf) {
2843     if (const VariableArrayType *VAT =
2844           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2845       if (E->isArgumentType()) {
2846         // sizeof(type) - make sure to emit the VLA size.
2847         CGF.EmitVariablyModifiedType(TypeToSize);
2848       } else {
2849         // C99 6.5.3.4p2: If the argument is an expression of type
2850         // VLA, it is evaluated.
2851         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2852       }
2853 
2854       auto VlaSize = CGF.getVLASize(VAT);
2855       llvm::Value *size = VlaSize.NumElts;
2856 
2857       // Scale the number of non-VLA elements by the non-VLA element size.
2858       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2859       if (!eltSize.isOne())
2860         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2861 
2862       return size;
2863     }
2864   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2865     auto Alignment =
2866         CGF.getContext()
2867             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2868                 E->getTypeOfArgument()->getPointeeType()))
2869             .getQuantity();
2870     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2871   }
2872 
2873   // If this isn't sizeof(vla), the result must be constant; use the constant
2874   // folding logic so we don't have to duplicate it here.
2875   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2876 }
2877 
2878 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2879   Expr *Op = E->getSubExpr();
2880   if (Op->getType()->isAnyComplexType()) {
2881     // If it's an l-value, load through the appropriate subobject l-value.
2882     // Note that we have to ask E because Op might be an l-value that
2883     // this won't work for, e.g. an Obj-C property.
2884     if (E->isGLValue())
2885       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2886                                   E->getExprLoc()).getScalarVal();
2887 
2888     // Otherwise, calculate and project.
2889     return CGF.EmitComplexExpr(Op, false, true).first;
2890   }
2891 
2892   return Visit(Op);
2893 }
2894 
2895 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2896   Expr *Op = E->getSubExpr();
2897   if (Op->getType()->isAnyComplexType()) {
2898     // If it's an l-value, load through the appropriate subobject l-value.
2899     // Note that we have to ask E because Op might be an l-value that
2900     // this won't work for, e.g. an Obj-C property.
2901     if (Op->isGLValue())
2902       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2903                                   E->getExprLoc()).getScalarVal();
2904 
2905     // Otherwise, calculate and project.
2906     return CGF.EmitComplexExpr(Op, true, false).second;
2907   }
2908 
2909   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2910   // effects are evaluated, but not the actual value.
2911   if (Op->isGLValue())
2912     CGF.EmitLValue(Op);
2913   else
2914     CGF.EmitScalarExpr(Op, true);
2915   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2916 }
2917 
2918 //===----------------------------------------------------------------------===//
2919 //                           Binary Operators
2920 //===----------------------------------------------------------------------===//
2921 
2922 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2923   TestAndClearIgnoreResultAssign();
2924   BinOpInfo Result;
2925   Result.LHS = Visit(E->getLHS());
2926   Result.RHS = Visit(E->getRHS());
2927   Result.Ty  = E->getType();
2928   Result.Opcode = E->getOpcode();
2929   Result.FPFeatures = E->getFPFeatures(CGF.getLangOpts());
2930   Result.E = E;
2931   return Result;
2932 }
2933 
2934 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2935                                               const CompoundAssignOperator *E,
2936                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2937                                                    Value *&Result) {
2938   QualType LHSTy = E->getLHS()->getType();
2939   BinOpInfo OpInfo;
2940 
2941   if (E->getComputationResultType()->isAnyComplexType())
2942     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2943 
2944   // Emit the RHS first.  __block variables need to have the rhs evaluated
2945   // first, plus this should improve codegen a little.
2946   OpInfo.RHS = Visit(E->getRHS());
2947   OpInfo.Ty = E->getComputationResultType();
2948   OpInfo.Opcode = E->getOpcode();
2949   OpInfo.FPFeatures = E->getFPFeatures(CGF.getLangOpts());
2950   OpInfo.E = E;
2951   // Load/convert the LHS.
2952   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2953 
2954   llvm::PHINode *atomicPHI = nullptr;
2955   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2956     QualType type = atomicTy->getValueType();
2957     if (!type->isBooleanType() && type->isIntegerType() &&
2958         !(type->isUnsignedIntegerType() &&
2959           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2960         CGF.getLangOpts().getSignedOverflowBehavior() !=
2961             LangOptions::SOB_Trapping) {
2962       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
2963       llvm::Instruction::BinaryOps Op;
2964       switch (OpInfo.Opcode) {
2965         // We don't have atomicrmw operands for *, %, /, <<, >>
2966         case BO_MulAssign: case BO_DivAssign:
2967         case BO_RemAssign:
2968         case BO_ShlAssign:
2969         case BO_ShrAssign:
2970           break;
2971         case BO_AddAssign:
2972           AtomicOp = llvm::AtomicRMWInst::Add;
2973           Op = llvm::Instruction::Add;
2974           break;
2975         case BO_SubAssign:
2976           AtomicOp = llvm::AtomicRMWInst::Sub;
2977           Op = llvm::Instruction::Sub;
2978           break;
2979         case BO_AndAssign:
2980           AtomicOp = llvm::AtomicRMWInst::And;
2981           Op = llvm::Instruction::And;
2982           break;
2983         case BO_XorAssign:
2984           AtomicOp = llvm::AtomicRMWInst::Xor;
2985           Op = llvm::Instruction::Xor;
2986           break;
2987         case BO_OrAssign:
2988           AtomicOp = llvm::AtomicRMWInst::Or;
2989           Op = llvm::Instruction::Or;
2990           break;
2991         default:
2992           llvm_unreachable("Invalid compound assignment type");
2993       }
2994       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
2995         llvm::Value *Amt = CGF.EmitToMemory(
2996             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2997                                  E->getExprLoc()),
2998             LHSTy);
2999         Value *OldVal = Builder.CreateAtomicRMW(
3000             AtomicOp, LHSLV.getPointer(CGF), Amt,
3001             llvm::AtomicOrdering::SequentiallyConsistent);
3002 
3003         // Since operation is atomic, the result type is guaranteed to be the
3004         // same as the input in LLVM terms.
3005         Result = Builder.CreateBinOp(Op, OldVal, Amt);
3006         return LHSLV;
3007       }
3008     }
3009     // FIXME: For floating point types, we should be saving and restoring the
3010     // floating point environment in the loop.
3011     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3012     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3013     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3014     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3015     Builder.CreateBr(opBB);
3016     Builder.SetInsertPoint(opBB);
3017     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3018     atomicPHI->addIncoming(OpInfo.LHS, startBB);
3019     OpInfo.LHS = atomicPHI;
3020   }
3021   else
3022     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3023 
3024   SourceLocation Loc = E->getExprLoc();
3025   OpInfo.LHS =
3026       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
3027 
3028   // Expand the binary operator.
3029   Result = (this->*Func)(OpInfo);
3030 
3031   // Convert the result back to the LHS type,
3032   // potentially with Implicit Conversion sanitizer check.
3033   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
3034                                 Loc, ScalarConversionOpts(CGF.SanOpts));
3035 
3036   if (atomicPHI) {
3037     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3038     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3039     auto Pair = CGF.EmitAtomicCompareExchange(
3040         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3041     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3042     llvm::Value *success = Pair.second;
3043     atomicPHI->addIncoming(old, curBlock);
3044     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3045     Builder.SetInsertPoint(contBB);
3046     return LHSLV;
3047   }
3048 
3049   // Store the result value into the LHS lvalue. Bit-fields are handled
3050   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3051   // 'An assignment expression has the value of the left operand after the
3052   // assignment...'.
3053   if (LHSLV.isBitField())
3054     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3055   else
3056     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3057 
3058   if (CGF.getLangOpts().OpenMP)
3059     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3060                                                                   E->getLHS());
3061   return LHSLV;
3062 }
3063 
3064 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3065                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3066   bool Ignore = TestAndClearIgnoreResultAssign();
3067   Value *RHS = nullptr;
3068   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3069 
3070   // If the result is clearly ignored, return now.
3071   if (Ignore)
3072     return nullptr;
3073 
3074   // The result of an assignment in C is the assigned r-value.
3075   if (!CGF.getLangOpts().CPlusPlus)
3076     return RHS;
3077 
3078   // If the lvalue is non-volatile, return the computed value of the assignment.
3079   if (!LHS.isVolatileQualified())
3080     return RHS;
3081 
3082   // Otherwise, reload the value.
3083   return EmitLoadOfLValue(LHS, E->getExprLoc());
3084 }
3085 
3086 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3087     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3088   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3089 
3090   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3091     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3092                                     SanitizerKind::IntegerDivideByZero));
3093   }
3094 
3095   const auto *BO = cast<BinaryOperator>(Ops.E);
3096   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3097       Ops.Ty->hasSignedIntegerRepresentation() &&
3098       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3099       Ops.mayHaveIntegerOverflow()) {
3100     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3101 
3102     llvm::Value *IntMin =
3103       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3104     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
3105 
3106     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3107     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3108     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3109     Checks.push_back(
3110         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3111   }
3112 
3113   if (Checks.size() > 0)
3114     EmitBinOpCheck(Checks, Ops);
3115 }
3116 
3117 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3118   {
3119     CodeGenFunction::SanitizerScope SanScope(&CGF);
3120     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3121          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3122         Ops.Ty->isIntegerType() &&
3123         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3124       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3125       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3126     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3127                Ops.Ty->isRealFloatingType() &&
3128                Ops.mayHaveFloatDivisionByZero()) {
3129       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3130       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3131       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3132                      Ops);
3133     }
3134   }
3135 
3136   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3137     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3138     if (CGF.getLangOpts().OpenCL &&
3139         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
3140       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3141       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3142       // build option allows an application to specify that single precision
3143       // floating-point divide (x/y and 1/x) and sqrt used in the program
3144       // source are correctly rounded.
3145       llvm::Type *ValTy = Val->getType();
3146       if (ValTy->isFloatTy() ||
3147           (isa<llvm::VectorType>(ValTy) &&
3148            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3149         CGF.SetFPAccuracy(Val, 2.5);
3150     }
3151     return Val;
3152   }
3153   else if (Ops.isFixedPointOp())
3154     return EmitFixedPointBinOp(Ops);
3155   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3156     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3157   else
3158     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3159 }
3160 
3161 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3162   // Rem in C can't be a floating point type: C99 6.5.5p2.
3163   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3164        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3165       Ops.Ty->isIntegerType() &&
3166       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3167     CodeGenFunction::SanitizerScope SanScope(&CGF);
3168     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3169     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3170   }
3171 
3172   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3173     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3174   else
3175     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3176 }
3177 
3178 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3179   unsigned IID;
3180   unsigned OpID = 0;
3181 
3182   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3183   switch (Ops.Opcode) {
3184   case BO_Add:
3185   case BO_AddAssign:
3186     OpID = 1;
3187     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3188                      llvm::Intrinsic::uadd_with_overflow;
3189     break;
3190   case BO_Sub:
3191   case BO_SubAssign:
3192     OpID = 2;
3193     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3194                      llvm::Intrinsic::usub_with_overflow;
3195     break;
3196   case BO_Mul:
3197   case BO_MulAssign:
3198     OpID = 3;
3199     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3200                      llvm::Intrinsic::umul_with_overflow;
3201     break;
3202   default:
3203     llvm_unreachable("Unsupported operation for overflow detection");
3204   }
3205   OpID <<= 1;
3206   if (isSigned)
3207     OpID |= 1;
3208 
3209   CodeGenFunction::SanitizerScope SanScope(&CGF);
3210   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3211 
3212   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3213 
3214   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3215   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3216   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3217 
3218   // Handle overflow with llvm.trap if no custom handler has been specified.
3219   const std::string *handlerName =
3220     &CGF.getLangOpts().OverflowHandler;
3221   if (handlerName->empty()) {
3222     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3223     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3224     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3225       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3226       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3227                               : SanitizerKind::UnsignedIntegerOverflow;
3228       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3229     } else
3230       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
3231     return result;
3232   }
3233 
3234   // Branch in case of overflow.
3235   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3236   llvm::BasicBlock *continueBB =
3237       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3238   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3239 
3240   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3241 
3242   // If an overflow handler is set, then we want to call it and then use its
3243   // result, if it returns.
3244   Builder.SetInsertPoint(overflowBB);
3245 
3246   // Get the overflow handler.
3247   llvm::Type *Int8Ty = CGF.Int8Ty;
3248   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3249   llvm::FunctionType *handlerTy =
3250       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3251   llvm::FunctionCallee handler =
3252       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3253 
3254   // Sign extend the args to 64-bit, so that we can use the same handler for
3255   // all types of overflow.
3256   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3257   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3258 
3259   // Call the handler with the two arguments, the operation, and the size of
3260   // the result.
3261   llvm::Value *handlerArgs[] = {
3262     lhs,
3263     rhs,
3264     Builder.getInt8(OpID),
3265     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3266   };
3267   llvm::Value *handlerResult =
3268     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3269 
3270   // Truncate the result back to the desired size.
3271   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3272   Builder.CreateBr(continueBB);
3273 
3274   Builder.SetInsertPoint(continueBB);
3275   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3276   phi->addIncoming(result, initialBB);
3277   phi->addIncoming(handlerResult, overflowBB);
3278 
3279   return phi;
3280 }
3281 
3282 /// Emit pointer + index arithmetic.
3283 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3284                                     const BinOpInfo &op,
3285                                     bool isSubtraction) {
3286   // Must have binary (not unary) expr here.  Unary pointer
3287   // increment/decrement doesn't use this path.
3288   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3289 
3290   Value *pointer = op.LHS;
3291   Expr *pointerOperand = expr->getLHS();
3292   Value *index = op.RHS;
3293   Expr *indexOperand = expr->getRHS();
3294 
3295   // In a subtraction, the LHS is always the pointer.
3296   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3297     std::swap(pointer, index);
3298     std::swap(pointerOperand, indexOperand);
3299   }
3300 
3301   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3302 
3303   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3304   auto &DL = CGF.CGM.getDataLayout();
3305   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3306 
3307   // Some versions of glibc and gcc use idioms (particularly in their malloc
3308   // routines) that add a pointer-sized integer (known to be a pointer value)
3309   // to a null pointer in order to cast the value back to an integer or as
3310   // part of a pointer alignment algorithm.  This is undefined behavior, but
3311   // we'd like to be able to compile programs that use it.
3312   //
3313   // Normally, we'd generate a GEP with a null-pointer base here in response
3314   // to that code, but it's also UB to dereference a pointer created that
3315   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3316   // generate a direct cast of the integer value to a pointer.
3317   //
3318   // The idiom (p = nullptr + N) is not met if any of the following are true:
3319   //
3320   //   The operation is subtraction.
3321   //   The index is not pointer-sized.
3322   //   The pointer type is not byte-sized.
3323   //
3324   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3325                                                        op.Opcode,
3326                                                        expr->getLHS(),
3327                                                        expr->getRHS()))
3328     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3329 
3330   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3331     // Zero-extend or sign-extend the pointer value according to
3332     // whether the index is signed or not.
3333     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3334                                       "idx.ext");
3335   }
3336 
3337   // If this is subtraction, negate the index.
3338   if (isSubtraction)
3339     index = CGF.Builder.CreateNeg(index, "idx.neg");
3340 
3341   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3342     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3343                         /*Accessed*/ false);
3344 
3345   const PointerType *pointerType
3346     = pointerOperand->getType()->getAs<PointerType>();
3347   if (!pointerType) {
3348     QualType objectType = pointerOperand->getType()
3349                                         ->castAs<ObjCObjectPointerType>()
3350                                         ->getPointeeType();
3351     llvm::Value *objectSize
3352       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3353 
3354     index = CGF.Builder.CreateMul(index, objectSize);
3355 
3356     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3357     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3358     return CGF.Builder.CreateBitCast(result, pointer->getType());
3359   }
3360 
3361   QualType elementType = pointerType->getPointeeType();
3362   if (const VariableArrayType *vla
3363         = CGF.getContext().getAsVariableArrayType(elementType)) {
3364     // The element count here is the total number of non-VLA elements.
3365     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3366 
3367     // Effectively, the multiply by the VLA size is part of the GEP.
3368     // GEP indexes are signed, and scaling an index isn't permitted to
3369     // signed-overflow, so we use the same semantics for our explicit
3370     // multiply.  We suppress this if overflow is not undefined behavior.
3371     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3372       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3373       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3374     } else {
3375       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3376       pointer =
3377           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3378                                      op.E->getExprLoc(), "add.ptr");
3379     }
3380     return pointer;
3381   }
3382 
3383   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3384   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3385   // future proof.
3386   if (elementType->isVoidType() || elementType->isFunctionType()) {
3387     Value *result = CGF.EmitCastToVoidPtr(pointer);
3388     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3389     return CGF.Builder.CreateBitCast(result, pointer->getType());
3390   }
3391 
3392   if (CGF.getLangOpts().isSignedOverflowDefined())
3393     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3394 
3395   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3396                                     op.E->getExprLoc(), "add.ptr");
3397 }
3398 
3399 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3400 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3401 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3402 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3403 // efficient operations.
3404 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3405                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3406                            bool negMul, bool negAdd) {
3407   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3408 
3409   Value *MulOp0 = MulOp->getOperand(0);
3410   Value *MulOp1 = MulOp->getOperand(1);
3411   if (negMul)
3412     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3413   if (negAdd)
3414     Addend = Builder.CreateFNeg(Addend, "neg");
3415 
3416   Value *FMulAdd = nullptr;
3417   if (Builder.getIsFPConstrained()) {
3418     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3419            "Only constrained operation should be created when Builder is in FP "
3420            "constrained mode");
3421     FMulAdd = Builder.CreateConstrainedFPCall(
3422         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3423                              Addend->getType()),
3424         {MulOp0, MulOp1, Addend});
3425   } else {
3426     FMulAdd = Builder.CreateCall(
3427         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3428         {MulOp0, MulOp1, Addend});
3429   }
3430   MulOp->eraseFromParent();
3431 
3432   return FMulAdd;
3433 }
3434 
3435 // Check whether it would be legal to emit an fmuladd intrinsic call to
3436 // represent op and if so, build the fmuladd.
3437 //
3438 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3439 // Does NOT check the type of the operation - it's assumed that this function
3440 // will be called from contexts where it's known that the type is contractable.
3441 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3442                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3443                          bool isSub=false) {
3444 
3445   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3446           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3447          "Only fadd/fsub can be the root of an fmuladd.");
3448 
3449   // Check whether this op is marked as fusable.
3450   if (!op.FPFeatures.allowFPContractWithinStatement())
3451     return nullptr;
3452 
3453   // We have a potentially fusable op. Look for a mul on one of the operands.
3454   // Also, make sure that the mul result isn't used directly. In that case,
3455   // there's no point creating a muladd operation.
3456   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3457     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3458         LHSBinOp->use_empty())
3459       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3460   }
3461   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3462     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3463         RHSBinOp->use_empty())
3464       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3465   }
3466 
3467   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3468     if (LHSBinOp->getIntrinsicID() ==
3469             llvm::Intrinsic::experimental_constrained_fmul &&
3470         LHSBinOp->use_empty())
3471       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3472   }
3473   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3474     if (RHSBinOp->getIntrinsicID() ==
3475             llvm::Intrinsic::experimental_constrained_fmul &&
3476         RHSBinOp->use_empty())
3477       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3478   }
3479 
3480   return nullptr;
3481 }
3482 
3483 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3484   if (op.LHS->getType()->isPointerTy() ||
3485       op.RHS->getType()->isPointerTy())
3486     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3487 
3488   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3489     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3490     case LangOptions::SOB_Defined:
3491       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3492     case LangOptions::SOB_Undefined:
3493       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3494         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3495       LLVM_FALLTHROUGH;
3496     case LangOptions::SOB_Trapping:
3497       if (CanElideOverflowCheck(CGF.getContext(), op))
3498         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3499       return EmitOverflowCheckedBinOp(op);
3500     }
3501   }
3502 
3503   if (op.Ty->isUnsignedIntegerType() &&
3504       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3505       !CanElideOverflowCheck(CGF.getContext(), op))
3506     return EmitOverflowCheckedBinOp(op);
3507 
3508   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3509     // Try to form an fmuladd.
3510     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3511       return FMulAdd;
3512 
3513     Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
3514     return propagateFMFlags(V, op);
3515   }
3516 
3517   if (op.isFixedPointOp())
3518     return EmitFixedPointBinOp(op);
3519 
3520   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3521 }
3522 
3523 /// The resulting value must be calculated with exact precision, so the operands
3524 /// may not be the same type.
3525 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3526   using llvm::APSInt;
3527   using llvm::ConstantInt;
3528 
3529   // This is either a binary operation where at least one of the operands is
3530   // a fixed-point type, or a unary operation where the operand is a fixed-point
3531   // type. The result type of a binary operation is determined by
3532   // Sema::handleFixedPointConversions().
3533   QualType ResultTy = op.Ty;
3534   QualType LHSTy, RHSTy;
3535   if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3536     RHSTy = BinOp->getRHS()->getType();
3537     if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3538       // For compound assignment, the effective type of the LHS at this point
3539       // is the computation LHS type, not the actual LHS type, and the final
3540       // result type is not the type of the expression but rather the
3541       // computation result type.
3542       LHSTy = CAO->getComputationLHSType();
3543       ResultTy = CAO->getComputationResultType();
3544     } else
3545       LHSTy = BinOp->getLHS()->getType();
3546   } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3547     LHSTy = UnOp->getSubExpr()->getType();
3548     RHSTy = UnOp->getSubExpr()->getType();
3549   }
3550   ASTContext &Ctx = CGF.getContext();
3551   Value *LHS = op.LHS;
3552   Value *RHS = op.RHS;
3553 
3554   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3555   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3556   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3557   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3558 
3559   // Convert the operands to the full precision type.
3560   Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema,
3561                                             op.E->getExprLoc());
3562   Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema,
3563                                             op.E->getExprLoc());
3564 
3565   // Perform the actual operation.
3566   Value *Result;
3567   switch (op.Opcode) {
3568   case BO_AddAssign:
3569   case BO_Add: {
3570     if (ResultFixedSema.isSaturated()) {
3571       llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3572                                     ? llvm::Intrinsic::sadd_sat
3573                                     : llvm::Intrinsic::uadd_sat;
3574       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3575     } else {
3576       Result = Builder.CreateAdd(FullLHS, FullRHS);
3577     }
3578     break;
3579   }
3580   case BO_SubAssign:
3581   case BO_Sub: {
3582     if (ResultFixedSema.isSaturated()) {
3583       llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3584                                     ? llvm::Intrinsic::ssub_sat
3585                                     : llvm::Intrinsic::usub_sat;
3586       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3587     } else {
3588       Result = Builder.CreateSub(FullLHS, FullRHS);
3589     }
3590     break;
3591   }
3592   case BO_MulAssign:
3593   case BO_Mul: {
3594     llvm::Intrinsic::ID IID;
3595     if (ResultFixedSema.isSaturated())
3596       IID = ResultFixedSema.isSigned()
3597                 ? llvm::Intrinsic::smul_fix_sat
3598                 : llvm::Intrinsic::umul_fix_sat;
3599     else
3600       IID = ResultFixedSema.isSigned()
3601                 ? llvm::Intrinsic::smul_fix
3602                 : llvm::Intrinsic::umul_fix;
3603     Result = Builder.CreateIntrinsic(IID, {FullLHS->getType()},
3604         {FullLHS, FullRHS, Builder.getInt32(CommonFixedSema.getScale())});
3605     break;
3606   }
3607   case BO_DivAssign:
3608   case BO_Div: {
3609     llvm::Intrinsic::ID IID;
3610     if (ResultFixedSema.isSaturated())
3611       IID = ResultFixedSema.isSigned() ? llvm::Intrinsic::sdiv_fix_sat
3612                                        : llvm::Intrinsic::udiv_fix_sat;
3613     else
3614       IID = ResultFixedSema.isSigned() ? llvm::Intrinsic::sdiv_fix
3615                                        : llvm::Intrinsic::udiv_fix;
3616     Result = Builder.CreateIntrinsic(IID, {FullLHS->getType()},
3617         {FullLHS, FullRHS, Builder.getInt32(CommonFixedSema.getScale())});
3618     break;
3619   }
3620   case BO_LT:
3621     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS)
3622                                       : Builder.CreateICmpULT(FullLHS, FullRHS);
3623   case BO_GT:
3624     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS)
3625                                       : Builder.CreateICmpUGT(FullLHS, FullRHS);
3626   case BO_LE:
3627     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS)
3628                                       : Builder.CreateICmpULE(FullLHS, FullRHS);
3629   case BO_GE:
3630     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS)
3631                                       : Builder.CreateICmpUGE(FullLHS, FullRHS);
3632   case BO_EQ:
3633     // For equality operations, we assume any padding bits on unsigned types are
3634     // zero'd out. They could be overwritten through non-saturating operations
3635     // that cause overflow, but this leads to undefined behavior.
3636     return Builder.CreateICmpEQ(FullLHS, FullRHS);
3637   case BO_NE:
3638     return Builder.CreateICmpNE(FullLHS, FullRHS);
3639   case BO_Shl:
3640   case BO_Shr:
3641   case BO_Cmp:
3642   case BO_LAnd:
3643   case BO_LOr:
3644   case BO_ShlAssign:
3645   case BO_ShrAssign:
3646     llvm_unreachable("Found unimplemented fixed point binary operation");
3647   case BO_PtrMemD:
3648   case BO_PtrMemI:
3649   case BO_Rem:
3650   case BO_Xor:
3651   case BO_And:
3652   case BO_Or:
3653   case BO_Assign:
3654   case BO_RemAssign:
3655   case BO_AndAssign:
3656   case BO_XorAssign:
3657   case BO_OrAssign:
3658   case BO_Comma:
3659     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3660   }
3661 
3662   // Convert to the result type.
3663   return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema,
3664                                   op.E->getExprLoc());
3665 }
3666 
3667 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3668   // The LHS is always a pointer if either side is.
3669   if (!op.LHS->getType()->isPointerTy()) {
3670     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3671       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3672       case LangOptions::SOB_Defined:
3673         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3674       case LangOptions::SOB_Undefined:
3675         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3676           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3677         LLVM_FALLTHROUGH;
3678       case LangOptions::SOB_Trapping:
3679         if (CanElideOverflowCheck(CGF.getContext(), op))
3680           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3681         return EmitOverflowCheckedBinOp(op);
3682       }
3683     }
3684 
3685     if (op.Ty->isUnsignedIntegerType() &&
3686         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3687         !CanElideOverflowCheck(CGF.getContext(), op))
3688       return EmitOverflowCheckedBinOp(op);
3689 
3690     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3691       // Try to form an fmuladd.
3692       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3693         return FMulAdd;
3694       Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
3695       return propagateFMFlags(V, op);
3696     }
3697 
3698     if (op.isFixedPointOp())
3699       return EmitFixedPointBinOp(op);
3700 
3701     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3702   }
3703 
3704   // If the RHS is not a pointer, then we have normal pointer
3705   // arithmetic.
3706   if (!op.RHS->getType()->isPointerTy())
3707     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3708 
3709   // Otherwise, this is a pointer subtraction.
3710 
3711   // Do the raw subtraction part.
3712   llvm::Value *LHS
3713     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3714   llvm::Value *RHS
3715     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3716   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3717 
3718   // Okay, figure out the element size.
3719   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3720   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3721 
3722   llvm::Value *divisor = nullptr;
3723 
3724   // For a variable-length array, this is going to be non-constant.
3725   if (const VariableArrayType *vla
3726         = CGF.getContext().getAsVariableArrayType(elementType)) {
3727     auto VlaSize = CGF.getVLASize(vla);
3728     elementType = VlaSize.Type;
3729     divisor = VlaSize.NumElts;
3730 
3731     // Scale the number of non-VLA elements by the non-VLA element size.
3732     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3733     if (!eltSize.isOne())
3734       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3735 
3736   // For everything elese, we can just compute it, safe in the
3737   // assumption that Sema won't let anything through that we can't
3738   // safely compute the size of.
3739   } else {
3740     CharUnits elementSize;
3741     // Handle GCC extension for pointer arithmetic on void* and
3742     // function pointer types.
3743     if (elementType->isVoidType() || elementType->isFunctionType())
3744       elementSize = CharUnits::One();
3745     else
3746       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3747 
3748     // Don't even emit the divide for element size of 1.
3749     if (elementSize.isOne())
3750       return diffInChars;
3751 
3752     divisor = CGF.CGM.getSize(elementSize);
3753   }
3754 
3755   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3756   // pointer difference in C is only defined in the case where both operands
3757   // are pointing to elements of an array.
3758   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3759 }
3760 
3761 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3762   llvm::IntegerType *Ty;
3763   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3764     Ty = cast<llvm::IntegerType>(VT->getElementType());
3765   else
3766     Ty = cast<llvm::IntegerType>(LHS->getType());
3767   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3768 }
3769 
3770 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
3771                                               const Twine &Name) {
3772   llvm::IntegerType *Ty;
3773   if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3774     Ty = cast<llvm::IntegerType>(VT->getElementType());
3775   else
3776     Ty = cast<llvm::IntegerType>(LHS->getType());
3777 
3778   if (llvm::isPowerOf2_64(Ty->getBitWidth()))
3779         return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
3780 
3781   return Builder.CreateURem(
3782       RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
3783 }
3784 
3785 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3786   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3787   // RHS to the same size as the LHS.
3788   Value *RHS = Ops.RHS;
3789   if (Ops.LHS->getType() != RHS->getType())
3790     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3791 
3792   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3793                       Ops.Ty->hasSignedIntegerRepresentation() &&
3794                       !CGF.getLangOpts().isSignedOverflowDefined() &&
3795                       !CGF.getLangOpts().CPlusPlus2a;
3796   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3797   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3798   if (CGF.getLangOpts().OpenCL)
3799     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
3800   else if ((SanitizeBase || SanitizeExponent) &&
3801            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3802     CodeGenFunction::SanitizerScope SanScope(&CGF);
3803     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3804     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3805     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3806 
3807     if (SanitizeExponent) {
3808       Checks.push_back(
3809           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3810     }
3811 
3812     if (SanitizeBase) {
3813       // Check whether we are shifting any non-zero bits off the top of the
3814       // integer. We only emit this check if exponent is valid - otherwise
3815       // instructions below will have undefined behavior themselves.
3816       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3817       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3818       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3819       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3820       llvm::Value *PromotedWidthMinusOne =
3821           (RHS == Ops.RHS) ? WidthMinusOne
3822                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3823       CGF.EmitBlock(CheckShiftBase);
3824       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3825           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3826                                      /*NUW*/ true, /*NSW*/ true),
3827           "shl.check");
3828       if (CGF.getLangOpts().CPlusPlus) {
3829         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3830         // Under C++11's rules, shifting a 1 bit into the sign bit is
3831         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3832         // define signed left shifts, so we use the C99 and C++11 rules there).
3833         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3834         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3835       }
3836       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3837       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3838       CGF.EmitBlock(Cont);
3839       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3840       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3841       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3842       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3843     }
3844 
3845     assert(!Checks.empty());
3846     EmitBinOpCheck(Checks, Ops);
3847   }
3848 
3849   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3850 }
3851 
3852 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3853   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3854   // RHS to the same size as the LHS.
3855   Value *RHS = Ops.RHS;
3856   if (Ops.LHS->getType() != RHS->getType())
3857     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3858 
3859   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3860   if (CGF.getLangOpts().OpenCL)
3861     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
3862   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3863            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3864     CodeGenFunction::SanitizerScope SanScope(&CGF);
3865     llvm::Value *Valid =
3866         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3867     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3868   }
3869 
3870   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3871     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3872   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3873 }
3874 
3875 enum IntrinsicType { VCMPEQ, VCMPGT };
3876 // return corresponding comparison intrinsic for given vector type
3877 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3878                                         BuiltinType::Kind ElemKind) {
3879   switch (ElemKind) {
3880   default: llvm_unreachable("unexpected element type");
3881   case BuiltinType::Char_U:
3882   case BuiltinType::UChar:
3883     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3884                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3885   case BuiltinType::Char_S:
3886   case BuiltinType::SChar:
3887     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3888                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3889   case BuiltinType::UShort:
3890     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3891                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3892   case BuiltinType::Short:
3893     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3894                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3895   case BuiltinType::UInt:
3896     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3897                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3898   case BuiltinType::Int:
3899     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3900                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3901   case BuiltinType::ULong:
3902   case BuiltinType::ULongLong:
3903     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3904                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3905   case BuiltinType::Long:
3906   case BuiltinType::LongLong:
3907     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3908                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3909   case BuiltinType::Float:
3910     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3911                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3912   case BuiltinType::Double:
3913     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3914                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3915   }
3916 }
3917 
3918 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3919                                       llvm::CmpInst::Predicate UICmpOpc,
3920                                       llvm::CmpInst::Predicate SICmpOpc,
3921                                       llvm::CmpInst::Predicate FCmpOpc,
3922                                       bool IsSignaling) {
3923   TestAndClearIgnoreResultAssign();
3924   Value *Result;
3925   QualType LHSTy = E->getLHS()->getType();
3926   QualType RHSTy = E->getRHS()->getType();
3927   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3928     assert(E->getOpcode() == BO_EQ ||
3929            E->getOpcode() == BO_NE);
3930     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3931     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3932     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3933                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3934   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3935     BinOpInfo BOInfo = EmitBinOps(E);
3936     Value *LHS = BOInfo.LHS;
3937     Value *RHS = BOInfo.RHS;
3938 
3939     // If AltiVec, the comparison results in a numeric type, so we use
3940     // intrinsics comparing vectors and giving 0 or 1 as a result
3941     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3942       // constants for mapping CR6 register bits to predicate result
3943       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3944 
3945       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3946 
3947       // in several cases vector arguments order will be reversed
3948       Value *FirstVecArg = LHS,
3949             *SecondVecArg = RHS;
3950 
3951       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
3952       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
3953 
3954       switch(E->getOpcode()) {
3955       default: llvm_unreachable("is not a comparison operation");
3956       case BO_EQ:
3957         CR6 = CR6_LT;
3958         ID = GetIntrinsic(VCMPEQ, ElementKind);
3959         break;
3960       case BO_NE:
3961         CR6 = CR6_EQ;
3962         ID = GetIntrinsic(VCMPEQ, ElementKind);
3963         break;
3964       case BO_LT:
3965         CR6 = CR6_LT;
3966         ID = GetIntrinsic(VCMPGT, ElementKind);
3967         std::swap(FirstVecArg, SecondVecArg);
3968         break;
3969       case BO_GT:
3970         CR6 = CR6_LT;
3971         ID = GetIntrinsic(VCMPGT, ElementKind);
3972         break;
3973       case BO_LE:
3974         if (ElementKind == BuiltinType::Float) {
3975           CR6 = CR6_LT;
3976           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3977           std::swap(FirstVecArg, SecondVecArg);
3978         }
3979         else {
3980           CR6 = CR6_EQ;
3981           ID = GetIntrinsic(VCMPGT, ElementKind);
3982         }
3983         break;
3984       case BO_GE:
3985         if (ElementKind == BuiltinType::Float) {
3986           CR6 = CR6_LT;
3987           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3988         }
3989         else {
3990           CR6 = CR6_EQ;
3991           ID = GetIntrinsic(VCMPGT, ElementKind);
3992           std::swap(FirstVecArg, SecondVecArg);
3993         }
3994         break;
3995       }
3996 
3997       Value *CR6Param = Builder.getInt32(CR6);
3998       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3999       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4000 
4001       // The result type of intrinsic may not be same as E->getType().
4002       // If E->getType() is not BoolTy, EmitScalarConversion will do the
4003       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4004       // do nothing, if ResultTy is not i1 at the same time, it will cause
4005       // crash later.
4006       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4007       if (ResultTy->getBitWidth() > 1 &&
4008           E->getType() == CGF.getContext().BoolTy)
4009         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4010       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4011                                   E->getExprLoc());
4012     }
4013 
4014     if (BOInfo.isFixedPointOp()) {
4015       Result = EmitFixedPointBinOp(BOInfo);
4016     } else if (LHS->getType()->isFPOrFPVectorTy()) {
4017       if (!IsSignaling)
4018         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4019       else
4020         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4021     } else if (LHSTy->hasSignedIntegerRepresentation()) {
4022       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4023     } else {
4024       // Unsigned integers and pointers.
4025 
4026       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4027           !isa<llvm::ConstantPointerNull>(LHS) &&
4028           !isa<llvm::ConstantPointerNull>(RHS)) {
4029 
4030         // Dynamic information is required to be stripped for comparisons,
4031         // because it could leak the dynamic information.  Based on comparisons
4032         // of pointers to dynamic objects, the optimizer can replace one pointer
4033         // with another, which might be incorrect in presence of invariant
4034         // groups. Comparison with null is safe because null does not carry any
4035         // dynamic information.
4036         if (LHSTy.mayBeDynamicClass())
4037           LHS = Builder.CreateStripInvariantGroup(LHS);
4038         if (RHSTy.mayBeDynamicClass())
4039           RHS = Builder.CreateStripInvariantGroup(RHS);
4040       }
4041 
4042       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4043     }
4044 
4045     // If this is a vector comparison, sign extend the result to the appropriate
4046     // vector integer type and return it (don't convert to bool).
4047     if (LHSTy->isVectorType())
4048       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4049 
4050   } else {
4051     // Complex Comparison: can only be an equality comparison.
4052     CodeGenFunction::ComplexPairTy LHS, RHS;
4053     QualType CETy;
4054     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4055       LHS = CGF.EmitComplexExpr(E->getLHS());
4056       CETy = CTy->getElementType();
4057     } else {
4058       LHS.first = Visit(E->getLHS());
4059       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4060       CETy = LHSTy;
4061     }
4062     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4063       RHS = CGF.EmitComplexExpr(E->getRHS());
4064       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4065                                                      CTy->getElementType()) &&
4066              "The element types must always match.");
4067       (void)CTy;
4068     } else {
4069       RHS.first = Visit(E->getRHS());
4070       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4071       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4072              "The element types must always match.");
4073     }
4074 
4075     Value *ResultR, *ResultI;
4076     if (CETy->isRealFloatingType()) {
4077       // As complex comparisons can only be equality comparisons, they
4078       // are never signaling comparisons.
4079       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4080       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4081     } else {
4082       // Complex comparisons can only be equality comparisons.  As such, signed
4083       // and unsigned opcodes are the same.
4084       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4085       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4086     }
4087 
4088     if (E->getOpcode() == BO_EQ) {
4089       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4090     } else {
4091       assert(E->getOpcode() == BO_NE &&
4092              "Complex comparison other than == or != ?");
4093       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4094     }
4095   }
4096 
4097   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4098                               E->getExprLoc());
4099 }
4100 
4101 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4102   bool Ignore = TestAndClearIgnoreResultAssign();
4103 
4104   Value *RHS;
4105   LValue LHS;
4106 
4107   switch (E->getLHS()->getType().getObjCLifetime()) {
4108   case Qualifiers::OCL_Strong:
4109     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4110     break;
4111 
4112   case Qualifiers::OCL_Autoreleasing:
4113     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4114     break;
4115 
4116   case Qualifiers::OCL_ExplicitNone:
4117     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4118     break;
4119 
4120   case Qualifiers::OCL_Weak:
4121     RHS = Visit(E->getRHS());
4122     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4123     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4124     break;
4125 
4126   case Qualifiers::OCL_None:
4127     // __block variables need to have the rhs evaluated first, plus
4128     // this should improve codegen just a little.
4129     RHS = Visit(E->getRHS());
4130     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4131 
4132     // Store the value into the LHS.  Bit-fields are handled specially
4133     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4134     // 'An assignment expression has the value of the left operand after
4135     // the assignment...'.
4136     if (LHS.isBitField()) {
4137       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4138     } else {
4139       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4140       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4141     }
4142   }
4143 
4144   // If the result is clearly ignored, return now.
4145   if (Ignore)
4146     return nullptr;
4147 
4148   // The result of an assignment in C is the assigned r-value.
4149   if (!CGF.getLangOpts().CPlusPlus)
4150     return RHS;
4151 
4152   // If the lvalue is non-volatile, return the computed value of the assignment.
4153   if (!LHS.isVolatileQualified())
4154     return RHS;
4155 
4156   // Otherwise, reload the value.
4157   return EmitLoadOfLValue(LHS, E->getExprLoc());
4158 }
4159 
4160 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4161   // Perform vector logical and on comparisons with zero vectors.
4162   if (E->getType()->isVectorType()) {
4163     CGF.incrementProfileCounter(E);
4164 
4165     Value *LHS = Visit(E->getLHS());
4166     Value *RHS = Visit(E->getRHS());
4167     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4168     if (LHS->getType()->isFPOrFPVectorTy()) {
4169       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4170       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4171     } else {
4172       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4173       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4174     }
4175     Value *And = Builder.CreateAnd(LHS, RHS);
4176     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4177   }
4178 
4179   llvm::Type *ResTy = ConvertType(E->getType());
4180 
4181   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4182   // If we have 1 && X, just emit X without inserting the control flow.
4183   bool LHSCondVal;
4184   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4185     if (LHSCondVal) { // If we have 1 && X, just emit X.
4186       CGF.incrementProfileCounter(E);
4187 
4188       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4189       // ZExt result to int or bool.
4190       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4191     }
4192 
4193     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4194     if (!CGF.ContainsLabel(E->getRHS()))
4195       return llvm::Constant::getNullValue(ResTy);
4196   }
4197 
4198   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4199   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4200 
4201   CodeGenFunction::ConditionalEvaluation eval(CGF);
4202 
4203   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4204   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4205                            CGF.getProfileCount(E->getRHS()));
4206 
4207   // Any edges into the ContBlock are now from an (indeterminate number of)
4208   // edges from this first condition.  All of these values will be false.  Start
4209   // setting up the PHI node in the Cont Block for this.
4210   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4211                                             "", ContBlock);
4212   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4213        PI != PE; ++PI)
4214     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4215 
4216   eval.begin(CGF);
4217   CGF.EmitBlock(RHSBlock);
4218   CGF.incrementProfileCounter(E);
4219   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4220   eval.end(CGF);
4221 
4222   // Reaquire the RHS block, as there may be subblocks inserted.
4223   RHSBlock = Builder.GetInsertBlock();
4224 
4225   // Emit an unconditional branch from this block to ContBlock.
4226   {
4227     // There is no need to emit line number for unconditional branch.
4228     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4229     CGF.EmitBlock(ContBlock);
4230   }
4231   // Insert an entry into the phi node for the edge with the value of RHSCond.
4232   PN->addIncoming(RHSCond, RHSBlock);
4233 
4234   // Artificial location to preserve the scope information
4235   {
4236     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4237     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4238   }
4239 
4240   // ZExt result to int.
4241   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4242 }
4243 
4244 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4245   // Perform vector logical or on comparisons with zero vectors.
4246   if (E->getType()->isVectorType()) {
4247     CGF.incrementProfileCounter(E);
4248 
4249     Value *LHS = Visit(E->getLHS());
4250     Value *RHS = Visit(E->getRHS());
4251     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4252     if (LHS->getType()->isFPOrFPVectorTy()) {
4253       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4254       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4255     } else {
4256       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4257       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4258     }
4259     Value *Or = Builder.CreateOr(LHS, RHS);
4260     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4261   }
4262 
4263   llvm::Type *ResTy = ConvertType(E->getType());
4264 
4265   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4266   // If we have 0 || X, just emit X without inserting the control flow.
4267   bool LHSCondVal;
4268   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4269     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4270       CGF.incrementProfileCounter(E);
4271 
4272       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4273       // ZExt result to int or bool.
4274       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4275     }
4276 
4277     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4278     if (!CGF.ContainsLabel(E->getRHS()))
4279       return llvm::ConstantInt::get(ResTy, 1);
4280   }
4281 
4282   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4283   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4284 
4285   CodeGenFunction::ConditionalEvaluation eval(CGF);
4286 
4287   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4288   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4289                            CGF.getCurrentProfileCount() -
4290                                CGF.getProfileCount(E->getRHS()));
4291 
4292   // Any edges into the ContBlock are now from an (indeterminate number of)
4293   // edges from this first condition.  All of these values will be true.  Start
4294   // setting up the PHI node in the Cont Block for this.
4295   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4296                                             "", ContBlock);
4297   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4298        PI != PE; ++PI)
4299     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4300 
4301   eval.begin(CGF);
4302 
4303   // Emit the RHS condition as a bool value.
4304   CGF.EmitBlock(RHSBlock);
4305   CGF.incrementProfileCounter(E);
4306   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4307 
4308   eval.end(CGF);
4309 
4310   // Reaquire the RHS block, as there may be subblocks inserted.
4311   RHSBlock = Builder.GetInsertBlock();
4312 
4313   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4314   // into the phi node for the edge with the value of RHSCond.
4315   CGF.EmitBlock(ContBlock);
4316   PN->addIncoming(RHSCond, RHSBlock);
4317 
4318   // ZExt result to int.
4319   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4320 }
4321 
4322 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4323   CGF.EmitIgnoredExpr(E->getLHS());
4324   CGF.EnsureInsertPoint();
4325   return Visit(E->getRHS());
4326 }
4327 
4328 //===----------------------------------------------------------------------===//
4329 //                             Other Operators
4330 //===----------------------------------------------------------------------===//
4331 
4332 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4333 /// expression is cheap enough and side-effect-free enough to evaluate
4334 /// unconditionally instead of conditionally.  This is used to convert control
4335 /// flow into selects in some cases.
4336 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4337                                                    CodeGenFunction &CGF) {
4338   // Anything that is an integer or floating point constant is fine.
4339   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4340 
4341   // Even non-volatile automatic variables can't be evaluated unconditionally.
4342   // Referencing a thread_local may cause non-trivial initialization work to
4343   // occur. If we're inside a lambda and one of the variables is from the scope
4344   // outside the lambda, that function may have returned already. Reading its
4345   // locals is a bad idea. Also, these reads may introduce races there didn't
4346   // exist in the source-level program.
4347 }
4348 
4349 
4350 Value *ScalarExprEmitter::
4351 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4352   TestAndClearIgnoreResultAssign();
4353 
4354   // Bind the common expression if necessary.
4355   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4356 
4357   Expr *condExpr = E->getCond();
4358   Expr *lhsExpr = E->getTrueExpr();
4359   Expr *rhsExpr = E->getFalseExpr();
4360 
4361   // If the condition constant folds and can be elided, try to avoid emitting
4362   // the condition and the dead arm.
4363   bool CondExprBool;
4364   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4365     Expr *live = lhsExpr, *dead = rhsExpr;
4366     if (!CondExprBool) std::swap(live, dead);
4367 
4368     // If the dead side doesn't have labels we need, just emit the Live part.
4369     if (!CGF.ContainsLabel(dead)) {
4370       if (CondExprBool)
4371         CGF.incrementProfileCounter(E);
4372       Value *Result = Visit(live);
4373 
4374       // If the live part is a throw expression, it acts like it has a void
4375       // type, so evaluating it returns a null Value*.  However, a conditional
4376       // with non-void type must return a non-null Value*.
4377       if (!Result && !E->getType()->isVoidType())
4378         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4379 
4380       return Result;
4381     }
4382   }
4383 
4384   // OpenCL: If the condition is a vector, we can treat this condition like
4385   // the select function.
4386   if (CGF.getLangOpts().OpenCL
4387       && condExpr->getType()->isVectorType()) {
4388     CGF.incrementProfileCounter(E);
4389 
4390     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4391     llvm::Value *LHS = Visit(lhsExpr);
4392     llvm::Value *RHS = Visit(rhsExpr);
4393 
4394     llvm::Type *condType = ConvertType(condExpr->getType());
4395     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
4396 
4397     unsigned numElem = vecTy->getNumElements();
4398     llvm::Type *elemType = vecTy->getElementType();
4399 
4400     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4401     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4402     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
4403                                           llvm::VectorType::get(elemType,
4404                                                                 numElem),
4405                                           "sext");
4406     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4407 
4408     // Cast float to int to perform ANDs if necessary.
4409     llvm::Value *RHSTmp = RHS;
4410     llvm::Value *LHSTmp = LHS;
4411     bool wasCast = false;
4412     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4413     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4414       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4415       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4416       wasCast = true;
4417     }
4418 
4419     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4420     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4421     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4422     if (wasCast)
4423       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4424 
4425     return tmp5;
4426   }
4427 
4428   if (condExpr->getType()->isVectorType()) {
4429     CGF.incrementProfileCounter(E);
4430 
4431     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4432     llvm::Value *LHS = Visit(lhsExpr);
4433     llvm::Value *RHS = Visit(rhsExpr);
4434 
4435     llvm::Type *CondType = ConvertType(condExpr->getType());
4436     auto *VecTy = cast<llvm::VectorType>(CondType);
4437     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4438 
4439     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4440     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4441   }
4442 
4443   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4444   // select instead of as control flow.  We can only do this if it is cheap and
4445   // safe to evaluate the LHS and RHS unconditionally.
4446   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4447       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4448     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4449     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4450 
4451     CGF.incrementProfileCounter(E, StepV);
4452 
4453     llvm::Value *LHS = Visit(lhsExpr);
4454     llvm::Value *RHS = Visit(rhsExpr);
4455     if (!LHS) {
4456       // If the conditional has void type, make sure we return a null Value*.
4457       assert(!RHS && "LHS and RHS types must match");
4458       return nullptr;
4459     }
4460     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4461   }
4462 
4463   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4464   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4465   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4466 
4467   CodeGenFunction::ConditionalEvaluation eval(CGF);
4468   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4469                            CGF.getProfileCount(lhsExpr));
4470 
4471   CGF.EmitBlock(LHSBlock);
4472   CGF.incrementProfileCounter(E);
4473   eval.begin(CGF);
4474   Value *LHS = Visit(lhsExpr);
4475   eval.end(CGF);
4476 
4477   LHSBlock = Builder.GetInsertBlock();
4478   Builder.CreateBr(ContBlock);
4479 
4480   CGF.EmitBlock(RHSBlock);
4481   eval.begin(CGF);
4482   Value *RHS = Visit(rhsExpr);
4483   eval.end(CGF);
4484 
4485   RHSBlock = Builder.GetInsertBlock();
4486   CGF.EmitBlock(ContBlock);
4487 
4488   // If the LHS or RHS is a throw expression, it will be legitimately null.
4489   if (!LHS)
4490     return RHS;
4491   if (!RHS)
4492     return LHS;
4493 
4494   // Create a PHI node for the real part.
4495   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4496   PN->addIncoming(LHS, LHSBlock);
4497   PN->addIncoming(RHS, RHSBlock);
4498   return PN;
4499 }
4500 
4501 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4502   return Visit(E->getChosenSubExpr());
4503 }
4504 
4505 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4506   QualType Ty = VE->getType();
4507 
4508   if (Ty->isVariablyModifiedType())
4509     CGF.EmitVariablyModifiedType(Ty);
4510 
4511   Address ArgValue = Address::invalid();
4512   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4513 
4514   llvm::Type *ArgTy = ConvertType(VE->getType());
4515 
4516   // If EmitVAArg fails, emit an error.
4517   if (!ArgPtr.isValid()) {
4518     CGF.ErrorUnsupported(VE, "va_arg expression");
4519     return llvm::UndefValue::get(ArgTy);
4520   }
4521 
4522   // FIXME Volatility.
4523   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4524 
4525   // If EmitVAArg promoted the type, we must truncate it.
4526   if (ArgTy != Val->getType()) {
4527     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4528       Val = Builder.CreateIntToPtr(Val, ArgTy);
4529     else
4530       Val = Builder.CreateTrunc(Val, ArgTy);
4531   }
4532 
4533   return Val;
4534 }
4535 
4536 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4537   return CGF.EmitBlockLiteral(block);
4538 }
4539 
4540 // Convert a vec3 to vec4, or vice versa.
4541 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4542                                  Value *Src, unsigned NumElementsDst) {
4543   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
4544   static constexpr int Mask[] = {0, 1, 2, -1};
4545   return Builder.CreateShuffleVector(Src, UnV,
4546                                      llvm::makeArrayRef(Mask, NumElementsDst));
4547 }
4548 
4549 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4550 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4551 // but could be scalar or vectors of different lengths, and either can be
4552 // pointer.
4553 // There are 4 cases:
4554 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4555 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4556 // 3. pointer -> non-pointer
4557 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4558 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4559 // 4. non-pointer -> pointer
4560 //   a) intptr_t -> pointer       : needs 1 inttoptr
4561 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4562 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4563 // allow casting directly between pointer types and non-integer non-pointer
4564 // types.
4565 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4566                                            const llvm::DataLayout &DL,
4567                                            Value *Src, llvm::Type *DstTy,
4568                                            StringRef Name = "") {
4569   auto SrcTy = Src->getType();
4570 
4571   // Case 1.
4572   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4573     return Builder.CreateBitCast(Src, DstTy, Name);
4574 
4575   // Case 2.
4576   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4577     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4578 
4579   // Case 3.
4580   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4581     // Case 3b.
4582     if (!DstTy->isIntegerTy())
4583       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4584     // Cases 3a and 3b.
4585     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4586   }
4587 
4588   // Case 4b.
4589   if (!SrcTy->isIntegerTy())
4590     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4591   // Cases 4a and 4b.
4592   return Builder.CreateIntToPtr(Src, DstTy, Name);
4593 }
4594 
4595 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4596   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4597   llvm::Type *DstTy = ConvertType(E->getType());
4598 
4599   llvm::Type *SrcTy = Src->getType();
4600   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
4601     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
4602   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
4603     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
4604 
4605   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4606   // vector to get a vec4, then a bitcast if the target type is different.
4607   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4608     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4609 
4610     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4611       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4612                                          DstTy);
4613     }
4614 
4615     Src->setName("astype");
4616     return Src;
4617   }
4618 
4619   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4620   // to vec4 if the original type is not vec4, then a shuffle vector to
4621   // get a vec3.
4622   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4623     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4624       auto Vec4Ty = llvm::VectorType::get(
4625           cast<llvm::VectorType>(DstTy)->getElementType(), 4);
4626       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4627                                          Vec4Ty);
4628     }
4629 
4630     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4631     Src->setName("astype");
4632     return Src;
4633   }
4634 
4635   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4636                                       Src, DstTy, "astype");
4637 }
4638 
4639 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4640   return CGF.EmitAtomicExpr(E).getScalarVal();
4641 }
4642 
4643 //===----------------------------------------------------------------------===//
4644 //                         Entry Point into this File
4645 //===----------------------------------------------------------------------===//
4646 
4647 /// Emit the computation of the specified expression of scalar type, ignoring
4648 /// the result.
4649 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4650   assert(E && hasScalarEvaluationKind(E->getType()) &&
4651          "Invalid scalar expression to emit");
4652 
4653   return ScalarExprEmitter(*this, IgnoreResultAssign)
4654       .Visit(const_cast<Expr *>(E));
4655 }
4656 
4657 /// Emit a conversion from the specified type to the specified destination type,
4658 /// both of which are LLVM scalar types.
4659 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4660                                              QualType DstTy,
4661                                              SourceLocation Loc) {
4662   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4663          "Invalid scalar expression to emit");
4664   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4665 }
4666 
4667 /// Emit a conversion from the specified complex type to the specified
4668 /// destination type, where the destination type is an LLVM scalar type.
4669 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4670                                                       QualType SrcTy,
4671                                                       QualType DstTy,
4672                                                       SourceLocation Loc) {
4673   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4674          "Invalid complex -> scalar conversion");
4675   return ScalarExprEmitter(*this)
4676       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4677 }
4678 
4679 
4680 llvm::Value *CodeGenFunction::
4681 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4682                         bool isInc, bool isPre) {
4683   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4684 }
4685 
4686 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4687   // object->isa or (*object).isa
4688   // Generate code as for: *(Class*)object
4689 
4690   Expr *BaseExpr = E->getBase();
4691   Address Addr = Address::invalid();
4692   if (BaseExpr->isRValue()) {
4693     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4694   } else {
4695     Addr = EmitLValue(BaseExpr).getAddress(*this);
4696   }
4697 
4698   // Cast the address to Class*.
4699   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4700   return MakeAddrLValue(Addr, E->getType());
4701 }
4702 
4703 
4704 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4705                                             const CompoundAssignOperator *E) {
4706   ScalarExprEmitter Scalar(*this);
4707   Value *Result = nullptr;
4708   switch (E->getOpcode()) {
4709 #define COMPOUND_OP(Op)                                                       \
4710     case BO_##Op##Assign:                                                     \
4711       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4712                                              Result)
4713   COMPOUND_OP(Mul);
4714   COMPOUND_OP(Div);
4715   COMPOUND_OP(Rem);
4716   COMPOUND_OP(Add);
4717   COMPOUND_OP(Sub);
4718   COMPOUND_OP(Shl);
4719   COMPOUND_OP(Shr);
4720   COMPOUND_OP(And);
4721   COMPOUND_OP(Xor);
4722   COMPOUND_OP(Or);
4723 #undef COMPOUND_OP
4724 
4725   case BO_PtrMemD:
4726   case BO_PtrMemI:
4727   case BO_Mul:
4728   case BO_Div:
4729   case BO_Rem:
4730   case BO_Add:
4731   case BO_Sub:
4732   case BO_Shl:
4733   case BO_Shr:
4734   case BO_LT:
4735   case BO_GT:
4736   case BO_LE:
4737   case BO_GE:
4738   case BO_EQ:
4739   case BO_NE:
4740   case BO_Cmp:
4741   case BO_And:
4742   case BO_Xor:
4743   case BO_Or:
4744   case BO_LAnd:
4745   case BO_LOr:
4746   case BO_Assign:
4747   case BO_Comma:
4748     llvm_unreachable("Not valid compound assignment operators");
4749   }
4750 
4751   llvm_unreachable("Unhandled compound assignment operator");
4752 }
4753 
4754 struct GEPOffsetAndOverflow {
4755   // The total (signed) byte offset for the GEP.
4756   llvm::Value *TotalOffset;
4757   // The offset overflow flag - true if the total offset overflows.
4758   llvm::Value *OffsetOverflows;
4759 };
4760 
4761 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4762 /// and compute the total offset it applies from it's base pointer BasePtr.
4763 /// Returns offset in bytes and a boolean flag whether an overflow happened
4764 /// during evaluation.
4765 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4766                                                  llvm::LLVMContext &VMContext,
4767                                                  CodeGenModule &CGM,
4768                                                  CGBuilderTy &Builder) {
4769   const auto &DL = CGM.getDataLayout();
4770 
4771   // The total (signed) byte offset for the GEP.
4772   llvm::Value *TotalOffset = nullptr;
4773 
4774   // Was the GEP already reduced to a constant?
4775   if (isa<llvm::Constant>(GEPVal)) {
4776     // Compute the offset by casting both pointers to integers and subtracting:
4777     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4778     Value *BasePtr_int =
4779         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4780     Value *GEPVal_int =
4781         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4782     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4783     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4784   }
4785 
4786   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4787   assert(GEP->getPointerOperand() == BasePtr &&
4788          "BasePtr must be the the base of the GEP.");
4789   assert(GEP->isInBounds() && "Expected inbounds GEP");
4790 
4791   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4792 
4793   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4794   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4795   auto *SAddIntrinsic =
4796       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4797   auto *SMulIntrinsic =
4798       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4799 
4800   // The offset overflow flag - true if the total offset overflows.
4801   llvm::Value *OffsetOverflows = Builder.getFalse();
4802 
4803   /// Return the result of the given binary operation.
4804   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4805                   llvm::Value *RHS) -> llvm::Value * {
4806     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4807 
4808     // If the operands are constants, return a constant result.
4809     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4810       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4811         llvm::APInt N;
4812         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4813                                                   /*Signed=*/true, N);
4814         if (HasOverflow)
4815           OffsetOverflows = Builder.getTrue();
4816         return llvm::ConstantInt::get(VMContext, N);
4817       }
4818     }
4819 
4820     // Otherwise, compute the result with checked arithmetic.
4821     auto *ResultAndOverflow = Builder.CreateCall(
4822         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4823     OffsetOverflows = Builder.CreateOr(
4824         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4825     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4826   };
4827 
4828   // Determine the total byte offset by looking at each GEP operand.
4829   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4830        GTI != GTE; ++GTI) {
4831     llvm::Value *LocalOffset;
4832     auto *Index = GTI.getOperand();
4833     // Compute the local offset contributed by this indexing step:
4834     if (auto *STy = GTI.getStructTypeOrNull()) {
4835       // For struct indexing, the local offset is the byte position of the
4836       // specified field.
4837       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4838       LocalOffset = llvm::ConstantInt::get(
4839           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4840     } else {
4841       // Otherwise this is array-like indexing. The local offset is the index
4842       // multiplied by the element size.
4843       auto *ElementSize = llvm::ConstantInt::get(
4844           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4845       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4846       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4847     }
4848 
4849     // If this is the first offset, set it as the total offset. Otherwise, add
4850     // the local offset into the running total.
4851     if (!TotalOffset || TotalOffset == Zero)
4852       TotalOffset = LocalOffset;
4853     else
4854       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4855   }
4856 
4857   return {TotalOffset, OffsetOverflows};
4858 }
4859 
4860 Value *
4861 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
4862                                         bool SignedIndices, bool IsSubtraction,
4863                                         SourceLocation Loc, const Twine &Name) {
4864   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4865 
4866   // If the pointer overflow sanitizer isn't enabled, do nothing.
4867   if (!SanOpts.has(SanitizerKind::PointerOverflow))
4868     return GEPVal;
4869 
4870   llvm::Type *PtrTy = Ptr->getType();
4871 
4872   // Perform nullptr-and-offset check unless the nullptr is defined.
4873   bool PerformNullCheck = !NullPointerIsDefined(
4874       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
4875   // Check for overflows unless the GEP got constant-folded,
4876   // and only in the default address space
4877   bool PerformOverflowCheck =
4878       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
4879 
4880   if (!(PerformNullCheck || PerformOverflowCheck))
4881     return GEPVal;
4882 
4883   const auto &DL = CGM.getDataLayout();
4884 
4885   SanitizerScope SanScope(this);
4886   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
4887 
4888   GEPOffsetAndOverflow EvaluatedGEP =
4889       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
4890 
4891   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
4892           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
4893          "If the offset got constant-folded, we don't expect that there was an "
4894          "overflow.");
4895 
4896   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4897 
4898   // Common case: if the total offset is zero, and we are using C++ semantics,
4899   // where nullptr+0 is defined, don't emit a check.
4900   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
4901     return GEPVal;
4902 
4903   // Now that we've computed the total offset, add it to the base pointer (with
4904   // wrapping semantics).
4905   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
4906   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
4907 
4908   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
4909 
4910   if (PerformNullCheck) {
4911     // In C++, if the base pointer evaluates to a null pointer value,
4912     // the only valid  pointer this inbounds GEP can produce is also
4913     // a null pointer, so the offset must also evaluate to zero.
4914     // Likewise, if we have non-zero base pointer, we can not get null pointer
4915     // as a result, so the offset can not be -intptr_t(BasePtr).
4916     // In other words, both pointers are either null, or both are non-null,
4917     // or the behaviour is undefined.
4918     //
4919     // C, however, is more strict in this regard, and gives more
4920     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
4921     // So both the input to the 'gep inbounds' AND the output must not be null.
4922     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
4923     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
4924     auto *Valid =
4925         CGM.getLangOpts().CPlusPlus
4926             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
4927             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
4928     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
4929   }
4930 
4931   if (PerformOverflowCheck) {
4932     // The GEP is valid if:
4933     // 1) The total offset doesn't overflow, and
4934     // 2) The sign of the difference between the computed address and the base
4935     // pointer matches the sign of the total offset.
4936     llvm::Value *ValidGEP;
4937     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
4938     if (SignedIndices) {
4939       // GEP is computed as `unsigned base + signed offset`, therefore:
4940       // * If offset was positive, then the computed pointer can not be
4941       //   [unsigned] less than the base pointer, unless it overflowed.
4942       // * If offset was negative, then the computed pointer can not be
4943       //   [unsigned] greater than the bas pointere, unless it overflowed.
4944       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4945       auto *PosOrZeroOffset =
4946           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
4947       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4948       ValidGEP =
4949           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
4950     } else if (!IsSubtraction) {
4951       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
4952       // computed pointer can not be [unsigned] less than base pointer,
4953       // unless there was an overflow.
4954       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
4955       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4956     } else {
4957       // GEP is computed as `unsigned base - unsigned offset`, therefore the
4958       // computed pointer can not be [unsigned] greater than base pointer,
4959       // unless there was an overflow.
4960       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
4961       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4962     }
4963     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
4964     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
4965   }
4966 
4967   assert(!Checks.empty() && "Should have produced some checks.");
4968 
4969   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4970   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4971   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4972   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4973 
4974   return GEPVal;
4975 }
4976