1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenModule.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtVisitor.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/Module.h" 33 #include <cstdarg> 34 35 using namespace clang; 36 using namespace CodeGen; 37 using llvm::Value; 38 39 //===----------------------------------------------------------------------===// 40 // Scalar Expression Emitter 41 //===----------------------------------------------------------------------===// 42 43 namespace { 44 struct BinOpInfo { 45 Value *LHS; 46 Value *RHS; 47 QualType Ty; // Computation Type. 48 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 49 bool FPContractable; 50 const Expr *E; // Entire expr, for error unsupported. May not be binop. 51 }; 52 53 static bool MustVisitNullValue(const Expr *E) { 54 // If a null pointer expression's type is the C++0x nullptr_t, then 55 // it's not necessarily a simple constant and it must be evaluated 56 // for its potential side effects. 57 return E->getType()->isNullPtrType(); 58 } 59 60 class ScalarExprEmitter 61 : public StmtVisitor<ScalarExprEmitter, Value*> { 62 CodeGenFunction &CGF; 63 CGBuilderTy &Builder; 64 bool IgnoreResultAssign; 65 llvm::LLVMContext &VMContext; 66 public: 67 68 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 69 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 70 VMContext(cgf.getLLVMContext()) { 71 } 72 73 //===--------------------------------------------------------------------===// 74 // Utilities 75 //===--------------------------------------------------------------------===// 76 77 bool TestAndClearIgnoreResultAssign() { 78 bool I = IgnoreResultAssign; 79 IgnoreResultAssign = false; 80 return I; 81 } 82 83 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 84 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 85 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 86 return CGF.EmitCheckedLValue(E, TCK); 87 } 88 89 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 90 const BinOpInfo &Info); 91 92 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 93 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 94 } 95 96 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 97 const AlignValueAttr *AVAttr = nullptr; 98 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 99 const ValueDecl *VD = DRE->getDecl(); 100 101 if (VD->getType()->isReferenceType()) { 102 if (const auto *TTy = 103 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 104 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 105 } else { 106 // Assumptions for function parameters are emitted at the start of the 107 // function, so there is no need to repeat that here. 108 if (isa<ParmVarDecl>(VD)) 109 return; 110 111 AVAttr = VD->getAttr<AlignValueAttr>(); 112 } 113 } 114 115 if (!AVAttr) 116 if (const auto *TTy = 117 dyn_cast<TypedefType>(E->getType())) 118 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 119 120 if (!AVAttr) 121 return; 122 123 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 124 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 125 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); 126 } 127 128 /// EmitLoadOfLValue - Given an expression with complex type that represents a 129 /// value l-value, this method emits the address of the l-value, then loads 130 /// and returns the result. 131 Value *EmitLoadOfLValue(const Expr *E) { 132 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 133 E->getExprLoc()); 134 135 EmitLValueAlignmentAssumption(E, V); 136 return V; 137 } 138 139 /// EmitConversionToBool - Convert the specified expression value to a 140 /// boolean (i1) truth value. This is equivalent to "Val != 0". 141 Value *EmitConversionToBool(Value *Src, QualType DstTy); 142 143 /// Emit a check that a conversion to or from a floating-point type does not 144 /// overflow. 145 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 146 Value *Src, QualType SrcType, QualType DstType, 147 llvm::Type *DstTy, SourceLocation Loc); 148 149 /// Emit a conversion from the specified type to the specified destination 150 /// type, both of which are LLVM scalar types. 151 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 152 SourceLocation Loc); 153 154 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 155 SourceLocation Loc, bool TreatBooleanAsSigned); 156 157 /// Emit a conversion from the specified complex type to the specified 158 /// destination type, where the destination type is an LLVM scalar type. 159 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 160 QualType SrcTy, QualType DstTy, 161 SourceLocation Loc); 162 163 /// EmitNullValue - Emit a value that corresponds to null for the given type. 164 Value *EmitNullValue(QualType Ty); 165 166 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 167 Value *EmitFloatToBoolConversion(Value *V) { 168 // Compare against 0.0 for fp scalars. 169 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 170 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 171 } 172 173 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 174 Value *EmitPointerToBoolConversion(Value *V) { 175 Value *Zero = llvm::ConstantPointerNull::get( 176 cast<llvm::PointerType>(V->getType())); 177 return Builder.CreateICmpNE(V, Zero, "tobool"); 178 } 179 180 Value *EmitIntToBoolConversion(Value *V) { 181 // Because of the type rules of C, we often end up computing a 182 // logical value, then zero extending it to int, then wanting it 183 // as a logical value again. Optimize this common case. 184 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 185 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 186 Value *Result = ZI->getOperand(0); 187 // If there aren't any more uses, zap the instruction to save space. 188 // Note that there can be more uses, for example if this 189 // is the result of an assignment. 190 if (ZI->use_empty()) 191 ZI->eraseFromParent(); 192 return Result; 193 } 194 } 195 196 return Builder.CreateIsNotNull(V, "tobool"); 197 } 198 199 //===--------------------------------------------------------------------===// 200 // Visitor Methods 201 //===--------------------------------------------------------------------===// 202 203 Value *Visit(Expr *E) { 204 ApplyDebugLocation DL(CGF, E); 205 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 206 } 207 208 Value *VisitStmt(Stmt *S) { 209 S->dump(CGF.getContext().getSourceManager()); 210 llvm_unreachable("Stmt can't have complex result type!"); 211 } 212 Value *VisitExpr(Expr *S); 213 214 Value *VisitParenExpr(ParenExpr *PE) { 215 return Visit(PE->getSubExpr()); 216 } 217 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 218 return Visit(E->getReplacement()); 219 } 220 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 221 return Visit(GE->getResultExpr()); 222 } 223 224 // Leaves. 225 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 226 return Builder.getInt(E->getValue()); 227 } 228 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 229 return llvm::ConstantFP::get(VMContext, E->getValue()); 230 } 231 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 232 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 233 } 234 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 235 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 236 } 237 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 238 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 239 } 240 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 241 return EmitNullValue(E->getType()); 242 } 243 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 244 return EmitNullValue(E->getType()); 245 } 246 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 247 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 248 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 249 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 250 return Builder.CreateBitCast(V, ConvertType(E->getType())); 251 } 252 253 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 254 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 255 } 256 257 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 258 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 259 } 260 261 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 262 if (E->isGLValue()) 263 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 264 265 // Otherwise, assume the mapping is the scalar directly. 266 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 267 } 268 269 // l-values. 270 Value *VisitDeclRefExpr(DeclRefExpr *E) { 271 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 272 if (result.isReference()) 273 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 274 E->getExprLoc()); 275 return result.getValue(); 276 } 277 return EmitLoadOfLValue(E); 278 } 279 280 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 281 return CGF.EmitObjCSelectorExpr(E); 282 } 283 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 284 return CGF.EmitObjCProtocolExpr(E); 285 } 286 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 287 return EmitLoadOfLValue(E); 288 } 289 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 290 if (E->getMethodDecl() && 291 E->getMethodDecl()->getReturnType()->isReferenceType()) 292 return EmitLoadOfLValue(E); 293 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 294 } 295 296 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 297 LValue LV = CGF.EmitObjCIsaExpr(E); 298 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 299 return V; 300 } 301 302 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 303 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 304 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 305 Value *VisitMemberExpr(MemberExpr *E); 306 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 307 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 308 return EmitLoadOfLValue(E); 309 } 310 311 Value *VisitInitListExpr(InitListExpr *E); 312 313 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 314 return EmitNullValue(E->getType()); 315 } 316 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 317 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 318 return VisitCastExpr(E); 319 } 320 Value *VisitCastExpr(CastExpr *E); 321 322 Value *VisitCallExpr(const CallExpr *E) { 323 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 324 return EmitLoadOfLValue(E); 325 326 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 327 328 EmitLValueAlignmentAssumption(E, V); 329 return V; 330 } 331 332 Value *VisitStmtExpr(const StmtExpr *E); 333 334 // Unary Operators. 335 Value *VisitUnaryPostDec(const UnaryOperator *E) { 336 LValue LV = EmitLValue(E->getSubExpr()); 337 return EmitScalarPrePostIncDec(E, LV, false, false); 338 } 339 Value *VisitUnaryPostInc(const UnaryOperator *E) { 340 LValue LV = EmitLValue(E->getSubExpr()); 341 return EmitScalarPrePostIncDec(E, LV, true, false); 342 } 343 Value *VisitUnaryPreDec(const UnaryOperator *E) { 344 LValue LV = EmitLValue(E->getSubExpr()); 345 return EmitScalarPrePostIncDec(E, LV, false, true); 346 } 347 Value *VisitUnaryPreInc(const UnaryOperator *E) { 348 LValue LV = EmitLValue(E->getSubExpr()); 349 return EmitScalarPrePostIncDec(E, LV, true, true); 350 } 351 352 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 353 llvm::Value *InVal, 354 bool IsInc); 355 356 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 357 bool isInc, bool isPre); 358 359 360 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 361 if (isa<MemberPointerType>(E->getType())) // never sugared 362 return CGF.CGM.getMemberPointerConstant(E); 363 364 return EmitLValue(E->getSubExpr()).getPointer(); 365 } 366 Value *VisitUnaryDeref(const UnaryOperator *E) { 367 if (E->getType()->isVoidType()) 368 return Visit(E->getSubExpr()); // the actual value should be unused 369 return EmitLoadOfLValue(E); 370 } 371 Value *VisitUnaryPlus(const UnaryOperator *E) { 372 // This differs from gcc, though, most likely due to a bug in gcc. 373 TestAndClearIgnoreResultAssign(); 374 return Visit(E->getSubExpr()); 375 } 376 Value *VisitUnaryMinus (const UnaryOperator *E); 377 Value *VisitUnaryNot (const UnaryOperator *E); 378 Value *VisitUnaryLNot (const UnaryOperator *E); 379 Value *VisitUnaryReal (const UnaryOperator *E); 380 Value *VisitUnaryImag (const UnaryOperator *E); 381 Value *VisitUnaryExtension(const UnaryOperator *E) { 382 return Visit(E->getSubExpr()); 383 } 384 385 // C++ 386 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 387 return EmitLoadOfLValue(E); 388 } 389 390 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 391 return Visit(DAE->getExpr()); 392 } 393 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 394 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 395 return Visit(DIE->getExpr()); 396 } 397 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 398 return CGF.LoadCXXThis(); 399 } 400 401 Value *VisitExprWithCleanups(ExprWithCleanups *E) { 402 CGF.enterFullExpression(E); 403 CodeGenFunction::RunCleanupsScope Scope(CGF); 404 return Visit(E->getSubExpr()); 405 } 406 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 407 return CGF.EmitCXXNewExpr(E); 408 } 409 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 410 CGF.EmitCXXDeleteExpr(E); 411 return nullptr; 412 } 413 414 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 415 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 416 } 417 418 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 419 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 420 } 421 422 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 423 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 424 } 425 426 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 427 // C++ [expr.pseudo]p1: 428 // The result shall only be used as the operand for the function call 429 // operator (), and the result of such a call has type void. The only 430 // effect is the evaluation of the postfix-expression before the dot or 431 // arrow. 432 CGF.EmitScalarExpr(E->getBase()); 433 return nullptr; 434 } 435 436 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 437 return EmitNullValue(E->getType()); 438 } 439 440 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 441 CGF.EmitCXXThrowExpr(E); 442 return nullptr; 443 } 444 445 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 446 return Builder.getInt1(E->getValue()); 447 } 448 449 // Binary Operators. 450 Value *EmitMul(const BinOpInfo &Ops) { 451 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 452 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 453 case LangOptions::SOB_Defined: 454 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 455 case LangOptions::SOB_Undefined: 456 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 457 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 458 // Fall through. 459 case LangOptions::SOB_Trapping: 460 return EmitOverflowCheckedBinOp(Ops); 461 } 462 } 463 464 if (Ops.Ty->isUnsignedIntegerType() && 465 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 466 return EmitOverflowCheckedBinOp(Ops); 467 468 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 469 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 470 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 471 } 472 /// Create a binary op that checks for overflow. 473 /// Currently only supports +, - and *. 474 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 475 476 // Check for undefined division and modulus behaviors. 477 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 478 llvm::Value *Zero,bool isDiv); 479 // Common helper for getting how wide LHS of shift is. 480 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 481 Value *EmitDiv(const BinOpInfo &Ops); 482 Value *EmitRem(const BinOpInfo &Ops); 483 Value *EmitAdd(const BinOpInfo &Ops); 484 Value *EmitSub(const BinOpInfo &Ops); 485 Value *EmitShl(const BinOpInfo &Ops); 486 Value *EmitShr(const BinOpInfo &Ops); 487 Value *EmitAnd(const BinOpInfo &Ops) { 488 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 489 } 490 Value *EmitXor(const BinOpInfo &Ops) { 491 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 492 } 493 Value *EmitOr (const BinOpInfo &Ops) { 494 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 495 } 496 497 BinOpInfo EmitBinOps(const BinaryOperator *E); 498 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 499 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 500 Value *&Result); 501 502 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 503 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 504 505 // Binary operators and binary compound assignment operators. 506 #define HANDLEBINOP(OP) \ 507 Value *VisitBin ## OP(const BinaryOperator *E) { \ 508 return Emit ## OP(EmitBinOps(E)); \ 509 } \ 510 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 511 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 512 } 513 HANDLEBINOP(Mul) 514 HANDLEBINOP(Div) 515 HANDLEBINOP(Rem) 516 HANDLEBINOP(Add) 517 HANDLEBINOP(Sub) 518 HANDLEBINOP(Shl) 519 HANDLEBINOP(Shr) 520 HANDLEBINOP(And) 521 HANDLEBINOP(Xor) 522 HANDLEBINOP(Or) 523 #undef HANDLEBINOP 524 525 // Comparisons. 526 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 527 llvm::CmpInst::Predicate SICmpOpc, 528 llvm::CmpInst::Predicate FCmpOpc); 529 #define VISITCOMP(CODE, UI, SI, FP) \ 530 Value *VisitBin##CODE(const BinaryOperator *E) { \ 531 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 532 llvm::FCmpInst::FP); } 533 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 534 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 535 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 536 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 537 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 538 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 539 #undef VISITCOMP 540 541 Value *VisitBinAssign (const BinaryOperator *E); 542 543 Value *VisitBinLAnd (const BinaryOperator *E); 544 Value *VisitBinLOr (const BinaryOperator *E); 545 Value *VisitBinComma (const BinaryOperator *E); 546 547 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 548 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 549 550 // Other Operators. 551 Value *VisitBlockExpr(const BlockExpr *BE); 552 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 553 Value *VisitChooseExpr(ChooseExpr *CE); 554 Value *VisitVAArgExpr(VAArgExpr *VE); 555 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 556 return CGF.EmitObjCStringLiteral(E); 557 } 558 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 559 return CGF.EmitObjCBoxedExpr(E); 560 } 561 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 562 return CGF.EmitObjCArrayLiteral(E); 563 } 564 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 565 return CGF.EmitObjCDictionaryLiteral(E); 566 } 567 Value *VisitAsTypeExpr(AsTypeExpr *CE); 568 Value *VisitAtomicExpr(AtomicExpr *AE); 569 }; 570 } // end anonymous namespace. 571 572 //===----------------------------------------------------------------------===// 573 // Utilities 574 //===----------------------------------------------------------------------===// 575 576 /// EmitConversionToBool - Convert the specified expression value to a 577 /// boolean (i1) truth value. This is equivalent to "Val != 0". 578 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 579 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 580 581 if (SrcType->isRealFloatingType()) 582 return EmitFloatToBoolConversion(Src); 583 584 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 585 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 586 587 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 588 "Unknown scalar type to convert"); 589 590 if (isa<llvm::IntegerType>(Src->getType())) 591 return EmitIntToBoolConversion(Src); 592 593 assert(isa<llvm::PointerType>(Src->getType())); 594 return EmitPointerToBoolConversion(Src); 595 } 596 597 void ScalarExprEmitter::EmitFloatConversionCheck( 598 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 599 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 600 CodeGenFunction::SanitizerScope SanScope(&CGF); 601 using llvm::APFloat; 602 using llvm::APSInt; 603 604 llvm::Type *SrcTy = Src->getType(); 605 606 llvm::Value *Check = nullptr; 607 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 608 // Integer to floating-point. This can fail for unsigned short -> __half 609 // or unsigned __int128 -> float. 610 assert(DstType->isFloatingType()); 611 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 612 613 APFloat LargestFloat = 614 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 615 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 616 617 bool IsExact; 618 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 619 &IsExact) != APFloat::opOK) 620 // The range of representable values of this floating point type includes 621 // all values of this integer type. Don't need an overflow check. 622 return; 623 624 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 625 if (SrcIsUnsigned) 626 Check = Builder.CreateICmpULE(Src, Max); 627 else { 628 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 629 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 630 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 631 Check = Builder.CreateAnd(GE, LE); 632 } 633 } else { 634 const llvm::fltSemantics &SrcSema = 635 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 636 if (isa<llvm::IntegerType>(DstTy)) { 637 // Floating-point to integer. This has undefined behavior if the source is 638 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 639 // to an integer). 640 unsigned Width = CGF.getContext().getIntWidth(DstType); 641 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 642 643 APSInt Min = APSInt::getMinValue(Width, Unsigned); 644 APFloat MinSrc(SrcSema, APFloat::uninitialized); 645 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 646 APFloat::opOverflow) 647 // Don't need an overflow check for lower bound. Just check for 648 // -Inf/NaN. 649 MinSrc = APFloat::getInf(SrcSema, true); 650 else 651 // Find the largest value which is too small to represent (before 652 // truncation toward zero). 653 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 654 655 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 656 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 657 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 658 APFloat::opOverflow) 659 // Don't need an overflow check for upper bound. Just check for 660 // +Inf/NaN. 661 MaxSrc = APFloat::getInf(SrcSema, false); 662 else 663 // Find the smallest value which is too large to represent (before 664 // truncation toward zero). 665 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 666 667 // If we're converting from __half, convert the range to float to match 668 // the type of src. 669 if (OrigSrcType->isHalfType()) { 670 const llvm::fltSemantics &Sema = 671 CGF.getContext().getFloatTypeSemantics(SrcType); 672 bool IsInexact; 673 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 674 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 675 } 676 677 llvm::Value *GE = 678 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 679 llvm::Value *LE = 680 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 681 Check = Builder.CreateAnd(GE, LE); 682 } else { 683 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 684 // 685 // Floating-point to floating-point. This has undefined behavior if the 686 // source is not in the range of representable values of the destination 687 // type. The C and C++ standards are spectacularly unclear here. We 688 // diagnose finite out-of-range conversions, but allow infinities and NaNs 689 // to convert to the corresponding value in the smaller type. 690 // 691 // C11 Annex F gives all such conversions defined behavior for IEC 60559 692 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 693 // does not. 694 695 // Converting from a lower rank to a higher rank can never have 696 // undefined behavior, since higher-rank types must have a superset 697 // of values of lower-rank types. 698 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 699 return; 700 701 assert(!OrigSrcType->isHalfType() && 702 "should not check conversion from __half, it has the lowest rank"); 703 704 const llvm::fltSemantics &DstSema = 705 CGF.getContext().getFloatTypeSemantics(DstType); 706 APFloat MinBad = APFloat::getLargest(DstSema, false); 707 APFloat MaxBad = APFloat::getInf(DstSema, false); 708 709 bool IsInexact; 710 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 711 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 712 713 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 714 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 715 llvm::Value *GE = 716 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 717 llvm::Value *LE = 718 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 719 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 720 } 721 } 722 723 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 724 CGF.EmitCheckTypeDescriptor(OrigSrcType), 725 CGF.EmitCheckTypeDescriptor(DstType)}; 726 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 727 "float_cast_overflow", StaticArgs, OrigSrc); 728 } 729 730 /// Emit a conversion from the specified type to the specified destination type, 731 /// both of which are LLVM scalar types. 732 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 733 QualType DstType, 734 SourceLocation Loc) { 735 return EmitScalarConversion(Src, SrcType, DstType, Loc, false); 736 } 737 738 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 739 QualType DstType, 740 SourceLocation Loc, 741 bool TreatBooleanAsSigned) { 742 SrcType = CGF.getContext().getCanonicalType(SrcType); 743 DstType = CGF.getContext().getCanonicalType(DstType); 744 if (SrcType == DstType) return Src; 745 746 if (DstType->isVoidType()) return nullptr; 747 748 llvm::Value *OrigSrc = Src; 749 QualType OrigSrcType = SrcType; 750 llvm::Type *SrcTy = Src->getType(); 751 752 // Handle conversions to bool first, they are special: comparisons against 0. 753 if (DstType->isBooleanType()) 754 return EmitConversionToBool(Src, SrcType); 755 756 llvm::Type *DstTy = ConvertType(DstType); 757 758 // Cast from half through float if half isn't a native type. 759 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 760 // Cast to FP using the intrinsic if the half type itself isn't supported. 761 if (DstTy->isFloatingPointTy()) { 762 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 763 return Builder.CreateCall( 764 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 765 Src); 766 } else { 767 // Cast to other types through float, using either the intrinsic or FPExt, 768 // depending on whether the half type itself is supported 769 // (as opposed to operations on half, available with NativeHalfType). 770 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 771 Src = Builder.CreateCall( 772 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 773 CGF.CGM.FloatTy), 774 Src); 775 } else { 776 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 777 } 778 SrcType = CGF.getContext().FloatTy; 779 SrcTy = CGF.FloatTy; 780 } 781 } 782 783 // Ignore conversions like int -> uint. 784 if (SrcTy == DstTy) 785 return Src; 786 787 // Handle pointer conversions next: pointers can only be converted to/from 788 // other pointers and integers. Check for pointer types in terms of LLVM, as 789 // some native types (like Obj-C id) may map to a pointer type. 790 if (isa<llvm::PointerType>(DstTy)) { 791 // The source value may be an integer, or a pointer. 792 if (isa<llvm::PointerType>(SrcTy)) 793 return Builder.CreateBitCast(Src, DstTy, "conv"); 794 795 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 796 // First, convert to the correct width so that we control the kind of 797 // extension. 798 llvm::Type *MiddleTy = CGF.IntPtrTy; 799 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 800 llvm::Value* IntResult = 801 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 802 // Then, cast to pointer. 803 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 804 } 805 806 if (isa<llvm::PointerType>(SrcTy)) { 807 // Must be an ptr to int cast. 808 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 809 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 810 } 811 812 // A scalar can be splatted to an extended vector of the same element type 813 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 814 // Sema should add casts to make sure that the source expression's type is 815 // the same as the vector's element type (sans qualifiers) 816 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 817 SrcType.getTypePtr() && 818 "Splatted expr doesn't match with vector element type?"); 819 820 // Splat the element across to all elements 821 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 822 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 823 } 824 825 // Allow bitcast from vector to integer/fp of the same size. 826 if (isa<llvm::VectorType>(SrcTy) || 827 isa<llvm::VectorType>(DstTy)) 828 return Builder.CreateBitCast(Src, DstTy, "conv"); 829 830 // Finally, we have the arithmetic types: real int/float. 831 Value *Res = nullptr; 832 llvm::Type *ResTy = DstTy; 833 834 // An overflowing conversion has undefined behavior if either the source type 835 // or the destination type is a floating-point type. 836 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 837 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 838 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 839 Loc); 840 841 // Cast to half through float if half isn't a native type. 842 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 843 // Make sure we cast in a single step if from another FP type. 844 if (SrcTy->isFloatingPointTy()) { 845 // Use the intrinsic if the half type itself isn't supported 846 // (as opposed to operations on half, available with NativeHalfType). 847 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 848 return Builder.CreateCall( 849 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 850 // If the half type is supported, just use an fptrunc. 851 return Builder.CreateFPTrunc(Src, DstTy); 852 } 853 DstTy = CGF.FloatTy; 854 } 855 856 if (isa<llvm::IntegerType>(SrcTy)) { 857 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 858 if (SrcType->isBooleanType() && TreatBooleanAsSigned) { 859 InputSigned = true; 860 } 861 if (isa<llvm::IntegerType>(DstTy)) 862 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 863 else if (InputSigned) 864 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 865 else 866 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 867 } else if (isa<llvm::IntegerType>(DstTy)) { 868 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 869 if (DstType->isSignedIntegerOrEnumerationType()) 870 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 871 else 872 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 873 } else { 874 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 875 "Unknown real conversion"); 876 if (DstTy->getTypeID() < SrcTy->getTypeID()) 877 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 878 else 879 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 880 } 881 882 if (DstTy != ResTy) { 883 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 884 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 885 Res = Builder.CreateCall( 886 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 887 Res); 888 } else { 889 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 890 } 891 } 892 893 return Res; 894 } 895 896 /// Emit a conversion from the specified complex type to the specified 897 /// destination type, where the destination type is an LLVM scalar type. 898 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 899 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 900 SourceLocation Loc) { 901 // Get the source element type. 902 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 903 904 // Handle conversions to bool first, they are special: comparisons against 0. 905 if (DstTy->isBooleanType()) { 906 // Complex != 0 -> (Real != 0) | (Imag != 0) 907 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 908 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 909 return Builder.CreateOr(Src.first, Src.second, "tobool"); 910 } 911 912 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 913 // the imaginary part of the complex value is discarded and the value of the 914 // real part is converted according to the conversion rules for the 915 // corresponding real type. 916 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 917 } 918 919 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 920 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 921 } 922 923 /// \brief Emit a sanitization check for the given "binary" operation (which 924 /// might actually be a unary increment which has been lowered to a binary 925 /// operation). The check passes if all values in \p Checks (which are \c i1), 926 /// are \c true. 927 void ScalarExprEmitter::EmitBinOpCheck( 928 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 929 assert(CGF.IsSanitizerScope); 930 StringRef CheckName; 931 SmallVector<llvm::Constant *, 4> StaticData; 932 SmallVector<llvm::Value *, 2> DynamicData; 933 934 BinaryOperatorKind Opcode = Info.Opcode; 935 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 936 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 937 938 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 939 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 940 if (UO && UO->getOpcode() == UO_Minus) { 941 CheckName = "negate_overflow"; 942 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 943 DynamicData.push_back(Info.RHS); 944 } else { 945 if (BinaryOperator::isShiftOp(Opcode)) { 946 // Shift LHS negative or too large, or RHS out of bounds. 947 CheckName = "shift_out_of_bounds"; 948 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 949 StaticData.push_back( 950 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 951 StaticData.push_back( 952 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 953 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 954 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 955 CheckName = "divrem_overflow"; 956 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 957 } else { 958 // Arithmetic overflow (+, -, *). 959 switch (Opcode) { 960 case BO_Add: CheckName = "add_overflow"; break; 961 case BO_Sub: CheckName = "sub_overflow"; break; 962 case BO_Mul: CheckName = "mul_overflow"; break; 963 default: llvm_unreachable("unexpected opcode for bin op check"); 964 } 965 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 966 } 967 DynamicData.push_back(Info.LHS); 968 DynamicData.push_back(Info.RHS); 969 } 970 971 CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData); 972 } 973 974 //===----------------------------------------------------------------------===// 975 // Visitor Methods 976 //===----------------------------------------------------------------------===// 977 978 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 979 CGF.ErrorUnsupported(E, "scalar expression"); 980 if (E->getType()->isVoidType()) 981 return nullptr; 982 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 983 } 984 985 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 986 // Vector Mask Case 987 if (E->getNumSubExprs() == 2 || 988 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) { 989 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 990 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 991 Value *Mask; 992 993 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 994 unsigned LHSElts = LTy->getNumElements(); 995 996 if (E->getNumSubExprs() == 3) { 997 Mask = CGF.EmitScalarExpr(E->getExpr(2)); 998 999 // Shuffle LHS & RHS into one input vector. 1000 SmallVector<llvm::Constant*, 32> concat; 1001 for (unsigned i = 0; i != LHSElts; ++i) { 1002 concat.push_back(Builder.getInt32(2*i)); 1003 concat.push_back(Builder.getInt32(2*i+1)); 1004 } 1005 1006 Value* CV = llvm::ConstantVector::get(concat); 1007 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat"); 1008 LHSElts *= 2; 1009 } else { 1010 Mask = RHS; 1011 } 1012 1013 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1014 1015 // Mask off the high bits of each shuffle index. 1016 Value *MaskBits = 1017 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1018 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1019 1020 // newv = undef 1021 // mask = mask & maskbits 1022 // for each elt 1023 // n = extract mask i 1024 // x = extract val n 1025 // newv = insert newv, x, i 1026 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1027 MTy->getNumElements()); 1028 Value* NewV = llvm::UndefValue::get(RTy); 1029 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1030 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1031 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1032 1033 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1034 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1035 } 1036 return NewV; 1037 } 1038 1039 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1040 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1041 1042 SmallVector<llvm::Constant*, 32> indices; 1043 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1044 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1045 // Check for -1 and output it as undef in the IR. 1046 if (Idx.isSigned() && Idx.isAllOnesValue()) 1047 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1048 else 1049 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1050 } 1051 1052 Value *SV = llvm::ConstantVector::get(indices); 1053 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1054 } 1055 1056 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1057 QualType SrcType = E->getSrcExpr()->getType(), 1058 DstType = E->getType(); 1059 1060 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1061 1062 SrcType = CGF.getContext().getCanonicalType(SrcType); 1063 DstType = CGF.getContext().getCanonicalType(DstType); 1064 if (SrcType == DstType) return Src; 1065 1066 assert(SrcType->isVectorType() && 1067 "ConvertVector source type must be a vector"); 1068 assert(DstType->isVectorType() && 1069 "ConvertVector destination type must be a vector"); 1070 1071 llvm::Type *SrcTy = Src->getType(); 1072 llvm::Type *DstTy = ConvertType(DstType); 1073 1074 // Ignore conversions like int -> uint. 1075 if (SrcTy == DstTy) 1076 return Src; 1077 1078 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1079 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1080 1081 assert(SrcTy->isVectorTy() && 1082 "ConvertVector source IR type must be a vector"); 1083 assert(DstTy->isVectorTy() && 1084 "ConvertVector destination IR type must be a vector"); 1085 1086 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1087 *DstEltTy = DstTy->getVectorElementType(); 1088 1089 if (DstEltType->isBooleanType()) { 1090 assert((SrcEltTy->isFloatingPointTy() || 1091 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1092 1093 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1094 if (SrcEltTy->isFloatingPointTy()) { 1095 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1096 } else { 1097 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1098 } 1099 } 1100 1101 // We have the arithmetic types: real int/float. 1102 Value *Res = nullptr; 1103 1104 if (isa<llvm::IntegerType>(SrcEltTy)) { 1105 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1106 if (isa<llvm::IntegerType>(DstEltTy)) 1107 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1108 else if (InputSigned) 1109 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1110 else 1111 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1112 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1113 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1114 if (DstEltType->isSignedIntegerOrEnumerationType()) 1115 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1116 else 1117 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1118 } else { 1119 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1120 "Unknown real conversion"); 1121 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1122 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1123 else 1124 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1125 } 1126 1127 return Res; 1128 } 1129 1130 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1131 llvm::APSInt Value; 1132 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1133 if (E->isArrow()) 1134 CGF.EmitScalarExpr(E->getBase()); 1135 else 1136 EmitLValue(E->getBase()); 1137 return Builder.getInt(Value); 1138 } 1139 1140 return EmitLoadOfLValue(E); 1141 } 1142 1143 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1144 TestAndClearIgnoreResultAssign(); 1145 1146 // Emit subscript expressions in rvalue context's. For most cases, this just 1147 // loads the lvalue formed by the subscript expr. However, we have to be 1148 // careful, because the base of a vector subscript is occasionally an rvalue, 1149 // so we can't get it as an lvalue. 1150 if (!E->getBase()->getType()->isVectorType()) 1151 return EmitLoadOfLValue(E); 1152 1153 // Handle the vector case. The base must be a vector, the index must be an 1154 // integer value. 1155 Value *Base = Visit(E->getBase()); 1156 Value *Idx = Visit(E->getIdx()); 1157 QualType IdxTy = E->getIdx()->getType(); 1158 1159 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1160 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1161 1162 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1163 } 1164 1165 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1166 unsigned Off, llvm::Type *I32Ty) { 1167 int MV = SVI->getMaskValue(Idx); 1168 if (MV == -1) 1169 return llvm::UndefValue::get(I32Ty); 1170 return llvm::ConstantInt::get(I32Ty, Off+MV); 1171 } 1172 1173 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1174 if (C->getBitWidth() != 32) { 1175 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1176 C->getZExtValue()) && 1177 "Index operand too large for shufflevector mask!"); 1178 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1179 } 1180 return C; 1181 } 1182 1183 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1184 bool Ignore = TestAndClearIgnoreResultAssign(); 1185 (void)Ignore; 1186 assert (Ignore == false && "init list ignored"); 1187 unsigned NumInitElements = E->getNumInits(); 1188 1189 if (E->hadArrayRangeDesignator()) 1190 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1191 1192 llvm::VectorType *VType = 1193 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1194 1195 if (!VType) { 1196 if (NumInitElements == 0) { 1197 // C++11 value-initialization for the scalar. 1198 return EmitNullValue(E->getType()); 1199 } 1200 // We have a scalar in braces. Just use the first element. 1201 return Visit(E->getInit(0)); 1202 } 1203 1204 unsigned ResElts = VType->getNumElements(); 1205 1206 // Loop over initializers collecting the Value for each, and remembering 1207 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1208 // us to fold the shuffle for the swizzle into the shuffle for the vector 1209 // initializer, since LLVM optimizers generally do not want to touch 1210 // shuffles. 1211 unsigned CurIdx = 0; 1212 bool VIsUndefShuffle = false; 1213 llvm::Value *V = llvm::UndefValue::get(VType); 1214 for (unsigned i = 0; i != NumInitElements; ++i) { 1215 Expr *IE = E->getInit(i); 1216 Value *Init = Visit(IE); 1217 SmallVector<llvm::Constant*, 16> Args; 1218 1219 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1220 1221 // Handle scalar elements. If the scalar initializer is actually one 1222 // element of a different vector of the same width, use shuffle instead of 1223 // extract+insert. 1224 if (!VVT) { 1225 if (isa<ExtVectorElementExpr>(IE)) { 1226 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1227 1228 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1229 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1230 Value *LHS = nullptr, *RHS = nullptr; 1231 if (CurIdx == 0) { 1232 // insert into undef -> shuffle (src, undef) 1233 // shufflemask must use an i32 1234 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1235 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1236 1237 LHS = EI->getVectorOperand(); 1238 RHS = V; 1239 VIsUndefShuffle = true; 1240 } else if (VIsUndefShuffle) { 1241 // insert into undefshuffle && size match -> shuffle (v, src) 1242 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1243 for (unsigned j = 0; j != CurIdx; ++j) 1244 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1245 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1246 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1247 1248 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1249 RHS = EI->getVectorOperand(); 1250 VIsUndefShuffle = false; 1251 } 1252 if (!Args.empty()) { 1253 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1254 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1255 ++CurIdx; 1256 continue; 1257 } 1258 } 1259 } 1260 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1261 "vecinit"); 1262 VIsUndefShuffle = false; 1263 ++CurIdx; 1264 continue; 1265 } 1266 1267 unsigned InitElts = VVT->getNumElements(); 1268 1269 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1270 // input is the same width as the vector being constructed, generate an 1271 // optimized shuffle of the swizzle input into the result. 1272 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1273 if (isa<ExtVectorElementExpr>(IE)) { 1274 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1275 Value *SVOp = SVI->getOperand(0); 1276 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1277 1278 if (OpTy->getNumElements() == ResElts) { 1279 for (unsigned j = 0; j != CurIdx; ++j) { 1280 // If the current vector initializer is a shuffle with undef, merge 1281 // this shuffle directly into it. 1282 if (VIsUndefShuffle) { 1283 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1284 CGF.Int32Ty)); 1285 } else { 1286 Args.push_back(Builder.getInt32(j)); 1287 } 1288 } 1289 for (unsigned j = 0, je = InitElts; j != je; ++j) 1290 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1291 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1292 1293 if (VIsUndefShuffle) 1294 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1295 1296 Init = SVOp; 1297 } 1298 } 1299 1300 // Extend init to result vector length, and then shuffle its contribution 1301 // to the vector initializer into V. 1302 if (Args.empty()) { 1303 for (unsigned j = 0; j != InitElts; ++j) 1304 Args.push_back(Builder.getInt32(j)); 1305 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1306 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1307 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1308 Mask, "vext"); 1309 1310 Args.clear(); 1311 for (unsigned j = 0; j != CurIdx; ++j) 1312 Args.push_back(Builder.getInt32(j)); 1313 for (unsigned j = 0; j != InitElts; ++j) 1314 Args.push_back(Builder.getInt32(j+Offset)); 1315 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1316 } 1317 1318 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1319 // merging subsequent shuffles into this one. 1320 if (CurIdx == 0) 1321 std::swap(V, Init); 1322 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1323 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1324 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1325 CurIdx += InitElts; 1326 } 1327 1328 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1329 // Emit remaining default initializers. 1330 llvm::Type *EltTy = VType->getElementType(); 1331 1332 // Emit remaining default initializers 1333 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1334 Value *Idx = Builder.getInt32(CurIdx); 1335 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1336 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1337 } 1338 return V; 1339 } 1340 1341 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1342 const Expr *E = CE->getSubExpr(); 1343 1344 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1345 return false; 1346 1347 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1348 // We always assume that 'this' is never null. 1349 return false; 1350 } 1351 1352 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1353 // And that glvalue casts are never null. 1354 if (ICE->getValueKind() != VK_RValue) 1355 return false; 1356 } 1357 1358 return true; 1359 } 1360 1361 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1362 // have to handle a more broad range of conversions than explicit casts, as they 1363 // handle things like function to ptr-to-function decay etc. 1364 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1365 Expr *E = CE->getSubExpr(); 1366 QualType DestTy = CE->getType(); 1367 CastKind Kind = CE->getCastKind(); 1368 1369 // These cases are generally not written to ignore the result of 1370 // evaluating their sub-expressions, so we clear this now. 1371 bool Ignored = TestAndClearIgnoreResultAssign(); 1372 1373 // Since almost all cast kinds apply to scalars, this switch doesn't have 1374 // a default case, so the compiler will warn on a missing case. The cases 1375 // are in the same order as in the CastKind enum. 1376 switch (Kind) { 1377 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1378 case CK_BuiltinFnToFnPtr: 1379 llvm_unreachable("builtin functions are handled elsewhere"); 1380 1381 case CK_LValueBitCast: 1382 case CK_ObjCObjectLValueCast: { 1383 Address Addr = EmitLValue(E).getAddress(); 1384 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1385 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1386 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1387 } 1388 1389 case CK_CPointerToObjCPointerCast: 1390 case CK_BlockPointerToObjCPointerCast: 1391 case CK_AnyPointerToBlockPointerCast: 1392 case CK_BitCast: { 1393 Value *Src = Visit(const_cast<Expr*>(E)); 1394 llvm::Type *SrcTy = Src->getType(); 1395 llvm::Type *DstTy = ConvertType(DestTy); 1396 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1397 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1398 llvm_unreachable("wrong cast for pointers in different address spaces" 1399 "(must be an address space cast)!"); 1400 } 1401 1402 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1403 if (auto PT = DestTy->getAs<PointerType>()) 1404 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1405 /*MayBeNull=*/true, 1406 CodeGenFunction::CFITCK_UnrelatedCast, 1407 CE->getLocStart()); 1408 } 1409 1410 return Builder.CreateBitCast(Src, DstTy); 1411 } 1412 case CK_AddressSpaceConversion: { 1413 Value *Src = Visit(const_cast<Expr*>(E)); 1414 // Since target may map different address spaces in AST to the same address 1415 // space, an address space conversion may end up as a bitcast. 1416 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, 1417 ConvertType(DestTy)); 1418 } 1419 case CK_AtomicToNonAtomic: 1420 case CK_NonAtomicToAtomic: 1421 case CK_NoOp: 1422 case CK_UserDefinedConversion: 1423 return Visit(const_cast<Expr*>(E)); 1424 1425 case CK_BaseToDerived: { 1426 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1427 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1428 1429 Address Base = CGF.EmitPointerWithAlignment(E); 1430 Address Derived = 1431 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 1432 CE->path_begin(), CE->path_end(), 1433 CGF.ShouldNullCheckClassCastValue(CE)); 1434 1435 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1436 // performed and the object is not of the derived type. 1437 if (CGF.sanitizePerformTypeCheck()) 1438 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1439 Derived.getPointer(), DestTy->getPointeeType()); 1440 1441 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 1442 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), 1443 Derived.getPointer(), 1444 /*MayBeNull=*/true, 1445 CodeGenFunction::CFITCK_DerivedCast, 1446 CE->getLocStart()); 1447 1448 return Derived.getPointer(); 1449 } 1450 case CK_UncheckedDerivedToBase: 1451 case CK_DerivedToBase: { 1452 // The EmitPointerWithAlignment path does this fine; just discard 1453 // the alignment. 1454 return CGF.EmitPointerWithAlignment(CE).getPointer(); 1455 } 1456 1457 case CK_Dynamic: { 1458 Address V = CGF.EmitPointerWithAlignment(E); 1459 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1460 return CGF.EmitDynamicCast(V, DCE); 1461 } 1462 1463 case CK_ArrayToPointerDecay: 1464 return CGF.EmitArrayToPointerDecay(E).getPointer(); 1465 case CK_FunctionToPointerDecay: 1466 return EmitLValue(E).getPointer(); 1467 1468 case CK_NullToPointer: 1469 if (MustVisitNullValue(E)) 1470 (void) Visit(E); 1471 1472 return llvm::ConstantPointerNull::get( 1473 cast<llvm::PointerType>(ConvertType(DestTy))); 1474 1475 case CK_NullToMemberPointer: { 1476 if (MustVisitNullValue(E)) 1477 (void) Visit(E); 1478 1479 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1480 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1481 } 1482 1483 case CK_ReinterpretMemberPointer: 1484 case CK_BaseToDerivedMemberPointer: 1485 case CK_DerivedToBaseMemberPointer: { 1486 Value *Src = Visit(E); 1487 1488 // Note that the AST doesn't distinguish between checked and 1489 // unchecked member pointer conversions, so we always have to 1490 // implement checked conversions here. This is inefficient when 1491 // actual control flow may be required in order to perform the 1492 // check, which it is for data member pointers (but not member 1493 // function pointers on Itanium and ARM). 1494 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1495 } 1496 1497 case CK_ARCProduceObject: 1498 return CGF.EmitARCRetainScalarExpr(E); 1499 case CK_ARCConsumeObject: 1500 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1501 case CK_ARCReclaimReturnedObject: 1502 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 1503 case CK_ARCExtendBlockObject: 1504 return CGF.EmitARCExtendBlockObject(E); 1505 1506 case CK_CopyAndAutoreleaseBlockObject: 1507 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1508 1509 case CK_FloatingRealToComplex: 1510 case CK_FloatingComplexCast: 1511 case CK_IntegralRealToComplex: 1512 case CK_IntegralComplexCast: 1513 case CK_IntegralComplexToFloatingComplex: 1514 case CK_FloatingComplexToIntegralComplex: 1515 case CK_ConstructorConversion: 1516 case CK_ToUnion: 1517 llvm_unreachable("scalar cast to non-scalar value"); 1518 1519 case CK_LValueToRValue: 1520 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1521 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1522 return Visit(const_cast<Expr*>(E)); 1523 1524 case CK_IntegralToPointer: { 1525 Value *Src = Visit(const_cast<Expr*>(E)); 1526 1527 // First, convert to the correct width so that we control the kind of 1528 // extension. 1529 llvm::Type *MiddleTy = CGF.IntPtrTy; 1530 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1531 llvm::Value* IntResult = 1532 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1533 1534 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); 1535 } 1536 case CK_PointerToIntegral: 1537 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1538 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1539 1540 case CK_ToVoid: { 1541 CGF.EmitIgnoredExpr(E); 1542 return nullptr; 1543 } 1544 case CK_VectorSplat: { 1545 llvm::Type *DstTy = ConvertType(DestTy); 1546 Value *Elt = Visit(const_cast<Expr*>(E)); 1547 // Splat the element across to all elements 1548 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 1549 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 1550 } 1551 1552 case CK_IntegralCast: 1553 case CK_IntegralToFloating: 1554 case CK_FloatingToIntegral: 1555 case CK_FloatingCast: 1556 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1557 CE->getExprLoc()); 1558 case CK_BooleanToSignedIntegral: 1559 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1560 CE->getExprLoc(), 1561 /*TreatBooleanAsSigned=*/true); 1562 case CK_IntegralToBoolean: 1563 return EmitIntToBoolConversion(Visit(E)); 1564 case CK_PointerToBoolean: 1565 return EmitPointerToBoolConversion(Visit(E)); 1566 case CK_FloatingToBoolean: 1567 return EmitFloatToBoolConversion(Visit(E)); 1568 case CK_MemberPointerToBoolean: { 1569 llvm::Value *MemPtr = Visit(E); 1570 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1571 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1572 } 1573 1574 case CK_FloatingComplexToReal: 1575 case CK_IntegralComplexToReal: 1576 return CGF.EmitComplexExpr(E, false, true).first; 1577 1578 case CK_FloatingComplexToBoolean: 1579 case CK_IntegralComplexToBoolean: { 1580 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1581 1582 // TODO: kill this function off, inline appropriate case here 1583 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 1584 CE->getExprLoc()); 1585 } 1586 1587 case CK_ZeroToOCLEvent: { 1588 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); 1589 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1590 } 1591 1592 } 1593 1594 llvm_unreachable("unknown scalar cast"); 1595 } 1596 1597 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1598 CodeGenFunction::StmtExprEvaluation eval(CGF); 1599 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1600 !E->getType()->isVoidType()); 1601 if (!RetAlloca.isValid()) 1602 return nullptr; 1603 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 1604 E->getExprLoc()); 1605 } 1606 1607 //===----------------------------------------------------------------------===// 1608 // Unary Operators 1609 //===----------------------------------------------------------------------===// 1610 1611 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 1612 llvm::Value *InVal, bool IsInc) { 1613 BinOpInfo BinOp; 1614 BinOp.LHS = InVal; 1615 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 1616 BinOp.Ty = E->getType(); 1617 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 1618 BinOp.FPContractable = false; 1619 BinOp.E = E; 1620 return BinOp; 1621 } 1622 1623 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 1624 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 1625 llvm::Value *Amount = 1626 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 1627 StringRef Name = IsInc ? "inc" : "dec"; 1628 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1629 case LangOptions::SOB_Defined: 1630 return Builder.CreateAdd(InVal, Amount, Name); 1631 case LangOptions::SOB_Undefined: 1632 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 1633 return Builder.CreateNSWAdd(InVal, Amount, Name); 1634 // Fall through. 1635 case LangOptions::SOB_Trapping: 1636 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 1637 } 1638 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1639 } 1640 1641 llvm::Value * 1642 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1643 bool isInc, bool isPre) { 1644 1645 QualType type = E->getSubExpr()->getType(); 1646 llvm::PHINode *atomicPHI = nullptr; 1647 llvm::Value *value; 1648 llvm::Value *input; 1649 1650 int amount = (isInc ? 1 : -1); 1651 1652 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1653 type = atomicTy->getValueType(); 1654 if (isInc && type->isBooleanType()) { 1655 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1656 if (isPre) { 1657 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 1658 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 1659 return Builder.getTrue(); 1660 } 1661 // For atomic bool increment, we just store true and return it for 1662 // preincrement, do an atomic swap with true for postincrement 1663 return Builder.CreateAtomicRMW( 1664 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, 1665 llvm::AtomicOrdering::SequentiallyConsistent); 1666 } 1667 // Special case for atomic increment / decrement on integers, emit 1668 // atomicrmw instructions. We skip this if we want to be doing overflow 1669 // checking, and fall into the slow path with the atomic cmpxchg loop. 1670 if (!type->isBooleanType() && type->isIntegerType() && 1671 !(type->isUnsignedIntegerType() && 1672 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 1673 CGF.getLangOpts().getSignedOverflowBehavior() != 1674 LangOptions::SOB_Trapping) { 1675 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1676 llvm::AtomicRMWInst::Sub; 1677 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1678 llvm::Instruction::Sub; 1679 llvm::Value *amt = CGF.EmitToMemory( 1680 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1681 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1682 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); 1683 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1684 } 1685 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1686 input = value; 1687 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1688 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1689 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1690 value = CGF.EmitToMemory(value, type); 1691 Builder.CreateBr(opBB); 1692 Builder.SetInsertPoint(opBB); 1693 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1694 atomicPHI->addIncoming(value, startBB); 1695 value = atomicPHI; 1696 } else { 1697 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1698 input = value; 1699 } 1700 1701 // Special case of integer increment that we have to check first: bool++. 1702 // Due to promotion rules, we get: 1703 // bool++ -> bool = bool + 1 1704 // -> bool = (int)bool + 1 1705 // -> bool = ((int)bool + 1 != 0) 1706 // An interesting aspect of this is that increment is always true. 1707 // Decrement does not have this property. 1708 if (isInc && type->isBooleanType()) { 1709 value = Builder.getTrue(); 1710 1711 // Most common case by far: integer increment. 1712 } else if (type->isIntegerType()) { 1713 // Note that signed integer inc/dec with width less than int can't 1714 // overflow because of promotion rules; we're just eliding a few steps here. 1715 bool CanOverflow = value->getType()->getIntegerBitWidth() >= 1716 CGF.IntTy->getIntegerBitWidth(); 1717 if (CanOverflow && type->isSignedIntegerOrEnumerationType()) { 1718 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 1719 } else if (CanOverflow && type->isUnsignedIntegerType() && 1720 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 1721 value = 1722 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 1723 } else { 1724 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1725 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1726 } 1727 1728 // Next most common: pointer increment. 1729 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1730 QualType type = ptr->getPointeeType(); 1731 1732 // VLA types don't have constant size. 1733 if (const VariableArrayType *vla 1734 = CGF.getContext().getAsVariableArrayType(type)) { 1735 llvm::Value *numElts = CGF.getVLASize(vla).first; 1736 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1737 if (CGF.getLangOpts().isSignedOverflowDefined()) 1738 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1739 else 1740 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); 1741 1742 // Arithmetic on function pointers (!) is just +-1. 1743 } else if (type->isFunctionType()) { 1744 llvm::Value *amt = Builder.getInt32(amount); 1745 1746 value = CGF.EmitCastToVoidPtr(value); 1747 if (CGF.getLangOpts().isSignedOverflowDefined()) 1748 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1749 else 1750 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1751 value = Builder.CreateBitCast(value, input->getType()); 1752 1753 // For everything else, we can just do a simple increment. 1754 } else { 1755 llvm::Value *amt = Builder.getInt32(amount); 1756 if (CGF.getLangOpts().isSignedOverflowDefined()) 1757 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1758 else 1759 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1760 } 1761 1762 // Vector increment/decrement. 1763 } else if (type->isVectorType()) { 1764 if (type->hasIntegerRepresentation()) { 1765 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1766 1767 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1768 } else { 1769 value = Builder.CreateFAdd( 1770 value, 1771 llvm::ConstantFP::get(value->getType(), amount), 1772 isInc ? "inc" : "dec"); 1773 } 1774 1775 // Floating point. 1776 } else if (type->isRealFloatingType()) { 1777 // Add the inc/dec to the real part. 1778 llvm::Value *amt; 1779 1780 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1781 // Another special case: half FP increment should be done via float 1782 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1783 value = Builder.CreateCall( 1784 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1785 CGF.CGM.FloatTy), 1786 input, "incdec.conv"); 1787 } else { 1788 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 1789 } 1790 } 1791 1792 if (value->getType()->isFloatTy()) 1793 amt = llvm::ConstantFP::get(VMContext, 1794 llvm::APFloat(static_cast<float>(amount))); 1795 else if (value->getType()->isDoubleTy()) 1796 amt = llvm::ConstantFP::get(VMContext, 1797 llvm::APFloat(static_cast<double>(amount))); 1798 else { 1799 // Remaining types are either Half or LongDouble. Convert from float. 1800 llvm::APFloat F(static_cast<float>(amount)); 1801 bool ignored; 1802 // Don't use getFloatTypeSemantics because Half isn't 1803 // necessarily represented using the "half" LLVM type. 1804 F.convert(value->getType()->isHalfTy() 1805 ? CGF.getTarget().getHalfFormat() 1806 : CGF.getTarget().getLongDoubleFormat(), 1807 llvm::APFloat::rmTowardZero, &ignored); 1808 amt = llvm::ConstantFP::get(VMContext, F); 1809 } 1810 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 1811 1812 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1813 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1814 value = Builder.CreateCall( 1815 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 1816 CGF.CGM.FloatTy), 1817 value, "incdec.conv"); 1818 } else { 1819 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 1820 } 1821 } 1822 1823 // Objective-C pointer types. 1824 } else { 1825 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 1826 value = CGF.EmitCastToVoidPtr(value); 1827 1828 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 1829 if (!isInc) size = -size; 1830 llvm::Value *sizeValue = 1831 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 1832 1833 if (CGF.getLangOpts().isSignedOverflowDefined()) 1834 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 1835 else 1836 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 1837 value = Builder.CreateBitCast(value, input->getType()); 1838 } 1839 1840 if (atomicPHI) { 1841 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1842 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1843 auto Pair = CGF.EmitAtomicCompareExchange( 1844 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 1845 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 1846 llvm::Value *success = Pair.second; 1847 atomicPHI->addIncoming(old, opBB); 1848 Builder.CreateCondBr(success, contBB, opBB); 1849 Builder.SetInsertPoint(contBB); 1850 return isPre ? value : input; 1851 } 1852 1853 // Store the updated result through the lvalue. 1854 if (LV.isBitField()) 1855 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 1856 else 1857 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 1858 1859 // If this is a postinc, return the value read from memory, otherwise use the 1860 // updated value. 1861 return isPre ? value : input; 1862 } 1863 1864 1865 1866 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1867 TestAndClearIgnoreResultAssign(); 1868 // Emit unary minus with EmitSub so we handle overflow cases etc. 1869 BinOpInfo BinOp; 1870 BinOp.RHS = Visit(E->getSubExpr()); 1871 1872 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 1873 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 1874 else 1875 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 1876 BinOp.Ty = E->getType(); 1877 BinOp.Opcode = BO_Sub; 1878 BinOp.FPContractable = false; 1879 BinOp.E = E; 1880 return EmitSub(BinOp); 1881 } 1882 1883 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1884 TestAndClearIgnoreResultAssign(); 1885 Value *Op = Visit(E->getSubExpr()); 1886 return Builder.CreateNot(Op, "neg"); 1887 } 1888 1889 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1890 // Perform vector logical not on comparison with zero vector. 1891 if (E->getType()->isExtVectorType()) { 1892 Value *Oper = Visit(E->getSubExpr()); 1893 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 1894 Value *Result; 1895 if (Oper->getType()->isFPOrFPVectorTy()) 1896 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 1897 else 1898 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 1899 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 1900 } 1901 1902 // Compare operand to zero. 1903 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1904 1905 // Invert value. 1906 // TODO: Could dynamically modify easy computations here. For example, if 1907 // the operand is an icmp ne, turn into icmp eq. 1908 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1909 1910 // ZExt result to the expr type. 1911 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1912 } 1913 1914 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 1915 // Try folding the offsetof to a constant. 1916 llvm::APSInt Value; 1917 if (E->EvaluateAsInt(Value, CGF.getContext())) 1918 return Builder.getInt(Value); 1919 1920 // Loop over the components of the offsetof to compute the value. 1921 unsigned n = E->getNumComponents(); 1922 llvm::Type* ResultType = ConvertType(E->getType()); 1923 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 1924 QualType CurrentType = E->getTypeSourceInfo()->getType(); 1925 for (unsigned i = 0; i != n; ++i) { 1926 OffsetOfNode ON = E->getComponent(i); 1927 llvm::Value *Offset = nullptr; 1928 switch (ON.getKind()) { 1929 case OffsetOfNode::Array: { 1930 // Compute the index 1931 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 1932 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 1933 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 1934 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 1935 1936 // Save the element type 1937 CurrentType = 1938 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 1939 1940 // Compute the element size 1941 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 1942 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 1943 1944 // Multiply out to compute the result 1945 Offset = Builder.CreateMul(Idx, ElemSize); 1946 break; 1947 } 1948 1949 case OffsetOfNode::Field: { 1950 FieldDecl *MemberDecl = ON.getField(); 1951 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1952 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1953 1954 // Compute the index of the field in its parent. 1955 unsigned i = 0; 1956 // FIXME: It would be nice if we didn't have to loop here! 1957 for (RecordDecl::field_iterator Field = RD->field_begin(), 1958 FieldEnd = RD->field_end(); 1959 Field != FieldEnd; ++Field, ++i) { 1960 if (*Field == MemberDecl) 1961 break; 1962 } 1963 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 1964 1965 // Compute the offset to the field 1966 int64_t OffsetInt = RL.getFieldOffset(i) / 1967 CGF.getContext().getCharWidth(); 1968 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1969 1970 // Save the element type. 1971 CurrentType = MemberDecl->getType(); 1972 break; 1973 } 1974 1975 case OffsetOfNode::Identifier: 1976 llvm_unreachable("dependent __builtin_offsetof"); 1977 1978 case OffsetOfNode::Base: { 1979 if (ON.getBase()->isVirtual()) { 1980 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 1981 continue; 1982 } 1983 1984 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1985 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1986 1987 // Save the element type. 1988 CurrentType = ON.getBase()->getType(); 1989 1990 // Compute the offset to the base. 1991 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 1992 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 1993 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 1994 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 1995 break; 1996 } 1997 } 1998 Result = Builder.CreateAdd(Result, Offset); 1999 } 2000 return Result; 2001 } 2002 2003 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2004 /// argument of the sizeof expression as an integer. 2005 Value * 2006 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2007 const UnaryExprOrTypeTraitExpr *E) { 2008 QualType TypeToSize = E->getTypeOfArgument(); 2009 if (E->getKind() == UETT_SizeOf) { 2010 if (const VariableArrayType *VAT = 2011 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2012 if (E->isArgumentType()) { 2013 // sizeof(type) - make sure to emit the VLA size. 2014 CGF.EmitVariablyModifiedType(TypeToSize); 2015 } else { 2016 // C99 6.5.3.4p2: If the argument is an expression of type 2017 // VLA, it is evaluated. 2018 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2019 } 2020 2021 QualType eltType; 2022 llvm::Value *numElts; 2023 std::tie(numElts, eltType) = CGF.getVLASize(VAT); 2024 2025 llvm::Value *size = numElts; 2026 2027 // Scale the number of non-VLA elements by the non-VLA element size. 2028 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 2029 if (!eltSize.isOne()) 2030 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 2031 2032 return size; 2033 } 2034 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2035 auto Alignment = 2036 CGF.getContext() 2037 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2038 E->getTypeOfArgument()->getPointeeType())) 2039 .getQuantity(); 2040 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2041 } 2042 2043 // If this isn't sizeof(vla), the result must be constant; use the constant 2044 // folding logic so we don't have to duplicate it here. 2045 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2046 } 2047 2048 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2049 Expr *Op = E->getSubExpr(); 2050 if (Op->getType()->isAnyComplexType()) { 2051 // If it's an l-value, load through the appropriate subobject l-value. 2052 // Note that we have to ask E because Op might be an l-value that 2053 // this won't work for, e.g. an Obj-C property. 2054 if (E->isGLValue()) 2055 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2056 E->getExprLoc()).getScalarVal(); 2057 2058 // Otherwise, calculate and project. 2059 return CGF.EmitComplexExpr(Op, false, true).first; 2060 } 2061 2062 return Visit(Op); 2063 } 2064 2065 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2066 Expr *Op = E->getSubExpr(); 2067 if (Op->getType()->isAnyComplexType()) { 2068 // If it's an l-value, load through the appropriate subobject l-value. 2069 // Note that we have to ask E because Op might be an l-value that 2070 // this won't work for, e.g. an Obj-C property. 2071 if (Op->isGLValue()) 2072 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2073 E->getExprLoc()).getScalarVal(); 2074 2075 // Otherwise, calculate and project. 2076 return CGF.EmitComplexExpr(Op, true, false).second; 2077 } 2078 2079 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2080 // effects are evaluated, but not the actual value. 2081 if (Op->isGLValue()) 2082 CGF.EmitLValue(Op); 2083 else 2084 CGF.EmitScalarExpr(Op, true); 2085 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2086 } 2087 2088 //===----------------------------------------------------------------------===// 2089 // Binary Operators 2090 //===----------------------------------------------------------------------===// 2091 2092 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2093 TestAndClearIgnoreResultAssign(); 2094 BinOpInfo Result; 2095 Result.LHS = Visit(E->getLHS()); 2096 Result.RHS = Visit(E->getRHS()); 2097 Result.Ty = E->getType(); 2098 Result.Opcode = E->getOpcode(); 2099 Result.FPContractable = E->isFPContractable(); 2100 Result.E = E; 2101 return Result; 2102 } 2103 2104 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2105 const CompoundAssignOperator *E, 2106 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2107 Value *&Result) { 2108 QualType LHSTy = E->getLHS()->getType(); 2109 BinOpInfo OpInfo; 2110 2111 if (E->getComputationResultType()->isAnyComplexType()) 2112 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2113 2114 // Emit the RHS first. __block variables need to have the rhs evaluated 2115 // first, plus this should improve codegen a little. 2116 OpInfo.RHS = Visit(E->getRHS()); 2117 OpInfo.Ty = E->getComputationResultType(); 2118 OpInfo.Opcode = E->getOpcode(); 2119 OpInfo.FPContractable = E->isFPContractable(); 2120 OpInfo.E = E; 2121 // Load/convert the LHS. 2122 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2123 2124 llvm::PHINode *atomicPHI = nullptr; 2125 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2126 QualType type = atomicTy->getValueType(); 2127 if (!type->isBooleanType() && type->isIntegerType() && 2128 !(type->isUnsignedIntegerType() && 2129 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2130 CGF.getLangOpts().getSignedOverflowBehavior() != 2131 LangOptions::SOB_Trapping) { 2132 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2133 switch (OpInfo.Opcode) { 2134 // We don't have atomicrmw operands for *, %, /, <<, >> 2135 case BO_MulAssign: case BO_DivAssign: 2136 case BO_RemAssign: 2137 case BO_ShlAssign: 2138 case BO_ShrAssign: 2139 break; 2140 case BO_AddAssign: 2141 aop = llvm::AtomicRMWInst::Add; 2142 break; 2143 case BO_SubAssign: 2144 aop = llvm::AtomicRMWInst::Sub; 2145 break; 2146 case BO_AndAssign: 2147 aop = llvm::AtomicRMWInst::And; 2148 break; 2149 case BO_XorAssign: 2150 aop = llvm::AtomicRMWInst::Xor; 2151 break; 2152 case BO_OrAssign: 2153 aop = llvm::AtomicRMWInst::Or; 2154 break; 2155 default: 2156 llvm_unreachable("Invalid compound assignment type"); 2157 } 2158 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2159 llvm::Value *amt = CGF.EmitToMemory( 2160 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2161 E->getExprLoc()), 2162 LHSTy); 2163 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2164 llvm::AtomicOrdering::SequentiallyConsistent); 2165 return LHSLV; 2166 } 2167 } 2168 // FIXME: For floating point types, we should be saving and restoring the 2169 // floating point environment in the loop. 2170 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2171 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2172 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2173 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2174 Builder.CreateBr(opBB); 2175 Builder.SetInsertPoint(opBB); 2176 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2177 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2178 OpInfo.LHS = atomicPHI; 2179 } 2180 else 2181 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2182 2183 SourceLocation Loc = E->getExprLoc(); 2184 OpInfo.LHS = 2185 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2186 2187 // Expand the binary operator. 2188 Result = (this->*Func)(OpInfo); 2189 2190 // Convert the result back to the LHS type. 2191 Result = 2192 EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc); 2193 2194 if (atomicPHI) { 2195 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2196 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2197 auto Pair = CGF.EmitAtomicCompareExchange( 2198 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2199 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2200 llvm::Value *success = Pair.second; 2201 atomicPHI->addIncoming(old, opBB); 2202 Builder.CreateCondBr(success, contBB, opBB); 2203 Builder.SetInsertPoint(contBB); 2204 return LHSLV; 2205 } 2206 2207 // Store the result value into the LHS lvalue. Bit-fields are handled 2208 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2209 // 'An assignment expression has the value of the left operand after the 2210 // assignment...'. 2211 if (LHSLV.isBitField()) 2212 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2213 else 2214 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2215 2216 return LHSLV; 2217 } 2218 2219 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2220 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2221 bool Ignore = TestAndClearIgnoreResultAssign(); 2222 Value *RHS; 2223 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2224 2225 // If the result is clearly ignored, return now. 2226 if (Ignore) 2227 return nullptr; 2228 2229 // The result of an assignment in C is the assigned r-value. 2230 if (!CGF.getLangOpts().CPlusPlus) 2231 return RHS; 2232 2233 // If the lvalue is non-volatile, return the computed value of the assignment. 2234 if (!LHS.isVolatileQualified()) 2235 return RHS; 2236 2237 // Otherwise, reload the value. 2238 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2239 } 2240 2241 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2242 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2243 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2244 2245 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2246 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2247 SanitizerKind::IntegerDivideByZero)); 2248 } 2249 2250 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2251 Ops.Ty->hasSignedIntegerRepresentation()) { 2252 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2253 2254 llvm::Value *IntMin = 2255 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2256 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2257 2258 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2259 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2260 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2261 Checks.push_back( 2262 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2263 } 2264 2265 if (Checks.size() > 0) 2266 EmitBinOpCheck(Checks, Ops); 2267 } 2268 2269 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2270 { 2271 CodeGenFunction::SanitizerScope SanScope(&CGF); 2272 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2273 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2274 Ops.Ty->isIntegerType()) { 2275 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2276 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2277 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2278 Ops.Ty->isRealFloatingType()) { 2279 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2280 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2281 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2282 Ops); 2283 } 2284 } 2285 2286 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2287 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2288 if (CGF.getLangOpts().OpenCL) { 2289 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp 2290 llvm::Type *ValTy = Val->getType(); 2291 if (ValTy->isFloatTy() || 2292 (isa<llvm::VectorType>(ValTy) && 2293 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2294 CGF.SetFPAccuracy(Val, 2.5); 2295 } 2296 return Val; 2297 } 2298 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2299 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2300 else 2301 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2302 } 2303 2304 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2305 // Rem in C can't be a floating point type: C99 6.5.5p2. 2306 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2307 CodeGenFunction::SanitizerScope SanScope(&CGF); 2308 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2309 2310 if (Ops.Ty->isIntegerType()) 2311 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2312 } 2313 2314 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2315 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2316 else 2317 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2318 } 2319 2320 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2321 unsigned IID; 2322 unsigned OpID = 0; 2323 2324 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2325 switch (Ops.Opcode) { 2326 case BO_Add: 2327 case BO_AddAssign: 2328 OpID = 1; 2329 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2330 llvm::Intrinsic::uadd_with_overflow; 2331 break; 2332 case BO_Sub: 2333 case BO_SubAssign: 2334 OpID = 2; 2335 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2336 llvm::Intrinsic::usub_with_overflow; 2337 break; 2338 case BO_Mul: 2339 case BO_MulAssign: 2340 OpID = 3; 2341 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2342 llvm::Intrinsic::umul_with_overflow; 2343 break; 2344 default: 2345 llvm_unreachable("Unsupported operation for overflow detection"); 2346 } 2347 OpID <<= 1; 2348 if (isSigned) 2349 OpID |= 1; 2350 2351 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2352 2353 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2354 2355 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 2356 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2357 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2358 2359 // Handle overflow with llvm.trap if no custom handler has been specified. 2360 const std::string *handlerName = 2361 &CGF.getLangOpts().OverflowHandler; 2362 if (handlerName->empty()) { 2363 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2364 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2365 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 2366 CodeGenFunction::SanitizerScope SanScope(&CGF); 2367 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 2368 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 2369 : SanitizerKind::UnsignedIntegerOverflow; 2370 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 2371 } else 2372 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2373 return result; 2374 } 2375 2376 // Branch in case of overflow. 2377 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2378 llvm::Function::iterator insertPt = initialBB->getIterator(); 2379 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn, 2380 &*std::next(insertPt)); 2381 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2382 2383 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2384 2385 // If an overflow handler is set, then we want to call it and then use its 2386 // result, if it returns. 2387 Builder.SetInsertPoint(overflowBB); 2388 2389 // Get the overflow handler. 2390 llvm::Type *Int8Ty = CGF.Int8Ty; 2391 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2392 llvm::FunctionType *handlerTy = 2393 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2394 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2395 2396 // Sign extend the args to 64-bit, so that we can use the same handler for 2397 // all types of overflow. 2398 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2399 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2400 2401 // Call the handler with the two arguments, the operation, and the size of 2402 // the result. 2403 llvm::Value *handlerArgs[] = { 2404 lhs, 2405 rhs, 2406 Builder.getInt8(OpID), 2407 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2408 }; 2409 llvm::Value *handlerResult = 2410 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2411 2412 // Truncate the result back to the desired size. 2413 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2414 Builder.CreateBr(continueBB); 2415 2416 Builder.SetInsertPoint(continueBB); 2417 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2418 phi->addIncoming(result, initialBB); 2419 phi->addIncoming(handlerResult, overflowBB); 2420 2421 return phi; 2422 } 2423 2424 /// Emit pointer + index arithmetic. 2425 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2426 const BinOpInfo &op, 2427 bool isSubtraction) { 2428 // Must have binary (not unary) expr here. Unary pointer 2429 // increment/decrement doesn't use this path. 2430 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2431 2432 Value *pointer = op.LHS; 2433 Expr *pointerOperand = expr->getLHS(); 2434 Value *index = op.RHS; 2435 Expr *indexOperand = expr->getRHS(); 2436 2437 // In a subtraction, the LHS is always the pointer. 2438 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2439 std::swap(pointer, index); 2440 std::swap(pointerOperand, indexOperand); 2441 } 2442 2443 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2444 if (width != CGF.PointerWidthInBits) { 2445 // Zero-extend or sign-extend the pointer value according to 2446 // whether the index is signed or not. 2447 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2448 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned, 2449 "idx.ext"); 2450 } 2451 2452 // If this is subtraction, negate the index. 2453 if (isSubtraction) 2454 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2455 2456 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 2457 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2458 /*Accessed*/ false); 2459 2460 const PointerType *pointerType 2461 = pointerOperand->getType()->getAs<PointerType>(); 2462 if (!pointerType) { 2463 QualType objectType = pointerOperand->getType() 2464 ->castAs<ObjCObjectPointerType>() 2465 ->getPointeeType(); 2466 llvm::Value *objectSize 2467 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2468 2469 index = CGF.Builder.CreateMul(index, objectSize); 2470 2471 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2472 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2473 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2474 } 2475 2476 QualType elementType = pointerType->getPointeeType(); 2477 if (const VariableArrayType *vla 2478 = CGF.getContext().getAsVariableArrayType(elementType)) { 2479 // The element count here is the total number of non-VLA elements. 2480 llvm::Value *numElements = CGF.getVLASize(vla).first; 2481 2482 // Effectively, the multiply by the VLA size is part of the GEP. 2483 // GEP indexes are signed, and scaling an index isn't permitted to 2484 // signed-overflow, so we use the same semantics for our explicit 2485 // multiply. We suppress this if overflow is not undefined behavior. 2486 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2487 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2488 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2489 } else { 2490 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2491 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2492 } 2493 return pointer; 2494 } 2495 2496 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2497 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2498 // future proof. 2499 if (elementType->isVoidType() || elementType->isFunctionType()) { 2500 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2501 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2502 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2503 } 2504 2505 if (CGF.getLangOpts().isSignedOverflowDefined()) 2506 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2507 2508 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2509 } 2510 2511 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2512 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2513 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2514 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2515 // efficient operations. 2516 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2517 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2518 bool negMul, bool negAdd) { 2519 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2520 2521 Value *MulOp0 = MulOp->getOperand(0); 2522 Value *MulOp1 = MulOp->getOperand(1); 2523 if (negMul) { 2524 MulOp0 = 2525 Builder.CreateFSub( 2526 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2527 "neg"); 2528 } else if (negAdd) { 2529 Addend = 2530 Builder.CreateFSub( 2531 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2532 "neg"); 2533 } 2534 2535 Value *FMulAdd = Builder.CreateCall( 2536 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2537 {MulOp0, MulOp1, Addend}); 2538 MulOp->eraseFromParent(); 2539 2540 return FMulAdd; 2541 } 2542 2543 // Check whether it would be legal to emit an fmuladd intrinsic call to 2544 // represent op and if so, build the fmuladd. 2545 // 2546 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2547 // Does NOT check the type of the operation - it's assumed that this function 2548 // will be called from contexts where it's known that the type is contractable. 2549 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2550 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2551 bool isSub=false) { 2552 2553 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2554 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2555 "Only fadd/fsub can be the root of an fmuladd."); 2556 2557 // Check whether this op is marked as fusable. 2558 if (!op.FPContractable) 2559 return nullptr; 2560 2561 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is 2562 // either disabled, or handled entirely by the LLVM backend). 2563 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On) 2564 return nullptr; 2565 2566 // We have a potentially fusable op. Look for a mul on one of the operands. 2567 // Also, make sure that the mul result isn't used directly. In that case, 2568 // there's no point creating a muladd operation. 2569 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2570 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 2571 LHSBinOp->use_empty()) 2572 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2573 } 2574 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2575 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 2576 RHSBinOp->use_empty()) 2577 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2578 } 2579 2580 return nullptr; 2581 } 2582 2583 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2584 if (op.LHS->getType()->isPointerTy() || 2585 op.RHS->getType()->isPointerTy()) 2586 return emitPointerArithmetic(CGF, op, /*subtraction*/ false); 2587 2588 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2589 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2590 case LangOptions::SOB_Defined: 2591 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2592 case LangOptions::SOB_Undefined: 2593 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2594 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2595 // Fall through. 2596 case LangOptions::SOB_Trapping: 2597 return EmitOverflowCheckedBinOp(op); 2598 } 2599 } 2600 2601 if (op.Ty->isUnsignedIntegerType() && 2602 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2603 return EmitOverflowCheckedBinOp(op); 2604 2605 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2606 // Try to form an fmuladd. 2607 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2608 return FMulAdd; 2609 2610 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2611 } 2612 2613 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2614 } 2615 2616 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2617 // The LHS is always a pointer if either side is. 2618 if (!op.LHS->getType()->isPointerTy()) { 2619 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2620 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2621 case LangOptions::SOB_Defined: 2622 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2623 case LangOptions::SOB_Undefined: 2624 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2625 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2626 // Fall through. 2627 case LangOptions::SOB_Trapping: 2628 return EmitOverflowCheckedBinOp(op); 2629 } 2630 } 2631 2632 if (op.Ty->isUnsignedIntegerType() && 2633 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2634 return EmitOverflowCheckedBinOp(op); 2635 2636 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2637 // Try to form an fmuladd. 2638 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2639 return FMulAdd; 2640 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2641 } 2642 2643 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2644 } 2645 2646 // If the RHS is not a pointer, then we have normal pointer 2647 // arithmetic. 2648 if (!op.RHS->getType()->isPointerTy()) 2649 return emitPointerArithmetic(CGF, op, /*subtraction*/ true); 2650 2651 // Otherwise, this is a pointer subtraction. 2652 2653 // Do the raw subtraction part. 2654 llvm::Value *LHS 2655 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2656 llvm::Value *RHS 2657 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2658 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2659 2660 // Okay, figure out the element size. 2661 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2662 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2663 2664 llvm::Value *divisor = nullptr; 2665 2666 // For a variable-length array, this is going to be non-constant. 2667 if (const VariableArrayType *vla 2668 = CGF.getContext().getAsVariableArrayType(elementType)) { 2669 llvm::Value *numElements; 2670 std::tie(numElements, elementType) = CGF.getVLASize(vla); 2671 2672 divisor = numElements; 2673 2674 // Scale the number of non-VLA elements by the non-VLA element size. 2675 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2676 if (!eltSize.isOne()) 2677 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2678 2679 // For everything elese, we can just compute it, safe in the 2680 // assumption that Sema won't let anything through that we can't 2681 // safely compute the size of. 2682 } else { 2683 CharUnits elementSize; 2684 // Handle GCC extension for pointer arithmetic on void* and 2685 // function pointer types. 2686 if (elementType->isVoidType() || elementType->isFunctionType()) 2687 elementSize = CharUnits::One(); 2688 else 2689 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2690 2691 // Don't even emit the divide for element size of 1. 2692 if (elementSize.isOne()) 2693 return diffInChars; 2694 2695 divisor = CGF.CGM.getSize(elementSize); 2696 } 2697 2698 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2699 // pointer difference in C is only defined in the case where both operands 2700 // are pointing to elements of an array. 2701 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2702 } 2703 2704 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2705 llvm::IntegerType *Ty; 2706 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 2707 Ty = cast<llvm::IntegerType>(VT->getElementType()); 2708 else 2709 Ty = cast<llvm::IntegerType>(LHS->getType()); 2710 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 2711 } 2712 2713 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2714 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2715 // RHS to the same size as the LHS. 2716 Value *RHS = Ops.RHS; 2717 if (Ops.LHS->getType() != RHS->getType()) 2718 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2719 2720 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 2721 Ops.Ty->hasSignedIntegerRepresentation(); 2722 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 2723 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2724 if (CGF.getLangOpts().OpenCL) 2725 RHS = 2726 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 2727 else if ((SanitizeBase || SanitizeExponent) && 2728 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2729 CodeGenFunction::SanitizerScope SanScope(&CGF); 2730 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 2731 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS); 2732 llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne); 2733 2734 if (SanitizeExponent) { 2735 Checks.push_back( 2736 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 2737 } 2738 2739 if (SanitizeBase) { 2740 // Check whether we are shifting any non-zero bits off the top of the 2741 // integer. We only emit this check if exponent is valid - otherwise 2742 // instructions below will have undefined behavior themselves. 2743 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 2744 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2745 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 2746 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 2747 CGF.EmitBlock(CheckShiftBase); 2748 llvm::Value *BitsShiftedOff = 2749 Builder.CreateLShr(Ops.LHS, 2750 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros", 2751 /*NUW*/true, /*NSW*/true), 2752 "shl.check"); 2753 if (CGF.getLangOpts().CPlusPlus) { 2754 // In C99, we are not permitted to shift a 1 bit into the sign bit. 2755 // Under C++11's rules, shifting a 1 bit into the sign bit is 2756 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 2757 // define signed left shifts, so we use the C99 and C++11 rules there). 2758 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 2759 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 2760 } 2761 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 2762 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 2763 CGF.EmitBlock(Cont); 2764 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 2765 BaseCheck->addIncoming(Builder.getTrue(), Orig); 2766 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 2767 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 2768 } 2769 2770 assert(!Checks.empty()); 2771 EmitBinOpCheck(Checks, Ops); 2772 } 2773 2774 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2775 } 2776 2777 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2778 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2779 // RHS to the same size as the LHS. 2780 Value *RHS = Ops.RHS; 2781 if (Ops.LHS->getType() != RHS->getType()) 2782 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2783 2784 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2785 if (CGF.getLangOpts().OpenCL) 2786 RHS = 2787 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 2788 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 2789 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2790 CodeGenFunction::SanitizerScope SanScope(&CGF); 2791 llvm::Value *Valid = 2792 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 2793 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 2794 } 2795 2796 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2797 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 2798 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 2799 } 2800 2801 enum IntrinsicType { VCMPEQ, VCMPGT }; 2802 // return corresponding comparison intrinsic for given vector type 2803 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 2804 BuiltinType::Kind ElemKind) { 2805 switch (ElemKind) { 2806 default: llvm_unreachable("unexpected element type"); 2807 case BuiltinType::Char_U: 2808 case BuiltinType::UChar: 2809 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2810 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 2811 case BuiltinType::Char_S: 2812 case BuiltinType::SChar: 2813 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2814 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 2815 case BuiltinType::UShort: 2816 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2817 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 2818 case BuiltinType::Short: 2819 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2820 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 2821 case BuiltinType::UInt: 2822 case BuiltinType::ULong: 2823 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2824 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 2825 case BuiltinType::Int: 2826 case BuiltinType::Long: 2827 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2828 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 2829 case BuiltinType::Float: 2830 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 2831 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 2832 } 2833 } 2834 2835 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 2836 llvm::CmpInst::Predicate UICmpOpc, 2837 llvm::CmpInst::Predicate SICmpOpc, 2838 llvm::CmpInst::Predicate FCmpOpc) { 2839 TestAndClearIgnoreResultAssign(); 2840 Value *Result; 2841 QualType LHSTy = E->getLHS()->getType(); 2842 QualType RHSTy = E->getRHS()->getType(); 2843 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 2844 assert(E->getOpcode() == BO_EQ || 2845 E->getOpcode() == BO_NE); 2846 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 2847 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 2848 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 2849 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 2850 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 2851 Value *LHS = Visit(E->getLHS()); 2852 Value *RHS = Visit(E->getRHS()); 2853 2854 // If AltiVec, the comparison results in a numeric type, so we use 2855 // intrinsics comparing vectors and giving 0 or 1 as a result 2856 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 2857 // constants for mapping CR6 register bits to predicate result 2858 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 2859 2860 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 2861 2862 // in several cases vector arguments order will be reversed 2863 Value *FirstVecArg = LHS, 2864 *SecondVecArg = RHS; 2865 2866 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 2867 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 2868 BuiltinType::Kind ElementKind = BTy->getKind(); 2869 2870 switch(E->getOpcode()) { 2871 default: llvm_unreachable("is not a comparison operation"); 2872 case BO_EQ: 2873 CR6 = CR6_LT; 2874 ID = GetIntrinsic(VCMPEQ, ElementKind); 2875 break; 2876 case BO_NE: 2877 CR6 = CR6_EQ; 2878 ID = GetIntrinsic(VCMPEQ, ElementKind); 2879 break; 2880 case BO_LT: 2881 CR6 = CR6_LT; 2882 ID = GetIntrinsic(VCMPGT, ElementKind); 2883 std::swap(FirstVecArg, SecondVecArg); 2884 break; 2885 case BO_GT: 2886 CR6 = CR6_LT; 2887 ID = GetIntrinsic(VCMPGT, ElementKind); 2888 break; 2889 case BO_LE: 2890 if (ElementKind == BuiltinType::Float) { 2891 CR6 = CR6_LT; 2892 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2893 std::swap(FirstVecArg, SecondVecArg); 2894 } 2895 else { 2896 CR6 = CR6_EQ; 2897 ID = GetIntrinsic(VCMPGT, ElementKind); 2898 } 2899 break; 2900 case BO_GE: 2901 if (ElementKind == BuiltinType::Float) { 2902 CR6 = CR6_LT; 2903 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2904 } 2905 else { 2906 CR6 = CR6_EQ; 2907 ID = GetIntrinsic(VCMPGT, ElementKind); 2908 std::swap(FirstVecArg, SecondVecArg); 2909 } 2910 break; 2911 } 2912 2913 Value *CR6Param = Builder.getInt32(CR6); 2914 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 2915 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 2916 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 2917 E->getExprLoc()); 2918 } 2919 2920 if (LHS->getType()->isFPOrFPVectorTy()) { 2921 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 2922 } else if (LHSTy->hasSignedIntegerRepresentation()) { 2923 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 2924 } else { 2925 // Unsigned integers and pointers. 2926 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 2927 } 2928 2929 // If this is a vector comparison, sign extend the result to the appropriate 2930 // vector integer type and return it (don't convert to bool). 2931 if (LHSTy->isVectorType()) 2932 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2933 2934 } else { 2935 // Complex Comparison: can only be an equality comparison. 2936 CodeGenFunction::ComplexPairTy LHS, RHS; 2937 QualType CETy; 2938 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 2939 LHS = CGF.EmitComplexExpr(E->getLHS()); 2940 CETy = CTy->getElementType(); 2941 } else { 2942 LHS.first = Visit(E->getLHS()); 2943 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 2944 CETy = LHSTy; 2945 } 2946 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 2947 RHS = CGF.EmitComplexExpr(E->getRHS()); 2948 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 2949 CTy->getElementType()) && 2950 "The element types must always match."); 2951 (void)CTy; 2952 } else { 2953 RHS.first = Visit(E->getRHS()); 2954 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 2955 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 2956 "The element types must always match."); 2957 } 2958 2959 Value *ResultR, *ResultI; 2960 if (CETy->isRealFloatingType()) { 2961 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 2962 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 2963 } else { 2964 // Complex comparisons can only be equality comparisons. As such, signed 2965 // and unsigned opcodes are the same. 2966 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 2967 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 2968 } 2969 2970 if (E->getOpcode() == BO_EQ) { 2971 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 2972 } else { 2973 assert(E->getOpcode() == BO_NE && 2974 "Complex comparison other than == or != ?"); 2975 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 2976 } 2977 } 2978 2979 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 2980 E->getExprLoc()); 2981 } 2982 2983 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 2984 bool Ignore = TestAndClearIgnoreResultAssign(); 2985 2986 Value *RHS; 2987 LValue LHS; 2988 2989 switch (E->getLHS()->getType().getObjCLifetime()) { 2990 case Qualifiers::OCL_Strong: 2991 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 2992 break; 2993 2994 case Qualifiers::OCL_Autoreleasing: 2995 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 2996 break; 2997 2998 case Qualifiers::OCL_ExplicitNone: 2999 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 3000 break; 3001 3002 case Qualifiers::OCL_Weak: 3003 RHS = Visit(E->getRHS()); 3004 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3005 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3006 break; 3007 3008 case Qualifiers::OCL_None: 3009 // __block variables need to have the rhs evaluated first, plus 3010 // this should improve codegen just a little. 3011 RHS = Visit(E->getRHS()); 3012 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3013 3014 // Store the value into the LHS. Bit-fields are handled specially 3015 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3016 // 'An assignment expression has the value of the left operand after 3017 // the assignment...'. 3018 if (LHS.isBitField()) 3019 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3020 else 3021 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3022 } 3023 3024 // If the result is clearly ignored, return now. 3025 if (Ignore) 3026 return nullptr; 3027 3028 // The result of an assignment in C is the assigned r-value. 3029 if (!CGF.getLangOpts().CPlusPlus) 3030 return RHS; 3031 3032 // If the lvalue is non-volatile, return the computed value of the assignment. 3033 if (!LHS.isVolatileQualified()) 3034 return RHS; 3035 3036 // Otherwise, reload the value. 3037 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3038 } 3039 3040 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3041 // Perform vector logical and on comparisons with zero vectors. 3042 if (E->getType()->isVectorType()) { 3043 CGF.incrementProfileCounter(E); 3044 3045 Value *LHS = Visit(E->getLHS()); 3046 Value *RHS = Visit(E->getRHS()); 3047 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3048 if (LHS->getType()->isFPOrFPVectorTy()) { 3049 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3050 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3051 } else { 3052 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3053 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3054 } 3055 Value *And = Builder.CreateAnd(LHS, RHS); 3056 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3057 } 3058 3059 llvm::Type *ResTy = ConvertType(E->getType()); 3060 3061 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3062 // If we have 1 && X, just emit X without inserting the control flow. 3063 bool LHSCondVal; 3064 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3065 if (LHSCondVal) { // If we have 1 && X, just emit X. 3066 CGF.incrementProfileCounter(E); 3067 3068 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3069 // ZExt result to int or bool. 3070 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3071 } 3072 3073 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3074 if (!CGF.ContainsLabel(E->getRHS())) 3075 return llvm::Constant::getNullValue(ResTy); 3076 } 3077 3078 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3079 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3080 3081 CodeGenFunction::ConditionalEvaluation eval(CGF); 3082 3083 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3084 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 3085 CGF.getProfileCount(E->getRHS())); 3086 3087 // Any edges into the ContBlock are now from an (indeterminate number of) 3088 // edges from this first condition. All of these values will be false. Start 3089 // setting up the PHI node in the Cont Block for this. 3090 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3091 "", ContBlock); 3092 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3093 PI != PE; ++PI) 3094 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3095 3096 eval.begin(CGF); 3097 CGF.EmitBlock(RHSBlock); 3098 CGF.incrementProfileCounter(E); 3099 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3100 eval.end(CGF); 3101 3102 // Reaquire the RHS block, as there may be subblocks inserted. 3103 RHSBlock = Builder.GetInsertBlock(); 3104 3105 // Emit an unconditional branch from this block to ContBlock. 3106 { 3107 // There is no need to emit line number for unconditional branch. 3108 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3109 CGF.EmitBlock(ContBlock); 3110 } 3111 // Insert an entry into the phi node for the edge with the value of RHSCond. 3112 PN->addIncoming(RHSCond, RHSBlock); 3113 3114 // ZExt result to int. 3115 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3116 } 3117 3118 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3119 // Perform vector logical or on comparisons with zero vectors. 3120 if (E->getType()->isVectorType()) { 3121 CGF.incrementProfileCounter(E); 3122 3123 Value *LHS = Visit(E->getLHS()); 3124 Value *RHS = Visit(E->getRHS()); 3125 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3126 if (LHS->getType()->isFPOrFPVectorTy()) { 3127 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3128 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3129 } else { 3130 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3131 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3132 } 3133 Value *Or = Builder.CreateOr(LHS, RHS); 3134 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3135 } 3136 3137 llvm::Type *ResTy = ConvertType(E->getType()); 3138 3139 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3140 // If we have 0 || X, just emit X without inserting the control flow. 3141 bool LHSCondVal; 3142 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3143 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3144 CGF.incrementProfileCounter(E); 3145 3146 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3147 // ZExt result to int or bool. 3148 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3149 } 3150 3151 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3152 if (!CGF.ContainsLabel(E->getRHS())) 3153 return llvm::ConstantInt::get(ResTy, 1); 3154 } 3155 3156 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3157 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3158 3159 CodeGenFunction::ConditionalEvaluation eval(CGF); 3160 3161 // Branch on the LHS first. If it is true, go to the success (cont) block. 3162 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3163 CGF.getCurrentProfileCount() - 3164 CGF.getProfileCount(E->getRHS())); 3165 3166 // Any edges into the ContBlock are now from an (indeterminate number of) 3167 // edges from this first condition. All of these values will be true. Start 3168 // setting up the PHI node in the Cont Block for this. 3169 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3170 "", ContBlock); 3171 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3172 PI != PE; ++PI) 3173 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3174 3175 eval.begin(CGF); 3176 3177 // Emit the RHS condition as a bool value. 3178 CGF.EmitBlock(RHSBlock); 3179 CGF.incrementProfileCounter(E); 3180 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3181 3182 eval.end(CGF); 3183 3184 // Reaquire the RHS block, as there may be subblocks inserted. 3185 RHSBlock = Builder.GetInsertBlock(); 3186 3187 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3188 // into the phi node for the edge with the value of RHSCond. 3189 CGF.EmitBlock(ContBlock); 3190 PN->addIncoming(RHSCond, RHSBlock); 3191 3192 // ZExt result to int. 3193 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3194 } 3195 3196 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3197 CGF.EmitIgnoredExpr(E->getLHS()); 3198 CGF.EnsureInsertPoint(); 3199 return Visit(E->getRHS()); 3200 } 3201 3202 //===----------------------------------------------------------------------===// 3203 // Other Operators 3204 //===----------------------------------------------------------------------===// 3205 3206 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3207 /// expression is cheap enough and side-effect-free enough to evaluate 3208 /// unconditionally instead of conditionally. This is used to convert control 3209 /// flow into selects in some cases. 3210 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3211 CodeGenFunction &CGF) { 3212 // Anything that is an integer or floating point constant is fine. 3213 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3214 3215 // Even non-volatile automatic variables can't be evaluated unconditionally. 3216 // Referencing a thread_local may cause non-trivial initialization work to 3217 // occur. If we're inside a lambda and one of the variables is from the scope 3218 // outside the lambda, that function may have returned already. Reading its 3219 // locals is a bad idea. Also, these reads may introduce races there didn't 3220 // exist in the source-level program. 3221 } 3222 3223 3224 Value *ScalarExprEmitter:: 3225 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3226 TestAndClearIgnoreResultAssign(); 3227 3228 // Bind the common expression if necessary. 3229 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3230 3231 Expr *condExpr = E->getCond(); 3232 Expr *lhsExpr = E->getTrueExpr(); 3233 Expr *rhsExpr = E->getFalseExpr(); 3234 3235 // If the condition constant folds and can be elided, try to avoid emitting 3236 // the condition and the dead arm. 3237 bool CondExprBool; 3238 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3239 Expr *live = lhsExpr, *dead = rhsExpr; 3240 if (!CondExprBool) std::swap(live, dead); 3241 3242 // If the dead side doesn't have labels we need, just emit the Live part. 3243 if (!CGF.ContainsLabel(dead)) { 3244 if (CondExprBool) 3245 CGF.incrementProfileCounter(E); 3246 Value *Result = Visit(live); 3247 3248 // If the live part is a throw expression, it acts like it has a void 3249 // type, so evaluating it returns a null Value*. However, a conditional 3250 // with non-void type must return a non-null Value*. 3251 if (!Result && !E->getType()->isVoidType()) 3252 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3253 3254 return Result; 3255 } 3256 } 3257 3258 // OpenCL: If the condition is a vector, we can treat this condition like 3259 // the select function. 3260 if (CGF.getLangOpts().OpenCL 3261 && condExpr->getType()->isVectorType()) { 3262 CGF.incrementProfileCounter(E); 3263 3264 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3265 llvm::Value *LHS = Visit(lhsExpr); 3266 llvm::Value *RHS = Visit(rhsExpr); 3267 3268 llvm::Type *condType = ConvertType(condExpr->getType()); 3269 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3270 3271 unsigned numElem = vecTy->getNumElements(); 3272 llvm::Type *elemType = vecTy->getElementType(); 3273 3274 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3275 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3276 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3277 llvm::VectorType::get(elemType, 3278 numElem), 3279 "sext"); 3280 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3281 3282 // Cast float to int to perform ANDs if necessary. 3283 llvm::Value *RHSTmp = RHS; 3284 llvm::Value *LHSTmp = LHS; 3285 bool wasCast = false; 3286 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3287 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3288 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3289 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3290 wasCast = true; 3291 } 3292 3293 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3294 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3295 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3296 if (wasCast) 3297 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3298 3299 return tmp5; 3300 } 3301 3302 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3303 // select instead of as control flow. We can only do this if it is cheap and 3304 // safe to evaluate the LHS and RHS unconditionally. 3305 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3306 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3307 CGF.incrementProfileCounter(E); 3308 3309 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3310 llvm::Value *LHS = Visit(lhsExpr); 3311 llvm::Value *RHS = Visit(rhsExpr); 3312 if (!LHS) { 3313 // If the conditional has void type, make sure we return a null Value*. 3314 assert(!RHS && "LHS and RHS types must match"); 3315 return nullptr; 3316 } 3317 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3318 } 3319 3320 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3321 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3322 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3323 3324 CodeGenFunction::ConditionalEvaluation eval(CGF); 3325 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 3326 CGF.getProfileCount(lhsExpr)); 3327 3328 CGF.EmitBlock(LHSBlock); 3329 CGF.incrementProfileCounter(E); 3330 eval.begin(CGF); 3331 Value *LHS = Visit(lhsExpr); 3332 eval.end(CGF); 3333 3334 LHSBlock = Builder.GetInsertBlock(); 3335 Builder.CreateBr(ContBlock); 3336 3337 CGF.EmitBlock(RHSBlock); 3338 eval.begin(CGF); 3339 Value *RHS = Visit(rhsExpr); 3340 eval.end(CGF); 3341 3342 RHSBlock = Builder.GetInsertBlock(); 3343 CGF.EmitBlock(ContBlock); 3344 3345 // If the LHS or RHS is a throw expression, it will be legitimately null. 3346 if (!LHS) 3347 return RHS; 3348 if (!RHS) 3349 return LHS; 3350 3351 // Create a PHI node for the real part. 3352 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3353 PN->addIncoming(LHS, LHSBlock); 3354 PN->addIncoming(RHS, RHSBlock); 3355 return PN; 3356 } 3357 3358 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3359 return Visit(E->getChosenSubExpr()); 3360 } 3361 3362 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3363 QualType Ty = VE->getType(); 3364 3365 if (Ty->isVariablyModifiedType()) 3366 CGF.EmitVariablyModifiedType(Ty); 3367 3368 Address ArgValue = Address::invalid(); 3369 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 3370 3371 llvm::Type *ArgTy = ConvertType(VE->getType()); 3372 3373 // If EmitVAArg fails, emit an error. 3374 if (!ArgPtr.isValid()) { 3375 CGF.ErrorUnsupported(VE, "va_arg expression"); 3376 return llvm::UndefValue::get(ArgTy); 3377 } 3378 3379 // FIXME Volatility. 3380 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 3381 3382 // If EmitVAArg promoted the type, we must truncate it. 3383 if (ArgTy != Val->getType()) { 3384 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 3385 Val = Builder.CreateIntToPtr(Val, ArgTy); 3386 else 3387 Val = Builder.CreateTrunc(Val, ArgTy); 3388 } 3389 3390 return Val; 3391 } 3392 3393 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3394 return CGF.EmitBlockLiteral(block); 3395 } 3396 3397 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3398 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3399 llvm::Type *DstTy = ConvertType(E->getType()); 3400 3401 // Going from vec4->vec3 or vec3->vec4 is a special case and requires 3402 // a shuffle vector instead of a bitcast. 3403 llvm::Type *SrcTy = Src->getType(); 3404 if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) { 3405 unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements(); 3406 unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements(); 3407 if ((numElementsDst == 3 && numElementsSrc == 4) 3408 || (numElementsDst == 4 && numElementsSrc == 3)) { 3409 3410 3411 // In the case of going from int4->float3, a bitcast is needed before 3412 // doing a shuffle. 3413 llvm::Type *srcElemTy = 3414 cast<llvm::VectorType>(SrcTy)->getElementType(); 3415 llvm::Type *dstElemTy = 3416 cast<llvm::VectorType>(DstTy)->getElementType(); 3417 3418 if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy()) 3419 || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) { 3420 // Create a float type of the same size as the source or destination. 3421 llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy, 3422 numElementsSrc); 3423 3424 Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast"); 3425 } 3426 3427 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3428 3429 SmallVector<llvm::Constant*, 3> Args; 3430 Args.push_back(Builder.getInt32(0)); 3431 Args.push_back(Builder.getInt32(1)); 3432 Args.push_back(Builder.getInt32(2)); 3433 3434 if (numElementsDst == 4) 3435 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3436 3437 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3438 3439 return Builder.CreateShuffleVector(Src, UnV, Mask, "astype"); 3440 } 3441 } 3442 3443 return Builder.CreateBitCast(Src, DstTy, "astype"); 3444 } 3445 3446 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3447 return CGF.EmitAtomicExpr(E).getScalarVal(); 3448 } 3449 3450 //===----------------------------------------------------------------------===// 3451 // Entry Point into this File 3452 //===----------------------------------------------------------------------===// 3453 3454 /// Emit the computation of the specified expression of scalar type, ignoring 3455 /// the result. 3456 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3457 assert(E && hasScalarEvaluationKind(E->getType()) && 3458 "Invalid scalar expression to emit"); 3459 3460 return ScalarExprEmitter(*this, IgnoreResultAssign) 3461 .Visit(const_cast<Expr *>(E)); 3462 } 3463 3464 /// Emit a conversion from the specified type to the specified destination type, 3465 /// both of which are LLVM scalar types. 3466 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3467 QualType DstTy, 3468 SourceLocation Loc) { 3469 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3470 "Invalid scalar expression to emit"); 3471 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 3472 } 3473 3474 /// Emit a conversion from the specified complex type to the specified 3475 /// destination type, where the destination type is an LLVM scalar type. 3476 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3477 QualType SrcTy, 3478 QualType DstTy, 3479 SourceLocation Loc) { 3480 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3481 "Invalid complex -> scalar conversion"); 3482 return ScalarExprEmitter(*this) 3483 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 3484 } 3485 3486 3487 llvm::Value *CodeGenFunction:: 3488 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3489 bool isInc, bool isPre) { 3490 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3491 } 3492 3493 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3494 // object->isa or (*object).isa 3495 // Generate code as for: *(Class*)object 3496 3497 Expr *BaseExpr = E->getBase(); 3498 Address Addr = Address::invalid(); 3499 if (BaseExpr->isRValue()) { 3500 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 3501 } else { 3502 Addr = EmitLValue(BaseExpr).getAddress(); 3503 } 3504 3505 // Cast the address to Class*. 3506 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 3507 return MakeAddrLValue(Addr, E->getType()); 3508 } 3509 3510 3511 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3512 const CompoundAssignOperator *E) { 3513 ScalarExprEmitter Scalar(*this); 3514 Value *Result = nullptr; 3515 switch (E->getOpcode()) { 3516 #define COMPOUND_OP(Op) \ 3517 case BO_##Op##Assign: \ 3518 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3519 Result) 3520 COMPOUND_OP(Mul); 3521 COMPOUND_OP(Div); 3522 COMPOUND_OP(Rem); 3523 COMPOUND_OP(Add); 3524 COMPOUND_OP(Sub); 3525 COMPOUND_OP(Shl); 3526 COMPOUND_OP(Shr); 3527 COMPOUND_OP(And); 3528 COMPOUND_OP(Xor); 3529 COMPOUND_OP(Or); 3530 #undef COMPOUND_OP 3531 3532 case BO_PtrMemD: 3533 case BO_PtrMemI: 3534 case BO_Mul: 3535 case BO_Div: 3536 case BO_Rem: 3537 case BO_Add: 3538 case BO_Sub: 3539 case BO_Shl: 3540 case BO_Shr: 3541 case BO_LT: 3542 case BO_GT: 3543 case BO_LE: 3544 case BO_GE: 3545 case BO_EQ: 3546 case BO_NE: 3547 case BO_And: 3548 case BO_Xor: 3549 case BO_Or: 3550 case BO_LAnd: 3551 case BO_LOr: 3552 case BO_Assign: 3553 case BO_Comma: 3554 llvm_unreachable("Not valid compound assignment operators"); 3555 } 3556 3557 llvm_unreachable("Unhandled compound assignment operator"); 3558 } 3559