1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Frontend/CodeGenOptions.h"
15 #include "CodeGenFunction.h"
16 #include "CGCXXABI.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "CGDebugInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "llvm/Constants.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Intrinsics.h"
29 #include "llvm/Module.h"
30 #include "llvm/Support/CFG.h"
31 #include "llvm/DataLayout.h"
32 #include <cstdarg>
33 
34 using namespace clang;
35 using namespace CodeGen;
36 using llvm::Value;
37 
38 //===----------------------------------------------------------------------===//
39 //                         Scalar Expression Emitter
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 struct BinOpInfo {
44   Value *LHS;
45   Value *RHS;
46   QualType Ty;  // Computation Type.
47   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48   bool FPContractable;
49   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
50 };
51 
52 static bool MustVisitNullValue(const Expr *E) {
53   // If a null pointer expression's type is the C++0x nullptr_t, then
54   // it's not necessarily a simple constant and it must be evaluated
55   // for its potential side effects.
56   return E->getType()->isNullPtrType();
57 }
58 
59 class ScalarExprEmitter
60   : public StmtVisitor<ScalarExprEmitter, Value*> {
61   CodeGenFunction &CGF;
62   CGBuilderTy &Builder;
63   bool IgnoreResultAssign;
64   llvm::LLVMContext &VMContext;
65 public:
66 
67   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
68     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
69       VMContext(cgf.getLLVMContext()) {
70   }
71 
72   //===--------------------------------------------------------------------===//
73   //                               Utilities
74   //===--------------------------------------------------------------------===//
75 
76   bool TestAndClearIgnoreResultAssign() {
77     bool I = IgnoreResultAssign;
78     IgnoreResultAssign = false;
79     return I;
80   }
81 
82   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
83   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
84   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
85     return CGF.EmitCheckedLValue(E, TCK);
86   }
87 
88   void EmitBinOpCheck(Value *Check, const BinOpInfo &Info);
89 
90   Value *EmitLoadOfLValue(LValue LV) {
91     return CGF.EmitLoadOfLValue(LV).getScalarVal();
92   }
93 
94   /// EmitLoadOfLValue - Given an expression with complex type that represents a
95   /// value l-value, this method emits the address of the l-value, then loads
96   /// and returns the result.
97   Value *EmitLoadOfLValue(const Expr *E) {
98     return EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load));
99   }
100 
101   /// EmitConversionToBool - Convert the specified expression value to a
102   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
103   Value *EmitConversionToBool(Value *Src, QualType DstTy);
104 
105   /// \brief Emit a check that a conversion to or from a floating-point type
106   /// does not overflow.
107   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
108                                 Value *Src, QualType SrcType,
109                                 QualType DstType, llvm::Type *DstTy);
110 
111   /// EmitScalarConversion - Emit a conversion from the specified type to the
112   /// specified destination type, both of which are LLVM scalar types.
113   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
114 
115   /// EmitComplexToScalarConversion - Emit a conversion from the specified
116   /// complex type to the specified destination type, where the destination type
117   /// is an LLVM scalar type.
118   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
119                                        QualType SrcTy, QualType DstTy);
120 
121   /// EmitNullValue - Emit a value that corresponds to null for the given type.
122   Value *EmitNullValue(QualType Ty);
123 
124   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
125   Value *EmitFloatToBoolConversion(Value *V) {
126     // Compare against 0.0 for fp scalars.
127     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
128     return Builder.CreateFCmpUNE(V, Zero, "tobool");
129   }
130 
131   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
132   Value *EmitPointerToBoolConversion(Value *V) {
133     Value *Zero = llvm::ConstantPointerNull::get(
134                                       cast<llvm::PointerType>(V->getType()));
135     return Builder.CreateICmpNE(V, Zero, "tobool");
136   }
137 
138   Value *EmitIntToBoolConversion(Value *V) {
139     // Because of the type rules of C, we often end up computing a
140     // logical value, then zero extending it to int, then wanting it
141     // as a logical value again.  Optimize this common case.
142     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
143       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
144         Value *Result = ZI->getOperand(0);
145         // If there aren't any more uses, zap the instruction to save space.
146         // Note that there can be more uses, for example if this
147         // is the result of an assignment.
148         if (ZI->use_empty())
149           ZI->eraseFromParent();
150         return Result;
151       }
152     }
153 
154     return Builder.CreateIsNotNull(V, "tobool");
155   }
156 
157   //===--------------------------------------------------------------------===//
158   //                            Visitor Methods
159   //===--------------------------------------------------------------------===//
160 
161   Value *Visit(Expr *E) {
162     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
163   }
164 
165   Value *VisitStmt(Stmt *S) {
166     S->dump(CGF.getContext().getSourceManager());
167     llvm_unreachable("Stmt can't have complex result type!");
168   }
169   Value *VisitExpr(Expr *S);
170 
171   Value *VisitParenExpr(ParenExpr *PE) {
172     return Visit(PE->getSubExpr());
173   }
174   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
175     return Visit(E->getReplacement());
176   }
177   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
178     return Visit(GE->getResultExpr());
179   }
180 
181   // Leaves.
182   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
183     return Builder.getInt(E->getValue());
184   }
185   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
186     return llvm::ConstantFP::get(VMContext, E->getValue());
187   }
188   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
189     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
190   }
191   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
192     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
193   }
194   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
195     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
196   }
197   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
198     return EmitNullValue(E->getType());
199   }
200   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
201     return EmitNullValue(E->getType());
202   }
203   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
204   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
205   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
206     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
207     return Builder.CreateBitCast(V, ConvertType(E->getType()));
208   }
209 
210   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
211     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
212   }
213 
214   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
215     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
216   }
217 
218   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
219     if (E->isGLValue())
220       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
221 
222     // Otherwise, assume the mapping is the scalar directly.
223     return CGF.getOpaqueRValueMapping(E).getScalarVal();
224   }
225 
226   // l-values.
227   Value *VisitDeclRefExpr(DeclRefExpr *E) {
228     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
229       if (result.isReference())
230         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E));
231       return result.getValue();
232     }
233     return EmitLoadOfLValue(E);
234   }
235 
236   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
237     return CGF.EmitObjCSelectorExpr(E);
238   }
239   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
240     return CGF.EmitObjCProtocolExpr(E);
241   }
242   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
243     return EmitLoadOfLValue(E);
244   }
245   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
246     if (E->getMethodDecl() &&
247         E->getMethodDecl()->getResultType()->isReferenceType())
248       return EmitLoadOfLValue(E);
249     return CGF.EmitObjCMessageExpr(E).getScalarVal();
250   }
251 
252   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
253     LValue LV = CGF.EmitObjCIsaExpr(E);
254     Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
255     return V;
256   }
257 
258   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
259   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
260   Value *VisitMemberExpr(MemberExpr *E);
261   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
262   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
263     return EmitLoadOfLValue(E);
264   }
265 
266   Value *VisitInitListExpr(InitListExpr *E);
267 
268   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
269     return CGF.CGM.EmitNullConstant(E->getType());
270   }
271   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
272     if (E->getType()->isVariablyModifiedType())
273       CGF.EmitVariablyModifiedType(E->getType());
274     return VisitCastExpr(E);
275   }
276   Value *VisitCastExpr(CastExpr *E);
277 
278   Value *VisitCallExpr(const CallExpr *E) {
279     if (E->getCallReturnType()->isReferenceType())
280       return EmitLoadOfLValue(E);
281 
282     return CGF.EmitCallExpr(E).getScalarVal();
283   }
284 
285   Value *VisitStmtExpr(const StmtExpr *E);
286 
287   // Unary Operators.
288   Value *VisitUnaryPostDec(const UnaryOperator *E) {
289     LValue LV = EmitLValue(E->getSubExpr());
290     return EmitScalarPrePostIncDec(E, LV, false, false);
291   }
292   Value *VisitUnaryPostInc(const UnaryOperator *E) {
293     LValue LV = EmitLValue(E->getSubExpr());
294     return EmitScalarPrePostIncDec(E, LV, true, false);
295   }
296   Value *VisitUnaryPreDec(const UnaryOperator *E) {
297     LValue LV = EmitLValue(E->getSubExpr());
298     return EmitScalarPrePostIncDec(E, LV, false, true);
299   }
300   Value *VisitUnaryPreInc(const UnaryOperator *E) {
301     LValue LV = EmitLValue(E->getSubExpr());
302     return EmitScalarPrePostIncDec(E, LV, true, true);
303   }
304 
305   llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
306                                                llvm::Value *InVal,
307                                                llvm::Value *NextVal,
308                                                bool IsInc);
309 
310   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
311                                        bool isInc, bool isPre);
312 
313 
314   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
315     if (isa<MemberPointerType>(E->getType())) // never sugared
316       return CGF.CGM.getMemberPointerConstant(E);
317 
318     return EmitLValue(E->getSubExpr()).getAddress();
319   }
320   Value *VisitUnaryDeref(const UnaryOperator *E) {
321     if (E->getType()->isVoidType())
322       return Visit(E->getSubExpr()); // the actual value should be unused
323     return EmitLoadOfLValue(E);
324   }
325   Value *VisitUnaryPlus(const UnaryOperator *E) {
326     // This differs from gcc, though, most likely due to a bug in gcc.
327     TestAndClearIgnoreResultAssign();
328     return Visit(E->getSubExpr());
329   }
330   Value *VisitUnaryMinus    (const UnaryOperator *E);
331   Value *VisitUnaryNot      (const UnaryOperator *E);
332   Value *VisitUnaryLNot     (const UnaryOperator *E);
333   Value *VisitUnaryReal     (const UnaryOperator *E);
334   Value *VisitUnaryImag     (const UnaryOperator *E);
335   Value *VisitUnaryExtension(const UnaryOperator *E) {
336     return Visit(E->getSubExpr());
337   }
338 
339   // C++
340   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
341     return EmitLoadOfLValue(E);
342   }
343 
344   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
345     return Visit(DAE->getExpr());
346   }
347   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
348     return CGF.LoadCXXThis();
349   }
350 
351   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
352     CGF.enterFullExpression(E);
353     CodeGenFunction::RunCleanupsScope Scope(CGF);
354     return Visit(E->getSubExpr());
355   }
356   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
357     return CGF.EmitCXXNewExpr(E);
358   }
359   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
360     CGF.EmitCXXDeleteExpr(E);
361     return 0;
362   }
363   Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
364     return Builder.getInt1(E->getValue());
365   }
366 
367   Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
368     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
369   }
370 
371   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
372     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
373   }
374 
375   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
376     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
377   }
378 
379   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
380     // C++ [expr.pseudo]p1:
381     //   The result shall only be used as the operand for the function call
382     //   operator (), and the result of such a call has type void. The only
383     //   effect is the evaluation of the postfix-expression before the dot or
384     //   arrow.
385     CGF.EmitScalarExpr(E->getBase());
386     return 0;
387   }
388 
389   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
390     return EmitNullValue(E->getType());
391   }
392 
393   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
394     CGF.EmitCXXThrowExpr(E);
395     return 0;
396   }
397 
398   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
399     return Builder.getInt1(E->getValue());
400   }
401 
402   // Binary Operators.
403   Value *EmitMul(const BinOpInfo &Ops) {
404     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
405       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
406       case LangOptions::SOB_Defined:
407         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
408       case LangOptions::SOB_Undefined:
409         if (!CGF.getLangOpts().SanitizeSignedIntegerOverflow)
410           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
411         // Fall through.
412       case LangOptions::SOB_Trapping:
413         return EmitOverflowCheckedBinOp(Ops);
414       }
415     }
416 
417     if (Ops.LHS->getType()->isFPOrFPVectorTy())
418       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
419     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
420   }
421   /// Create a binary op that checks for overflow.
422   /// Currently only supports +, - and *.
423   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
424 
425   // Check for undefined division and modulus behaviors.
426   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
427                                                   llvm::Value *Zero,bool isDiv);
428   Value *EmitDiv(const BinOpInfo &Ops);
429   Value *EmitRem(const BinOpInfo &Ops);
430   Value *EmitAdd(const BinOpInfo &Ops);
431   Value *EmitSub(const BinOpInfo &Ops);
432   Value *EmitShl(const BinOpInfo &Ops);
433   Value *EmitShr(const BinOpInfo &Ops);
434   Value *EmitAnd(const BinOpInfo &Ops) {
435     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
436   }
437   Value *EmitXor(const BinOpInfo &Ops) {
438     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
439   }
440   Value *EmitOr (const BinOpInfo &Ops) {
441     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
442   }
443 
444   BinOpInfo EmitBinOps(const BinaryOperator *E);
445   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
446                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
447                                   Value *&Result);
448 
449   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
450                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
451 
452   // Binary operators and binary compound assignment operators.
453 #define HANDLEBINOP(OP) \
454   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
455     return Emit ## OP(EmitBinOps(E));                                      \
456   }                                                                        \
457   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
458     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
459   }
460   HANDLEBINOP(Mul)
461   HANDLEBINOP(Div)
462   HANDLEBINOP(Rem)
463   HANDLEBINOP(Add)
464   HANDLEBINOP(Sub)
465   HANDLEBINOP(Shl)
466   HANDLEBINOP(Shr)
467   HANDLEBINOP(And)
468   HANDLEBINOP(Xor)
469   HANDLEBINOP(Or)
470 #undef HANDLEBINOP
471 
472   // Comparisons.
473   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
474                      unsigned SICmpOpc, unsigned FCmpOpc);
475 #define VISITCOMP(CODE, UI, SI, FP) \
476     Value *VisitBin##CODE(const BinaryOperator *E) { \
477       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
478                          llvm::FCmpInst::FP); }
479   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
480   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
481   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
482   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
483   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
484   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
485 #undef VISITCOMP
486 
487   Value *VisitBinAssign     (const BinaryOperator *E);
488 
489   Value *VisitBinLAnd       (const BinaryOperator *E);
490   Value *VisitBinLOr        (const BinaryOperator *E);
491   Value *VisitBinComma      (const BinaryOperator *E);
492 
493   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
494   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
495 
496   // Other Operators.
497   Value *VisitBlockExpr(const BlockExpr *BE);
498   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
499   Value *VisitChooseExpr(ChooseExpr *CE);
500   Value *VisitVAArgExpr(VAArgExpr *VE);
501   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
502     return CGF.EmitObjCStringLiteral(E);
503   }
504   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
505     return CGF.EmitObjCBoxedExpr(E);
506   }
507   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
508     return CGF.EmitObjCArrayLiteral(E);
509   }
510   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
511     return CGF.EmitObjCDictionaryLiteral(E);
512   }
513   Value *VisitAsTypeExpr(AsTypeExpr *CE);
514   Value *VisitAtomicExpr(AtomicExpr *AE);
515 };
516 }  // end anonymous namespace.
517 
518 //===----------------------------------------------------------------------===//
519 //                                Utilities
520 //===----------------------------------------------------------------------===//
521 
522 /// EmitConversionToBool - Convert the specified expression value to a
523 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
524 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
525   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
526 
527   if (SrcType->isRealFloatingType())
528     return EmitFloatToBoolConversion(Src);
529 
530   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
531     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
532 
533   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
534          "Unknown scalar type to convert");
535 
536   if (isa<llvm::IntegerType>(Src->getType()))
537     return EmitIntToBoolConversion(Src);
538 
539   assert(isa<llvm::PointerType>(Src->getType()));
540   return EmitPointerToBoolConversion(Src);
541 }
542 
543 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc,
544                                                  QualType OrigSrcType,
545                                                  Value *Src, QualType SrcType,
546                                                  QualType DstType,
547                                                  llvm::Type *DstTy) {
548   using llvm::APFloat;
549   using llvm::APSInt;
550 
551   llvm::Type *SrcTy = Src->getType();
552 
553   llvm::Value *Check = 0;
554   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
555     // Integer to floating-point. This can fail for unsigned short -> __half
556     // or unsigned __int128 -> float.
557     assert(DstType->isFloatingType());
558     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
559 
560     APFloat LargestFloat =
561       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
562     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
563 
564     bool IsExact;
565     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
566                                       &IsExact) != APFloat::opOK)
567       // The range of representable values of this floating point type includes
568       // all values of this integer type. Don't need an overflow check.
569       return;
570 
571     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
572     if (SrcIsUnsigned)
573       Check = Builder.CreateICmpULE(Src, Max);
574     else {
575       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
576       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
577       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
578       Check = Builder.CreateAnd(GE, LE);
579     }
580   } else {
581     // Floating-point to integer or floating-point to floating-point. This has
582     // undefined behavior if the source is +-Inf, NaN, or doesn't fit into the
583     // destination type.
584     const llvm::fltSemantics &SrcSema =
585       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
586     APFloat MaxSrc(SrcSema, APFloat::uninitialized);
587     APFloat MinSrc(SrcSema, APFloat::uninitialized);
588 
589     if (isa<llvm::IntegerType>(DstTy)) {
590       unsigned Width = CGF.getContext().getIntWidth(DstType);
591       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
592 
593       APSInt Min = APSInt::getMinValue(Width, Unsigned);
594       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
595           APFloat::opOverflow)
596         // Don't need an overflow check for lower bound. Just check for
597         // -Inf/NaN.
598         MinSrc = APFloat::getLargest(SrcSema, true);
599 
600       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
601       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
602           APFloat::opOverflow)
603         // Don't need an overflow check for upper bound. Just check for
604         // +Inf/NaN.
605         MaxSrc = APFloat::getLargest(SrcSema, false);
606     } else {
607       const llvm::fltSemantics &DstSema =
608         CGF.getContext().getFloatTypeSemantics(DstType);
609       bool IsInexact;
610 
611       MinSrc = APFloat::getLargest(DstSema, true);
612       if (MinSrc.convert(SrcSema, APFloat::rmTowardZero, &IsInexact) &
613           APFloat::opOverflow)
614         MinSrc = APFloat::getLargest(SrcSema, true);
615 
616       MaxSrc = APFloat::getLargest(DstSema, false);
617       if (MaxSrc.convert(SrcSema, APFloat::rmTowardZero, &IsInexact) &
618           APFloat::opOverflow)
619         MaxSrc = APFloat::getLargest(SrcSema, false);
620     }
621 
622     // If we're converting from __half, convert the range to float to match
623     // the type of src.
624     if (OrigSrcType->isHalfType()) {
625       const llvm::fltSemantics &Sema =
626         CGF.getContext().getFloatTypeSemantics(SrcType);
627       bool IsInexact;
628       MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
629       MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
630     }
631 
632     llvm::Value *GE =
633       Builder.CreateFCmpOGE(Src, llvm::ConstantFP::get(VMContext, MinSrc));
634     llvm::Value *LE =
635       Builder.CreateFCmpOLE(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
636     Check = Builder.CreateAnd(GE, LE);
637   }
638 
639   // FIXME: Provide a SourceLocation.
640   llvm::Constant *StaticArgs[] = {
641     CGF.EmitCheckTypeDescriptor(OrigSrcType),
642     CGF.EmitCheckTypeDescriptor(DstType)
643   };
644   CGF.EmitCheck(Check, "float_cast_overflow", StaticArgs, OrigSrc);
645 }
646 
647 /// EmitScalarConversion - Emit a conversion from the specified type to the
648 /// specified destination type, both of which are LLVM scalar types.
649 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
650                                                QualType DstType) {
651   SrcType = CGF.getContext().getCanonicalType(SrcType);
652   DstType = CGF.getContext().getCanonicalType(DstType);
653   if (SrcType == DstType) return Src;
654 
655   if (DstType->isVoidType()) return 0;
656 
657   llvm::Value *OrigSrc = Src;
658   QualType OrigSrcType = SrcType;
659   llvm::Type *SrcTy = Src->getType();
660 
661   // Floating casts might be a bit special: if we're doing casts to / from half
662   // FP, we should go via special intrinsics.
663   if (SrcType->isHalfType()) {
664     Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src);
665     SrcType = CGF.getContext().FloatTy;
666     SrcTy = CGF.FloatTy;
667   }
668 
669   // Handle conversions to bool first, they are special: comparisons against 0.
670   if (DstType->isBooleanType())
671     return EmitConversionToBool(Src, SrcType);
672 
673   llvm::Type *DstTy = ConvertType(DstType);
674 
675   // Ignore conversions like int -> uint.
676   if (SrcTy == DstTy)
677     return Src;
678 
679   // Handle pointer conversions next: pointers can only be converted to/from
680   // other pointers and integers. Check for pointer types in terms of LLVM, as
681   // some native types (like Obj-C id) may map to a pointer type.
682   if (isa<llvm::PointerType>(DstTy)) {
683     // The source value may be an integer, or a pointer.
684     if (isa<llvm::PointerType>(SrcTy))
685       return Builder.CreateBitCast(Src, DstTy, "conv");
686 
687     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
688     // First, convert to the correct width so that we control the kind of
689     // extension.
690     llvm::Type *MiddleTy = CGF.IntPtrTy;
691     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
692     llvm::Value* IntResult =
693         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
694     // Then, cast to pointer.
695     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
696   }
697 
698   if (isa<llvm::PointerType>(SrcTy)) {
699     // Must be an ptr to int cast.
700     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
701     return Builder.CreatePtrToInt(Src, DstTy, "conv");
702   }
703 
704   // A scalar can be splatted to an extended vector of the same element type
705   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
706     // Cast the scalar to element type
707     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
708     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
709 
710     // Insert the element in element zero of an undef vector
711     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
712     llvm::Value *Idx = Builder.getInt32(0);
713     UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
714 
715     // Splat the element across to all elements
716     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
717     llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements,
718                                                           Builder.getInt32(0));
719     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
720     return Yay;
721   }
722 
723   // Allow bitcast from vector to integer/fp of the same size.
724   if (isa<llvm::VectorType>(SrcTy) ||
725       isa<llvm::VectorType>(DstTy))
726     return Builder.CreateBitCast(Src, DstTy, "conv");
727 
728   // Finally, we have the arithmetic types: real int/float.
729   Value *Res = NULL;
730   llvm::Type *ResTy = DstTy;
731 
732   // An overflowing conversion has undefined behavior if either the source type
733   // or the destination type is a floating-point type.
734   if (CGF.getLangOpts().SanitizeFloatCastOverflow &&
735       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
736     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy);
737 
738   // Cast to half via float
739   if (DstType->isHalfType())
740     DstTy = CGF.FloatTy;
741 
742   if (isa<llvm::IntegerType>(SrcTy)) {
743     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
744     if (isa<llvm::IntegerType>(DstTy))
745       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
746     else if (InputSigned)
747       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
748     else
749       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
750   } else if (isa<llvm::IntegerType>(DstTy)) {
751     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
752     if (DstType->isSignedIntegerOrEnumerationType())
753       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
754     else
755       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
756   } else {
757     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
758            "Unknown real conversion");
759     if (DstTy->getTypeID() < SrcTy->getTypeID())
760       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
761     else
762       Res = Builder.CreateFPExt(Src, DstTy, "conv");
763   }
764 
765   if (DstTy != ResTy) {
766     assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
767     Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res);
768   }
769 
770   return Res;
771 }
772 
773 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
774 /// type to the specified destination type, where the destination type is an
775 /// LLVM scalar type.
776 Value *ScalarExprEmitter::
777 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
778                               QualType SrcTy, QualType DstTy) {
779   // Get the source element type.
780   SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
781 
782   // Handle conversions to bool first, they are special: comparisons against 0.
783   if (DstTy->isBooleanType()) {
784     //  Complex != 0  -> (Real != 0) | (Imag != 0)
785     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
786     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
787     return Builder.CreateOr(Src.first, Src.second, "tobool");
788   }
789 
790   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
791   // the imaginary part of the complex value is discarded and the value of the
792   // real part is converted according to the conversion rules for the
793   // corresponding real type.
794   return EmitScalarConversion(Src.first, SrcTy, DstTy);
795 }
796 
797 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
798   if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
799     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
800 
801   return llvm::Constant::getNullValue(ConvertType(Ty));
802 }
803 
804 /// \brief Emit a sanitization check for the given "binary" operation (which
805 /// might actually be a unary increment which has been lowered to a binary
806 /// operation). The check passes if \p Check, which is an \c i1, is \c true.
807 void ScalarExprEmitter::EmitBinOpCheck(Value *Check, const BinOpInfo &Info) {
808   StringRef CheckName;
809   llvm::SmallVector<llvm::Constant *, 4> StaticData;
810   llvm::SmallVector<llvm::Value *, 2> DynamicData;
811 
812   BinaryOperatorKind Opcode = Info.Opcode;
813   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
814     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
815 
816   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
817   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
818   if (UO && UO->getOpcode() == UO_Minus) {
819     CheckName = "negate_overflow";
820     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
821     DynamicData.push_back(Info.RHS);
822   } else {
823     if (BinaryOperator::isShiftOp(Opcode)) {
824       // Shift LHS negative or too large, or RHS out of bounds.
825       CheckName = "shift_out_of_bounds";
826       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
827       StaticData.push_back(
828         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
829       StaticData.push_back(
830         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
831     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
832       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
833       CheckName = "divrem_overflow";
834       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.E->getType()));
835     } else {
836       // Signed arithmetic overflow (+, -, *).
837       switch (Opcode) {
838       case BO_Add: CheckName = "add_overflow"; break;
839       case BO_Sub: CheckName = "sub_overflow"; break;
840       case BO_Mul: CheckName = "mul_overflow"; break;
841       default: llvm_unreachable("unexpected opcode for bin op check");
842       }
843       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.E->getType()));
844     }
845     DynamicData.push_back(Info.LHS);
846     DynamicData.push_back(Info.RHS);
847   }
848 
849   CGF.EmitCheck(Check, CheckName, StaticData, DynamicData);
850 }
851 
852 //===----------------------------------------------------------------------===//
853 //                            Visitor Methods
854 //===----------------------------------------------------------------------===//
855 
856 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
857   CGF.ErrorUnsupported(E, "scalar expression");
858   if (E->getType()->isVoidType())
859     return 0;
860   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
861 }
862 
863 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
864   // Vector Mask Case
865   if (E->getNumSubExprs() == 2 ||
866       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
867     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
868     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
869     Value *Mask;
870 
871     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
872     unsigned LHSElts = LTy->getNumElements();
873 
874     if (E->getNumSubExprs() == 3) {
875       Mask = CGF.EmitScalarExpr(E->getExpr(2));
876 
877       // Shuffle LHS & RHS into one input vector.
878       SmallVector<llvm::Constant*, 32> concat;
879       for (unsigned i = 0; i != LHSElts; ++i) {
880         concat.push_back(Builder.getInt32(2*i));
881         concat.push_back(Builder.getInt32(2*i+1));
882       }
883 
884       Value* CV = llvm::ConstantVector::get(concat);
885       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
886       LHSElts *= 2;
887     } else {
888       Mask = RHS;
889     }
890 
891     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
892     llvm::Constant* EltMask;
893 
894     // Treat vec3 like vec4.
895     if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
896       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
897                                        (1 << llvm::Log2_32(LHSElts+2))-1);
898     else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
899       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
900                                        (1 << llvm::Log2_32(LHSElts+1))-1);
901     else
902       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
903                                        (1 << llvm::Log2_32(LHSElts))-1);
904 
905     // Mask off the high bits of each shuffle index.
906     Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
907                                                      EltMask);
908     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
909 
910     // newv = undef
911     // mask = mask & maskbits
912     // for each elt
913     //   n = extract mask i
914     //   x = extract val n
915     //   newv = insert newv, x, i
916     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
917                                                         MTy->getNumElements());
918     Value* NewV = llvm::UndefValue::get(RTy);
919     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
920       Value *IIndx = Builder.getInt32(i);
921       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
922       Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
923 
924       // Handle vec3 special since the index will be off by one for the RHS.
925       if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
926         Value *cmpIndx, *newIndx;
927         cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
928                                         "cmp_shuf_idx");
929         newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
930         Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
931       }
932       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
933       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
934     }
935     return NewV;
936   }
937 
938   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
939   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
940 
941   // Handle vec3 special since the index will be off by one for the RHS.
942   llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
943   SmallVector<llvm::Constant*, 32> indices;
944   for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
945     unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
946     if (VTy->getNumElements() == 3 && Idx > 3)
947       Idx -= 1;
948     indices.push_back(Builder.getInt32(Idx));
949   }
950 
951   Value *SV = llvm::ConstantVector::get(indices);
952   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
953 }
954 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
955   llvm::APSInt Value;
956   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
957     if (E->isArrow())
958       CGF.EmitScalarExpr(E->getBase());
959     else
960       EmitLValue(E->getBase());
961     return Builder.getInt(Value);
962   }
963 
964   // Emit debug info for aggregate now, if it was delayed to reduce
965   // debug info size.
966   CGDebugInfo *DI = CGF.getDebugInfo();
967   if (DI &&
968       CGF.CGM.getCodeGenOpts().getDebugInfo()
969         == CodeGenOptions::LimitedDebugInfo) {
970     QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
971     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
972       if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
973         DI->getOrCreateRecordType(PTy->getPointeeType(),
974                                   M->getParent()->getLocation());
975   }
976   return EmitLoadOfLValue(E);
977 }
978 
979 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
980   TestAndClearIgnoreResultAssign();
981 
982   // Emit subscript expressions in rvalue context's.  For most cases, this just
983   // loads the lvalue formed by the subscript expr.  However, we have to be
984   // careful, because the base of a vector subscript is occasionally an rvalue,
985   // so we can't get it as an lvalue.
986   if (!E->getBase()->getType()->isVectorType())
987     return EmitLoadOfLValue(E);
988 
989   // Handle the vector case.  The base must be a vector, the index must be an
990   // integer value.
991   Value *Base = Visit(E->getBase());
992   Value *Idx  = Visit(E->getIdx());
993   bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType();
994   Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
995   return Builder.CreateExtractElement(Base, Idx, "vecext");
996 }
997 
998 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
999                                   unsigned Off, llvm::Type *I32Ty) {
1000   int MV = SVI->getMaskValue(Idx);
1001   if (MV == -1)
1002     return llvm::UndefValue::get(I32Ty);
1003   return llvm::ConstantInt::get(I32Ty, Off+MV);
1004 }
1005 
1006 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1007   bool Ignore = TestAndClearIgnoreResultAssign();
1008   (void)Ignore;
1009   assert (Ignore == false && "init list ignored");
1010   unsigned NumInitElements = E->getNumInits();
1011 
1012   if (E->hadArrayRangeDesignator())
1013     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1014 
1015   llvm::VectorType *VType =
1016     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1017 
1018   if (!VType) {
1019     if (NumInitElements == 0) {
1020       // C++11 value-initialization for the scalar.
1021       return EmitNullValue(E->getType());
1022     }
1023     // We have a scalar in braces. Just use the first element.
1024     return Visit(E->getInit(0));
1025   }
1026 
1027   unsigned ResElts = VType->getNumElements();
1028 
1029   // Loop over initializers collecting the Value for each, and remembering
1030   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1031   // us to fold the shuffle for the swizzle into the shuffle for the vector
1032   // initializer, since LLVM optimizers generally do not want to touch
1033   // shuffles.
1034   unsigned CurIdx = 0;
1035   bool VIsUndefShuffle = false;
1036   llvm::Value *V = llvm::UndefValue::get(VType);
1037   for (unsigned i = 0; i != NumInitElements; ++i) {
1038     Expr *IE = E->getInit(i);
1039     Value *Init = Visit(IE);
1040     SmallVector<llvm::Constant*, 16> Args;
1041 
1042     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1043 
1044     // Handle scalar elements.  If the scalar initializer is actually one
1045     // element of a different vector of the same width, use shuffle instead of
1046     // extract+insert.
1047     if (!VVT) {
1048       if (isa<ExtVectorElementExpr>(IE)) {
1049         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1050 
1051         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1052           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1053           Value *LHS = 0, *RHS = 0;
1054           if (CurIdx == 0) {
1055             // insert into undef -> shuffle (src, undef)
1056             Args.push_back(C);
1057             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1058 
1059             LHS = EI->getVectorOperand();
1060             RHS = V;
1061             VIsUndefShuffle = true;
1062           } else if (VIsUndefShuffle) {
1063             // insert into undefshuffle && size match -> shuffle (v, src)
1064             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1065             for (unsigned j = 0; j != CurIdx; ++j)
1066               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1067             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1068             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1069 
1070             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1071             RHS = EI->getVectorOperand();
1072             VIsUndefShuffle = false;
1073           }
1074           if (!Args.empty()) {
1075             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1076             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1077             ++CurIdx;
1078             continue;
1079           }
1080         }
1081       }
1082       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1083                                       "vecinit");
1084       VIsUndefShuffle = false;
1085       ++CurIdx;
1086       continue;
1087     }
1088 
1089     unsigned InitElts = VVT->getNumElements();
1090 
1091     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1092     // input is the same width as the vector being constructed, generate an
1093     // optimized shuffle of the swizzle input into the result.
1094     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1095     if (isa<ExtVectorElementExpr>(IE)) {
1096       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1097       Value *SVOp = SVI->getOperand(0);
1098       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1099 
1100       if (OpTy->getNumElements() == ResElts) {
1101         for (unsigned j = 0; j != CurIdx; ++j) {
1102           // If the current vector initializer is a shuffle with undef, merge
1103           // this shuffle directly into it.
1104           if (VIsUndefShuffle) {
1105             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1106                                       CGF.Int32Ty));
1107           } else {
1108             Args.push_back(Builder.getInt32(j));
1109           }
1110         }
1111         for (unsigned j = 0, je = InitElts; j != je; ++j)
1112           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1113         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1114 
1115         if (VIsUndefShuffle)
1116           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1117 
1118         Init = SVOp;
1119       }
1120     }
1121 
1122     // Extend init to result vector length, and then shuffle its contribution
1123     // to the vector initializer into V.
1124     if (Args.empty()) {
1125       for (unsigned j = 0; j != InitElts; ++j)
1126         Args.push_back(Builder.getInt32(j));
1127       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1128       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1129       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1130                                          Mask, "vext");
1131 
1132       Args.clear();
1133       for (unsigned j = 0; j != CurIdx; ++j)
1134         Args.push_back(Builder.getInt32(j));
1135       for (unsigned j = 0; j != InitElts; ++j)
1136         Args.push_back(Builder.getInt32(j+Offset));
1137       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1138     }
1139 
1140     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1141     // merging subsequent shuffles into this one.
1142     if (CurIdx == 0)
1143       std::swap(V, Init);
1144     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1145     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1146     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1147     CurIdx += InitElts;
1148   }
1149 
1150   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1151   // Emit remaining default initializers.
1152   llvm::Type *EltTy = VType->getElementType();
1153 
1154   // Emit remaining default initializers
1155   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1156     Value *Idx = Builder.getInt32(CurIdx);
1157     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1158     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1159   }
1160   return V;
1161 }
1162 
1163 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1164   const Expr *E = CE->getSubExpr();
1165 
1166   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1167     return false;
1168 
1169   if (isa<CXXThisExpr>(E)) {
1170     // We always assume that 'this' is never null.
1171     return false;
1172   }
1173 
1174   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1175     // And that glvalue casts are never null.
1176     if (ICE->getValueKind() != VK_RValue)
1177       return false;
1178   }
1179 
1180   return true;
1181 }
1182 
1183 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1184 // have to handle a more broad range of conversions than explicit casts, as they
1185 // handle things like function to ptr-to-function decay etc.
1186 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1187   Expr *E = CE->getSubExpr();
1188   QualType DestTy = CE->getType();
1189   CastKind Kind = CE->getCastKind();
1190 
1191   if (!DestTy->isVoidType())
1192     TestAndClearIgnoreResultAssign();
1193 
1194   // Since almost all cast kinds apply to scalars, this switch doesn't have
1195   // a default case, so the compiler will warn on a missing case.  The cases
1196   // are in the same order as in the CastKind enum.
1197   switch (Kind) {
1198   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1199   case CK_BuiltinFnToFnPtr:
1200     llvm_unreachable("builtin functions are handled elsewhere");
1201 
1202   case CK_LValueBitCast:
1203   case CK_ObjCObjectLValueCast: {
1204     Value *V = EmitLValue(E).getAddress();
1205     V = Builder.CreateBitCast(V,
1206                           ConvertType(CGF.getContext().getPointerType(DestTy)));
1207     return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy));
1208   }
1209 
1210   case CK_CPointerToObjCPointerCast:
1211   case CK_BlockPointerToObjCPointerCast:
1212   case CK_AnyPointerToBlockPointerCast:
1213   case CK_BitCast: {
1214     Value *Src = Visit(const_cast<Expr*>(E));
1215     return Builder.CreateBitCast(Src, ConvertType(DestTy));
1216   }
1217   case CK_AtomicToNonAtomic:
1218   case CK_NonAtomicToAtomic:
1219   case CK_NoOp:
1220   case CK_UserDefinedConversion:
1221     return Visit(const_cast<Expr*>(E));
1222 
1223   case CK_BaseToDerived: {
1224     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1225     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1226 
1227     return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1228                                         CE->path_begin(), CE->path_end(),
1229                                         ShouldNullCheckClassCastValue(CE));
1230   }
1231   case CK_UncheckedDerivedToBase:
1232   case CK_DerivedToBase: {
1233     const CXXRecordDecl *DerivedClassDecl =
1234       E->getType()->getPointeeCXXRecordDecl();
1235     assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
1236 
1237     return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1238                                      CE->path_begin(), CE->path_end(),
1239                                      ShouldNullCheckClassCastValue(CE));
1240   }
1241   case CK_Dynamic: {
1242     Value *V = Visit(const_cast<Expr*>(E));
1243     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1244     return CGF.EmitDynamicCast(V, DCE);
1245   }
1246 
1247   case CK_ArrayToPointerDecay: {
1248     assert(E->getType()->isArrayType() &&
1249            "Array to pointer decay must have array source type!");
1250 
1251     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1252 
1253     // Note that VLA pointers are always decayed, so we don't need to do
1254     // anything here.
1255     if (!E->getType()->isVariableArrayType()) {
1256       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1257       assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1258                                  ->getElementType()) &&
1259              "Expected pointer to array");
1260       V = Builder.CreateStructGEP(V, 0, "arraydecay");
1261     }
1262 
1263     // Make sure the array decay ends up being the right type.  This matters if
1264     // the array type was of an incomplete type.
1265     return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType()));
1266   }
1267   case CK_FunctionToPointerDecay:
1268     return EmitLValue(E).getAddress();
1269 
1270   case CK_NullToPointer:
1271     if (MustVisitNullValue(E))
1272       (void) Visit(E);
1273 
1274     return llvm::ConstantPointerNull::get(
1275                                cast<llvm::PointerType>(ConvertType(DestTy)));
1276 
1277   case CK_NullToMemberPointer: {
1278     if (MustVisitNullValue(E))
1279       (void) Visit(E);
1280 
1281     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1282     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1283   }
1284 
1285   case CK_ReinterpretMemberPointer:
1286   case CK_BaseToDerivedMemberPointer:
1287   case CK_DerivedToBaseMemberPointer: {
1288     Value *Src = Visit(E);
1289 
1290     // Note that the AST doesn't distinguish between checked and
1291     // unchecked member pointer conversions, so we always have to
1292     // implement checked conversions here.  This is inefficient when
1293     // actual control flow may be required in order to perform the
1294     // check, which it is for data member pointers (but not member
1295     // function pointers on Itanium and ARM).
1296     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1297   }
1298 
1299   case CK_ARCProduceObject:
1300     return CGF.EmitARCRetainScalarExpr(E);
1301   case CK_ARCConsumeObject:
1302     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1303   case CK_ARCReclaimReturnedObject: {
1304     llvm::Value *value = Visit(E);
1305     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1306     return CGF.EmitObjCConsumeObject(E->getType(), value);
1307   }
1308   case CK_ARCExtendBlockObject:
1309     return CGF.EmitARCExtendBlockObject(E);
1310 
1311   case CK_CopyAndAutoreleaseBlockObject:
1312     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1313 
1314   case CK_FloatingRealToComplex:
1315   case CK_FloatingComplexCast:
1316   case CK_IntegralRealToComplex:
1317   case CK_IntegralComplexCast:
1318   case CK_IntegralComplexToFloatingComplex:
1319   case CK_FloatingComplexToIntegralComplex:
1320   case CK_ConstructorConversion:
1321   case CK_ToUnion:
1322     llvm_unreachable("scalar cast to non-scalar value");
1323 
1324   case CK_LValueToRValue:
1325     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1326     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1327     return Visit(const_cast<Expr*>(E));
1328 
1329   case CK_IntegralToPointer: {
1330     Value *Src = Visit(const_cast<Expr*>(E));
1331 
1332     // First, convert to the correct width so that we control the kind of
1333     // extension.
1334     llvm::Type *MiddleTy = CGF.IntPtrTy;
1335     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1336     llvm::Value* IntResult =
1337       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1338 
1339     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1340   }
1341   case CK_PointerToIntegral:
1342     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1343     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1344 
1345   case CK_ToVoid: {
1346     CGF.EmitIgnoredExpr(E);
1347     return 0;
1348   }
1349   case CK_VectorSplat: {
1350     llvm::Type *DstTy = ConvertType(DestTy);
1351     Value *Elt = Visit(const_cast<Expr*>(E));
1352     Elt = EmitScalarConversion(Elt, E->getType(),
1353                                DestTy->getAs<VectorType>()->getElementType());
1354 
1355     // Insert the element in element zero of an undef vector
1356     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1357     llvm::Value *Idx = Builder.getInt32(0);
1358     UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
1359 
1360     // Splat the element across to all elements
1361     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1362     llvm::Constant *Zero = Builder.getInt32(0);
1363     llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements, Zero);
1364     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1365     return Yay;
1366   }
1367 
1368   case CK_IntegralCast:
1369   case CK_IntegralToFloating:
1370   case CK_FloatingToIntegral:
1371   case CK_FloatingCast:
1372     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1373   case CK_IntegralToBoolean:
1374     return EmitIntToBoolConversion(Visit(E));
1375   case CK_PointerToBoolean:
1376     return EmitPointerToBoolConversion(Visit(E));
1377   case CK_FloatingToBoolean:
1378     return EmitFloatToBoolConversion(Visit(E));
1379   case CK_MemberPointerToBoolean: {
1380     llvm::Value *MemPtr = Visit(E);
1381     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1382     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1383   }
1384 
1385   case CK_FloatingComplexToReal:
1386   case CK_IntegralComplexToReal:
1387     return CGF.EmitComplexExpr(E, false, true).first;
1388 
1389   case CK_FloatingComplexToBoolean:
1390   case CK_IntegralComplexToBoolean: {
1391     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1392 
1393     // TODO: kill this function off, inline appropriate case here
1394     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1395   }
1396 
1397   }
1398 
1399   llvm_unreachable("unknown scalar cast");
1400 }
1401 
1402 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1403   CodeGenFunction::StmtExprEvaluation eval(CGF);
1404   return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1405     .getScalarVal();
1406 }
1407 
1408 //===----------------------------------------------------------------------===//
1409 //                             Unary Operators
1410 //===----------------------------------------------------------------------===//
1411 
1412 llvm::Value *ScalarExprEmitter::
1413 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1414                                 llvm::Value *InVal,
1415                                 llvm::Value *NextVal, bool IsInc) {
1416   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1417   case LangOptions::SOB_Defined:
1418     return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1419   case LangOptions::SOB_Undefined:
1420     if (!CGF.getLangOpts().SanitizeSignedIntegerOverflow)
1421       return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1422     // Fall through.
1423   case LangOptions::SOB_Trapping:
1424     BinOpInfo BinOp;
1425     BinOp.LHS = InVal;
1426     BinOp.RHS = NextVal;
1427     BinOp.Ty = E->getType();
1428     BinOp.Opcode = BO_Add;
1429     BinOp.FPContractable = false;
1430     BinOp.E = E;
1431     return EmitOverflowCheckedBinOp(BinOp);
1432   }
1433   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1434 }
1435 
1436 llvm::Value *
1437 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1438                                            bool isInc, bool isPre) {
1439 
1440   QualType type = E->getSubExpr()->getType();
1441   llvm::Value *value = EmitLoadOfLValue(LV);
1442   llvm::Value *input = value;
1443   llvm::PHINode *atomicPHI = 0;
1444 
1445   int amount = (isInc ? 1 : -1);
1446 
1447   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1448     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1449     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1450     Builder.CreateBr(opBB);
1451     Builder.SetInsertPoint(opBB);
1452     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1453     atomicPHI->addIncoming(value, startBB);
1454     type = atomicTy->getValueType();
1455     value = atomicPHI;
1456   }
1457 
1458   // Special case of integer increment that we have to check first: bool++.
1459   // Due to promotion rules, we get:
1460   //   bool++ -> bool = bool + 1
1461   //          -> bool = (int)bool + 1
1462   //          -> bool = ((int)bool + 1 != 0)
1463   // An interesting aspect of this is that increment is always true.
1464   // Decrement does not have this property.
1465   if (isInc && type->isBooleanType()) {
1466     value = Builder.getTrue();
1467 
1468   // Most common case by far: integer increment.
1469   } else if (type->isIntegerType()) {
1470 
1471     llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1472 
1473     // Note that signed integer inc/dec with width less than int can't
1474     // overflow because of promotion rules; we're just eliding a few steps here.
1475     if (type->isSignedIntegerOrEnumerationType() &&
1476         value->getType()->getPrimitiveSizeInBits() >=
1477             CGF.IntTy->getBitWidth())
1478       value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1479     else
1480       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1481 
1482   // Next most common: pointer increment.
1483   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1484     QualType type = ptr->getPointeeType();
1485 
1486     // VLA types don't have constant size.
1487     if (const VariableArrayType *vla
1488           = CGF.getContext().getAsVariableArrayType(type)) {
1489       llvm::Value *numElts = CGF.getVLASize(vla).first;
1490       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1491       if (CGF.getLangOpts().isSignedOverflowDefined())
1492         value = Builder.CreateGEP(value, numElts, "vla.inc");
1493       else
1494         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1495 
1496     // Arithmetic on function pointers (!) is just +-1.
1497     } else if (type->isFunctionType()) {
1498       llvm::Value *amt = Builder.getInt32(amount);
1499 
1500       value = CGF.EmitCastToVoidPtr(value);
1501       if (CGF.getLangOpts().isSignedOverflowDefined())
1502         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1503       else
1504         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1505       value = Builder.CreateBitCast(value, input->getType());
1506 
1507     // For everything else, we can just do a simple increment.
1508     } else {
1509       llvm::Value *amt = Builder.getInt32(amount);
1510       if (CGF.getLangOpts().isSignedOverflowDefined())
1511         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1512       else
1513         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1514     }
1515 
1516   // Vector increment/decrement.
1517   } else if (type->isVectorType()) {
1518     if (type->hasIntegerRepresentation()) {
1519       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1520 
1521       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1522     } else {
1523       value = Builder.CreateFAdd(
1524                   value,
1525                   llvm::ConstantFP::get(value->getType(), amount),
1526                   isInc ? "inc" : "dec");
1527     }
1528 
1529   // Floating point.
1530   } else if (type->isRealFloatingType()) {
1531     // Add the inc/dec to the real part.
1532     llvm::Value *amt;
1533 
1534     if (type->isHalfType()) {
1535       // Another special case: half FP increment should be done via float
1536       value =
1537     Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16),
1538                        input);
1539     }
1540 
1541     if (value->getType()->isFloatTy())
1542       amt = llvm::ConstantFP::get(VMContext,
1543                                   llvm::APFloat(static_cast<float>(amount)));
1544     else if (value->getType()->isDoubleTy())
1545       amt = llvm::ConstantFP::get(VMContext,
1546                                   llvm::APFloat(static_cast<double>(amount)));
1547     else {
1548       llvm::APFloat F(static_cast<float>(amount));
1549       bool ignored;
1550       F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1551                 &ignored);
1552       amt = llvm::ConstantFP::get(VMContext, F);
1553     }
1554     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1555 
1556     if (type->isHalfType())
1557       value =
1558        Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16),
1559                           value);
1560 
1561   // Objective-C pointer types.
1562   } else {
1563     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1564     value = CGF.EmitCastToVoidPtr(value);
1565 
1566     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1567     if (!isInc) size = -size;
1568     llvm::Value *sizeValue =
1569       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1570 
1571     if (CGF.getLangOpts().isSignedOverflowDefined())
1572       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1573     else
1574       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1575     value = Builder.CreateBitCast(value, input->getType());
1576   }
1577 
1578   if (atomicPHI) {
1579     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1580     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1581     llvm::Value *old = Builder.CreateAtomicCmpXchg(LV.getAddress(), atomicPHI,
1582         value, llvm::SequentiallyConsistent);
1583     atomicPHI->addIncoming(old, opBB);
1584     llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1585     Builder.CreateCondBr(success, contBB, opBB);
1586     Builder.SetInsertPoint(contBB);
1587     return isPre ? value : input;
1588   }
1589 
1590   // Store the updated result through the lvalue.
1591   if (LV.isBitField())
1592     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1593   else
1594     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1595 
1596   // If this is a postinc, return the value read from memory, otherwise use the
1597   // updated value.
1598   return isPre ? value : input;
1599 }
1600 
1601 
1602 
1603 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1604   TestAndClearIgnoreResultAssign();
1605   // Emit unary minus with EmitSub so we handle overflow cases etc.
1606   BinOpInfo BinOp;
1607   BinOp.RHS = Visit(E->getSubExpr());
1608 
1609   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1610     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1611   else
1612     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1613   BinOp.Ty = E->getType();
1614   BinOp.Opcode = BO_Sub;
1615   BinOp.FPContractable = false;
1616   BinOp.E = E;
1617   return EmitSub(BinOp);
1618 }
1619 
1620 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1621   TestAndClearIgnoreResultAssign();
1622   Value *Op = Visit(E->getSubExpr());
1623   return Builder.CreateNot(Op, "neg");
1624 }
1625 
1626 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1627 
1628   // Perform vector logical not on comparison with zero vector.
1629   if (E->getType()->isExtVectorType()) {
1630     Value *Oper = Visit(E->getSubExpr());
1631     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1632     Value *Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1633     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1634   }
1635 
1636   // Compare operand to zero.
1637   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1638 
1639   // Invert value.
1640   // TODO: Could dynamically modify easy computations here.  For example, if
1641   // the operand is an icmp ne, turn into icmp eq.
1642   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1643 
1644   // ZExt result to the expr type.
1645   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1646 }
1647 
1648 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1649   // Try folding the offsetof to a constant.
1650   llvm::APSInt Value;
1651   if (E->EvaluateAsInt(Value, CGF.getContext()))
1652     return Builder.getInt(Value);
1653 
1654   // Loop over the components of the offsetof to compute the value.
1655   unsigned n = E->getNumComponents();
1656   llvm::Type* ResultType = ConvertType(E->getType());
1657   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1658   QualType CurrentType = E->getTypeSourceInfo()->getType();
1659   for (unsigned i = 0; i != n; ++i) {
1660     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1661     llvm::Value *Offset = 0;
1662     switch (ON.getKind()) {
1663     case OffsetOfExpr::OffsetOfNode::Array: {
1664       // Compute the index
1665       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1666       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1667       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1668       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1669 
1670       // Save the element type
1671       CurrentType =
1672           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1673 
1674       // Compute the element size
1675       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1676           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1677 
1678       // Multiply out to compute the result
1679       Offset = Builder.CreateMul(Idx, ElemSize);
1680       break;
1681     }
1682 
1683     case OffsetOfExpr::OffsetOfNode::Field: {
1684       FieldDecl *MemberDecl = ON.getField();
1685       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1686       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1687 
1688       // Compute the index of the field in its parent.
1689       unsigned i = 0;
1690       // FIXME: It would be nice if we didn't have to loop here!
1691       for (RecordDecl::field_iterator Field = RD->field_begin(),
1692                                       FieldEnd = RD->field_end();
1693            Field != FieldEnd; ++Field, ++i) {
1694         if (*Field == MemberDecl)
1695           break;
1696       }
1697       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1698 
1699       // Compute the offset to the field
1700       int64_t OffsetInt = RL.getFieldOffset(i) /
1701                           CGF.getContext().getCharWidth();
1702       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1703 
1704       // Save the element type.
1705       CurrentType = MemberDecl->getType();
1706       break;
1707     }
1708 
1709     case OffsetOfExpr::OffsetOfNode::Identifier:
1710       llvm_unreachable("dependent __builtin_offsetof");
1711 
1712     case OffsetOfExpr::OffsetOfNode::Base: {
1713       if (ON.getBase()->isVirtual()) {
1714         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1715         continue;
1716       }
1717 
1718       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1719       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1720 
1721       // Save the element type.
1722       CurrentType = ON.getBase()->getType();
1723 
1724       // Compute the offset to the base.
1725       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1726       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1727       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1728       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1729       break;
1730     }
1731     }
1732     Result = Builder.CreateAdd(Result, Offset);
1733   }
1734   return Result;
1735 }
1736 
1737 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1738 /// argument of the sizeof expression as an integer.
1739 Value *
1740 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1741                               const UnaryExprOrTypeTraitExpr *E) {
1742   QualType TypeToSize = E->getTypeOfArgument();
1743   if (E->getKind() == UETT_SizeOf) {
1744     if (const VariableArrayType *VAT =
1745           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1746       if (E->isArgumentType()) {
1747         // sizeof(type) - make sure to emit the VLA size.
1748         CGF.EmitVariablyModifiedType(TypeToSize);
1749       } else {
1750         // C99 6.5.3.4p2: If the argument is an expression of type
1751         // VLA, it is evaluated.
1752         CGF.EmitIgnoredExpr(E->getArgumentExpr());
1753       }
1754 
1755       QualType eltType;
1756       llvm::Value *numElts;
1757       llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
1758 
1759       llvm::Value *size = numElts;
1760 
1761       // Scale the number of non-VLA elements by the non-VLA element size.
1762       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1763       if (!eltSize.isOne())
1764         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1765 
1766       return size;
1767     }
1768   }
1769 
1770   // If this isn't sizeof(vla), the result must be constant; use the constant
1771   // folding logic so we don't have to duplicate it here.
1772   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
1773 }
1774 
1775 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1776   Expr *Op = E->getSubExpr();
1777   if (Op->getType()->isAnyComplexType()) {
1778     // If it's an l-value, load through the appropriate subobject l-value.
1779     // Note that we have to ask E because Op might be an l-value that
1780     // this won't work for, e.g. an Obj-C property.
1781     if (E->isGLValue())
1782       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1783 
1784     // Otherwise, calculate and project.
1785     return CGF.EmitComplexExpr(Op, false, true).first;
1786   }
1787 
1788   return Visit(Op);
1789 }
1790 
1791 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1792   Expr *Op = E->getSubExpr();
1793   if (Op->getType()->isAnyComplexType()) {
1794     // If it's an l-value, load through the appropriate subobject l-value.
1795     // Note that we have to ask E because Op might be an l-value that
1796     // this won't work for, e.g. an Obj-C property.
1797     if (Op->isGLValue())
1798       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1799 
1800     // Otherwise, calculate and project.
1801     return CGF.EmitComplexExpr(Op, true, false).second;
1802   }
1803 
1804   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1805   // effects are evaluated, but not the actual value.
1806   if (Op->isGLValue())
1807     CGF.EmitLValue(Op);
1808   else
1809     CGF.EmitScalarExpr(Op, true);
1810   return llvm::Constant::getNullValue(ConvertType(E->getType()));
1811 }
1812 
1813 //===----------------------------------------------------------------------===//
1814 //                           Binary Operators
1815 //===----------------------------------------------------------------------===//
1816 
1817 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1818   TestAndClearIgnoreResultAssign();
1819   BinOpInfo Result;
1820   Result.LHS = Visit(E->getLHS());
1821   Result.RHS = Visit(E->getRHS());
1822   Result.Ty  = E->getType();
1823   Result.Opcode = E->getOpcode();
1824   Result.FPContractable = E->isFPContractable();
1825   Result.E = E;
1826   return Result;
1827 }
1828 
1829 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1830                                               const CompoundAssignOperator *E,
1831                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1832                                                    Value *&Result) {
1833   QualType LHSTy = E->getLHS()->getType();
1834   BinOpInfo OpInfo;
1835 
1836   if (E->getComputationResultType()->isAnyComplexType()) {
1837     // This needs to go through the complex expression emitter, but it's a tad
1838     // complicated to do that... I'm leaving it out for now.  (Note that we do
1839     // actually need the imaginary part of the RHS for multiplication and
1840     // division.)
1841     CGF.ErrorUnsupported(E, "complex compound assignment");
1842     Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1843     return LValue();
1844   }
1845 
1846   // Emit the RHS first.  __block variables need to have the rhs evaluated
1847   // first, plus this should improve codegen a little.
1848   OpInfo.RHS = Visit(E->getRHS());
1849   OpInfo.Ty = E->getComputationResultType();
1850   OpInfo.Opcode = E->getOpcode();
1851   OpInfo.FPContractable = false;
1852   OpInfo.E = E;
1853   // Load/convert the LHS.
1854   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1855   OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1856 
1857   llvm::PHINode *atomicPHI = 0;
1858   if (LHSTy->isAtomicType()) {
1859     // FIXME: For floating point types, we should be saving and restoring the
1860     // floating point environment in the loop.
1861     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1862     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1863     Builder.CreateBr(opBB);
1864     Builder.SetInsertPoint(opBB);
1865     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
1866     atomicPHI->addIncoming(OpInfo.LHS, startBB);
1867     OpInfo.LHS = atomicPHI;
1868   }
1869 
1870   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1871                                     E->getComputationLHSType());
1872 
1873   // Expand the binary operator.
1874   Result = (this->*Func)(OpInfo);
1875 
1876   // Convert the result back to the LHS type.
1877   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1878 
1879   if (atomicPHI) {
1880     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1881     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1882     llvm::Value *old = Builder.CreateAtomicCmpXchg(LHSLV.getAddress(), atomicPHI,
1883         Result, llvm::SequentiallyConsistent);
1884     atomicPHI->addIncoming(old, opBB);
1885     llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1886     Builder.CreateCondBr(success, contBB, opBB);
1887     Builder.SetInsertPoint(contBB);
1888     return LHSLV;
1889   }
1890 
1891   // Store the result value into the LHS lvalue. Bit-fields are handled
1892   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1893   // 'An assignment expression has the value of the left operand after the
1894   // assignment...'.
1895   if (LHSLV.isBitField())
1896     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
1897   else
1898     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
1899 
1900   return LHSLV;
1901 }
1902 
1903 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1904                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1905   bool Ignore = TestAndClearIgnoreResultAssign();
1906   Value *RHS;
1907   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1908 
1909   // If the result is clearly ignored, return now.
1910   if (Ignore)
1911     return 0;
1912 
1913   // The result of an assignment in C is the assigned r-value.
1914   if (!CGF.getLangOpts().CPlusPlus)
1915     return RHS;
1916 
1917   // If the lvalue is non-volatile, return the computed value of the assignment.
1918   if (!LHS.isVolatileQualified())
1919     return RHS;
1920 
1921   // Otherwise, reload the value.
1922   return EmitLoadOfLValue(LHS);
1923 }
1924 
1925 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1926     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
1927   llvm::Value *Cond = 0;
1928 
1929   if (CGF.getLangOpts().SanitizeDivideByZero)
1930     Cond = Builder.CreateICmpNE(Ops.RHS, Zero);
1931 
1932   if (CGF.getLangOpts().SanitizeSignedIntegerOverflow &&
1933       Ops.Ty->hasSignedIntegerRepresentation()) {
1934     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1935 
1936     llvm::Value *IntMin =
1937       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1938     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1939 
1940     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
1941     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
1942     llvm::Value *Overflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
1943     Cond = Cond ? Builder.CreateAnd(Cond, Overflow, "and") : Overflow;
1944   }
1945 
1946   if (Cond)
1947     EmitBinOpCheck(Cond, Ops);
1948 }
1949 
1950 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1951   if (CGF.getLangOpts().SanitizeDivideByZero ||
1952       CGF.getLangOpts().SanitizeSignedIntegerOverflow) {
1953     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1954 
1955     if (Ops.Ty->isIntegerType())
1956       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1957     else if (CGF.getLangOpts().SanitizeDivideByZero &&
1958              Ops.Ty->isRealFloatingType())
1959       EmitBinOpCheck(Builder.CreateFCmpUNE(Ops.RHS, Zero), Ops);
1960   }
1961   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
1962     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1963     if (CGF.getLangOpts().OpenCL) {
1964       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
1965       llvm::Type *ValTy = Val->getType();
1966       if (ValTy->isFloatTy() ||
1967           (isa<llvm::VectorType>(ValTy) &&
1968            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
1969         CGF.SetFPAccuracy(Val, 2.5);
1970     }
1971     return Val;
1972   }
1973   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1974     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1975   else
1976     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1977 }
1978 
1979 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1980   // Rem in C can't be a floating point type: C99 6.5.5p2.
1981   if (CGF.getLangOpts().SanitizeDivideByZero) {
1982     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1983 
1984     if (Ops.Ty->isIntegerType())
1985       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1986   }
1987 
1988   if (Ops.Ty->hasUnsignedIntegerRepresentation())
1989     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1990   else
1991     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1992 }
1993 
1994 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1995   unsigned IID;
1996   unsigned OpID = 0;
1997 
1998   switch (Ops.Opcode) {
1999   case BO_Add:
2000   case BO_AddAssign:
2001     OpID = 1;
2002     IID = llvm::Intrinsic::sadd_with_overflow;
2003     break;
2004   case BO_Sub:
2005   case BO_SubAssign:
2006     OpID = 2;
2007     IID = llvm::Intrinsic::ssub_with_overflow;
2008     break;
2009   case BO_Mul:
2010   case BO_MulAssign:
2011     OpID = 3;
2012     IID = llvm::Intrinsic::smul_with_overflow;
2013     break;
2014   default:
2015     llvm_unreachable("Unsupported operation for overflow detection");
2016   }
2017   OpID <<= 1;
2018   OpID |= 1;
2019 
2020   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2021 
2022   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2023 
2024   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
2025   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2026   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2027 
2028   // Handle overflow with llvm.trap if no custom handler has been specified.
2029   const std::string *handlerName =
2030     &CGF.getLangOpts().OverflowHandler;
2031   if (handlerName->empty()) {
2032     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2033     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2034     if (CGF.getLangOpts().SanitizeSignedIntegerOverflow)
2035       EmitBinOpCheck(Builder.CreateNot(overflow), Ops);
2036     else
2037       CGF.EmitTrapvCheck(Builder.CreateNot(overflow));
2038     return result;
2039   }
2040 
2041   // Branch in case of overflow.
2042   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2043   llvm::Function::iterator insertPt = initialBB;
2044   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2045                                                       llvm::next(insertPt));
2046   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2047 
2048   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2049 
2050   // If an overflow handler is set, then we want to call it and then use its
2051   // result, if it returns.
2052   Builder.SetInsertPoint(overflowBB);
2053 
2054   // Get the overflow handler.
2055   llvm::Type *Int8Ty = CGF.Int8Ty;
2056   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2057   llvm::FunctionType *handlerTy =
2058       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2059   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2060 
2061   // Sign extend the args to 64-bit, so that we can use the same handler for
2062   // all types of overflow.
2063   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2064   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2065 
2066   // Call the handler with the two arguments, the operation, and the size of
2067   // the result.
2068   llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
2069       Builder.getInt8(OpID),
2070       Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
2071 
2072   // Truncate the result back to the desired size.
2073   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2074   Builder.CreateBr(continueBB);
2075 
2076   Builder.SetInsertPoint(continueBB);
2077   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2078   phi->addIncoming(result, initialBB);
2079   phi->addIncoming(handlerResult, overflowBB);
2080 
2081   return phi;
2082 }
2083 
2084 /// Emit pointer + index arithmetic.
2085 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2086                                     const BinOpInfo &op,
2087                                     bool isSubtraction) {
2088   // Must have binary (not unary) expr here.  Unary pointer
2089   // increment/decrement doesn't use this path.
2090   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2091 
2092   Value *pointer = op.LHS;
2093   Expr *pointerOperand = expr->getLHS();
2094   Value *index = op.RHS;
2095   Expr *indexOperand = expr->getRHS();
2096 
2097   // In a subtraction, the LHS is always the pointer.
2098   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2099     std::swap(pointer, index);
2100     std::swap(pointerOperand, indexOperand);
2101   }
2102 
2103   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2104   if (width != CGF.PointerWidthInBits) {
2105     // Zero-extend or sign-extend the pointer value according to
2106     // whether the index is signed or not.
2107     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2108     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2109                                       "idx.ext");
2110   }
2111 
2112   // If this is subtraction, negate the index.
2113   if (isSubtraction)
2114     index = CGF.Builder.CreateNeg(index, "idx.neg");
2115 
2116   const PointerType *pointerType
2117     = pointerOperand->getType()->getAs<PointerType>();
2118   if (!pointerType) {
2119     QualType objectType = pointerOperand->getType()
2120                                         ->castAs<ObjCObjectPointerType>()
2121                                         ->getPointeeType();
2122     llvm::Value *objectSize
2123       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2124 
2125     index = CGF.Builder.CreateMul(index, objectSize);
2126 
2127     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2128     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2129     return CGF.Builder.CreateBitCast(result, pointer->getType());
2130   }
2131 
2132   QualType elementType = pointerType->getPointeeType();
2133   if (const VariableArrayType *vla
2134         = CGF.getContext().getAsVariableArrayType(elementType)) {
2135     // The element count here is the total number of non-VLA elements.
2136     llvm::Value *numElements = CGF.getVLASize(vla).first;
2137 
2138     // Effectively, the multiply by the VLA size is part of the GEP.
2139     // GEP indexes are signed, and scaling an index isn't permitted to
2140     // signed-overflow, so we use the same semantics for our explicit
2141     // multiply.  We suppress this if overflow is not undefined behavior.
2142     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2143       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2144       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2145     } else {
2146       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2147       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2148     }
2149     return pointer;
2150   }
2151 
2152   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2153   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2154   // future proof.
2155   if (elementType->isVoidType() || elementType->isFunctionType()) {
2156     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2157     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2158     return CGF.Builder.CreateBitCast(result, pointer->getType());
2159   }
2160 
2161   if (CGF.getLangOpts().isSignedOverflowDefined())
2162     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2163 
2164   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2165 }
2166 
2167 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2168 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2169 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2170 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2171 // efficient operations.
2172 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2173                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2174                            bool negMul, bool negAdd) {
2175   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2176 
2177   Value *MulOp0 = MulOp->getOperand(0);
2178   Value *MulOp1 = MulOp->getOperand(1);
2179   if (negMul) {
2180     MulOp0 =
2181       Builder.CreateFSub(
2182         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2183         "neg");
2184   } else if (negAdd) {
2185     Addend =
2186       Builder.CreateFSub(
2187         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2188         "neg");
2189   }
2190 
2191   Value *FMulAdd =
2192     Builder.CreateCall3(
2193       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2194                            MulOp0, MulOp1, Addend);
2195    MulOp->eraseFromParent();
2196 
2197    return FMulAdd;
2198 }
2199 
2200 // Check whether it would be legal to emit an fmuladd intrinsic call to
2201 // represent op and if so, build the fmuladd.
2202 //
2203 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2204 // Does NOT check the type of the operation - it's assumed that this function
2205 // will be called from contexts where it's known that the type is contractable.
2206 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2207                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2208                          bool isSub=false) {
2209 
2210   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2211           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2212          "Only fadd/fsub can be the root of an fmuladd.");
2213 
2214   // Check whether this op is marked as fusable.
2215   if (!op.FPContractable)
2216     return 0;
2217 
2218   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2219   // either disabled, or handled entirely by the LLVM backend).
2220   if (CGF.getLangOpts().getFPContractMode() != LangOptions::FPC_On)
2221     return 0;
2222 
2223   // We have a potentially fusable op. Look for a mul on one of the operands.
2224   if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2225     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2226       assert(LHSBinOp->getNumUses() == 0 &&
2227              "Operations with multiple uses shouldn't be contracted.");
2228       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2229     }
2230   } else if (llvm::BinaryOperator* RHSBinOp =
2231                dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2232     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2233       assert(RHSBinOp->getNumUses() == 0 &&
2234              "Operations with multiple uses shouldn't be contracted.");
2235       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2236     }
2237   }
2238 
2239   return 0;
2240 }
2241 
2242 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2243   if (op.LHS->getType()->isPointerTy() ||
2244       op.RHS->getType()->isPointerTy())
2245     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2246 
2247   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2248     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2249     case LangOptions::SOB_Defined:
2250       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2251     case LangOptions::SOB_Undefined:
2252       if (!CGF.getLangOpts().SanitizeSignedIntegerOverflow)
2253         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2254       // Fall through.
2255     case LangOptions::SOB_Trapping:
2256       return EmitOverflowCheckedBinOp(op);
2257     }
2258   }
2259 
2260   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2261     // Try to form an fmuladd.
2262     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2263       return FMulAdd;
2264 
2265     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2266   }
2267 
2268   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2269 }
2270 
2271 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2272   // The LHS is always a pointer if either side is.
2273   if (!op.LHS->getType()->isPointerTy()) {
2274     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2275       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2276       case LangOptions::SOB_Defined:
2277         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2278       case LangOptions::SOB_Undefined:
2279         if (!CGF.getLangOpts().SanitizeSignedIntegerOverflow)
2280           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2281         // Fall through.
2282       case LangOptions::SOB_Trapping:
2283         return EmitOverflowCheckedBinOp(op);
2284       }
2285     }
2286 
2287     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2288       // Try to form an fmuladd.
2289       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2290         return FMulAdd;
2291       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2292     }
2293 
2294     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2295   }
2296 
2297   // If the RHS is not a pointer, then we have normal pointer
2298   // arithmetic.
2299   if (!op.RHS->getType()->isPointerTy())
2300     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2301 
2302   // Otherwise, this is a pointer subtraction.
2303 
2304   // Do the raw subtraction part.
2305   llvm::Value *LHS
2306     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2307   llvm::Value *RHS
2308     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2309   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2310 
2311   // Okay, figure out the element size.
2312   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2313   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2314 
2315   llvm::Value *divisor = 0;
2316 
2317   // For a variable-length array, this is going to be non-constant.
2318   if (const VariableArrayType *vla
2319         = CGF.getContext().getAsVariableArrayType(elementType)) {
2320     llvm::Value *numElements;
2321     llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
2322 
2323     divisor = numElements;
2324 
2325     // Scale the number of non-VLA elements by the non-VLA element size.
2326     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2327     if (!eltSize.isOne())
2328       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2329 
2330   // For everything elese, we can just compute it, safe in the
2331   // assumption that Sema won't let anything through that we can't
2332   // safely compute the size of.
2333   } else {
2334     CharUnits elementSize;
2335     // Handle GCC extension for pointer arithmetic on void* and
2336     // function pointer types.
2337     if (elementType->isVoidType() || elementType->isFunctionType())
2338       elementSize = CharUnits::One();
2339     else
2340       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2341 
2342     // Don't even emit the divide for element size of 1.
2343     if (elementSize.isOne())
2344       return diffInChars;
2345 
2346     divisor = CGF.CGM.getSize(elementSize);
2347   }
2348 
2349   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2350   // pointer difference in C is only defined in the case where both operands
2351   // are pointing to elements of an array.
2352   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2353 }
2354 
2355 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2356   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2357   // RHS to the same size as the LHS.
2358   Value *RHS = Ops.RHS;
2359   if (Ops.LHS->getType() != RHS->getType())
2360     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2361 
2362   if (CGF.getLangOpts().SanitizeShift &&
2363       isa<llvm::IntegerType>(Ops.LHS->getType())) {
2364     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2365     llvm::Value *WidthMinusOne =
2366       llvm::ConstantInt::get(RHS->getType(), Width - 1);
2367     // FIXME: Emit the branching explicitly rather than emitting the check
2368     // twice.
2369     EmitBinOpCheck(Builder.CreateICmpULE(RHS, WidthMinusOne), Ops);
2370 
2371     if (Ops.Ty->hasSignedIntegerRepresentation()) {
2372       // Check whether we are shifting any non-zero bits off the top of the
2373       // integer.
2374       llvm::Value *BitsShiftedOff =
2375         Builder.CreateLShr(Ops.LHS,
2376                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2377                                              /*NUW*/true, /*NSW*/true),
2378                            "shl.check");
2379       if (CGF.getLangOpts().CPlusPlus) {
2380         // In C99, we are not permitted to shift a 1 bit into the sign bit.
2381         // Under C++11's rules, shifting a 1 bit into the sign bit is
2382         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2383         // define signed left shifts, so we use the C99 and C++11 rules there).
2384         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2385         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2386       }
2387       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2388       EmitBinOpCheck(Builder.CreateICmpEQ(BitsShiftedOff, Zero), Ops);
2389     }
2390   }
2391 
2392   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2393 }
2394 
2395 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2396   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2397   // RHS to the same size as the LHS.
2398   Value *RHS = Ops.RHS;
2399   if (Ops.LHS->getType() != RHS->getType())
2400     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2401 
2402   if (CGF.getLangOpts().SanitizeShift &&
2403       isa<llvm::IntegerType>(Ops.LHS->getType())) {
2404     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2405     llvm::Value *WidthVal = llvm::ConstantInt::get(RHS->getType(), Width);
2406     EmitBinOpCheck(Builder.CreateICmpULT(RHS, WidthVal), Ops);
2407   }
2408 
2409   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2410     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2411   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2412 }
2413 
2414 enum IntrinsicType { VCMPEQ, VCMPGT };
2415 // return corresponding comparison intrinsic for given vector type
2416 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2417                                         BuiltinType::Kind ElemKind) {
2418   switch (ElemKind) {
2419   default: llvm_unreachable("unexpected element type");
2420   case BuiltinType::Char_U:
2421   case BuiltinType::UChar:
2422     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2423                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2424   case BuiltinType::Char_S:
2425   case BuiltinType::SChar:
2426     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2427                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2428   case BuiltinType::UShort:
2429     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2430                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2431   case BuiltinType::Short:
2432     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2433                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2434   case BuiltinType::UInt:
2435   case BuiltinType::ULong:
2436     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2437                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2438   case BuiltinType::Int:
2439   case BuiltinType::Long:
2440     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2441                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2442   case BuiltinType::Float:
2443     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2444                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2445   }
2446 }
2447 
2448 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2449                                       unsigned SICmpOpc, unsigned FCmpOpc) {
2450   TestAndClearIgnoreResultAssign();
2451   Value *Result;
2452   QualType LHSTy = E->getLHS()->getType();
2453   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2454     assert(E->getOpcode() == BO_EQ ||
2455            E->getOpcode() == BO_NE);
2456     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2457     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2458     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2459                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2460   } else if (!LHSTy->isAnyComplexType()) {
2461     Value *LHS = Visit(E->getLHS());
2462     Value *RHS = Visit(E->getRHS());
2463 
2464     // If AltiVec, the comparison results in a numeric type, so we use
2465     // intrinsics comparing vectors and giving 0 or 1 as a result
2466     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2467       // constants for mapping CR6 register bits to predicate result
2468       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2469 
2470       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2471 
2472       // in several cases vector arguments order will be reversed
2473       Value *FirstVecArg = LHS,
2474             *SecondVecArg = RHS;
2475 
2476       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2477       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2478       BuiltinType::Kind ElementKind = BTy->getKind();
2479 
2480       switch(E->getOpcode()) {
2481       default: llvm_unreachable("is not a comparison operation");
2482       case BO_EQ:
2483         CR6 = CR6_LT;
2484         ID = GetIntrinsic(VCMPEQ, ElementKind);
2485         break;
2486       case BO_NE:
2487         CR6 = CR6_EQ;
2488         ID = GetIntrinsic(VCMPEQ, ElementKind);
2489         break;
2490       case BO_LT:
2491         CR6 = CR6_LT;
2492         ID = GetIntrinsic(VCMPGT, ElementKind);
2493         std::swap(FirstVecArg, SecondVecArg);
2494         break;
2495       case BO_GT:
2496         CR6 = CR6_LT;
2497         ID = GetIntrinsic(VCMPGT, ElementKind);
2498         break;
2499       case BO_LE:
2500         if (ElementKind == BuiltinType::Float) {
2501           CR6 = CR6_LT;
2502           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2503           std::swap(FirstVecArg, SecondVecArg);
2504         }
2505         else {
2506           CR6 = CR6_EQ;
2507           ID = GetIntrinsic(VCMPGT, ElementKind);
2508         }
2509         break;
2510       case BO_GE:
2511         if (ElementKind == BuiltinType::Float) {
2512           CR6 = CR6_LT;
2513           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2514         }
2515         else {
2516           CR6 = CR6_EQ;
2517           ID = GetIntrinsic(VCMPGT, ElementKind);
2518           std::swap(FirstVecArg, SecondVecArg);
2519         }
2520         break;
2521       }
2522 
2523       Value *CR6Param = Builder.getInt32(CR6);
2524       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2525       Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2526       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2527     }
2528 
2529     if (LHS->getType()->isFPOrFPVectorTy()) {
2530       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2531                                   LHS, RHS, "cmp");
2532     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2533       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2534                                   LHS, RHS, "cmp");
2535     } else {
2536       // Unsigned integers and pointers.
2537       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2538                                   LHS, RHS, "cmp");
2539     }
2540 
2541     // If this is a vector comparison, sign extend the result to the appropriate
2542     // vector integer type and return it (don't convert to bool).
2543     if (LHSTy->isVectorType())
2544       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2545 
2546   } else {
2547     // Complex Comparison: can only be an equality comparison.
2548     CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2549     CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2550 
2551     QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2552 
2553     Value *ResultR, *ResultI;
2554     if (CETy->isRealFloatingType()) {
2555       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2556                                    LHS.first, RHS.first, "cmp.r");
2557       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2558                                    LHS.second, RHS.second, "cmp.i");
2559     } else {
2560       // Complex comparisons can only be equality comparisons.  As such, signed
2561       // and unsigned opcodes are the same.
2562       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2563                                    LHS.first, RHS.first, "cmp.r");
2564       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2565                                    LHS.second, RHS.second, "cmp.i");
2566     }
2567 
2568     if (E->getOpcode() == BO_EQ) {
2569       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2570     } else {
2571       assert(E->getOpcode() == BO_NE &&
2572              "Complex comparison other than == or != ?");
2573       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2574     }
2575   }
2576 
2577   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2578 }
2579 
2580 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2581   bool Ignore = TestAndClearIgnoreResultAssign();
2582 
2583   Value *RHS;
2584   LValue LHS;
2585 
2586   switch (E->getLHS()->getType().getObjCLifetime()) {
2587   case Qualifiers::OCL_Strong:
2588     llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2589     break;
2590 
2591   case Qualifiers::OCL_Autoreleasing:
2592     llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
2593     break;
2594 
2595   case Qualifiers::OCL_Weak:
2596     RHS = Visit(E->getRHS());
2597     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2598     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2599     break;
2600 
2601   // No reason to do any of these differently.
2602   case Qualifiers::OCL_None:
2603   case Qualifiers::OCL_ExplicitNone:
2604     // __block variables need to have the rhs evaluated first, plus
2605     // this should improve codegen just a little.
2606     RHS = Visit(E->getRHS());
2607     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2608 
2609     // Store the value into the LHS.  Bit-fields are handled specially
2610     // because the result is altered by the store, i.e., [C99 6.5.16p1]
2611     // 'An assignment expression has the value of the left operand after
2612     // the assignment...'.
2613     if (LHS.isBitField())
2614       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2615     else
2616       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2617   }
2618 
2619   // If the result is clearly ignored, return now.
2620   if (Ignore)
2621     return 0;
2622 
2623   // The result of an assignment in C is the assigned r-value.
2624   if (!CGF.getLangOpts().CPlusPlus)
2625     return RHS;
2626 
2627   // If the lvalue is non-volatile, return the computed value of the assignment.
2628   if (!LHS.isVolatileQualified())
2629     return RHS;
2630 
2631   // Otherwise, reload the value.
2632   return EmitLoadOfLValue(LHS);
2633 }
2634 
2635 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2636 
2637   // Perform vector logical and on comparisons with zero vectors.
2638   if (E->getType()->isVectorType()) {
2639     Value *LHS = Visit(E->getLHS());
2640     Value *RHS = Visit(E->getRHS());
2641     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2642     LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2643     RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2644     Value *And = Builder.CreateAnd(LHS, RHS);
2645     return Builder.CreateSExt(And, Zero->getType(), "sext");
2646   }
2647 
2648   llvm::Type *ResTy = ConvertType(E->getType());
2649 
2650   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2651   // If we have 1 && X, just emit X without inserting the control flow.
2652   bool LHSCondVal;
2653   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2654     if (LHSCondVal) { // If we have 1 && X, just emit X.
2655       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2656       // ZExt result to int or bool.
2657       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2658     }
2659 
2660     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2661     if (!CGF.ContainsLabel(E->getRHS()))
2662       return llvm::Constant::getNullValue(ResTy);
2663   }
2664 
2665   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2666   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2667 
2668   CodeGenFunction::ConditionalEvaluation eval(CGF);
2669 
2670   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2671   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2672 
2673   // Any edges into the ContBlock are now from an (indeterminate number of)
2674   // edges from this first condition.  All of these values will be false.  Start
2675   // setting up the PHI node in the Cont Block for this.
2676   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2677                                             "", ContBlock);
2678   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2679        PI != PE; ++PI)
2680     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2681 
2682   eval.begin(CGF);
2683   CGF.EmitBlock(RHSBlock);
2684   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2685   eval.end(CGF);
2686 
2687   // Reaquire the RHS block, as there may be subblocks inserted.
2688   RHSBlock = Builder.GetInsertBlock();
2689 
2690   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2691   // into the phi node for the edge with the value of RHSCond.
2692   if (CGF.getDebugInfo())
2693     // There is no need to emit line number for unconditional branch.
2694     Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2695   CGF.EmitBlock(ContBlock);
2696   PN->addIncoming(RHSCond, RHSBlock);
2697 
2698   // ZExt result to int.
2699   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2700 }
2701 
2702 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2703 
2704   // Perform vector logical or on comparisons with zero vectors.
2705   if (E->getType()->isVectorType()) {
2706     Value *LHS = Visit(E->getLHS());
2707     Value *RHS = Visit(E->getRHS());
2708     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2709     LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2710     RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2711     Value *Or = Builder.CreateOr(LHS, RHS);
2712     return Builder.CreateSExt(Or, Zero->getType(), "sext");
2713   }
2714 
2715   llvm::Type *ResTy = ConvertType(E->getType());
2716 
2717   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2718   // If we have 0 || X, just emit X without inserting the control flow.
2719   bool LHSCondVal;
2720   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2721     if (!LHSCondVal) { // If we have 0 || X, just emit X.
2722       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2723       // ZExt result to int or bool.
2724       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2725     }
2726 
2727     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2728     if (!CGF.ContainsLabel(E->getRHS()))
2729       return llvm::ConstantInt::get(ResTy, 1);
2730   }
2731 
2732   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2733   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2734 
2735   CodeGenFunction::ConditionalEvaluation eval(CGF);
2736 
2737   // Branch on the LHS first.  If it is true, go to the success (cont) block.
2738   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2739 
2740   // Any edges into the ContBlock are now from an (indeterminate number of)
2741   // edges from this first condition.  All of these values will be true.  Start
2742   // setting up the PHI node in the Cont Block for this.
2743   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2744                                             "", ContBlock);
2745   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2746        PI != PE; ++PI)
2747     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2748 
2749   eval.begin(CGF);
2750 
2751   // Emit the RHS condition as a bool value.
2752   CGF.EmitBlock(RHSBlock);
2753   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2754 
2755   eval.end(CGF);
2756 
2757   // Reaquire the RHS block, as there may be subblocks inserted.
2758   RHSBlock = Builder.GetInsertBlock();
2759 
2760   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2761   // into the phi node for the edge with the value of RHSCond.
2762   CGF.EmitBlock(ContBlock);
2763   PN->addIncoming(RHSCond, RHSBlock);
2764 
2765   // ZExt result to int.
2766   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2767 }
2768 
2769 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2770   CGF.EmitIgnoredExpr(E->getLHS());
2771   CGF.EnsureInsertPoint();
2772   return Visit(E->getRHS());
2773 }
2774 
2775 //===----------------------------------------------------------------------===//
2776 //                             Other Operators
2777 //===----------------------------------------------------------------------===//
2778 
2779 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2780 /// expression is cheap enough and side-effect-free enough to evaluate
2781 /// unconditionally instead of conditionally.  This is used to convert control
2782 /// flow into selects in some cases.
2783 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2784                                                    CodeGenFunction &CGF) {
2785   E = E->IgnoreParens();
2786 
2787   // Anything that is an integer or floating point constant is fine.
2788   if (E->isConstantInitializer(CGF.getContext(), false))
2789     return true;
2790 
2791   // Non-volatile automatic variables too, to get "cond ? X : Y" where
2792   // X and Y are local variables.
2793   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2794     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2795       if (VD->hasLocalStorage() && !(CGF.getContext()
2796                                      .getCanonicalType(VD->getType())
2797                                      .isVolatileQualified()))
2798         return true;
2799 
2800   return false;
2801 }
2802 
2803 
2804 Value *ScalarExprEmitter::
2805 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2806   TestAndClearIgnoreResultAssign();
2807 
2808   // Bind the common expression if necessary.
2809   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2810 
2811   Expr *condExpr = E->getCond();
2812   Expr *lhsExpr = E->getTrueExpr();
2813   Expr *rhsExpr = E->getFalseExpr();
2814 
2815   // If the condition constant folds and can be elided, try to avoid emitting
2816   // the condition and the dead arm.
2817   bool CondExprBool;
2818   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2819     Expr *live = lhsExpr, *dead = rhsExpr;
2820     if (!CondExprBool) std::swap(live, dead);
2821 
2822     // If the dead side doesn't have labels we need, just emit the Live part.
2823     if (!CGF.ContainsLabel(dead)) {
2824       Value *Result = Visit(live);
2825 
2826       // If the live part is a throw expression, it acts like it has a void
2827       // type, so evaluating it returns a null Value*.  However, a conditional
2828       // with non-void type must return a non-null Value*.
2829       if (!Result && !E->getType()->isVoidType())
2830         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
2831 
2832       return Result;
2833     }
2834   }
2835 
2836   // OpenCL: If the condition is a vector, we can treat this condition like
2837   // the select function.
2838   if (CGF.getLangOpts().OpenCL
2839       && condExpr->getType()->isVectorType()) {
2840     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2841     llvm::Value *LHS = Visit(lhsExpr);
2842     llvm::Value *RHS = Visit(rhsExpr);
2843 
2844     llvm::Type *condType = ConvertType(condExpr->getType());
2845     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2846 
2847     unsigned numElem = vecTy->getNumElements();
2848     llvm::Type *elemType = vecTy->getElementType();
2849 
2850     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
2851     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2852     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2853                                           llvm::VectorType::get(elemType,
2854                                                                 numElem),
2855                                           "sext");
2856     llvm::Value *tmp2 = Builder.CreateNot(tmp);
2857 
2858     // Cast float to int to perform ANDs if necessary.
2859     llvm::Value *RHSTmp = RHS;
2860     llvm::Value *LHSTmp = LHS;
2861     bool wasCast = false;
2862     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2863     if (rhsVTy->getElementType()->isFloatingPointTy()) {
2864       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2865       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2866       wasCast = true;
2867     }
2868 
2869     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2870     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2871     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2872     if (wasCast)
2873       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2874 
2875     return tmp5;
2876   }
2877 
2878   // If this is a really simple expression (like x ? 4 : 5), emit this as a
2879   // select instead of as control flow.  We can only do this if it is cheap and
2880   // safe to evaluate the LHS and RHS unconditionally.
2881   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
2882       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
2883     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
2884     llvm::Value *LHS = Visit(lhsExpr);
2885     llvm::Value *RHS = Visit(rhsExpr);
2886     if (!LHS) {
2887       // If the conditional has void type, make sure we return a null Value*.
2888       assert(!RHS && "LHS and RHS types must match");
2889       return 0;
2890     }
2891     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2892   }
2893 
2894   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2895   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2896   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2897 
2898   CodeGenFunction::ConditionalEvaluation eval(CGF);
2899   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
2900 
2901   CGF.EmitBlock(LHSBlock);
2902   eval.begin(CGF);
2903   Value *LHS = Visit(lhsExpr);
2904   eval.end(CGF);
2905 
2906   LHSBlock = Builder.GetInsertBlock();
2907   Builder.CreateBr(ContBlock);
2908 
2909   CGF.EmitBlock(RHSBlock);
2910   eval.begin(CGF);
2911   Value *RHS = Visit(rhsExpr);
2912   eval.end(CGF);
2913 
2914   RHSBlock = Builder.GetInsertBlock();
2915   CGF.EmitBlock(ContBlock);
2916 
2917   // If the LHS or RHS is a throw expression, it will be legitimately null.
2918   if (!LHS)
2919     return RHS;
2920   if (!RHS)
2921     return LHS;
2922 
2923   // Create a PHI node for the real part.
2924   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
2925   PN->addIncoming(LHS, LHSBlock);
2926   PN->addIncoming(RHS, RHSBlock);
2927   return PN;
2928 }
2929 
2930 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2931   return Visit(E->getChosenSubExpr(CGF.getContext()));
2932 }
2933 
2934 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2935   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2936   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2937 
2938   // If EmitVAArg fails, we fall back to the LLVM instruction.
2939   if (!ArgPtr)
2940     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2941 
2942   // FIXME Volatility.
2943   return Builder.CreateLoad(ArgPtr);
2944 }
2945 
2946 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2947   return CGF.EmitBlockLiteral(block);
2948 }
2949 
2950 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
2951   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
2952   llvm::Type *DstTy = ConvertType(E->getType());
2953 
2954   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
2955   // a shuffle vector instead of a bitcast.
2956   llvm::Type *SrcTy = Src->getType();
2957   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
2958     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
2959     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
2960     if ((numElementsDst == 3 && numElementsSrc == 4)
2961         || (numElementsDst == 4 && numElementsSrc == 3)) {
2962 
2963 
2964       // In the case of going from int4->float3, a bitcast is needed before
2965       // doing a shuffle.
2966       llvm::Type *srcElemTy =
2967       cast<llvm::VectorType>(SrcTy)->getElementType();
2968       llvm::Type *dstElemTy =
2969       cast<llvm::VectorType>(DstTy)->getElementType();
2970 
2971       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
2972           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
2973         // Create a float type of the same size as the source or destination.
2974         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
2975                                                                  numElementsSrc);
2976 
2977         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
2978       }
2979 
2980       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
2981 
2982       SmallVector<llvm::Constant*, 3> Args;
2983       Args.push_back(Builder.getInt32(0));
2984       Args.push_back(Builder.getInt32(1));
2985       Args.push_back(Builder.getInt32(2));
2986 
2987       if (numElementsDst == 4)
2988         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
2989 
2990       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
2991 
2992       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
2993     }
2994   }
2995 
2996   return Builder.CreateBitCast(Src, DstTy, "astype");
2997 }
2998 
2999 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3000   return CGF.EmitAtomicExpr(E).getScalarVal();
3001 }
3002 
3003 //===----------------------------------------------------------------------===//
3004 //                         Entry Point into this File
3005 //===----------------------------------------------------------------------===//
3006 
3007 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
3008 /// type, ignoring the result.
3009 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3010   assert(E && !hasAggregateLLVMType(E->getType()) &&
3011          "Invalid scalar expression to emit");
3012 
3013   if (isa<CXXDefaultArgExpr>(E))
3014     disableDebugInfo();
3015   Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
3016     .Visit(const_cast<Expr*>(E));
3017   if (isa<CXXDefaultArgExpr>(E))
3018     enableDebugInfo();
3019   return V;
3020 }
3021 
3022 /// EmitScalarConversion - Emit a conversion from the specified type to the
3023 /// specified destination type, both of which are LLVM scalar types.
3024 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3025                                              QualType DstTy) {
3026   assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
3027          "Invalid scalar expression to emit");
3028   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
3029 }
3030 
3031 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
3032 /// type to the specified destination type, where the destination type is an
3033 /// LLVM scalar type.
3034 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3035                                                       QualType SrcTy,
3036                                                       QualType DstTy) {
3037   assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
3038          "Invalid complex -> scalar conversion");
3039   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
3040                                                                 DstTy);
3041 }
3042 
3043 
3044 llvm::Value *CodeGenFunction::
3045 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3046                         bool isInc, bool isPre) {
3047   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3048 }
3049 
3050 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3051   llvm::Value *V;
3052   // object->isa or (*object).isa
3053   // Generate code as for: *(Class*)object
3054   // build Class* type
3055   llvm::Type *ClassPtrTy = ConvertType(E->getType());
3056 
3057   Expr *BaseExpr = E->getBase();
3058   if (BaseExpr->isRValue()) {
3059     V = CreateMemTemp(E->getType(), "resval");
3060     llvm::Value *Src = EmitScalarExpr(BaseExpr);
3061     Builder.CreateStore(Src, V);
3062     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
3063       MakeNaturalAlignAddrLValue(V, E->getType()));
3064   } else {
3065     if (E->isArrow())
3066       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
3067     else
3068       V = EmitLValue(BaseExpr).getAddress();
3069   }
3070 
3071   // build Class* type
3072   ClassPtrTy = ClassPtrTy->getPointerTo();
3073   V = Builder.CreateBitCast(V, ClassPtrTy);
3074   return MakeNaturalAlignAddrLValue(V, E->getType());
3075 }
3076 
3077 
3078 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3079                                             const CompoundAssignOperator *E) {
3080   ScalarExprEmitter Scalar(*this);
3081   Value *Result = 0;
3082   switch (E->getOpcode()) {
3083 #define COMPOUND_OP(Op)                                                       \
3084     case BO_##Op##Assign:                                                     \
3085       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3086                                              Result)
3087   COMPOUND_OP(Mul);
3088   COMPOUND_OP(Div);
3089   COMPOUND_OP(Rem);
3090   COMPOUND_OP(Add);
3091   COMPOUND_OP(Sub);
3092   COMPOUND_OP(Shl);
3093   COMPOUND_OP(Shr);
3094   COMPOUND_OP(And);
3095   COMPOUND_OP(Xor);
3096   COMPOUND_OP(Or);
3097 #undef COMPOUND_OP
3098 
3099   case BO_PtrMemD:
3100   case BO_PtrMemI:
3101   case BO_Mul:
3102   case BO_Div:
3103   case BO_Rem:
3104   case BO_Add:
3105   case BO_Sub:
3106   case BO_Shl:
3107   case BO_Shr:
3108   case BO_LT:
3109   case BO_GT:
3110   case BO_LE:
3111   case BO_GE:
3112   case BO_EQ:
3113   case BO_NE:
3114   case BO_And:
3115   case BO_Xor:
3116   case BO_Or:
3117   case BO_LAnd:
3118   case BO_LOr:
3119   case BO_Assign:
3120   case BO_Comma:
3121     llvm_unreachable("Not valid compound assignment operators");
3122   }
3123 
3124   llvm_unreachable("Unhandled compound assignment operator");
3125 }
3126