1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Module.h"
33 #include <cstdarg>
34 
35 using namespace clang;
36 using namespace CodeGen;
37 using llvm::Value;
38 
39 //===----------------------------------------------------------------------===//
40 //                         Scalar Expression Emitter
41 //===----------------------------------------------------------------------===//
42 
43 namespace {
44 struct BinOpInfo {
45   Value *LHS;
46   Value *RHS;
47   QualType Ty;  // Computation Type.
48   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
49   bool FPContractable;
50   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
51 };
52 
53 static bool MustVisitNullValue(const Expr *E) {
54   // If a null pointer expression's type is the C++0x nullptr_t, then
55   // it's not necessarily a simple constant and it must be evaluated
56   // for its potential side effects.
57   return E->getType()->isNullPtrType();
58 }
59 
60 class ScalarExprEmitter
61   : public StmtVisitor<ScalarExprEmitter, Value*> {
62   CodeGenFunction &CGF;
63   CGBuilderTy &Builder;
64   bool IgnoreResultAssign;
65   llvm::LLVMContext &VMContext;
66 public:
67 
68   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
69     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
70       VMContext(cgf.getLLVMContext()) {
71   }
72 
73   //===--------------------------------------------------------------------===//
74   //                               Utilities
75   //===--------------------------------------------------------------------===//
76 
77   bool TestAndClearIgnoreResultAssign() {
78     bool I = IgnoreResultAssign;
79     IgnoreResultAssign = false;
80     return I;
81   }
82 
83   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
84   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
85   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
86     return CGF.EmitCheckedLValue(E, TCK);
87   }
88 
89   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
90                       const BinOpInfo &Info);
91 
92   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
93     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
94   }
95 
96   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
97     const AlignValueAttr *AVAttr = nullptr;
98     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
99       const ValueDecl *VD = DRE->getDecl();
100 
101       if (VD->getType()->isReferenceType()) {
102         if (const auto *TTy =
103             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
104           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
105       } else {
106         // Assumptions for function parameters are emitted at the start of the
107         // function, so there is no need to repeat that here.
108         if (isa<ParmVarDecl>(VD))
109           return;
110 
111         AVAttr = VD->getAttr<AlignValueAttr>();
112       }
113     }
114 
115     if (!AVAttr)
116       if (const auto *TTy =
117           dyn_cast<TypedefType>(E->getType()))
118         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
119 
120     if (!AVAttr)
121       return;
122 
123     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
124     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
125     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
126   }
127 
128   /// EmitLoadOfLValue - Given an expression with complex type that represents a
129   /// value l-value, this method emits the address of the l-value, then loads
130   /// and returns the result.
131   Value *EmitLoadOfLValue(const Expr *E) {
132     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
133                                 E->getExprLoc());
134 
135     EmitLValueAlignmentAssumption(E, V);
136     return V;
137   }
138 
139   /// EmitConversionToBool - Convert the specified expression value to a
140   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
141   Value *EmitConversionToBool(Value *Src, QualType DstTy);
142 
143   /// Emit a check that a conversion to or from a floating-point type does not
144   /// overflow.
145   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
146                                 Value *Src, QualType SrcType, QualType DstType,
147                                 llvm::Type *DstTy, SourceLocation Loc);
148 
149   /// Emit a conversion from the specified type to the specified destination
150   /// type, both of which are LLVM scalar types.
151   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
152                               SourceLocation Loc);
153 
154   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
155                               SourceLocation Loc, bool TreatBooleanAsSigned);
156 
157   /// Emit a conversion from the specified complex type to the specified
158   /// destination type, where the destination type is an LLVM scalar type.
159   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
160                                        QualType SrcTy, QualType DstTy,
161                                        SourceLocation Loc);
162 
163   /// EmitNullValue - Emit a value that corresponds to null for the given type.
164   Value *EmitNullValue(QualType Ty);
165 
166   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
167   Value *EmitFloatToBoolConversion(Value *V) {
168     // Compare against 0.0 for fp scalars.
169     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
170     return Builder.CreateFCmpUNE(V, Zero, "tobool");
171   }
172 
173   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
174   Value *EmitPointerToBoolConversion(Value *V) {
175     Value *Zero = llvm::ConstantPointerNull::get(
176                                       cast<llvm::PointerType>(V->getType()));
177     return Builder.CreateICmpNE(V, Zero, "tobool");
178   }
179 
180   Value *EmitIntToBoolConversion(Value *V) {
181     // Because of the type rules of C, we often end up computing a
182     // logical value, then zero extending it to int, then wanting it
183     // as a logical value again.  Optimize this common case.
184     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
185       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
186         Value *Result = ZI->getOperand(0);
187         // If there aren't any more uses, zap the instruction to save space.
188         // Note that there can be more uses, for example if this
189         // is the result of an assignment.
190         if (ZI->use_empty())
191           ZI->eraseFromParent();
192         return Result;
193       }
194     }
195 
196     return Builder.CreateIsNotNull(V, "tobool");
197   }
198 
199   //===--------------------------------------------------------------------===//
200   //                            Visitor Methods
201   //===--------------------------------------------------------------------===//
202 
203   Value *Visit(Expr *E) {
204     ApplyDebugLocation DL(CGF, E);
205     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
206   }
207 
208   Value *VisitStmt(Stmt *S) {
209     S->dump(CGF.getContext().getSourceManager());
210     llvm_unreachable("Stmt can't have complex result type!");
211   }
212   Value *VisitExpr(Expr *S);
213 
214   Value *VisitParenExpr(ParenExpr *PE) {
215     return Visit(PE->getSubExpr());
216   }
217   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
218     return Visit(E->getReplacement());
219   }
220   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
221     return Visit(GE->getResultExpr());
222   }
223 
224   // Leaves.
225   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
226     return Builder.getInt(E->getValue());
227   }
228   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
229     return llvm::ConstantFP::get(VMContext, E->getValue());
230   }
231   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
232     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
233   }
234   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
235     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
236   }
237   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
238     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
239   }
240   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
241     return EmitNullValue(E->getType());
242   }
243   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
244     return EmitNullValue(E->getType());
245   }
246   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
247   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
248   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
249     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
250     return Builder.CreateBitCast(V, ConvertType(E->getType()));
251   }
252 
253   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
254     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
255   }
256 
257   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
258     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
259   }
260 
261   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
262     if (E->isGLValue())
263       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
264 
265     // Otherwise, assume the mapping is the scalar directly.
266     return CGF.getOpaqueRValueMapping(E).getScalarVal();
267   }
268 
269   // l-values.
270   Value *VisitDeclRefExpr(DeclRefExpr *E) {
271     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
272       if (result.isReference())
273         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
274                                 E->getExprLoc());
275       return result.getValue();
276     }
277     return EmitLoadOfLValue(E);
278   }
279 
280   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
281     return CGF.EmitObjCSelectorExpr(E);
282   }
283   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
284     return CGF.EmitObjCProtocolExpr(E);
285   }
286   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
287     return EmitLoadOfLValue(E);
288   }
289   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
290     if (E->getMethodDecl() &&
291         E->getMethodDecl()->getReturnType()->isReferenceType())
292       return EmitLoadOfLValue(E);
293     return CGF.EmitObjCMessageExpr(E).getScalarVal();
294   }
295 
296   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
297     LValue LV = CGF.EmitObjCIsaExpr(E);
298     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
299     return V;
300   }
301 
302   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
303   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
304   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
305   Value *VisitMemberExpr(MemberExpr *E);
306   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
307   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
308     return EmitLoadOfLValue(E);
309   }
310 
311   Value *VisitInitListExpr(InitListExpr *E);
312 
313   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
314     return EmitNullValue(E->getType());
315   }
316   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
317     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
318     return VisitCastExpr(E);
319   }
320   Value *VisitCastExpr(CastExpr *E);
321 
322   Value *VisitCallExpr(const CallExpr *E) {
323     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
324       return EmitLoadOfLValue(E);
325 
326     Value *V = CGF.EmitCallExpr(E).getScalarVal();
327 
328     EmitLValueAlignmentAssumption(E, V);
329     return V;
330   }
331 
332   Value *VisitStmtExpr(const StmtExpr *E);
333 
334   // Unary Operators.
335   Value *VisitUnaryPostDec(const UnaryOperator *E) {
336     LValue LV = EmitLValue(E->getSubExpr());
337     return EmitScalarPrePostIncDec(E, LV, false, false);
338   }
339   Value *VisitUnaryPostInc(const UnaryOperator *E) {
340     LValue LV = EmitLValue(E->getSubExpr());
341     return EmitScalarPrePostIncDec(E, LV, true, false);
342   }
343   Value *VisitUnaryPreDec(const UnaryOperator *E) {
344     LValue LV = EmitLValue(E->getSubExpr());
345     return EmitScalarPrePostIncDec(E, LV, false, true);
346   }
347   Value *VisitUnaryPreInc(const UnaryOperator *E) {
348     LValue LV = EmitLValue(E->getSubExpr());
349     return EmitScalarPrePostIncDec(E, LV, true, true);
350   }
351 
352   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
353                                                   llvm::Value *InVal,
354                                                   bool IsInc);
355 
356   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
357                                        bool isInc, bool isPre);
358 
359 
360   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
361     if (isa<MemberPointerType>(E->getType())) // never sugared
362       return CGF.CGM.getMemberPointerConstant(E);
363 
364     return EmitLValue(E->getSubExpr()).getPointer();
365   }
366   Value *VisitUnaryDeref(const UnaryOperator *E) {
367     if (E->getType()->isVoidType())
368       return Visit(E->getSubExpr()); // the actual value should be unused
369     return EmitLoadOfLValue(E);
370   }
371   Value *VisitUnaryPlus(const UnaryOperator *E) {
372     // This differs from gcc, though, most likely due to a bug in gcc.
373     TestAndClearIgnoreResultAssign();
374     return Visit(E->getSubExpr());
375   }
376   Value *VisitUnaryMinus    (const UnaryOperator *E);
377   Value *VisitUnaryNot      (const UnaryOperator *E);
378   Value *VisitUnaryLNot     (const UnaryOperator *E);
379   Value *VisitUnaryReal     (const UnaryOperator *E);
380   Value *VisitUnaryImag     (const UnaryOperator *E);
381   Value *VisitUnaryExtension(const UnaryOperator *E) {
382     return Visit(E->getSubExpr());
383   }
384 
385   // C++
386   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
387     return EmitLoadOfLValue(E);
388   }
389 
390   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
391     return Visit(DAE->getExpr());
392   }
393   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
394     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
395     return Visit(DIE->getExpr());
396   }
397   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
398     return CGF.LoadCXXThis();
399   }
400 
401   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
402     CGF.enterFullExpression(E);
403     CodeGenFunction::RunCleanupsScope Scope(CGF);
404     return Visit(E->getSubExpr());
405   }
406   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
407     return CGF.EmitCXXNewExpr(E);
408   }
409   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
410     CGF.EmitCXXDeleteExpr(E);
411     return nullptr;
412   }
413 
414   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
415     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
416   }
417 
418   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
419     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
420   }
421 
422   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
423     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
424   }
425 
426   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
427     // C++ [expr.pseudo]p1:
428     //   The result shall only be used as the operand for the function call
429     //   operator (), and the result of such a call has type void. The only
430     //   effect is the evaluation of the postfix-expression before the dot or
431     //   arrow.
432     CGF.EmitScalarExpr(E->getBase());
433     return nullptr;
434   }
435 
436   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
437     return EmitNullValue(E->getType());
438   }
439 
440   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
441     CGF.EmitCXXThrowExpr(E);
442     return nullptr;
443   }
444 
445   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
446     return Builder.getInt1(E->getValue());
447   }
448 
449   // Binary Operators.
450   Value *EmitMul(const BinOpInfo &Ops) {
451     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
452       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
453       case LangOptions::SOB_Defined:
454         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
455       case LangOptions::SOB_Undefined:
456         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
457           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
458         // Fall through.
459       case LangOptions::SOB_Trapping:
460         return EmitOverflowCheckedBinOp(Ops);
461       }
462     }
463 
464     if (Ops.Ty->isUnsignedIntegerType() &&
465         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
466       return EmitOverflowCheckedBinOp(Ops);
467 
468     if (Ops.LHS->getType()->isFPOrFPVectorTy())
469       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
470     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
471   }
472   /// Create a binary op that checks for overflow.
473   /// Currently only supports +, - and *.
474   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
475 
476   // Check for undefined division and modulus behaviors.
477   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
478                                                   llvm::Value *Zero,bool isDiv);
479   // Common helper for getting how wide LHS of shift is.
480   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
481   Value *EmitDiv(const BinOpInfo &Ops);
482   Value *EmitRem(const BinOpInfo &Ops);
483   Value *EmitAdd(const BinOpInfo &Ops);
484   Value *EmitSub(const BinOpInfo &Ops);
485   Value *EmitShl(const BinOpInfo &Ops);
486   Value *EmitShr(const BinOpInfo &Ops);
487   Value *EmitAnd(const BinOpInfo &Ops) {
488     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
489   }
490   Value *EmitXor(const BinOpInfo &Ops) {
491     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
492   }
493   Value *EmitOr (const BinOpInfo &Ops) {
494     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
495   }
496 
497   BinOpInfo EmitBinOps(const BinaryOperator *E);
498   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
499                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
500                                   Value *&Result);
501 
502   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
503                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
504 
505   // Binary operators and binary compound assignment operators.
506 #define HANDLEBINOP(OP) \
507   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
508     return Emit ## OP(EmitBinOps(E));                                      \
509   }                                                                        \
510   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
511     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
512   }
513   HANDLEBINOP(Mul)
514   HANDLEBINOP(Div)
515   HANDLEBINOP(Rem)
516   HANDLEBINOP(Add)
517   HANDLEBINOP(Sub)
518   HANDLEBINOP(Shl)
519   HANDLEBINOP(Shr)
520   HANDLEBINOP(And)
521   HANDLEBINOP(Xor)
522   HANDLEBINOP(Or)
523 #undef HANDLEBINOP
524 
525   // Comparisons.
526   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
527                      llvm::CmpInst::Predicate SICmpOpc,
528                      llvm::CmpInst::Predicate FCmpOpc);
529 #define VISITCOMP(CODE, UI, SI, FP) \
530     Value *VisitBin##CODE(const BinaryOperator *E) { \
531       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
532                          llvm::FCmpInst::FP); }
533   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
534   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
535   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
536   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
537   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
538   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
539 #undef VISITCOMP
540 
541   Value *VisitBinAssign     (const BinaryOperator *E);
542 
543   Value *VisitBinLAnd       (const BinaryOperator *E);
544   Value *VisitBinLOr        (const BinaryOperator *E);
545   Value *VisitBinComma      (const BinaryOperator *E);
546 
547   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
548   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
549 
550   // Other Operators.
551   Value *VisitBlockExpr(const BlockExpr *BE);
552   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
553   Value *VisitChooseExpr(ChooseExpr *CE);
554   Value *VisitVAArgExpr(VAArgExpr *VE);
555   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
556     return CGF.EmitObjCStringLiteral(E);
557   }
558   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
559     return CGF.EmitObjCBoxedExpr(E);
560   }
561   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
562     return CGF.EmitObjCArrayLiteral(E);
563   }
564   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
565     return CGF.EmitObjCDictionaryLiteral(E);
566   }
567   Value *VisitAsTypeExpr(AsTypeExpr *CE);
568   Value *VisitAtomicExpr(AtomicExpr *AE);
569 };
570 }  // end anonymous namespace.
571 
572 //===----------------------------------------------------------------------===//
573 //                                Utilities
574 //===----------------------------------------------------------------------===//
575 
576 /// EmitConversionToBool - Convert the specified expression value to a
577 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
578 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
579   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
580 
581   if (SrcType->isRealFloatingType())
582     return EmitFloatToBoolConversion(Src);
583 
584   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
585     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
586 
587   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
588          "Unknown scalar type to convert");
589 
590   if (isa<llvm::IntegerType>(Src->getType()))
591     return EmitIntToBoolConversion(Src);
592 
593   assert(isa<llvm::PointerType>(Src->getType()));
594   return EmitPointerToBoolConversion(Src);
595 }
596 
597 void ScalarExprEmitter::EmitFloatConversionCheck(
598     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
599     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
600   CodeGenFunction::SanitizerScope SanScope(&CGF);
601   using llvm::APFloat;
602   using llvm::APSInt;
603 
604   llvm::Type *SrcTy = Src->getType();
605 
606   llvm::Value *Check = nullptr;
607   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
608     // Integer to floating-point. This can fail for unsigned short -> __half
609     // or unsigned __int128 -> float.
610     assert(DstType->isFloatingType());
611     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
612 
613     APFloat LargestFloat =
614       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
615     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
616 
617     bool IsExact;
618     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
619                                       &IsExact) != APFloat::opOK)
620       // The range of representable values of this floating point type includes
621       // all values of this integer type. Don't need an overflow check.
622       return;
623 
624     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
625     if (SrcIsUnsigned)
626       Check = Builder.CreateICmpULE(Src, Max);
627     else {
628       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
629       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
630       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
631       Check = Builder.CreateAnd(GE, LE);
632     }
633   } else {
634     const llvm::fltSemantics &SrcSema =
635       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
636     if (isa<llvm::IntegerType>(DstTy)) {
637       // Floating-point to integer. This has undefined behavior if the source is
638       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
639       // to an integer).
640       unsigned Width = CGF.getContext().getIntWidth(DstType);
641       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
642 
643       APSInt Min = APSInt::getMinValue(Width, Unsigned);
644       APFloat MinSrc(SrcSema, APFloat::uninitialized);
645       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
646           APFloat::opOverflow)
647         // Don't need an overflow check for lower bound. Just check for
648         // -Inf/NaN.
649         MinSrc = APFloat::getInf(SrcSema, true);
650       else
651         // Find the largest value which is too small to represent (before
652         // truncation toward zero).
653         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
654 
655       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
656       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
657       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
658           APFloat::opOverflow)
659         // Don't need an overflow check for upper bound. Just check for
660         // +Inf/NaN.
661         MaxSrc = APFloat::getInf(SrcSema, false);
662       else
663         // Find the smallest value which is too large to represent (before
664         // truncation toward zero).
665         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
666 
667       // If we're converting from __half, convert the range to float to match
668       // the type of src.
669       if (OrigSrcType->isHalfType()) {
670         const llvm::fltSemantics &Sema =
671           CGF.getContext().getFloatTypeSemantics(SrcType);
672         bool IsInexact;
673         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
674         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
675       }
676 
677       llvm::Value *GE =
678         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
679       llvm::Value *LE =
680         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
681       Check = Builder.CreateAnd(GE, LE);
682     } else {
683       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
684       //
685       // Floating-point to floating-point. This has undefined behavior if the
686       // source is not in the range of representable values of the destination
687       // type. The C and C++ standards are spectacularly unclear here. We
688       // diagnose finite out-of-range conversions, but allow infinities and NaNs
689       // to convert to the corresponding value in the smaller type.
690       //
691       // C11 Annex F gives all such conversions defined behavior for IEC 60559
692       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
693       // does not.
694 
695       // Converting from a lower rank to a higher rank can never have
696       // undefined behavior, since higher-rank types must have a superset
697       // of values of lower-rank types.
698       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
699         return;
700 
701       assert(!OrigSrcType->isHalfType() &&
702              "should not check conversion from __half, it has the lowest rank");
703 
704       const llvm::fltSemantics &DstSema =
705         CGF.getContext().getFloatTypeSemantics(DstType);
706       APFloat MinBad = APFloat::getLargest(DstSema, false);
707       APFloat MaxBad = APFloat::getInf(DstSema, false);
708 
709       bool IsInexact;
710       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
711       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
712 
713       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
714         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
715       llvm::Value *GE =
716         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
717       llvm::Value *LE =
718         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
719       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
720     }
721   }
722 
723   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
724                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
725                                   CGF.EmitCheckTypeDescriptor(DstType)};
726   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
727                 "float_cast_overflow", StaticArgs, OrigSrc);
728 }
729 
730 /// Emit a conversion from the specified type to the specified destination type,
731 /// both of which are LLVM scalar types.
732 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
733                                                QualType DstType,
734                                                SourceLocation Loc) {
735   return EmitScalarConversion(Src, SrcType, DstType, Loc, false);
736 }
737 
738 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
739                                                QualType DstType,
740                                                SourceLocation Loc,
741                                                bool TreatBooleanAsSigned) {
742   SrcType = CGF.getContext().getCanonicalType(SrcType);
743   DstType = CGF.getContext().getCanonicalType(DstType);
744   if (SrcType == DstType) return Src;
745 
746   if (DstType->isVoidType()) return nullptr;
747 
748   llvm::Value *OrigSrc = Src;
749   QualType OrigSrcType = SrcType;
750   llvm::Type *SrcTy = Src->getType();
751 
752   // Handle conversions to bool first, they are special: comparisons against 0.
753   if (DstType->isBooleanType())
754     return EmitConversionToBool(Src, SrcType);
755 
756   llvm::Type *DstTy = ConvertType(DstType);
757 
758   // Cast from half through float if half isn't a native type.
759   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
760     // Cast to FP using the intrinsic if the half type itself isn't supported.
761     if (DstTy->isFloatingPointTy()) {
762       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
763         return Builder.CreateCall(
764             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
765             Src);
766     } else {
767       // Cast to other types through float, using either the intrinsic or FPExt,
768       // depending on whether the half type itself is supported
769       // (as opposed to operations on half, available with NativeHalfType).
770       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
771         Src = Builder.CreateCall(
772             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
773                                  CGF.CGM.FloatTy),
774             Src);
775       } else {
776         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
777       }
778       SrcType = CGF.getContext().FloatTy;
779       SrcTy = CGF.FloatTy;
780     }
781   }
782 
783   // Ignore conversions like int -> uint.
784   if (SrcTy == DstTy)
785     return Src;
786 
787   // Handle pointer conversions next: pointers can only be converted to/from
788   // other pointers and integers. Check for pointer types in terms of LLVM, as
789   // some native types (like Obj-C id) may map to a pointer type.
790   if (isa<llvm::PointerType>(DstTy)) {
791     // The source value may be an integer, or a pointer.
792     if (isa<llvm::PointerType>(SrcTy))
793       return Builder.CreateBitCast(Src, DstTy, "conv");
794 
795     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
796     // First, convert to the correct width so that we control the kind of
797     // extension.
798     llvm::Type *MiddleTy = CGF.IntPtrTy;
799     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
800     llvm::Value* IntResult =
801         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
802     // Then, cast to pointer.
803     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
804   }
805 
806   if (isa<llvm::PointerType>(SrcTy)) {
807     // Must be an ptr to int cast.
808     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
809     return Builder.CreatePtrToInt(Src, DstTy, "conv");
810   }
811 
812   // A scalar can be splatted to an extended vector of the same element type
813   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
814     // Sema should add casts to make sure that the source expression's type is
815     // the same as the vector's element type (sans qualifiers)
816     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
817                SrcType.getTypePtr() &&
818            "Splatted expr doesn't match with vector element type?");
819 
820     // Splat the element across to all elements
821     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
822     return Builder.CreateVectorSplat(NumElements, Src, "splat");
823   }
824 
825   // Allow bitcast from vector to integer/fp of the same size.
826   if (isa<llvm::VectorType>(SrcTy) ||
827       isa<llvm::VectorType>(DstTy))
828     return Builder.CreateBitCast(Src, DstTy, "conv");
829 
830   // Finally, we have the arithmetic types: real int/float.
831   Value *Res = nullptr;
832   llvm::Type *ResTy = DstTy;
833 
834   // An overflowing conversion has undefined behavior if either the source type
835   // or the destination type is a floating-point type.
836   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
837       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
838     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
839                              Loc);
840 
841   // Cast to half through float if half isn't a native type.
842   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
843     // Make sure we cast in a single step if from another FP type.
844     if (SrcTy->isFloatingPointTy()) {
845       // Use the intrinsic if the half type itself isn't supported
846       // (as opposed to operations on half, available with NativeHalfType).
847       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
848         return Builder.CreateCall(
849             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
850       // If the half type is supported, just use an fptrunc.
851       return Builder.CreateFPTrunc(Src, DstTy);
852     }
853     DstTy = CGF.FloatTy;
854   }
855 
856   if (isa<llvm::IntegerType>(SrcTy)) {
857     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
858     if (SrcType->isBooleanType() && TreatBooleanAsSigned) {
859       InputSigned = true;
860     }
861     if (isa<llvm::IntegerType>(DstTy))
862       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
863     else if (InputSigned)
864       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
865     else
866       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
867   } else if (isa<llvm::IntegerType>(DstTy)) {
868     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
869     if (DstType->isSignedIntegerOrEnumerationType())
870       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
871     else
872       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
873   } else {
874     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
875            "Unknown real conversion");
876     if (DstTy->getTypeID() < SrcTy->getTypeID())
877       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
878     else
879       Res = Builder.CreateFPExt(Src, DstTy, "conv");
880   }
881 
882   if (DstTy != ResTy) {
883     if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
884       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
885       Res = Builder.CreateCall(
886         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
887         Res);
888     } else {
889       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
890     }
891   }
892 
893   return Res;
894 }
895 
896 /// Emit a conversion from the specified complex type to the specified
897 /// destination type, where the destination type is an LLVM scalar type.
898 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
899     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
900     SourceLocation Loc) {
901   // Get the source element type.
902   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
903 
904   // Handle conversions to bool first, they are special: comparisons against 0.
905   if (DstTy->isBooleanType()) {
906     //  Complex != 0  -> (Real != 0) | (Imag != 0)
907     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
908     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
909     return Builder.CreateOr(Src.first, Src.second, "tobool");
910   }
911 
912   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
913   // the imaginary part of the complex value is discarded and the value of the
914   // real part is converted according to the conversion rules for the
915   // corresponding real type.
916   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
917 }
918 
919 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
920   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
921 }
922 
923 /// \brief Emit a sanitization check for the given "binary" operation (which
924 /// might actually be a unary increment which has been lowered to a binary
925 /// operation). The check passes if all values in \p Checks (which are \c i1),
926 /// are \c true.
927 void ScalarExprEmitter::EmitBinOpCheck(
928     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
929   assert(CGF.IsSanitizerScope);
930   StringRef CheckName;
931   SmallVector<llvm::Constant *, 4> StaticData;
932   SmallVector<llvm::Value *, 2> DynamicData;
933 
934   BinaryOperatorKind Opcode = Info.Opcode;
935   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
936     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
937 
938   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
939   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
940   if (UO && UO->getOpcode() == UO_Minus) {
941     CheckName = "negate_overflow";
942     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
943     DynamicData.push_back(Info.RHS);
944   } else {
945     if (BinaryOperator::isShiftOp(Opcode)) {
946       // Shift LHS negative or too large, or RHS out of bounds.
947       CheckName = "shift_out_of_bounds";
948       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
949       StaticData.push_back(
950         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
951       StaticData.push_back(
952         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
953     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
954       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
955       CheckName = "divrem_overflow";
956       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
957     } else {
958       // Arithmetic overflow (+, -, *).
959       switch (Opcode) {
960       case BO_Add: CheckName = "add_overflow"; break;
961       case BO_Sub: CheckName = "sub_overflow"; break;
962       case BO_Mul: CheckName = "mul_overflow"; break;
963       default: llvm_unreachable("unexpected opcode for bin op check");
964       }
965       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
966     }
967     DynamicData.push_back(Info.LHS);
968     DynamicData.push_back(Info.RHS);
969   }
970 
971   CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
972 }
973 
974 //===----------------------------------------------------------------------===//
975 //                            Visitor Methods
976 //===----------------------------------------------------------------------===//
977 
978 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
979   CGF.ErrorUnsupported(E, "scalar expression");
980   if (E->getType()->isVoidType())
981     return nullptr;
982   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
983 }
984 
985 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
986   // Vector Mask Case
987   if (E->getNumSubExprs() == 2 ||
988       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
989     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
990     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
991     Value *Mask;
992 
993     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
994     unsigned LHSElts = LTy->getNumElements();
995 
996     if (E->getNumSubExprs() == 3) {
997       Mask = CGF.EmitScalarExpr(E->getExpr(2));
998 
999       // Shuffle LHS & RHS into one input vector.
1000       SmallVector<llvm::Constant*, 32> concat;
1001       for (unsigned i = 0; i != LHSElts; ++i) {
1002         concat.push_back(Builder.getInt32(2*i));
1003         concat.push_back(Builder.getInt32(2*i+1));
1004       }
1005 
1006       Value* CV = llvm::ConstantVector::get(concat);
1007       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
1008       LHSElts *= 2;
1009     } else {
1010       Mask = RHS;
1011     }
1012 
1013     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1014 
1015     // Mask off the high bits of each shuffle index.
1016     Value *MaskBits =
1017         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1018     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1019 
1020     // newv = undef
1021     // mask = mask & maskbits
1022     // for each elt
1023     //   n = extract mask i
1024     //   x = extract val n
1025     //   newv = insert newv, x, i
1026     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1027                                                   MTy->getNumElements());
1028     Value* NewV = llvm::UndefValue::get(RTy);
1029     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1030       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1031       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1032 
1033       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1034       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1035     }
1036     return NewV;
1037   }
1038 
1039   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1040   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1041 
1042   SmallVector<llvm::Constant*, 32> indices;
1043   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1044     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1045     // Check for -1 and output it as undef in the IR.
1046     if (Idx.isSigned() && Idx.isAllOnesValue())
1047       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1048     else
1049       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1050   }
1051 
1052   Value *SV = llvm::ConstantVector::get(indices);
1053   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1054 }
1055 
1056 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1057   QualType SrcType = E->getSrcExpr()->getType(),
1058            DstType = E->getType();
1059 
1060   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1061 
1062   SrcType = CGF.getContext().getCanonicalType(SrcType);
1063   DstType = CGF.getContext().getCanonicalType(DstType);
1064   if (SrcType == DstType) return Src;
1065 
1066   assert(SrcType->isVectorType() &&
1067          "ConvertVector source type must be a vector");
1068   assert(DstType->isVectorType() &&
1069          "ConvertVector destination type must be a vector");
1070 
1071   llvm::Type *SrcTy = Src->getType();
1072   llvm::Type *DstTy = ConvertType(DstType);
1073 
1074   // Ignore conversions like int -> uint.
1075   if (SrcTy == DstTy)
1076     return Src;
1077 
1078   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1079            DstEltType = DstType->getAs<VectorType>()->getElementType();
1080 
1081   assert(SrcTy->isVectorTy() &&
1082          "ConvertVector source IR type must be a vector");
1083   assert(DstTy->isVectorTy() &&
1084          "ConvertVector destination IR type must be a vector");
1085 
1086   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1087              *DstEltTy = DstTy->getVectorElementType();
1088 
1089   if (DstEltType->isBooleanType()) {
1090     assert((SrcEltTy->isFloatingPointTy() ||
1091             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1092 
1093     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1094     if (SrcEltTy->isFloatingPointTy()) {
1095       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1096     } else {
1097       return Builder.CreateICmpNE(Src, Zero, "tobool");
1098     }
1099   }
1100 
1101   // We have the arithmetic types: real int/float.
1102   Value *Res = nullptr;
1103 
1104   if (isa<llvm::IntegerType>(SrcEltTy)) {
1105     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1106     if (isa<llvm::IntegerType>(DstEltTy))
1107       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1108     else if (InputSigned)
1109       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1110     else
1111       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1112   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1113     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1114     if (DstEltType->isSignedIntegerOrEnumerationType())
1115       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1116     else
1117       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1118   } else {
1119     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1120            "Unknown real conversion");
1121     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1122       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1123     else
1124       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1125   }
1126 
1127   return Res;
1128 }
1129 
1130 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1131   llvm::APSInt Value;
1132   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1133     if (E->isArrow())
1134       CGF.EmitScalarExpr(E->getBase());
1135     else
1136       EmitLValue(E->getBase());
1137     return Builder.getInt(Value);
1138   }
1139 
1140   return EmitLoadOfLValue(E);
1141 }
1142 
1143 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1144   TestAndClearIgnoreResultAssign();
1145 
1146   // Emit subscript expressions in rvalue context's.  For most cases, this just
1147   // loads the lvalue formed by the subscript expr.  However, we have to be
1148   // careful, because the base of a vector subscript is occasionally an rvalue,
1149   // so we can't get it as an lvalue.
1150   if (!E->getBase()->getType()->isVectorType())
1151     return EmitLoadOfLValue(E);
1152 
1153   // Handle the vector case.  The base must be a vector, the index must be an
1154   // integer value.
1155   Value *Base = Visit(E->getBase());
1156   Value *Idx  = Visit(E->getIdx());
1157   QualType IdxTy = E->getIdx()->getType();
1158 
1159   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1160     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1161 
1162   return Builder.CreateExtractElement(Base, Idx, "vecext");
1163 }
1164 
1165 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1166                                   unsigned Off, llvm::Type *I32Ty) {
1167   int MV = SVI->getMaskValue(Idx);
1168   if (MV == -1)
1169     return llvm::UndefValue::get(I32Ty);
1170   return llvm::ConstantInt::get(I32Ty, Off+MV);
1171 }
1172 
1173 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1174   if (C->getBitWidth() != 32) {
1175       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1176                                                     C->getZExtValue()) &&
1177              "Index operand too large for shufflevector mask!");
1178       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1179   }
1180   return C;
1181 }
1182 
1183 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1184   bool Ignore = TestAndClearIgnoreResultAssign();
1185   (void)Ignore;
1186   assert (Ignore == false && "init list ignored");
1187   unsigned NumInitElements = E->getNumInits();
1188 
1189   if (E->hadArrayRangeDesignator())
1190     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1191 
1192   llvm::VectorType *VType =
1193     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1194 
1195   if (!VType) {
1196     if (NumInitElements == 0) {
1197       // C++11 value-initialization for the scalar.
1198       return EmitNullValue(E->getType());
1199     }
1200     // We have a scalar in braces. Just use the first element.
1201     return Visit(E->getInit(0));
1202   }
1203 
1204   unsigned ResElts = VType->getNumElements();
1205 
1206   // Loop over initializers collecting the Value for each, and remembering
1207   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1208   // us to fold the shuffle for the swizzle into the shuffle for the vector
1209   // initializer, since LLVM optimizers generally do not want to touch
1210   // shuffles.
1211   unsigned CurIdx = 0;
1212   bool VIsUndefShuffle = false;
1213   llvm::Value *V = llvm::UndefValue::get(VType);
1214   for (unsigned i = 0; i != NumInitElements; ++i) {
1215     Expr *IE = E->getInit(i);
1216     Value *Init = Visit(IE);
1217     SmallVector<llvm::Constant*, 16> Args;
1218 
1219     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1220 
1221     // Handle scalar elements.  If the scalar initializer is actually one
1222     // element of a different vector of the same width, use shuffle instead of
1223     // extract+insert.
1224     if (!VVT) {
1225       if (isa<ExtVectorElementExpr>(IE)) {
1226         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1227 
1228         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1229           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1230           Value *LHS = nullptr, *RHS = nullptr;
1231           if (CurIdx == 0) {
1232             // insert into undef -> shuffle (src, undef)
1233             // shufflemask must use an i32
1234             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1235             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1236 
1237             LHS = EI->getVectorOperand();
1238             RHS = V;
1239             VIsUndefShuffle = true;
1240           } else if (VIsUndefShuffle) {
1241             // insert into undefshuffle && size match -> shuffle (v, src)
1242             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1243             for (unsigned j = 0; j != CurIdx; ++j)
1244               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1245             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1246             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1247 
1248             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1249             RHS = EI->getVectorOperand();
1250             VIsUndefShuffle = false;
1251           }
1252           if (!Args.empty()) {
1253             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1254             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1255             ++CurIdx;
1256             continue;
1257           }
1258         }
1259       }
1260       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1261                                       "vecinit");
1262       VIsUndefShuffle = false;
1263       ++CurIdx;
1264       continue;
1265     }
1266 
1267     unsigned InitElts = VVT->getNumElements();
1268 
1269     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1270     // input is the same width as the vector being constructed, generate an
1271     // optimized shuffle of the swizzle input into the result.
1272     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1273     if (isa<ExtVectorElementExpr>(IE)) {
1274       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1275       Value *SVOp = SVI->getOperand(0);
1276       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1277 
1278       if (OpTy->getNumElements() == ResElts) {
1279         for (unsigned j = 0; j != CurIdx; ++j) {
1280           // If the current vector initializer is a shuffle with undef, merge
1281           // this shuffle directly into it.
1282           if (VIsUndefShuffle) {
1283             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1284                                       CGF.Int32Ty));
1285           } else {
1286             Args.push_back(Builder.getInt32(j));
1287           }
1288         }
1289         for (unsigned j = 0, je = InitElts; j != je; ++j)
1290           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1291         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1292 
1293         if (VIsUndefShuffle)
1294           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1295 
1296         Init = SVOp;
1297       }
1298     }
1299 
1300     // Extend init to result vector length, and then shuffle its contribution
1301     // to the vector initializer into V.
1302     if (Args.empty()) {
1303       for (unsigned j = 0; j != InitElts; ++j)
1304         Args.push_back(Builder.getInt32(j));
1305       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1306       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1307       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1308                                          Mask, "vext");
1309 
1310       Args.clear();
1311       for (unsigned j = 0; j != CurIdx; ++j)
1312         Args.push_back(Builder.getInt32(j));
1313       for (unsigned j = 0; j != InitElts; ++j)
1314         Args.push_back(Builder.getInt32(j+Offset));
1315       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1316     }
1317 
1318     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1319     // merging subsequent shuffles into this one.
1320     if (CurIdx == 0)
1321       std::swap(V, Init);
1322     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1323     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1324     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1325     CurIdx += InitElts;
1326   }
1327 
1328   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1329   // Emit remaining default initializers.
1330   llvm::Type *EltTy = VType->getElementType();
1331 
1332   // Emit remaining default initializers
1333   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1334     Value *Idx = Builder.getInt32(CurIdx);
1335     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1336     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1337   }
1338   return V;
1339 }
1340 
1341 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1342   const Expr *E = CE->getSubExpr();
1343 
1344   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1345     return false;
1346 
1347   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1348     // We always assume that 'this' is never null.
1349     return false;
1350   }
1351 
1352   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1353     // And that glvalue casts are never null.
1354     if (ICE->getValueKind() != VK_RValue)
1355       return false;
1356   }
1357 
1358   return true;
1359 }
1360 
1361 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1362 // have to handle a more broad range of conversions than explicit casts, as they
1363 // handle things like function to ptr-to-function decay etc.
1364 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1365   Expr *E = CE->getSubExpr();
1366   QualType DestTy = CE->getType();
1367   CastKind Kind = CE->getCastKind();
1368 
1369   // These cases are generally not written to ignore the result of
1370   // evaluating their sub-expressions, so we clear this now.
1371   bool Ignored = TestAndClearIgnoreResultAssign();
1372 
1373   // Since almost all cast kinds apply to scalars, this switch doesn't have
1374   // a default case, so the compiler will warn on a missing case.  The cases
1375   // are in the same order as in the CastKind enum.
1376   switch (Kind) {
1377   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1378   case CK_BuiltinFnToFnPtr:
1379     llvm_unreachable("builtin functions are handled elsewhere");
1380 
1381   case CK_LValueBitCast:
1382   case CK_ObjCObjectLValueCast: {
1383     Address Addr = EmitLValue(E).getAddress();
1384     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1385     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1386     return EmitLoadOfLValue(LV, CE->getExprLoc());
1387   }
1388 
1389   case CK_CPointerToObjCPointerCast:
1390   case CK_BlockPointerToObjCPointerCast:
1391   case CK_AnyPointerToBlockPointerCast:
1392   case CK_BitCast: {
1393     Value *Src = Visit(const_cast<Expr*>(E));
1394     llvm::Type *SrcTy = Src->getType();
1395     llvm::Type *DstTy = ConvertType(DestTy);
1396     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1397         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1398       llvm_unreachable("wrong cast for pointers in different address spaces"
1399                        "(must be an address space cast)!");
1400     }
1401 
1402     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1403       if (auto PT = DestTy->getAs<PointerType>())
1404         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1405                                       /*MayBeNull=*/true,
1406                                       CodeGenFunction::CFITCK_UnrelatedCast,
1407                                       CE->getLocStart());
1408     }
1409 
1410     return Builder.CreateBitCast(Src, DstTy);
1411   }
1412   case CK_AddressSpaceConversion: {
1413     Value *Src = Visit(const_cast<Expr*>(E));
1414     // Since target may map different address spaces in AST to the same address
1415     // space, an address space conversion may end up as a bitcast.
1416     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src,
1417                                                        ConvertType(DestTy));
1418   }
1419   case CK_AtomicToNonAtomic:
1420   case CK_NonAtomicToAtomic:
1421   case CK_NoOp:
1422   case CK_UserDefinedConversion:
1423     return Visit(const_cast<Expr*>(E));
1424 
1425   case CK_BaseToDerived: {
1426     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1427     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1428 
1429     Address Base = CGF.EmitPointerWithAlignment(E);
1430     Address Derived =
1431       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
1432                                    CE->path_begin(), CE->path_end(),
1433                                    CGF.ShouldNullCheckClassCastValue(CE));
1434 
1435     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1436     // performed and the object is not of the derived type.
1437     if (CGF.sanitizePerformTypeCheck())
1438       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1439                         Derived.getPointer(), DestTy->getPointeeType());
1440 
1441     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1442       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
1443                                     Derived.getPointer(),
1444                                     /*MayBeNull=*/true,
1445                                     CodeGenFunction::CFITCK_DerivedCast,
1446                                     CE->getLocStart());
1447 
1448     return Derived.getPointer();
1449   }
1450   case CK_UncheckedDerivedToBase:
1451   case CK_DerivedToBase: {
1452     // The EmitPointerWithAlignment path does this fine; just discard
1453     // the alignment.
1454     return CGF.EmitPointerWithAlignment(CE).getPointer();
1455   }
1456 
1457   case CK_Dynamic: {
1458     Address V = CGF.EmitPointerWithAlignment(E);
1459     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1460     return CGF.EmitDynamicCast(V, DCE);
1461   }
1462 
1463   case CK_ArrayToPointerDecay:
1464     return CGF.EmitArrayToPointerDecay(E).getPointer();
1465   case CK_FunctionToPointerDecay:
1466     return EmitLValue(E).getPointer();
1467 
1468   case CK_NullToPointer:
1469     if (MustVisitNullValue(E))
1470       (void) Visit(E);
1471 
1472     return llvm::ConstantPointerNull::get(
1473                                cast<llvm::PointerType>(ConvertType(DestTy)));
1474 
1475   case CK_NullToMemberPointer: {
1476     if (MustVisitNullValue(E))
1477       (void) Visit(E);
1478 
1479     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1480     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1481   }
1482 
1483   case CK_ReinterpretMemberPointer:
1484   case CK_BaseToDerivedMemberPointer:
1485   case CK_DerivedToBaseMemberPointer: {
1486     Value *Src = Visit(E);
1487 
1488     // Note that the AST doesn't distinguish between checked and
1489     // unchecked member pointer conversions, so we always have to
1490     // implement checked conversions here.  This is inefficient when
1491     // actual control flow may be required in order to perform the
1492     // check, which it is for data member pointers (but not member
1493     // function pointers on Itanium and ARM).
1494     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1495   }
1496 
1497   case CK_ARCProduceObject:
1498     return CGF.EmitARCRetainScalarExpr(E);
1499   case CK_ARCConsumeObject:
1500     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1501   case CK_ARCReclaimReturnedObject:
1502     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
1503   case CK_ARCExtendBlockObject:
1504     return CGF.EmitARCExtendBlockObject(E);
1505 
1506   case CK_CopyAndAutoreleaseBlockObject:
1507     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1508 
1509   case CK_FloatingRealToComplex:
1510   case CK_FloatingComplexCast:
1511   case CK_IntegralRealToComplex:
1512   case CK_IntegralComplexCast:
1513   case CK_IntegralComplexToFloatingComplex:
1514   case CK_FloatingComplexToIntegralComplex:
1515   case CK_ConstructorConversion:
1516   case CK_ToUnion:
1517     llvm_unreachable("scalar cast to non-scalar value");
1518 
1519   case CK_LValueToRValue:
1520     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1521     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1522     return Visit(const_cast<Expr*>(E));
1523 
1524   case CK_IntegralToPointer: {
1525     Value *Src = Visit(const_cast<Expr*>(E));
1526 
1527     // First, convert to the correct width so that we control the kind of
1528     // extension.
1529     llvm::Type *MiddleTy = CGF.IntPtrTy;
1530     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1531     llvm::Value* IntResult =
1532       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1533 
1534     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1535   }
1536   case CK_PointerToIntegral:
1537     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1538     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1539 
1540   case CK_ToVoid: {
1541     CGF.EmitIgnoredExpr(E);
1542     return nullptr;
1543   }
1544   case CK_VectorSplat: {
1545     llvm::Type *DstTy = ConvertType(DestTy);
1546     Value *Elt = Visit(const_cast<Expr*>(E));
1547     // Splat the element across to all elements
1548     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1549     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1550   }
1551 
1552   case CK_IntegralCast:
1553   case CK_IntegralToFloating:
1554   case CK_FloatingToIntegral:
1555   case CK_FloatingCast:
1556     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1557                                 CE->getExprLoc());
1558   case CK_BooleanToSignedIntegral:
1559     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1560                                 CE->getExprLoc(),
1561                                 /*TreatBooleanAsSigned=*/true);
1562   case CK_IntegralToBoolean:
1563     return EmitIntToBoolConversion(Visit(E));
1564   case CK_PointerToBoolean:
1565     return EmitPointerToBoolConversion(Visit(E));
1566   case CK_FloatingToBoolean:
1567     return EmitFloatToBoolConversion(Visit(E));
1568   case CK_MemberPointerToBoolean: {
1569     llvm::Value *MemPtr = Visit(E);
1570     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1571     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1572   }
1573 
1574   case CK_FloatingComplexToReal:
1575   case CK_IntegralComplexToReal:
1576     return CGF.EmitComplexExpr(E, false, true).first;
1577 
1578   case CK_FloatingComplexToBoolean:
1579   case CK_IntegralComplexToBoolean: {
1580     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1581 
1582     // TODO: kill this function off, inline appropriate case here
1583     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
1584                                          CE->getExprLoc());
1585   }
1586 
1587   case CK_ZeroToOCLEvent: {
1588     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1589     return llvm::Constant::getNullValue(ConvertType(DestTy));
1590   }
1591 
1592   }
1593 
1594   llvm_unreachable("unknown scalar cast");
1595 }
1596 
1597 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1598   CodeGenFunction::StmtExprEvaluation eval(CGF);
1599   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1600                                            !E->getType()->isVoidType());
1601   if (!RetAlloca.isValid())
1602     return nullptr;
1603   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1604                               E->getExprLoc());
1605 }
1606 
1607 //===----------------------------------------------------------------------===//
1608 //                             Unary Operators
1609 //===----------------------------------------------------------------------===//
1610 
1611 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1612                                            llvm::Value *InVal, bool IsInc) {
1613   BinOpInfo BinOp;
1614   BinOp.LHS = InVal;
1615   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1616   BinOp.Ty = E->getType();
1617   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1618   BinOp.FPContractable = false;
1619   BinOp.E = E;
1620   return BinOp;
1621 }
1622 
1623 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1624     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1625   llvm::Value *Amount =
1626       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1627   StringRef Name = IsInc ? "inc" : "dec";
1628   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1629   case LangOptions::SOB_Defined:
1630     return Builder.CreateAdd(InVal, Amount, Name);
1631   case LangOptions::SOB_Undefined:
1632     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1633       return Builder.CreateNSWAdd(InVal, Amount, Name);
1634     // Fall through.
1635   case LangOptions::SOB_Trapping:
1636     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1637   }
1638   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1639 }
1640 
1641 llvm::Value *
1642 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1643                                            bool isInc, bool isPre) {
1644 
1645   QualType type = E->getSubExpr()->getType();
1646   llvm::PHINode *atomicPHI = nullptr;
1647   llvm::Value *value;
1648   llvm::Value *input;
1649 
1650   int amount = (isInc ? 1 : -1);
1651 
1652   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1653     type = atomicTy->getValueType();
1654     if (isInc && type->isBooleanType()) {
1655       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1656       if (isPre) {
1657         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
1658           ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
1659         return Builder.getTrue();
1660       }
1661       // For atomic bool increment, we just store true and return it for
1662       // preincrement, do an atomic swap with true for postincrement
1663       return Builder.CreateAtomicRMW(
1664           llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
1665           llvm::AtomicOrdering::SequentiallyConsistent);
1666     }
1667     // Special case for atomic increment / decrement on integers, emit
1668     // atomicrmw instructions.  We skip this if we want to be doing overflow
1669     // checking, and fall into the slow path with the atomic cmpxchg loop.
1670     if (!type->isBooleanType() && type->isIntegerType() &&
1671         !(type->isUnsignedIntegerType() &&
1672           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1673         CGF.getLangOpts().getSignedOverflowBehavior() !=
1674             LangOptions::SOB_Trapping) {
1675       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1676         llvm::AtomicRMWInst::Sub;
1677       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1678         llvm::Instruction::Sub;
1679       llvm::Value *amt = CGF.EmitToMemory(
1680           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1681       llvm::Value *old = Builder.CreateAtomicRMW(aop,
1682           LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
1683       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1684     }
1685     value = EmitLoadOfLValue(LV, E->getExprLoc());
1686     input = value;
1687     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1688     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1689     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1690     value = CGF.EmitToMemory(value, type);
1691     Builder.CreateBr(opBB);
1692     Builder.SetInsertPoint(opBB);
1693     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1694     atomicPHI->addIncoming(value, startBB);
1695     value = atomicPHI;
1696   } else {
1697     value = EmitLoadOfLValue(LV, E->getExprLoc());
1698     input = value;
1699   }
1700 
1701   // Special case of integer increment that we have to check first: bool++.
1702   // Due to promotion rules, we get:
1703   //   bool++ -> bool = bool + 1
1704   //          -> bool = (int)bool + 1
1705   //          -> bool = ((int)bool + 1 != 0)
1706   // An interesting aspect of this is that increment is always true.
1707   // Decrement does not have this property.
1708   if (isInc && type->isBooleanType()) {
1709     value = Builder.getTrue();
1710 
1711   // Most common case by far: integer increment.
1712   } else if (type->isIntegerType()) {
1713     // Note that signed integer inc/dec with width less than int can't
1714     // overflow because of promotion rules; we're just eliding a few steps here.
1715     bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1716                        CGF.IntTy->getIntegerBitWidth();
1717     if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1718       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1719     } else if (CanOverflow && type->isUnsignedIntegerType() &&
1720                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1721       value =
1722           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1723     } else {
1724       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1725       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1726     }
1727 
1728   // Next most common: pointer increment.
1729   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1730     QualType type = ptr->getPointeeType();
1731 
1732     // VLA types don't have constant size.
1733     if (const VariableArrayType *vla
1734           = CGF.getContext().getAsVariableArrayType(type)) {
1735       llvm::Value *numElts = CGF.getVLASize(vla).first;
1736       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1737       if (CGF.getLangOpts().isSignedOverflowDefined())
1738         value = Builder.CreateGEP(value, numElts, "vla.inc");
1739       else
1740         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1741 
1742     // Arithmetic on function pointers (!) is just +-1.
1743     } else if (type->isFunctionType()) {
1744       llvm::Value *amt = Builder.getInt32(amount);
1745 
1746       value = CGF.EmitCastToVoidPtr(value);
1747       if (CGF.getLangOpts().isSignedOverflowDefined())
1748         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1749       else
1750         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1751       value = Builder.CreateBitCast(value, input->getType());
1752 
1753     // For everything else, we can just do a simple increment.
1754     } else {
1755       llvm::Value *amt = Builder.getInt32(amount);
1756       if (CGF.getLangOpts().isSignedOverflowDefined())
1757         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1758       else
1759         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1760     }
1761 
1762   // Vector increment/decrement.
1763   } else if (type->isVectorType()) {
1764     if (type->hasIntegerRepresentation()) {
1765       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1766 
1767       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1768     } else {
1769       value = Builder.CreateFAdd(
1770                   value,
1771                   llvm::ConstantFP::get(value->getType(), amount),
1772                   isInc ? "inc" : "dec");
1773     }
1774 
1775   // Floating point.
1776   } else if (type->isRealFloatingType()) {
1777     // Add the inc/dec to the real part.
1778     llvm::Value *amt;
1779 
1780     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1781       // Another special case: half FP increment should be done via float
1782       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1783         value = Builder.CreateCall(
1784             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1785                                  CGF.CGM.FloatTy),
1786             input, "incdec.conv");
1787       } else {
1788         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
1789       }
1790     }
1791 
1792     if (value->getType()->isFloatTy())
1793       amt = llvm::ConstantFP::get(VMContext,
1794                                   llvm::APFloat(static_cast<float>(amount)));
1795     else if (value->getType()->isDoubleTy())
1796       amt = llvm::ConstantFP::get(VMContext,
1797                                   llvm::APFloat(static_cast<double>(amount)));
1798     else {
1799       // Remaining types are either Half or LongDouble.  Convert from float.
1800       llvm::APFloat F(static_cast<float>(amount));
1801       bool ignored;
1802       // Don't use getFloatTypeSemantics because Half isn't
1803       // necessarily represented using the "half" LLVM type.
1804       F.convert(value->getType()->isHalfTy()
1805                     ? CGF.getTarget().getHalfFormat()
1806                     : CGF.getTarget().getLongDoubleFormat(),
1807                 llvm::APFloat::rmTowardZero, &ignored);
1808       amt = llvm::ConstantFP::get(VMContext, F);
1809     }
1810     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1811 
1812     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1813       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1814         value = Builder.CreateCall(
1815             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
1816                                  CGF.CGM.FloatTy),
1817             value, "incdec.conv");
1818       } else {
1819         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
1820       }
1821     }
1822 
1823   // Objective-C pointer types.
1824   } else {
1825     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1826     value = CGF.EmitCastToVoidPtr(value);
1827 
1828     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1829     if (!isInc) size = -size;
1830     llvm::Value *sizeValue =
1831       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1832 
1833     if (CGF.getLangOpts().isSignedOverflowDefined())
1834       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1835     else
1836       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1837     value = Builder.CreateBitCast(value, input->getType());
1838   }
1839 
1840   if (atomicPHI) {
1841     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1842     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1843     auto Pair = CGF.EmitAtomicCompareExchange(
1844         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
1845     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
1846     llvm::Value *success = Pair.second;
1847     atomicPHI->addIncoming(old, opBB);
1848     Builder.CreateCondBr(success, contBB, opBB);
1849     Builder.SetInsertPoint(contBB);
1850     return isPre ? value : input;
1851   }
1852 
1853   // Store the updated result through the lvalue.
1854   if (LV.isBitField())
1855     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1856   else
1857     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1858 
1859   // If this is a postinc, return the value read from memory, otherwise use the
1860   // updated value.
1861   return isPre ? value : input;
1862 }
1863 
1864 
1865 
1866 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1867   TestAndClearIgnoreResultAssign();
1868   // Emit unary minus with EmitSub so we handle overflow cases etc.
1869   BinOpInfo BinOp;
1870   BinOp.RHS = Visit(E->getSubExpr());
1871 
1872   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1873     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1874   else
1875     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1876   BinOp.Ty = E->getType();
1877   BinOp.Opcode = BO_Sub;
1878   BinOp.FPContractable = false;
1879   BinOp.E = E;
1880   return EmitSub(BinOp);
1881 }
1882 
1883 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1884   TestAndClearIgnoreResultAssign();
1885   Value *Op = Visit(E->getSubExpr());
1886   return Builder.CreateNot(Op, "neg");
1887 }
1888 
1889 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1890   // Perform vector logical not on comparison with zero vector.
1891   if (E->getType()->isExtVectorType()) {
1892     Value *Oper = Visit(E->getSubExpr());
1893     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1894     Value *Result;
1895     if (Oper->getType()->isFPOrFPVectorTy())
1896       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1897     else
1898       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1899     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1900   }
1901 
1902   // Compare operand to zero.
1903   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1904 
1905   // Invert value.
1906   // TODO: Could dynamically modify easy computations here.  For example, if
1907   // the operand is an icmp ne, turn into icmp eq.
1908   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1909 
1910   // ZExt result to the expr type.
1911   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1912 }
1913 
1914 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1915   // Try folding the offsetof to a constant.
1916   llvm::APSInt Value;
1917   if (E->EvaluateAsInt(Value, CGF.getContext()))
1918     return Builder.getInt(Value);
1919 
1920   // Loop over the components of the offsetof to compute the value.
1921   unsigned n = E->getNumComponents();
1922   llvm::Type* ResultType = ConvertType(E->getType());
1923   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1924   QualType CurrentType = E->getTypeSourceInfo()->getType();
1925   for (unsigned i = 0; i != n; ++i) {
1926     OffsetOfNode ON = E->getComponent(i);
1927     llvm::Value *Offset = nullptr;
1928     switch (ON.getKind()) {
1929     case OffsetOfNode::Array: {
1930       // Compute the index
1931       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1932       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1933       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1934       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1935 
1936       // Save the element type
1937       CurrentType =
1938           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1939 
1940       // Compute the element size
1941       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1942           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1943 
1944       // Multiply out to compute the result
1945       Offset = Builder.CreateMul(Idx, ElemSize);
1946       break;
1947     }
1948 
1949     case OffsetOfNode::Field: {
1950       FieldDecl *MemberDecl = ON.getField();
1951       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1952       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1953 
1954       // Compute the index of the field in its parent.
1955       unsigned i = 0;
1956       // FIXME: It would be nice if we didn't have to loop here!
1957       for (RecordDecl::field_iterator Field = RD->field_begin(),
1958                                       FieldEnd = RD->field_end();
1959            Field != FieldEnd; ++Field, ++i) {
1960         if (*Field == MemberDecl)
1961           break;
1962       }
1963       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1964 
1965       // Compute the offset to the field
1966       int64_t OffsetInt = RL.getFieldOffset(i) /
1967                           CGF.getContext().getCharWidth();
1968       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1969 
1970       // Save the element type.
1971       CurrentType = MemberDecl->getType();
1972       break;
1973     }
1974 
1975     case OffsetOfNode::Identifier:
1976       llvm_unreachable("dependent __builtin_offsetof");
1977 
1978     case OffsetOfNode::Base: {
1979       if (ON.getBase()->isVirtual()) {
1980         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1981         continue;
1982       }
1983 
1984       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1985       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1986 
1987       // Save the element type.
1988       CurrentType = ON.getBase()->getType();
1989 
1990       // Compute the offset to the base.
1991       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1992       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1993       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1994       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1995       break;
1996     }
1997     }
1998     Result = Builder.CreateAdd(Result, Offset);
1999   }
2000   return Result;
2001 }
2002 
2003 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2004 /// argument of the sizeof expression as an integer.
2005 Value *
2006 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2007                               const UnaryExprOrTypeTraitExpr *E) {
2008   QualType TypeToSize = E->getTypeOfArgument();
2009   if (E->getKind() == UETT_SizeOf) {
2010     if (const VariableArrayType *VAT =
2011           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2012       if (E->isArgumentType()) {
2013         // sizeof(type) - make sure to emit the VLA size.
2014         CGF.EmitVariablyModifiedType(TypeToSize);
2015       } else {
2016         // C99 6.5.3.4p2: If the argument is an expression of type
2017         // VLA, it is evaluated.
2018         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2019       }
2020 
2021       QualType eltType;
2022       llvm::Value *numElts;
2023       std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2024 
2025       llvm::Value *size = numElts;
2026 
2027       // Scale the number of non-VLA elements by the non-VLA element size.
2028       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2029       if (!eltSize.isOne())
2030         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2031 
2032       return size;
2033     }
2034   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2035     auto Alignment =
2036         CGF.getContext()
2037             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2038                 E->getTypeOfArgument()->getPointeeType()))
2039             .getQuantity();
2040     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2041   }
2042 
2043   // If this isn't sizeof(vla), the result must be constant; use the constant
2044   // folding logic so we don't have to duplicate it here.
2045   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2046 }
2047 
2048 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2049   Expr *Op = E->getSubExpr();
2050   if (Op->getType()->isAnyComplexType()) {
2051     // If it's an l-value, load through the appropriate subobject l-value.
2052     // Note that we have to ask E because Op might be an l-value that
2053     // this won't work for, e.g. an Obj-C property.
2054     if (E->isGLValue())
2055       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2056                                   E->getExprLoc()).getScalarVal();
2057 
2058     // Otherwise, calculate and project.
2059     return CGF.EmitComplexExpr(Op, false, true).first;
2060   }
2061 
2062   return Visit(Op);
2063 }
2064 
2065 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2066   Expr *Op = E->getSubExpr();
2067   if (Op->getType()->isAnyComplexType()) {
2068     // If it's an l-value, load through the appropriate subobject l-value.
2069     // Note that we have to ask E because Op might be an l-value that
2070     // this won't work for, e.g. an Obj-C property.
2071     if (Op->isGLValue())
2072       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2073                                   E->getExprLoc()).getScalarVal();
2074 
2075     // Otherwise, calculate and project.
2076     return CGF.EmitComplexExpr(Op, true, false).second;
2077   }
2078 
2079   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2080   // effects are evaluated, but not the actual value.
2081   if (Op->isGLValue())
2082     CGF.EmitLValue(Op);
2083   else
2084     CGF.EmitScalarExpr(Op, true);
2085   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2086 }
2087 
2088 //===----------------------------------------------------------------------===//
2089 //                           Binary Operators
2090 //===----------------------------------------------------------------------===//
2091 
2092 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2093   TestAndClearIgnoreResultAssign();
2094   BinOpInfo Result;
2095   Result.LHS = Visit(E->getLHS());
2096   Result.RHS = Visit(E->getRHS());
2097   Result.Ty  = E->getType();
2098   Result.Opcode = E->getOpcode();
2099   Result.FPContractable = E->isFPContractable();
2100   Result.E = E;
2101   return Result;
2102 }
2103 
2104 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2105                                               const CompoundAssignOperator *E,
2106                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2107                                                    Value *&Result) {
2108   QualType LHSTy = E->getLHS()->getType();
2109   BinOpInfo OpInfo;
2110 
2111   if (E->getComputationResultType()->isAnyComplexType())
2112     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2113 
2114   // Emit the RHS first.  __block variables need to have the rhs evaluated
2115   // first, plus this should improve codegen a little.
2116   OpInfo.RHS = Visit(E->getRHS());
2117   OpInfo.Ty = E->getComputationResultType();
2118   OpInfo.Opcode = E->getOpcode();
2119   OpInfo.FPContractable = E->isFPContractable();
2120   OpInfo.E = E;
2121   // Load/convert the LHS.
2122   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2123 
2124   llvm::PHINode *atomicPHI = nullptr;
2125   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2126     QualType type = atomicTy->getValueType();
2127     if (!type->isBooleanType() && type->isIntegerType() &&
2128         !(type->isUnsignedIntegerType() &&
2129           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2130         CGF.getLangOpts().getSignedOverflowBehavior() !=
2131             LangOptions::SOB_Trapping) {
2132       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2133       switch (OpInfo.Opcode) {
2134         // We don't have atomicrmw operands for *, %, /, <<, >>
2135         case BO_MulAssign: case BO_DivAssign:
2136         case BO_RemAssign:
2137         case BO_ShlAssign:
2138         case BO_ShrAssign:
2139           break;
2140         case BO_AddAssign:
2141           aop = llvm::AtomicRMWInst::Add;
2142           break;
2143         case BO_SubAssign:
2144           aop = llvm::AtomicRMWInst::Sub;
2145           break;
2146         case BO_AndAssign:
2147           aop = llvm::AtomicRMWInst::And;
2148           break;
2149         case BO_XorAssign:
2150           aop = llvm::AtomicRMWInst::Xor;
2151           break;
2152         case BO_OrAssign:
2153           aop = llvm::AtomicRMWInst::Or;
2154           break;
2155         default:
2156           llvm_unreachable("Invalid compound assignment type");
2157       }
2158       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2159         llvm::Value *amt = CGF.EmitToMemory(
2160             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2161                                  E->getExprLoc()),
2162             LHSTy);
2163         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2164             llvm::AtomicOrdering::SequentiallyConsistent);
2165         return LHSLV;
2166       }
2167     }
2168     // FIXME: For floating point types, we should be saving and restoring the
2169     // floating point environment in the loop.
2170     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2171     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2172     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2173     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2174     Builder.CreateBr(opBB);
2175     Builder.SetInsertPoint(opBB);
2176     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2177     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2178     OpInfo.LHS = atomicPHI;
2179   }
2180   else
2181     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2182 
2183   SourceLocation Loc = E->getExprLoc();
2184   OpInfo.LHS =
2185       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2186 
2187   // Expand the binary operator.
2188   Result = (this->*Func)(OpInfo);
2189 
2190   // Convert the result back to the LHS type.
2191   Result =
2192       EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2193 
2194   if (atomicPHI) {
2195     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2196     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2197     auto Pair = CGF.EmitAtomicCompareExchange(
2198         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2199     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2200     llvm::Value *success = Pair.second;
2201     atomicPHI->addIncoming(old, opBB);
2202     Builder.CreateCondBr(success, contBB, opBB);
2203     Builder.SetInsertPoint(contBB);
2204     return LHSLV;
2205   }
2206 
2207   // Store the result value into the LHS lvalue. Bit-fields are handled
2208   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2209   // 'An assignment expression has the value of the left operand after the
2210   // assignment...'.
2211   if (LHSLV.isBitField())
2212     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2213   else
2214     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2215 
2216   return LHSLV;
2217 }
2218 
2219 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2220                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2221   bool Ignore = TestAndClearIgnoreResultAssign();
2222   Value *RHS;
2223   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2224 
2225   // If the result is clearly ignored, return now.
2226   if (Ignore)
2227     return nullptr;
2228 
2229   // The result of an assignment in C is the assigned r-value.
2230   if (!CGF.getLangOpts().CPlusPlus)
2231     return RHS;
2232 
2233   // If the lvalue is non-volatile, return the computed value of the assignment.
2234   if (!LHS.isVolatileQualified())
2235     return RHS;
2236 
2237   // Otherwise, reload the value.
2238   return EmitLoadOfLValue(LHS, E->getExprLoc());
2239 }
2240 
2241 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2242     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2243   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2244 
2245   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2246     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2247                                     SanitizerKind::IntegerDivideByZero));
2248   }
2249 
2250   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2251       Ops.Ty->hasSignedIntegerRepresentation()) {
2252     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2253 
2254     llvm::Value *IntMin =
2255       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2256     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2257 
2258     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2259     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2260     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2261     Checks.push_back(
2262         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2263   }
2264 
2265   if (Checks.size() > 0)
2266     EmitBinOpCheck(Checks, Ops);
2267 }
2268 
2269 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2270   {
2271     CodeGenFunction::SanitizerScope SanScope(&CGF);
2272     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2273          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2274         Ops.Ty->isIntegerType()) {
2275       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2276       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2277     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2278                Ops.Ty->isRealFloatingType()) {
2279       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2280       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2281       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2282                      Ops);
2283     }
2284   }
2285 
2286   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2287     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2288     if (CGF.getLangOpts().OpenCL) {
2289       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
2290       llvm::Type *ValTy = Val->getType();
2291       if (ValTy->isFloatTy() ||
2292           (isa<llvm::VectorType>(ValTy) &&
2293            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2294         CGF.SetFPAccuracy(Val, 2.5);
2295     }
2296     return Val;
2297   }
2298   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2299     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2300   else
2301     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2302 }
2303 
2304 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2305   // Rem in C can't be a floating point type: C99 6.5.5p2.
2306   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2307     CodeGenFunction::SanitizerScope SanScope(&CGF);
2308     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2309 
2310     if (Ops.Ty->isIntegerType())
2311       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2312   }
2313 
2314   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2315     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2316   else
2317     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2318 }
2319 
2320 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2321   unsigned IID;
2322   unsigned OpID = 0;
2323 
2324   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2325   switch (Ops.Opcode) {
2326   case BO_Add:
2327   case BO_AddAssign:
2328     OpID = 1;
2329     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2330                      llvm::Intrinsic::uadd_with_overflow;
2331     break;
2332   case BO_Sub:
2333   case BO_SubAssign:
2334     OpID = 2;
2335     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2336                      llvm::Intrinsic::usub_with_overflow;
2337     break;
2338   case BO_Mul:
2339   case BO_MulAssign:
2340     OpID = 3;
2341     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2342                      llvm::Intrinsic::umul_with_overflow;
2343     break;
2344   default:
2345     llvm_unreachable("Unsupported operation for overflow detection");
2346   }
2347   OpID <<= 1;
2348   if (isSigned)
2349     OpID |= 1;
2350 
2351   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2352 
2353   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2354 
2355   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2356   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2357   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2358 
2359   // Handle overflow with llvm.trap if no custom handler has been specified.
2360   const std::string *handlerName =
2361     &CGF.getLangOpts().OverflowHandler;
2362   if (handlerName->empty()) {
2363     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2364     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2365     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2366       CodeGenFunction::SanitizerScope SanScope(&CGF);
2367       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2368       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2369                               : SanitizerKind::UnsignedIntegerOverflow;
2370       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2371     } else
2372       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2373     return result;
2374   }
2375 
2376   // Branch in case of overflow.
2377   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2378   llvm::Function::iterator insertPt = initialBB->getIterator();
2379   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2380                                                       &*std::next(insertPt));
2381   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2382 
2383   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2384 
2385   // If an overflow handler is set, then we want to call it and then use its
2386   // result, if it returns.
2387   Builder.SetInsertPoint(overflowBB);
2388 
2389   // Get the overflow handler.
2390   llvm::Type *Int8Ty = CGF.Int8Ty;
2391   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2392   llvm::FunctionType *handlerTy =
2393       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2394   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2395 
2396   // Sign extend the args to 64-bit, so that we can use the same handler for
2397   // all types of overflow.
2398   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2399   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2400 
2401   // Call the handler with the two arguments, the operation, and the size of
2402   // the result.
2403   llvm::Value *handlerArgs[] = {
2404     lhs,
2405     rhs,
2406     Builder.getInt8(OpID),
2407     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2408   };
2409   llvm::Value *handlerResult =
2410     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2411 
2412   // Truncate the result back to the desired size.
2413   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2414   Builder.CreateBr(continueBB);
2415 
2416   Builder.SetInsertPoint(continueBB);
2417   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2418   phi->addIncoming(result, initialBB);
2419   phi->addIncoming(handlerResult, overflowBB);
2420 
2421   return phi;
2422 }
2423 
2424 /// Emit pointer + index arithmetic.
2425 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2426                                     const BinOpInfo &op,
2427                                     bool isSubtraction) {
2428   // Must have binary (not unary) expr here.  Unary pointer
2429   // increment/decrement doesn't use this path.
2430   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2431 
2432   Value *pointer = op.LHS;
2433   Expr *pointerOperand = expr->getLHS();
2434   Value *index = op.RHS;
2435   Expr *indexOperand = expr->getRHS();
2436 
2437   // In a subtraction, the LHS is always the pointer.
2438   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2439     std::swap(pointer, index);
2440     std::swap(pointerOperand, indexOperand);
2441   }
2442 
2443   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2444   if (width != CGF.PointerWidthInBits) {
2445     // Zero-extend or sign-extend the pointer value according to
2446     // whether the index is signed or not.
2447     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2448     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2449                                       "idx.ext");
2450   }
2451 
2452   // If this is subtraction, negate the index.
2453   if (isSubtraction)
2454     index = CGF.Builder.CreateNeg(index, "idx.neg");
2455 
2456   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2457     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2458                         /*Accessed*/ false);
2459 
2460   const PointerType *pointerType
2461     = pointerOperand->getType()->getAs<PointerType>();
2462   if (!pointerType) {
2463     QualType objectType = pointerOperand->getType()
2464                                         ->castAs<ObjCObjectPointerType>()
2465                                         ->getPointeeType();
2466     llvm::Value *objectSize
2467       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2468 
2469     index = CGF.Builder.CreateMul(index, objectSize);
2470 
2471     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2472     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2473     return CGF.Builder.CreateBitCast(result, pointer->getType());
2474   }
2475 
2476   QualType elementType = pointerType->getPointeeType();
2477   if (const VariableArrayType *vla
2478         = CGF.getContext().getAsVariableArrayType(elementType)) {
2479     // The element count here is the total number of non-VLA elements.
2480     llvm::Value *numElements = CGF.getVLASize(vla).first;
2481 
2482     // Effectively, the multiply by the VLA size is part of the GEP.
2483     // GEP indexes are signed, and scaling an index isn't permitted to
2484     // signed-overflow, so we use the same semantics for our explicit
2485     // multiply.  We suppress this if overflow is not undefined behavior.
2486     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2487       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2488       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2489     } else {
2490       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2491       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2492     }
2493     return pointer;
2494   }
2495 
2496   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2497   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2498   // future proof.
2499   if (elementType->isVoidType() || elementType->isFunctionType()) {
2500     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2501     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2502     return CGF.Builder.CreateBitCast(result, pointer->getType());
2503   }
2504 
2505   if (CGF.getLangOpts().isSignedOverflowDefined())
2506     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2507 
2508   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2509 }
2510 
2511 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2512 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2513 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2514 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2515 // efficient operations.
2516 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2517                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2518                            bool negMul, bool negAdd) {
2519   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2520 
2521   Value *MulOp0 = MulOp->getOperand(0);
2522   Value *MulOp1 = MulOp->getOperand(1);
2523   if (negMul) {
2524     MulOp0 =
2525       Builder.CreateFSub(
2526         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2527         "neg");
2528   } else if (negAdd) {
2529     Addend =
2530       Builder.CreateFSub(
2531         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2532         "neg");
2533   }
2534 
2535   Value *FMulAdd = Builder.CreateCall(
2536       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2537       {MulOp0, MulOp1, Addend});
2538    MulOp->eraseFromParent();
2539 
2540    return FMulAdd;
2541 }
2542 
2543 // Check whether it would be legal to emit an fmuladd intrinsic call to
2544 // represent op and if so, build the fmuladd.
2545 //
2546 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2547 // Does NOT check the type of the operation - it's assumed that this function
2548 // will be called from contexts where it's known that the type is contractable.
2549 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2550                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2551                          bool isSub=false) {
2552 
2553   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2554           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2555          "Only fadd/fsub can be the root of an fmuladd.");
2556 
2557   // Check whether this op is marked as fusable.
2558   if (!op.FPContractable)
2559     return nullptr;
2560 
2561   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2562   // either disabled, or handled entirely by the LLVM backend).
2563   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2564     return nullptr;
2565 
2566   // We have a potentially fusable op. Look for a mul on one of the operands.
2567   // Also, make sure that the mul result isn't used directly. In that case,
2568   // there's no point creating a muladd operation.
2569   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2570     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2571         LHSBinOp->use_empty())
2572       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2573   }
2574   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2575     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2576         RHSBinOp->use_empty())
2577       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2578   }
2579 
2580   return nullptr;
2581 }
2582 
2583 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2584   if (op.LHS->getType()->isPointerTy() ||
2585       op.RHS->getType()->isPointerTy())
2586     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2587 
2588   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2589     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2590     case LangOptions::SOB_Defined:
2591       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2592     case LangOptions::SOB_Undefined:
2593       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2594         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2595       // Fall through.
2596     case LangOptions::SOB_Trapping:
2597       return EmitOverflowCheckedBinOp(op);
2598     }
2599   }
2600 
2601   if (op.Ty->isUnsignedIntegerType() &&
2602       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2603     return EmitOverflowCheckedBinOp(op);
2604 
2605   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2606     // Try to form an fmuladd.
2607     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2608       return FMulAdd;
2609 
2610     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2611   }
2612 
2613   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2614 }
2615 
2616 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2617   // The LHS is always a pointer if either side is.
2618   if (!op.LHS->getType()->isPointerTy()) {
2619     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2620       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2621       case LangOptions::SOB_Defined:
2622         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2623       case LangOptions::SOB_Undefined:
2624         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2625           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2626         // Fall through.
2627       case LangOptions::SOB_Trapping:
2628         return EmitOverflowCheckedBinOp(op);
2629       }
2630     }
2631 
2632     if (op.Ty->isUnsignedIntegerType() &&
2633         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2634       return EmitOverflowCheckedBinOp(op);
2635 
2636     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2637       // Try to form an fmuladd.
2638       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2639         return FMulAdd;
2640       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2641     }
2642 
2643     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2644   }
2645 
2646   // If the RHS is not a pointer, then we have normal pointer
2647   // arithmetic.
2648   if (!op.RHS->getType()->isPointerTy())
2649     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2650 
2651   // Otherwise, this is a pointer subtraction.
2652 
2653   // Do the raw subtraction part.
2654   llvm::Value *LHS
2655     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2656   llvm::Value *RHS
2657     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2658   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2659 
2660   // Okay, figure out the element size.
2661   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2662   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2663 
2664   llvm::Value *divisor = nullptr;
2665 
2666   // For a variable-length array, this is going to be non-constant.
2667   if (const VariableArrayType *vla
2668         = CGF.getContext().getAsVariableArrayType(elementType)) {
2669     llvm::Value *numElements;
2670     std::tie(numElements, elementType) = CGF.getVLASize(vla);
2671 
2672     divisor = numElements;
2673 
2674     // Scale the number of non-VLA elements by the non-VLA element size.
2675     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2676     if (!eltSize.isOne())
2677       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2678 
2679   // For everything elese, we can just compute it, safe in the
2680   // assumption that Sema won't let anything through that we can't
2681   // safely compute the size of.
2682   } else {
2683     CharUnits elementSize;
2684     // Handle GCC extension for pointer arithmetic on void* and
2685     // function pointer types.
2686     if (elementType->isVoidType() || elementType->isFunctionType())
2687       elementSize = CharUnits::One();
2688     else
2689       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2690 
2691     // Don't even emit the divide for element size of 1.
2692     if (elementSize.isOne())
2693       return diffInChars;
2694 
2695     divisor = CGF.CGM.getSize(elementSize);
2696   }
2697 
2698   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2699   // pointer difference in C is only defined in the case where both operands
2700   // are pointing to elements of an array.
2701   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2702 }
2703 
2704 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2705   llvm::IntegerType *Ty;
2706   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2707     Ty = cast<llvm::IntegerType>(VT->getElementType());
2708   else
2709     Ty = cast<llvm::IntegerType>(LHS->getType());
2710   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2711 }
2712 
2713 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2714   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2715   // RHS to the same size as the LHS.
2716   Value *RHS = Ops.RHS;
2717   if (Ops.LHS->getType() != RHS->getType())
2718     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2719 
2720   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
2721                       Ops.Ty->hasSignedIntegerRepresentation();
2722   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
2723   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2724   if (CGF.getLangOpts().OpenCL)
2725     RHS =
2726         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2727   else if ((SanitizeBase || SanitizeExponent) &&
2728            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2729     CodeGenFunction::SanitizerScope SanScope(&CGF);
2730     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
2731     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2732     llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
2733 
2734     if (SanitizeExponent) {
2735       Checks.push_back(
2736           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
2737     }
2738 
2739     if (SanitizeBase) {
2740       // Check whether we are shifting any non-zero bits off the top of the
2741       // integer. We only emit this check if exponent is valid - otherwise
2742       // instructions below will have undefined behavior themselves.
2743       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2744       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2745       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
2746       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
2747       CGF.EmitBlock(CheckShiftBase);
2748       llvm::Value *BitsShiftedOff =
2749         Builder.CreateLShr(Ops.LHS,
2750                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2751                                              /*NUW*/true, /*NSW*/true),
2752                            "shl.check");
2753       if (CGF.getLangOpts().CPlusPlus) {
2754         // In C99, we are not permitted to shift a 1 bit into the sign bit.
2755         // Under C++11's rules, shifting a 1 bit into the sign bit is
2756         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2757         // define signed left shifts, so we use the C99 and C++11 rules there).
2758         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2759         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2760       }
2761       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2762       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2763       CGF.EmitBlock(Cont);
2764       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
2765       BaseCheck->addIncoming(Builder.getTrue(), Orig);
2766       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
2767       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
2768     }
2769 
2770     assert(!Checks.empty());
2771     EmitBinOpCheck(Checks, Ops);
2772   }
2773 
2774   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2775 }
2776 
2777 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2778   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2779   // RHS to the same size as the LHS.
2780   Value *RHS = Ops.RHS;
2781   if (Ops.LHS->getType() != RHS->getType())
2782     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2783 
2784   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2785   if (CGF.getLangOpts().OpenCL)
2786     RHS =
2787         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2788   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
2789            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2790     CodeGenFunction::SanitizerScope SanScope(&CGF);
2791     llvm::Value *Valid =
2792         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
2793     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
2794   }
2795 
2796   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2797     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2798   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2799 }
2800 
2801 enum IntrinsicType { VCMPEQ, VCMPGT };
2802 // return corresponding comparison intrinsic for given vector type
2803 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2804                                         BuiltinType::Kind ElemKind) {
2805   switch (ElemKind) {
2806   default: llvm_unreachable("unexpected element type");
2807   case BuiltinType::Char_U:
2808   case BuiltinType::UChar:
2809     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2810                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2811   case BuiltinType::Char_S:
2812   case BuiltinType::SChar:
2813     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2814                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2815   case BuiltinType::UShort:
2816     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2817                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2818   case BuiltinType::Short:
2819     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2820                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2821   case BuiltinType::UInt:
2822   case BuiltinType::ULong:
2823     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2824                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2825   case BuiltinType::Int:
2826   case BuiltinType::Long:
2827     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2828                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2829   case BuiltinType::Float:
2830     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2831                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2832   }
2833 }
2834 
2835 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
2836                                       llvm::CmpInst::Predicate UICmpOpc,
2837                                       llvm::CmpInst::Predicate SICmpOpc,
2838                                       llvm::CmpInst::Predicate FCmpOpc) {
2839   TestAndClearIgnoreResultAssign();
2840   Value *Result;
2841   QualType LHSTy = E->getLHS()->getType();
2842   QualType RHSTy = E->getRHS()->getType();
2843   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2844     assert(E->getOpcode() == BO_EQ ||
2845            E->getOpcode() == BO_NE);
2846     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2847     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2848     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2849                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2850   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
2851     Value *LHS = Visit(E->getLHS());
2852     Value *RHS = Visit(E->getRHS());
2853 
2854     // If AltiVec, the comparison results in a numeric type, so we use
2855     // intrinsics comparing vectors and giving 0 or 1 as a result
2856     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2857       // constants for mapping CR6 register bits to predicate result
2858       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2859 
2860       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2861 
2862       // in several cases vector arguments order will be reversed
2863       Value *FirstVecArg = LHS,
2864             *SecondVecArg = RHS;
2865 
2866       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2867       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2868       BuiltinType::Kind ElementKind = BTy->getKind();
2869 
2870       switch(E->getOpcode()) {
2871       default: llvm_unreachable("is not a comparison operation");
2872       case BO_EQ:
2873         CR6 = CR6_LT;
2874         ID = GetIntrinsic(VCMPEQ, ElementKind);
2875         break;
2876       case BO_NE:
2877         CR6 = CR6_EQ;
2878         ID = GetIntrinsic(VCMPEQ, ElementKind);
2879         break;
2880       case BO_LT:
2881         CR6 = CR6_LT;
2882         ID = GetIntrinsic(VCMPGT, ElementKind);
2883         std::swap(FirstVecArg, SecondVecArg);
2884         break;
2885       case BO_GT:
2886         CR6 = CR6_LT;
2887         ID = GetIntrinsic(VCMPGT, ElementKind);
2888         break;
2889       case BO_LE:
2890         if (ElementKind == BuiltinType::Float) {
2891           CR6 = CR6_LT;
2892           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2893           std::swap(FirstVecArg, SecondVecArg);
2894         }
2895         else {
2896           CR6 = CR6_EQ;
2897           ID = GetIntrinsic(VCMPGT, ElementKind);
2898         }
2899         break;
2900       case BO_GE:
2901         if (ElementKind == BuiltinType::Float) {
2902           CR6 = CR6_LT;
2903           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2904         }
2905         else {
2906           CR6 = CR6_EQ;
2907           ID = GetIntrinsic(VCMPGT, ElementKind);
2908           std::swap(FirstVecArg, SecondVecArg);
2909         }
2910         break;
2911       }
2912 
2913       Value *CR6Param = Builder.getInt32(CR6);
2914       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2915       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
2916       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2917                                   E->getExprLoc());
2918     }
2919 
2920     if (LHS->getType()->isFPOrFPVectorTy()) {
2921       Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
2922     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2923       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
2924     } else {
2925       // Unsigned integers and pointers.
2926       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
2927     }
2928 
2929     // If this is a vector comparison, sign extend the result to the appropriate
2930     // vector integer type and return it (don't convert to bool).
2931     if (LHSTy->isVectorType())
2932       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2933 
2934   } else {
2935     // Complex Comparison: can only be an equality comparison.
2936     CodeGenFunction::ComplexPairTy LHS, RHS;
2937     QualType CETy;
2938     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
2939       LHS = CGF.EmitComplexExpr(E->getLHS());
2940       CETy = CTy->getElementType();
2941     } else {
2942       LHS.first = Visit(E->getLHS());
2943       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
2944       CETy = LHSTy;
2945     }
2946     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
2947       RHS = CGF.EmitComplexExpr(E->getRHS());
2948       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
2949                                                      CTy->getElementType()) &&
2950              "The element types must always match.");
2951       (void)CTy;
2952     } else {
2953       RHS.first = Visit(E->getRHS());
2954       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
2955       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
2956              "The element types must always match.");
2957     }
2958 
2959     Value *ResultR, *ResultI;
2960     if (CETy->isRealFloatingType()) {
2961       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
2962       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
2963     } else {
2964       // Complex comparisons can only be equality comparisons.  As such, signed
2965       // and unsigned opcodes are the same.
2966       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
2967       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
2968     }
2969 
2970     if (E->getOpcode() == BO_EQ) {
2971       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2972     } else {
2973       assert(E->getOpcode() == BO_NE &&
2974              "Complex comparison other than == or != ?");
2975       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2976     }
2977   }
2978 
2979   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2980                               E->getExprLoc());
2981 }
2982 
2983 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2984   bool Ignore = TestAndClearIgnoreResultAssign();
2985 
2986   Value *RHS;
2987   LValue LHS;
2988 
2989   switch (E->getLHS()->getType().getObjCLifetime()) {
2990   case Qualifiers::OCL_Strong:
2991     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2992     break;
2993 
2994   case Qualifiers::OCL_Autoreleasing:
2995     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
2996     break;
2997 
2998   case Qualifiers::OCL_ExplicitNone:
2999     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3000     break;
3001 
3002   case Qualifiers::OCL_Weak:
3003     RHS = Visit(E->getRHS());
3004     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3005     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3006     break;
3007 
3008   case Qualifiers::OCL_None:
3009     // __block variables need to have the rhs evaluated first, plus
3010     // this should improve codegen just a little.
3011     RHS = Visit(E->getRHS());
3012     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3013 
3014     // Store the value into the LHS.  Bit-fields are handled specially
3015     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3016     // 'An assignment expression has the value of the left operand after
3017     // the assignment...'.
3018     if (LHS.isBitField())
3019       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3020     else
3021       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3022   }
3023 
3024   // If the result is clearly ignored, return now.
3025   if (Ignore)
3026     return nullptr;
3027 
3028   // The result of an assignment in C is the assigned r-value.
3029   if (!CGF.getLangOpts().CPlusPlus)
3030     return RHS;
3031 
3032   // If the lvalue is non-volatile, return the computed value of the assignment.
3033   if (!LHS.isVolatileQualified())
3034     return RHS;
3035 
3036   // Otherwise, reload the value.
3037   return EmitLoadOfLValue(LHS, E->getExprLoc());
3038 }
3039 
3040 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3041   // Perform vector logical and on comparisons with zero vectors.
3042   if (E->getType()->isVectorType()) {
3043     CGF.incrementProfileCounter(E);
3044 
3045     Value *LHS = Visit(E->getLHS());
3046     Value *RHS = Visit(E->getRHS());
3047     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3048     if (LHS->getType()->isFPOrFPVectorTy()) {
3049       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3050       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3051     } else {
3052       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3053       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3054     }
3055     Value *And = Builder.CreateAnd(LHS, RHS);
3056     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3057   }
3058 
3059   llvm::Type *ResTy = ConvertType(E->getType());
3060 
3061   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3062   // If we have 1 && X, just emit X without inserting the control flow.
3063   bool LHSCondVal;
3064   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3065     if (LHSCondVal) { // If we have 1 && X, just emit X.
3066       CGF.incrementProfileCounter(E);
3067 
3068       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3069       // ZExt result to int or bool.
3070       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3071     }
3072 
3073     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3074     if (!CGF.ContainsLabel(E->getRHS()))
3075       return llvm::Constant::getNullValue(ResTy);
3076   }
3077 
3078   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3079   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3080 
3081   CodeGenFunction::ConditionalEvaluation eval(CGF);
3082 
3083   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3084   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3085                            CGF.getProfileCount(E->getRHS()));
3086 
3087   // Any edges into the ContBlock are now from an (indeterminate number of)
3088   // edges from this first condition.  All of these values will be false.  Start
3089   // setting up the PHI node in the Cont Block for this.
3090   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3091                                             "", ContBlock);
3092   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3093        PI != PE; ++PI)
3094     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3095 
3096   eval.begin(CGF);
3097   CGF.EmitBlock(RHSBlock);
3098   CGF.incrementProfileCounter(E);
3099   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3100   eval.end(CGF);
3101 
3102   // Reaquire the RHS block, as there may be subblocks inserted.
3103   RHSBlock = Builder.GetInsertBlock();
3104 
3105   // Emit an unconditional branch from this block to ContBlock.
3106   {
3107     // There is no need to emit line number for unconditional branch.
3108     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3109     CGF.EmitBlock(ContBlock);
3110   }
3111   // Insert an entry into the phi node for the edge with the value of RHSCond.
3112   PN->addIncoming(RHSCond, RHSBlock);
3113 
3114   // ZExt result to int.
3115   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3116 }
3117 
3118 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3119   // Perform vector logical or on comparisons with zero vectors.
3120   if (E->getType()->isVectorType()) {
3121     CGF.incrementProfileCounter(E);
3122 
3123     Value *LHS = Visit(E->getLHS());
3124     Value *RHS = Visit(E->getRHS());
3125     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3126     if (LHS->getType()->isFPOrFPVectorTy()) {
3127       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3128       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3129     } else {
3130       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3131       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3132     }
3133     Value *Or = Builder.CreateOr(LHS, RHS);
3134     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3135   }
3136 
3137   llvm::Type *ResTy = ConvertType(E->getType());
3138 
3139   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3140   // If we have 0 || X, just emit X without inserting the control flow.
3141   bool LHSCondVal;
3142   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3143     if (!LHSCondVal) { // If we have 0 || X, just emit X.
3144       CGF.incrementProfileCounter(E);
3145 
3146       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3147       // ZExt result to int or bool.
3148       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3149     }
3150 
3151     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3152     if (!CGF.ContainsLabel(E->getRHS()))
3153       return llvm::ConstantInt::get(ResTy, 1);
3154   }
3155 
3156   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3157   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3158 
3159   CodeGenFunction::ConditionalEvaluation eval(CGF);
3160 
3161   // Branch on the LHS first.  If it is true, go to the success (cont) block.
3162   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3163                            CGF.getCurrentProfileCount() -
3164                                CGF.getProfileCount(E->getRHS()));
3165 
3166   // Any edges into the ContBlock are now from an (indeterminate number of)
3167   // edges from this first condition.  All of these values will be true.  Start
3168   // setting up the PHI node in the Cont Block for this.
3169   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3170                                             "", ContBlock);
3171   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3172        PI != PE; ++PI)
3173     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3174 
3175   eval.begin(CGF);
3176 
3177   // Emit the RHS condition as a bool value.
3178   CGF.EmitBlock(RHSBlock);
3179   CGF.incrementProfileCounter(E);
3180   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3181 
3182   eval.end(CGF);
3183 
3184   // Reaquire the RHS block, as there may be subblocks inserted.
3185   RHSBlock = Builder.GetInsertBlock();
3186 
3187   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3188   // into the phi node for the edge with the value of RHSCond.
3189   CGF.EmitBlock(ContBlock);
3190   PN->addIncoming(RHSCond, RHSBlock);
3191 
3192   // ZExt result to int.
3193   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3194 }
3195 
3196 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3197   CGF.EmitIgnoredExpr(E->getLHS());
3198   CGF.EnsureInsertPoint();
3199   return Visit(E->getRHS());
3200 }
3201 
3202 //===----------------------------------------------------------------------===//
3203 //                             Other Operators
3204 //===----------------------------------------------------------------------===//
3205 
3206 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3207 /// expression is cheap enough and side-effect-free enough to evaluate
3208 /// unconditionally instead of conditionally.  This is used to convert control
3209 /// flow into selects in some cases.
3210 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3211                                                    CodeGenFunction &CGF) {
3212   // Anything that is an integer or floating point constant is fine.
3213   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3214 
3215   // Even non-volatile automatic variables can't be evaluated unconditionally.
3216   // Referencing a thread_local may cause non-trivial initialization work to
3217   // occur. If we're inside a lambda and one of the variables is from the scope
3218   // outside the lambda, that function may have returned already. Reading its
3219   // locals is a bad idea. Also, these reads may introduce races there didn't
3220   // exist in the source-level program.
3221 }
3222 
3223 
3224 Value *ScalarExprEmitter::
3225 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3226   TestAndClearIgnoreResultAssign();
3227 
3228   // Bind the common expression if necessary.
3229   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3230 
3231   Expr *condExpr = E->getCond();
3232   Expr *lhsExpr = E->getTrueExpr();
3233   Expr *rhsExpr = E->getFalseExpr();
3234 
3235   // If the condition constant folds and can be elided, try to avoid emitting
3236   // the condition and the dead arm.
3237   bool CondExprBool;
3238   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3239     Expr *live = lhsExpr, *dead = rhsExpr;
3240     if (!CondExprBool) std::swap(live, dead);
3241 
3242     // If the dead side doesn't have labels we need, just emit the Live part.
3243     if (!CGF.ContainsLabel(dead)) {
3244       if (CondExprBool)
3245         CGF.incrementProfileCounter(E);
3246       Value *Result = Visit(live);
3247 
3248       // If the live part is a throw expression, it acts like it has a void
3249       // type, so evaluating it returns a null Value*.  However, a conditional
3250       // with non-void type must return a non-null Value*.
3251       if (!Result && !E->getType()->isVoidType())
3252         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3253 
3254       return Result;
3255     }
3256   }
3257 
3258   // OpenCL: If the condition is a vector, we can treat this condition like
3259   // the select function.
3260   if (CGF.getLangOpts().OpenCL
3261       && condExpr->getType()->isVectorType()) {
3262     CGF.incrementProfileCounter(E);
3263 
3264     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3265     llvm::Value *LHS = Visit(lhsExpr);
3266     llvm::Value *RHS = Visit(rhsExpr);
3267 
3268     llvm::Type *condType = ConvertType(condExpr->getType());
3269     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3270 
3271     unsigned numElem = vecTy->getNumElements();
3272     llvm::Type *elemType = vecTy->getElementType();
3273 
3274     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3275     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3276     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3277                                           llvm::VectorType::get(elemType,
3278                                                                 numElem),
3279                                           "sext");
3280     llvm::Value *tmp2 = Builder.CreateNot(tmp);
3281 
3282     // Cast float to int to perform ANDs if necessary.
3283     llvm::Value *RHSTmp = RHS;
3284     llvm::Value *LHSTmp = LHS;
3285     bool wasCast = false;
3286     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3287     if (rhsVTy->getElementType()->isFloatingPointTy()) {
3288       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3289       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3290       wasCast = true;
3291     }
3292 
3293     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3294     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3295     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3296     if (wasCast)
3297       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3298 
3299     return tmp5;
3300   }
3301 
3302   // If this is a really simple expression (like x ? 4 : 5), emit this as a
3303   // select instead of as control flow.  We can only do this if it is cheap and
3304   // safe to evaluate the LHS and RHS unconditionally.
3305   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3306       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3307     CGF.incrementProfileCounter(E);
3308 
3309     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3310     llvm::Value *LHS = Visit(lhsExpr);
3311     llvm::Value *RHS = Visit(rhsExpr);
3312     if (!LHS) {
3313       // If the conditional has void type, make sure we return a null Value*.
3314       assert(!RHS && "LHS and RHS types must match");
3315       return nullptr;
3316     }
3317     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3318   }
3319 
3320   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3321   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3322   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3323 
3324   CodeGenFunction::ConditionalEvaluation eval(CGF);
3325   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3326                            CGF.getProfileCount(lhsExpr));
3327 
3328   CGF.EmitBlock(LHSBlock);
3329   CGF.incrementProfileCounter(E);
3330   eval.begin(CGF);
3331   Value *LHS = Visit(lhsExpr);
3332   eval.end(CGF);
3333 
3334   LHSBlock = Builder.GetInsertBlock();
3335   Builder.CreateBr(ContBlock);
3336 
3337   CGF.EmitBlock(RHSBlock);
3338   eval.begin(CGF);
3339   Value *RHS = Visit(rhsExpr);
3340   eval.end(CGF);
3341 
3342   RHSBlock = Builder.GetInsertBlock();
3343   CGF.EmitBlock(ContBlock);
3344 
3345   // If the LHS or RHS is a throw expression, it will be legitimately null.
3346   if (!LHS)
3347     return RHS;
3348   if (!RHS)
3349     return LHS;
3350 
3351   // Create a PHI node for the real part.
3352   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3353   PN->addIncoming(LHS, LHSBlock);
3354   PN->addIncoming(RHS, RHSBlock);
3355   return PN;
3356 }
3357 
3358 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3359   return Visit(E->getChosenSubExpr());
3360 }
3361 
3362 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3363   QualType Ty = VE->getType();
3364 
3365   if (Ty->isVariablyModifiedType())
3366     CGF.EmitVariablyModifiedType(Ty);
3367 
3368   Address ArgValue = Address::invalid();
3369   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
3370 
3371   llvm::Type *ArgTy = ConvertType(VE->getType());
3372 
3373   // If EmitVAArg fails, emit an error.
3374   if (!ArgPtr.isValid()) {
3375     CGF.ErrorUnsupported(VE, "va_arg expression");
3376     return llvm::UndefValue::get(ArgTy);
3377   }
3378 
3379   // FIXME Volatility.
3380   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3381 
3382   // If EmitVAArg promoted the type, we must truncate it.
3383   if (ArgTy != Val->getType()) {
3384     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3385       Val = Builder.CreateIntToPtr(Val, ArgTy);
3386     else
3387       Val = Builder.CreateTrunc(Val, ArgTy);
3388   }
3389 
3390   return Val;
3391 }
3392 
3393 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3394   return CGF.EmitBlockLiteral(block);
3395 }
3396 
3397 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3398   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3399   llvm::Type *DstTy = ConvertType(E->getType());
3400 
3401   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
3402   // a shuffle vector instead of a bitcast.
3403   llvm::Type *SrcTy = Src->getType();
3404   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
3405     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
3406     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
3407     if ((numElementsDst == 3 && numElementsSrc == 4)
3408         || (numElementsDst == 4 && numElementsSrc == 3)) {
3409 
3410 
3411       // In the case of going from int4->float3, a bitcast is needed before
3412       // doing a shuffle.
3413       llvm::Type *srcElemTy =
3414       cast<llvm::VectorType>(SrcTy)->getElementType();
3415       llvm::Type *dstElemTy =
3416       cast<llvm::VectorType>(DstTy)->getElementType();
3417 
3418       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
3419           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
3420         // Create a float type of the same size as the source or destination.
3421         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
3422                                                                  numElementsSrc);
3423 
3424         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
3425       }
3426 
3427       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3428 
3429       SmallVector<llvm::Constant*, 3> Args;
3430       Args.push_back(Builder.getInt32(0));
3431       Args.push_back(Builder.getInt32(1));
3432       Args.push_back(Builder.getInt32(2));
3433 
3434       if (numElementsDst == 4)
3435         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3436 
3437       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3438 
3439       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
3440     }
3441   }
3442 
3443   return Builder.CreateBitCast(Src, DstTy, "astype");
3444 }
3445 
3446 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3447   return CGF.EmitAtomicExpr(E).getScalarVal();
3448 }
3449 
3450 //===----------------------------------------------------------------------===//
3451 //                         Entry Point into this File
3452 //===----------------------------------------------------------------------===//
3453 
3454 /// Emit the computation of the specified expression of scalar type, ignoring
3455 /// the result.
3456 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3457   assert(E && hasScalarEvaluationKind(E->getType()) &&
3458          "Invalid scalar expression to emit");
3459 
3460   return ScalarExprEmitter(*this, IgnoreResultAssign)
3461       .Visit(const_cast<Expr *>(E));
3462 }
3463 
3464 /// Emit a conversion from the specified type to the specified destination type,
3465 /// both of which are LLVM scalar types.
3466 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3467                                              QualType DstTy,
3468                                              SourceLocation Loc) {
3469   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3470          "Invalid scalar expression to emit");
3471   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
3472 }
3473 
3474 /// Emit a conversion from the specified complex type to the specified
3475 /// destination type, where the destination type is an LLVM scalar type.
3476 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3477                                                       QualType SrcTy,
3478                                                       QualType DstTy,
3479                                                       SourceLocation Loc) {
3480   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3481          "Invalid complex -> scalar conversion");
3482   return ScalarExprEmitter(*this)
3483       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
3484 }
3485 
3486 
3487 llvm::Value *CodeGenFunction::
3488 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3489                         bool isInc, bool isPre) {
3490   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3491 }
3492 
3493 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3494   // object->isa or (*object).isa
3495   // Generate code as for: *(Class*)object
3496 
3497   Expr *BaseExpr = E->getBase();
3498   Address Addr = Address::invalid();
3499   if (BaseExpr->isRValue()) {
3500     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
3501   } else {
3502     Addr = EmitLValue(BaseExpr).getAddress();
3503   }
3504 
3505   // Cast the address to Class*.
3506   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
3507   return MakeAddrLValue(Addr, E->getType());
3508 }
3509 
3510 
3511 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3512                                             const CompoundAssignOperator *E) {
3513   ScalarExprEmitter Scalar(*this);
3514   Value *Result = nullptr;
3515   switch (E->getOpcode()) {
3516 #define COMPOUND_OP(Op)                                                       \
3517     case BO_##Op##Assign:                                                     \
3518       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3519                                              Result)
3520   COMPOUND_OP(Mul);
3521   COMPOUND_OP(Div);
3522   COMPOUND_OP(Rem);
3523   COMPOUND_OP(Add);
3524   COMPOUND_OP(Sub);
3525   COMPOUND_OP(Shl);
3526   COMPOUND_OP(Shr);
3527   COMPOUND_OP(And);
3528   COMPOUND_OP(Xor);
3529   COMPOUND_OP(Or);
3530 #undef COMPOUND_OP
3531 
3532   case BO_PtrMemD:
3533   case BO_PtrMemI:
3534   case BO_Mul:
3535   case BO_Div:
3536   case BO_Rem:
3537   case BO_Add:
3538   case BO_Sub:
3539   case BO_Shl:
3540   case BO_Shr:
3541   case BO_LT:
3542   case BO_GT:
3543   case BO_LE:
3544   case BO_GE:
3545   case BO_EQ:
3546   case BO_NE:
3547   case BO_And:
3548   case BO_Xor:
3549   case BO_Or:
3550   case BO_LAnd:
3551   case BO_LOr:
3552   case BO_Assign:
3553   case BO_Comma:
3554     llvm_unreachable("Not valid compound assignment operators");
3555   }
3556 
3557   llvm_unreachable("Unhandled compound assignment operator");
3558 }
3559