1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/GlobalVariable.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/Support/CFG.h" 32 #include <cstdarg> 33 34 using namespace clang; 35 using namespace CodeGen; 36 using llvm::Value; 37 38 //===----------------------------------------------------------------------===// 39 // Scalar Expression Emitter 40 //===----------------------------------------------------------------------===// 41 42 namespace { 43 struct BinOpInfo { 44 Value *LHS; 45 Value *RHS; 46 QualType Ty; // Computation Type. 47 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 48 bool FPContractable; 49 const Expr *E; // Entire expr, for error unsupported. May not be binop. 50 }; 51 52 static bool MustVisitNullValue(const Expr *E) { 53 // If a null pointer expression's type is the C++0x nullptr_t, then 54 // it's not necessarily a simple constant and it must be evaluated 55 // for its potential side effects. 56 return E->getType()->isNullPtrType(); 57 } 58 59 class ScalarExprEmitter 60 : public StmtVisitor<ScalarExprEmitter, Value*> { 61 CodeGenFunction &CGF; 62 CGBuilderTy &Builder; 63 bool IgnoreResultAssign; 64 llvm::LLVMContext &VMContext; 65 public: 66 67 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 68 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 69 VMContext(cgf.getLLVMContext()) { 70 } 71 72 //===--------------------------------------------------------------------===// 73 // Utilities 74 //===--------------------------------------------------------------------===// 75 76 bool TestAndClearIgnoreResultAssign() { 77 bool I = IgnoreResultAssign; 78 IgnoreResultAssign = false; 79 return I; 80 } 81 82 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 83 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 84 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 85 return CGF.EmitCheckedLValue(E, TCK); 86 } 87 88 void EmitBinOpCheck(Value *Check, const BinOpInfo &Info); 89 90 Value *EmitLoadOfLValue(LValue LV) { 91 return CGF.EmitLoadOfLValue(LV).getScalarVal(); 92 } 93 94 /// EmitLoadOfLValue - Given an expression with complex type that represents a 95 /// value l-value, this method emits the address of the l-value, then loads 96 /// and returns the result. 97 Value *EmitLoadOfLValue(const Expr *E) { 98 return EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load)); 99 } 100 101 /// EmitConversionToBool - Convert the specified expression value to a 102 /// boolean (i1) truth value. This is equivalent to "Val != 0". 103 Value *EmitConversionToBool(Value *Src, QualType DstTy); 104 105 /// \brief Emit a check that a conversion to or from a floating-point type 106 /// does not overflow. 107 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 108 Value *Src, QualType SrcType, 109 QualType DstType, llvm::Type *DstTy); 110 111 /// EmitScalarConversion - Emit a conversion from the specified type to the 112 /// specified destination type, both of which are LLVM scalar types. 113 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy); 114 115 /// EmitComplexToScalarConversion - Emit a conversion from the specified 116 /// complex type to the specified destination type, where the destination type 117 /// is an LLVM scalar type. 118 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 119 QualType SrcTy, QualType DstTy); 120 121 /// EmitNullValue - Emit a value that corresponds to null for the given type. 122 Value *EmitNullValue(QualType Ty); 123 124 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 125 Value *EmitFloatToBoolConversion(Value *V) { 126 // Compare against 0.0 for fp scalars. 127 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 128 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 129 } 130 131 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 132 Value *EmitPointerToBoolConversion(Value *V) { 133 Value *Zero = llvm::ConstantPointerNull::get( 134 cast<llvm::PointerType>(V->getType())); 135 return Builder.CreateICmpNE(V, Zero, "tobool"); 136 } 137 138 Value *EmitIntToBoolConversion(Value *V) { 139 // Because of the type rules of C, we often end up computing a 140 // logical value, then zero extending it to int, then wanting it 141 // as a logical value again. Optimize this common case. 142 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 143 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 144 Value *Result = ZI->getOperand(0); 145 // If there aren't any more uses, zap the instruction to save space. 146 // Note that there can be more uses, for example if this 147 // is the result of an assignment. 148 if (ZI->use_empty()) 149 ZI->eraseFromParent(); 150 return Result; 151 } 152 } 153 154 return Builder.CreateIsNotNull(V, "tobool"); 155 } 156 157 //===--------------------------------------------------------------------===// 158 // Visitor Methods 159 //===--------------------------------------------------------------------===// 160 161 Value *Visit(Expr *E) { 162 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 163 } 164 165 Value *VisitStmt(Stmt *S) { 166 S->dump(CGF.getContext().getSourceManager()); 167 llvm_unreachable("Stmt can't have complex result type!"); 168 } 169 Value *VisitExpr(Expr *S); 170 171 Value *VisitParenExpr(ParenExpr *PE) { 172 return Visit(PE->getSubExpr()); 173 } 174 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 175 return Visit(E->getReplacement()); 176 } 177 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 178 return Visit(GE->getResultExpr()); 179 } 180 181 // Leaves. 182 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 183 return Builder.getInt(E->getValue()); 184 } 185 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 186 return llvm::ConstantFP::get(VMContext, E->getValue()); 187 } 188 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 189 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 190 } 191 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 192 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 193 } 194 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 195 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 196 } 197 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 198 return EmitNullValue(E->getType()); 199 } 200 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 201 return EmitNullValue(E->getType()); 202 } 203 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 204 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 205 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 206 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 207 return Builder.CreateBitCast(V, ConvertType(E->getType())); 208 } 209 210 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 211 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 212 } 213 214 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 215 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 216 } 217 218 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 219 if (E->isGLValue()) 220 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E)); 221 222 // Otherwise, assume the mapping is the scalar directly. 223 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 224 } 225 226 // l-values. 227 Value *VisitDeclRefExpr(DeclRefExpr *E) { 228 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 229 if (result.isReference()) 230 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E)); 231 return result.getValue(); 232 } 233 return EmitLoadOfLValue(E); 234 } 235 236 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 237 return CGF.EmitObjCSelectorExpr(E); 238 } 239 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 240 return CGF.EmitObjCProtocolExpr(E); 241 } 242 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 243 return EmitLoadOfLValue(E); 244 } 245 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 246 if (E->getMethodDecl() && 247 E->getMethodDecl()->getResultType()->isReferenceType()) 248 return EmitLoadOfLValue(E); 249 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 250 } 251 252 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 253 LValue LV = CGF.EmitObjCIsaExpr(E); 254 Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal(); 255 return V; 256 } 257 258 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 259 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 260 Value *VisitMemberExpr(MemberExpr *E); 261 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 262 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 263 return EmitLoadOfLValue(E); 264 } 265 266 Value *VisitInitListExpr(InitListExpr *E); 267 268 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 269 return EmitNullValue(E->getType()); 270 } 271 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 272 if (E->getType()->isVariablyModifiedType()) 273 CGF.EmitVariablyModifiedType(E->getType()); 274 return VisitCastExpr(E); 275 } 276 Value *VisitCastExpr(CastExpr *E); 277 278 Value *VisitCallExpr(const CallExpr *E) { 279 if (E->getCallReturnType()->isReferenceType()) 280 return EmitLoadOfLValue(E); 281 282 return CGF.EmitCallExpr(E).getScalarVal(); 283 } 284 285 Value *VisitStmtExpr(const StmtExpr *E); 286 287 // Unary Operators. 288 Value *VisitUnaryPostDec(const UnaryOperator *E) { 289 LValue LV = EmitLValue(E->getSubExpr()); 290 return EmitScalarPrePostIncDec(E, LV, false, false); 291 } 292 Value *VisitUnaryPostInc(const UnaryOperator *E) { 293 LValue LV = EmitLValue(E->getSubExpr()); 294 return EmitScalarPrePostIncDec(E, LV, true, false); 295 } 296 Value *VisitUnaryPreDec(const UnaryOperator *E) { 297 LValue LV = EmitLValue(E->getSubExpr()); 298 return EmitScalarPrePostIncDec(E, LV, false, true); 299 } 300 Value *VisitUnaryPreInc(const UnaryOperator *E) { 301 LValue LV = EmitLValue(E->getSubExpr()); 302 return EmitScalarPrePostIncDec(E, LV, true, true); 303 } 304 305 llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 306 llvm::Value *InVal, 307 llvm::Value *NextVal, 308 bool IsInc); 309 310 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 311 bool isInc, bool isPre); 312 313 314 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 315 if (isa<MemberPointerType>(E->getType())) // never sugared 316 return CGF.CGM.getMemberPointerConstant(E); 317 318 return EmitLValue(E->getSubExpr()).getAddress(); 319 } 320 Value *VisitUnaryDeref(const UnaryOperator *E) { 321 if (E->getType()->isVoidType()) 322 return Visit(E->getSubExpr()); // the actual value should be unused 323 return EmitLoadOfLValue(E); 324 } 325 Value *VisitUnaryPlus(const UnaryOperator *E) { 326 // This differs from gcc, though, most likely due to a bug in gcc. 327 TestAndClearIgnoreResultAssign(); 328 return Visit(E->getSubExpr()); 329 } 330 Value *VisitUnaryMinus (const UnaryOperator *E); 331 Value *VisitUnaryNot (const UnaryOperator *E); 332 Value *VisitUnaryLNot (const UnaryOperator *E); 333 Value *VisitUnaryReal (const UnaryOperator *E); 334 Value *VisitUnaryImag (const UnaryOperator *E); 335 Value *VisitUnaryExtension(const UnaryOperator *E) { 336 return Visit(E->getSubExpr()); 337 } 338 339 // C++ 340 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 341 return EmitLoadOfLValue(E); 342 } 343 344 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 345 return Visit(DAE->getExpr()); 346 } 347 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 348 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 349 return Visit(DIE->getExpr()); 350 } 351 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 352 return CGF.LoadCXXThis(); 353 } 354 355 Value *VisitExprWithCleanups(ExprWithCleanups *E) { 356 CGF.enterFullExpression(E); 357 CodeGenFunction::RunCleanupsScope Scope(CGF); 358 return Visit(E->getSubExpr()); 359 } 360 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 361 return CGF.EmitCXXNewExpr(E); 362 } 363 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 364 CGF.EmitCXXDeleteExpr(E); 365 return 0; 366 } 367 Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) { 368 return Builder.getInt1(E->getValue()); 369 } 370 371 Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) { 372 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 373 } 374 375 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 376 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 377 } 378 379 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 380 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 381 } 382 383 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 384 // C++ [expr.pseudo]p1: 385 // The result shall only be used as the operand for the function call 386 // operator (), and the result of such a call has type void. The only 387 // effect is the evaluation of the postfix-expression before the dot or 388 // arrow. 389 CGF.EmitScalarExpr(E->getBase()); 390 return 0; 391 } 392 393 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 394 return EmitNullValue(E->getType()); 395 } 396 397 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 398 CGF.EmitCXXThrowExpr(E); 399 return 0; 400 } 401 402 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 403 return Builder.getInt1(E->getValue()); 404 } 405 406 // Binary Operators. 407 Value *EmitMul(const BinOpInfo &Ops) { 408 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 409 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 410 case LangOptions::SOB_Defined: 411 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 412 case LangOptions::SOB_Undefined: 413 if (!CGF.SanOpts->SignedIntegerOverflow) 414 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 415 // Fall through. 416 case LangOptions::SOB_Trapping: 417 return EmitOverflowCheckedBinOp(Ops); 418 } 419 } 420 421 if (Ops.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) 422 return EmitOverflowCheckedBinOp(Ops); 423 424 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 425 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 426 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 427 } 428 /// Create a binary op that checks for overflow. 429 /// Currently only supports +, - and *. 430 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 431 432 // Check for undefined division and modulus behaviors. 433 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 434 llvm::Value *Zero,bool isDiv); 435 // Common helper for getting how wide LHS of shift is. 436 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 437 Value *EmitDiv(const BinOpInfo &Ops); 438 Value *EmitRem(const BinOpInfo &Ops); 439 Value *EmitAdd(const BinOpInfo &Ops); 440 Value *EmitSub(const BinOpInfo &Ops); 441 Value *EmitShl(const BinOpInfo &Ops); 442 Value *EmitShr(const BinOpInfo &Ops); 443 Value *EmitAnd(const BinOpInfo &Ops) { 444 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 445 } 446 Value *EmitXor(const BinOpInfo &Ops) { 447 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 448 } 449 Value *EmitOr (const BinOpInfo &Ops) { 450 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 451 } 452 453 BinOpInfo EmitBinOps(const BinaryOperator *E); 454 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 455 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 456 Value *&Result); 457 458 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 459 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 460 461 // Binary operators and binary compound assignment operators. 462 #define HANDLEBINOP(OP) \ 463 Value *VisitBin ## OP(const BinaryOperator *E) { \ 464 return Emit ## OP(EmitBinOps(E)); \ 465 } \ 466 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 467 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 468 } 469 HANDLEBINOP(Mul) 470 HANDLEBINOP(Div) 471 HANDLEBINOP(Rem) 472 HANDLEBINOP(Add) 473 HANDLEBINOP(Sub) 474 HANDLEBINOP(Shl) 475 HANDLEBINOP(Shr) 476 HANDLEBINOP(And) 477 HANDLEBINOP(Xor) 478 HANDLEBINOP(Or) 479 #undef HANDLEBINOP 480 481 // Comparisons. 482 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, 483 unsigned SICmpOpc, unsigned FCmpOpc); 484 #define VISITCOMP(CODE, UI, SI, FP) \ 485 Value *VisitBin##CODE(const BinaryOperator *E) { \ 486 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 487 llvm::FCmpInst::FP); } 488 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 489 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 490 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 491 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 492 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 493 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 494 #undef VISITCOMP 495 496 Value *VisitBinAssign (const BinaryOperator *E); 497 498 Value *VisitBinLAnd (const BinaryOperator *E); 499 Value *VisitBinLOr (const BinaryOperator *E); 500 Value *VisitBinComma (const BinaryOperator *E); 501 502 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 503 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 504 505 // Other Operators. 506 Value *VisitBlockExpr(const BlockExpr *BE); 507 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 508 Value *VisitChooseExpr(ChooseExpr *CE); 509 Value *VisitVAArgExpr(VAArgExpr *VE); 510 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 511 return CGF.EmitObjCStringLiteral(E); 512 } 513 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 514 return CGF.EmitObjCBoxedExpr(E); 515 } 516 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 517 return CGF.EmitObjCArrayLiteral(E); 518 } 519 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 520 return CGF.EmitObjCDictionaryLiteral(E); 521 } 522 Value *VisitAsTypeExpr(AsTypeExpr *CE); 523 Value *VisitAtomicExpr(AtomicExpr *AE); 524 }; 525 } // end anonymous namespace. 526 527 //===----------------------------------------------------------------------===// 528 // Utilities 529 //===----------------------------------------------------------------------===// 530 531 /// EmitConversionToBool - Convert the specified expression value to a 532 /// boolean (i1) truth value. This is equivalent to "Val != 0". 533 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 534 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 535 536 if (SrcType->isRealFloatingType()) 537 return EmitFloatToBoolConversion(Src); 538 539 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 540 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 541 542 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 543 "Unknown scalar type to convert"); 544 545 if (isa<llvm::IntegerType>(Src->getType())) 546 return EmitIntToBoolConversion(Src); 547 548 assert(isa<llvm::PointerType>(Src->getType())); 549 return EmitPointerToBoolConversion(Src); 550 } 551 552 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc, 553 QualType OrigSrcType, 554 Value *Src, QualType SrcType, 555 QualType DstType, 556 llvm::Type *DstTy) { 557 using llvm::APFloat; 558 using llvm::APSInt; 559 560 llvm::Type *SrcTy = Src->getType(); 561 562 llvm::Value *Check = 0; 563 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 564 // Integer to floating-point. This can fail for unsigned short -> __half 565 // or unsigned __int128 -> float. 566 assert(DstType->isFloatingType()); 567 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 568 569 APFloat LargestFloat = 570 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 571 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 572 573 bool IsExact; 574 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 575 &IsExact) != APFloat::opOK) 576 // The range of representable values of this floating point type includes 577 // all values of this integer type. Don't need an overflow check. 578 return; 579 580 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 581 if (SrcIsUnsigned) 582 Check = Builder.CreateICmpULE(Src, Max); 583 else { 584 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 585 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 586 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 587 Check = Builder.CreateAnd(GE, LE); 588 } 589 } else { 590 const llvm::fltSemantics &SrcSema = 591 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 592 if (isa<llvm::IntegerType>(DstTy)) { 593 // Floating-point to integer. This has undefined behavior if the source is 594 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 595 // to an integer). 596 unsigned Width = CGF.getContext().getIntWidth(DstType); 597 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 598 599 APSInt Min = APSInt::getMinValue(Width, Unsigned); 600 APFloat MinSrc(SrcSema, APFloat::uninitialized); 601 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 602 APFloat::opOverflow) 603 // Don't need an overflow check for lower bound. Just check for 604 // -Inf/NaN. 605 MinSrc = APFloat::getInf(SrcSema, true); 606 else 607 // Find the largest value which is too small to represent (before 608 // truncation toward zero). 609 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 610 611 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 612 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 613 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 614 APFloat::opOverflow) 615 // Don't need an overflow check for upper bound. Just check for 616 // +Inf/NaN. 617 MaxSrc = APFloat::getInf(SrcSema, false); 618 else 619 // Find the smallest value which is too large to represent (before 620 // truncation toward zero). 621 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 622 623 // If we're converting from __half, convert the range to float to match 624 // the type of src. 625 if (OrigSrcType->isHalfType()) { 626 const llvm::fltSemantics &Sema = 627 CGF.getContext().getFloatTypeSemantics(SrcType); 628 bool IsInexact; 629 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 630 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 631 } 632 633 llvm::Value *GE = 634 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 635 llvm::Value *LE = 636 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 637 Check = Builder.CreateAnd(GE, LE); 638 } else { 639 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 640 // 641 // Floating-point to floating-point. This has undefined behavior if the 642 // source is not in the range of representable values of the destination 643 // type. The C and C++ standards are spectacularly unclear here. We 644 // diagnose finite out-of-range conversions, but allow infinities and NaNs 645 // to convert to the corresponding value in the smaller type. 646 // 647 // C11 Annex F gives all such conversions defined behavior for IEC 60559 648 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 649 // does not. 650 651 // Converting from a lower rank to a higher rank can never have 652 // undefined behavior, since higher-rank types must have a superset 653 // of values of lower-rank types. 654 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 655 return; 656 657 assert(!OrigSrcType->isHalfType() && 658 "should not check conversion from __half, it has the lowest rank"); 659 660 const llvm::fltSemantics &DstSema = 661 CGF.getContext().getFloatTypeSemantics(DstType); 662 APFloat MinBad = APFloat::getLargest(DstSema, false); 663 APFloat MaxBad = APFloat::getInf(DstSema, false); 664 665 bool IsInexact; 666 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 667 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 668 669 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 670 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 671 llvm::Value *GE = 672 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 673 llvm::Value *LE = 674 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 675 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 676 } 677 } 678 679 // FIXME: Provide a SourceLocation. 680 llvm::Constant *StaticArgs[] = { 681 CGF.EmitCheckTypeDescriptor(OrigSrcType), 682 CGF.EmitCheckTypeDescriptor(DstType) 683 }; 684 CGF.EmitCheck(Check, "float_cast_overflow", StaticArgs, OrigSrc, 685 CodeGenFunction::CRK_Recoverable); 686 } 687 688 /// EmitScalarConversion - Emit a conversion from the specified type to the 689 /// specified destination type, both of which are LLVM scalar types. 690 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 691 QualType DstType) { 692 SrcType = CGF.getContext().getCanonicalType(SrcType); 693 DstType = CGF.getContext().getCanonicalType(DstType); 694 if (SrcType == DstType) return Src; 695 696 if (DstType->isVoidType()) return 0; 697 698 llvm::Value *OrigSrc = Src; 699 QualType OrigSrcType = SrcType; 700 llvm::Type *SrcTy = Src->getType(); 701 702 // If casting to/from storage-only half FP, use special intrinsics. 703 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 704 Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src); 705 SrcType = CGF.getContext().FloatTy; 706 SrcTy = CGF.FloatTy; 707 } 708 709 // Handle conversions to bool first, they are special: comparisons against 0. 710 if (DstType->isBooleanType()) 711 return EmitConversionToBool(Src, SrcType); 712 713 llvm::Type *DstTy = ConvertType(DstType); 714 715 // Ignore conversions like int -> uint. 716 if (SrcTy == DstTy) 717 return Src; 718 719 // Handle pointer conversions next: pointers can only be converted to/from 720 // other pointers and integers. Check for pointer types in terms of LLVM, as 721 // some native types (like Obj-C id) may map to a pointer type. 722 if (isa<llvm::PointerType>(DstTy)) { 723 // The source value may be an integer, or a pointer. 724 if (isa<llvm::PointerType>(SrcTy)) 725 return Builder.CreateBitCast(Src, DstTy, "conv"); 726 727 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 728 // First, convert to the correct width so that we control the kind of 729 // extension. 730 llvm::Type *MiddleTy = CGF.IntPtrTy; 731 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 732 llvm::Value* IntResult = 733 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 734 // Then, cast to pointer. 735 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 736 } 737 738 if (isa<llvm::PointerType>(SrcTy)) { 739 // Must be an ptr to int cast. 740 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 741 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 742 } 743 744 // A scalar can be splatted to an extended vector of the same element type 745 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 746 // Cast the scalar to element type 747 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType(); 748 llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy); 749 750 // Splat the element across to all elements 751 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 752 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 753 } 754 755 // Allow bitcast from vector to integer/fp of the same size. 756 if (isa<llvm::VectorType>(SrcTy) || 757 isa<llvm::VectorType>(DstTy)) 758 return Builder.CreateBitCast(Src, DstTy, "conv"); 759 760 // Finally, we have the arithmetic types: real int/float. 761 Value *Res = NULL; 762 llvm::Type *ResTy = DstTy; 763 764 // An overflowing conversion has undefined behavior if either the source type 765 // or the destination type is a floating-point type. 766 if (CGF.SanOpts->FloatCastOverflow && 767 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 768 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, 769 DstTy); 770 771 // Cast to half via float 772 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) 773 DstTy = CGF.FloatTy; 774 775 if (isa<llvm::IntegerType>(SrcTy)) { 776 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 777 if (isa<llvm::IntegerType>(DstTy)) 778 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 779 else if (InputSigned) 780 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 781 else 782 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 783 } else if (isa<llvm::IntegerType>(DstTy)) { 784 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 785 if (DstType->isSignedIntegerOrEnumerationType()) 786 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 787 else 788 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 789 } else { 790 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 791 "Unknown real conversion"); 792 if (DstTy->getTypeID() < SrcTy->getTypeID()) 793 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 794 else 795 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 796 } 797 798 if (DstTy != ResTy) { 799 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 800 Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res); 801 } 802 803 return Res; 804 } 805 806 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 807 /// type to the specified destination type, where the destination type is an 808 /// LLVM scalar type. 809 Value *ScalarExprEmitter:: 810 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 811 QualType SrcTy, QualType DstTy) { 812 // Get the source element type. 813 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 814 815 // Handle conversions to bool first, they are special: comparisons against 0. 816 if (DstTy->isBooleanType()) { 817 // Complex != 0 -> (Real != 0) | (Imag != 0) 818 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy); 819 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy); 820 return Builder.CreateOr(Src.first, Src.second, "tobool"); 821 } 822 823 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 824 // the imaginary part of the complex value is discarded and the value of the 825 // real part is converted according to the conversion rules for the 826 // corresponding real type. 827 return EmitScalarConversion(Src.first, SrcTy, DstTy); 828 } 829 830 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 831 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 832 } 833 834 /// \brief Emit a sanitization check for the given "binary" operation (which 835 /// might actually be a unary increment which has been lowered to a binary 836 /// operation). The check passes if \p Check, which is an \c i1, is \c true. 837 void ScalarExprEmitter::EmitBinOpCheck(Value *Check, const BinOpInfo &Info) { 838 StringRef CheckName; 839 SmallVector<llvm::Constant *, 4> StaticData; 840 SmallVector<llvm::Value *, 2> DynamicData; 841 842 BinaryOperatorKind Opcode = Info.Opcode; 843 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 844 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 845 846 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 847 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 848 if (UO && UO->getOpcode() == UO_Minus) { 849 CheckName = "negate_overflow"; 850 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 851 DynamicData.push_back(Info.RHS); 852 } else { 853 if (BinaryOperator::isShiftOp(Opcode)) { 854 // Shift LHS negative or too large, or RHS out of bounds. 855 CheckName = "shift_out_of_bounds"; 856 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 857 StaticData.push_back( 858 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 859 StaticData.push_back( 860 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 861 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 862 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 863 CheckName = "divrem_overflow"; 864 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 865 } else { 866 // Signed arithmetic overflow (+, -, *). 867 switch (Opcode) { 868 case BO_Add: CheckName = "add_overflow"; break; 869 case BO_Sub: CheckName = "sub_overflow"; break; 870 case BO_Mul: CheckName = "mul_overflow"; break; 871 default: llvm_unreachable("unexpected opcode for bin op check"); 872 } 873 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 874 } 875 DynamicData.push_back(Info.LHS); 876 DynamicData.push_back(Info.RHS); 877 } 878 879 CGF.EmitCheck(Check, CheckName, StaticData, DynamicData, 880 CodeGenFunction::CRK_Recoverable); 881 } 882 883 //===----------------------------------------------------------------------===// 884 // Visitor Methods 885 //===----------------------------------------------------------------------===// 886 887 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 888 CGF.ErrorUnsupported(E, "scalar expression"); 889 if (E->getType()->isVoidType()) 890 return 0; 891 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 892 } 893 894 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 895 // Vector Mask Case 896 if (E->getNumSubExprs() == 2 || 897 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) { 898 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 899 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 900 Value *Mask; 901 902 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 903 unsigned LHSElts = LTy->getNumElements(); 904 905 if (E->getNumSubExprs() == 3) { 906 Mask = CGF.EmitScalarExpr(E->getExpr(2)); 907 908 // Shuffle LHS & RHS into one input vector. 909 SmallVector<llvm::Constant*, 32> concat; 910 for (unsigned i = 0; i != LHSElts; ++i) { 911 concat.push_back(Builder.getInt32(2*i)); 912 concat.push_back(Builder.getInt32(2*i+1)); 913 } 914 915 Value* CV = llvm::ConstantVector::get(concat); 916 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat"); 917 LHSElts *= 2; 918 } else { 919 Mask = RHS; 920 } 921 922 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 923 llvm::Constant* EltMask; 924 925 // Treat vec3 like vec4. 926 if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) 927 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 928 (1 << llvm::Log2_32(LHSElts+2))-1); 929 else if ((LHSElts == 3) && (E->getNumSubExprs() == 2)) 930 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 931 (1 << llvm::Log2_32(LHSElts+1))-1); 932 else 933 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 934 (1 << llvm::Log2_32(LHSElts))-1); 935 936 // Mask off the high bits of each shuffle index. 937 Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(), 938 EltMask); 939 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 940 941 // newv = undef 942 // mask = mask & maskbits 943 // for each elt 944 // n = extract mask i 945 // x = extract val n 946 // newv = insert newv, x, i 947 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 948 MTy->getNumElements()); 949 Value* NewV = llvm::UndefValue::get(RTy); 950 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 951 Value *IIndx = Builder.getInt32(i); 952 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 953 Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext"); 954 955 // Handle vec3 special since the index will be off by one for the RHS. 956 if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) { 957 Value *cmpIndx, *newIndx; 958 cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3), 959 "cmp_shuf_idx"); 960 newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj"); 961 Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx"); 962 } 963 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 964 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 965 } 966 return NewV; 967 } 968 969 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 970 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 971 972 // Handle vec3 special since the index will be off by one for the RHS. 973 llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType()); 974 SmallVector<llvm::Constant*, 32> indices; 975 for (unsigned i = 2; i < E->getNumSubExprs(); i++) { 976 unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 977 if (VTy->getNumElements() == 3 && Idx > 3) 978 Idx -= 1; 979 indices.push_back(Builder.getInt32(Idx)); 980 } 981 982 Value *SV = llvm::ConstantVector::get(indices); 983 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 984 } 985 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 986 llvm::APSInt Value; 987 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 988 if (E->isArrow()) 989 CGF.EmitScalarExpr(E->getBase()); 990 else 991 EmitLValue(E->getBase()); 992 return Builder.getInt(Value); 993 } 994 995 return EmitLoadOfLValue(E); 996 } 997 998 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 999 TestAndClearIgnoreResultAssign(); 1000 1001 // Emit subscript expressions in rvalue context's. For most cases, this just 1002 // loads the lvalue formed by the subscript expr. However, we have to be 1003 // careful, because the base of a vector subscript is occasionally an rvalue, 1004 // so we can't get it as an lvalue. 1005 if (!E->getBase()->getType()->isVectorType()) 1006 return EmitLoadOfLValue(E); 1007 1008 // Handle the vector case. The base must be a vector, the index must be an 1009 // integer value. 1010 Value *Base = Visit(E->getBase()); 1011 Value *Idx = Visit(E->getIdx()); 1012 QualType IdxTy = E->getIdx()->getType(); 1013 1014 if (CGF.SanOpts->Bounds) 1015 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1016 1017 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 1018 Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast"); 1019 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1020 } 1021 1022 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1023 unsigned Off, llvm::Type *I32Ty) { 1024 int MV = SVI->getMaskValue(Idx); 1025 if (MV == -1) 1026 return llvm::UndefValue::get(I32Ty); 1027 return llvm::ConstantInt::get(I32Ty, Off+MV); 1028 } 1029 1030 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1031 bool Ignore = TestAndClearIgnoreResultAssign(); 1032 (void)Ignore; 1033 assert (Ignore == false && "init list ignored"); 1034 unsigned NumInitElements = E->getNumInits(); 1035 1036 if (E->hadArrayRangeDesignator()) 1037 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1038 1039 llvm::VectorType *VType = 1040 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1041 1042 if (!VType) { 1043 if (NumInitElements == 0) { 1044 // C++11 value-initialization for the scalar. 1045 return EmitNullValue(E->getType()); 1046 } 1047 // We have a scalar in braces. Just use the first element. 1048 return Visit(E->getInit(0)); 1049 } 1050 1051 unsigned ResElts = VType->getNumElements(); 1052 1053 // Loop over initializers collecting the Value for each, and remembering 1054 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1055 // us to fold the shuffle for the swizzle into the shuffle for the vector 1056 // initializer, since LLVM optimizers generally do not want to touch 1057 // shuffles. 1058 unsigned CurIdx = 0; 1059 bool VIsUndefShuffle = false; 1060 llvm::Value *V = llvm::UndefValue::get(VType); 1061 for (unsigned i = 0; i != NumInitElements; ++i) { 1062 Expr *IE = E->getInit(i); 1063 Value *Init = Visit(IE); 1064 SmallVector<llvm::Constant*, 16> Args; 1065 1066 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1067 1068 // Handle scalar elements. If the scalar initializer is actually one 1069 // element of a different vector of the same width, use shuffle instead of 1070 // extract+insert. 1071 if (!VVT) { 1072 if (isa<ExtVectorElementExpr>(IE)) { 1073 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1074 1075 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1076 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1077 Value *LHS = 0, *RHS = 0; 1078 if (CurIdx == 0) { 1079 // insert into undef -> shuffle (src, undef) 1080 Args.push_back(C); 1081 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1082 1083 LHS = EI->getVectorOperand(); 1084 RHS = V; 1085 VIsUndefShuffle = true; 1086 } else if (VIsUndefShuffle) { 1087 // insert into undefshuffle && size match -> shuffle (v, src) 1088 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1089 for (unsigned j = 0; j != CurIdx; ++j) 1090 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1091 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1092 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1093 1094 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1095 RHS = EI->getVectorOperand(); 1096 VIsUndefShuffle = false; 1097 } 1098 if (!Args.empty()) { 1099 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1100 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1101 ++CurIdx; 1102 continue; 1103 } 1104 } 1105 } 1106 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1107 "vecinit"); 1108 VIsUndefShuffle = false; 1109 ++CurIdx; 1110 continue; 1111 } 1112 1113 unsigned InitElts = VVT->getNumElements(); 1114 1115 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1116 // input is the same width as the vector being constructed, generate an 1117 // optimized shuffle of the swizzle input into the result. 1118 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1119 if (isa<ExtVectorElementExpr>(IE)) { 1120 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1121 Value *SVOp = SVI->getOperand(0); 1122 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1123 1124 if (OpTy->getNumElements() == ResElts) { 1125 for (unsigned j = 0; j != CurIdx; ++j) { 1126 // If the current vector initializer is a shuffle with undef, merge 1127 // this shuffle directly into it. 1128 if (VIsUndefShuffle) { 1129 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1130 CGF.Int32Ty)); 1131 } else { 1132 Args.push_back(Builder.getInt32(j)); 1133 } 1134 } 1135 for (unsigned j = 0, je = InitElts; j != je; ++j) 1136 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1137 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1138 1139 if (VIsUndefShuffle) 1140 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1141 1142 Init = SVOp; 1143 } 1144 } 1145 1146 // Extend init to result vector length, and then shuffle its contribution 1147 // to the vector initializer into V. 1148 if (Args.empty()) { 1149 for (unsigned j = 0; j != InitElts; ++j) 1150 Args.push_back(Builder.getInt32(j)); 1151 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1152 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1153 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1154 Mask, "vext"); 1155 1156 Args.clear(); 1157 for (unsigned j = 0; j != CurIdx; ++j) 1158 Args.push_back(Builder.getInt32(j)); 1159 for (unsigned j = 0; j != InitElts; ++j) 1160 Args.push_back(Builder.getInt32(j+Offset)); 1161 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1162 } 1163 1164 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1165 // merging subsequent shuffles into this one. 1166 if (CurIdx == 0) 1167 std::swap(V, Init); 1168 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1169 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1170 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1171 CurIdx += InitElts; 1172 } 1173 1174 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1175 // Emit remaining default initializers. 1176 llvm::Type *EltTy = VType->getElementType(); 1177 1178 // Emit remaining default initializers 1179 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1180 Value *Idx = Builder.getInt32(CurIdx); 1181 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1182 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1183 } 1184 return V; 1185 } 1186 1187 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) { 1188 const Expr *E = CE->getSubExpr(); 1189 1190 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1191 return false; 1192 1193 if (isa<CXXThisExpr>(E)) { 1194 // We always assume that 'this' is never null. 1195 return false; 1196 } 1197 1198 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1199 // And that glvalue casts are never null. 1200 if (ICE->getValueKind() != VK_RValue) 1201 return false; 1202 } 1203 1204 return true; 1205 } 1206 1207 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1208 // have to handle a more broad range of conversions than explicit casts, as they 1209 // handle things like function to ptr-to-function decay etc. 1210 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1211 Expr *E = CE->getSubExpr(); 1212 QualType DestTy = CE->getType(); 1213 CastKind Kind = CE->getCastKind(); 1214 1215 if (!DestTy->isVoidType()) 1216 TestAndClearIgnoreResultAssign(); 1217 1218 // Since almost all cast kinds apply to scalars, this switch doesn't have 1219 // a default case, so the compiler will warn on a missing case. The cases 1220 // are in the same order as in the CastKind enum. 1221 switch (Kind) { 1222 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1223 case CK_BuiltinFnToFnPtr: 1224 llvm_unreachable("builtin functions are handled elsewhere"); 1225 1226 case CK_LValueBitCast: 1227 case CK_ObjCObjectLValueCast: { 1228 Value *V = EmitLValue(E).getAddress(); 1229 V = Builder.CreateBitCast(V, 1230 ConvertType(CGF.getContext().getPointerType(DestTy))); 1231 return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy)); 1232 } 1233 1234 case CK_CPointerToObjCPointerCast: 1235 case CK_BlockPointerToObjCPointerCast: 1236 case CK_AnyPointerToBlockPointerCast: 1237 case CK_BitCast: { 1238 Value *Src = Visit(const_cast<Expr*>(E)); 1239 return Builder.CreateBitCast(Src, ConvertType(DestTy)); 1240 } 1241 case CK_AtomicToNonAtomic: 1242 case CK_NonAtomicToAtomic: 1243 case CK_NoOp: 1244 case CK_UserDefinedConversion: 1245 return Visit(const_cast<Expr*>(E)); 1246 1247 case CK_BaseToDerived: { 1248 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1249 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1250 1251 llvm::Value *V = Visit(E); 1252 1253 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1254 // performed and the object is not of the derived type. 1255 if (CGF.SanitizePerformTypeCheck) 1256 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1257 V, DestTy->getPointeeType()); 1258 1259 return CGF.GetAddressOfDerivedClass(V, DerivedClassDecl, 1260 CE->path_begin(), CE->path_end(), 1261 ShouldNullCheckClassCastValue(CE)); 1262 } 1263 case CK_UncheckedDerivedToBase: 1264 case CK_DerivedToBase: { 1265 const CXXRecordDecl *DerivedClassDecl = 1266 E->getType()->getPointeeCXXRecordDecl(); 1267 assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!"); 1268 1269 return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl, 1270 CE->path_begin(), CE->path_end(), 1271 ShouldNullCheckClassCastValue(CE)); 1272 } 1273 case CK_Dynamic: { 1274 Value *V = Visit(const_cast<Expr*>(E)); 1275 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1276 return CGF.EmitDynamicCast(V, DCE); 1277 } 1278 1279 case CK_ArrayToPointerDecay: { 1280 assert(E->getType()->isArrayType() && 1281 "Array to pointer decay must have array source type!"); 1282 1283 Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays. 1284 1285 // Note that VLA pointers are always decayed, so we don't need to do 1286 // anything here. 1287 if (!E->getType()->isVariableArrayType()) { 1288 assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer"); 1289 assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType()) 1290 ->getElementType()) && 1291 "Expected pointer to array"); 1292 V = Builder.CreateStructGEP(V, 0, "arraydecay"); 1293 } 1294 1295 // Make sure the array decay ends up being the right type. This matters if 1296 // the array type was of an incomplete type. 1297 return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType())); 1298 } 1299 case CK_FunctionToPointerDecay: 1300 return EmitLValue(E).getAddress(); 1301 1302 case CK_NullToPointer: 1303 if (MustVisitNullValue(E)) 1304 (void) Visit(E); 1305 1306 return llvm::ConstantPointerNull::get( 1307 cast<llvm::PointerType>(ConvertType(DestTy))); 1308 1309 case CK_NullToMemberPointer: { 1310 if (MustVisitNullValue(E)) 1311 (void) Visit(E); 1312 1313 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1314 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1315 } 1316 1317 case CK_ReinterpretMemberPointer: 1318 case CK_BaseToDerivedMemberPointer: 1319 case CK_DerivedToBaseMemberPointer: { 1320 Value *Src = Visit(E); 1321 1322 // Note that the AST doesn't distinguish between checked and 1323 // unchecked member pointer conversions, so we always have to 1324 // implement checked conversions here. This is inefficient when 1325 // actual control flow may be required in order to perform the 1326 // check, which it is for data member pointers (but not member 1327 // function pointers on Itanium and ARM). 1328 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1329 } 1330 1331 case CK_ARCProduceObject: 1332 return CGF.EmitARCRetainScalarExpr(E); 1333 case CK_ARCConsumeObject: 1334 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1335 case CK_ARCReclaimReturnedObject: { 1336 llvm::Value *value = Visit(E); 1337 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 1338 return CGF.EmitObjCConsumeObject(E->getType(), value); 1339 } 1340 case CK_ARCExtendBlockObject: 1341 return CGF.EmitARCExtendBlockObject(E); 1342 1343 case CK_CopyAndAutoreleaseBlockObject: 1344 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1345 1346 case CK_FloatingRealToComplex: 1347 case CK_FloatingComplexCast: 1348 case CK_IntegralRealToComplex: 1349 case CK_IntegralComplexCast: 1350 case CK_IntegralComplexToFloatingComplex: 1351 case CK_FloatingComplexToIntegralComplex: 1352 case CK_ConstructorConversion: 1353 case CK_ToUnion: 1354 llvm_unreachable("scalar cast to non-scalar value"); 1355 1356 case CK_LValueToRValue: 1357 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1358 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1359 return Visit(const_cast<Expr*>(E)); 1360 1361 case CK_IntegralToPointer: { 1362 Value *Src = Visit(const_cast<Expr*>(E)); 1363 1364 // First, convert to the correct width so that we control the kind of 1365 // extension. 1366 llvm::Type *MiddleTy = CGF.IntPtrTy; 1367 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1368 llvm::Value* IntResult = 1369 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1370 1371 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); 1372 } 1373 case CK_PointerToIntegral: 1374 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1375 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1376 1377 case CK_ToVoid: { 1378 CGF.EmitIgnoredExpr(E); 1379 return 0; 1380 } 1381 case CK_VectorSplat: { 1382 llvm::Type *DstTy = ConvertType(DestTy); 1383 Value *Elt = Visit(const_cast<Expr*>(E)); 1384 Elt = EmitScalarConversion(Elt, E->getType(), 1385 DestTy->getAs<VectorType>()->getElementType()); 1386 1387 // Splat the element across to all elements 1388 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 1389 return Builder.CreateVectorSplat(NumElements, Elt, "splat");; 1390 } 1391 1392 case CK_IntegralCast: 1393 case CK_IntegralToFloating: 1394 case CK_FloatingToIntegral: 1395 case CK_FloatingCast: 1396 return EmitScalarConversion(Visit(E), E->getType(), DestTy); 1397 case CK_IntegralToBoolean: 1398 return EmitIntToBoolConversion(Visit(E)); 1399 case CK_PointerToBoolean: 1400 return EmitPointerToBoolConversion(Visit(E)); 1401 case CK_FloatingToBoolean: 1402 return EmitFloatToBoolConversion(Visit(E)); 1403 case CK_MemberPointerToBoolean: { 1404 llvm::Value *MemPtr = Visit(E); 1405 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1406 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1407 } 1408 1409 case CK_FloatingComplexToReal: 1410 case CK_IntegralComplexToReal: 1411 return CGF.EmitComplexExpr(E, false, true).first; 1412 1413 case CK_FloatingComplexToBoolean: 1414 case CK_IntegralComplexToBoolean: { 1415 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1416 1417 // TODO: kill this function off, inline appropriate case here 1418 return EmitComplexToScalarConversion(V, E->getType(), DestTy); 1419 } 1420 1421 case CK_ZeroToOCLEvent: { 1422 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non event type"); 1423 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1424 } 1425 1426 } 1427 1428 llvm_unreachable("unknown scalar cast"); 1429 } 1430 1431 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1432 CodeGenFunction::StmtExprEvaluation eval(CGF); 1433 llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1434 !E->getType()->isVoidType()); 1435 if (!RetAlloca) 1436 return 0; 1437 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType())); 1438 1439 } 1440 1441 //===----------------------------------------------------------------------===// 1442 // Unary Operators 1443 //===----------------------------------------------------------------------===// 1444 1445 llvm::Value *ScalarExprEmitter:: 1446 EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 1447 llvm::Value *InVal, 1448 llvm::Value *NextVal, bool IsInc) { 1449 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1450 case LangOptions::SOB_Defined: 1451 return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1452 case LangOptions::SOB_Undefined: 1453 if (!CGF.SanOpts->SignedIntegerOverflow) 1454 return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1455 // Fall through. 1456 case LangOptions::SOB_Trapping: 1457 BinOpInfo BinOp; 1458 BinOp.LHS = InVal; 1459 BinOp.RHS = NextVal; 1460 BinOp.Ty = E->getType(); 1461 BinOp.Opcode = BO_Add; 1462 BinOp.FPContractable = false; 1463 BinOp.E = E; 1464 return EmitOverflowCheckedBinOp(BinOp); 1465 } 1466 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1467 } 1468 1469 llvm::Value * 1470 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1471 bool isInc, bool isPre) { 1472 1473 QualType type = E->getSubExpr()->getType(); 1474 llvm::PHINode *atomicPHI = 0; 1475 llvm::Value *value; 1476 llvm::Value *input; 1477 1478 int amount = (isInc ? 1 : -1); 1479 1480 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1481 type = atomicTy->getValueType(); 1482 if (isInc && type->isBooleanType()) { 1483 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1484 if (isPre) { 1485 Builder.Insert(new llvm::StoreInst(True, 1486 LV.getAddress(), LV.isVolatileQualified(), 1487 LV.getAlignment().getQuantity(), 1488 llvm::SequentiallyConsistent)); 1489 return Builder.getTrue(); 1490 } 1491 // For atomic bool increment, we just store true and return it for 1492 // preincrement, do an atomic swap with true for postincrement 1493 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 1494 LV.getAddress(), True, llvm::SequentiallyConsistent); 1495 } 1496 // Special case for atomic increment / decrement on integers, emit 1497 // atomicrmw instructions. We skip this if we want to be doing overflow 1498 // checking, and fall into the slow path with the atomic cmpxchg loop. 1499 if (!type->isBooleanType() && type->isIntegerType() && 1500 !(type->isUnsignedIntegerType() && 1501 CGF.SanOpts->UnsignedIntegerOverflow) && 1502 CGF.getLangOpts().getSignedOverflowBehavior() != 1503 LangOptions::SOB_Trapping) { 1504 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1505 llvm::AtomicRMWInst::Sub; 1506 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1507 llvm::Instruction::Sub; 1508 llvm::Value *amt = CGF.EmitToMemory( 1509 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1510 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1511 LV.getAddress(), amt, llvm::SequentiallyConsistent); 1512 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1513 } 1514 value = EmitLoadOfLValue(LV); 1515 input = value; 1516 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1517 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1518 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1519 value = CGF.EmitToMemory(value, type); 1520 Builder.CreateBr(opBB); 1521 Builder.SetInsertPoint(opBB); 1522 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1523 atomicPHI->addIncoming(value, startBB); 1524 value = atomicPHI; 1525 } else { 1526 value = EmitLoadOfLValue(LV); 1527 input = value; 1528 } 1529 1530 // Special case of integer increment that we have to check first: bool++. 1531 // Due to promotion rules, we get: 1532 // bool++ -> bool = bool + 1 1533 // -> bool = (int)bool + 1 1534 // -> bool = ((int)bool + 1 != 0) 1535 // An interesting aspect of this is that increment is always true. 1536 // Decrement does not have this property. 1537 if (isInc && type->isBooleanType()) { 1538 value = Builder.getTrue(); 1539 1540 // Most common case by far: integer increment. 1541 } else if (type->isIntegerType()) { 1542 1543 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1544 1545 // Note that signed integer inc/dec with width less than int can't 1546 // overflow because of promotion rules; we're just eliding a few steps here. 1547 if (value->getType()->getPrimitiveSizeInBits() >= 1548 CGF.IntTy->getBitWidth() && 1549 type->isSignedIntegerOrEnumerationType()) { 1550 value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc); 1551 } else if (value->getType()->getPrimitiveSizeInBits() >= 1552 CGF.IntTy->getBitWidth() && type->isUnsignedIntegerType() && 1553 CGF.SanOpts->UnsignedIntegerOverflow) { 1554 BinOpInfo BinOp; 1555 BinOp.LHS = value; 1556 BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false); 1557 BinOp.Ty = E->getType(); 1558 BinOp.Opcode = isInc ? BO_Add : BO_Sub; 1559 BinOp.FPContractable = false; 1560 BinOp.E = E; 1561 value = EmitOverflowCheckedBinOp(BinOp); 1562 } else 1563 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1564 1565 // Next most common: pointer increment. 1566 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1567 QualType type = ptr->getPointeeType(); 1568 1569 // VLA types don't have constant size. 1570 if (const VariableArrayType *vla 1571 = CGF.getContext().getAsVariableArrayType(type)) { 1572 llvm::Value *numElts = CGF.getVLASize(vla).first; 1573 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1574 if (CGF.getLangOpts().isSignedOverflowDefined()) 1575 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1576 else 1577 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); 1578 1579 // Arithmetic on function pointers (!) is just +-1. 1580 } else if (type->isFunctionType()) { 1581 llvm::Value *amt = Builder.getInt32(amount); 1582 1583 value = CGF.EmitCastToVoidPtr(value); 1584 if (CGF.getLangOpts().isSignedOverflowDefined()) 1585 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1586 else 1587 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1588 value = Builder.CreateBitCast(value, input->getType()); 1589 1590 // For everything else, we can just do a simple increment. 1591 } else { 1592 llvm::Value *amt = Builder.getInt32(amount); 1593 if (CGF.getLangOpts().isSignedOverflowDefined()) 1594 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1595 else 1596 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1597 } 1598 1599 // Vector increment/decrement. 1600 } else if (type->isVectorType()) { 1601 if (type->hasIntegerRepresentation()) { 1602 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1603 1604 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1605 } else { 1606 value = Builder.CreateFAdd( 1607 value, 1608 llvm::ConstantFP::get(value->getType(), amount), 1609 isInc ? "inc" : "dec"); 1610 } 1611 1612 // Floating point. 1613 } else if (type->isRealFloatingType()) { 1614 // Add the inc/dec to the real part. 1615 llvm::Value *amt; 1616 1617 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1618 // Another special case: half FP increment should be done via float 1619 value = 1620 Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), 1621 input); 1622 } 1623 1624 if (value->getType()->isFloatTy()) 1625 amt = llvm::ConstantFP::get(VMContext, 1626 llvm::APFloat(static_cast<float>(amount))); 1627 else if (value->getType()->isDoubleTy()) 1628 amt = llvm::ConstantFP::get(VMContext, 1629 llvm::APFloat(static_cast<double>(amount))); 1630 else { 1631 llvm::APFloat F(static_cast<float>(amount)); 1632 bool ignored; 1633 F.convert(CGF.getTarget().getLongDoubleFormat(), 1634 llvm::APFloat::rmTowardZero, &ignored); 1635 amt = llvm::ConstantFP::get(VMContext, F); 1636 } 1637 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 1638 1639 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) 1640 value = 1641 Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), 1642 value); 1643 1644 // Objective-C pointer types. 1645 } else { 1646 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 1647 value = CGF.EmitCastToVoidPtr(value); 1648 1649 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 1650 if (!isInc) size = -size; 1651 llvm::Value *sizeValue = 1652 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 1653 1654 if (CGF.getLangOpts().isSignedOverflowDefined()) 1655 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 1656 else 1657 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 1658 value = Builder.CreateBitCast(value, input->getType()); 1659 } 1660 1661 if (atomicPHI) { 1662 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1663 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1664 llvm::Value *old = Builder.CreateAtomicCmpXchg(LV.getAddress(), atomicPHI, 1665 CGF.EmitToMemory(value, type), llvm::SequentiallyConsistent); 1666 atomicPHI->addIncoming(old, opBB); 1667 llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI); 1668 Builder.CreateCondBr(success, contBB, opBB); 1669 Builder.SetInsertPoint(contBB); 1670 return isPre ? value : input; 1671 } 1672 1673 // Store the updated result through the lvalue. 1674 if (LV.isBitField()) 1675 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 1676 else 1677 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 1678 1679 // If this is a postinc, return the value read from memory, otherwise use the 1680 // updated value. 1681 return isPre ? value : input; 1682 } 1683 1684 1685 1686 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1687 TestAndClearIgnoreResultAssign(); 1688 // Emit unary minus with EmitSub so we handle overflow cases etc. 1689 BinOpInfo BinOp; 1690 BinOp.RHS = Visit(E->getSubExpr()); 1691 1692 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 1693 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 1694 else 1695 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 1696 BinOp.Ty = E->getType(); 1697 BinOp.Opcode = BO_Sub; 1698 BinOp.FPContractable = false; 1699 BinOp.E = E; 1700 return EmitSub(BinOp); 1701 } 1702 1703 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1704 TestAndClearIgnoreResultAssign(); 1705 Value *Op = Visit(E->getSubExpr()); 1706 return Builder.CreateNot(Op, "neg"); 1707 } 1708 1709 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1710 // Perform vector logical not on comparison with zero vector. 1711 if (E->getType()->isExtVectorType()) { 1712 Value *Oper = Visit(E->getSubExpr()); 1713 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 1714 Value *Result; 1715 if (Oper->getType()->isFPOrFPVectorTy()) 1716 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 1717 else 1718 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 1719 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 1720 } 1721 1722 // Compare operand to zero. 1723 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1724 1725 // Invert value. 1726 // TODO: Could dynamically modify easy computations here. For example, if 1727 // the operand is an icmp ne, turn into icmp eq. 1728 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1729 1730 // ZExt result to the expr type. 1731 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1732 } 1733 1734 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 1735 // Try folding the offsetof to a constant. 1736 llvm::APSInt Value; 1737 if (E->EvaluateAsInt(Value, CGF.getContext())) 1738 return Builder.getInt(Value); 1739 1740 // Loop over the components of the offsetof to compute the value. 1741 unsigned n = E->getNumComponents(); 1742 llvm::Type* ResultType = ConvertType(E->getType()); 1743 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 1744 QualType CurrentType = E->getTypeSourceInfo()->getType(); 1745 for (unsigned i = 0; i != n; ++i) { 1746 OffsetOfExpr::OffsetOfNode ON = E->getComponent(i); 1747 llvm::Value *Offset = 0; 1748 switch (ON.getKind()) { 1749 case OffsetOfExpr::OffsetOfNode::Array: { 1750 // Compute the index 1751 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 1752 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 1753 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 1754 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 1755 1756 // Save the element type 1757 CurrentType = 1758 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 1759 1760 // Compute the element size 1761 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 1762 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 1763 1764 // Multiply out to compute the result 1765 Offset = Builder.CreateMul(Idx, ElemSize); 1766 break; 1767 } 1768 1769 case OffsetOfExpr::OffsetOfNode::Field: { 1770 FieldDecl *MemberDecl = ON.getField(); 1771 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1772 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1773 1774 // Compute the index of the field in its parent. 1775 unsigned i = 0; 1776 // FIXME: It would be nice if we didn't have to loop here! 1777 for (RecordDecl::field_iterator Field = RD->field_begin(), 1778 FieldEnd = RD->field_end(); 1779 Field != FieldEnd; ++Field, ++i) { 1780 if (*Field == MemberDecl) 1781 break; 1782 } 1783 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 1784 1785 // Compute the offset to the field 1786 int64_t OffsetInt = RL.getFieldOffset(i) / 1787 CGF.getContext().getCharWidth(); 1788 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1789 1790 // Save the element type. 1791 CurrentType = MemberDecl->getType(); 1792 break; 1793 } 1794 1795 case OffsetOfExpr::OffsetOfNode::Identifier: 1796 llvm_unreachable("dependent __builtin_offsetof"); 1797 1798 case OffsetOfExpr::OffsetOfNode::Base: { 1799 if (ON.getBase()->isVirtual()) { 1800 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 1801 continue; 1802 } 1803 1804 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1805 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1806 1807 // Save the element type. 1808 CurrentType = ON.getBase()->getType(); 1809 1810 // Compute the offset to the base. 1811 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 1812 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 1813 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 1814 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 1815 break; 1816 } 1817 } 1818 Result = Builder.CreateAdd(Result, Offset); 1819 } 1820 return Result; 1821 } 1822 1823 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 1824 /// argument of the sizeof expression as an integer. 1825 Value * 1826 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 1827 const UnaryExprOrTypeTraitExpr *E) { 1828 QualType TypeToSize = E->getTypeOfArgument(); 1829 if (E->getKind() == UETT_SizeOf) { 1830 if (const VariableArrayType *VAT = 1831 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 1832 if (E->isArgumentType()) { 1833 // sizeof(type) - make sure to emit the VLA size. 1834 CGF.EmitVariablyModifiedType(TypeToSize); 1835 } else { 1836 // C99 6.5.3.4p2: If the argument is an expression of type 1837 // VLA, it is evaluated. 1838 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 1839 } 1840 1841 QualType eltType; 1842 llvm::Value *numElts; 1843 llvm::tie(numElts, eltType) = CGF.getVLASize(VAT); 1844 1845 llvm::Value *size = numElts; 1846 1847 // Scale the number of non-VLA elements by the non-VLA element size. 1848 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 1849 if (!eltSize.isOne()) 1850 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 1851 1852 return size; 1853 } 1854 } 1855 1856 // If this isn't sizeof(vla), the result must be constant; use the constant 1857 // folding logic so we don't have to duplicate it here. 1858 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 1859 } 1860 1861 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 1862 Expr *Op = E->getSubExpr(); 1863 if (Op->getType()->isAnyComplexType()) { 1864 // If it's an l-value, load through the appropriate subobject l-value. 1865 // Note that we have to ask E because Op might be an l-value that 1866 // this won't work for, e.g. an Obj-C property. 1867 if (E->isGLValue()) 1868 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal(); 1869 1870 // Otherwise, calculate and project. 1871 return CGF.EmitComplexExpr(Op, false, true).first; 1872 } 1873 1874 return Visit(Op); 1875 } 1876 1877 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 1878 Expr *Op = E->getSubExpr(); 1879 if (Op->getType()->isAnyComplexType()) { 1880 // If it's an l-value, load through the appropriate subobject l-value. 1881 // Note that we have to ask E because Op might be an l-value that 1882 // this won't work for, e.g. an Obj-C property. 1883 if (Op->isGLValue()) 1884 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal(); 1885 1886 // Otherwise, calculate and project. 1887 return CGF.EmitComplexExpr(Op, true, false).second; 1888 } 1889 1890 // __imag on a scalar returns zero. Emit the subexpr to ensure side 1891 // effects are evaluated, but not the actual value. 1892 if (Op->isGLValue()) 1893 CGF.EmitLValue(Op); 1894 else 1895 CGF.EmitScalarExpr(Op, true); 1896 return llvm::Constant::getNullValue(ConvertType(E->getType())); 1897 } 1898 1899 //===----------------------------------------------------------------------===// 1900 // Binary Operators 1901 //===----------------------------------------------------------------------===// 1902 1903 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 1904 TestAndClearIgnoreResultAssign(); 1905 BinOpInfo Result; 1906 Result.LHS = Visit(E->getLHS()); 1907 Result.RHS = Visit(E->getRHS()); 1908 Result.Ty = E->getType(); 1909 Result.Opcode = E->getOpcode(); 1910 Result.FPContractable = E->isFPContractable(); 1911 Result.E = E; 1912 return Result; 1913 } 1914 1915 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 1916 const CompoundAssignOperator *E, 1917 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 1918 Value *&Result) { 1919 QualType LHSTy = E->getLHS()->getType(); 1920 BinOpInfo OpInfo; 1921 1922 if (E->getComputationResultType()->isAnyComplexType()) 1923 return CGF.EmitScalarCompooundAssignWithComplex(E, Result); 1924 1925 // Emit the RHS first. __block variables need to have the rhs evaluated 1926 // first, plus this should improve codegen a little. 1927 OpInfo.RHS = Visit(E->getRHS()); 1928 OpInfo.Ty = E->getComputationResultType(); 1929 OpInfo.Opcode = E->getOpcode(); 1930 OpInfo.FPContractable = false; 1931 OpInfo.E = E; 1932 // Load/convert the LHS. 1933 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 1934 1935 llvm::PHINode *atomicPHI = 0; 1936 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 1937 QualType type = atomicTy->getValueType(); 1938 if (!type->isBooleanType() && type->isIntegerType() && 1939 !(type->isUnsignedIntegerType() && 1940 CGF.SanOpts->UnsignedIntegerOverflow) && 1941 CGF.getLangOpts().getSignedOverflowBehavior() != 1942 LangOptions::SOB_Trapping) { 1943 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 1944 switch (OpInfo.Opcode) { 1945 // We don't have atomicrmw operands for *, %, /, <<, >> 1946 case BO_MulAssign: case BO_DivAssign: 1947 case BO_RemAssign: 1948 case BO_ShlAssign: 1949 case BO_ShrAssign: 1950 break; 1951 case BO_AddAssign: 1952 aop = llvm::AtomicRMWInst::Add; 1953 break; 1954 case BO_SubAssign: 1955 aop = llvm::AtomicRMWInst::Sub; 1956 break; 1957 case BO_AndAssign: 1958 aop = llvm::AtomicRMWInst::And; 1959 break; 1960 case BO_XorAssign: 1961 aop = llvm::AtomicRMWInst::Xor; 1962 break; 1963 case BO_OrAssign: 1964 aop = llvm::AtomicRMWInst::Or; 1965 break; 1966 default: 1967 llvm_unreachable("Invalid compound assignment type"); 1968 } 1969 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 1970 llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS, 1971 E->getRHS()->getType(), LHSTy), LHSTy); 1972 Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt, 1973 llvm::SequentiallyConsistent); 1974 return LHSLV; 1975 } 1976 } 1977 // FIXME: For floating point types, we should be saving and restoring the 1978 // floating point environment in the loop. 1979 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1980 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1981 OpInfo.LHS = EmitLoadOfLValue(LHSLV); 1982 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 1983 Builder.CreateBr(opBB); 1984 Builder.SetInsertPoint(opBB); 1985 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 1986 atomicPHI->addIncoming(OpInfo.LHS, startBB); 1987 OpInfo.LHS = atomicPHI; 1988 } 1989 else 1990 OpInfo.LHS = EmitLoadOfLValue(LHSLV); 1991 1992 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, 1993 E->getComputationLHSType()); 1994 1995 // Expand the binary operator. 1996 Result = (this->*Func)(OpInfo); 1997 1998 // Convert the result back to the LHS type. 1999 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy); 2000 2001 if (atomicPHI) { 2002 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2003 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2004 llvm::Value *old = Builder.CreateAtomicCmpXchg(LHSLV.getAddress(), atomicPHI, 2005 CGF.EmitToMemory(Result, LHSTy), llvm::SequentiallyConsistent); 2006 atomicPHI->addIncoming(old, opBB); 2007 llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI); 2008 Builder.CreateCondBr(success, contBB, opBB); 2009 Builder.SetInsertPoint(contBB); 2010 return LHSLV; 2011 } 2012 2013 // Store the result value into the LHS lvalue. Bit-fields are handled 2014 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2015 // 'An assignment expression has the value of the left operand after the 2016 // assignment...'. 2017 if (LHSLV.isBitField()) 2018 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2019 else 2020 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2021 2022 return LHSLV; 2023 } 2024 2025 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2026 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2027 bool Ignore = TestAndClearIgnoreResultAssign(); 2028 Value *RHS; 2029 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2030 2031 // If the result is clearly ignored, return now. 2032 if (Ignore) 2033 return 0; 2034 2035 // The result of an assignment in C is the assigned r-value. 2036 if (!CGF.getLangOpts().CPlusPlus) 2037 return RHS; 2038 2039 // If the lvalue is non-volatile, return the computed value of the assignment. 2040 if (!LHS.isVolatileQualified()) 2041 return RHS; 2042 2043 // Otherwise, reload the value. 2044 return EmitLoadOfLValue(LHS); 2045 } 2046 2047 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2048 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2049 llvm::Value *Cond = 0; 2050 2051 if (CGF.SanOpts->IntegerDivideByZero) 2052 Cond = Builder.CreateICmpNE(Ops.RHS, Zero); 2053 2054 if (CGF.SanOpts->SignedIntegerOverflow && 2055 Ops.Ty->hasSignedIntegerRepresentation()) { 2056 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2057 2058 llvm::Value *IntMin = 2059 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2060 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2061 2062 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2063 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2064 llvm::Value *Overflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2065 Cond = Cond ? Builder.CreateAnd(Cond, Overflow, "and") : Overflow; 2066 } 2067 2068 if (Cond) 2069 EmitBinOpCheck(Cond, Ops); 2070 } 2071 2072 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2073 if ((CGF.SanOpts->IntegerDivideByZero || 2074 CGF.SanOpts->SignedIntegerOverflow) && 2075 Ops.Ty->isIntegerType()) { 2076 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2077 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2078 } else if (CGF.SanOpts->FloatDivideByZero && 2079 Ops.Ty->isRealFloatingType()) { 2080 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2081 EmitBinOpCheck(Builder.CreateFCmpUNE(Ops.RHS, Zero), Ops); 2082 } 2083 2084 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2085 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2086 if (CGF.getLangOpts().OpenCL) { 2087 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp 2088 llvm::Type *ValTy = Val->getType(); 2089 if (ValTy->isFloatTy() || 2090 (isa<llvm::VectorType>(ValTy) && 2091 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2092 CGF.SetFPAccuracy(Val, 2.5); 2093 } 2094 return Val; 2095 } 2096 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2097 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2098 else 2099 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2100 } 2101 2102 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2103 // Rem in C can't be a floating point type: C99 6.5.5p2. 2104 if (CGF.SanOpts->IntegerDivideByZero) { 2105 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2106 2107 if (Ops.Ty->isIntegerType()) 2108 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2109 } 2110 2111 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2112 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2113 else 2114 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2115 } 2116 2117 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2118 unsigned IID; 2119 unsigned OpID = 0; 2120 2121 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2122 switch (Ops.Opcode) { 2123 case BO_Add: 2124 case BO_AddAssign: 2125 OpID = 1; 2126 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2127 llvm::Intrinsic::uadd_with_overflow; 2128 break; 2129 case BO_Sub: 2130 case BO_SubAssign: 2131 OpID = 2; 2132 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2133 llvm::Intrinsic::usub_with_overflow; 2134 break; 2135 case BO_Mul: 2136 case BO_MulAssign: 2137 OpID = 3; 2138 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2139 llvm::Intrinsic::umul_with_overflow; 2140 break; 2141 default: 2142 llvm_unreachable("Unsupported operation for overflow detection"); 2143 } 2144 OpID <<= 1; 2145 if (isSigned) 2146 OpID |= 1; 2147 2148 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2149 2150 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2151 2152 Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS); 2153 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2154 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2155 2156 // Handle overflow with llvm.trap if no custom handler has been specified. 2157 const std::string *handlerName = 2158 &CGF.getLangOpts().OverflowHandler; 2159 if (handlerName->empty()) { 2160 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2161 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2162 if (!isSigned || CGF.SanOpts->SignedIntegerOverflow) 2163 EmitBinOpCheck(Builder.CreateNot(overflow), Ops); 2164 else 2165 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2166 return result; 2167 } 2168 2169 // Branch in case of overflow. 2170 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2171 llvm::Function::iterator insertPt = initialBB; 2172 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn, 2173 llvm::next(insertPt)); 2174 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2175 2176 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2177 2178 // If an overflow handler is set, then we want to call it and then use its 2179 // result, if it returns. 2180 Builder.SetInsertPoint(overflowBB); 2181 2182 // Get the overflow handler. 2183 llvm::Type *Int8Ty = CGF.Int8Ty; 2184 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2185 llvm::FunctionType *handlerTy = 2186 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2187 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2188 2189 // Sign extend the args to 64-bit, so that we can use the same handler for 2190 // all types of overflow. 2191 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2192 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2193 2194 // Call the handler with the two arguments, the operation, and the size of 2195 // the result. 2196 llvm::Value *handlerArgs[] = { 2197 lhs, 2198 rhs, 2199 Builder.getInt8(OpID), 2200 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2201 }; 2202 llvm::Value *handlerResult = 2203 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2204 2205 // Truncate the result back to the desired size. 2206 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2207 Builder.CreateBr(continueBB); 2208 2209 Builder.SetInsertPoint(continueBB); 2210 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2211 phi->addIncoming(result, initialBB); 2212 phi->addIncoming(handlerResult, overflowBB); 2213 2214 return phi; 2215 } 2216 2217 /// Emit pointer + index arithmetic. 2218 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2219 const BinOpInfo &op, 2220 bool isSubtraction) { 2221 // Must have binary (not unary) expr here. Unary pointer 2222 // increment/decrement doesn't use this path. 2223 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2224 2225 Value *pointer = op.LHS; 2226 Expr *pointerOperand = expr->getLHS(); 2227 Value *index = op.RHS; 2228 Expr *indexOperand = expr->getRHS(); 2229 2230 // In a subtraction, the LHS is always the pointer. 2231 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2232 std::swap(pointer, index); 2233 std::swap(pointerOperand, indexOperand); 2234 } 2235 2236 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2237 if (width != CGF.PointerWidthInBits) { 2238 // Zero-extend or sign-extend the pointer value according to 2239 // whether the index is signed or not. 2240 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2241 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned, 2242 "idx.ext"); 2243 } 2244 2245 // If this is subtraction, negate the index. 2246 if (isSubtraction) 2247 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2248 2249 if (CGF.SanOpts->Bounds) 2250 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2251 /*Accessed*/ false); 2252 2253 const PointerType *pointerType 2254 = pointerOperand->getType()->getAs<PointerType>(); 2255 if (!pointerType) { 2256 QualType objectType = pointerOperand->getType() 2257 ->castAs<ObjCObjectPointerType>() 2258 ->getPointeeType(); 2259 llvm::Value *objectSize 2260 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2261 2262 index = CGF.Builder.CreateMul(index, objectSize); 2263 2264 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2265 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2266 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2267 } 2268 2269 QualType elementType = pointerType->getPointeeType(); 2270 if (const VariableArrayType *vla 2271 = CGF.getContext().getAsVariableArrayType(elementType)) { 2272 // The element count here is the total number of non-VLA elements. 2273 llvm::Value *numElements = CGF.getVLASize(vla).first; 2274 2275 // Effectively, the multiply by the VLA size is part of the GEP. 2276 // GEP indexes are signed, and scaling an index isn't permitted to 2277 // signed-overflow, so we use the same semantics for our explicit 2278 // multiply. We suppress this if overflow is not undefined behavior. 2279 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2280 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2281 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2282 } else { 2283 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2284 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2285 } 2286 return pointer; 2287 } 2288 2289 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2290 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2291 // future proof. 2292 if (elementType->isVoidType() || elementType->isFunctionType()) { 2293 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2294 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2295 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2296 } 2297 2298 if (CGF.getLangOpts().isSignedOverflowDefined()) 2299 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2300 2301 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2302 } 2303 2304 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2305 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2306 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2307 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2308 // efficient operations. 2309 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2310 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2311 bool negMul, bool negAdd) { 2312 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2313 2314 Value *MulOp0 = MulOp->getOperand(0); 2315 Value *MulOp1 = MulOp->getOperand(1); 2316 if (negMul) { 2317 MulOp0 = 2318 Builder.CreateFSub( 2319 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2320 "neg"); 2321 } else if (negAdd) { 2322 Addend = 2323 Builder.CreateFSub( 2324 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2325 "neg"); 2326 } 2327 2328 Value *FMulAdd = 2329 Builder.CreateCall3( 2330 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2331 MulOp0, MulOp1, Addend); 2332 MulOp->eraseFromParent(); 2333 2334 return FMulAdd; 2335 } 2336 2337 // Check whether it would be legal to emit an fmuladd intrinsic call to 2338 // represent op and if so, build the fmuladd. 2339 // 2340 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2341 // Does NOT check the type of the operation - it's assumed that this function 2342 // will be called from contexts where it's known that the type is contractable. 2343 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2344 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2345 bool isSub=false) { 2346 2347 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2348 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2349 "Only fadd/fsub can be the root of an fmuladd."); 2350 2351 // Check whether this op is marked as fusable. 2352 if (!op.FPContractable) 2353 return 0; 2354 2355 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is 2356 // either disabled, or handled entirely by the LLVM backend). 2357 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On) 2358 return 0; 2359 2360 // We have a potentially fusable op. Look for a mul on one of the operands. 2361 if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2362 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2363 assert(LHSBinOp->getNumUses() == 0 && 2364 "Operations with multiple uses shouldn't be contracted."); 2365 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2366 } 2367 } else if (llvm::BinaryOperator* RHSBinOp = 2368 dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2369 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2370 assert(RHSBinOp->getNumUses() == 0 && 2371 "Operations with multiple uses shouldn't be contracted."); 2372 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2373 } 2374 } 2375 2376 return 0; 2377 } 2378 2379 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2380 if (op.LHS->getType()->isPointerTy() || 2381 op.RHS->getType()->isPointerTy()) 2382 return emitPointerArithmetic(CGF, op, /*subtraction*/ false); 2383 2384 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2385 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2386 case LangOptions::SOB_Defined: 2387 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2388 case LangOptions::SOB_Undefined: 2389 if (!CGF.SanOpts->SignedIntegerOverflow) 2390 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2391 // Fall through. 2392 case LangOptions::SOB_Trapping: 2393 return EmitOverflowCheckedBinOp(op); 2394 } 2395 } 2396 2397 if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) 2398 return EmitOverflowCheckedBinOp(op); 2399 2400 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2401 // Try to form an fmuladd. 2402 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2403 return FMulAdd; 2404 2405 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2406 } 2407 2408 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2409 } 2410 2411 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2412 // The LHS is always a pointer if either side is. 2413 if (!op.LHS->getType()->isPointerTy()) { 2414 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2415 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2416 case LangOptions::SOB_Defined: 2417 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2418 case LangOptions::SOB_Undefined: 2419 if (!CGF.SanOpts->SignedIntegerOverflow) 2420 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2421 // Fall through. 2422 case LangOptions::SOB_Trapping: 2423 return EmitOverflowCheckedBinOp(op); 2424 } 2425 } 2426 2427 if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) 2428 return EmitOverflowCheckedBinOp(op); 2429 2430 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2431 // Try to form an fmuladd. 2432 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2433 return FMulAdd; 2434 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2435 } 2436 2437 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2438 } 2439 2440 // If the RHS is not a pointer, then we have normal pointer 2441 // arithmetic. 2442 if (!op.RHS->getType()->isPointerTy()) 2443 return emitPointerArithmetic(CGF, op, /*subtraction*/ true); 2444 2445 // Otherwise, this is a pointer subtraction. 2446 2447 // Do the raw subtraction part. 2448 llvm::Value *LHS 2449 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2450 llvm::Value *RHS 2451 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2452 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2453 2454 // Okay, figure out the element size. 2455 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2456 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2457 2458 llvm::Value *divisor = 0; 2459 2460 // For a variable-length array, this is going to be non-constant. 2461 if (const VariableArrayType *vla 2462 = CGF.getContext().getAsVariableArrayType(elementType)) { 2463 llvm::Value *numElements; 2464 llvm::tie(numElements, elementType) = CGF.getVLASize(vla); 2465 2466 divisor = numElements; 2467 2468 // Scale the number of non-VLA elements by the non-VLA element size. 2469 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2470 if (!eltSize.isOne()) 2471 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2472 2473 // For everything elese, we can just compute it, safe in the 2474 // assumption that Sema won't let anything through that we can't 2475 // safely compute the size of. 2476 } else { 2477 CharUnits elementSize; 2478 // Handle GCC extension for pointer arithmetic on void* and 2479 // function pointer types. 2480 if (elementType->isVoidType() || elementType->isFunctionType()) 2481 elementSize = CharUnits::One(); 2482 else 2483 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2484 2485 // Don't even emit the divide for element size of 1. 2486 if (elementSize.isOne()) 2487 return diffInChars; 2488 2489 divisor = CGF.CGM.getSize(elementSize); 2490 } 2491 2492 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2493 // pointer difference in C is only defined in the case where both operands 2494 // are pointing to elements of an array. 2495 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2496 } 2497 2498 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2499 llvm::IntegerType *Ty; 2500 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 2501 Ty = cast<llvm::IntegerType>(VT->getElementType()); 2502 else 2503 Ty = cast<llvm::IntegerType>(LHS->getType()); 2504 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 2505 } 2506 2507 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2508 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2509 // RHS to the same size as the LHS. 2510 Value *RHS = Ops.RHS; 2511 if (Ops.LHS->getType() != RHS->getType()) 2512 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2513 2514 if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL && 2515 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2516 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS); 2517 llvm::Value *Valid = Builder.CreateICmpULE(RHS, WidthMinusOne); 2518 2519 if (Ops.Ty->hasSignedIntegerRepresentation()) { 2520 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 2521 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2522 llvm::BasicBlock *CheckBitsShifted = CGF.createBasicBlock("check"); 2523 Builder.CreateCondBr(Valid, CheckBitsShifted, Cont); 2524 2525 // Check whether we are shifting any non-zero bits off the top of the 2526 // integer. 2527 CGF.EmitBlock(CheckBitsShifted); 2528 llvm::Value *BitsShiftedOff = 2529 Builder.CreateLShr(Ops.LHS, 2530 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros", 2531 /*NUW*/true, /*NSW*/true), 2532 "shl.check"); 2533 if (CGF.getLangOpts().CPlusPlus) { 2534 // In C99, we are not permitted to shift a 1 bit into the sign bit. 2535 // Under C++11's rules, shifting a 1 bit into the sign bit is 2536 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 2537 // define signed left shifts, so we use the C99 and C++11 rules there). 2538 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 2539 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 2540 } 2541 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 2542 llvm::Value *SecondCheck = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 2543 CGF.EmitBlock(Cont); 2544 llvm::PHINode *P = Builder.CreatePHI(Valid->getType(), 2); 2545 P->addIncoming(Valid, Orig); 2546 P->addIncoming(SecondCheck, CheckBitsShifted); 2547 Valid = P; 2548 } 2549 2550 EmitBinOpCheck(Valid, Ops); 2551 } 2552 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2553 if (CGF.getLangOpts().OpenCL) 2554 RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 2555 2556 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2557 } 2558 2559 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2560 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2561 // RHS to the same size as the LHS. 2562 Value *RHS = Ops.RHS; 2563 if (Ops.LHS->getType() != RHS->getType()) 2564 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2565 2566 if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL && 2567 isa<llvm::IntegerType>(Ops.LHS->getType())) 2568 EmitBinOpCheck(Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)), Ops); 2569 2570 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2571 if (CGF.getLangOpts().OpenCL) 2572 RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 2573 2574 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2575 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 2576 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 2577 } 2578 2579 enum IntrinsicType { VCMPEQ, VCMPGT }; 2580 // return corresponding comparison intrinsic for given vector type 2581 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 2582 BuiltinType::Kind ElemKind) { 2583 switch (ElemKind) { 2584 default: llvm_unreachable("unexpected element type"); 2585 case BuiltinType::Char_U: 2586 case BuiltinType::UChar: 2587 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2588 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 2589 case BuiltinType::Char_S: 2590 case BuiltinType::SChar: 2591 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2592 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 2593 case BuiltinType::UShort: 2594 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2595 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 2596 case BuiltinType::Short: 2597 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2598 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 2599 case BuiltinType::UInt: 2600 case BuiltinType::ULong: 2601 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2602 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 2603 case BuiltinType::Int: 2604 case BuiltinType::Long: 2605 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2606 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 2607 case BuiltinType::Float: 2608 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 2609 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 2610 } 2611 } 2612 2613 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, 2614 unsigned SICmpOpc, unsigned FCmpOpc) { 2615 TestAndClearIgnoreResultAssign(); 2616 Value *Result; 2617 QualType LHSTy = E->getLHS()->getType(); 2618 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 2619 assert(E->getOpcode() == BO_EQ || 2620 E->getOpcode() == BO_NE); 2621 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 2622 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 2623 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 2624 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 2625 } else if (!LHSTy->isAnyComplexType()) { 2626 Value *LHS = Visit(E->getLHS()); 2627 Value *RHS = Visit(E->getRHS()); 2628 2629 // If AltiVec, the comparison results in a numeric type, so we use 2630 // intrinsics comparing vectors and giving 0 or 1 as a result 2631 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 2632 // constants for mapping CR6 register bits to predicate result 2633 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 2634 2635 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 2636 2637 // in several cases vector arguments order will be reversed 2638 Value *FirstVecArg = LHS, 2639 *SecondVecArg = RHS; 2640 2641 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 2642 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 2643 BuiltinType::Kind ElementKind = BTy->getKind(); 2644 2645 switch(E->getOpcode()) { 2646 default: llvm_unreachable("is not a comparison operation"); 2647 case BO_EQ: 2648 CR6 = CR6_LT; 2649 ID = GetIntrinsic(VCMPEQ, ElementKind); 2650 break; 2651 case BO_NE: 2652 CR6 = CR6_EQ; 2653 ID = GetIntrinsic(VCMPEQ, ElementKind); 2654 break; 2655 case BO_LT: 2656 CR6 = CR6_LT; 2657 ID = GetIntrinsic(VCMPGT, ElementKind); 2658 std::swap(FirstVecArg, SecondVecArg); 2659 break; 2660 case BO_GT: 2661 CR6 = CR6_LT; 2662 ID = GetIntrinsic(VCMPGT, ElementKind); 2663 break; 2664 case BO_LE: 2665 if (ElementKind == BuiltinType::Float) { 2666 CR6 = CR6_LT; 2667 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2668 std::swap(FirstVecArg, SecondVecArg); 2669 } 2670 else { 2671 CR6 = CR6_EQ; 2672 ID = GetIntrinsic(VCMPGT, ElementKind); 2673 } 2674 break; 2675 case BO_GE: 2676 if (ElementKind == BuiltinType::Float) { 2677 CR6 = CR6_LT; 2678 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2679 } 2680 else { 2681 CR6 = CR6_EQ; 2682 ID = GetIntrinsic(VCMPGT, ElementKind); 2683 std::swap(FirstVecArg, SecondVecArg); 2684 } 2685 break; 2686 } 2687 2688 Value *CR6Param = Builder.getInt32(CR6); 2689 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 2690 Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, ""); 2691 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2692 } 2693 2694 if (LHS->getType()->isFPOrFPVectorTy()) { 2695 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc, 2696 LHS, RHS, "cmp"); 2697 } else if (LHSTy->hasSignedIntegerRepresentation()) { 2698 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, 2699 LHS, RHS, "cmp"); 2700 } else { 2701 // Unsigned integers and pointers. 2702 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2703 LHS, RHS, "cmp"); 2704 } 2705 2706 // If this is a vector comparison, sign extend the result to the appropriate 2707 // vector integer type and return it (don't convert to bool). 2708 if (LHSTy->isVectorType()) 2709 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2710 2711 } else { 2712 // Complex Comparison: can only be an equality comparison. 2713 CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS()); 2714 CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS()); 2715 2716 QualType CETy = LHSTy->getAs<ComplexType>()->getElementType(); 2717 2718 Value *ResultR, *ResultI; 2719 if (CETy->isRealFloatingType()) { 2720 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2721 LHS.first, RHS.first, "cmp.r"); 2722 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2723 LHS.second, RHS.second, "cmp.i"); 2724 } else { 2725 // Complex comparisons can only be equality comparisons. As such, signed 2726 // and unsigned opcodes are the same. 2727 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2728 LHS.first, RHS.first, "cmp.r"); 2729 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2730 LHS.second, RHS.second, "cmp.i"); 2731 } 2732 2733 if (E->getOpcode() == BO_EQ) { 2734 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 2735 } else { 2736 assert(E->getOpcode() == BO_NE && 2737 "Complex comparison other than == or != ?"); 2738 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 2739 } 2740 } 2741 2742 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2743 } 2744 2745 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 2746 bool Ignore = TestAndClearIgnoreResultAssign(); 2747 2748 Value *RHS; 2749 LValue LHS; 2750 2751 switch (E->getLHS()->getType().getObjCLifetime()) { 2752 case Qualifiers::OCL_Strong: 2753 llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 2754 break; 2755 2756 case Qualifiers::OCL_Autoreleasing: 2757 llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E); 2758 break; 2759 2760 case Qualifiers::OCL_Weak: 2761 RHS = Visit(E->getRHS()); 2762 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2763 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 2764 break; 2765 2766 // No reason to do any of these differently. 2767 case Qualifiers::OCL_None: 2768 case Qualifiers::OCL_ExplicitNone: 2769 // __block variables need to have the rhs evaluated first, plus 2770 // this should improve codegen just a little. 2771 RHS = Visit(E->getRHS()); 2772 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2773 2774 // Store the value into the LHS. Bit-fields are handled specially 2775 // because the result is altered by the store, i.e., [C99 6.5.16p1] 2776 // 'An assignment expression has the value of the left operand after 2777 // the assignment...'. 2778 if (LHS.isBitField()) 2779 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 2780 else 2781 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 2782 } 2783 2784 // If the result is clearly ignored, return now. 2785 if (Ignore) 2786 return 0; 2787 2788 // The result of an assignment in C is the assigned r-value. 2789 if (!CGF.getLangOpts().CPlusPlus) 2790 return RHS; 2791 2792 // If the lvalue is non-volatile, return the computed value of the assignment. 2793 if (!LHS.isVolatileQualified()) 2794 return RHS; 2795 2796 // Otherwise, reload the value. 2797 return EmitLoadOfLValue(LHS); 2798 } 2799 2800 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 2801 // Perform vector logical and on comparisons with zero vectors. 2802 if (E->getType()->isVectorType()) { 2803 Value *LHS = Visit(E->getLHS()); 2804 Value *RHS = Visit(E->getRHS()); 2805 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 2806 if (LHS->getType()->isFPOrFPVectorTy()) { 2807 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 2808 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 2809 } else { 2810 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 2811 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 2812 } 2813 Value *And = Builder.CreateAnd(LHS, RHS); 2814 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 2815 } 2816 2817 llvm::Type *ResTy = ConvertType(E->getType()); 2818 2819 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 2820 // If we have 1 && X, just emit X without inserting the control flow. 2821 bool LHSCondVal; 2822 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 2823 if (LHSCondVal) { // If we have 1 && X, just emit X. 2824 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2825 // ZExt result to int or bool. 2826 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 2827 } 2828 2829 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 2830 if (!CGF.ContainsLabel(E->getRHS())) 2831 return llvm::Constant::getNullValue(ResTy); 2832 } 2833 2834 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 2835 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 2836 2837 CodeGenFunction::ConditionalEvaluation eval(CGF); 2838 2839 // Branch on the LHS first. If it is false, go to the failure (cont) block. 2840 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock); 2841 2842 // Any edges into the ContBlock are now from an (indeterminate number of) 2843 // edges from this first condition. All of these values will be false. Start 2844 // setting up the PHI node in the Cont Block for this. 2845 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 2846 "", ContBlock); 2847 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 2848 PI != PE; ++PI) 2849 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 2850 2851 eval.begin(CGF); 2852 CGF.EmitBlock(RHSBlock); 2853 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2854 eval.end(CGF); 2855 2856 // Reaquire the RHS block, as there may be subblocks inserted. 2857 RHSBlock = Builder.GetInsertBlock(); 2858 2859 // Emit an unconditional branch from this block to ContBlock. Insert an entry 2860 // into the phi node for the edge with the value of RHSCond. 2861 if (CGF.getDebugInfo()) 2862 // There is no need to emit line number for unconditional branch. 2863 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 2864 CGF.EmitBlock(ContBlock); 2865 PN->addIncoming(RHSCond, RHSBlock); 2866 2867 // ZExt result to int. 2868 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 2869 } 2870 2871 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 2872 // Perform vector logical or on comparisons with zero vectors. 2873 if (E->getType()->isVectorType()) { 2874 Value *LHS = Visit(E->getLHS()); 2875 Value *RHS = Visit(E->getRHS()); 2876 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 2877 if (LHS->getType()->isFPOrFPVectorTy()) { 2878 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 2879 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 2880 } else { 2881 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 2882 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 2883 } 2884 Value *Or = Builder.CreateOr(LHS, RHS); 2885 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 2886 } 2887 2888 llvm::Type *ResTy = ConvertType(E->getType()); 2889 2890 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 2891 // If we have 0 || X, just emit X without inserting the control flow. 2892 bool LHSCondVal; 2893 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 2894 if (!LHSCondVal) { // If we have 0 || X, just emit X. 2895 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2896 // ZExt result to int or bool. 2897 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 2898 } 2899 2900 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 2901 if (!CGF.ContainsLabel(E->getRHS())) 2902 return llvm::ConstantInt::get(ResTy, 1); 2903 } 2904 2905 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 2906 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 2907 2908 CodeGenFunction::ConditionalEvaluation eval(CGF); 2909 2910 // Branch on the LHS first. If it is true, go to the success (cont) block. 2911 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock); 2912 2913 // Any edges into the ContBlock are now from an (indeterminate number of) 2914 // edges from this first condition. All of these values will be true. Start 2915 // setting up the PHI node in the Cont Block for this. 2916 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 2917 "", ContBlock); 2918 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 2919 PI != PE; ++PI) 2920 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 2921 2922 eval.begin(CGF); 2923 2924 // Emit the RHS condition as a bool value. 2925 CGF.EmitBlock(RHSBlock); 2926 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2927 2928 eval.end(CGF); 2929 2930 // Reaquire the RHS block, as there may be subblocks inserted. 2931 RHSBlock = Builder.GetInsertBlock(); 2932 2933 // Emit an unconditional branch from this block to ContBlock. Insert an entry 2934 // into the phi node for the edge with the value of RHSCond. 2935 CGF.EmitBlock(ContBlock); 2936 PN->addIncoming(RHSCond, RHSBlock); 2937 2938 // ZExt result to int. 2939 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 2940 } 2941 2942 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 2943 CGF.EmitIgnoredExpr(E->getLHS()); 2944 CGF.EnsureInsertPoint(); 2945 return Visit(E->getRHS()); 2946 } 2947 2948 //===----------------------------------------------------------------------===// 2949 // Other Operators 2950 //===----------------------------------------------------------------------===// 2951 2952 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 2953 /// expression is cheap enough and side-effect-free enough to evaluate 2954 /// unconditionally instead of conditionally. This is used to convert control 2955 /// flow into selects in some cases. 2956 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 2957 CodeGenFunction &CGF) { 2958 E = E->IgnoreParens(); 2959 2960 // Anything that is an integer or floating point constant is fine. 2961 if (E->isEvaluatable(CGF.getContext())) 2962 return true; 2963 2964 // Non-volatile automatic variables too, to get "cond ? X : Y" where 2965 // X and Y are local variables. 2966 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 2967 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) 2968 if (VD->hasLocalStorage() && !(CGF.getContext() 2969 .getCanonicalType(VD->getType()) 2970 .isVolatileQualified())) 2971 return true; 2972 2973 return false; 2974 } 2975 2976 2977 Value *ScalarExprEmitter:: 2978 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 2979 TestAndClearIgnoreResultAssign(); 2980 2981 // Bind the common expression if necessary. 2982 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 2983 2984 Expr *condExpr = E->getCond(); 2985 Expr *lhsExpr = E->getTrueExpr(); 2986 Expr *rhsExpr = E->getFalseExpr(); 2987 2988 // If the condition constant folds and can be elided, try to avoid emitting 2989 // the condition and the dead arm. 2990 bool CondExprBool; 2991 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2992 Expr *live = lhsExpr, *dead = rhsExpr; 2993 if (!CondExprBool) std::swap(live, dead); 2994 2995 // If the dead side doesn't have labels we need, just emit the Live part. 2996 if (!CGF.ContainsLabel(dead)) { 2997 Value *Result = Visit(live); 2998 2999 // If the live part is a throw expression, it acts like it has a void 3000 // type, so evaluating it returns a null Value*. However, a conditional 3001 // with non-void type must return a non-null Value*. 3002 if (!Result && !E->getType()->isVoidType()) 3003 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3004 3005 return Result; 3006 } 3007 } 3008 3009 // OpenCL: If the condition is a vector, we can treat this condition like 3010 // the select function. 3011 if (CGF.getLangOpts().OpenCL 3012 && condExpr->getType()->isVectorType()) { 3013 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3014 llvm::Value *LHS = Visit(lhsExpr); 3015 llvm::Value *RHS = Visit(rhsExpr); 3016 3017 llvm::Type *condType = ConvertType(condExpr->getType()); 3018 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3019 3020 unsigned numElem = vecTy->getNumElements(); 3021 llvm::Type *elemType = vecTy->getElementType(); 3022 3023 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3024 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3025 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3026 llvm::VectorType::get(elemType, 3027 numElem), 3028 "sext"); 3029 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3030 3031 // Cast float to int to perform ANDs if necessary. 3032 llvm::Value *RHSTmp = RHS; 3033 llvm::Value *LHSTmp = LHS; 3034 bool wasCast = false; 3035 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3036 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3037 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3038 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3039 wasCast = true; 3040 } 3041 3042 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3043 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3044 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3045 if (wasCast) 3046 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3047 3048 return tmp5; 3049 } 3050 3051 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3052 // select instead of as control flow. We can only do this if it is cheap and 3053 // safe to evaluate the LHS and RHS unconditionally. 3054 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3055 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3056 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3057 llvm::Value *LHS = Visit(lhsExpr); 3058 llvm::Value *RHS = Visit(rhsExpr); 3059 if (!LHS) { 3060 // If the conditional has void type, make sure we return a null Value*. 3061 assert(!RHS && "LHS and RHS types must match"); 3062 return 0; 3063 } 3064 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3065 } 3066 3067 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3068 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3069 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3070 3071 CodeGenFunction::ConditionalEvaluation eval(CGF); 3072 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock); 3073 3074 CGF.EmitBlock(LHSBlock); 3075 eval.begin(CGF); 3076 Value *LHS = Visit(lhsExpr); 3077 eval.end(CGF); 3078 3079 LHSBlock = Builder.GetInsertBlock(); 3080 Builder.CreateBr(ContBlock); 3081 3082 CGF.EmitBlock(RHSBlock); 3083 eval.begin(CGF); 3084 Value *RHS = Visit(rhsExpr); 3085 eval.end(CGF); 3086 3087 RHSBlock = Builder.GetInsertBlock(); 3088 CGF.EmitBlock(ContBlock); 3089 3090 // If the LHS or RHS is a throw expression, it will be legitimately null. 3091 if (!LHS) 3092 return RHS; 3093 if (!RHS) 3094 return LHS; 3095 3096 // Create a PHI node for the real part. 3097 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3098 PN->addIncoming(LHS, LHSBlock); 3099 PN->addIncoming(RHS, RHSBlock); 3100 return PN; 3101 } 3102 3103 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3104 return Visit(E->getChosenSubExpr(CGF.getContext())); 3105 } 3106 3107 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3108 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 3109 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 3110 3111 // If EmitVAArg fails, we fall back to the LLVM instruction. 3112 if (!ArgPtr) 3113 return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType())); 3114 3115 // FIXME Volatility. 3116 return Builder.CreateLoad(ArgPtr); 3117 } 3118 3119 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3120 return CGF.EmitBlockLiteral(block); 3121 } 3122 3123 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3124 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3125 llvm::Type *DstTy = ConvertType(E->getType()); 3126 3127 // Going from vec4->vec3 or vec3->vec4 is a special case and requires 3128 // a shuffle vector instead of a bitcast. 3129 llvm::Type *SrcTy = Src->getType(); 3130 if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) { 3131 unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements(); 3132 unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements(); 3133 if ((numElementsDst == 3 && numElementsSrc == 4) 3134 || (numElementsDst == 4 && numElementsSrc == 3)) { 3135 3136 3137 // In the case of going from int4->float3, a bitcast is needed before 3138 // doing a shuffle. 3139 llvm::Type *srcElemTy = 3140 cast<llvm::VectorType>(SrcTy)->getElementType(); 3141 llvm::Type *dstElemTy = 3142 cast<llvm::VectorType>(DstTy)->getElementType(); 3143 3144 if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy()) 3145 || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) { 3146 // Create a float type of the same size as the source or destination. 3147 llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy, 3148 numElementsSrc); 3149 3150 Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast"); 3151 } 3152 3153 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3154 3155 SmallVector<llvm::Constant*, 3> Args; 3156 Args.push_back(Builder.getInt32(0)); 3157 Args.push_back(Builder.getInt32(1)); 3158 Args.push_back(Builder.getInt32(2)); 3159 3160 if (numElementsDst == 4) 3161 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3162 3163 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3164 3165 return Builder.CreateShuffleVector(Src, UnV, Mask, "astype"); 3166 } 3167 } 3168 3169 return Builder.CreateBitCast(Src, DstTy, "astype"); 3170 } 3171 3172 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3173 return CGF.EmitAtomicExpr(E).getScalarVal(); 3174 } 3175 3176 //===----------------------------------------------------------------------===// 3177 // Entry Point into this File 3178 //===----------------------------------------------------------------------===// 3179 3180 /// EmitScalarExpr - Emit the computation of the specified expression of scalar 3181 /// type, ignoring the result. 3182 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3183 assert(E && hasScalarEvaluationKind(E->getType()) && 3184 "Invalid scalar expression to emit"); 3185 3186 if (isa<CXXDefaultArgExpr>(E)) 3187 disableDebugInfo(); 3188 Value *V = ScalarExprEmitter(*this, IgnoreResultAssign) 3189 .Visit(const_cast<Expr*>(E)); 3190 if (isa<CXXDefaultArgExpr>(E)) 3191 enableDebugInfo(); 3192 return V; 3193 } 3194 3195 /// EmitScalarConversion - Emit a conversion from the specified type to the 3196 /// specified destination type, both of which are LLVM scalar types. 3197 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3198 QualType DstTy) { 3199 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3200 "Invalid scalar expression to emit"); 3201 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy); 3202 } 3203 3204 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 3205 /// type to the specified destination type, where the destination type is an 3206 /// LLVM scalar type. 3207 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3208 QualType SrcTy, 3209 QualType DstTy) { 3210 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3211 "Invalid complex -> scalar conversion"); 3212 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy, 3213 DstTy); 3214 } 3215 3216 3217 llvm::Value *CodeGenFunction:: 3218 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3219 bool isInc, bool isPre) { 3220 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3221 } 3222 3223 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3224 llvm::Value *V; 3225 // object->isa or (*object).isa 3226 // Generate code as for: *(Class*)object 3227 // build Class* type 3228 llvm::Type *ClassPtrTy = ConvertType(E->getType()); 3229 3230 Expr *BaseExpr = E->getBase(); 3231 if (BaseExpr->isRValue()) { 3232 V = CreateMemTemp(E->getType(), "resval"); 3233 llvm::Value *Src = EmitScalarExpr(BaseExpr); 3234 Builder.CreateStore(Src, V); 3235 V = ScalarExprEmitter(*this).EmitLoadOfLValue( 3236 MakeNaturalAlignAddrLValue(V, E->getType())); 3237 } else { 3238 if (E->isArrow()) 3239 V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr); 3240 else 3241 V = EmitLValue(BaseExpr).getAddress(); 3242 } 3243 3244 // build Class* type 3245 ClassPtrTy = ClassPtrTy->getPointerTo(); 3246 V = Builder.CreateBitCast(V, ClassPtrTy); 3247 return MakeNaturalAlignAddrLValue(V, E->getType()); 3248 } 3249 3250 3251 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3252 const CompoundAssignOperator *E) { 3253 ScalarExprEmitter Scalar(*this); 3254 Value *Result = 0; 3255 switch (E->getOpcode()) { 3256 #define COMPOUND_OP(Op) \ 3257 case BO_##Op##Assign: \ 3258 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3259 Result) 3260 COMPOUND_OP(Mul); 3261 COMPOUND_OP(Div); 3262 COMPOUND_OP(Rem); 3263 COMPOUND_OP(Add); 3264 COMPOUND_OP(Sub); 3265 COMPOUND_OP(Shl); 3266 COMPOUND_OP(Shr); 3267 COMPOUND_OP(And); 3268 COMPOUND_OP(Xor); 3269 COMPOUND_OP(Or); 3270 #undef COMPOUND_OP 3271 3272 case BO_PtrMemD: 3273 case BO_PtrMemI: 3274 case BO_Mul: 3275 case BO_Div: 3276 case BO_Rem: 3277 case BO_Add: 3278 case BO_Sub: 3279 case BO_Shl: 3280 case BO_Shr: 3281 case BO_LT: 3282 case BO_GT: 3283 case BO_LE: 3284 case BO_GE: 3285 case BO_EQ: 3286 case BO_NE: 3287 case BO_And: 3288 case BO_Xor: 3289 case BO_Or: 3290 case BO_LAnd: 3291 case BO_LOr: 3292 case BO_Assign: 3293 case BO_Comma: 3294 llvm_unreachable("Not valid compound assignment operators"); 3295 } 3296 3297 llvm_unreachable("Unhandled compound assignment operator"); 3298 } 3299