1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/FixedPoint.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GetElementPtrTypeIterator.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/IntrinsicsPowerPC.h"
40 #include "llvm/IR/Module.h"
41 #include <cstdarg>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 using llvm::Value;
46 
47 //===----------------------------------------------------------------------===//
48 //                         Scalar Expression Emitter
49 //===----------------------------------------------------------------------===//
50 
51 namespace {
52 
53 /// Determine whether the given binary operation may overflow.
54 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
55 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
56 /// the returned overflow check is precise. The returned value is 'true' for
57 /// all other opcodes, to be conservative.
58 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
59                              BinaryOperator::Opcode Opcode, bool Signed,
60                              llvm::APInt &Result) {
61   // Assume overflow is possible, unless we can prove otherwise.
62   bool Overflow = true;
63   const auto &LHSAP = LHS->getValue();
64   const auto &RHSAP = RHS->getValue();
65   if (Opcode == BO_Add) {
66     if (Signed)
67       Result = LHSAP.sadd_ov(RHSAP, Overflow);
68     else
69       Result = LHSAP.uadd_ov(RHSAP, Overflow);
70   } else if (Opcode == BO_Sub) {
71     if (Signed)
72       Result = LHSAP.ssub_ov(RHSAP, Overflow);
73     else
74       Result = LHSAP.usub_ov(RHSAP, Overflow);
75   } else if (Opcode == BO_Mul) {
76     if (Signed)
77       Result = LHSAP.smul_ov(RHSAP, Overflow);
78     else
79       Result = LHSAP.umul_ov(RHSAP, Overflow);
80   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
81     if (Signed && !RHS->isZero())
82       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
83     else
84       return false;
85   }
86   return Overflow;
87 }
88 
89 struct BinOpInfo {
90   Value *LHS;
91   Value *RHS;
92   QualType Ty;  // Computation Type.
93   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
94   FPOptions FPFeatures;
95   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
96 
97   /// Check if the binop can result in integer overflow.
98   bool mayHaveIntegerOverflow() const {
99     // Without constant input, we can't rule out overflow.
100     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
101     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
102     if (!LHSCI || !RHSCI)
103       return true;
104 
105     llvm::APInt Result;
106     return ::mayHaveIntegerOverflow(
107         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
108   }
109 
110   /// Check if the binop computes a division or a remainder.
111   bool isDivremOp() const {
112     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
113            Opcode == BO_RemAssign;
114   }
115 
116   /// Check if the binop can result in an integer division by zero.
117   bool mayHaveIntegerDivisionByZero() const {
118     if (isDivremOp())
119       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
120         return CI->isZero();
121     return true;
122   }
123 
124   /// Check if the binop can result in a float division by zero.
125   bool mayHaveFloatDivisionByZero() const {
126     if (isDivremOp())
127       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
128         return CFP->isZero();
129     return true;
130   }
131 
132   /// Check if either operand is a fixed point type or integer type, with at
133   /// least one being a fixed point type. In any case, this
134   /// operation did not follow usual arithmetic conversion and both operands may
135   /// not be the same.
136   bool isFixedPointBinOp() const {
137     // We cannot simply check the result type since comparison operations return
138     // an int.
139     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
140       QualType LHSType = BinOp->getLHS()->getType();
141       QualType RHSType = BinOp->getRHS()->getType();
142       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
143     }
144     return false;
145   }
146 };
147 
148 static bool MustVisitNullValue(const Expr *E) {
149   // If a null pointer expression's type is the C++0x nullptr_t, then
150   // it's not necessarily a simple constant and it must be evaluated
151   // for its potential side effects.
152   return E->getType()->isNullPtrType();
153 }
154 
155 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
156 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
157                                                         const Expr *E) {
158   const Expr *Base = E->IgnoreImpCasts();
159   if (E == Base)
160     return llvm::None;
161 
162   QualType BaseTy = Base->getType();
163   if (!BaseTy->isPromotableIntegerType() ||
164       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
165     return llvm::None;
166 
167   return BaseTy;
168 }
169 
170 /// Check if \p E is a widened promoted integer.
171 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
172   return getUnwidenedIntegerType(Ctx, E).hasValue();
173 }
174 
175 /// Check if we can skip the overflow check for \p Op.
176 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
177   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
178          "Expected a unary or binary operator");
179 
180   // If the binop has constant inputs and we can prove there is no overflow,
181   // we can elide the overflow check.
182   if (!Op.mayHaveIntegerOverflow())
183     return true;
184 
185   // If a unary op has a widened operand, the op cannot overflow.
186   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
187     return !UO->canOverflow();
188 
189   // We usually don't need overflow checks for binops with widened operands.
190   // Multiplication with promoted unsigned operands is a special case.
191   const auto *BO = cast<BinaryOperator>(Op.E);
192   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
193   if (!OptionalLHSTy)
194     return false;
195 
196   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
197   if (!OptionalRHSTy)
198     return false;
199 
200   QualType LHSTy = *OptionalLHSTy;
201   QualType RHSTy = *OptionalRHSTy;
202 
203   // This is the simple case: binops without unsigned multiplication, and with
204   // widened operands. No overflow check is needed here.
205   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
206       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
207     return true;
208 
209   // For unsigned multiplication the overflow check can be elided if either one
210   // of the unpromoted types are less than half the size of the promoted type.
211   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
212   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
213          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
214 }
215 
216 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
217 static void updateFastMathFlags(llvm::FastMathFlags &FMF,
218                                 FPOptions FPFeatures) {
219   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
220 }
221 
222 /// Propagate fast-math flags from \p Op to the instruction in \p V.
223 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
224   if (auto *I = dyn_cast<llvm::Instruction>(V)) {
225     llvm::FastMathFlags FMF = I->getFastMathFlags();
226     updateFastMathFlags(FMF, Op.FPFeatures);
227     I->setFastMathFlags(FMF);
228   }
229   return V;
230 }
231 
232 class ScalarExprEmitter
233   : public StmtVisitor<ScalarExprEmitter, Value*> {
234   CodeGenFunction &CGF;
235   CGBuilderTy &Builder;
236   bool IgnoreResultAssign;
237   llvm::LLVMContext &VMContext;
238 public:
239 
240   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
241     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
242       VMContext(cgf.getLLVMContext()) {
243   }
244 
245   //===--------------------------------------------------------------------===//
246   //                               Utilities
247   //===--------------------------------------------------------------------===//
248 
249   bool TestAndClearIgnoreResultAssign() {
250     bool I = IgnoreResultAssign;
251     IgnoreResultAssign = false;
252     return I;
253   }
254 
255   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
256   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
257   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
258     return CGF.EmitCheckedLValue(E, TCK);
259   }
260 
261   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
262                       const BinOpInfo &Info);
263 
264   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
265     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
266   }
267 
268   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
269     const AlignValueAttr *AVAttr = nullptr;
270     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
271       const ValueDecl *VD = DRE->getDecl();
272 
273       if (VD->getType()->isReferenceType()) {
274         if (const auto *TTy =
275             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
276           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
277       } else {
278         // Assumptions for function parameters are emitted at the start of the
279         // function, so there is no need to repeat that here,
280         // unless the alignment-assumption sanitizer is enabled,
281         // then we prefer the assumption over alignment attribute
282         // on IR function param.
283         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
284           return;
285 
286         AVAttr = VD->getAttr<AlignValueAttr>();
287       }
288     }
289 
290     if (!AVAttr)
291       if (const auto *TTy =
292           dyn_cast<TypedefType>(E->getType()))
293         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
294 
295     if (!AVAttr)
296       return;
297 
298     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
299     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
300     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
301   }
302 
303   /// EmitLoadOfLValue - Given an expression with complex type that represents a
304   /// value l-value, this method emits the address of the l-value, then loads
305   /// and returns the result.
306   Value *EmitLoadOfLValue(const Expr *E) {
307     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
308                                 E->getExprLoc());
309 
310     EmitLValueAlignmentAssumption(E, V);
311     return V;
312   }
313 
314   /// EmitConversionToBool - Convert the specified expression value to a
315   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
316   Value *EmitConversionToBool(Value *Src, QualType DstTy);
317 
318   /// Emit a check that a conversion from a floating-point type does not
319   /// overflow.
320   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
321                                 Value *Src, QualType SrcType, QualType DstType,
322                                 llvm::Type *DstTy, SourceLocation Loc);
323 
324   /// Known implicit conversion check kinds.
325   /// Keep in sync with the enum of the same name in ubsan_handlers.h
326   enum ImplicitConversionCheckKind : unsigned char {
327     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
328     ICCK_UnsignedIntegerTruncation = 1,
329     ICCK_SignedIntegerTruncation = 2,
330     ICCK_IntegerSignChange = 3,
331     ICCK_SignedIntegerTruncationOrSignChange = 4,
332   };
333 
334   /// Emit a check that an [implicit] truncation of an integer  does not
335   /// discard any bits. It is not UB, so we use the value after truncation.
336   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
337                                   QualType DstType, SourceLocation Loc);
338 
339   /// Emit a check that an [implicit] conversion of an integer does not change
340   /// the sign of the value. It is not UB, so we use the value after conversion.
341   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
342   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
343                                   QualType DstType, SourceLocation Loc);
344 
345   /// Emit a conversion from the specified type to the specified destination
346   /// type, both of which are LLVM scalar types.
347   struct ScalarConversionOpts {
348     bool TreatBooleanAsSigned;
349     bool EmitImplicitIntegerTruncationChecks;
350     bool EmitImplicitIntegerSignChangeChecks;
351 
352     ScalarConversionOpts()
353         : TreatBooleanAsSigned(false),
354           EmitImplicitIntegerTruncationChecks(false),
355           EmitImplicitIntegerSignChangeChecks(false) {}
356 
357     ScalarConversionOpts(clang::SanitizerSet SanOpts)
358         : TreatBooleanAsSigned(false),
359           EmitImplicitIntegerTruncationChecks(
360               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
361           EmitImplicitIntegerSignChangeChecks(
362               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
363   };
364   Value *
365   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
366                        SourceLocation Loc,
367                        ScalarConversionOpts Opts = ScalarConversionOpts());
368 
369   /// Convert between either a fixed point and other fixed point or fixed point
370   /// and an integer.
371   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
372                                   SourceLocation Loc);
373   Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema,
374                                   FixedPointSemantics &DstFixedSema,
375                                   SourceLocation Loc,
376                                   bool DstIsInteger = false);
377 
378   /// Emit a conversion from the specified complex type to the specified
379   /// destination type, where the destination type is an LLVM scalar type.
380   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
381                                        QualType SrcTy, QualType DstTy,
382                                        SourceLocation Loc);
383 
384   /// EmitNullValue - Emit a value that corresponds to null for the given type.
385   Value *EmitNullValue(QualType Ty);
386 
387   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
388   Value *EmitFloatToBoolConversion(Value *V) {
389     // Compare against 0.0 for fp scalars.
390     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
391     return Builder.CreateFCmpUNE(V, Zero, "tobool");
392   }
393 
394   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
395   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
396     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
397 
398     return Builder.CreateICmpNE(V, Zero, "tobool");
399   }
400 
401   Value *EmitIntToBoolConversion(Value *V) {
402     // Because of the type rules of C, we often end up computing a
403     // logical value, then zero extending it to int, then wanting it
404     // as a logical value again.  Optimize this common case.
405     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
406       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
407         Value *Result = ZI->getOperand(0);
408         // If there aren't any more uses, zap the instruction to save space.
409         // Note that there can be more uses, for example if this
410         // is the result of an assignment.
411         if (ZI->use_empty())
412           ZI->eraseFromParent();
413         return Result;
414       }
415     }
416 
417     return Builder.CreateIsNotNull(V, "tobool");
418   }
419 
420   //===--------------------------------------------------------------------===//
421   //                            Visitor Methods
422   //===--------------------------------------------------------------------===//
423 
424   Value *Visit(Expr *E) {
425     ApplyDebugLocation DL(CGF, E);
426     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
427   }
428 
429   Value *VisitStmt(Stmt *S) {
430     S->dump(CGF.getContext().getSourceManager());
431     llvm_unreachable("Stmt can't have complex result type!");
432   }
433   Value *VisitExpr(Expr *S);
434 
435   Value *VisitConstantExpr(ConstantExpr *E) {
436     return Visit(E->getSubExpr());
437   }
438   Value *VisitParenExpr(ParenExpr *PE) {
439     return Visit(PE->getSubExpr());
440   }
441   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
442     return Visit(E->getReplacement());
443   }
444   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
445     return Visit(GE->getResultExpr());
446   }
447   Value *VisitCoawaitExpr(CoawaitExpr *S) {
448     return CGF.EmitCoawaitExpr(*S).getScalarVal();
449   }
450   Value *VisitCoyieldExpr(CoyieldExpr *S) {
451     return CGF.EmitCoyieldExpr(*S).getScalarVal();
452   }
453   Value *VisitUnaryCoawait(const UnaryOperator *E) {
454     return Visit(E->getSubExpr());
455   }
456 
457   // Leaves.
458   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
459     return Builder.getInt(E->getValue());
460   }
461   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
462     return Builder.getInt(E->getValue());
463   }
464   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
465     return llvm::ConstantFP::get(VMContext, E->getValue());
466   }
467   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
468     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
469   }
470   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
471     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
472   }
473   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
474     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
475   }
476   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
477     return EmitNullValue(E->getType());
478   }
479   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
480     return EmitNullValue(E->getType());
481   }
482   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
483   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
484   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
485     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
486     return Builder.CreateBitCast(V, ConvertType(E->getType()));
487   }
488 
489   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
490     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
491   }
492 
493   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
494     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
495   }
496 
497   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
498     if (E->isGLValue())
499       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
500                               E->getExprLoc());
501 
502     // Otherwise, assume the mapping is the scalar directly.
503     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
504   }
505 
506   // l-values.
507   Value *VisitDeclRefExpr(DeclRefExpr *E) {
508     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
509       return CGF.emitScalarConstant(Constant, E);
510     return EmitLoadOfLValue(E);
511   }
512 
513   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
514     return CGF.EmitObjCSelectorExpr(E);
515   }
516   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
517     return CGF.EmitObjCProtocolExpr(E);
518   }
519   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
520     return EmitLoadOfLValue(E);
521   }
522   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
523     if (E->getMethodDecl() &&
524         E->getMethodDecl()->getReturnType()->isReferenceType())
525       return EmitLoadOfLValue(E);
526     return CGF.EmitObjCMessageExpr(E).getScalarVal();
527   }
528 
529   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
530     LValue LV = CGF.EmitObjCIsaExpr(E);
531     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
532     return V;
533   }
534 
535   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
536     VersionTuple Version = E->getVersion();
537 
538     // If we're checking for a platform older than our minimum deployment
539     // target, we can fold the check away.
540     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
541       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
542 
543     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
544     llvm::Value *Args[] = {
545         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
546         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
547         llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
548     };
549 
550     return CGF.EmitBuiltinAvailable(Args);
551   }
552 
553   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
554   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
555   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
556   Value *VisitMemberExpr(MemberExpr *E);
557   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
558   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
559     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
560     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
561     // literals aren't l-values in C++. We do so simply because that's the
562     // cleanest way to handle compound literals in C++.
563     // See the discussion here: https://reviews.llvm.org/D64464
564     return EmitLoadOfLValue(E);
565   }
566 
567   Value *VisitInitListExpr(InitListExpr *E);
568 
569   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
570     assert(CGF.getArrayInitIndex() &&
571            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
572     return CGF.getArrayInitIndex();
573   }
574 
575   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
576     return EmitNullValue(E->getType());
577   }
578   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
579     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
580     return VisitCastExpr(E);
581   }
582   Value *VisitCastExpr(CastExpr *E);
583 
584   Value *VisitCallExpr(const CallExpr *E) {
585     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
586       return EmitLoadOfLValue(E);
587 
588     Value *V = CGF.EmitCallExpr(E).getScalarVal();
589 
590     EmitLValueAlignmentAssumption(E, V);
591     return V;
592   }
593 
594   Value *VisitStmtExpr(const StmtExpr *E);
595 
596   // Unary Operators.
597   Value *VisitUnaryPostDec(const UnaryOperator *E) {
598     LValue LV = EmitLValue(E->getSubExpr());
599     return EmitScalarPrePostIncDec(E, LV, false, false);
600   }
601   Value *VisitUnaryPostInc(const UnaryOperator *E) {
602     LValue LV = EmitLValue(E->getSubExpr());
603     return EmitScalarPrePostIncDec(E, LV, true, false);
604   }
605   Value *VisitUnaryPreDec(const UnaryOperator *E) {
606     LValue LV = EmitLValue(E->getSubExpr());
607     return EmitScalarPrePostIncDec(E, LV, false, true);
608   }
609   Value *VisitUnaryPreInc(const UnaryOperator *E) {
610     LValue LV = EmitLValue(E->getSubExpr());
611     return EmitScalarPrePostIncDec(E, LV, true, true);
612   }
613 
614   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
615                                                   llvm::Value *InVal,
616                                                   bool IsInc);
617 
618   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
619                                        bool isInc, bool isPre);
620 
621 
622   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
623     if (isa<MemberPointerType>(E->getType())) // never sugared
624       return CGF.CGM.getMemberPointerConstant(E);
625 
626     return EmitLValue(E->getSubExpr()).getPointer(CGF);
627   }
628   Value *VisitUnaryDeref(const UnaryOperator *E) {
629     if (E->getType()->isVoidType())
630       return Visit(E->getSubExpr()); // the actual value should be unused
631     return EmitLoadOfLValue(E);
632   }
633   Value *VisitUnaryPlus(const UnaryOperator *E) {
634     // This differs from gcc, though, most likely due to a bug in gcc.
635     TestAndClearIgnoreResultAssign();
636     return Visit(E->getSubExpr());
637   }
638   Value *VisitUnaryMinus    (const UnaryOperator *E);
639   Value *VisitUnaryNot      (const UnaryOperator *E);
640   Value *VisitUnaryLNot     (const UnaryOperator *E);
641   Value *VisitUnaryReal     (const UnaryOperator *E);
642   Value *VisitUnaryImag     (const UnaryOperator *E);
643   Value *VisitUnaryExtension(const UnaryOperator *E) {
644     return Visit(E->getSubExpr());
645   }
646 
647   // C++
648   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
649     return EmitLoadOfLValue(E);
650   }
651   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
652     auto &Ctx = CGF.getContext();
653     APValue Evaluated =
654         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
655     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
656                                              SLE->getType());
657   }
658 
659   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
660     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
661     return Visit(DAE->getExpr());
662   }
663   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
664     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
665     return Visit(DIE->getExpr());
666   }
667   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
668     return CGF.LoadCXXThis();
669   }
670 
671   Value *VisitExprWithCleanups(ExprWithCleanups *E);
672   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
673     return CGF.EmitCXXNewExpr(E);
674   }
675   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
676     CGF.EmitCXXDeleteExpr(E);
677     return nullptr;
678   }
679 
680   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
681     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
682   }
683 
684   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
685     return Builder.getInt1(E->isSatisfied());
686   }
687 
688   Value *VisitRequiresExpr(const RequiresExpr *E) {
689     return Builder.getInt1(E->isSatisfied());
690   }
691 
692   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
693     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
694   }
695 
696   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
697     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
698   }
699 
700   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
701     // C++ [expr.pseudo]p1:
702     //   The result shall only be used as the operand for the function call
703     //   operator (), and the result of such a call has type void. The only
704     //   effect is the evaluation of the postfix-expression before the dot or
705     //   arrow.
706     CGF.EmitScalarExpr(E->getBase());
707     return nullptr;
708   }
709 
710   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
711     return EmitNullValue(E->getType());
712   }
713 
714   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
715     CGF.EmitCXXThrowExpr(E);
716     return nullptr;
717   }
718 
719   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
720     return Builder.getInt1(E->getValue());
721   }
722 
723   // Binary Operators.
724   Value *EmitMul(const BinOpInfo &Ops) {
725     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
726       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
727       case LangOptions::SOB_Defined:
728         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
729       case LangOptions::SOB_Undefined:
730         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
731           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
732         LLVM_FALLTHROUGH;
733       case LangOptions::SOB_Trapping:
734         if (CanElideOverflowCheck(CGF.getContext(), Ops))
735           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
736         return EmitOverflowCheckedBinOp(Ops);
737       }
738     }
739 
740     if (Ops.Ty->isUnsignedIntegerType() &&
741         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
742         !CanElideOverflowCheck(CGF.getContext(), Ops))
743       return EmitOverflowCheckedBinOp(Ops);
744 
745     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
746       Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
747       return propagateFMFlags(V, Ops);
748     }
749     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
750   }
751   /// Create a binary op that checks for overflow.
752   /// Currently only supports +, - and *.
753   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
754 
755   // Check for undefined division and modulus behaviors.
756   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
757                                                   llvm::Value *Zero,bool isDiv);
758   // Common helper for getting how wide LHS of shift is.
759   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
760   Value *EmitDiv(const BinOpInfo &Ops);
761   Value *EmitRem(const BinOpInfo &Ops);
762   Value *EmitAdd(const BinOpInfo &Ops);
763   Value *EmitSub(const BinOpInfo &Ops);
764   Value *EmitShl(const BinOpInfo &Ops);
765   Value *EmitShr(const BinOpInfo &Ops);
766   Value *EmitAnd(const BinOpInfo &Ops) {
767     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
768   }
769   Value *EmitXor(const BinOpInfo &Ops) {
770     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
771   }
772   Value *EmitOr (const BinOpInfo &Ops) {
773     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
774   }
775 
776   // Helper functions for fixed point binary operations.
777   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
778 
779   BinOpInfo EmitBinOps(const BinaryOperator *E);
780   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
781                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
782                                   Value *&Result);
783 
784   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
785                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
786 
787   // Binary operators and binary compound assignment operators.
788 #define HANDLEBINOP(OP) \
789   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
790     return Emit ## OP(EmitBinOps(E));                                      \
791   }                                                                        \
792   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
793     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
794   }
795   HANDLEBINOP(Mul)
796   HANDLEBINOP(Div)
797   HANDLEBINOP(Rem)
798   HANDLEBINOP(Add)
799   HANDLEBINOP(Sub)
800   HANDLEBINOP(Shl)
801   HANDLEBINOP(Shr)
802   HANDLEBINOP(And)
803   HANDLEBINOP(Xor)
804   HANDLEBINOP(Or)
805 #undef HANDLEBINOP
806 
807   // Comparisons.
808   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
809                      llvm::CmpInst::Predicate SICmpOpc,
810                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
811 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
812     Value *VisitBin##CODE(const BinaryOperator *E) { \
813       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
814                          llvm::FCmpInst::FP, SIG); }
815   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
816   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
817   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
818   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
819   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
820   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
821 #undef VISITCOMP
822 
823   Value *VisitBinAssign     (const BinaryOperator *E);
824 
825   Value *VisitBinLAnd       (const BinaryOperator *E);
826   Value *VisitBinLOr        (const BinaryOperator *E);
827   Value *VisitBinComma      (const BinaryOperator *E);
828 
829   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
830   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
831 
832   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
833     return Visit(E->getSemanticForm());
834   }
835 
836   // Other Operators.
837   Value *VisitBlockExpr(const BlockExpr *BE);
838   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
839   Value *VisitChooseExpr(ChooseExpr *CE);
840   Value *VisitVAArgExpr(VAArgExpr *VE);
841   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
842     return CGF.EmitObjCStringLiteral(E);
843   }
844   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
845     return CGF.EmitObjCBoxedExpr(E);
846   }
847   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
848     return CGF.EmitObjCArrayLiteral(E);
849   }
850   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
851     return CGF.EmitObjCDictionaryLiteral(E);
852   }
853   Value *VisitAsTypeExpr(AsTypeExpr *CE);
854   Value *VisitAtomicExpr(AtomicExpr *AE);
855 };
856 }  // end anonymous namespace.
857 
858 //===----------------------------------------------------------------------===//
859 //                                Utilities
860 //===----------------------------------------------------------------------===//
861 
862 /// EmitConversionToBool - Convert the specified expression value to a
863 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
864 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
865   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
866 
867   if (SrcType->isRealFloatingType())
868     return EmitFloatToBoolConversion(Src);
869 
870   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
871     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
872 
873   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
874          "Unknown scalar type to convert");
875 
876   if (isa<llvm::IntegerType>(Src->getType()))
877     return EmitIntToBoolConversion(Src);
878 
879   assert(isa<llvm::PointerType>(Src->getType()));
880   return EmitPointerToBoolConversion(Src, SrcType);
881 }
882 
883 void ScalarExprEmitter::EmitFloatConversionCheck(
884     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
885     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
886   assert(SrcType->isFloatingType() && "not a conversion from floating point");
887   if (!isa<llvm::IntegerType>(DstTy))
888     return;
889 
890   CodeGenFunction::SanitizerScope SanScope(&CGF);
891   using llvm::APFloat;
892   using llvm::APSInt;
893 
894   llvm::Value *Check = nullptr;
895   const llvm::fltSemantics &SrcSema =
896     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
897 
898   // Floating-point to integer. This has undefined behavior if the source is
899   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
900   // to an integer).
901   unsigned Width = CGF.getContext().getIntWidth(DstType);
902   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
903 
904   APSInt Min = APSInt::getMinValue(Width, Unsigned);
905   APFloat MinSrc(SrcSema, APFloat::uninitialized);
906   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
907       APFloat::opOverflow)
908     // Don't need an overflow check for lower bound. Just check for
909     // -Inf/NaN.
910     MinSrc = APFloat::getInf(SrcSema, true);
911   else
912     // Find the largest value which is too small to represent (before
913     // truncation toward zero).
914     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
915 
916   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
917   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
918   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
919       APFloat::opOverflow)
920     // Don't need an overflow check for upper bound. Just check for
921     // +Inf/NaN.
922     MaxSrc = APFloat::getInf(SrcSema, false);
923   else
924     // Find the smallest value which is too large to represent (before
925     // truncation toward zero).
926     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
927 
928   // If we're converting from __half, convert the range to float to match
929   // the type of src.
930   if (OrigSrcType->isHalfType()) {
931     const llvm::fltSemantics &Sema =
932       CGF.getContext().getFloatTypeSemantics(SrcType);
933     bool IsInexact;
934     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
935     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
936   }
937 
938   llvm::Value *GE =
939     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
940   llvm::Value *LE =
941     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
942   Check = Builder.CreateAnd(GE, LE);
943 
944   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
945                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
946                                   CGF.EmitCheckTypeDescriptor(DstType)};
947   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
948                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
949 }
950 
951 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
952 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
953 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
954                  std::pair<llvm::Value *, SanitizerMask>>
955 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
956                                  QualType DstType, CGBuilderTy &Builder) {
957   llvm::Type *SrcTy = Src->getType();
958   llvm::Type *DstTy = Dst->getType();
959   (void)DstTy; // Only used in assert()
960 
961   // This should be truncation of integral types.
962   assert(Src != Dst);
963   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
964   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
965          "non-integer llvm type");
966 
967   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
968   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
969 
970   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
971   // Else, it is a signed truncation.
972   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
973   SanitizerMask Mask;
974   if (!SrcSigned && !DstSigned) {
975     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
976     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
977   } else {
978     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
979     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
980   }
981 
982   llvm::Value *Check = nullptr;
983   // 1. Extend the truncated value back to the same width as the Src.
984   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
985   // 2. Equality-compare with the original source value
986   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
987   // If the comparison result is 'i1 false', then the truncation was lossy.
988   return std::make_pair(Kind, std::make_pair(Check, Mask));
989 }
990 
991 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
992     QualType SrcType, QualType DstType) {
993   return SrcType->isIntegerType() && DstType->isIntegerType();
994 }
995 
996 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
997                                                    Value *Dst, QualType DstType,
998                                                    SourceLocation Loc) {
999   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1000     return;
1001 
1002   // We only care about int->int conversions here.
1003   // We ignore conversions to/from pointer and/or bool.
1004   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1005                                                                        DstType))
1006     return;
1007 
1008   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1009   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1010   // This must be truncation. Else we do not care.
1011   if (SrcBits <= DstBits)
1012     return;
1013 
1014   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1015 
1016   // If the integer sign change sanitizer is enabled,
1017   // and we are truncating from larger unsigned type to smaller signed type,
1018   // let that next sanitizer deal with it.
1019   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1020   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1021   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1022       (!SrcSigned && DstSigned))
1023     return;
1024 
1025   CodeGenFunction::SanitizerScope SanScope(&CGF);
1026 
1027   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1028             std::pair<llvm::Value *, SanitizerMask>>
1029       Check =
1030           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1031   // If the comparison result is 'i1 false', then the truncation was lossy.
1032 
1033   // Do we care about this type of truncation?
1034   if (!CGF.SanOpts.has(Check.second.second))
1035     return;
1036 
1037   llvm::Constant *StaticArgs[] = {
1038       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1039       CGF.EmitCheckTypeDescriptor(DstType),
1040       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1041   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1042                 {Src, Dst});
1043 }
1044 
1045 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1046 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1047 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1048                  std::pair<llvm::Value *, SanitizerMask>>
1049 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1050                                  QualType DstType, CGBuilderTy &Builder) {
1051   llvm::Type *SrcTy = Src->getType();
1052   llvm::Type *DstTy = Dst->getType();
1053 
1054   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1055          "non-integer llvm type");
1056 
1057   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1058   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1059   (void)SrcSigned; // Only used in assert()
1060   (void)DstSigned; // Only used in assert()
1061   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1062   unsigned DstBits = DstTy->getScalarSizeInBits();
1063   (void)SrcBits; // Only used in assert()
1064   (void)DstBits; // Only used in assert()
1065 
1066   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1067          "either the widths should be different, or the signednesses.");
1068 
1069   // NOTE: zero value is considered to be non-negative.
1070   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1071                                        const char *Name) -> Value * {
1072     // Is this value a signed type?
1073     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1074     llvm::Type *VTy = V->getType();
1075     if (!VSigned) {
1076       // If the value is unsigned, then it is never negative.
1077       // FIXME: can we encounter non-scalar VTy here?
1078       return llvm::ConstantInt::getFalse(VTy->getContext());
1079     }
1080     // Get the zero of the same type with which we will be comparing.
1081     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1082     // %V.isnegative = icmp slt %V, 0
1083     // I.e is %V *strictly* less than zero, does it have negative value?
1084     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1085                               llvm::Twine(Name) + "." + V->getName() +
1086                                   ".negativitycheck");
1087   };
1088 
1089   // 1. Was the old Value negative?
1090   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1091   // 2. Is the new Value negative?
1092   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1093   // 3. Now, was the 'negativity status' preserved during the conversion?
1094   //    NOTE: conversion from negative to zero is considered to change the sign.
1095   //    (We want to get 'false' when the conversion changed the sign)
1096   //    So we should just equality-compare the negativity statuses.
1097   llvm::Value *Check = nullptr;
1098   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1099   // If the comparison result is 'false', then the conversion changed the sign.
1100   return std::make_pair(
1101       ScalarExprEmitter::ICCK_IntegerSignChange,
1102       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1103 }
1104 
1105 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1106                                                    Value *Dst, QualType DstType,
1107                                                    SourceLocation Loc) {
1108   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1109     return;
1110 
1111   llvm::Type *SrcTy = Src->getType();
1112   llvm::Type *DstTy = Dst->getType();
1113 
1114   // We only care about int->int conversions here.
1115   // We ignore conversions to/from pointer and/or bool.
1116   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1117                                                                        DstType))
1118     return;
1119 
1120   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1121   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1122   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1123   unsigned DstBits = DstTy->getScalarSizeInBits();
1124 
1125   // Now, we do not need to emit the check in *all* of the cases.
1126   // We can avoid emitting it in some obvious cases where it would have been
1127   // dropped by the opt passes (instcombine) always anyways.
1128   // If it's a cast between effectively the same type, no check.
1129   // NOTE: this is *not* equivalent to checking the canonical types.
1130   if (SrcSigned == DstSigned && SrcBits == DstBits)
1131     return;
1132   // At least one of the values needs to have signed type.
1133   // If both are unsigned, then obviously, neither of them can be negative.
1134   if (!SrcSigned && !DstSigned)
1135     return;
1136   // If the conversion is to *larger* *signed* type, then no check is needed.
1137   // Because either sign-extension happens (so the sign will remain),
1138   // or zero-extension will happen (the sign bit will be zero.)
1139   if ((DstBits > SrcBits) && DstSigned)
1140     return;
1141   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1142       (SrcBits > DstBits) && SrcSigned) {
1143     // If the signed integer truncation sanitizer is enabled,
1144     // and this is a truncation from signed type, then no check is needed.
1145     // Because here sign change check is interchangeable with truncation check.
1146     return;
1147   }
1148   // That's it. We can't rule out any more cases with the data we have.
1149 
1150   CodeGenFunction::SanitizerScope SanScope(&CGF);
1151 
1152   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1153             std::pair<llvm::Value *, SanitizerMask>>
1154       Check;
1155 
1156   // Each of these checks needs to return 'false' when an issue was detected.
1157   ImplicitConversionCheckKind CheckKind;
1158   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1159   // So we can 'and' all the checks together, and still get 'false',
1160   // if at least one of the checks detected an issue.
1161 
1162   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1163   CheckKind = Check.first;
1164   Checks.emplace_back(Check.second);
1165 
1166   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1167       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1168     // If the signed integer truncation sanitizer was enabled,
1169     // and we are truncating from larger unsigned type to smaller signed type,
1170     // let's handle the case we skipped in that check.
1171     Check =
1172         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1173     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1174     Checks.emplace_back(Check.second);
1175     // If the comparison result is 'i1 false', then the truncation was lossy.
1176   }
1177 
1178   llvm::Constant *StaticArgs[] = {
1179       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1180       CGF.EmitCheckTypeDescriptor(DstType),
1181       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1182   // EmitCheck() will 'and' all the checks together.
1183   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1184                 {Src, Dst});
1185 }
1186 
1187 /// Emit a conversion from the specified type to the specified destination type,
1188 /// both of which are LLVM scalar types.
1189 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1190                                                QualType DstType,
1191                                                SourceLocation Loc,
1192                                                ScalarConversionOpts Opts) {
1193   // All conversions involving fixed point types should be handled by the
1194   // EmitFixedPoint family functions. This is done to prevent bloating up this
1195   // function more, and although fixed point numbers are represented by
1196   // integers, we do not want to follow any logic that assumes they should be
1197   // treated as integers.
1198   // TODO(leonardchan): When necessary, add another if statement checking for
1199   // conversions to fixed point types from other types.
1200   if (SrcType->isFixedPointType()) {
1201     if (DstType->isBooleanType())
1202       // It is important that we check this before checking if the dest type is
1203       // an integer because booleans are technically integer types.
1204       // We do not need to check the padding bit on unsigned types if unsigned
1205       // padding is enabled because overflow into this bit is undefined
1206       // behavior.
1207       return Builder.CreateIsNotNull(Src, "tobool");
1208     if (DstType->isFixedPointType() || DstType->isIntegerType())
1209       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1210 
1211     llvm_unreachable(
1212         "Unhandled scalar conversion from a fixed point type to another type.");
1213   } else if (DstType->isFixedPointType()) {
1214     if (SrcType->isIntegerType())
1215       // This also includes converting booleans and enums to fixed point types.
1216       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1217 
1218     llvm_unreachable(
1219         "Unhandled scalar conversion to a fixed point type from another type.");
1220   }
1221 
1222   QualType NoncanonicalSrcType = SrcType;
1223   QualType NoncanonicalDstType = DstType;
1224 
1225   SrcType = CGF.getContext().getCanonicalType(SrcType);
1226   DstType = CGF.getContext().getCanonicalType(DstType);
1227   if (SrcType == DstType) return Src;
1228 
1229   if (DstType->isVoidType()) return nullptr;
1230 
1231   llvm::Value *OrigSrc = Src;
1232   QualType OrigSrcType = SrcType;
1233   llvm::Type *SrcTy = Src->getType();
1234 
1235   // Handle conversions to bool first, they are special: comparisons against 0.
1236   if (DstType->isBooleanType())
1237     return EmitConversionToBool(Src, SrcType);
1238 
1239   llvm::Type *DstTy = ConvertType(DstType);
1240 
1241   // Cast from half through float if half isn't a native type.
1242   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1243     // Cast to FP using the intrinsic if the half type itself isn't supported.
1244     if (DstTy->isFloatingPointTy()) {
1245       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1246         return Builder.CreateCall(
1247             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1248             Src);
1249     } else {
1250       // Cast to other types through float, using either the intrinsic or FPExt,
1251       // depending on whether the half type itself is supported
1252       // (as opposed to operations on half, available with NativeHalfType).
1253       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1254         Src = Builder.CreateCall(
1255             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1256                                  CGF.CGM.FloatTy),
1257             Src);
1258       } else {
1259         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1260       }
1261       SrcType = CGF.getContext().FloatTy;
1262       SrcTy = CGF.FloatTy;
1263     }
1264   }
1265 
1266   // Ignore conversions like int -> uint.
1267   if (SrcTy == DstTy) {
1268     if (Opts.EmitImplicitIntegerSignChangeChecks)
1269       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1270                                  NoncanonicalDstType, Loc);
1271 
1272     return Src;
1273   }
1274 
1275   // Handle pointer conversions next: pointers can only be converted to/from
1276   // other pointers and integers. Check for pointer types in terms of LLVM, as
1277   // some native types (like Obj-C id) may map to a pointer type.
1278   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1279     // The source value may be an integer, or a pointer.
1280     if (isa<llvm::PointerType>(SrcTy))
1281       return Builder.CreateBitCast(Src, DstTy, "conv");
1282 
1283     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1284     // First, convert to the correct width so that we control the kind of
1285     // extension.
1286     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1287     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1288     llvm::Value* IntResult =
1289         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1290     // Then, cast to pointer.
1291     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1292   }
1293 
1294   if (isa<llvm::PointerType>(SrcTy)) {
1295     // Must be an ptr to int cast.
1296     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1297     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1298   }
1299 
1300   // A scalar can be splatted to an extended vector of the same element type
1301   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1302     // Sema should add casts to make sure that the source expression's type is
1303     // the same as the vector's element type (sans qualifiers)
1304     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1305                SrcType.getTypePtr() &&
1306            "Splatted expr doesn't match with vector element type?");
1307 
1308     // Splat the element across to all elements
1309     unsigned NumElements = DstTy->getVectorNumElements();
1310     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1311   }
1312 
1313   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1314     // Allow bitcast from vector to integer/fp of the same size.
1315     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1316     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1317     if (SrcSize == DstSize)
1318       return Builder.CreateBitCast(Src, DstTy, "conv");
1319 
1320     // Conversions between vectors of different sizes are not allowed except
1321     // when vectors of half are involved. Operations on storage-only half
1322     // vectors require promoting half vector operands to float vectors and
1323     // truncating the result, which is either an int or float vector, to a
1324     // short or half vector.
1325 
1326     // Source and destination are both expected to be vectors.
1327     llvm::Type *SrcElementTy = SrcTy->getVectorElementType();
1328     llvm::Type *DstElementTy = DstTy->getVectorElementType();
1329     (void)DstElementTy;
1330 
1331     assert(((SrcElementTy->isIntegerTy() &&
1332              DstElementTy->isIntegerTy()) ||
1333             (SrcElementTy->isFloatingPointTy() &&
1334              DstElementTy->isFloatingPointTy())) &&
1335            "unexpected conversion between a floating-point vector and an "
1336            "integer vector");
1337 
1338     // Truncate an i32 vector to an i16 vector.
1339     if (SrcElementTy->isIntegerTy())
1340       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1341 
1342     // Truncate a float vector to a half vector.
1343     if (SrcSize > DstSize)
1344       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1345 
1346     // Promote a half vector to a float vector.
1347     return Builder.CreateFPExt(Src, DstTy, "conv");
1348   }
1349 
1350   // Finally, we have the arithmetic types: real int/float.
1351   Value *Res = nullptr;
1352   llvm::Type *ResTy = DstTy;
1353 
1354   // An overflowing conversion has undefined behavior if either the source type
1355   // or the destination type is a floating-point type. However, we consider the
1356   // range of representable values for all floating-point types to be
1357   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1358   // floating-point type.
1359   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1360       OrigSrcType->isFloatingType())
1361     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1362                              Loc);
1363 
1364   // Cast to half through float if half isn't a native type.
1365   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1366     // Make sure we cast in a single step if from another FP type.
1367     if (SrcTy->isFloatingPointTy()) {
1368       // Use the intrinsic if the half type itself isn't supported
1369       // (as opposed to operations on half, available with NativeHalfType).
1370       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1371         return Builder.CreateCall(
1372             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1373       // If the half type is supported, just use an fptrunc.
1374       return Builder.CreateFPTrunc(Src, DstTy);
1375     }
1376     DstTy = CGF.FloatTy;
1377   }
1378 
1379   if (isa<llvm::IntegerType>(SrcTy)) {
1380     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1381     if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1382       InputSigned = true;
1383     }
1384     if (isa<llvm::IntegerType>(DstTy))
1385       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1386     else if (InputSigned)
1387       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1388     else
1389       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1390   } else if (isa<llvm::IntegerType>(DstTy)) {
1391     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1392     if (DstType->isSignedIntegerOrEnumerationType())
1393       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1394     else
1395       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1396   } else {
1397     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1398            "Unknown real conversion");
1399     if (DstTy->getTypeID() < SrcTy->getTypeID())
1400       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1401     else
1402       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1403   }
1404 
1405   if (DstTy != ResTy) {
1406     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1407       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1408       Res = Builder.CreateCall(
1409         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1410         Res);
1411     } else {
1412       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1413     }
1414   }
1415 
1416   if (Opts.EmitImplicitIntegerTruncationChecks)
1417     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1418                                NoncanonicalDstType, Loc);
1419 
1420   if (Opts.EmitImplicitIntegerSignChangeChecks)
1421     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1422                                NoncanonicalDstType, Loc);
1423 
1424   return Res;
1425 }
1426 
1427 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1428                                                    QualType DstTy,
1429                                                    SourceLocation Loc) {
1430   FixedPointSemantics SrcFPSema =
1431       CGF.getContext().getFixedPointSemantics(SrcTy);
1432   FixedPointSemantics DstFPSema =
1433       CGF.getContext().getFixedPointSemantics(DstTy);
1434   return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc,
1435                                   DstTy->isIntegerType());
1436 }
1437 
1438 Value *ScalarExprEmitter::EmitFixedPointConversion(
1439     Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema,
1440     SourceLocation Loc, bool DstIsInteger) {
1441   using llvm::APInt;
1442   using llvm::ConstantInt;
1443   using llvm::Value;
1444 
1445   unsigned SrcWidth = SrcFPSema.getWidth();
1446   unsigned DstWidth = DstFPSema.getWidth();
1447   unsigned SrcScale = SrcFPSema.getScale();
1448   unsigned DstScale = DstFPSema.getScale();
1449   bool SrcIsSigned = SrcFPSema.isSigned();
1450   bool DstIsSigned = DstFPSema.isSigned();
1451 
1452   llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth);
1453 
1454   Value *Result = Src;
1455   unsigned ResultWidth = SrcWidth;
1456 
1457   // Downscale.
1458   if (DstScale < SrcScale) {
1459     // When converting to integers, we round towards zero. For negative numbers,
1460     // right shifting rounds towards negative infinity. In this case, we can
1461     // just round up before shifting.
1462     if (DstIsInteger && SrcIsSigned) {
1463       Value *Zero = llvm::Constant::getNullValue(Result->getType());
1464       Value *IsNegative = Builder.CreateICmpSLT(Result, Zero);
1465       Value *LowBits = ConstantInt::get(
1466           CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale));
1467       Value *Rounded = Builder.CreateAdd(Result, LowBits);
1468       Result = Builder.CreateSelect(IsNegative, Rounded, Result);
1469     }
1470 
1471     Result = SrcIsSigned
1472                  ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale")
1473                  : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale");
1474   }
1475 
1476   if (!DstFPSema.isSaturated()) {
1477     // Resize.
1478     Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1479 
1480     // Upscale.
1481     if (DstScale > SrcScale)
1482       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1483   } else {
1484     // Adjust the number of fractional bits.
1485     if (DstScale > SrcScale) {
1486       // Compare to DstWidth to prevent resizing twice.
1487       ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth);
1488       llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth);
1489       Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize");
1490       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1491     }
1492 
1493     // Handle saturation.
1494     bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits();
1495     if (LessIntBits) {
1496       Value *Max = ConstantInt::get(
1497           CGF.getLLVMContext(),
1498           APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth));
1499       Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max)
1500                                    : Builder.CreateICmpUGT(Result, Max);
1501       Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax");
1502     }
1503     // Cannot overflow min to dest type if src is unsigned since all fixed
1504     // point types can cover the unsigned min of 0.
1505     if (SrcIsSigned && (LessIntBits || !DstIsSigned)) {
1506       Value *Min = ConstantInt::get(
1507           CGF.getLLVMContext(),
1508           APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth));
1509       Value *TooLow = Builder.CreateICmpSLT(Result, Min);
1510       Result = Builder.CreateSelect(TooLow, Min, Result, "satmin");
1511     }
1512 
1513     // Resize the integer part to get the final destination size.
1514     if (ResultWidth != DstWidth)
1515       Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1516   }
1517   return Result;
1518 }
1519 
1520 /// Emit a conversion from the specified complex type to the specified
1521 /// destination type, where the destination type is an LLVM scalar type.
1522 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1523     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1524     SourceLocation Loc) {
1525   // Get the source element type.
1526   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1527 
1528   // Handle conversions to bool first, they are special: comparisons against 0.
1529   if (DstTy->isBooleanType()) {
1530     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1531     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1532     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1533     return Builder.CreateOr(Src.first, Src.second, "tobool");
1534   }
1535 
1536   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1537   // the imaginary part of the complex value is discarded and the value of the
1538   // real part is converted according to the conversion rules for the
1539   // corresponding real type.
1540   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1541 }
1542 
1543 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1544   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1545 }
1546 
1547 /// Emit a sanitization check for the given "binary" operation (which
1548 /// might actually be a unary increment which has been lowered to a binary
1549 /// operation). The check passes if all values in \p Checks (which are \c i1),
1550 /// are \c true.
1551 void ScalarExprEmitter::EmitBinOpCheck(
1552     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1553   assert(CGF.IsSanitizerScope);
1554   SanitizerHandler Check;
1555   SmallVector<llvm::Constant *, 4> StaticData;
1556   SmallVector<llvm::Value *, 2> DynamicData;
1557 
1558   BinaryOperatorKind Opcode = Info.Opcode;
1559   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1560     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1561 
1562   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1563   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1564   if (UO && UO->getOpcode() == UO_Minus) {
1565     Check = SanitizerHandler::NegateOverflow;
1566     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1567     DynamicData.push_back(Info.RHS);
1568   } else {
1569     if (BinaryOperator::isShiftOp(Opcode)) {
1570       // Shift LHS negative or too large, or RHS out of bounds.
1571       Check = SanitizerHandler::ShiftOutOfBounds;
1572       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1573       StaticData.push_back(
1574         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1575       StaticData.push_back(
1576         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1577     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1578       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1579       Check = SanitizerHandler::DivremOverflow;
1580       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1581     } else {
1582       // Arithmetic overflow (+, -, *).
1583       switch (Opcode) {
1584       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1585       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1586       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1587       default: llvm_unreachable("unexpected opcode for bin op check");
1588       }
1589       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1590     }
1591     DynamicData.push_back(Info.LHS);
1592     DynamicData.push_back(Info.RHS);
1593   }
1594 
1595   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1596 }
1597 
1598 //===----------------------------------------------------------------------===//
1599 //                            Visitor Methods
1600 //===----------------------------------------------------------------------===//
1601 
1602 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1603   CGF.ErrorUnsupported(E, "scalar expression");
1604   if (E->getType()->isVoidType())
1605     return nullptr;
1606   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1607 }
1608 
1609 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1610   // Vector Mask Case
1611   if (E->getNumSubExprs() == 2) {
1612     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1613     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1614     Value *Mask;
1615 
1616     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1617     unsigned LHSElts = LTy->getNumElements();
1618 
1619     Mask = RHS;
1620 
1621     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1622 
1623     // Mask off the high bits of each shuffle index.
1624     Value *MaskBits =
1625         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1626     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1627 
1628     // newv = undef
1629     // mask = mask & maskbits
1630     // for each elt
1631     //   n = extract mask i
1632     //   x = extract val n
1633     //   newv = insert newv, x, i
1634     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1635                                                   MTy->getNumElements());
1636     Value* NewV = llvm::UndefValue::get(RTy);
1637     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1638       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1639       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1640 
1641       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1642       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1643     }
1644     return NewV;
1645   }
1646 
1647   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1648   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1649 
1650   SmallVector<llvm::Constant*, 32> indices;
1651   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1652     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1653     // Check for -1 and output it as undef in the IR.
1654     if (Idx.isSigned() && Idx.isAllOnesValue())
1655       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1656     else
1657       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1658   }
1659 
1660   Value *SV = llvm::ConstantVector::get(indices);
1661   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1662 }
1663 
1664 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1665   QualType SrcType = E->getSrcExpr()->getType(),
1666            DstType = E->getType();
1667 
1668   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1669 
1670   SrcType = CGF.getContext().getCanonicalType(SrcType);
1671   DstType = CGF.getContext().getCanonicalType(DstType);
1672   if (SrcType == DstType) return Src;
1673 
1674   assert(SrcType->isVectorType() &&
1675          "ConvertVector source type must be a vector");
1676   assert(DstType->isVectorType() &&
1677          "ConvertVector destination type must be a vector");
1678 
1679   llvm::Type *SrcTy = Src->getType();
1680   llvm::Type *DstTy = ConvertType(DstType);
1681 
1682   // Ignore conversions like int -> uint.
1683   if (SrcTy == DstTy)
1684     return Src;
1685 
1686   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1687            DstEltType = DstType->castAs<VectorType>()->getElementType();
1688 
1689   assert(SrcTy->isVectorTy() &&
1690          "ConvertVector source IR type must be a vector");
1691   assert(DstTy->isVectorTy() &&
1692          "ConvertVector destination IR type must be a vector");
1693 
1694   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1695              *DstEltTy = DstTy->getVectorElementType();
1696 
1697   if (DstEltType->isBooleanType()) {
1698     assert((SrcEltTy->isFloatingPointTy() ||
1699             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1700 
1701     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1702     if (SrcEltTy->isFloatingPointTy()) {
1703       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1704     } else {
1705       return Builder.CreateICmpNE(Src, Zero, "tobool");
1706     }
1707   }
1708 
1709   // We have the arithmetic types: real int/float.
1710   Value *Res = nullptr;
1711 
1712   if (isa<llvm::IntegerType>(SrcEltTy)) {
1713     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1714     if (isa<llvm::IntegerType>(DstEltTy))
1715       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1716     else if (InputSigned)
1717       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1718     else
1719       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1720   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1721     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1722     if (DstEltType->isSignedIntegerOrEnumerationType())
1723       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1724     else
1725       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1726   } else {
1727     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1728            "Unknown real conversion");
1729     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1730       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1731     else
1732       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1733   }
1734 
1735   return Res;
1736 }
1737 
1738 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1739   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1740     CGF.EmitIgnoredExpr(E->getBase());
1741     return CGF.emitScalarConstant(Constant, E);
1742   } else {
1743     Expr::EvalResult Result;
1744     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1745       llvm::APSInt Value = Result.Val.getInt();
1746       CGF.EmitIgnoredExpr(E->getBase());
1747       return Builder.getInt(Value);
1748     }
1749   }
1750 
1751   return EmitLoadOfLValue(E);
1752 }
1753 
1754 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1755   TestAndClearIgnoreResultAssign();
1756 
1757   // Emit subscript expressions in rvalue context's.  For most cases, this just
1758   // loads the lvalue formed by the subscript expr.  However, we have to be
1759   // careful, because the base of a vector subscript is occasionally an rvalue,
1760   // so we can't get it as an lvalue.
1761   if (!E->getBase()->getType()->isVectorType())
1762     return EmitLoadOfLValue(E);
1763 
1764   // Handle the vector case.  The base must be a vector, the index must be an
1765   // integer value.
1766   Value *Base = Visit(E->getBase());
1767   Value *Idx  = Visit(E->getIdx());
1768   QualType IdxTy = E->getIdx()->getType();
1769 
1770   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1771     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1772 
1773   return Builder.CreateExtractElement(Base, Idx, "vecext");
1774 }
1775 
1776 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1777                                   unsigned Off, llvm::Type *I32Ty) {
1778   int MV = SVI->getMaskValue(Idx);
1779   if (MV == -1)
1780     return llvm::UndefValue::get(I32Ty);
1781   return llvm::ConstantInt::get(I32Ty, Off+MV);
1782 }
1783 
1784 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1785   if (C->getBitWidth() != 32) {
1786       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1787                                                     C->getZExtValue()) &&
1788              "Index operand too large for shufflevector mask!");
1789       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1790   }
1791   return C;
1792 }
1793 
1794 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1795   bool Ignore = TestAndClearIgnoreResultAssign();
1796   (void)Ignore;
1797   assert (Ignore == false && "init list ignored");
1798   unsigned NumInitElements = E->getNumInits();
1799 
1800   if (E->hadArrayRangeDesignator())
1801     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1802 
1803   llvm::VectorType *VType =
1804     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1805 
1806   if (!VType) {
1807     if (NumInitElements == 0) {
1808       // C++11 value-initialization for the scalar.
1809       return EmitNullValue(E->getType());
1810     }
1811     // We have a scalar in braces. Just use the first element.
1812     return Visit(E->getInit(0));
1813   }
1814 
1815   unsigned ResElts = VType->getNumElements();
1816 
1817   // Loop over initializers collecting the Value for each, and remembering
1818   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1819   // us to fold the shuffle for the swizzle into the shuffle for the vector
1820   // initializer, since LLVM optimizers generally do not want to touch
1821   // shuffles.
1822   unsigned CurIdx = 0;
1823   bool VIsUndefShuffle = false;
1824   llvm::Value *V = llvm::UndefValue::get(VType);
1825   for (unsigned i = 0; i != NumInitElements; ++i) {
1826     Expr *IE = E->getInit(i);
1827     Value *Init = Visit(IE);
1828     SmallVector<llvm::Constant*, 16> Args;
1829 
1830     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1831 
1832     // Handle scalar elements.  If the scalar initializer is actually one
1833     // element of a different vector of the same width, use shuffle instead of
1834     // extract+insert.
1835     if (!VVT) {
1836       if (isa<ExtVectorElementExpr>(IE)) {
1837         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1838 
1839         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1840           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1841           Value *LHS = nullptr, *RHS = nullptr;
1842           if (CurIdx == 0) {
1843             // insert into undef -> shuffle (src, undef)
1844             // shufflemask must use an i32
1845             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1846             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1847 
1848             LHS = EI->getVectorOperand();
1849             RHS = V;
1850             VIsUndefShuffle = true;
1851           } else if (VIsUndefShuffle) {
1852             // insert into undefshuffle && size match -> shuffle (v, src)
1853             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1854             for (unsigned j = 0; j != CurIdx; ++j)
1855               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1856             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1857             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1858 
1859             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1860             RHS = EI->getVectorOperand();
1861             VIsUndefShuffle = false;
1862           }
1863           if (!Args.empty()) {
1864             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1865             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1866             ++CurIdx;
1867             continue;
1868           }
1869         }
1870       }
1871       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1872                                       "vecinit");
1873       VIsUndefShuffle = false;
1874       ++CurIdx;
1875       continue;
1876     }
1877 
1878     unsigned InitElts = VVT->getNumElements();
1879 
1880     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1881     // input is the same width as the vector being constructed, generate an
1882     // optimized shuffle of the swizzle input into the result.
1883     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1884     if (isa<ExtVectorElementExpr>(IE)) {
1885       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1886       Value *SVOp = SVI->getOperand(0);
1887       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1888 
1889       if (OpTy->getNumElements() == ResElts) {
1890         for (unsigned j = 0; j != CurIdx; ++j) {
1891           // If the current vector initializer is a shuffle with undef, merge
1892           // this shuffle directly into it.
1893           if (VIsUndefShuffle) {
1894             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1895                                       CGF.Int32Ty));
1896           } else {
1897             Args.push_back(Builder.getInt32(j));
1898           }
1899         }
1900         for (unsigned j = 0, je = InitElts; j != je; ++j)
1901           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1902         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1903 
1904         if (VIsUndefShuffle)
1905           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1906 
1907         Init = SVOp;
1908       }
1909     }
1910 
1911     // Extend init to result vector length, and then shuffle its contribution
1912     // to the vector initializer into V.
1913     if (Args.empty()) {
1914       for (unsigned j = 0; j != InitElts; ++j)
1915         Args.push_back(Builder.getInt32(j));
1916       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1917       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1918       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1919                                          Mask, "vext");
1920 
1921       Args.clear();
1922       for (unsigned j = 0; j != CurIdx; ++j)
1923         Args.push_back(Builder.getInt32(j));
1924       for (unsigned j = 0; j != InitElts; ++j)
1925         Args.push_back(Builder.getInt32(j+Offset));
1926       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1927     }
1928 
1929     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1930     // merging subsequent shuffles into this one.
1931     if (CurIdx == 0)
1932       std::swap(V, Init);
1933     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1934     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1935     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1936     CurIdx += InitElts;
1937   }
1938 
1939   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1940   // Emit remaining default initializers.
1941   llvm::Type *EltTy = VType->getElementType();
1942 
1943   // Emit remaining default initializers
1944   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1945     Value *Idx = Builder.getInt32(CurIdx);
1946     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1947     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1948   }
1949   return V;
1950 }
1951 
1952 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1953   const Expr *E = CE->getSubExpr();
1954 
1955   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1956     return false;
1957 
1958   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1959     // We always assume that 'this' is never null.
1960     return false;
1961   }
1962 
1963   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1964     // And that glvalue casts are never null.
1965     if (ICE->getValueKind() != VK_RValue)
1966       return false;
1967   }
1968 
1969   return true;
1970 }
1971 
1972 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1973 // have to handle a more broad range of conversions than explicit casts, as they
1974 // handle things like function to ptr-to-function decay etc.
1975 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1976   Expr *E = CE->getSubExpr();
1977   QualType DestTy = CE->getType();
1978   CastKind Kind = CE->getCastKind();
1979 
1980   // These cases are generally not written to ignore the result of
1981   // evaluating their sub-expressions, so we clear this now.
1982   bool Ignored = TestAndClearIgnoreResultAssign();
1983 
1984   // Since almost all cast kinds apply to scalars, this switch doesn't have
1985   // a default case, so the compiler will warn on a missing case.  The cases
1986   // are in the same order as in the CastKind enum.
1987   switch (Kind) {
1988   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1989   case CK_BuiltinFnToFnPtr:
1990     llvm_unreachable("builtin functions are handled elsewhere");
1991 
1992   case CK_LValueBitCast:
1993   case CK_ObjCObjectLValueCast: {
1994     Address Addr = EmitLValue(E).getAddress(CGF);
1995     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1996     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1997     return EmitLoadOfLValue(LV, CE->getExprLoc());
1998   }
1999 
2000   case CK_LValueToRValueBitCast: {
2001     LValue SourceLVal = CGF.EmitLValue(E);
2002     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
2003                                                 CGF.ConvertTypeForMem(DestTy));
2004     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2005     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2006     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2007   }
2008 
2009   case CK_CPointerToObjCPointerCast:
2010   case CK_BlockPointerToObjCPointerCast:
2011   case CK_AnyPointerToBlockPointerCast:
2012   case CK_BitCast: {
2013     Value *Src = Visit(const_cast<Expr*>(E));
2014     llvm::Type *SrcTy = Src->getType();
2015     llvm::Type *DstTy = ConvertType(DestTy);
2016     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2017         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2018       llvm_unreachable("wrong cast for pointers in different address spaces"
2019                        "(must be an address space cast)!");
2020     }
2021 
2022     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2023       if (auto PT = DestTy->getAs<PointerType>())
2024         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
2025                                       /*MayBeNull=*/true,
2026                                       CodeGenFunction::CFITCK_UnrelatedCast,
2027                                       CE->getBeginLoc());
2028     }
2029 
2030     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2031       const QualType SrcType = E->getType();
2032 
2033       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2034         // Casting to pointer that could carry dynamic information (provided by
2035         // invariant.group) requires launder.
2036         Src = Builder.CreateLaunderInvariantGroup(Src);
2037       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2038         // Casting to pointer that does not carry dynamic information (provided
2039         // by invariant.group) requires stripping it.  Note that we don't do it
2040         // if the source could not be dynamic type and destination could be
2041         // dynamic because dynamic information is already laundered.  It is
2042         // because launder(strip(src)) == launder(src), so there is no need to
2043         // add extra strip before launder.
2044         Src = Builder.CreateStripInvariantGroup(Src);
2045       }
2046     }
2047 
2048     // Update heapallocsite metadata when there is an explicit cast.
2049     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src))
2050       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE))
2051           CGF.getDebugInfo()->
2052               addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc());
2053 
2054     return Builder.CreateBitCast(Src, DstTy);
2055   }
2056   case CK_AddressSpaceConversion: {
2057     Expr::EvalResult Result;
2058     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2059         Result.Val.isNullPointer()) {
2060       // If E has side effect, it is emitted even if its final result is a
2061       // null pointer. In that case, a DCE pass should be able to
2062       // eliminate the useless instructions emitted during translating E.
2063       if (Result.HasSideEffects)
2064         Visit(E);
2065       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2066           ConvertType(DestTy)), DestTy);
2067     }
2068     // Since target may map different address spaces in AST to the same address
2069     // space, an address space conversion may end up as a bitcast.
2070     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2071         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2072         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2073   }
2074   case CK_AtomicToNonAtomic:
2075   case CK_NonAtomicToAtomic:
2076   case CK_NoOp:
2077   case CK_UserDefinedConversion:
2078     return Visit(const_cast<Expr*>(E));
2079 
2080   case CK_BaseToDerived: {
2081     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2082     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2083 
2084     Address Base = CGF.EmitPointerWithAlignment(E);
2085     Address Derived =
2086       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2087                                    CE->path_begin(), CE->path_end(),
2088                                    CGF.ShouldNullCheckClassCastValue(CE));
2089 
2090     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2091     // performed and the object is not of the derived type.
2092     if (CGF.sanitizePerformTypeCheck())
2093       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2094                         Derived.getPointer(), DestTy->getPointeeType());
2095 
2096     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2097       CGF.EmitVTablePtrCheckForCast(
2098           DestTy->getPointeeType(), Derived.getPointer(),
2099           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2100           CE->getBeginLoc());
2101 
2102     return Derived.getPointer();
2103   }
2104   case CK_UncheckedDerivedToBase:
2105   case CK_DerivedToBase: {
2106     // The EmitPointerWithAlignment path does this fine; just discard
2107     // the alignment.
2108     return CGF.EmitPointerWithAlignment(CE).getPointer();
2109   }
2110 
2111   case CK_Dynamic: {
2112     Address V = CGF.EmitPointerWithAlignment(E);
2113     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2114     return CGF.EmitDynamicCast(V, DCE);
2115   }
2116 
2117   case CK_ArrayToPointerDecay:
2118     return CGF.EmitArrayToPointerDecay(E).getPointer();
2119   case CK_FunctionToPointerDecay:
2120     return EmitLValue(E).getPointer(CGF);
2121 
2122   case CK_NullToPointer:
2123     if (MustVisitNullValue(E))
2124       CGF.EmitIgnoredExpr(E);
2125 
2126     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2127                               DestTy);
2128 
2129   case CK_NullToMemberPointer: {
2130     if (MustVisitNullValue(E))
2131       CGF.EmitIgnoredExpr(E);
2132 
2133     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2134     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2135   }
2136 
2137   case CK_ReinterpretMemberPointer:
2138   case CK_BaseToDerivedMemberPointer:
2139   case CK_DerivedToBaseMemberPointer: {
2140     Value *Src = Visit(E);
2141 
2142     // Note that the AST doesn't distinguish between checked and
2143     // unchecked member pointer conversions, so we always have to
2144     // implement checked conversions here.  This is inefficient when
2145     // actual control flow may be required in order to perform the
2146     // check, which it is for data member pointers (but not member
2147     // function pointers on Itanium and ARM).
2148     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2149   }
2150 
2151   case CK_ARCProduceObject:
2152     return CGF.EmitARCRetainScalarExpr(E);
2153   case CK_ARCConsumeObject:
2154     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2155   case CK_ARCReclaimReturnedObject:
2156     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2157   case CK_ARCExtendBlockObject:
2158     return CGF.EmitARCExtendBlockObject(E);
2159 
2160   case CK_CopyAndAutoreleaseBlockObject:
2161     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2162 
2163   case CK_FloatingRealToComplex:
2164   case CK_FloatingComplexCast:
2165   case CK_IntegralRealToComplex:
2166   case CK_IntegralComplexCast:
2167   case CK_IntegralComplexToFloatingComplex:
2168   case CK_FloatingComplexToIntegralComplex:
2169   case CK_ConstructorConversion:
2170   case CK_ToUnion:
2171     llvm_unreachable("scalar cast to non-scalar value");
2172 
2173   case CK_LValueToRValue:
2174     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2175     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2176     return Visit(const_cast<Expr*>(E));
2177 
2178   case CK_IntegralToPointer: {
2179     Value *Src = Visit(const_cast<Expr*>(E));
2180 
2181     // First, convert to the correct width so that we control the kind of
2182     // extension.
2183     auto DestLLVMTy = ConvertType(DestTy);
2184     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2185     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2186     llvm::Value* IntResult =
2187       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2188 
2189     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2190 
2191     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2192       // Going from integer to pointer that could be dynamic requires reloading
2193       // dynamic information from invariant.group.
2194       if (DestTy.mayBeDynamicClass())
2195         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2196     }
2197     return IntToPtr;
2198   }
2199   case CK_PointerToIntegral: {
2200     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2201     auto *PtrExpr = Visit(E);
2202 
2203     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2204       const QualType SrcType = E->getType();
2205 
2206       // Casting to integer requires stripping dynamic information as it does
2207       // not carries it.
2208       if (SrcType.mayBeDynamicClass())
2209         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2210     }
2211 
2212     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2213   }
2214   case CK_ToVoid: {
2215     CGF.EmitIgnoredExpr(E);
2216     return nullptr;
2217   }
2218   case CK_VectorSplat: {
2219     llvm::Type *DstTy = ConvertType(DestTy);
2220     Value *Elt = Visit(const_cast<Expr*>(E));
2221     // Splat the element across to all elements
2222     unsigned NumElements = DstTy->getVectorNumElements();
2223     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2224   }
2225 
2226   case CK_FixedPointCast:
2227     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2228                                 CE->getExprLoc());
2229 
2230   case CK_FixedPointToBoolean:
2231     assert(E->getType()->isFixedPointType() &&
2232            "Expected src type to be fixed point type");
2233     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2234     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2235                                 CE->getExprLoc());
2236 
2237   case CK_FixedPointToIntegral:
2238     assert(E->getType()->isFixedPointType() &&
2239            "Expected src type to be fixed point type");
2240     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2241     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2242                                 CE->getExprLoc());
2243 
2244   case CK_IntegralToFixedPoint:
2245     assert(E->getType()->isIntegerType() &&
2246            "Expected src type to be an integer");
2247     assert(DestTy->isFixedPointType() &&
2248            "Expected dest type to be fixed point type");
2249     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2250                                 CE->getExprLoc());
2251 
2252   case CK_IntegralCast: {
2253     ScalarConversionOpts Opts;
2254     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2255       if (!ICE->isPartOfExplicitCast())
2256         Opts = ScalarConversionOpts(CGF.SanOpts);
2257     }
2258     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2259                                 CE->getExprLoc(), Opts);
2260   }
2261   case CK_IntegralToFloating:
2262   case CK_FloatingToIntegral:
2263   case CK_FloatingCast:
2264     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2265                                 CE->getExprLoc());
2266   case CK_BooleanToSignedIntegral: {
2267     ScalarConversionOpts Opts;
2268     Opts.TreatBooleanAsSigned = true;
2269     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2270                                 CE->getExprLoc(), Opts);
2271   }
2272   case CK_IntegralToBoolean:
2273     return EmitIntToBoolConversion(Visit(E));
2274   case CK_PointerToBoolean:
2275     return EmitPointerToBoolConversion(Visit(E), E->getType());
2276   case CK_FloatingToBoolean:
2277     return EmitFloatToBoolConversion(Visit(E));
2278   case CK_MemberPointerToBoolean: {
2279     llvm::Value *MemPtr = Visit(E);
2280     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2281     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2282   }
2283 
2284   case CK_FloatingComplexToReal:
2285   case CK_IntegralComplexToReal:
2286     return CGF.EmitComplexExpr(E, false, true).first;
2287 
2288   case CK_FloatingComplexToBoolean:
2289   case CK_IntegralComplexToBoolean: {
2290     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2291 
2292     // TODO: kill this function off, inline appropriate case here
2293     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2294                                          CE->getExprLoc());
2295   }
2296 
2297   case CK_ZeroToOCLOpaqueType: {
2298     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2299             DestTy->isOCLIntelSubgroupAVCType()) &&
2300            "CK_ZeroToOCLEvent cast on non-event type");
2301     return llvm::Constant::getNullValue(ConvertType(DestTy));
2302   }
2303 
2304   case CK_IntToOCLSampler:
2305     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2306 
2307   } // end of switch
2308 
2309   llvm_unreachable("unknown scalar cast");
2310 }
2311 
2312 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2313   CodeGenFunction::StmtExprEvaluation eval(CGF);
2314   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2315                                            !E->getType()->isVoidType());
2316   if (!RetAlloca.isValid())
2317     return nullptr;
2318   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2319                               E->getExprLoc());
2320 }
2321 
2322 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2323   CGF.enterFullExpression(E);
2324   CodeGenFunction::RunCleanupsScope Scope(CGF);
2325   Value *V = Visit(E->getSubExpr());
2326   // Defend against dominance problems caused by jumps out of expression
2327   // evaluation through the shared cleanup block.
2328   Scope.ForceCleanup({&V});
2329   return V;
2330 }
2331 
2332 //===----------------------------------------------------------------------===//
2333 //                             Unary Operators
2334 //===----------------------------------------------------------------------===//
2335 
2336 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2337                                            llvm::Value *InVal, bool IsInc) {
2338   BinOpInfo BinOp;
2339   BinOp.LHS = InVal;
2340   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2341   BinOp.Ty = E->getType();
2342   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2343   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2344   BinOp.E = E;
2345   return BinOp;
2346 }
2347 
2348 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2349     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2350   llvm::Value *Amount =
2351       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2352   StringRef Name = IsInc ? "inc" : "dec";
2353   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2354   case LangOptions::SOB_Defined:
2355     return Builder.CreateAdd(InVal, Amount, Name);
2356   case LangOptions::SOB_Undefined:
2357     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2358       return Builder.CreateNSWAdd(InVal, Amount, Name);
2359     LLVM_FALLTHROUGH;
2360   case LangOptions::SOB_Trapping:
2361     if (!E->canOverflow())
2362       return Builder.CreateNSWAdd(InVal, Amount, Name);
2363     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
2364   }
2365   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2366 }
2367 
2368 namespace {
2369 /// Handles check and update for lastprivate conditional variables.
2370 class OMPLastprivateConditionalUpdateRAII {
2371 private:
2372   CodeGenFunction &CGF;
2373   const UnaryOperator *E;
2374 
2375 public:
2376   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2377                                       const UnaryOperator *E)
2378       : CGF(CGF), E(E) {}
2379   ~OMPLastprivateConditionalUpdateRAII() {
2380     if (CGF.getLangOpts().OpenMP)
2381       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2382           CGF, E->getSubExpr());
2383   }
2384 };
2385 } // namespace
2386 
2387 llvm::Value *
2388 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2389                                            bool isInc, bool isPre) {
2390   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2391   QualType type = E->getSubExpr()->getType();
2392   llvm::PHINode *atomicPHI = nullptr;
2393   llvm::Value *value;
2394   llvm::Value *input;
2395 
2396   int amount = (isInc ? 1 : -1);
2397   bool isSubtraction = !isInc;
2398 
2399   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2400     type = atomicTy->getValueType();
2401     if (isInc && type->isBooleanType()) {
2402       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2403       if (isPre) {
2404         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2405             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2406         return Builder.getTrue();
2407       }
2408       // For atomic bool increment, we just store true and return it for
2409       // preincrement, do an atomic swap with true for postincrement
2410       return Builder.CreateAtomicRMW(
2411           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2412           llvm::AtomicOrdering::SequentiallyConsistent);
2413     }
2414     // Special case for atomic increment / decrement on integers, emit
2415     // atomicrmw instructions.  We skip this if we want to be doing overflow
2416     // checking, and fall into the slow path with the atomic cmpxchg loop.
2417     if (!type->isBooleanType() && type->isIntegerType() &&
2418         !(type->isUnsignedIntegerType() &&
2419           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2420         CGF.getLangOpts().getSignedOverflowBehavior() !=
2421             LangOptions::SOB_Trapping) {
2422       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2423         llvm::AtomicRMWInst::Sub;
2424       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2425         llvm::Instruction::Sub;
2426       llvm::Value *amt = CGF.EmitToMemory(
2427           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2428       llvm::Value *old =
2429           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2430                                   llvm::AtomicOrdering::SequentiallyConsistent);
2431       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2432     }
2433     value = EmitLoadOfLValue(LV, E->getExprLoc());
2434     input = value;
2435     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2436     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2437     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2438     value = CGF.EmitToMemory(value, type);
2439     Builder.CreateBr(opBB);
2440     Builder.SetInsertPoint(opBB);
2441     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2442     atomicPHI->addIncoming(value, startBB);
2443     value = atomicPHI;
2444   } else {
2445     value = EmitLoadOfLValue(LV, E->getExprLoc());
2446     input = value;
2447   }
2448 
2449   // Special case of integer increment that we have to check first: bool++.
2450   // Due to promotion rules, we get:
2451   //   bool++ -> bool = bool + 1
2452   //          -> bool = (int)bool + 1
2453   //          -> bool = ((int)bool + 1 != 0)
2454   // An interesting aspect of this is that increment is always true.
2455   // Decrement does not have this property.
2456   if (isInc && type->isBooleanType()) {
2457     value = Builder.getTrue();
2458 
2459   // Most common case by far: integer increment.
2460   } else if (type->isIntegerType()) {
2461     QualType promotedType;
2462     bool canPerformLossyDemotionCheck = false;
2463     if (type->isPromotableIntegerType()) {
2464       promotedType = CGF.getContext().getPromotedIntegerType(type);
2465       assert(promotedType != type && "Shouldn't promote to the same type.");
2466       canPerformLossyDemotionCheck = true;
2467       canPerformLossyDemotionCheck &=
2468           CGF.getContext().getCanonicalType(type) !=
2469           CGF.getContext().getCanonicalType(promotedType);
2470       canPerformLossyDemotionCheck &=
2471           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2472               type, promotedType);
2473       assert((!canPerformLossyDemotionCheck ||
2474               type->isSignedIntegerOrEnumerationType() ||
2475               promotedType->isSignedIntegerOrEnumerationType() ||
2476               ConvertType(type)->getScalarSizeInBits() ==
2477                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2478              "The following check expects that if we do promotion to different "
2479              "underlying canonical type, at least one of the types (either "
2480              "base or promoted) will be signed, or the bitwidths will match.");
2481     }
2482     if (CGF.SanOpts.hasOneOf(
2483             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2484         canPerformLossyDemotionCheck) {
2485       // While `x += 1` (for `x` with width less than int) is modeled as
2486       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2487       // ease; inc/dec with width less than int can't overflow because of
2488       // promotion rules, so we omit promotion+demotion, which means that we can
2489       // not catch lossy "demotion". Because we still want to catch these cases
2490       // when the sanitizer is enabled, we perform the promotion, then perform
2491       // the increment/decrement in the wider type, and finally
2492       // perform the demotion. This will catch lossy demotions.
2493 
2494       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2495       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2496       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2497       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2498       // emitted.
2499       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2500                                    ScalarConversionOpts(CGF.SanOpts));
2501 
2502       // Note that signed integer inc/dec with width less than int can't
2503       // overflow because of promotion rules; we're just eliding a few steps
2504       // here.
2505     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2506       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2507     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2508                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2509       value =
2510           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
2511     } else {
2512       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2513       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2514     }
2515 
2516   // Next most common: pointer increment.
2517   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2518     QualType type = ptr->getPointeeType();
2519 
2520     // VLA types don't have constant size.
2521     if (const VariableArrayType *vla
2522           = CGF.getContext().getAsVariableArrayType(type)) {
2523       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2524       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2525       if (CGF.getLangOpts().isSignedOverflowDefined())
2526         value = Builder.CreateGEP(value, numElts, "vla.inc");
2527       else
2528         value = CGF.EmitCheckedInBoundsGEP(
2529             value, numElts, /*SignedIndices=*/false, isSubtraction,
2530             E->getExprLoc(), "vla.inc");
2531 
2532     // Arithmetic on function pointers (!) is just +-1.
2533     } else if (type->isFunctionType()) {
2534       llvm::Value *amt = Builder.getInt32(amount);
2535 
2536       value = CGF.EmitCastToVoidPtr(value);
2537       if (CGF.getLangOpts().isSignedOverflowDefined())
2538         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2539       else
2540         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2541                                            isSubtraction, E->getExprLoc(),
2542                                            "incdec.funcptr");
2543       value = Builder.CreateBitCast(value, input->getType());
2544 
2545     // For everything else, we can just do a simple increment.
2546     } else {
2547       llvm::Value *amt = Builder.getInt32(amount);
2548       if (CGF.getLangOpts().isSignedOverflowDefined())
2549         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2550       else
2551         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2552                                            isSubtraction, E->getExprLoc(),
2553                                            "incdec.ptr");
2554     }
2555 
2556   // Vector increment/decrement.
2557   } else if (type->isVectorType()) {
2558     if (type->hasIntegerRepresentation()) {
2559       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2560 
2561       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2562     } else {
2563       value = Builder.CreateFAdd(
2564                   value,
2565                   llvm::ConstantFP::get(value->getType(), amount),
2566                   isInc ? "inc" : "dec");
2567     }
2568 
2569   // Floating point.
2570   } else if (type->isRealFloatingType()) {
2571     // Add the inc/dec to the real part.
2572     llvm::Value *amt;
2573 
2574     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2575       // Another special case: half FP increment should be done via float
2576       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2577         value = Builder.CreateCall(
2578             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2579                                  CGF.CGM.FloatTy),
2580             input, "incdec.conv");
2581       } else {
2582         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2583       }
2584     }
2585 
2586     if (value->getType()->isFloatTy())
2587       amt = llvm::ConstantFP::get(VMContext,
2588                                   llvm::APFloat(static_cast<float>(amount)));
2589     else if (value->getType()->isDoubleTy())
2590       amt = llvm::ConstantFP::get(VMContext,
2591                                   llvm::APFloat(static_cast<double>(amount)));
2592     else {
2593       // Remaining types are Half, LongDouble or __float128. Convert from float.
2594       llvm::APFloat F(static_cast<float>(amount));
2595       bool ignored;
2596       const llvm::fltSemantics *FS;
2597       // Don't use getFloatTypeSemantics because Half isn't
2598       // necessarily represented using the "half" LLVM type.
2599       if (value->getType()->isFP128Ty())
2600         FS = &CGF.getTarget().getFloat128Format();
2601       else if (value->getType()->isHalfTy())
2602         FS = &CGF.getTarget().getHalfFormat();
2603       else
2604         FS = &CGF.getTarget().getLongDoubleFormat();
2605       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2606       amt = llvm::ConstantFP::get(VMContext, F);
2607     }
2608     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2609 
2610     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2611       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2612         value = Builder.CreateCall(
2613             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2614                                  CGF.CGM.FloatTy),
2615             value, "incdec.conv");
2616       } else {
2617         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2618       }
2619     }
2620 
2621   // Objective-C pointer types.
2622   } else {
2623     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2624     value = CGF.EmitCastToVoidPtr(value);
2625 
2626     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2627     if (!isInc) size = -size;
2628     llvm::Value *sizeValue =
2629       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2630 
2631     if (CGF.getLangOpts().isSignedOverflowDefined())
2632       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2633     else
2634       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2635                                          /*SignedIndices=*/false, isSubtraction,
2636                                          E->getExprLoc(), "incdec.objptr");
2637     value = Builder.CreateBitCast(value, input->getType());
2638   }
2639 
2640   if (atomicPHI) {
2641     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2642     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2643     auto Pair = CGF.EmitAtomicCompareExchange(
2644         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2645     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2646     llvm::Value *success = Pair.second;
2647     atomicPHI->addIncoming(old, curBlock);
2648     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2649     Builder.SetInsertPoint(contBB);
2650     return isPre ? value : input;
2651   }
2652 
2653   // Store the updated result through the lvalue.
2654   if (LV.isBitField())
2655     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2656   else
2657     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2658 
2659   // If this is a postinc, return the value read from memory, otherwise use the
2660   // updated value.
2661   return isPre ? value : input;
2662 }
2663 
2664 
2665 
2666 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2667   TestAndClearIgnoreResultAssign();
2668   Value *Op = Visit(E->getSubExpr());
2669 
2670   // Generate a unary FNeg for FP ops.
2671   if (Op->getType()->isFPOrFPVectorTy())
2672     return Builder.CreateFNeg(Op, "fneg");
2673 
2674   // Emit unary minus with EmitSub so we handle overflow cases etc.
2675   BinOpInfo BinOp;
2676   BinOp.RHS = Op;
2677   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2678   BinOp.Ty = E->getType();
2679   BinOp.Opcode = BO_Sub;
2680   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2681   BinOp.E = E;
2682   return EmitSub(BinOp);
2683 }
2684 
2685 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2686   TestAndClearIgnoreResultAssign();
2687   Value *Op = Visit(E->getSubExpr());
2688   return Builder.CreateNot(Op, "neg");
2689 }
2690 
2691 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2692   // Perform vector logical not on comparison with zero vector.
2693   if (E->getType()->isExtVectorType()) {
2694     Value *Oper = Visit(E->getSubExpr());
2695     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2696     Value *Result;
2697     if (Oper->getType()->isFPOrFPVectorTy())
2698       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2699     else
2700       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2701     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2702   }
2703 
2704   // Compare operand to zero.
2705   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2706 
2707   // Invert value.
2708   // TODO: Could dynamically modify easy computations here.  For example, if
2709   // the operand is an icmp ne, turn into icmp eq.
2710   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2711 
2712   // ZExt result to the expr type.
2713   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2714 }
2715 
2716 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2717   // Try folding the offsetof to a constant.
2718   Expr::EvalResult EVResult;
2719   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2720     llvm::APSInt Value = EVResult.Val.getInt();
2721     return Builder.getInt(Value);
2722   }
2723 
2724   // Loop over the components of the offsetof to compute the value.
2725   unsigned n = E->getNumComponents();
2726   llvm::Type* ResultType = ConvertType(E->getType());
2727   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2728   QualType CurrentType = E->getTypeSourceInfo()->getType();
2729   for (unsigned i = 0; i != n; ++i) {
2730     OffsetOfNode ON = E->getComponent(i);
2731     llvm::Value *Offset = nullptr;
2732     switch (ON.getKind()) {
2733     case OffsetOfNode::Array: {
2734       // Compute the index
2735       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2736       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2737       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2738       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2739 
2740       // Save the element type
2741       CurrentType =
2742           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2743 
2744       // Compute the element size
2745       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2746           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2747 
2748       // Multiply out to compute the result
2749       Offset = Builder.CreateMul(Idx, ElemSize);
2750       break;
2751     }
2752 
2753     case OffsetOfNode::Field: {
2754       FieldDecl *MemberDecl = ON.getField();
2755       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2756       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2757 
2758       // Compute the index of the field in its parent.
2759       unsigned i = 0;
2760       // FIXME: It would be nice if we didn't have to loop here!
2761       for (RecordDecl::field_iterator Field = RD->field_begin(),
2762                                       FieldEnd = RD->field_end();
2763            Field != FieldEnd; ++Field, ++i) {
2764         if (*Field == MemberDecl)
2765           break;
2766       }
2767       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2768 
2769       // Compute the offset to the field
2770       int64_t OffsetInt = RL.getFieldOffset(i) /
2771                           CGF.getContext().getCharWidth();
2772       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2773 
2774       // Save the element type.
2775       CurrentType = MemberDecl->getType();
2776       break;
2777     }
2778 
2779     case OffsetOfNode::Identifier:
2780       llvm_unreachable("dependent __builtin_offsetof");
2781 
2782     case OffsetOfNode::Base: {
2783       if (ON.getBase()->isVirtual()) {
2784         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2785         continue;
2786       }
2787 
2788       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2789       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2790 
2791       // Save the element type.
2792       CurrentType = ON.getBase()->getType();
2793 
2794       // Compute the offset to the base.
2795       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2796       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2797       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2798       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2799       break;
2800     }
2801     }
2802     Result = Builder.CreateAdd(Result, Offset);
2803   }
2804   return Result;
2805 }
2806 
2807 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2808 /// argument of the sizeof expression as an integer.
2809 Value *
2810 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2811                               const UnaryExprOrTypeTraitExpr *E) {
2812   QualType TypeToSize = E->getTypeOfArgument();
2813   if (E->getKind() == UETT_SizeOf) {
2814     if (const VariableArrayType *VAT =
2815           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2816       if (E->isArgumentType()) {
2817         // sizeof(type) - make sure to emit the VLA size.
2818         CGF.EmitVariablyModifiedType(TypeToSize);
2819       } else {
2820         // C99 6.5.3.4p2: If the argument is an expression of type
2821         // VLA, it is evaluated.
2822         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2823       }
2824 
2825       auto VlaSize = CGF.getVLASize(VAT);
2826       llvm::Value *size = VlaSize.NumElts;
2827 
2828       // Scale the number of non-VLA elements by the non-VLA element size.
2829       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2830       if (!eltSize.isOne())
2831         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2832 
2833       return size;
2834     }
2835   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2836     auto Alignment =
2837         CGF.getContext()
2838             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2839                 E->getTypeOfArgument()->getPointeeType()))
2840             .getQuantity();
2841     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2842   }
2843 
2844   // If this isn't sizeof(vla), the result must be constant; use the constant
2845   // folding logic so we don't have to duplicate it here.
2846   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2847 }
2848 
2849 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2850   Expr *Op = E->getSubExpr();
2851   if (Op->getType()->isAnyComplexType()) {
2852     // If it's an l-value, load through the appropriate subobject l-value.
2853     // Note that we have to ask E because Op might be an l-value that
2854     // this won't work for, e.g. an Obj-C property.
2855     if (E->isGLValue())
2856       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2857                                   E->getExprLoc()).getScalarVal();
2858 
2859     // Otherwise, calculate and project.
2860     return CGF.EmitComplexExpr(Op, false, true).first;
2861   }
2862 
2863   return Visit(Op);
2864 }
2865 
2866 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2867   Expr *Op = E->getSubExpr();
2868   if (Op->getType()->isAnyComplexType()) {
2869     // If it's an l-value, load through the appropriate subobject l-value.
2870     // Note that we have to ask E because Op might be an l-value that
2871     // this won't work for, e.g. an Obj-C property.
2872     if (Op->isGLValue())
2873       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2874                                   E->getExprLoc()).getScalarVal();
2875 
2876     // Otherwise, calculate and project.
2877     return CGF.EmitComplexExpr(Op, true, false).second;
2878   }
2879 
2880   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2881   // effects are evaluated, but not the actual value.
2882   if (Op->isGLValue())
2883     CGF.EmitLValue(Op);
2884   else
2885     CGF.EmitScalarExpr(Op, true);
2886   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2887 }
2888 
2889 //===----------------------------------------------------------------------===//
2890 //                           Binary Operators
2891 //===----------------------------------------------------------------------===//
2892 
2893 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2894   TestAndClearIgnoreResultAssign();
2895   BinOpInfo Result;
2896   Result.LHS = Visit(E->getLHS());
2897   Result.RHS = Visit(E->getRHS());
2898   Result.Ty  = E->getType();
2899   Result.Opcode = E->getOpcode();
2900   Result.FPFeatures = E->getFPFeatures();
2901   Result.E = E;
2902   return Result;
2903 }
2904 
2905 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2906                                               const CompoundAssignOperator *E,
2907                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2908                                                    Value *&Result) {
2909   QualType LHSTy = E->getLHS()->getType();
2910   BinOpInfo OpInfo;
2911 
2912   if (E->getComputationResultType()->isAnyComplexType())
2913     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2914 
2915   // Emit the RHS first.  __block variables need to have the rhs evaluated
2916   // first, plus this should improve codegen a little.
2917   OpInfo.RHS = Visit(E->getRHS());
2918   OpInfo.Ty = E->getComputationResultType();
2919   OpInfo.Opcode = E->getOpcode();
2920   OpInfo.FPFeatures = E->getFPFeatures();
2921   OpInfo.E = E;
2922   // Load/convert the LHS.
2923   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2924 
2925   llvm::PHINode *atomicPHI = nullptr;
2926   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2927     QualType type = atomicTy->getValueType();
2928     if (!type->isBooleanType() && type->isIntegerType() &&
2929         !(type->isUnsignedIntegerType() &&
2930           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2931         CGF.getLangOpts().getSignedOverflowBehavior() !=
2932             LangOptions::SOB_Trapping) {
2933       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
2934       llvm::Instruction::BinaryOps Op;
2935       switch (OpInfo.Opcode) {
2936         // We don't have atomicrmw operands for *, %, /, <<, >>
2937         case BO_MulAssign: case BO_DivAssign:
2938         case BO_RemAssign:
2939         case BO_ShlAssign:
2940         case BO_ShrAssign:
2941           break;
2942         case BO_AddAssign:
2943           AtomicOp = llvm::AtomicRMWInst::Add;
2944           Op = llvm::Instruction::Add;
2945           break;
2946         case BO_SubAssign:
2947           AtomicOp = llvm::AtomicRMWInst::Sub;
2948           Op = llvm::Instruction::Sub;
2949           break;
2950         case BO_AndAssign:
2951           AtomicOp = llvm::AtomicRMWInst::And;
2952           Op = llvm::Instruction::And;
2953           break;
2954         case BO_XorAssign:
2955           AtomicOp = llvm::AtomicRMWInst::Xor;
2956           Op = llvm::Instruction::Xor;
2957           break;
2958         case BO_OrAssign:
2959           AtomicOp = llvm::AtomicRMWInst::Or;
2960           Op = llvm::Instruction::Or;
2961           break;
2962         default:
2963           llvm_unreachable("Invalid compound assignment type");
2964       }
2965       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
2966         llvm::Value *Amt = CGF.EmitToMemory(
2967             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2968                                  E->getExprLoc()),
2969             LHSTy);
2970         Value *OldVal = Builder.CreateAtomicRMW(
2971             AtomicOp, LHSLV.getPointer(CGF), Amt,
2972             llvm::AtomicOrdering::SequentiallyConsistent);
2973 
2974         // Since operation is atomic, the result type is guaranteed to be the
2975         // same as the input in LLVM terms.
2976         Result = Builder.CreateBinOp(Op, OldVal, Amt);
2977         return LHSLV;
2978       }
2979     }
2980     // FIXME: For floating point types, we should be saving and restoring the
2981     // floating point environment in the loop.
2982     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2983     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2984     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2985     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2986     Builder.CreateBr(opBB);
2987     Builder.SetInsertPoint(opBB);
2988     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2989     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2990     OpInfo.LHS = atomicPHI;
2991   }
2992   else
2993     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2994 
2995   SourceLocation Loc = E->getExprLoc();
2996   OpInfo.LHS =
2997       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2998 
2999   // Expand the binary operator.
3000   Result = (this->*Func)(OpInfo);
3001 
3002   // Convert the result back to the LHS type,
3003   // potentially with Implicit Conversion sanitizer check.
3004   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
3005                                 Loc, ScalarConversionOpts(CGF.SanOpts));
3006 
3007   if (atomicPHI) {
3008     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3009     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3010     auto Pair = CGF.EmitAtomicCompareExchange(
3011         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3012     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3013     llvm::Value *success = Pair.second;
3014     atomicPHI->addIncoming(old, curBlock);
3015     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3016     Builder.SetInsertPoint(contBB);
3017     return LHSLV;
3018   }
3019 
3020   // Store the result value into the LHS lvalue. Bit-fields are handled
3021   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3022   // 'An assignment expression has the value of the left operand after the
3023   // assignment...'.
3024   if (LHSLV.isBitField())
3025     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3026   else
3027     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3028 
3029   if (CGF.getLangOpts().OpenMP)
3030     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3031                                                                   E->getLHS());
3032   return LHSLV;
3033 }
3034 
3035 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3036                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3037   bool Ignore = TestAndClearIgnoreResultAssign();
3038   Value *RHS = nullptr;
3039   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3040 
3041   // If the result is clearly ignored, return now.
3042   if (Ignore)
3043     return nullptr;
3044 
3045   // The result of an assignment in C is the assigned r-value.
3046   if (!CGF.getLangOpts().CPlusPlus)
3047     return RHS;
3048 
3049   // If the lvalue is non-volatile, return the computed value of the assignment.
3050   if (!LHS.isVolatileQualified())
3051     return RHS;
3052 
3053   // Otherwise, reload the value.
3054   return EmitLoadOfLValue(LHS, E->getExprLoc());
3055 }
3056 
3057 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3058     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3059   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3060 
3061   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3062     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3063                                     SanitizerKind::IntegerDivideByZero));
3064   }
3065 
3066   const auto *BO = cast<BinaryOperator>(Ops.E);
3067   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3068       Ops.Ty->hasSignedIntegerRepresentation() &&
3069       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3070       Ops.mayHaveIntegerOverflow()) {
3071     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3072 
3073     llvm::Value *IntMin =
3074       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3075     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
3076 
3077     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3078     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3079     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3080     Checks.push_back(
3081         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3082   }
3083 
3084   if (Checks.size() > 0)
3085     EmitBinOpCheck(Checks, Ops);
3086 }
3087 
3088 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3089   {
3090     CodeGenFunction::SanitizerScope SanScope(&CGF);
3091     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3092          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3093         Ops.Ty->isIntegerType() &&
3094         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3095       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3096       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3097     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3098                Ops.Ty->isRealFloatingType() &&
3099                Ops.mayHaveFloatDivisionByZero()) {
3100       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3101       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3102       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3103                      Ops);
3104     }
3105   }
3106 
3107   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3108     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3109     if (CGF.getLangOpts().OpenCL &&
3110         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
3111       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3112       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3113       // build option allows an application to specify that single precision
3114       // floating-point divide (x/y and 1/x) and sqrt used in the program
3115       // source are correctly rounded.
3116       llvm::Type *ValTy = Val->getType();
3117       if (ValTy->isFloatTy() ||
3118           (isa<llvm::VectorType>(ValTy) &&
3119            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3120         CGF.SetFPAccuracy(Val, 2.5);
3121     }
3122     return Val;
3123   }
3124   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3125     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3126   else
3127     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3128 }
3129 
3130 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3131   // Rem in C can't be a floating point type: C99 6.5.5p2.
3132   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3133        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3134       Ops.Ty->isIntegerType() &&
3135       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3136     CodeGenFunction::SanitizerScope SanScope(&CGF);
3137     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3138     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3139   }
3140 
3141   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3142     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3143   else
3144     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3145 }
3146 
3147 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3148   unsigned IID;
3149   unsigned OpID = 0;
3150 
3151   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3152   switch (Ops.Opcode) {
3153   case BO_Add:
3154   case BO_AddAssign:
3155     OpID = 1;
3156     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3157                      llvm::Intrinsic::uadd_with_overflow;
3158     break;
3159   case BO_Sub:
3160   case BO_SubAssign:
3161     OpID = 2;
3162     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3163                      llvm::Intrinsic::usub_with_overflow;
3164     break;
3165   case BO_Mul:
3166   case BO_MulAssign:
3167     OpID = 3;
3168     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3169                      llvm::Intrinsic::umul_with_overflow;
3170     break;
3171   default:
3172     llvm_unreachable("Unsupported operation for overflow detection");
3173   }
3174   OpID <<= 1;
3175   if (isSigned)
3176     OpID |= 1;
3177 
3178   CodeGenFunction::SanitizerScope SanScope(&CGF);
3179   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3180 
3181   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3182 
3183   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3184   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3185   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3186 
3187   // Handle overflow with llvm.trap if no custom handler has been specified.
3188   const std::string *handlerName =
3189     &CGF.getLangOpts().OverflowHandler;
3190   if (handlerName->empty()) {
3191     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3192     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3193     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3194       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3195       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3196                               : SanitizerKind::UnsignedIntegerOverflow;
3197       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3198     } else
3199       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
3200     return result;
3201   }
3202 
3203   // Branch in case of overflow.
3204   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3205   llvm::BasicBlock *continueBB =
3206       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3207   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3208 
3209   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3210 
3211   // If an overflow handler is set, then we want to call it and then use its
3212   // result, if it returns.
3213   Builder.SetInsertPoint(overflowBB);
3214 
3215   // Get the overflow handler.
3216   llvm::Type *Int8Ty = CGF.Int8Ty;
3217   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3218   llvm::FunctionType *handlerTy =
3219       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3220   llvm::FunctionCallee handler =
3221       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3222 
3223   // Sign extend the args to 64-bit, so that we can use the same handler for
3224   // all types of overflow.
3225   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3226   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3227 
3228   // Call the handler with the two arguments, the operation, and the size of
3229   // the result.
3230   llvm::Value *handlerArgs[] = {
3231     lhs,
3232     rhs,
3233     Builder.getInt8(OpID),
3234     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3235   };
3236   llvm::Value *handlerResult =
3237     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3238 
3239   // Truncate the result back to the desired size.
3240   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3241   Builder.CreateBr(continueBB);
3242 
3243   Builder.SetInsertPoint(continueBB);
3244   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3245   phi->addIncoming(result, initialBB);
3246   phi->addIncoming(handlerResult, overflowBB);
3247 
3248   return phi;
3249 }
3250 
3251 /// Emit pointer + index arithmetic.
3252 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3253                                     const BinOpInfo &op,
3254                                     bool isSubtraction) {
3255   // Must have binary (not unary) expr here.  Unary pointer
3256   // increment/decrement doesn't use this path.
3257   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3258 
3259   Value *pointer = op.LHS;
3260   Expr *pointerOperand = expr->getLHS();
3261   Value *index = op.RHS;
3262   Expr *indexOperand = expr->getRHS();
3263 
3264   // In a subtraction, the LHS is always the pointer.
3265   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3266     std::swap(pointer, index);
3267     std::swap(pointerOperand, indexOperand);
3268   }
3269 
3270   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3271 
3272   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3273   auto &DL = CGF.CGM.getDataLayout();
3274   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3275 
3276   // Some versions of glibc and gcc use idioms (particularly in their malloc
3277   // routines) that add a pointer-sized integer (known to be a pointer value)
3278   // to a null pointer in order to cast the value back to an integer or as
3279   // part of a pointer alignment algorithm.  This is undefined behavior, but
3280   // we'd like to be able to compile programs that use it.
3281   //
3282   // Normally, we'd generate a GEP with a null-pointer base here in response
3283   // to that code, but it's also UB to dereference a pointer created that
3284   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3285   // generate a direct cast of the integer value to a pointer.
3286   //
3287   // The idiom (p = nullptr + N) is not met if any of the following are true:
3288   //
3289   //   The operation is subtraction.
3290   //   The index is not pointer-sized.
3291   //   The pointer type is not byte-sized.
3292   //
3293   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3294                                                        op.Opcode,
3295                                                        expr->getLHS(),
3296                                                        expr->getRHS()))
3297     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3298 
3299   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3300     // Zero-extend or sign-extend the pointer value according to
3301     // whether the index is signed or not.
3302     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3303                                       "idx.ext");
3304   }
3305 
3306   // If this is subtraction, negate the index.
3307   if (isSubtraction)
3308     index = CGF.Builder.CreateNeg(index, "idx.neg");
3309 
3310   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3311     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3312                         /*Accessed*/ false);
3313 
3314   const PointerType *pointerType
3315     = pointerOperand->getType()->getAs<PointerType>();
3316   if (!pointerType) {
3317     QualType objectType = pointerOperand->getType()
3318                                         ->castAs<ObjCObjectPointerType>()
3319                                         ->getPointeeType();
3320     llvm::Value *objectSize
3321       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3322 
3323     index = CGF.Builder.CreateMul(index, objectSize);
3324 
3325     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3326     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3327     return CGF.Builder.CreateBitCast(result, pointer->getType());
3328   }
3329 
3330   QualType elementType = pointerType->getPointeeType();
3331   if (const VariableArrayType *vla
3332         = CGF.getContext().getAsVariableArrayType(elementType)) {
3333     // The element count here is the total number of non-VLA elements.
3334     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3335 
3336     // Effectively, the multiply by the VLA size is part of the GEP.
3337     // GEP indexes are signed, and scaling an index isn't permitted to
3338     // signed-overflow, so we use the same semantics for our explicit
3339     // multiply.  We suppress this if overflow is not undefined behavior.
3340     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3341       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3342       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3343     } else {
3344       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3345       pointer =
3346           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3347                                      op.E->getExprLoc(), "add.ptr");
3348     }
3349     return pointer;
3350   }
3351 
3352   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3353   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3354   // future proof.
3355   if (elementType->isVoidType() || elementType->isFunctionType()) {
3356     Value *result = CGF.EmitCastToVoidPtr(pointer);
3357     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3358     return CGF.Builder.CreateBitCast(result, pointer->getType());
3359   }
3360 
3361   if (CGF.getLangOpts().isSignedOverflowDefined())
3362     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3363 
3364   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3365                                     op.E->getExprLoc(), "add.ptr");
3366 }
3367 
3368 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3369 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3370 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3371 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3372 // efficient operations.
3373 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3374                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3375                            bool negMul, bool negAdd) {
3376   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3377 
3378   Value *MulOp0 = MulOp->getOperand(0);
3379   Value *MulOp1 = MulOp->getOperand(1);
3380   if (negMul)
3381     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3382   if (negAdd)
3383     Addend = Builder.CreateFNeg(Addend, "neg");
3384 
3385   Value *FMulAdd = nullptr;
3386   if (Builder.getIsFPConstrained()) {
3387     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3388            "Only constrained operation should be created when Builder is in FP "
3389            "constrained mode");
3390     FMulAdd = Builder.CreateConstrainedFPCall(
3391         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3392                              Addend->getType()),
3393         {MulOp0, MulOp1, Addend});
3394   } else {
3395     FMulAdd = Builder.CreateCall(
3396         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3397         {MulOp0, MulOp1, Addend});
3398   }
3399   MulOp->eraseFromParent();
3400 
3401   return FMulAdd;
3402 }
3403 
3404 // Check whether it would be legal to emit an fmuladd intrinsic call to
3405 // represent op and if so, build the fmuladd.
3406 //
3407 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3408 // Does NOT check the type of the operation - it's assumed that this function
3409 // will be called from contexts where it's known that the type is contractable.
3410 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3411                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3412                          bool isSub=false) {
3413 
3414   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3415           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3416          "Only fadd/fsub can be the root of an fmuladd.");
3417 
3418   // Check whether this op is marked as fusable.
3419   if (!op.FPFeatures.allowFPContractWithinStatement())
3420     return nullptr;
3421 
3422   // We have a potentially fusable op. Look for a mul on one of the operands.
3423   // Also, make sure that the mul result isn't used directly. In that case,
3424   // there's no point creating a muladd operation.
3425   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3426     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3427         LHSBinOp->use_empty())
3428       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3429   }
3430   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3431     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3432         RHSBinOp->use_empty())
3433       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3434   }
3435 
3436   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3437     if (LHSBinOp->getIntrinsicID() ==
3438             llvm::Intrinsic::experimental_constrained_fmul &&
3439         LHSBinOp->use_empty())
3440       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3441   }
3442   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3443     if (RHSBinOp->getIntrinsicID() ==
3444             llvm::Intrinsic::experimental_constrained_fmul &&
3445         RHSBinOp->use_empty())
3446       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3447   }
3448 
3449   return nullptr;
3450 }
3451 
3452 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3453   if (op.LHS->getType()->isPointerTy() ||
3454       op.RHS->getType()->isPointerTy())
3455     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3456 
3457   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3458     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3459     case LangOptions::SOB_Defined:
3460       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3461     case LangOptions::SOB_Undefined:
3462       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3463         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3464       LLVM_FALLTHROUGH;
3465     case LangOptions::SOB_Trapping:
3466       if (CanElideOverflowCheck(CGF.getContext(), op))
3467         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3468       return EmitOverflowCheckedBinOp(op);
3469     }
3470   }
3471 
3472   if (op.Ty->isUnsignedIntegerType() &&
3473       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3474       !CanElideOverflowCheck(CGF.getContext(), op))
3475     return EmitOverflowCheckedBinOp(op);
3476 
3477   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3478     // Try to form an fmuladd.
3479     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3480       return FMulAdd;
3481 
3482     Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
3483     return propagateFMFlags(V, op);
3484   }
3485 
3486   if (op.isFixedPointBinOp())
3487     return EmitFixedPointBinOp(op);
3488 
3489   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3490 }
3491 
3492 /// The resulting value must be calculated with exact precision, so the operands
3493 /// may not be the same type.
3494 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3495   using llvm::APSInt;
3496   using llvm::ConstantInt;
3497 
3498   const auto *BinOp = cast<BinaryOperator>(op.E);
3499 
3500   // The result is a fixed point type and at least one of the operands is fixed
3501   // point while the other is either fixed point or an int. This resulting type
3502   // should be determined by Sema::handleFixedPointConversions().
3503   QualType ResultTy = op.Ty;
3504   QualType LHSTy = BinOp->getLHS()->getType();
3505   QualType RHSTy = BinOp->getRHS()->getType();
3506   ASTContext &Ctx = CGF.getContext();
3507   Value *LHS = op.LHS;
3508   Value *RHS = op.RHS;
3509 
3510   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3511   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3512   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3513   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3514 
3515   // Convert the operands to the full precision type.
3516   Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema,
3517                                             BinOp->getExprLoc());
3518   Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema,
3519                                             BinOp->getExprLoc());
3520 
3521   // Perform the actual addition.
3522   Value *Result;
3523   switch (BinOp->getOpcode()) {
3524   case BO_Add: {
3525     if (ResultFixedSema.isSaturated()) {
3526       llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3527                                     ? llvm::Intrinsic::sadd_sat
3528                                     : llvm::Intrinsic::uadd_sat;
3529       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3530     } else {
3531       Result = Builder.CreateAdd(FullLHS, FullRHS);
3532     }
3533     break;
3534   }
3535   case BO_Sub: {
3536     if (ResultFixedSema.isSaturated()) {
3537       llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3538                                     ? llvm::Intrinsic::ssub_sat
3539                                     : llvm::Intrinsic::usub_sat;
3540       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3541     } else {
3542       Result = Builder.CreateSub(FullLHS, FullRHS);
3543     }
3544     break;
3545   }
3546   case BO_LT:
3547     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS)
3548                                       : Builder.CreateICmpULT(FullLHS, FullRHS);
3549   case BO_GT:
3550     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS)
3551                                       : Builder.CreateICmpUGT(FullLHS, FullRHS);
3552   case BO_LE:
3553     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS)
3554                                       : Builder.CreateICmpULE(FullLHS, FullRHS);
3555   case BO_GE:
3556     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS)
3557                                       : Builder.CreateICmpUGE(FullLHS, FullRHS);
3558   case BO_EQ:
3559     // For equality operations, we assume any padding bits on unsigned types are
3560     // zero'd out. They could be overwritten through non-saturating operations
3561     // that cause overflow, but this leads to undefined behavior.
3562     return Builder.CreateICmpEQ(FullLHS, FullRHS);
3563   case BO_NE:
3564     return Builder.CreateICmpNE(FullLHS, FullRHS);
3565   case BO_Mul:
3566   case BO_Div:
3567   case BO_Shl:
3568   case BO_Shr:
3569   case BO_Cmp:
3570   case BO_LAnd:
3571   case BO_LOr:
3572   case BO_MulAssign:
3573   case BO_DivAssign:
3574   case BO_AddAssign:
3575   case BO_SubAssign:
3576   case BO_ShlAssign:
3577   case BO_ShrAssign:
3578     llvm_unreachable("Found unimplemented fixed point binary operation");
3579   case BO_PtrMemD:
3580   case BO_PtrMemI:
3581   case BO_Rem:
3582   case BO_Xor:
3583   case BO_And:
3584   case BO_Or:
3585   case BO_Assign:
3586   case BO_RemAssign:
3587   case BO_AndAssign:
3588   case BO_XorAssign:
3589   case BO_OrAssign:
3590   case BO_Comma:
3591     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3592   }
3593 
3594   // Convert to the result type.
3595   return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema,
3596                                   BinOp->getExprLoc());
3597 }
3598 
3599 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3600   // The LHS is always a pointer if either side is.
3601   if (!op.LHS->getType()->isPointerTy()) {
3602     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3603       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3604       case LangOptions::SOB_Defined:
3605         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3606       case LangOptions::SOB_Undefined:
3607         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3608           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3609         LLVM_FALLTHROUGH;
3610       case LangOptions::SOB_Trapping:
3611         if (CanElideOverflowCheck(CGF.getContext(), op))
3612           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3613         return EmitOverflowCheckedBinOp(op);
3614       }
3615     }
3616 
3617     if (op.Ty->isUnsignedIntegerType() &&
3618         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3619         !CanElideOverflowCheck(CGF.getContext(), op))
3620       return EmitOverflowCheckedBinOp(op);
3621 
3622     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3623       // Try to form an fmuladd.
3624       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3625         return FMulAdd;
3626       Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
3627       return propagateFMFlags(V, op);
3628     }
3629 
3630     if (op.isFixedPointBinOp())
3631       return EmitFixedPointBinOp(op);
3632 
3633     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3634   }
3635 
3636   // If the RHS is not a pointer, then we have normal pointer
3637   // arithmetic.
3638   if (!op.RHS->getType()->isPointerTy())
3639     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3640 
3641   // Otherwise, this is a pointer subtraction.
3642 
3643   // Do the raw subtraction part.
3644   llvm::Value *LHS
3645     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3646   llvm::Value *RHS
3647     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3648   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3649 
3650   // Okay, figure out the element size.
3651   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3652   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3653 
3654   llvm::Value *divisor = nullptr;
3655 
3656   // For a variable-length array, this is going to be non-constant.
3657   if (const VariableArrayType *vla
3658         = CGF.getContext().getAsVariableArrayType(elementType)) {
3659     auto VlaSize = CGF.getVLASize(vla);
3660     elementType = VlaSize.Type;
3661     divisor = VlaSize.NumElts;
3662 
3663     // Scale the number of non-VLA elements by the non-VLA element size.
3664     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3665     if (!eltSize.isOne())
3666       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3667 
3668   // For everything elese, we can just compute it, safe in the
3669   // assumption that Sema won't let anything through that we can't
3670   // safely compute the size of.
3671   } else {
3672     CharUnits elementSize;
3673     // Handle GCC extension for pointer arithmetic on void* and
3674     // function pointer types.
3675     if (elementType->isVoidType() || elementType->isFunctionType())
3676       elementSize = CharUnits::One();
3677     else
3678       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3679 
3680     // Don't even emit the divide for element size of 1.
3681     if (elementSize.isOne())
3682       return diffInChars;
3683 
3684     divisor = CGF.CGM.getSize(elementSize);
3685   }
3686 
3687   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3688   // pointer difference in C is only defined in the case where both operands
3689   // are pointing to elements of an array.
3690   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3691 }
3692 
3693 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3694   llvm::IntegerType *Ty;
3695   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3696     Ty = cast<llvm::IntegerType>(VT->getElementType());
3697   else
3698     Ty = cast<llvm::IntegerType>(LHS->getType());
3699   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3700 }
3701 
3702 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3703   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3704   // RHS to the same size as the LHS.
3705   Value *RHS = Ops.RHS;
3706   if (Ops.LHS->getType() != RHS->getType())
3707     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3708 
3709   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3710                       Ops.Ty->hasSignedIntegerRepresentation() &&
3711                       !CGF.getLangOpts().isSignedOverflowDefined() &&
3712                       !CGF.getLangOpts().CPlusPlus2a;
3713   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3714   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3715   if (CGF.getLangOpts().OpenCL)
3716     RHS =
3717         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
3718   else if ((SanitizeBase || SanitizeExponent) &&
3719            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3720     CodeGenFunction::SanitizerScope SanScope(&CGF);
3721     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3722     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3723     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3724 
3725     if (SanitizeExponent) {
3726       Checks.push_back(
3727           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3728     }
3729 
3730     if (SanitizeBase) {
3731       // Check whether we are shifting any non-zero bits off the top of the
3732       // integer. We only emit this check if exponent is valid - otherwise
3733       // instructions below will have undefined behavior themselves.
3734       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3735       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3736       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3737       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3738       llvm::Value *PromotedWidthMinusOne =
3739           (RHS == Ops.RHS) ? WidthMinusOne
3740                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3741       CGF.EmitBlock(CheckShiftBase);
3742       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3743           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3744                                      /*NUW*/ true, /*NSW*/ true),
3745           "shl.check");
3746       if (CGF.getLangOpts().CPlusPlus) {
3747         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3748         // Under C++11's rules, shifting a 1 bit into the sign bit is
3749         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3750         // define signed left shifts, so we use the C99 and C++11 rules there).
3751         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3752         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3753       }
3754       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3755       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3756       CGF.EmitBlock(Cont);
3757       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3758       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3759       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3760       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3761     }
3762 
3763     assert(!Checks.empty());
3764     EmitBinOpCheck(Checks, Ops);
3765   }
3766 
3767   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3768 }
3769 
3770 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3771   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3772   // RHS to the same size as the LHS.
3773   Value *RHS = Ops.RHS;
3774   if (Ops.LHS->getType() != RHS->getType())
3775     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3776 
3777   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3778   if (CGF.getLangOpts().OpenCL)
3779     RHS =
3780         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
3781   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3782            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3783     CodeGenFunction::SanitizerScope SanScope(&CGF);
3784     llvm::Value *Valid =
3785         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3786     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3787   }
3788 
3789   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3790     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3791   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3792 }
3793 
3794 enum IntrinsicType { VCMPEQ, VCMPGT };
3795 // return corresponding comparison intrinsic for given vector type
3796 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3797                                         BuiltinType::Kind ElemKind) {
3798   switch (ElemKind) {
3799   default: llvm_unreachable("unexpected element type");
3800   case BuiltinType::Char_U:
3801   case BuiltinType::UChar:
3802     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3803                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3804   case BuiltinType::Char_S:
3805   case BuiltinType::SChar:
3806     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3807                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3808   case BuiltinType::UShort:
3809     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3810                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3811   case BuiltinType::Short:
3812     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3813                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3814   case BuiltinType::UInt:
3815     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3816                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3817   case BuiltinType::Int:
3818     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3819                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3820   case BuiltinType::ULong:
3821   case BuiltinType::ULongLong:
3822     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3823                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3824   case BuiltinType::Long:
3825   case BuiltinType::LongLong:
3826     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3827                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3828   case BuiltinType::Float:
3829     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3830                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3831   case BuiltinType::Double:
3832     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3833                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3834   }
3835 }
3836 
3837 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3838                                       llvm::CmpInst::Predicate UICmpOpc,
3839                                       llvm::CmpInst::Predicate SICmpOpc,
3840                                       llvm::CmpInst::Predicate FCmpOpc,
3841                                       bool IsSignaling) {
3842   TestAndClearIgnoreResultAssign();
3843   Value *Result;
3844   QualType LHSTy = E->getLHS()->getType();
3845   QualType RHSTy = E->getRHS()->getType();
3846   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3847     assert(E->getOpcode() == BO_EQ ||
3848            E->getOpcode() == BO_NE);
3849     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3850     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3851     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3852                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3853   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3854     BinOpInfo BOInfo = EmitBinOps(E);
3855     Value *LHS = BOInfo.LHS;
3856     Value *RHS = BOInfo.RHS;
3857 
3858     // If AltiVec, the comparison results in a numeric type, so we use
3859     // intrinsics comparing vectors and giving 0 or 1 as a result
3860     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3861       // constants for mapping CR6 register bits to predicate result
3862       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3863 
3864       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3865 
3866       // in several cases vector arguments order will be reversed
3867       Value *FirstVecArg = LHS,
3868             *SecondVecArg = RHS;
3869 
3870       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
3871       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
3872 
3873       switch(E->getOpcode()) {
3874       default: llvm_unreachable("is not a comparison operation");
3875       case BO_EQ:
3876         CR6 = CR6_LT;
3877         ID = GetIntrinsic(VCMPEQ, ElementKind);
3878         break;
3879       case BO_NE:
3880         CR6 = CR6_EQ;
3881         ID = GetIntrinsic(VCMPEQ, ElementKind);
3882         break;
3883       case BO_LT:
3884         CR6 = CR6_LT;
3885         ID = GetIntrinsic(VCMPGT, ElementKind);
3886         std::swap(FirstVecArg, SecondVecArg);
3887         break;
3888       case BO_GT:
3889         CR6 = CR6_LT;
3890         ID = GetIntrinsic(VCMPGT, ElementKind);
3891         break;
3892       case BO_LE:
3893         if (ElementKind == BuiltinType::Float) {
3894           CR6 = CR6_LT;
3895           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3896           std::swap(FirstVecArg, SecondVecArg);
3897         }
3898         else {
3899           CR6 = CR6_EQ;
3900           ID = GetIntrinsic(VCMPGT, ElementKind);
3901         }
3902         break;
3903       case BO_GE:
3904         if (ElementKind == BuiltinType::Float) {
3905           CR6 = CR6_LT;
3906           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3907         }
3908         else {
3909           CR6 = CR6_EQ;
3910           ID = GetIntrinsic(VCMPGT, ElementKind);
3911           std::swap(FirstVecArg, SecondVecArg);
3912         }
3913         break;
3914       }
3915 
3916       Value *CR6Param = Builder.getInt32(CR6);
3917       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3918       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3919 
3920       // The result type of intrinsic may not be same as E->getType().
3921       // If E->getType() is not BoolTy, EmitScalarConversion will do the
3922       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3923       // do nothing, if ResultTy is not i1 at the same time, it will cause
3924       // crash later.
3925       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3926       if (ResultTy->getBitWidth() > 1 &&
3927           E->getType() == CGF.getContext().BoolTy)
3928         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3929       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3930                                   E->getExprLoc());
3931     }
3932 
3933     if (BOInfo.isFixedPointBinOp()) {
3934       Result = EmitFixedPointBinOp(BOInfo);
3935     } else if (LHS->getType()->isFPOrFPVectorTy()) {
3936       if (!IsSignaling)
3937         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3938       else
3939         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
3940     } else if (LHSTy->hasSignedIntegerRepresentation()) {
3941       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3942     } else {
3943       // Unsigned integers and pointers.
3944 
3945       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
3946           !isa<llvm::ConstantPointerNull>(LHS) &&
3947           !isa<llvm::ConstantPointerNull>(RHS)) {
3948 
3949         // Dynamic information is required to be stripped for comparisons,
3950         // because it could leak the dynamic information.  Based on comparisons
3951         // of pointers to dynamic objects, the optimizer can replace one pointer
3952         // with another, which might be incorrect in presence of invariant
3953         // groups. Comparison with null is safe because null does not carry any
3954         // dynamic information.
3955         if (LHSTy.mayBeDynamicClass())
3956           LHS = Builder.CreateStripInvariantGroup(LHS);
3957         if (RHSTy.mayBeDynamicClass())
3958           RHS = Builder.CreateStripInvariantGroup(RHS);
3959       }
3960 
3961       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3962     }
3963 
3964     // If this is a vector comparison, sign extend the result to the appropriate
3965     // vector integer type and return it (don't convert to bool).
3966     if (LHSTy->isVectorType())
3967       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3968 
3969   } else {
3970     // Complex Comparison: can only be an equality comparison.
3971     CodeGenFunction::ComplexPairTy LHS, RHS;
3972     QualType CETy;
3973     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3974       LHS = CGF.EmitComplexExpr(E->getLHS());
3975       CETy = CTy->getElementType();
3976     } else {
3977       LHS.first = Visit(E->getLHS());
3978       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3979       CETy = LHSTy;
3980     }
3981     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3982       RHS = CGF.EmitComplexExpr(E->getRHS());
3983       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
3984                                                      CTy->getElementType()) &&
3985              "The element types must always match.");
3986       (void)CTy;
3987     } else {
3988       RHS.first = Visit(E->getRHS());
3989       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
3990       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
3991              "The element types must always match.");
3992     }
3993 
3994     Value *ResultR, *ResultI;
3995     if (CETy->isRealFloatingType()) {
3996       // As complex comparisons can only be equality comparisons, they
3997       // are never signaling comparisons.
3998       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
3999       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4000     } else {
4001       // Complex comparisons can only be equality comparisons.  As such, signed
4002       // and unsigned opcodes are the same.
4003       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4004       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4005     }
4006 
4007     if (E->getOpcode() == BO_EQ) {
4008       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4009     } else {
4010       assert(E->getOpcode() == BO_NE &&
4011              "Complex comparison other than == or != ?");
4012       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4013     }
4014   }
4015 
4016   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4017                               E->getExprLoc());
4018 }
4019 
4020 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4021   bool Ignore = TestAndClearIgnoreResultAssign();
4022 
4023   Value *RHS;
4024   LValue LHS;
4025 
4026   switch (E->getLHS()->getType().getObjCLifetime()) {
4027   case Qualifiers::OCL_Strong:
4028     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4029     break;
4030 
4031   case Qualifiers::OCL_Autoreleasing:
4032     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4033     break;
4034 
4035   case Qualifiers::OCL_ExplicitNone:
4036     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4037     break;
4038 
4039   case Qualifiers::OCL_Weak:
4040     RHS = Visit(E->getRHS());
4041     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4042     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4043     break;
4044 
4045   case Qualifiers::OCL_None:
4046     // __block variables need to have the rhs evaluated first, plus
4047     // this should improve codegen just a little.
4048     RHS = Visit(E->getRHS());
4049     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4050 
4051     // Store the value into the LHS.  Bit-fields are handled specially
4052     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4053     // 'An assignment expression has the value of the left operand after
4054     // the assignment...'.
4055     if (LHS.isBitField()) {
4056       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4057     } else {
4058       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4059       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4060     }
4061   }
4062 
4063   // If the result is clearly ignored, return now.
4064   if (Ignore)
4065     return nullptr;
4066 
4067   // The result of an assignment in C is the assigned r-value.
4068   if (!CGF.getLangOpts().CPlusPlus)
4069     return RHS;
4070 
4071   // If the lvalue is non-volatile, return the computed value of the assignment.
4072   if (!LHS.isVolatileQualified())
4073     return RHS;
4074 
4075   // Otherwise, reload the value.
4076   return EmitLoadOfLValue(LHS, E->getExprLoc());
4077 }
4078 
4079 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4080   // Perform vector logical and on comparisons with zero vectors.
4081   if (E->getType()->isVectorType()) {
4082     CGF.incrementProfileCounter(E);
4083 
4084     Value *LHS = Visit(E->getLHS());
4085     Value *RHS = Visit(E->getRHS());
4086     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4087     if (LHS->getType()->isFPOrFPVectorTy()) {
4088       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4089       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4090     } else {
4091       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4092       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4093     }
4094     Value *And = Builder.CreateAnd(LHS, RHS);
4095     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4096   }
4097 
4098   llvm::Type *ResTy = ConvertType(E->getType());
4099 
4100   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4101   // If we have 1 && X, just emit X without inserting the control flow.
4102   bool LHSCondVal;
4103   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4104     if (LHSCondVal) { // If we have 1 && X, just emit X.
4105       CGF.incrementProfileCounter(E);
4106 
4107       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4108       // ZExt result to int or bool.
4109       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4110     }
4111 
4112     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4113     if (!CGF.ContainsLabel(E->getRHS()))
4114       return llvm::Constant::getNullValue(ResTy);
4115   }
4116 
4117   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4118   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4119 
4120   CodeGenFunction::ConditionalEvaluation eval(CGF);
4121 
4122   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4123   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4124                            CGF.getProfileCount(E->getRHS()));
4125 
4126   // Any edges into the ContBlock are now from an (indeterminate number of)
4127   // edges from this first condition.  All of these values will be false.  Start
4128   // setting up the PHI node in the Cont Block for this.
4129   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4130                                             "", ContBlock);
4131   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4132        PI != PE; ++PI)
4133     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4134 
4135   eval.begin(CGF);
4136   CGF.EmitBlock(RHSBlock);
4137   CGF.incrementProfileCounter(E);
4138   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4139   eval.end(CGF);
4140 
4141   // Reaquire the RHS block, as there may be subblocks inserted.
4142   RHSBlock = Builder.GetInsertBlock();
4143 
4144   // Emit an unconditional branch from this block to ContBlock.
4145   {
4146     // There is no need to emit line number for unconditional branch.
4147     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4148     CGF.EmitBlock(ContBlock);
4149   }
4150   // Insert an entry into the phi node for the edge with the value of RHSCond.
4151   PN->addIncoming(RHSCond, RHSBlock);
4152 
4153   // Artificial location to preserve the scope information
4154   {
4155     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4156     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4157   }
4158 
4159   // ZExt result to int.
4160   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4161 }
4162 
4163 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4164   // Perform vector logical or on comparisons with zero vectors.
4165   if (E->getType()->isVectorType()) {
4166     CGF.incrementProfileCounter(E);
4167 
4168     Value *LHS = Visit(E->getLHS());
4169     Value *RHS = Visit(E->getRHS());
4170     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4171     if (LHS->getType()->isFPOrFPVectorTy()) {
4172       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4173       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4174     } else {
4175       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4176       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4177     }
4178     Value *Or = Builder.CreateOr(LHS, RHS);
4179     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4180   }
4181 
4182   llvm::Type *ResTy = ConvertType(E->getType());
4183 
4184   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4185   // If we have 0 || X, just emit X without inserting the control flow.
4186   bool LHSCondVal;
4187   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4188     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4189       CGF.incrementProfileCounter(E);
4190 
4191       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4192       // ZExt result to int or bool.
4193       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4194     }
4195 
4196     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4197     if (!CGF.ContainsLabel(E->getRHS()))
4198       return llvm::ConstantInt::get(ResTy, 1);
4199   }
4200 
4201   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4202   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4203 
4204   CodeGenFunction::ConditionalEvaluation eval(CGF);
4205 
4206   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4207   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4208                            CGF.getCurrentProfileCount() -
4209                                CGF.getProfileCount(E->getRHS()));
4210 
4211   // Any edges into the ContBlock are now from an (indeterminate number of)
4212   // edges from this first condition.  All of these values will be true.  Start
4213   // setting up the PHI node in the Cont Block for this.
4214   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4215                                             "", ContBlock);
4216   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4217        PI != PE; ++PI)
4218     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4219 
4220   eval.begin(CGF);
4221 
4222   // Emit the RHS condition as a bool value.
4223   CGF.EmitBlock(RHSBlock);
4224   CGF.incrementProfileCounter(E);
4225   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4226 
4227   eval.end(CGF);
4228 
4229   // Reaquire the RHS block, as there may be subblocks inserted.
4230   RHSBlock = Builder.GetInsertBlock();
4231 
4232   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4233   // into the phi node for the edge with the value of RHSCond.
4234   CGF.EmitBlock(ContBlock);
4235   PN->addIncoming(RHSCond, RHSBlock);
4236 
4237   // ZExt result to int.
4238   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4239 }
4240 
4241 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4242   CGF.EmitIgnoredExpr(E->getLHS());
4243   CGF.EnsureInsertPoint();
4244   return Visit(E->getRHS());
4245 }
4246 
4247 //===----------------------------------------------------------------------===//
4248 //                             Other Operators
4249 //===----------------------------------------------------------------------===//
4250 
4251 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4252 /// expression is cheap enough and side-effect-free enough to evaluate
4253 /// unconditionally instead of conditionally.  This is used to convert control
4254 /// flow into selects in some cases.
4255 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4256                                                    CodeGenFunction &CGF) {
4257   // Anything that is an integer or floating point constant is fine.
4258   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4259 
4260   // Even non-volatile automatic variables can't be evaluated unconditionally.
4261   // Referencing a thread_local may cause non-trivial initialization work to
4262   // occur. If we're inside a lambda and one of the variables is from the scope
4263   // outside the lambda, that function may have returned already. Reading its
4264   // locals is a bad idea. Also, these reads may introduce races there didn't
4265   // exist in the source-level program.
4266 }
4267 
4268 
4269 Value *ScalarExprEmitter::
4270 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4271   TestAndClearIgnoreResultAssign();
4272 
4273   // Bind the common expression if necessary.
4274   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4275 
4276   Expr *condExpr = E->getCond();
4277   Expr *lhsExpr = E->getTrueExpr();
4278   Expr *rhsExpr = E->getFalseExpr();
4279 
4280   // If the condition constant folds and can be elided, try to avoid emitting
4281   // the condition and the dead arm.
4282   bool CondExprBool;
4283   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4284     Expr *live = lhsExpr, *dead = rhsExpr;
4285     if (!CondExprBool) std::swap(live, dead);
4286 
4287     // If the dead side doesn't have labels we need, just emit the Live part.
4288     if (!CGF.ContainsLabel(dead)) {
4289       if (CondExprBool)
4290         CGF.incrementProfileCounter(E);
4291       Value *Result = Visit(live);
4292 
4293       // If the live part is a throw expression, it acts like it has a void
4294       // type, so evaluating it returns a null Value*.  However, a conditional
4295       // with non-void type must return a non-null Value*.
4296       if (!Result && !E->getType()->isVoidType())
4297         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4298 
4299       return Result;
4300     }
4301   }
4302 
4303   // OpenCL: If the condition is a vector, we can treat this condition like
4304   // the select function.
4305   if (CGF.getLangOpts().OpenCL
4306       && condExpr->getType()->isVectorType()) {
4307     CGF.incrementProfileCounter(E);
4308 
4309     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4310     llvm::Value *LHS = Visit(lhsExpr);
4311     llvm::Value *RHS = Visit(rhsExpr);
4312 
4313     llvm::Type *condType = ConvertType(condExpr->getType());
4314     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
4315 
4316     unsigned numElem = vecTy->getNumElements();
4317     llvm::Type *elemType = vecTy->getElementType();
4318 
4319     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4320     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4321     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
4322                                           llvm::VectorType::get(elemType,
4323                                                                 numElem),
4324                                           "sext");
4325     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4326 
4327     // Cast float to int to perform ANDs if necessary.
4328     llvm::Value *RHSTmp = RHS;
4329     llvm::Value *LHSTmp = LHS;
4330     bool wasCast = false;
4331     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4332     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4333       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4334       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4335       wasCast = true;
4336     }
4337 
4338     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4339     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4340     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4341     if (wasCast)
4342       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4343 
4344     return tmp5;
4345   }
4346 
4347   if (condExpr->getType()->isVectorType()) {
4348     CGF.incrementProfileCounter(E);
4349 
4350     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4351     llvm::Value *LHS = Visit(lhsExpr);
4352     llvm::Value *RHS = Visit(rhsExpr);
4353 
4354     llvm::Type *CondType = ConvertType(condExpr->getType());
4355     auto *VecTy = cast<llvm::VectorType>(CondType);
4356     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4357 
4358     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4359     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4360   }
4361 
4362   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4363   // select instead of as control flow.  We can only do this if it is cheap and
4364   // safe to evaluate the LHS and RHS unconditionally.
4365   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4366       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4367     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4368     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4369 
4370     CGF.incrementProfileCounter(E, StepV);
4371 
4372     llvm::Value *LHS = Visit(lhsExpr);
4373     llvm::Value *RHS = Visit(rhsExpr);
4374     if (!LHS) {
4375       // If the conditional has void type, make sure we return a null Value*.
4376       assert(!RHS && "LHS and RHS types must match");
4377       return nullptr;
4378     }
4379     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4380   }
4381 
4382   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4383   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4384   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4385 
4386   CodeGenFunction::ConditionalEvaluation eval(CGF);
4387   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4388                            CGF.getProfileCount(lhsExpr));
4389 
4390   CGF.EmitBlock(LHSBlock);
4391   CGF.incrementProfileCounter(E);
4392   eval.begin(CGF);
4393   Value *LHS = Visit(lhsExpr);
4394   eval.end(CGF);
4395 
4396   LHSBlock = Builder.GetInsertBlock();
4397   Builder.CreateBr(ContBlock);
4398 
4399   CGF.EmitBlock(RHSBlock);
4400   eval.begin(CGF);
4401   Value *RHS = Visit(rhsExpr);
4402   eval.end(CGF);
4403 
4404   RHSBlock = Builder.GetInsertBlock();
4405   CGF.EmitBlock(ContBlock);
4406 
4407   // If the LHS or RHS is a throw expression, it will be legitimately null.
4408   if (!LHS)
4409     return RHS;
4410   if (!RHS)
4411     return LHS;
4412 
4413   // Create a PHI node for the real part.
4414   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4415   PN->addIncoming(LHS, LHSBlock);
4416   PN->addIncoming(RHS, RHSBlock);
4417   return PN;
4418 }
4419 
4420 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4421   return Visit(E->getChosenSubExpr());
4422 }
4423 
4424 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4425   QualType Ty = VE->getType();
4426 
4427   if (Ty->isVariablyModifiedType())
4428     CGF.EmitVariablyModifiedType(Ty);
4429 
4430   Address ArgValue = Address::invalid();
4431   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4432 
4433   llvm::Type *ArgTy = ConvertType(VE->getType());
4434 
4435   // If EmitVAArg fails, emit an error.
4436   if (!ArgPtr.isValid()) {
4437     CGF.ErrorUnsupported(VE, "va_arg expression");
4438     return llvm::UndefValue::get(ArgTy);
4439   }
4440 
4441   // FIXME Volatility.
4442   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4443 
4444   // If EmitVAArg promoted the type, we must truncate it.
4445   if (ArgTy != Val->getType()) {
4446     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4447       Val = Builder.CreateIntToPtr(Val, ArgTy);
4448     else
4449       Val = Builder.CreateTrunc(Val, ArgTy);
4450   }
4451 
4452   return Val;
4453 }
4454 
4455 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4456   return CGF.EmitBlockLiteral(block);
4457 }
4458 
4459 // Convert a vec3 to vec4, or vice versa.
4460 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4461                                  Value *Src, unsigned NumElementsDst) {
4462   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
4463   SmallVector<llvm::Constant*, 4> Args;
4464   Args.push_back(Builder.getInt32(0));
4465   Args.push_back(Builder.getInt32(1));
4466   Args.push_back(Builder.getInt32(2));
4467   if (NumElementsDst == 4)
4468     Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
4469   llvm::Constant *Mask = llvm::ConstantVector::get(Args);
4470   return Builder.CreateShuffleVector(Src, UnV, Mask);
4471 }
4472 
4473 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4474 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4475 // but could be scalar or vectors of different lengths, and either can be
4476 // pointer.
4477 // There are 4 cases:
4478 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4479 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4480 // 3. pointer -> non-pointer
4481 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4482 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4483 // 4. non-pointer -> pointer
4484 //   a) intptr_t -> pointer       : needs 1 inttoptr
4485 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4486 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4487 // allow casting directly between pointer types and non-integer non-pointer
4488 // types.
4489 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4490                                            const llvm::DataLayout &DL,
4491                                            Value *Src, llvm::Type *DstTy,
4492                                            StringRef Name = "") {
4493   auto SrcTy = Src->getType();
4494 
4495   // Case 1.
4496   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4497     return Builder.CreateBitCast(Src, DstTy, Name);
4498 
4499   // Case 2.
4500   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4501     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4502 
4503   // Case 3.
4504   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4505     // Case 3b.
4506     if (!DstTy->isIntegerTy())
4507       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4508     // Cases 3a and 3b.
4509     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4510   }
4511 
4512   // Case 4b.
4513   if (!SrcTy->isIntegerTy())
4514     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4515   // Cases 4a and 4b.
4516   return Builder.CreateIntToPtr(Src, DstTy, Name);
4517 }
4518 
4519 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4520   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4521   llvm::Type *DstTy = ConvertType(E->getType());
4522 
4523   llvm::Type *SrcTy = Src->getType();
4524   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
4525     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
4526   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
4527     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
4528 
4529   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4530   // vector to get a vec4, then a bitcast if the target type is different.
4531   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4532     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4533 
4534     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4535       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4536                                          DstTy);
4537     }
4538 
4539     Src->setName("astype");
4540     return Src;
4541   }
4542 
4543   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4544   // to vec4 if the original type is not vec4, then a shuffle vector to
4545   // get a vec3.
4546   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4547     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4548       auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
4549       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4550                                          Vec4Ty);
4551     }
4552 
4553     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4554     Src->setName("astype");
4555     return Src;
4556   }
4557 
4558   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4559                                       Src, DstTy, "astype");
4560 }
4561 
4562 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4563   return CGF.EmitAtomicExpr(E).getScalarVal();
4564 }
4565 
4566 //===----------------------------------------------------------------------===//
4567 //                         Entry Point into this File
4568 //===----------------------------------------------------------------------===//
4569 
4570 /// Emit the computation of the specified expression of scalar type, ignoring
4571 /// the result.
4572 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4573   assert(E && hasScalarEvaluationKind(E->getType()) &&
4574          "Invalid scalar expression to emit");
4575 
4576   return ScalarExprEmitter(*this, IgnoreResultAssign)
4577       .Visit(const_cast<Expr *>(E));
4578 }
4579 
4580 /// Emit a conversion from the specified type to the specified destination type,
4581 /// both of which are LLVM scalar types.
4582 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4583                                              QualType DstTy,
4584                                              SourceLocation Loc) {
4585   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4586          "Invalid scalar expression to emit");
4587   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4588 }
4589 
4590 /// Emit a conversion from the specified complex type to the specified
4591 /// destination type, where the destination type is an LLVM scalar type.
4592 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4593                                                       QualType SrcTy,
4594                                                       QualType DstTy,
4595                                                       SourceLocation Loc) {
4596   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4597          "Invalid complex -> scalar conversion");
4598   return ScalarExprEmitter(*this)
4599       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4600 }
4601 
4602 
4603 llvm::Value *CodeGenFunction::
4604 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4605                         bool isInc, bool isPre) {
4606   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4607 }
4608 
4609 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4610   // object->isa or (*object).isa
4611   // Generate code as for: *(Class*)object
4612 
4613   Expr *BaseExpr = E->getBase();
4614   Address Addr = Address::invalid();
4615   if (BaseExpr->isRValue()) {
4616     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4617   } else {
4618     Addr = EmitLValue(BaseExpr).getAddress(*this);
4619   }
4620 
4621   // Cast the address to Class*.
4622   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4623   return MakeAddrLValue(Addr, E->getType());
4624 }
4625 
4626 
4627 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4628                                             const CompoundAssignOperator *E) {
4629   ScalarExprEmitter Scalar(*this);
4630   Value *Result = nullptr;
4631   switch (E->getOpcode()) {
4632 #define COMPOUND_OP(Op)                                                       \
4633     case BO_##Op##Assign:                                                     \
4634       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4635                                              Result)
4636   COMPOUND_OP(Mul);
4637   COMPOUND_OP(Div);
4638   COMPOUND_OP(Rem);
4639   COMPOUND_OP(Add);
4640   COMPOUND_OP(Sub);
4641   COMPOUND_OP(Shl);
4642   COMPOUND_OP(Shr);
4643   COMPOUND_OP(And);
4644   COMPOUND_OP(Xor);
4645   COMPOUND_OP(Or);
4646 #undef COMPOUND_OP
4647 
4648   case BO_PtrMemD:
4649   case BO_PtrMemI:
4650   case BO_Mul:
4651   case BO_Div:
4652   case BO_Rem:
4653   case BO_Add:
4654   case BO_Sub:
4655   case BO_Shl:
4656   case BO_Shr:
4657   case BO_LT:
4658   case BO_GT:
4659   case BO_LE:
4660   case BO_GE:
4661   case BO_EQ:
4662   case BO_NE:
4663   case BO_Cmp:
4664   case BO_And:
4665   case BO_Xor:
4666   case BO_Or:
4667   case BO_LAnd:
4668   case BO_LOr:
4669   case BO_Assign:
4670   case BO_Comma:
4671     llvm_unreachable("Not valid compound assignment operators");
4672   }
4673 
4674   llvm_unreachable("Unhandled compound assignment operator");
4675 }
4676 
4677 struct GEPOffsetAndOverflow {
4678   // The total (signed) byte offset for the GEP.
4679   llvm::Value *TotalOffset;
4680   // The offset overflow flag - true if the total offset overflows.
4681   llvm::Value *OffsetOverflows;
4682 };
4683 
4684 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4685 /// and compute the total offset it applies from it's base pointer BasePtr.
4686 /// Returns offset in bytes and a boolean flag whether an overflow happened
4687 /// during evaluation.
4688 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4689                                                  llvm::LLVMContext &VMContext,
4690                                                  CodeGenModule &CGM,
4691                                                  CGBuilderTy &Builder) {
4692   const auto &DL = CGM.getDataLayout();
4693 
4694   // The total (signed) byte offset for the GEP.
4695   llvm::Value *TotalOffset = nullptr;
4696 
4697   // Was the GEP already reduced to a constant?
4698   if (isa<llvm::Constant>(GEPVal)) {
4699     // Compute the offset by casting both pointers to integers and subtracting:
4700     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4701     Value *BasePtr_int =
4702         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4703     Value *GEPVal_int =
4704         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4705     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4706     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4707   }
4708 
4709   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4710   assert(GEP->getPointerOperand() == BasePtr &&
4711          "BasePtr must be the the base of the GEP.");
4712   assert(GEP->isInBounds() && "Expected inbounds GEP");
4713 
4714   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4715 
4716   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4717   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4718   auto *SAddIntrinsic =
4719       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4720   auto *SMulIntrinsic =
4721       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4722 
4723   // The offset overflow flag - true if the total offset overflows.
4724   llvm::Value *OffsetOverflows = Builder.getFalse();
4725 
4726   /// Return the result of the given binary operation.
4727   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4728                   llvm::Value *RHS) -> llvm::Value * {
4729     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4730 
4731     // If the operands are constants, return a constant result.
4732     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4733       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4734         llvm::APInt N;
4735         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4736                                                   /*Signed=*/true, N);
4737         if (HasOverflow)
4738           OffsetOverflows = Builder.getTrue();
4739         return llvm::ConstantInt::get(VMContext, N);
4740       }
4741     }
4742 
4743     // Otherwise, compute the result with checked arithmetic.
4744     auto *ResultAndOverflow = Builder.CreateCall(
4745         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4746     OffsetOverflows = Builder.CreateOr(
4747         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4748     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4749   };
4750 
4751   // Determine the total byte offset by looking at each GEP operand.
4752   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4753        GTI != GTE; ++GTI) {
4754     llvm::Value *LocalOffset;
4755     auto *Index = GTI.getOperand();
4756     // Compute the local offset contributed by this indexing step:
4757     if (auto *STy = GTI.getStructTypeOrNull()) {
4758       // For struct indexing, the local offset is the byte position of the
4759       // specified field.
4760       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4761       LocalOffset = llvm::ConstantInt::get(
4762           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4763     } else {
4764       // Otherwise this is array-like indexing. The local offset is the index
4765       // multiplied by the element size.
4766       auto *ElementSize = llvm::ConstantInt::get(
4767           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4768       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4769       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4770     }
4771 
4772     // If this is the first offset, set it as the total offset. Otherwise, add
4773     // the local offset into the running total.
4774     if (!TotalOffset || TotalOffset == Zero)
4775       TotalOffset = LocalOffset;
4776     else
4777       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4778   }
4779 
4780   return {TotalOffset, OffsetOverflows};
4781 }
4782 
4783 Value *
4784 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
4785                                         bool SignedIndices, bool IsSubtraction,
4786                                         SourceLocation Loc, const Twine &Name) {
4787   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4788 
4789   // If the pointer overflow sanitizer isn't enabled, do nothing.
4790   if (!SanOpts.has(SanitizerKind::PointerOverflow))
4791     return GEPVal;
4792 
4793   llvm::Type *PtrTy = Ptr->getType();
4794 
4795   // Perform nullptr-and-offset check unless the nullptr is defined.
4796   bool PerformNullCheck = !NullPointerIsDefined(
4797       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
4798   // Check for overflows unless the GEP got constant-folded,
4799   // and only in the default address space
4800   bool PerformOverflowCheck =
4801       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
4802 
4803   if (!(PerformNullCheck || PerformOverflowCheck))
4804     return GEPVal;
4805 
4806   const auto &DL = CGM.getDataLayout();
4807 
4808   SanitizerScope SanScope(this);
4809   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
4810 
4811   GEPOffsetAndOverflow EvaluatedGEP =
4812       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
4813 
4814   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
4815           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
4816          "If the offset got constant-folded, we don't expect that there was an "
4817          "overflow.");
4818 
4819   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4820 
4821   // Common case: if the total offset is zero, and we are using C++ semantics,
4822   // where nullptr+0 is defined, don't emit a check.
4823   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
4824     return GEPVal;
4825 
4826   // Now that we've computed the total offset, add it to the base pointer (with
4827   // wrapping semantics).
4828   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
4829   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
4830 
4831   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
4832 
4833   if (PerformNullCheck) {
4834     // In C++, if the base pointer evaluates to a null pointer value,
4835     // the only valid  pointer this inbounds GEP can produce is also
4836     // a null pointer, so the offset must also evaluate to zero.
4837     // Likewise, if we have non-zero base pointer, we can not get null pointer
4838     // as a result, so the offset can not be -intptr_t(BasePtr).
4839     // In other words, both pointers are either null, or both are non-null,
4840     // or the behaviour is undefined.
4841     //
4842     // C, however, is more strict in this regard, and gives more
4843     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
4844     // So both the input to the 'gep inbounds' AND the output must not be null.
4845     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
4846     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
4847     auto *Valid =
4848         CGM.getLangOpts().CPlusPlus
4849             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
4850             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
4851     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
4852   }
4853 
4854   if (PerformOverflowCheck) {
4855     // The GEP is valid if:
4856     // 1) The total offset doesn't overflow, and
4857     // 2) The sign of the difference between the computed address and the base
4858     // pointer matches the sign of the total offset.
4859     llvm::Value *ValidGEP;
4860     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
4861     if (SignedIndices) {
4862       // GEP is computed as `unsigned base + signed offset`, therefore:
4863       // * If offset was positive, then the computed pointer can not be
4864       //   [unsigned] less than the base pointer, unless it overflowed.
4865       // * If offset was negative, then the computed pointer can not be
4866       //   [unsigned] greater than the bas pointere, unless it overflowed.
4867       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4868       auto *PosOrZeroOffset =
4869           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
4870       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4871       ValidGEP =
4872           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
4873     } else if (!IsSubtraction) {
4874       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
4875       // computed pointer can not be [unsigned] less than base pointer,
4876       // unless there was an overflow.
4877       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
4878       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4879     } else {
4880       // GEP is computed as `unsigned base - unsigned offset`, therefore the
4881       // computed pointer can not be [unsigned] greater than base pointer,
4882       // unless there was an overflow.
4883       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
4884       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4885     }
4886     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
4887     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
4888   }
4889 
4890   assert(!Checks.empty() && "Should have produced some checks.");
4891 
4892   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4893   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4894   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4895   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4896 
4897   return GEPVal;
4898 }
4899