1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCleanup.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CodeGenFunction.h" 18 #include "CodeGenModule.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/CodeGenOptions.h" 26 #include "clang/Basic/FixedPoint.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "llvm/ADT/Optional.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/Module.h" 37 #include <cstdarg> 38 39 using namespace clang; 40 using namespace CodeGen; 41 using llvm::Value; 42 43 //===----------------------------------------------------------------------===// 44 // Scalar Expression Emitter 45 //===----------------------------------------------------------------------===// 46 47 namespace { 48 49 /// Determine whether the given binary operation may overflow. 50 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 51 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 52 /// the returned overflow check is precise. The returned value is 'true' for 53 /// all other opcodes, to be conservative. 54 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 55 BinaryOperator::Opcode Opcode, bool Signed, 56 llvm::APInt &Result) { 57 // Assume overflow is possible, unless we can prove otherwise. 58 bool Overflow = true; 59 const auto &LHSAP = LHS->getValue(); 60 const auto &RHSAP = RHS->getValue(); 61 if (Opcode == BO_Add) { 62 if (Signed) 63 Result = LHSAP.sadd_ov(RHSAP, Overflow); 64 else 65 Result = LHSAP.uadd_ov(RHSAP, Overflow); 66 } else if (Opcode == BO_Sub) { 67 if (Signed) 68 Result = LHSAP.ssub_ov(RHSAP, Overflow); 69 else 70 Result = LHSAP.usub_ov(RHSAP, Overflow); 71 } else if (Opcode == BO_Mul) { 72 if (Signed) 73 Result = LHSAP.smul_ov(RHSAP, Overflow); 74 else 75 Result = LHSAP.umul_ov(RHSAP, Overflow); 76 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 77 if (Signed && !RHS->isZero()) 78 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 79 else 80 return false; 81 } 82 return Overflow; 83 } 84 85 struct BinOpInfo { 86 Value *LHS; 87 Value *RHS; 88 QualType Ty; // Computation Type. 89 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 90 FPOptions FPFeatures; 91 const Expr *E; // Entire expr, for error unsupported. May not be binop. 92 93 /// Check if the binop can result in integer overflow. 94 bool mayHaveIntegerOverflow() const { 95 // Without constant input, we can't rule out overflow. 96 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 97 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 98 if (!LHSCI || !RHSCI) 99 return true; 100 101 llvm::APInt Result; 102 return ::mayHaveIntegerOverflow( 103 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 104 } 105 106 /// Check if the binop computes a division or a remainder. 107 bool isDivremOp() const { 108 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 109 Opcode == BO_RemAssign; 110 } 111 112 /// Check if the binop can result in an integer division by zero. 113 bool mayHaveIntegerDivisionByZero() const { 114 if (isDivremOp()) 115 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 116 return CI->isZero(); 117 return true; 118 } 119 120 /// Check if the binop can result in a float division by zero. 121 bool mayHaveFloatDivisionByZero() const { 122 if (isDivremOp()) 123 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 124 return CFP->isZero(); 125 return true; 126 } 127 128 /// Check if either operand is a fixed point type or integer type, with at 129 /// least one being a fixed point type. In any case, this 130 /// operation did not follow usual arithmetic conversion and both operands may 131 /// not be the same. 132 bool isFixedPointBinOp() const { 133 // We cannot simply check the result type since comparison operations return 134 // an int. 135 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { 136 QualType LHSType = BinOp->getLHS()->getType(); 137 QualType RHSType = BinOp->getRHS()->getType(); 138 return LHSType->isFixedPointType() || RHSType->isFixedPointType(); 139 } 140 return false; 141 } 142 }; 143 144 static bool MustVisitNullValue(const Expr *E) { 145 // If a null pointer expression's type is the C++0x nullptr_t, then 146 // it's not necessarily a simple constant and it must be evaluated 147 // for its potential side effects. 148 return E->getType()->isNullPtrType(); 149 } 150 151 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 152 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 153 const Expr *E) { 154 const Expr *Base = E->IgnoreImpCasts(); 155 if (E == Base) 156 return llvm::None; 157 158 QualType BaseTy = Base->getType(); 159 if (!BaseTy->isPromotableIntegerType() || 160 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 161 return llvm::None; 162 163 return BaseTy; 164 } 165 166 /// Check if \p E is a widened promoted integer. 167 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 168 return getUnwidenedIntegerType(Ctx, E).hasValue(); 169 } 170 171 /// Check if we can skip the overflow check for \p Op. 172 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 173 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 174 "Expected a unary or binary operator"); 175 176 // If the binop has constant inputs and we can prove there is no overflow, 177 // we can elide the overflow check. 178 if (!Op.mayHaveIntegerOverflow()) 179 return true; 180 181 // If a unary op has a widened operand, the op cannot overflow. 182 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 183 return !UO->canOverflow(); 184 185 // We usually don't need overflow checks for binops with widened operands. 186 // Multiplication with promoted unsigned operands is a special case. 187 const auto *BO = cast<BinaryOperator>(Op.E); 188 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 189 if (!OptionalLHSTy) 190 return false; 191 192 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 193 if (!OptionalRHSTy) 194 return false; 195 196 QualType LHSTy = *OptionalLHSTy; 197 QualType RHSTy = *OptionalRHSTy; 198 199 // This is the simple case: binops without unsigned multiplication, and with 200 // widened operands. No overflow check is needed here. 201 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 202 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 203 return true; 204 205 // For unsigned multiplication the overflow check can be elided if either one 206 // of the unpromoted types are less than half the size of the promoted type. 207 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 208 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 209 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 210 } 211 212 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions. 213 static void updateFastMathFlags(llvm::FastMathFlags &FMF, 214 FPOptions FPFeatures) { 215 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 216 } 217 218 /// Propagate fast-math flags from \p Op to the instruction in \p V. 219 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) { 220 if (auto *I = dyn_cast<llvm::Instruction>(V)) { 221 llvm::FastMathFlags FMF = I->getFastMathFlags(); 222 updateFastMathFlags(FMF, Op.FPFeatures); 223 I->setFastMathFlags(FMF); 224 } 225 return V; 226 } 227 228 class ScalarExprEmitter 229 : public StmtVisitor<ScalarExprEmitter, Value*> { 230 CodeGenFunction &CGF; 231 CGBuilderTy &Builder; 232 bool IgnoreResultAssign; 233 llvm::LLVMContext &VMContext; 234 public: 235 236 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 237 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 238 VMContext(cgf.getLLVMContext()) { 239 } 240 241 //===--------------------------------------------------------------------===// 242 // Utilities 243 //===--------------------------------------------------------------------===// 244 245 bool TestAndClearIgnoreResultAssign() { 246 bool I = IgnoreResultAssign; 247 IgnoreResultAssign = false; 248 return I; 249 } 250 251 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 252 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 253 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 254 return CGF.EmitCheckedLValue(E, TCK); 255 } 256 257 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 258 const BinOpInfo &Info); 259 260 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 261 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 262 } 263 264 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 265 const AlignValueAttr *AVAttr = nullptr; 266 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 267 const ValueDecl *VD = DRE->getDecl(); 268 269 if (VD->getType()->isReferenceType()) { 270 if (const auto *TTy = 271 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 272 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 273 } else { 274 // Assumptions for function parameters are emitted at the start of the 275 // function, so there is no need to repeat that here, 276 // unless the alignment-assumption sanitizer is enabled, 277 // then we prefer the assumption over alignment attribute 278 // on IR function param. 279 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) 280 return; 281 282 AVAttr = VD->getAttr<AlignValueAttr>(); 283 } 284 } 285 286 if (!AVAttr) 287 if (const auto *TTy = 288 dyn_cast<TypedefType>(E->getType())) 289 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 290 291 if (!AVAttr) 292 return; 293 294 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 295 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 296 CGF.EmitAlignmentAssumption(V, E, AVAttr->getLocation(), 297 AlignmentCI->getZExtValue()); 298 } 299 300 /// EmitLoadOfLValue - Given an expression with complex type that represents a 301 /// value l-value, this method emits the address of the l-value, then loads 302 /// and returns the result. 303 Value *EmitLoadOfLValue(const Expr *E) { 304 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 305 E->getExprLoc()); 306 307 EmitLValueAlignmentAssumption(E, V); 308 return V; 309 } 310 311 /// EmitConversionToBool - Convert the specified expression value to a 312 /// boolean (i1) truth value. This is equivalent to "Val != 0". 313 Value *EmitConversionToBool(Value *Src, QualType DstTy); 314 315 /// Emit a check that a conversion to or from a floating-point type does not 316 /// overflow. 317 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 318 Value *Src, QualType SrcType, QualType DstType, 319 llvm::Type *DstTy, SourceLocation Loc); 320 321 /// Known implicit conversion check kinds. 322 /// Keep in sync with the enum of the same name in ubsan_handlers.h 323 enum ImplicitConversionCheckKind : unsigned char { 324 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 325 ICCK_UnsignedIntegerTruncation = 1, 326 ICCK_SignedIntegerTruncation = 2, 327 ICCK_IntegerSignChange = 3, 328 ICCK_SignedIntegerTruncationOrSignChange = 4, 329 }; 330 331 /// Emit a check that an [implicit] truncation of an integer does not 332 /// discard any bits. It is not UB, so we use the value after truncation. 333 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 334 QualType DstType, SourceLocation Loc); 335 336 /// Emit a check that an [implicit] conversion of an integer does not change 337 /// the sign of the value. It is not UB, so we use the value after conversion. 338 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 339 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 340 QualType DstType, SourceLocation Loc); 341 342 /// Emit a conversion from the specified type to the specified destination 343 /// type, both of which are LLVM scalar types. 344 struct ScalarConversionOpts { 345 bool TreatBooleanAsSigned; 346 bool EmitImplicitIntegerTruncationChecks; 347 bool EmitImplicitIntegerSignChangeChecks; 348 349 ScalarConversionOpts() 350 : TreatBooleanAsSigned(false), 351 EmitImplicitIntegerTruncationChecks(false), 352 EmitImplicitIntegerSignChangeChecks(false) {} 353 354 ScalarConversionOpts(clang::SanitizerSet SanOpts) 355 : TreatBooleanAsSigned(false), 356 EmitImplicitIntegerTruncationChecks( 357 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 358 EmitImplicitIntegerSignChangeChecks( 359 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 360 }; 361 Value * 362 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 363 SourceLocation Loc, 364 ScalarConversionOpts Opts = ScalarConversionOpts()); 365 366 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 367 SourceLocation Loc); 368 Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema, 369 FixedPointSemantics &DstFixedSema, 370 SourceLocation Loc); 371 372 /// Emit a conversion from the specified complex type to the specified 373 /// destination type, where the destination type is an LLVM scalar type. 374 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 375 QualType SrcTy, QualType DstTy, 376 SourceLocation Loc); 377 378 /// EmitNullValue - Emit a value that corresponds to null for the given type. 379 Value *EmitNullValue(QualType Ty); 380 381 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 382 Value *EmitFloatToBoolConversion(Value *V) { 383 // Compare against 0.0 for fp scalars. 384 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 385 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 386 } 387 388 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 389 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 390 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 391 392 return Builder.CreateICmpNE(V, Zero, "tobool"); 393 } 394 395 Value *EmitIntToBoolConversion(Value *V) { 396 // Because of the type rules of C, we often end up computing a 397 // logical value, then zero extending it to int, then wanting it 398 // as a logical value again. Optimize this common case. 399 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 400 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 401 Value *Result = ZI->getOperand(0); 402 // If there aren't any more uses, zap the instruction to save space. 403 // Note that there can be more uses, for example if this 404 // is the result of an assignment. 405 if (ZI->use_empty()) 406 ZI->eraseFromParent(); 407 return Result; 408 } 409 } 410 411 return Builder.CreateIsNotNull(V, "tobool"); 412 } 413 414 //===--------------------------------------------------------------------===// 415 // Visitor Methods 416 //===--------------------------------------------------------------------===// 417 418 Value *Visit(Expr *E) { 419 ApplyDebugLocation DL(CGF, E); 420 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 421 } 422 423 Value *VisitStmt(Stmt *S) { 424 S->dump(CGF.getContext().getSourceManager()); 425 llvm_unreachable("Stmt can't have complex result type!"); 426 } 427 Value *VisitExpr(Expr *S); 428 429 Value *VisitConstantExpr(ConstantExpr *E) { 430 return Visit(E->getSubExpr()); 431 } 432 Value *VisitParenExpr(ParenExpr *PE) { 433 return Visit(PE->getSubExpr()); 434 } 435 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 436 return Visit(E->getReplacement()); 437 } 438 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 439 return Visit(GE->getResultExpr()); 440 } 441 Value *VisitCoawaitExpr(CoawaitExpr *S) { 442 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 443 } 444 Value *VisitCoyieldExpr(CoyieldExpr *S) { 445 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 446 } 447 Value *VisitUnaryCoawait(const UnaryOperator *E) { 448 return Visit(E->getSubExpr()); 449 } 450 451 // Leaves. 452 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 453 return Builder.getInt(E->getValue()); 454 } 455 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 456 return Builder.getInt(E->getValue()); 457 } 458 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 459 return llvm::ConstantFP::get(VMContext, E->getValue()); 460 } 461 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 462 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 463 } 464 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 465 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 466 } 467 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 468 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 469 } 470 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 471 return EmitNullValue(E->getType()); 472 } 473 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 474 return EmitNullValue(E->getType()); 475 } 476 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 477 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 478 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 479 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 480 return Builder.CreateBitCast(V, ConvertType(E->getType())); 481 } 482 483 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 484 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 485 } 486 487 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 488 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 489 } 490 491 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 492 if (E->isGLValue()) 493 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 494 E->getExprLoc()); 495 496 // Otherwise, assume the mapping is the scalar directly. 497 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 498 } 499 500 // l-values. 501 Value *VisitDeclRefExpr(DeclRefExpr *E) { 502 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 503 return CGF.emitScalarConstant(Constant, E); 504 return EmitLoadOfLValue(E); 505 } 506 507 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 508 return CGF.EmitObjCSelectorExpr(E); 509 } 510 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 511 return CGF.EmitObjCProtocolExpr(E); 512 } 513 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 514 return EmitLoadOfLValue(E); 515 } 516 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 517 if (E->getMethodDecl() && 518 E->getMethodDecl()->getReturnType()->isReferenceType()) 519 return EmitLoadOfLValue(E); 520 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 521 } 522 523 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 524 LValue LV = CGF.EmitObjCIsaExpr(E); 525 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 526 return V; 527 } 528 529 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 530 VersionTuple Version = E->getVersion(); 531 532 // If we're checking for a platform older than our minimum deployment 533 // target, we can fold the check away. 534 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 535 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 536 537 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 538 llvm::Value *Args[] = { 539 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), 540 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), 541 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), 542 }; 543 544 return CGF.EmitBuiltinAvailable(Args); 545 } 546 547 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 548 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 549 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 550 Value *VisitMemberExpr(MemberExpr *E); 551 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 552 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 553 return EmitLoadOfLValue(E); 554 } 555 556 Value *VisitInitListExpr(InitListExpr *E); 557 558 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 559 assert(CGF.getArrayInitIndex() && 560 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 561 return CGF.getArrayInitIndex(); 562 } 563 564 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 565 return EmitNullValue(E->getType()); 566 } 567 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 568 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 569 return VisitCastExpr(E); 570 } 571 Value *VisitCastExpr(CastExpr *E); 572 573 Value *VisitCallExpr(const CallExpr *E) { 574 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 575 return EmitLoadOfLValue(E); 576 577 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 578 579 EmitLValueAlignmentAssumption(E, V); 580 return V; 581 } 582 583 Value *VisitStmtExpr(const StmtExpr *E); 584 585 // Unary Operators. 586 Value *VisitUnaryPostDec(const UnaryOperator *E) { 587 LValue LV = EmitLValue(E->getSubExpr()); 588 return EmitScalarPrePostIncDec(E, LV, false, false); 589 } 590 Value *VisitUnaryPostInc(const UnaryOperator *E) { 591 LValue LV = EmitLValue(E->getSubExpr()); 592 return EmitScalarPrePostIncDec(E, LV, true, false); 593 } 594 Value *VisitUnaryPreDec(const UnaryOperator *E) { 595 LValue LV = EmitLValue(E->getSubExpr()); 596 return EmitScalarPrePostIncDec(E, LV, false, true); 597 } 598 Value *VisitUnaryPreInc(const UnaryOperator *E) { 599 LValue LV = EmitLValue(E->getSubExpr()); 600 return EmitScalarPrePostIncDec(E, LV, true, true); 601 } 602 603 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 604 llvm::Value *InVal, 605 bool IsInc); 606 607 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 608 bool isInc, bool isPre); 609 610 611 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 612 if (isa<MemberPointerType>(E->getType())) // never sugared 613 return CGF.CGM.getMemberPointerConstant(E); 614 615 return EmitLValue(E->getSubExpr()).getPointer(); 616 } 617 Value *VisitUnaryDeref(const UnaryOperator *E) { 618 if (E->getType()->isVoidType()) 619 return Visit(E->getSubExpr()); // the actual value should be unused 620 return EmitLoadOfLValue(E); 621 } 622 Value *VisitUnaryPlus(const UnaryOperator *E) { 623 // This differs from gcc, though, most likely due to a bug in gcc. 624 TestAndClearIgnoreResultAssign(); 625 return Visit(E->getSubExpr()); 626 } 627 Value *VisitUnaryMinus (const UnaryOperator *E); 628 Value *VisitUnaryNot (const UnaryOperator *E); 629 Value *VisitUnaryLNot (const UnaryOperator *E); 630 Value *VisitUnaryReal (const UnaryOperator *E); 631 Value *VisitUnaryImag (const UnaryOperator *E); 632 Value *VisitUnaryExtension(const UnaryOperator *E) { 633 return Visit(E->getSubExpr()); 634 } 635 636 // C++ 637 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 638 return EmitLoadOfLValue(E); 639 } 640 641 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 642 return Visit(DAE->getExpr()); 643 } 644 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 645 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 646 return Visit(DIE->getExpr()); 647 } 648 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 649 return CGF.LoadCXXThis(); 650 } 651 652 Value *VisitExprWithCleanups(ExprWithCleanups *E); 653 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 654 return CGF.EmitCXXNewExpr(E); 655 } 656 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 657 CGF.EmitCXXDeleteExpr(E); 658 return nullptr; 659 } 660 661 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 662 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 663 } 664 665 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 666 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 667 } 668 669 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 670 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 671 } 672 673 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 674 // C++ [expr.pseudo]p1: 675 // The result shall only be used as the operand for the function call 676 // operator (), and the result of such a call has type void. The only 677 // effect is the evaluation of the postfix-expression before the dot or 678 // arrow. 679 CGF.EmitScalarExpr(E->getBase()); 680 return nullptr; 681 } 682 683 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 684 return EmitNullValue(E->getType()); 685 } 686 687 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 688 CGF.EmitCXXThrowExpr(E); 689 return nullptr; 690 } 691 692 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 693 return Builder.getInt1(E->getValue()); 694 } 695 696 // Binary Operators. 697 Value *EmitMul(const BinOpInfo &Ops) { 698 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 699 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 700 case LangOptions::SOB_Defined: 701 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 702 case LangOptions::SOB_Undefined: 703 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 704 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 705 LLVM_FALLTHROUGH; 706 case LangOptions::SOB_Trapping: 707 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 708 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 709 return EmitOverflowCheckedBinOp(Ops); 710 } 711 } 712 713 if (Ops.Ty->isUnsignedIntegerType() && 714 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 715 !CanElideOverflowCheck(CGF.getContext(), Ops)) 716 return EmitOverflowCheckedBinOp(Ops); 717 718 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 719 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 720 return propagateFMFlags(V, Ops); 721 } 722 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 723 } 724 /// Create a binary op that checks for overflow. 725 /// Currently only supports +, - and *. 726 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 727 728 // Check for undefined division and modulus behaviors. 729 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 730 llvm::Value *Zero,bool isDiv); 731 // Common helper for getting how wide LHS of shift is. 732 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 733 Value *EmitDiv(const BinOpInfo &Ops); 734 Value *EmitRem(const BinOpInfo &Ops); 735 Value *EmitAdd(const BinOpInfo &Ops); 736 Value *EmitSub(const BinOpInfo &Ops); 737 Value *EmitShl(const BinOpInfo &Ops); 738 Value *EmitShr(const BinOpInfo &Ops); 739 Value *EmitAnd(const BinOpInfo &Ops) { 740 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 741 } 742 Value *EmitXor(const BinOpInfo &Ops) { 743 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 744 } 745 Value *EmitOr (const BinOpInfo &Ops) { 746 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 747 } 748 749 // Helper functions for fixed point binary operations. 750 Value *EmitFixedPointBinOp(const BinOpInfo &Ops); 751 752 BinOpInfo EmitBinOps(const BinaryOperator *E); 753 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 754 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 755 Value *&Result); 756 757 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 758 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 759 760 // Binary operators and binary compound assignment operators. 761 #define HANDLEBINOP(OP) \ 762 Value *VisitBin ## OP(const BinaryOperator *E) { \ 763 return Emit ## OP(EmitBinOps(E)); \ 764 } \ 765 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 766 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 767 } 768 HANDLEBINOP(Mul) 769 HANDLEBINOP(Div) 770 HANDLEBINOP(Rem) 771 HANDLEBINOP(Add) 772 HANDLEBINOP(Sub) 773 HANDLEBINOP(Shl) 774 HANDLEBINOP(Shr) 775 HANDLEBINOP(And) 776 HANDLEBINOP(Xor) 777 HANDLEBINOP(Or) 778 #undef HANDLEBINOP 779 780 // Comparisons. 781 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 782 llvm::CmpInst::Predicate SICmpOpc, 783 llvm::CmpInst::Predicate FCmpOpc); 784 #define VISITCOMP(CODE, UI, SI, FP) \ 785 Value *VisitBin##CODE(const BinaryOperator *E) { \ 786 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 787 llvm::FCmpInst::FP); } 788 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 789 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 790 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 791 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 792 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 793 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 794 #undef VISITCOMP 795 796 Value *VisitBinAssign (const BinaryOperator *E); 797 798 Value *VisitBinLAnd (const BinaryOperator *E); 799 Value *VisitBinLOr (const BinaryOperator *E); 800 Value *VisitBinComma (const BinaryOperator *E); 801 802 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 803 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 804 805 // Other Operators. 806 Value *VisitBlockExpr(const BlockExpr *BE); 807 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 808 Value *VisitChooseExpr(ChooseExpr *CE); 809 Value *VisitVAArgExpr(VAArgExpr *VE); 810 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 811 return CGF.EmitObjCStringLiteral(E); 812 } 813 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 814 return CGF.EmitObjCBoxedExpr(E); 815 } 816 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 817 return CGF.EmitObjCArrayLiteral(E); 818 } 819 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 820 return CGF.EmitObjCDictionaryLiteral(E); 821 } 822 Value *VisitAsTypeExpr(AsTypeExpr *CE); 823 Value *VisitAtomicExpr(AtomicExpr *AE); 824 }; 825 } // end anonymous namespace. 826 827 //===----------------------------------------------------------------------===// 828 // Utilities 829 //===----------------------------------------------------------------------===// 830 831 /// EmitConversionToBool - Convert the specified expression value to a 832 /// boolean (i1) truth value. This is equivalent to "Val != 0". 833 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 834 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 835 836 if (SrcType->isRealFloatingType()) 837 return EmitFloatToBoolConversion(Src); 838 839 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 840 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 841 842 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 843 "Unknown scalar type to convert"); 844 845 if (isa<llvm::IntegerType>(Src->getType())) 846 return EmitIntToBoolConversion(Src); 847 848 assert(isa<llvm::PointerType>(Src->getType())); 849 return EmitPointerToBoolConversion(Src, SrcType); 850 } 851 852 void ScalarExprEmitter::EmitFloatConversionCheck( 853 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 854 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 855 CodeGenFunction::SanitizerScope SanScope(&CGF); 856 using llvm::APFloat; 857 using llvm::APSInt; 858 859 llvm::Type *SrcTy = Src->getType(); 860 861 llvm::Value *Check = nullptr; 862 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 863 // Integer to floating-point. This can fail for unsigned short -> __half 864 // or unsigned __int128 -> float. 865 assert(DstType->isFloatingType()); 866 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 867 868 APFloat LargestFloat = 869 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 870 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 871 872 bool IsExact; 873 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 874 &IsExact) != APFloat::opOK) 875 // The range of representable values of this floating point type includes 876 // all values of this integer type. Don't need an overflow check. 877 return; 878 879 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 880 if (SrcIsUnsigned) 881 Check = Builder.CreateICmpULE(Src, Max); 882 else { 883 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 884 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 885 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 886 Check = Builder.CreateAnd(GE, LE); 887 } 888 } else { 889 const llvm::fltSemantics &SrcSema = 890 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 891 if (isa<llvm::IntegerType>(DstTy)) { 892 // Floating-point to integer. This has undefined behavior if the source is 893 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 894 // to an integer). 895 unsigned Width = CGF.getContext().getIntWidth(DstType); 896 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 897 898 APSInt Min = APSInt::getMinValue(Width, Unsigned); 899 APFloat MinSrc(SrcSema, APFloat::uninitialized); 900 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 901 APFloat::opOverflow) 902 // Don't need an overflow check for lower bound. Just check for 903 // -Inf/NaN. 904 MinSrc = APFloat::getInf(SrcSema, true); 905 else 906 // Find the largest value which is too small to represent (before 907 // truncation toward zero). 908 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 909 910 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 911 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 912 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 913 APFloat::opOverflow) 914 // Don't need an overflow check for upper bound. Just check for 915 // +Inf/NaN. 916 MaxSrc = APFloat::getInf(SrcSema, false); 917 else 918 // Find the smallest value which is too large to represent (before 919 // truncation toward zero). 920 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 921 922 // If we're converting from __half, convert the range to float to match 923 // the type of src. 924 if (OrigSrcType->isHalfType()) { 925 const llvm::fltSemantics &Sema = 926 CGF.getContext().getFloatTypeSemantics(SrcType); 927 bool IsInexact; 928 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 929 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 930 } 931 932 llvm::Value *GE = 933 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 934 llvm::Value *LE = 935 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 936 Check = Builder.CreateAnd(GE, LE); 937 } else { 938 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 939 // 940 // Floating-point to floating-point. This has undefined behavior if the 941 // source is not in the range of representable values of the destination 942 // type. The C and C++ standards are spectacularly unclear here. We 943 // diagnose finite out-of-range conversions, but allow infinities and NaNs 944 // to convert to the corresponding value in the smaller type. 945 // 946 // C11 Annex F gives all such conversions defined behavior for IEC 60559 947 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 948 // does not. 949 950 // Converting from a lower rank to a higher rank can never have 951 // undefined behavior, since higher-rank types must have a superset 952 // of values of lower-rank types. 953 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 954 return; 955 956 assert(!OrigSrcType->isHalfType() && 957 "should not check conversion from __half, it has the lowest rank"); 958 959 const llvm::fltSemantics &DstSema = 960 CGF.getContext().getFloatTypeSemantics(DstType); 961 APFloat MinBad = APFloat::getLargest(DstSema, false); 962 APFloat MaxBad = APFloat::getInf(DstSema, false); 963 964 bool IsInexact; 965 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 966 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 967 968 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 969 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 970 llvm::Value *GE = 971 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 972 llvm::Value *LE = 973 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 974 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 975 } 976 } 977 978 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 979 CGF.EmitCheckTypeDescriptor(OrigSrcType), 980 CGF.EmitCheckTypeDescriptor(DstType)}; 981 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 982 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 983 } 984 985 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 986 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 987 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 988 std::pair<llvm::Value *, SanitizerMask>> 989 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 990 QualType DstType, CGBuilderTy &Builder) { 991 llvm::Type *SrcTy = Src->getType(); 992 llvm::Type *DstTy = Dst->getType(); 993 (void)DstTy; // Only used in assert() 994 995 // This should be truncation of integral types. 996 assert(Src != Dst); 997 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 998 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 999 "non-integer llvm type"); 1000 1001 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1002 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1003 1004 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 1005 // Else, it is a signed truncation. 1006 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 1007 SanitizerMask Mask; 1008 if (!SrcSigned && !DstSigned) { 1009 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 1010 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 1011 } else { 1012 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 1013 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 1014 } 1015 1016 llvm::Value *Check = nullptr; 1017 // 1. Extend the truncated value back to the same width as the Src. 1018 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 1019 // 2. Equality-compare with the original source value 1020 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 1021 // If the comparison result is 'i1 false', then the truncation was lossy. 1022 return std::make_pair(Kind, std::make_pair(Check, Mask)); 1023 } 1024 1025 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 1026 Value *Dst, QualType DstType, 1027 SourceLocation Loc) { 1028 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 1029 return; 1030 1031 // We only care about int->int conversions here. 1032 // We ignore conversions to/from pointer and/or bool. 1033 if (!(SrcType->isIntegerType() && DstType->isIntegerType())) 1034 return; 1035 1036 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 1037 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 1038 // This must be truncation. Else we do not care. 1039 if (SrcBits <= DstBits) 1040 return; 1041 1042 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 1043 1044 // If the integer sign change sanitizer is enabled, 1045 // and we are truncating from larger unsigned type to smaller signed type, 1046 // let that next sanitizer deal with it. 1047 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1048 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1049 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 1050 (!SrcSigned && DstSigned)) 1051 return; 1052 1053 CodeGenFunction::SanitizerScope SanScope(&CGF); 1054 1055 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1056 std::pair<llvm::Value *, SanitizerMask>> 1057 Check = 1058 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1059 // If the comparison result is 'i1 false', then the truncation was lossy. 1060 1061 // Do we care about this type of truncation? 1062 if (!CGF.SanOpts.has(Check.second.second)) 1063 return; 1064 1065 llvm::Constant *StaticArgs[] = { 1066 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1067 CGF.EmitCheckTypeDescriptor(DstType), 1068 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1069 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1070 {Src, Dst}); 1071 } 1072 1073 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1074 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1075 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1076 std::pair<llvm::Value *, SanitizerMask>> 1077 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1078 QualType DstType, CGBuilderTy &Builder) { 1079 llvm::Type *SrcTy = Src->getType(); 1080 llvm::Type *DstTy = Dst->getType(); 1081 1082 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1083 "non-integer llvm type"); 1084 1085 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1086 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1087 (void)SrcSigned; // Only used in assert() 1088 (void)DstSigned; // Only used in assert() 1089 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1090 unsigned DstBits = DstTy->getScalarSizeInBits(); 1091 (void)SrcBits; // Only used in assert() 1092 (void)DstBits; // Only used in assert() 1093 1094 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1095 "either the widths should be different, or the signednesses."); 1096 1097 // NOTE: zero value is considered to be non-negative. 1098 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1099 const char *Name) -> Value * { 1100 // Is this value a signed type? 1101 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1102 llvm::Type *VTy = V->getType(); 1103 if (!VSigned) { 1104 // If the value is unsigned, then it is never negative. 1105 // FIXME: can we encounter non-scalar VTy here? 1106 return llvm::ConstantInt::getFalse(VTy->getContext()); 1107 } 1108 // Get the zero of the same type with which we will be comparing. 1109 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1110 // %V.isnegative = icmp slt %V, 0 1111 // I.e is %V *strictly* less than zero, does it have negative value? 1112 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1113 llvm::Twine(Name) + "." + V->getName() + 1114 ".negativitycheck"); 1115 }; 1116 1117 // 1. Was the old Value negative? 1118 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1119 // 2. Is the new Value negative? 1120 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1121 // 3. Now, was the 'negativity status' preserved during the conversion? 1122 // NOTE: conversion from negative to zero is considered to change the sign. 1123 // (We want to get 'false' when the conversion changed the sign) 1124 // So we should just equality-compare the negativity statuses. 1125 llvm::Value *Check = nullptr; 1126 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1127 // If the comparison result is 'false', then the conversion changed the sign. 1128 return std::make_pair( 1129 ScalarExprEmitter::ICCK_IntegerSignChange, 1130 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1131 } 1132 1133 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1134 Value *Dst, QualType DstType, 1135 SourceLocation Loc) { 1136 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1137 return; 1138 1139 llvm::Type *SrcTy = Src->getType(); 1140 llvm::Type *DstTy = Dst->getType(); 1141 1142 // We only care about int->int conversions here. 1143 // We ignore conversions to/from pointer and/or bool. 1144 if (!(SrcType->isIntegerType() && DstType->isIntegerType())) 1145 return; 1146 1147 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1148 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1149 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1150 unsigned DstBits = DstTy->getScalarSizeInBits(); 1151 1152 // Now, we do not need to emit the check in *all* of the cases. 1153 // We can avoid emitting it in some obvious cases where it would have been 1154 // dropped by the opt passes (instcombine) always anyways. 1155 // If it's a cast between effectively the same type, no check. 1156 // NOTE: this is *not* equivalent to checking the canonical types. 1157 if (SrcSigned == DstSigned && SrcBits == DstBits) 1158 return; 1159 // At least one of the values needs to have signed type. 1160 // If both are unsigned, then obviously, neither of them can be negative. 1161 if (!SrcSigned && !DstSigned) 1162 return; 1163 // If the conversion is to *larger* *signed* type, then no check is needed. 1164 // Because either sign-extension happens (so the sign will remain), 1165 // or zero-extension will happen (the sign bit will be zero.) 1166 if ((DstBits > SrcBits) && DstSigned) 1167 return; 1168 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1169 (SrcBits > DstBits) && SrcSigned) { 1170 // If the signed integer truncation sanitizer is enabled, 1171 // and this is a truncation from signed type, then no check is needed. 1172 // Because here sign change check is interchangeable with truncation check. 1173 return; 1174 } 1175 // That's it. We can't rule out any more cases with the data we have. 1176 1177 CodeGenFunction::SanitizerScope SanScope(&CGF); 1178 1179 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1180 std::pair<llvm::Value *, SanitizerMask>> 1181 Check; 1182 1183 // Each of these checks needs to return 'false' when an issue was detected. 1184 ImplicitConversionCheckKind CheckKind; 1185 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1186 // So we can 'and' all the checks together, and still get 'false', 1187 // if at least one of the checks detected an issue. 1188 1189 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1190 CheckKind = Check.first; 1191 Checks.emplace_back(Check.second); 1192 1193 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1194 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1195 // If the signed integer truncation sanitizer was enabled, 1196 // and we are truncating from larger unsigned type to smaller signed type, 1197 // let's handle the case we skipped in that check. 1198 Check = 1199 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1200 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1201 Checks.emplace_back(Check.second); 1202 // If the comparison result is 'i1 false', then the truncation was lossy. 1203 } 1204 1205 llvm::Constant *StaticArgs[] = { 1206 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1207 CGF.EmitCheckTypeDescriptor(DstType), 1208 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1209 // EmitCheck() will 'and' all the checks together. 1210 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1211 {Src, Dst}); 1212 } 1213 1214 /// Emit a conversion from the specified type to the specified destination type, 1215 /// both of which are LLVM scalar types. 1216 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1217 QualType DstType, 1218 SourceLocation Loc, 1219 ScalarConversionOpts Opts) { 1220 // All conversions involving fixed point types should be handled by the 1221 // EmitFixedPoint family functions. This is done to prevent bloating up this 1222 // function more, and although fixed point numbers are represented by 1223 // integers, we do not want to follow any logic that assumes they should be 1224 // treated as integers. 1225 // TODO(leonardchan): When necessary, add another if statement checking for 1226 // conversions to fixed point types from other types. 1227 if (SrcType->isFixedPointType()) { 1228 if (DstType->isFixedPointType()) { 1229 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1230 } else if (DstType->isBooleanType()) { 1231 // We do not need to check the padding bit on unsigned types if unsigned 1232 // padding is enabled because overflow into this bit is undefined 1233 // behavior. 1234 return Builder.CreateIsNotNull(Src, "tobool"); 1235 } 1236 1237 llvm_unreachable( 1238 "Unhandled scalar conversion involving a fixed point type."); 1239 } 1240 1241 QualType NoncanonicalSrcType = SrcType; 1242 QualType NoncanonicalDstType = DstType; 1243 1244 SrcType = CGF.getContext().getCanonicalType(SrcType); 1245 DstType = CGF.getContext().getCanonicalType(DstType); 1246 if (SrcType == DstType) return Src; 1247 1248 if (DstType->isVoidType()) return nullptr; 1249 1250 llvm::Value *OrigSrc = Src; 1251 QualType OrigSrcType = SrcType; 1252 llvm::Type *SrcTy = Src->getType(); 1253 1254 // Handle conversions to bool first, they are special: comparisons against 0. 1255 if (DstType->isBooleanType()) 1256 return EmitConversionToBool(Src, SrcType); 1257 1258 llvm::Type *DstTy = ConvertType(DstType); 1259 1260 // Cast from half through float if half isn't a native type. 1261 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1262 // Cast to FP using the intrinsic if the half type itself isn't supported. 1263 if (DstTy->isFloatingPointTy()) { 1264 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1265 return Builder.CreateCall( 1266 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1267 Src); 1268 } else { 1269 // Cast to other types through float, using either the intrinsic or FPExt, 1270 // depending on whether the half type itself is supported 1271 // (as opposed to operations on half, available with NativeHalfType). 1272 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1273 Src = Builder.CreateCall( 1274 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1275 CGF.CGM.FloatTy), 1276 Src); 1277 } else { 1278 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1279 } 1280 SrcType = CGF.getContext().FloatTy; 1281 SrcTy = CGF.FloatTy; 1282 } 1283 } 1284 1285 // Ignore conversions like int -> uint. 1286 if (SrcTy == DstTy) { 1287 if (Opts.EmitImplicitIntegerSignChangeChecks) 1288 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1289 NoncanonicalDstType, Loc); 1290 1291 return Src; 1292 } 1293 1294 // Handle pointer conversions next: pointers can only be converted to/from 1295 // other pointers and integers. Check for pointer types in terms of LLVM, as 1296 // some native types (like Obj-C id) may map to a pointer type. 1297 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1298 // The source value may be an integer, or a pointer. 1299 if (isa<llvm::PointerType>(SrcTy)) 1300 return Builder.CreateBitCast(Src, DstTy, "conv"); 1301 1302 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1303 // First, convert to the correct width so that we control the kind of 1304 // extension. 1305 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1306 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1307 llvm::Value* IntResult = 1308 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1309 // Then, cast to pointer. 1310 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1311 } 1312 1313 if (isa<llvm::PointerType>(SrcTy)) { 1314 // Must be an ptr to int cast. 1315 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1316 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1317 } 1318 1319 // A scalar can be splatted to an extended vector of the same element type 1320 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1321 // Sema should add casts to make sure that the source expression's type is 1322 // the same as the vector's element type (sans qualifiers) 1323 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1324 SrcType.getTypePtr() && 1325 "Splatted expr doesn't match with vector element type?"); 1326 1327 // Splat the element across to all elements 1328 unsigned NumElements = DstTy->getVectorNumElements(); 1329 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1330 } 1331 1332 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1333 // Allow bitcast from vector to integer/fp of the same size. 1334 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1335 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1336 if (SrcSize == DstSize) 1337 return Builder.CreateBitCast(Src, DstTy, "conv"); 1338 1339 // Conversions between vectors of different sizes are not allowed except 1340 // when vectors of half are involved. Operations on storage-only half 1341 // vectors require promoting half vector operands to float vectors and 1342 // truncating the result, which is either an int or float vector, to a 1343 // short or half vector. 1344 1345 // Source and destination are both expected to be vectors. 1346 llvm::Type *SrcElementTy = SrcTy->getVectorElementType(); 1347 llvm::Type *DstElementTy = DstTy->getVectorElementType(); 1348 (void)DstElementTy; 1349 1350 assert(((SrcElementTy->isIntegerTy() && 1351 DstElementTy->isIntegerTy()) || 1352 (SrcElementTy->isFloatingPointTy() && 1353 DstElementTy->isFloatingPointTy())) && 1354 "unexpected conversion between a floating-point vector and an " 1355 "integer vector"); 1356 1357 // Truncate an i32 vector to an i16 vector. 1358 if (SrcElementTy->isIntegerTy()) 1359 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1360 1361 // Truncate a float vector to a half vector. 1362 if (SrcSize > DstSize) 1363 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1364 1365 // Promote a half vector to a float vector. 1366 return Builder.CreateFPExt(Src, DstTy, "conv"); 1367 } 1368 1369 // Finally, we have the arithmetic types: real int/float. 1370 Value *Res = nullptr; 1371 llvm::Type *ResTy = DstTy; 1372 1373 // An overflowing conversion has undefined behavior if either the source type 1374 // or the destination type is a floating-point type. 1375 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1376 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 1377 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1378 Loc); 1379 1380 // Cast to half through float if half isn't a native type. 1381 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1382 // Make sure we cast in a single step if from another FP type. 1383 if (SrcTy->isFloatingPointTy()) { 1384 // Use the intrinsic if the half type itself isn't supported 1385 // (as opposed to operations on half, available with NativeHalfType). 1386 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1387 return Builder.CreateCall( 1388 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1389 // If the half type is supported, just use an fptrunc. 1390 return Builder.CreateFPTrunc(Src, DstTy); 1391 } 1392 DstTy = CGF.FloatTy; 1393 } 1394 1395 if (isa<llvm::IntegerType>(SrcTy)) { 1396 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1397 if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1398 InputSigned = true; 1399 } 1400 if (isa<llvm::IntegerType>(DstTy)) 1401 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1402 else if (InputSigned) 1403 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1404 else 1405 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1406 } else if (isa<llvm::IntegerType>(DstTy)) { 1407 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1408 if (DstType->isSignedIntegerOrEnumerationType()) 1409 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1410 else 1411 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1412 } else { 1413 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1414 "Unknown real conversion"); 1415 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1416 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1417 else 1418 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1419 } 1420 1421 if (DstTy != ResTy) { 1422 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1423 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1424 Res = Builder.CreateCall( 1425 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1426 Res); 1427 } else { 1428 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1429 } 1430 } 1431 1432 if (Opts.EmitImplicitIntegerTruncationChecks) 1433 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1434 NoncanonicalDstType, Loc); 1435 1436 if (Opts.EmitImplicitIntegerSignChangeChecks) 1437 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1438 NoncanonicalDstType, Loc); 1439 1440 return Res; 1441 } 1442 1443 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1444 QualType DstTy, 1445 SourceLocation Loc) { 1446 assert(SrcTy->isFixedPointType()); 1447 assert(DstTy->isFixedPointType()); 1448 1449 FixedPointSemantics SrcFPSema = 1450 CGF.getContext().getFixedPointSemantics(SrcTy); 1451 FixedPointSemantics DstFPSema = 1452 CGF.getContext().getFixedPointSemantics(DstTy); 1453 return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc); 1454 } 1455 1456 Value *ScalarExprEmitter::EmitFixedPointConversion( 1457 Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema, 1458 SourceLocation Loc) { 1459 using llvm::APInt; 1460 using llvm::ConstantInt; 1461 using llvm::Value; 1462 1463 unsigned SrcWidth = SrcFPSema.getWidth(); 1464 unsigned DstWidth = DstFPSema.getWidth(); 1465 unsigned SrcScale = SrcFPSema.getScale(); 1466 unsigned DstScale = DstFPSema.getScale(); 1467 bool SrcIsSigned = SrcFPSema.isSigned(); 1468 bool DstIsSigned = DstFPSema.isSigned(); 1469 1470 llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth); 1471 1472 Value *Result = Src; 1473 unsigned ResultWidth = SrcWidth; 1474 1475 if (!DstFPSema.isSaturated()) { 1476 // Downscale. 1477 if (DstScale < SrcScale) 1478 Result = SrcIsSigned ? 1479 Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") : 1480 Builder.CreateLShr(Result, SrcScale - DstScale, "downscale"); 1481 1482 // Resize. 1483 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1484 1485 // Upscale. 1486 if (DstScale > SrcScale) 1487 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1488 } else { 1489 // Adjust the number of fractional bits. 1490 if (DstScale > SrcScale) { 1491 // Compare to DstWidth to prevent resizing twice. 1492 ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth); 1493 llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth); 1494 Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize"); 1495 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1496 } else if (DstScale < SrcScale) { 1497 Result = SrcIsSigned ? 1498 Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") : 1499 Builder.CreateLShr(Result, SrcScale - DstScale, "downscale"); 1500 } 1501 1502 // Handle saturation. 1503 bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits(); 1504 if (LessIntBits) { 1505 Value *Max = ConstantInt::get( 1506 CGF.getLLVMContext(), 1507 APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1508 Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max) 1509 : Builder.CreateICmpUGT(Result, Max); 1510 Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax"); 1511 } 1512 // Cannot overflow min to dest type if src is unsigned since all fixed 1513 // point types can cover the unsigned min of 0. 1514 if (SrcIsSigned && (LessIntBits || !DstIsSigned)) { 1515 Value *Min = ConstantInt::get( 1516 CGF.getLLVMContext(), 1517 APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1518 Value *TooLow = Builder.CreateICmpSLT(Result, Min); 1519 Result = Builder.CreateSelect(TooLow, Min, Result, "satmin"); 1520 } 1521 1522 // Resize the integer part to get the final destination size. 1523 if (ResultWidth != DstWidth) 1524 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1525 } 1526 return Result; 1527 } 1528 1529 /// Emit a conversion from the specified complex type to the specified 1530 /// destination type, where the destination type is an LLVM scalar type. 1531 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1532 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1533 SourceLocation Loc) { 1534 // Get the source element type. 1535 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1536 1537 // Handle conversions to bool first, they are special: comparisons against 0. 1538 if (DstTy->isBooleanType()) { 1539 // Complex != 0 -> (Real != 0) | (Imag != 0) 1540 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1541 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1542 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1543 } 1544 1545 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1546 // the imaginary part of the complex value is discarded and the value of the 1547 // real part is converted according to the conversion rules for the 1548 // corresponding real type. 1549 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1550 } 1551 1552 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1553 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1554 } 1555 1556 /// Emit a sanitization check for the given "binary" operation (which 1557 /// might actually be a unary increment which has been lowered to a binary 1558 /// operation). The check passes if all values in \p Checks (which are \c i1), 1559 /// are \c true. 1560 void ScalarExprEmitter::EmitBinOpCheck( 1561 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1562 assert(CGF.IsSanitizerScope); 1563 SanitizerHandler Check; 1564 SmallVector<llvm::Constant *, 4> StaticData; 1565 SmallVector<llvm::Value *, 2> DynamicData; 1566 1567 BinaryOperatorKind Opcode = Info.Opcode; 1568 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1569 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1570 1571 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1572 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1573 if (UO && UO->getOpcode() == UO_Minus) { 1574 Check = SanitizerHandler::NegateOverflow; 1575 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1576 DynamicData.push_back(Info.RHS); 1577 } else { 1578 if (BinaryOperator::isShiftOp(Opcode)) { 1579 // Shift LHS negative or too large, or RHS out of bounds. 1580 Check = SanitizerHandler::ShiftOutOfBounds; 1581 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1582 StaticData.push_back( 1583 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1584 StaticData.push_back( 1585 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1586 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1587 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1588 Check = SanitizerHandler::DivremOverflow; 1589 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1590 } else { 1591 // Arithmetic overflow (+, -, *). 1592 switch (Opcode) { 1593 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1594 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1595 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1596 default: llvm_unreachable("unexpected opcode for bin op check"); 1597 } 1598 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1599 } 1600 DynamicData.push_back(Info.LHS); 1601 DynamicData.push_back(Info.RHS); 1602 } 1603 1604 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1605 } 1606 1607 //===----------------------------------------------------------------------===// 1608 // Visitor Methods 1609 //===----------------------------------------------------------------------===// 1610 1611 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1612 CGF.ErrorUnsupported(E, "scalar expression"); 1613 if (E->getType()->isVoidType()) 1614 return nullptr; 1615 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1616 } 1617 1618 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1619 // Vector Mask Case 1620 if (E->getNumSubExprs() == 2) { 1621 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1622 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1623 Value *Mask; 1624 1625 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 1626 unsigned LHSElts = LTy->getNumElements(); 1627 1628 Mask = RHS; 1629 1630 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1631 1632 // Mask off the high bits of each shuffle index. 1633 Value *MaskBits = 1634 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1635 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1636 1637 // newv = undef 1638 // mask = mask & maskbits 1639 // for each elt 1640 // n = extract mask i 1641 // x = extract val n 1642 // newv = insert newv, x, i 1643 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1644 MTy->getNumElements()); 1645 Value* NewV = llvm::UndefValue::get(RTy); 1646 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1647 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1648 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1649 1650 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1651 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1652 } 1653 return NewV; 1654 } 1655 1656 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1657 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1658 1659 SmallVector<llvm::Constant*, 32> indices; 1660 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1661 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1662 // Check for -1 and output it as undef in the IR. 1663 if (Idx.isSigned() && Idx.isAllOnesValue()) 1664 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1665 else 1666 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1667 } 1668 1669 Value *SV = llvm::ConstantVector::get(indices); 1670 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1671 } 1672 1673 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1674 QualType SrcType = E->getSrcExpr()->getType(), 1675 DstType = E->getType(); 1676 1677 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1678 1679 SrcType = CGF.getContext().getCanonicalType(SrcType); 1680 DstType = CGF.getContext().getCanonicalType(DstType); 1681 if (SrcType == DstType) return Src; 1682 1683 assert(SrcType->isVectorType() && 1684 "ConvertVector source type must be a vector"); 1685 assert(DstType->isVectorType() && 1686 "ConvertVector destination type must be a vector"); 1687 1688 llvm::Type *SrcTy = Src->getType(); 1689 llvm::Type *DstTy = ConvertType(DstType); 1690 1691 // Ignore conversions like int -> uint. 1692 if (SrcTy == DstTy) 1693 return Src; 1694 1695 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1696 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1697 1698 assert(SrcTy->isVectorTy() && 1699 "ConvertVector source IR type must be a vector"); 1700 assert(DstTy->isVectorTy() && 1701 "ConvertVector destination IR type must be a vector"); 1702 1703 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1704 *DstEltTy = DstTy->getVectorElementType(); 1705 1706 if (DstEltType->isBooleanType()) { 1707 assert((SrcEltTy->isFloatingPointTy() || 1708 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1709 1710 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1711 if (SrcEltTy->isFloatingPointTy()) { 1712 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1713 } else { 1714 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1715 } 1716 } 1717 1718 // We have the arithmetic types: real int/float. 1719 Value *Res = nullptr; 1720 1721 if (isa<llvm::IntegerType>(SrcEltTy)) { 1722 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1723 if (isa<llvm::IntegerType>(DstEltTy)) 1724 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1725 else if (InputSigned) 1726 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1727 else 1728 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1729 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1730 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1731 if (DstEltType->isSignedIntegerOrEnumerationType()) 1732 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1733 else 1734 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1735 } else { 1736 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1737 "Unknown real conversion"); 1738 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1739 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1740 else 1741 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1742 } 1743 1744 return Res; 1745 } 1746 1747 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1748 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1749 CGF.EmitIgnoredExpr(E->getBase()); 1750 return CGF.emitScalarConstant(Constant, E); 1751 } else { 1752 Expr::EvalResult Result; 1753 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1754 llvm::APSInt Value = Result.Val.getInt(); 1755 CGF.EmitIgnoredExpr(E->getBase()); 1756 return Builder.getInt(Value); 1757 } 1758 } 1759 1760 return EmitLoadOfLValue(E); 1761 } 1762 1763 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1764 TestAndClearIgnoreResultAssign(); 1765 1766 // Emit subscript expressions in rvalue context's. For most cases, this just 1767 // loads the lvalue formed by the subscript expr. However, we have to be 1768 // careful, because the base of a vector subscript is occasionally an rvalue, 1769 // so we can't get it as an lvalue. 1770 if (!E->getBase()->getType()->isVectorType()) 1771 return EmitLoadOfLValue(E); 1772 1773 // Handle the vector case. The base must be a vector, the index must be an 1774 // integer value. 1775 Value *Base = Visit(E->getBase()); 1776 Value *Idx = Visit(E->getIdx()); 1777 QualType IdxTy = E->getIdx()->getType(); 1778 1779 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1780 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1781 1782 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1783 } 1784 1785 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1786 unsigned Off, llvm::Type *I32Ty) { 1787 int MV = SVI->getMaskValue(Idx); 1788 if (MV == -1) 1789 return llvm::UndefValue::get(I32Ty); 1790 return llvm::ConstantInt::get(I32Ty, Off+MV); 1791 } 1792 1793 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1794 if (C->getBitWidth() != 32) { 1795 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1796 C->getZExtValue()) && 1797 "Index operand too large for shufflevector mask!"); 1798 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1799 } 1800 return C; 1801 } 1802 1803 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1804 bool Ignore = TestAndClearIgnoreResultAssign(); 1805 (void)Ignore; 1806 assert (Ignore == false && "init list ignored"); 1807 unsigned NumInitElements = E->getNumInits(); 1808 1809 if (E->hadArrayRangeDesignator()) 1810 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1811 1812 llvm::VectorType *VType = 1813 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1814 1815 if (!VType) { 1816 if (NumInitElements == 0) { 1817 // C++11 value-initialization for the scalar. 1818 return EmitNullValue(E->getType()); 1819 } 1820 // We have a scalar in braces. Just use the first element. 1821 return Visit(E->getInit(0)); 1822 } 1823 1824 unsigned ResElts = VType->getNumElements(); 1825 1826 // Loop over initializers collecting the Value for each, and remembering 1827 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1828 // us to fold the shuffle for the swizzle into the shuffle for the vector 1829 // initializer, since LLVM optimizers generally do not want to touch 1830 // shuffles. 1831 unsigned CurIdx = 0; 1832 bool VIsUndefShuffle = false; 1833 llvm::Value *V = llvm::UndefValue::get(VType); 1834 for (unsigned i = 0; i != NumInitElements; ++i) { 1835 Expr *IE = E->getInit(i); 1836 Value *Init = Visit(IE); 1837 SmallVector<llvm::Constant*, 16> Args; 1838 1839 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1840 1841 // Handle scalar elements. If the scalar initializer is actually one 1842 // element of a different vector of the same width, use shuffle instead of 1843 // extract+insert. 1844 if (!VVT) { 1845 if (isa<ExtVectorElementExpr>(IE)) { 1846 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1847 1848 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1849 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1850 Value *LHS = nullptr, *RHS = nullptr; 1851 if (CurIdx == 0) { 1852 // insert into undef -> shuffle (src, undef) 1853 // shufflemask must use an i32 1854 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1855 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1856 1857 LHS = EI->getVectorOperand(); 1858 RHS = V; 1859 VIsUndefShuffle = true; 1860 } else if (VIsUndefShuffle) { 1861 // insert into undefshuffle && size match -> shuffle (v, src) 1862 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1863 for (unsigned j = 0; j != CurIdx; ++j) 1864 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1865 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1866 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1867 1868 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1869 RHS = EI->getVectorOperand(); 1870 VIsUndefShuffle = false; 1871 } 1872 if (!Args.empty()) { 1873 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1874 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1875 ++CurIdx; 1876 continue; 1877 } 1878 } 1879 } 1880 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1881 "vecinit"); 1882 VIsUndefShuffle = false; 1883 ++CurIdx; 1884 continue; 1885 } 1886 1887 unsigned InitElts = VVT->getNumElements(); 1888 1889 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1890 // input is the same width as the vector being constructed, generate an 1891 // optimized shuffle of the swizzle input into the result. 1892 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1893 if (isa<ExtVectorElementExpr>(IE)) { 1894 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1895 Value *SVOp = SVI->getOperand(0); 1896 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1897 1898 if (OpTy->getNumElements() == ResElts) { 1899 for (unsigned j = 0; j != CurIdx; ++j) { 1900 // If the current vector initializer is a shuffle with undef, merge 1901 // this shuffle directly into it. 1902 if (VIsUndefShuffle) { 1903 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1904 CGF.Int32Ty)); 1905 } else { 1906 Args.push_back(Builder.getInt32(j)); 1907 } 1908 } 1909 for (unsigned j = 0, je = InitElts; j != je; ++j) 1910 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1911 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1912 1913 if (VIsUndefShuffle) 1914 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1915 1916 Init = SVOp; 1917 } 1918 } 1919 1920 // Extend init to result vector length, and then shuffle its contribution 1921 // to the vector initializer into V. 1922 if (Args.empty()) { 1923 for (unsigned j = 0; j != InitElts; ++j) 1924 Args.push_back(Builder.getInt32(j)); 1925 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1926 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1927 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1928 Mask, "vext"); 1929 1930 Args.clear(); 1931 for (unsigned j = 0; j != CurIdx; ++j) 1932 Args.push_back(Builder.getInt32(j)); 1933 for (unsigned j = 0; j != InitElts; ++j) 1934 Args.push_back(Builder.getInt32(j+Offset)); 1935 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1936 } 1937 1938 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1939 // merging subsequent shuffles into this one. 1940 if (CurIdx == 0) 1941 std::swap(V, Init); 1942 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1943 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1944 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1945 CurIdx += InitElts; 1946 } 1947 1948 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1949 // Emit remaining default initializers. 1950 llvm::Type *EltTy = VType->getElementType(); 1951 1952 // Emit remaining default initializers 1953 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1954 Value *Idx = Builder.getInt32(CurIdx); 1955 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1956 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1957 } 1958 return V; 1959 } 1960 1961 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1962 const Expr *E = CE->getSubExpr(); 1963 1964 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1965 return false; 1966 1967 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1968 // We always assume that 'this' is never null. 1969 return false; 1970 } 1971 1972 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1973 // And that glvalue casts are never null. 1974 if (ICE->getValueKind() != VK_RValue) 1975 return false; 1976 } 1977 1978 return true; 1979 } 1980 1981 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1982 // have to handle a more broad range of conversions than explicit casts, as they 1983 // handle things like function to ptr-to-function decay etc. 1984 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1985 Expr *E = CE->getSubExpr(); 1986 QualType DestTy = CE->getType(); 1987 CastKind Kind = CE->getCastKind(); 1988 1989 // These cases are generally not written to ignore the result of 1990 // evaluating their sub-expressions, so we clear this now. 1991 bool Ignored = TestAndClearIgnoreResultAssign(); 1992 1993 // Since almost all cast kinds apply to scalars, this switch doesn't have 1994 // a default case, so the compiler will warn on a missing case. The cases 1995 // are in the same order as in the CastKind enum. 1996 switch (Kind) { 1997 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1998 case CK_BuiltinFnToFnPtr: 1999 llvm_unreachable("builtin functions are handled elsewhere"); 2000 2001 case CK_LValueBitCast: 2002 case CK_ObjCObjectLValueCast: { 2003 Address Addr = EmitLValue(E).getAddress(); 2004 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 2005 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 2006 return EmitLoadOfLValue(LV, CE->getExprLoc()); 2007 } 2008 2009 case CK_CPointerToObjCPointerCast: 2010 case CK_BlockPointerToObjCPointerCast: 2011 case CK_AnyPointerToBlockPointerCast: 2012 case CK_BitCast: { 2013 Value *Src = Visit(const_cast<Expr*>(E)); 2014 llvm::Type *SrcTy = Src->getType(); 2015 llvm::Type *DstTy = ConvertType(DestTy); 2016 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 2017 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 2018 llvm_unreachable("wrong cast for pointers in different address spaces" 2019 "(must be an address space cast)!"); 2020 } 2021 2022 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 2023 if (auto PT = DestTy->getAs<PointerType>()) 2024 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 2025 /*MayBeNull=*/true, 2026 CodeGenFunction::CFITCK_UnrelatedCast, 2027 CE->getBeginLoc()); 2028 } 2029 2030 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2031 const QualType SrcType = E->getType(); 2032 2033 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 2034 // Casting to pointer that could carry dynamic information (provided by 2035 // invariant.group) requires launder. 2036 Src = Builder.CreateLaunderInvariantGroup(Src); 2037 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 2038 // Casting to pointer that does not carry dynamic information (provided 2039 // by invariant.group) requires stripping it. Note that we don't do it 2040 // if the source could not be dynamic type and destination could be 2041 // dynamic because dynamic information is already laundered. It is 2042 // because launder(strip(src)) == launder(src), so there is no need to 2043 // add extra strip before launder. 2044 Src = Builder.CreateStripInvariantGroup(Src); 2045 } 2046 } 2047 2048 return Builder.CreateBitCast(Src, DstTy); 2049 } 2050 case CK_AddressSpaceConversion: { 2051 Expr::EvalResult Result; 2052 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2053 Result.Val.isNullPointer()) { 2054 // If E has side effect, it is emitted even if its final result is a 2055 // null pointer. In that case, a DCE pass should be able to 2056 // eliminate the useless instructions emitted during translating E. 2057 if (Result.HasSideEffects) 2058 Visit(E); 2059 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2060 ConvertType(DestTy)), DestTy); 2061 } 2062 // Since target may map different address spaces in AST to the same address 2063 // space, an address space conversion may end up as a bitcast. 2064 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2065 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2066 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2067 } 2068 case CK_AtomicToNonAtomic: 2069 case CK_NonAtomicToAtomic: 2070 case CK_NoOp: 2071 case CK_UserDefinedConversion: 2072 return Visit(const_cast<Expr*>(E)); 2073 2074 case CK_BaseToDerived: { 2075 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2076 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2077 2078 Address Base = CGF.EmitPointerWithAlignment(E); 2079 Address Derived = 2080 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2081 CE->path_begin(), CE->path_end(), 2082 CGF.ShouldNullCheckClassCastValue(CE)); 2083 2084 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2085 // performed and the object is not of the derived type. 2086 if (CGF.sanitizePerformTypeCheck()) 2087 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2088 Derived.getPointer(), DestTy->getPointeeType()); 2089 2090 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2091 CGF.EmitVTablePtrCheckForCast( 2092 DestTy->getPointeeType(), Derived.getPointer(), 2093 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 2094 CE->getBeginLoc()); 2095 2096 return Derived.getPointer(); 2097 } 2098 case CK_UncheckedDerivedToBase: 2099 case CK_DerivedToBase: { 2100 // The EmitPointerWithAlignment path does this fine; just discard 2101 // the alignment. 2102 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2103 } 2104 2105 case CK_Dynamic: { 2106 Address V = CGF.EmitPointerWithAlignment(E); 2107 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2108 return CGF.EmitDynamicCast(V, DCE); 2109 } 2110 2111 case CK_ArrayToPointerDecay: 2112 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2113 case CK_FunctionToPointerDecay: 2114 return EmitLValue(E).getPointer(); 2115 2116 case CK_NullToPointer: 2117 if (MustVisitNullValue(E)) 2118 (void) Visit(E); 2119 2120 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2121 DestTy); 2122 2123 case CK_NullToMemberPointer: { 2124 if (MustVisitNullValue(E)) 2125 (void) Visit(E); 2126 2127 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2128 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2129 } 2130 2131 case CK_ReinterpretMemberPointer: 2132 case CK_BaseToDerivedMemberPointer: 2133 case CK_DerivedToBaseMemberPointer: { 2134 Value *Src = Visit(E); 2135 2136 // Note that the AST doesn't distinguish between checked and 2137 // unchecked member pointer conversions, so we always have to 2138 // implement checked conversions here. This is inefficient when 2139 // actual control flow may be required in order to perform the 2140 // check, which it is for data member pointers (but not member 2141 // function pointers on Itanium and ARM). 2142 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2143 } 2144 2145 case CK_ARCProduceObject: 2146 return CGF.EmitARCRetainScalarExpr(E); 2147 case CK_ARCConsumeObject: 2148 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2149 case CK_ARCReclaimReturnedObject: 2150 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2151 case CK_ARCExtendBlockObject: 2152 return CGF.EmitARCExtendBlockObject(E); 2153 2154 case CK_CopyAndAutoreleaseBlockObject: 2155 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2156 2157 case CK_FloatingRealToComplex: 2158 case CK_FloatingComplexCast: 2159 case CK_IntegralRealToComplex: 2160 case CK_IntegralComplexCast: 2161 case CK_IntegralComplexToFloatingComplex: 2162 case CK_FloatingComplexToIntegralComplex: 2163 case CK_ConstructorConversion: 2164 case CK_ToUnion: 2165 llvm_unreachable("scalar cast to non-scalar value"); 2166 2167 case CK_LValueToRValue: 2168 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2169 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2170 return Visit(const_cast<Expr*>(E)); 2171 2172 case CK_IntegralToPointer: { 2173 Value *Src = Visit(const_cast<Expr*>(E)); 2174 2175 // First, convert to the correct width so that we control the kind of 2176 // extension. 2177 auto DestLLVMTy = ConvertType(DestTy); 2178 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2179 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2180 llvm::Value* IntResult = 2181 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2182 2183 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2184 2185 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2186 // Going from integer to pointer that could be dynamic requires reloading 2187 // dynamic information from invariant.group. 2188 if (DestTy.mayBeDynamicClass()) 2189 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2190 } 2191 return IntToPtr; 2192 } 2193 case CK_PointerToIntegral: { 2194 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2195 auto *PtrExpr = Visit(E); 2196 2197 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2198 const QualType SrcType = E->getType(); 2199 2200 // Casting to integer requires stripping dynamic information as it does 2201 // not carries it. 2202 if (SrcType.mayBeDynamicClass()) 2203 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2204 } 2205 2206 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2207 } 2208 case CK_ToVoid: { 2209 CGF.EmitIgnoredExpr(E); 2210 return nullptr; 2211 } 2212 case CK_VectorSplat: { 2213 llvm::Type *DstTy = ConvertType(DestTy); 2214 Value *Elt = Visit(const_cast<Expr*>(E)); 2215 // Splat the element across to all elements 2216 unsigned NumElements = DstTy->getVectorNumElements(); 2217 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2218 } 2219 2220 case CK_FixedPointCast: 2221 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2222 CE->getExprLoc()); 2223 2224 case CK_FixedPointToBoolean: 2225 assert(E->getType()->isFixedPointType() && 2226 "Expected src type to be fixed point type"); 2227 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2228 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2229 CE->getExprLoc()); 2230 2231 case CK_IntegralCast: { 2232 ScalarConversionOpts Opts; 2233 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2234 if (!ICE->isPartOfExplicitCast()) 2235 Opts = ScalarConversionOpts(CGF.SanOpts); 2236 } 2237 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2238 CE->getExprLoc(), Opts); 2239 } 2240 case CK_IntegralToFloating: 2241 case CK_FloatingToIntegral: 2242 case CK_FloatingCast: 2243 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2244 CE->getExprLoc()); 2245 case CK_BooleanToSignedIntegral: { 2246 ScalarConversionOpts Opts; 2247 Opts.TreatBooleanAsSigned = true; 2248 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2249 CE->getExprLoc(), Opts); 2250 } 2251 case CK_IntegralToBoolean: 2252 return EmitIntToBoolConversion(Visit(E)); 2253 case CK_PointerToBoolean: 2254 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2255 case CK_FloatingToBoolean: 2256 return EmitFloatToBoolConversion(Visit(E)); 2257 case CK_MemberPointerToBoolean: { 2258 llvm::Value *MemPtr = Visit(E); 2259 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2260 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2261 } 2262 2263 case CK_FloatingComplexToReal: 2264 case CK_IntegralComplexToReal: 2265 return CGF.EmitComplexExpr(E, false, true).first; 2266 2267 case CK_FloatingComplexToBoolean: 2268 case CK_IntegralComplexToBoolean: { 2269 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2270 2271 // TODO: kill this function off, inline appropriate case here 2272 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2273 CE->getExprLoc()); 2274 } 2275 2276 case CK_ZeroToOCLOpaqueType: { 2277 assert((DestTy->isEventT() || DestTy->isQueueT() || 2278 DestTy->isOCLIntelSubgroupAVCType()) && 2279 "CK_ZeroToOCLEvent cast on non-event type"); 2280 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2281 } 2282 2283 case CK_IntToOCLSampler: 2284 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2285 2286 } // end of switch 2287 2288 llvm_unreachable("unknown scalar cast"); 2289 } 2290 2291 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2292 CodeGenFunction::StmtExprEvaluation eval(CGF); 2293 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2294 !E->getType()->isVoidType()); 2295 if (!RetAlloca.isValid()) 2296 return nullptr; 2297 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2298 E->getExprLoc()); 2299 } 2300 2301 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2302 CGF.enterFullExpression(E); 2303 CodeGenFunction::RunCleanupsScope Scope(CGF); 2304 Value *V = Visit(E->getSubExpr()); 2305 // Defend against dominance problems caused by jumps out of expression 2306 // evaluation through the shared cleanup block. 2307 Scope.ForceCleanup({&V}); 2308 return V; 2309 } 2310 2311 //===----------------------------------------------------------------------===// 2312 // Unary Operators 2313 //===----------------------------------------------------------------------===// 2314 2315 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2316 llvm::Value *InVal, bool IsInc) { 2317 BinOpInfo BinOp; 2318 BinOp.LHS = InVal; 2319 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2320 BinOp.Ty = E->getType(); 2321 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2322 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2323 BinOp.E = E; 2324 return BinOp; 2325 } 2326 2327 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2328 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2329 llvm::Value *Amount = 2330 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2331 StringRef Name = IsInc ? "inc" : "dec"; 2332 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2333 case LangOptions::SOB_Defined: 2334 return Builder.CreateAdd(InVal, Amount, Name); 2335 case LangOptions::SOB_Undefined: 2336 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2337 return Builder.CreateNSWAdd(InVal, Amount, Name); 2338 LLVM_FALLTHROUGH; 2339 case LangOptions::SOB_Trapping: 2340 if (!E->canOverflow()) 2341 return Builder.CreateNSWAdd(InVal, Amount, Name); 2342 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 2343 } 2344 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2345 } 2346 2347 llvm::Value * 2348 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2349 bool isInc, bool isPre) { 2350 2351 QualType type = E->getSubExpr()->getType(); 2352 llvm::PHINode *atomicPHI = nullptr; 2353 llvm::Value *value; 2354 llvm::Value *input; 2355 2356 int amount = (isInc ? 1 : -1); 2357 bool isSubtraction = !isInc; 2358 2359 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2360 type = atomicTy->getValueType(); 2361 if (isInc && type->isBooleanType()) { 2362 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2363 if (isPre) { 2364 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 2365 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2366 return Builder.getTrue(); 2367 } 2368 // For atomic bool increment, we just store true and return it for 2369 // preincrement, do an atomic swap with true for postincrement 2370 return Builder.CreateAtomicRMW( 2371 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, 2372 llvm::AtomicOrdering::SequentiallyConsistent); 2373 } 2374 // Special case for atomic increment / decrement on integers, emit 2375 // atomicrmw instructions. We skip this if we want to be doing overflow 2376 // checking, and fall into the slow path with the atomic cmpxchg loop. 2377 if (!type->isBooleanType() && type->isIntegerType() && 2378 !(type->isUnsignedIntegerType() && 2379 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2380 CGF.getLangOpts().getSignedOverflowBehavior() != 2381 LangOptions::SOB_Trapping) { 2382 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2383 llvm::AtomicRMWInst::Sub; 2384 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2385 llvm::Instruction::Sub; 2386 llvm::Value *amt = CGF.EmitToMemory( 2387 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2388 llvm::Value *old = Builder.CreateAtomicRMW(aop, 2389 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); 2390 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2391 } 2392 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2393 input = value; 2394 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2395 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2396 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2397 value = CGF.EmitToMemory(value, type); 2398 Builder.CreateBr(opBB); 2399 Builder.SetInsertPoint(opBB); 2400 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2401 atomicPHI->addIncoming(value, startBB); 2402 value = atomicPHI; 2403 } else { 2404 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2405 input = value; 2406 } 2407 2408 // Special case of integer increment that we have to check first: bool++. 2409 // Due to promotion rules, we get: 2410 // bool++ -> bool = bool + 1 2411 // -> bool = (int)bool + 1 2412 // -> bool = ((int)bool + 1 != 0) 2413 // An interesting aspect of this is that increment is always true. 2414 // Decrement does not have this property. 2415 if (isInc && type->isBooleanType()) { 2416 value = Builder.getTrue(); 2417 2418 // Most common case by far: integer increment. 2419 } else if (type->isIntegerType()) { 2420 // Note that signed integer inc/dec with width less than int can't 2421 // overflow because of promotion rules; we're just eliding a few steps here. 2422 if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2423 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2424 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2425 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2426 value = 2427 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 2428 } else { 2429 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2430 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2431 } 2432 2433 // Next most common: pointer increment. 2434 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2435 QualType type = ptr->getPointeeType(); 2436 2437 // VLA types don't have constant size. 2438 if (const VariableArrayType *vla 2439 = CGF.getContext().getAsVariableArrayType(type)) { 2440 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2441 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2442 if (CGF.getLangOpts().isSignedOverflowDefined()) 2443 value = Builder.CreateGEP(value, numElts, "vla.inc"); 2444 else 2445 value = CGF.EmitCheckedInBoundsGEP( 2446 value, numElts, /*SignedIndices=*/false, isSubtraction, 2447 E->getExprLoc(), "vla.inc"); 2448 2449 // Arithmetic on function pointers (!) is just +-1. 2450 } else if (type->isFunctionType()) { 2451 llvm::Value *amt = Builder.getInt32(amount); 2452 2453 value = CGF.EmitCastToVoidPtr(value); 2454 if (CGF.getLangOpts().isSignedOverflowDefined()) 2455 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 2456 else 2457 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2458 isSubtraction, E->getExprLoc(), 2459 "incdec.funcptr"); 2460 value = Builder.CreateBitCast(value, input->getType()); 2461 2462 // For everything else, we can just do a simple increment. 2463 } else { 2464 llvm::Value *amt = Builder.getInt32(amount); 2465 if (CGF.getLangOpts().isSignedOverflowDefined()) 2466 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 2467 else 2468 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2469 isSubtraction, E->getExprLoc(), 2470 "incdec.ptr"); 2471 } 2472 2473 // Vector increment/decrement. 2474 } else if (type->isVectorType()) { 2475 if (type->hasIntegerRepresentation()) { 2476 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2477 2478 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2479 } else { 2480 value = Builder.CreateFAdd( 2481 value, 2482 llvm::ConstantFP::get(value->getType(), amount), 2483 isInc ? "inc" : "dec"); 2484 } 2485 2486 // Floating point. 2487 } else if (type->isRealFloatingType()) { 2488 // Add the inc/dec to the real part. 2489 llvm::Value *amt; 2490 2491 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2492 // Another special case: half FP increment should be done via float 2493 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2494 value = Builder.CreateCall( 2495 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2496 CGF.CGM.FloatTy), 2497 input, "incdec.conv"); 2498 } else { 2499 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2500 } 2501 } 2502 2503 if (value->getType()->isFloatTy()) 2504 amt = llvm::ConstantFP::get(VMContext, 2505 llvm::APFloat(static_cast<float>(amount))); 2506 else if (value->getType()->isDoubleTy()) 2507 amt = llvm::ConstantFP::get(VMContext, 2508 llvm::APFloat(static_cast<double>(amount))); 2509 else { 2510 // Remaining types are Half, LongDouble or __float128. Convert from float. 2511 llvm::APFloat F(static_cast<float>(amount)); 2512 bool ignored; 2513 const llvm::fltSemantics *FS; 2514 // Don't use getFloatTypeSemantics because Half isn't 2515 // necessarily represented using the "half" LLVM type. 2516 if (value->getType()->isFP128Ty()) 2517 FS = &CGF.getTarget().getFloat128Format(); 2518 else if (value->getType()->isHalfTy()) 2519 FS = &CGF.getTarget().getHalfFormat(); 2520 else 2521 FS = &CGF.getTarget().getLongDoubleFormat(); 2522 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2523 amt = llvm::ConstantFP::get(VMContext, F); 2524 } 2525 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2526 2527 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2528 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2529 value = Builder.CreateCall( 2530 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2531 CGF.CGM.FloatTy), 2532 value, "incdec.conv"); 2533 } else { 2534 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2535 } 2536 } 2537 2538 // Objective-C pointer types. 2539 } else { 2540 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2541 value = CGF.EmitCastToVoidPtr(value); 2542 2543 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2544 if (!isInc) size = -size; 2545 llvm::Value *sizeValue = 2546 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2547 2548 if (CGF.getLangOpts().isSignedOverflowDefined()) 2549 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2550 else 2551 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2552 /*SignedIndices=*/false, isSubtraction, 2553 E->getExprLoc(), "incdec.objptr"); 2554 value = Builder.CreateBitCast(value, input->getType()); 2555 } 2556 2557 if (atomicPHI) { 2558 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2559 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2560 auto Pair = CGF.EmitAtomicCompareExchange( 2561 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2562 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2563 llvm::Value *success = Pair.second; 2564 atomicPHI->addIncoming(old, opBB); 2565 Builder.CreateCondBr(success, contBB, opBB); 2566 Builder.SetInsertPoint(contBB); 2567 return isPre ? value : input; 2568 } 2569 2570 // Store the updated result through the lvalue. 2571 if (LV.isBitField()) 2572 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2573 else 2574 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2575 2576 // If this is a postinc, return the value read from memory, otherwise use the 2577 // updated value. 2578 return isPre ? value : input; 2579 } 2580 2581 2582 2583 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2584 TestAndClearIgnoreResultAssign(); 2585 // Emit unary minus with EmitSub so we handle overflow cases etc. 2586 BinOpInfo BinOp; 2587 BinOp.RHS = Visit(E->getSubExpr()); 2588 2589 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 2590 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 2591 else 2592 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2593 BinOp.Ty = E->getType(); 2594 BinOp.Opcode = BO_Sub; 2595 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2596 BinOp.E = E; 2597 return EmitSub(BinOp); 2598 } 2599 2600 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2601 TestAndClearIgnoreResultAssign(); 2602 Value *Op = Visit(E->getSubExpr()); 2603 return Builder.CreateNot(Op, "neg"); 2604 } 2605 2606 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2607 // Perform vector logical not on comparison with zero vector. 2608 if (E->getType()->isExtVectorType()) { 2609 Value *Oper = Visit(E->getSubExpr()); 2610 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2611 Value *Result; 2612 if (Oper->getType()->isFPOrFPVectorTy()) 2613 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2614 else 2615 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2616 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2617 } 2618 2619 // Compare operand to zero. 2620 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2621 2622 // Invert value. 2623 // TODO: Could dynamically modify easy computations here. For example, if 2624 // the operand is an icmp ne, turn into icmp eq. 2625 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2626 2627 // ZExt result to the expr type. 2628 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2629 } 2630 2631 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2632 // Try folding the offsetof to a constant. 2633 Expr::EvalResult EVResult; 2634 if (E->EvaluateAsInt(EVResult, CGF.getContext())) { 2635 llvm::APSInt Value = EVResult.Val.getInt(); 2636 return Builder.getInt(Value); 2637 } 2638 2639 // Loop over the components of the offsetof to compute the value. 2640 unsigned n = E->getNumComponents(); 2641 llvm::Type* ResultType = ConvertType(E->getType()); 2642 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2643 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2644 for (unsigned i = 0; i != n; ++i) { 2645 OffsetOfNode ON = E->getComponent(i); 2646 llvm::Value *Offset = nullptr; 2647 switch (ON.getKind()) { 2648 case OffsetOfNode::Array: { 2649 // Compute the index 2650 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2651 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2652 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2653 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2654 2655 // Save the element type 2656 CurrentType = 2657 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2658 2659 // Compute the element size 2660 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2661 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2662 2663 // Multiply out to compute the result 2664 Offset = Builder.CreateMul(Idx, ElemSize); 2665 break; 2666 } 2667 2668 case OffsetOfNode::Field: { 2669 FieldDecl *MemberDecl = ON.getField(); 2670 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2671 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2672 2673 // Compute the index of the field in its parent. 2674 unsigned i = 0; 2675 // FIXME: It would be nice if we didn't have to loop here! 2676 for (RecordDecl::field_iterator Field = RD->field_begin(), 2677 FieldEnd = RD->field_end(); 2678 Field != FieldEnd; ++Field, ++i) { 2679 if (*Field == MemberDecl) 2680 break; 2681 } 2682 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2683 2684 // Compute the offset to the field 2685 int64_t OffsetInt = RL.getFieldOffset(i) / 2686 CGF.getContext().getCharWidth(); 2687 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2688 2689 // Save the element type. 2690 CurrentType = MemberDecl->getType(); 2691 break; 2692 } 2693 2694 case OffsetOfNode::Identifier: 2695 llvm_unreachable("dependent __builtin_offsetof"); 2696 2697 case OffsetOfNode::Base: { 2698 if (ON.getBase()->isVirtual()) { 2699 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2700 continue; 2701 } 2702 2703 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2704 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2705 2706 // Save the element type. 2707 CurrentType = ON.getBase()->getType(); 2708 2709 // Compute the offset to the base. 2710 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2711 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2712 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2713 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2714 break; 2715 } 2716 } 2717 Result = Builder.CreateAdd(Result, Offset); 2718 } 2719 return Result; 2720 } 2721 2722 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2723 /// argument of the sizeof expression as an integer. 2724 Value * 2725 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2726 const UnaryExprOrTypeTraitExpr *E) { 2727 QualType TypeToSize = E->getTypeOfArgument(); 2728 if (E->getKind() == UETT_SizeOf) { 2729 if (const VariableArrayType *VAT = 2730 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2731 if (E->isArgumentType()) { 2732 // sizeof(type) - make sure to emit the VLA size. 2733 CGF.EmitVariablyModifiedType(TypeToSize); 2734 } else { 2735 // C99 6.5.3.4p2: If the argument is an expression of type 2736 // VLA, it is evaluated. 2737 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2738 } 2739 2740 auto VlaSize = CGF.getVLASize(VAT); 2741 llvm::Value *size = VlaSize.NumElts; 2742 2743 // Scale the number of non-VLA elements by the non-VLA element size. 2744 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2745 if (!eltSize.isOne()) 2746 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2747 2748 return size; 2749 } 2750 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2751 auto Alignment = 2752 CGF.getContext() 2753 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2754 E->getTypeOfArgument()->getPointeeType())) 2755 .getQuantity(); 2756 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2757 } 2758 2759 // If this isn't sizeof(vla), the result must be constant; use the constant 2760 // folding logic so we don't have to duplicate it here. 2761 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2762 } 2763 2764 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2765 Expr *Op = E->getSubExpr(); 2766 if (Op->getType()->isAnyComplexType()) { 2767 // If it's an l-value, load through the appropriate subobject l-value. 2768 // Note that we have to ask E because Op might be an l-value that 2769 // this won't work for, e.g. an Obj-C property. 2770 if (E->isGLValue()) 2771 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2772 E->getExprLoc()).getScalarVal(); 2773 2774 // Otherwise, calculate and project. 2775 return CGF.EmitComplexExpr(Op, false, true).first; 2776 } 2777 2778 return Visit(Op); 2779 } 2780 2781 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2782 Expr *Op = E->getSubExpr(); 2783 if (Op->getType()->isAnyComplexType()) { 2784 // If it's an l-value, load through the appropriate subobject l-value. 2785 // Note that we have to ask E because Op might be an l-value that 2786 // this won't work for, e.g. an Obj-C property. 2787 if (Op->isGLValue()) 2788 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2789 E->getExprLoc()).getScalarVal(); 2790 2791 // Otherwise, calculate and project. 2792 return CGF.EmitComplexExpr(Op, true, false).second; 2793 } 2794 2795 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2796 // effects are evaluated, but not the actual value. 2797 if (Op->isGLValue()) 2798 CGF.EmitLValue(Op); 2799 else 2800 CGF.EmitScalarExpr(Op, true); 2801 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2802 } 2803 2804 //===----------------------------------------------------------------------===// 2805 // Binary Operators 2806 //===----------------------------------------------------------------------===// 2807 2808 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2809 TestAndClearIgnoreResultAssign(); 2810 BinOpInfo Result; 2811 Result.LHS = Visit(E->getLHS()); 2812 Result.RHS = Visit(E->getRHS()); 2813 Result.Ty = E->getType(); 2814 Result.Opcode = E->getOpcode(); 2815 Result.FPFeatures = E->getFPFeatures(); 2816 Result.E = E; 2817 return Result; 2818 } 2819 2820 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2821 const CompoundAssignOperator *E, 2822 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2823 Value *&Result) { 2824 QualType LHSTy = E->getLHS()->getType(); 2825 BinOpInfo OpInfo; 2826 2827 if (E->getComputationResultType()->isAnyComplexType()) 2828 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2829 2830 // Emit the RHS first. __block variables need to have the rhs evaluated 2831 // first, plus this should improve codegen a little. 2832 OpInfo.RHS = Visit(E->getRHS()); 2833 OpInfo.Ty = E->getComputationResultType(); 2834 OpInfo.Opcode = E->getOpcode(); 2835 OpInfo.FPFeatures = E->getFPFeatures(); 2836 OpInfo.E = E; 2837 // Load/convert the LHS. 2838 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2839 2840 llvm::PHINode *atomicPHI = nullptr; 2841 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2842 QualType type = atomicTy->getValueType(); 2843 if (!type->isBooleanType() && type->isIntegerType() && 2844 !(type->isUnsignedIntegerType() && 2845 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2846 CGF.getLangOpts().getSignedOverflowBehavior() != 2847 LangOptions::SOB_Trapping) { 2848 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2849 switch (OpInfo.Opcode) { 2850 // We don't have atomicrmw operands for *, %, /, <<, >> 2851 case BO_MulAssign: case BO_DivAssign: 2852 case BO_RemAssign: 2853 case BO_ShlAssign: 2854 case BO_ShrAssign: 2855 break; 2856 case BO_AddAssign: 2857 aop = llvm::AtomicRMWInst::Add; 2858 break; 2859 case BO_SubAssign: 2860 aop = llvm::AtomicRMWInst::Sub; 2861 break; 2862 case BO_AndAssign: 2863 aop = llvm::AtomicRMWInst::And; 2864 break; 2865 case BO_XorAssign: 2866 aop = llvm::AtomicRMWInst::Xor; 2867 break; 2868 case BO_OrAssign: 2869 aop = llvm::AtomicRMWInst::Or; 2870 break; 2871 default: 2872 llvm_unreachable("Invalid compound assignment type"); 2873 } 2874 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2875 llvm::Value *amt = CGF.EmitToMemory( 2876 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2877 E->getExprLoc()), 2878 LHSTy); 2879 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2880 llvm::AtomicOrdering::SequentiallyConsistent); 2881 return LHSLV; 2882 } 2883 } 2884 // FIXME: For floating point types, we should be saving and restoring the 2885 // floating point environment in the loop. 2886 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2887 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2888 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2889 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2890 Builder.CreateBr(opBB); 2891 Builder.SetInsertPoint(opBB); 2892 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2893 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2894 OpInfo.LHS = atomicPHI; 2895 } 2896 else 2897 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2898 2899 SourceLocation Loc = E->getExprLoc(); 2900 OpInfo.LHS = 2901 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2902 2903 // Expand the binary operator. 2904 Result = (this->*Func)(OpInfo); 2905 2906 // Convert the result back to the LHS type, 2907 // potentially with Implicit Conversion sanitizer check. 2908 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, 2909 Loc, ScalarConversionOpts(CGF.SanOpts)); 2910 2911 if (atomicPHI) { 2912 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2913 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2914 auto Pair = CGF.EmitAtomicCompareExchange( 2915 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2916 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2917 llvm::Value *success = Pair.second; 2918 atomicPHI->addIncoming(old, opBB); 2919 Builder.CreateCondBr(success, contBB, opBB); 2920 Builder.SetInsertPoint(contBB); 2921 return LHSLV; 2922 } 2923 2924 // Store the result value into the LHS lvalue. Bit-fields are handled 2925 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2926 // 'An assignment expression has the value of the left operand after the 2927 // assignment...'. 2928 if (LHSLV.isBitField()) 2929 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2930 else 2931 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2932 2933 return LHSLV; 2934 } 2935 2936 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2937 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2938 bool Ignore = TestAndClearIgnoreResultAssign(); 2939 Value *RHS; 2940 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2941 2942 // If the result is clearly ignored, return now. 2943 if (Ignore) 2944 return nullptr; 2945 2946 // The result of an assignment in C is the assigned r-value. 2947 if (!CGF.getLangOpts().CPlusPlus) 2948 return RHS; 2949 2950 // If the lvalue is non-volatile, return the computed value of the assignment. 2951 if (!LHS.isVolatileQualified()) 2952 return RHS; 2953 2954 // Otherwise, reload the value. 2955 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2956 } 2957 2958 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2959 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2960 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2961 2962 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2963 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2964 SanitizerKind::IntegerDivideByZero)); 2965 } 2966 2967 const auto *BO = cast<BinaryOperator>(Ops.E); 2968 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2969 Ops.Ty->hasSignedIntegerRepresentation() && 2970 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 2971 Ops.mayHaveIntegerOverflow()) { 2972 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2973 2974 llvm::Value *IntMin = 2975 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2976 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2977 2978 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2979 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2980 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2981 Checks.push_back( 2982 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2983 } 2984 2985 if (Checks.size() > 0) 2986 EmitBinOpCheck(Checks, Ops); 2987 } 2988 2989 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2990 { 2991 CodeGenFunction::SanitizerScope SanScope(&CGF); 2992 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2993 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2994 Ops.Ty->isIntegerType() && 2995 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 2996 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2997 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2998 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2999 Ops.Ty->isRealFloatingType() && 3000 Ops.mayHaveFloatDivisionByZero()) { 3001 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3002 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 3003 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 3004 Ops); 3005 } 3006 } 3007 3008 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 3009 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 3010 if (CGF.getLangOpts().OpenCL && 3011 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 3012 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 3013 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 3014 // build option allows an application to specify that single precision 3015 // floating-point divide (x/y and 1/x) and sqrt used in the program 3016 // source are correctly rounded. 3017 llvm::Type *ValTy = Val->getType(); 3018 if (ValTy->isFloatTy() || 3019 (isa<llvm::VectorType>(ValTy) && 3020 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 3021 CGF.SetFPAccuracy(Val, 2.5); 3022 } 3023 return Val; 3024 } 3025 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3026 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 3027 else 3028 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 3029 } 3030 3031 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 3032 // Rem in C can't be a floating point type: C99 6.5.5p2. 3033 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3034 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3035 Ops.Ty->isIntegerType() && 3036 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3037 CodeGenFunction::SanitizerScope SanScope(&CGF); 3038 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3039 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3040 } 3041 3042 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3043 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3044 else 3045 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3046 } 3047 3048 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3049 unsigned IID; 3050 unsigned OpID = 0; 3051 3052 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3053 switch (Ops.Opcode) { 3054 case BO_Add: 3055 case BO_AddAssign: 3056 OpID = 1; 3057 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3058 llvm::Intrinsic::uadd_with_overflow; 3059 break; 3060 case BO_Sub: 3061 case BO_SubAssign: 3062 OpID = 2; 3063 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3064 llvm::Intrinsic::usub_with_overflow; 3065 break; 3066 case BO_Mul: 3067 case BO_MulAssign: 3068 OpID = 3; 3069 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3070 llvm::Intrinsic::umul_with_overflow; 3071 break; 3072 default: 3073 llvm_unreachable("Unsupported operation for overflow detection"); 3074 } 3075 OpID <<= 1; 3076 if (isSigned) 3077 OpID |= 1; 3078 3079 CodeGenFunction::SanitizerScope SanScope(&CGF); 3080 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3081 3082 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3083 3084 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3085 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3086 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3087 3088 // Handle overflow with llvm.trap if no custom handler has been specified. 3089 const std::string *handlerName = 3090 &CGF.getLangOpts().OverflowHandler; 3091 if (handlerName->empty()) { 3092 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3093 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3094 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3095 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3096 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3097 : SanitizerKind::UnsignedIntegerOverflow; 3098 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3099 } else 3100 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 3101 return result; 3102 } 3103 3104 // Branch in case of overflow. 3105 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3106 llvm::BasicBlock *continueBB = 3107 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3108 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3109 3110 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3111 3112 // If an overflow handler is set, then we want to call it and then use its 3113 // result, if it returns. 3114 Builder.SetInsertPoint(overflowBB); 3115 3116 // Get the overflow handler. 3117 llvm::Type *Int8Ty = CGF.Int8Ty; 3118 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3119 llvm::FunctionType *handlerTy = 3120 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3121 llvm::FunctionCallee handler = 3122 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3123 3124 // Sign extend the args to 64-bit, so that we can use the same handler for 3125 // all types of overflow. 3126 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3127 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3128 3129 // Call the handler with the two arguments, the operation, and the size of 3130 // the result. 3131 llvm::Value *handlerArgs[] = { 3132 lhs, 3133 rhs, 3134 Builder.getInt8(OpID), 3135 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3136 }; 3137 llvm::Value *handlerResult = 3138 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3139 3140 // Truncate the result back to the desired size. 3141 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3142 Builder.CreateBr(continueBB); 3143 3144 Builder.SetInsertPoint(continueBB); 3145 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3146 phi->addIncoming(result, initialBB); 3147 phi->addIncoming(handlerResult, overflowBB); 3148 3149 return phi; 3150 } 3151 3152 /// Emit pointer + index arithmetic. 3153 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3154 const BinOpInfo &op, 3155 bool isSubtraction) { 3156 // Must have binary (not unary) expr here. Unary pointer 3157 // increment/decrement doesn't use this path. 3158 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3159 3160 Value *pointer = op.LHS; 3161 Expr *pointerOperand = expr->getLHS(); 3162 Value *index = op.RHS; 3163 Expr *indexOperand = expr->getRHS(); 3164 3165 // In a subtraction, the LHS is always the pointer. 3166 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3167 std::swap(pointer, index); 3168 std::swap(pointerOperand, indexOperand); 3169 } 3170 3171 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3172 3173 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3174 auto &DL = CGF.CGM.getDataLayout(); 3175 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3176 3177 // Some versions of glibc and gcc use idioms (particularly in their malloc 3178 // routines) that add a pointer-sized integer (known to be a pointer value) 3179 // to a null pointer in order to cast the value back to an integer or as 3180 // part of a pointer alignment algorithm. This is undefined behavior, but 3181 // we'd like to be able to compile programs that use it. 3182 // 3183 // Normally, we'd generate a GEP with a null-pointer base here in response 3184 // to that code, but it's also UB to dereference a pointer created that 3185 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3186 // generate a direct cast of the integer value to a pointer. 3187 // 3188 // The idiom (p = nullptr + N) is not met if any of the following are true: 3189 // 3190 // The operation is subtraction. 3191 // The index is not pointer-sized. 3192 // The pointer type is not byte-sized. 3193 // 3194 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3195 op.Opcode, 3196 expr->getLHS(), 3197 expr->getRHS())) 3198 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3199 3200 if (width != DL.getTypeSizeInBits(PtrTy)) { 3201 // Zero-extend or sign-extend the pointer value according to 3202 // whether the index is signed or not. 3203 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned, 3204 "idx.ext"); 3205 } 3206 3207 // If this is subtraction, negate the index. 3208 if (isSubtraction) 3209 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3210 3211 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3212 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3213 /*Accessed*/ false); 3214 3215 const PointerType *pointerType 3216 = pointerOperand->getType()->getAs<PointerType>(); 3217 if (!pointerType) { 3218 QualType objectType = pointerOperand->getType() 3219 ->castAs<ObjCObjectPointerType>() 3220 ->getPointeeType(); 3221 llvm::Value *objectSize 3222 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3223 3224 index = CGF.Builder.CreateMul(index, objectSize); 3225 3226 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3227 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3228 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3229 } 3230 3231 QualType elementType = pointerType->getPointeeType(); 3232 if (const VariableArrayType *vla 3233 = CGF.getContext().getAsVariableArrayType(elementType)) { 3234 // The element count here is the total number of non-VLA elements. 3235 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3236 3237 // Effectively, the multiply by the VLA size is part of the GEP. 3238 // GEP indexes are signed, and scaling an index isn't permitted to 3239 // signed-overflow, so we use the same semantics for our explicit 3240 // multiply. We suppress this if overflow is not undefined behavior. 3241 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3242 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3243 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3244 } else { 3245 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3246 pointer = 3247 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3248 op.E->getExprLoc(), "add.ptr"); 3249 } 3250 return pointer; 3251 } 3252 3253 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3254 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3255 // future proof. 3256 if (elementType->isVoidType() || elementType->isFunctionType()) { 3257 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3258 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3259 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3260 } 3261 3262 if (CGF.getLangOpts().isSignedOverflowDefined()) 3263 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3264 3265 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3266 op.E->getExprLoc(), "add.ptr"); 3267 } 3268 3269 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3270 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3271 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3272 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3273 // efficient operations. 3274 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 3275 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3276 bool negMul, bool negAdd) { 3277 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3278 3279 Value *MulOp0 = MulOp->getOperand(0); 3280 Value *MulOp1 = MulOp->getOperand(1); 3281 if (negMul) { 3282 MulOp0 = 3283 Builder.CreateFSub( 3284 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 3285 "neg"); 3286 } else if (negAdd) { 3287 Addend = 3288 Builder.CreateFSub( 3289 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 3290 "neg"); 3291 } 3292 3293 Value *FMulAdd = Builder.CreateCall( 3294 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3295 {MulOp0, MulOp1, Addend}); 3296 MulOp->eraseFromParent(); 3297 3298 return FMulAdd; 3299 } 3300 3301 // Check whether it would be legal to emit an fmuladd intrinsic call to 3302 // represent op and if so, build the fmuladd. 3303 // 3304 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3305 // Does NOT check the type of the operation - it's assumed that this function 3306 // will be called from contexts where it's known that the type is contractable. 3307 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3308 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3309 bool isSub=false) { 3310 3311 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3312 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3313 "Only fadd/fsub can be the root of an fmuladd."); 3314 3315 // Check whether this op is marked as fusable. 3316 if (!op.FPFeatures.allowFPContractWithinStatement()) 3317 return nullptr; 3318 3319 // We have a potentially fusable op. Look for a mul on one of the operands. 3320 // Also, make sure that the mul result isn't used directly. In that case, 3321 // there's no point creating a muladd operation. 3322 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3323 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3324 LHSBinOp->use_empty()) 3325 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3326 } 3327 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3328 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3329 RHSBinOp->use_empty()) 3330 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3331 } 3332 3333 return nullptr; 3334 } 3335 3336 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3337 if (op.LHS->getType()->isPointerTy() || 3338 op.RHS->getType()->isPointerTy()) 3339 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3340 3341 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3342 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3343 case LangOptions::SOB_Defined: 3344 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3345 case LangOptions::SOB_Undefined: 3346 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3347 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3348 LLVM_FALLTHROUGH; 3349 case LangOptions::SOB_Trapping: 3350 if (CanElideOverflowCheck(CGF.getContext(), op)) 3351 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3352 return EmitOverflowCheckedBinOp(op); 3353 } 3354 } 3355 3356 if (op.Ty->isUnsignedIntegerType() && 3357 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3358 !CanElideOverflowCheck(CGF.getContext(), op)) 3359 return EmitOverflowCheckedBinOp(op); 3360 3361 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3362 // Try to form an fmuladd. 3363 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3364 return FMulAdd; 3365 3366 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3367 return propagateFMFlags(V, op); 3368 } 3369 3370 if (op.isFixedPointBinOp()) 3371 return EmitFixedPointBinOp(op); 3372 3373 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3374 } 3375 3376 /// The resulting value must be calculated with exact precision, so the operands 3377 /// may not be the same type. 3378 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { 3379 using llvm::APSInt; 3380 using llvm::ConstantInt; 3381 3382 const auto *BinOp = cast<BinaryOperator>(op.E); 3383 3384 // The result is a fixed point type and at least one of the operands is fixed 3385 // point while the other is either fixed point or an int. This resulting type 3386 // should be determined by Sema::handleFixedPointConversions(). 3387 QualType ResultTy = op.Ty; 3388 QualType LHSTy = BinOp->getLHS()->getType(); 3389 QualType RHSTy = BinOp->getRHS()->getType(); 3390 ASTContext &Ctx = CGF.getContext(); 3391 Value *LHS = op.LHS; 3392 Value *RHS = op.RHS; 3393 3394 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); 3395 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); 3396 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); 3397 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); 3398 3399 // Convert the operands to the full precision type. 3400 Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema, 3401 BinOp->getExprLoc()); 3402 Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema, 3403 BinOp->getExprLoc()); 3404 3405 // Perform the actual addition. 3406 Value *Result; 3407 switch (BinOp->getOpcode()) { 3408 case BO_Add: { 3409 if (ResultFixedSema.isSaturated()) { 3410 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned() 3411 ? llvm::Intrinsic::sadd_sat 3412 : llvm::Intrinsic::uadd_sat; 3413 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3414 } else { 3415 Result = Builder.CreateAdd(FullLHS, FullRHS); 3416 } 3417 break; 3418 } 3419 case BO_Sub: { 3420 if (ResultFixedSema.isSaturated()) { 3421 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned() 3422 ? llvm::Intrinsic::ssub_sat 3423 : llvm::Intrinsic::usub_sat; 3424 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3425 } else { 3426 Result = Builder.CreateSub(FullLHS, FullRHS); 3427 } 3428 break; 3429 } 3430 case BO_LT: 3431 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS) 3432 : Builder.CreateICmpULT(FullLHS, FullRHS); 3433 case BO_GT: 3434 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS) 3435 : Builder.CreateICmpUGT(FullLHS, FullRHS); 3436 case BO_LE: 3437 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS) 3438 : Builder.CreateICmpULE(FullLHS, FullRHS); 3439 case BO_GE: 3440 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS) 3441 : Builder.CreateICmpUGE(FullLHS, FullRHS); 3442 case BO_EQ: 3443 // For equality operations, we assume any padding bits on unsigned types are 3444 // zero'd out. They could be overwritten through non-saturating operations 3445 // that cause overflow, but this leads to undefined behavior. 3446 return Builder.CreateICmpEQ(FullLHS, FullRHS); 3447 case BO_NE: 3448 return Builder.CreateICmpNE(FullLHS, FullRHS); 3449 case BO_Mul: 3450 case BO_Div: 3451 case BO_Shl: 3452 case BO_Shr: 3453 case BO_Cmp: 3454 case BO_LAnd: 3455 case BO_LOr: 3456 case BO_MulAssign: 3457 case BO_DivAssign: 3458 case BO_AddAssign: 3459 case BO_SubAssign: 3460 case BO_ShlAssign: 3461 case BO_ShrAssign: 3462 llvm_unreachable("Found unimplemented fixed point binary operation"); 3463 case BO_PtrMemD: 3464 case BO_PtrMemI: 3465 case BO_Rem: 3466 case BO_Xor: 3467 case BO_And: 3468 case BO_Or: 3469 case BO_Assign: 3470 case BO_RemAssign: 3471 case BO_AndAssign: 3472 case BO_XorAssign: 3473 case BO_OrAssign: 3474 case BO_Comma: 3475 llvm_unreachable("Found unsupported binary operation for fixed point types."); 3476 } 3477 3478 // Convert to the result type. 3479 return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema, 3480 BinOp->getExprLoc()); 3481 } 3482 3483 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3484 // The LHS is always a pointer if either side is. 3485 if (!op.LHS->getType()->isPointerTy()) { 3486 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3487 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3488 case LangOptions::SOB_Defined: 3489 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3490 case LangOptions::SOB_Undefined: 3491 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3492 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3493 LLVM_FALLTHROUGH; 3494 case LangOptions::SOB_Trapping: 3495 if (CanElideOverflowCheck(CGF.getContext(), op)) 3496 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3497 return EmitOverflowCheckedBinOp(op); 3498 } 3499 } 3500 3501 if (op.Ty->isUnsignedIntegerType() && 3502 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3503 !CanElideOverflowCheck(CGF.getContext(), op)) 3504 return EmitOverflowCheckedBinOp(op); 3505 3506 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3507 // Try to form an fmuladd. 3508 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3509 return FMulAdd; 3510 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3511 return propagateFMFlags(V, op); 3512 } 3513 3514 if (op.isFixedPointBinOp()) 3515 return EmitFixedPointBinOp(op); 3516 3517 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3518 } 3519 3520 // If the RHS is not a pointer, then we have normal pointer 3521 // arithmetic. 3522 if (!op.RHS->getType()->isPointerTy()) 3523 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3524 3525 // Otherwise, this is a pointer subtraction. 3526 3527 // Do the raw subtraction part. 3528 llvm::Value *LHS 3529 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3530 llvm::Value *RHS 3531 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3532 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3533 3534 // Okay, figure out the element size. 3535 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3536 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3537 3538 llvm::Value *divisor = nullptr; 3539 3540 // For a variable-length array, this is going to be non-constant. 3541 if (const VariableArrayType *vla 3542 = CGF.getContext().getAsVariableArrayType(elementType)) { 3543 auto VlaSize = CGF.getVLASize(vla); 3544 elementType = VlaSize.Type; 3545 divisor = VlaSize.NumElts; 3546 3547 // Scale the number of non-VLA elements by the non-VLA element size. 3548 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3549 if (!eltSize.isOne()) 3550 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3551 3552 // For everything elese, we can just compute it, safe in the 3553 // assumption that Sema won't let anything through that we can't 3554 // safely compute the size of. 3555 } else { 3556 CharUnits elementSize; 3557 // Handle GCC extension for pointer arithmetic on void* and 3558 // function pointer types. 3559 if (elementType->isVoidType() || elementType->isFunctionType()) 3560 elementSize = CharUnits::One(); 3561 else 3562 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3563 3564 // Don't even emit the divide for element size of 1. 3565 if (elementSize.isOne()) 3566 return diffInChars; 3567 3568 divisor = CGF.CGM.getSize(elementSize); 3569 } 3570 3571 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3572 // pointer difference in C is only defined in the case where both operands 3573 // are pointing to elements of an array. 3574 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3575 } 3576 3577 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3578 llvm::IntegerType *Ty; 3579 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3580 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3581 else 3582 Ty = cast<llvm::IntegerType>(LHS->getType()); 3583 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3584 } 3585 3586 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3587 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3588 // RHS to the same size as the LHS. 3589 Value *RHS = Ops.RHS; 3590 if (Ops.LHS->getType() != RHS->getType()) 3591 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3592 3593 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3594 Ops.Ty->hasSignedIntegerRepresentation() && 3595 !CGF.getLangOpts().isSignedOverflowDefined(); 3596 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3597 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3598 if (CGF.getLangOpts().OpenCL) 3599 RHS = 3600 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 3601 else if ((SanitizeBase || SanitizeExponent) && 3602 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3603 CodeGenFunction::SanitizerScope SanScope(&CGF); 3604 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3605 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3606 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3607 3608 if (SanitizeExponent) { 3609 Checks.push_back( 3610 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3611 } 3612 3613 if (SanitizeBase) { 3614 // Check whether we are shifting any non-zero bits off the top of the 3615 // integer. We only emit this check if exponent is valid - otherwise 3616 // instructions below will have undefined behavior themselves. 3617 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3618 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3619 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3620 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3621 llvm::Value *PromotedWidthMinusOne = 3622 (RHS == Ops.RHS) ? WidthMinusOne 3623 : GetWidthMinusOneValue(Ops.LHS, RHS); 3624 CGF.EmitBlock(CheckShiftBase); 3625 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3626 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3627 /*NUW*/ true, /*NSW*/ true), 3628 "shl.check"); 3629 if (CGF.getLangOpts().CPlusPlus) { 3630 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3631 // Under C++11's rules, shifting a 1 bit into the sign bit is 3632 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3633 // define signed left shifts, so we use the C99 and C++11 rules there). 3634 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3635 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3636 } 3637 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3638 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3639 CGF.EmitBlock(Cont); 3640 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3641 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3642 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3643 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 3644 } 3645 3646 assert(!Checks.empty()); 3647 EmitBinOpCheck(Checks, Ops); 3648 } 3649 3650 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3651 } 3652 3653 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3654 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3655 // RHS to the same size as the LHS. 3656 Value *RHS = Ops.RHS; 3657 if (Ops.LHS->getType() != RHS->getType()) 3658 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3659 3660 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3661 if (CGF.getLangOpts().OpenCL) 3662 RHS = 3663 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 3664 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3665 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3666 CodeGenFunction::SanitizerScope SanScope(&CGF); 3667 llvm::Value *Valid = 3668 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3669 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3670 } 3671 3672 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3673 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3674 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3675 } 3676 3677 enum IntrinsicType { VCMPEQ, VCMPGT }; 3678 // return corresponding comparison intrinsic for given vector type 3679 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3680 BuiltinType::Kind ElemKind) { 3681 switch (ElemKind) { 3682 default: llvm_unreachable("unexpected element type"); 3683 case BuiltinType::Char_U: 3684 case BuiltinType::UChar: 3685 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3686 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3687 case BuiltinType::Char_S: 3688 case BuiltinType::SChar: 3689 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3690 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3691 case BuiltinType::UShort: 3692 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3693 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3694 case BuiltinType::Short: 3695 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3696 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3697 case BuiltinType::UInt: 3698 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3699 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3700 case BuiltinType::Int: 3701 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3702 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3703 case BuiltinType::ULong: 3704 case BuiltinType::ULongLong: 3705 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3706 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 3707 case BuiltinType::Long: 3708 case BuiltinType::LongLong: 3709 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3710 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 3711 case BuiltinType::Float: 3712 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3713 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3714 case BuiltinType::Double: 3715 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 3716 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 3717 } 3718 } 3719 3720 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3721 llvm::CmpInst::Predicate UICmpOpc, 3722 llvm::CmpInst::Predicate SICmpOpc, 3723 llvm::CmpInst::Predicate FCmpOpc) { 3724 TestAndClearIgnoreResultAssign(); 3725 Value *Result; 3726 QualType LHSTy = E->getLHS()->getType(); 3727 QualType RHSTy = E->getRHS()->getType(); 3728 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3729 assert(E->getOpcode() == BO_EQ || 3730 E->getOpcode() == BO_NE); 3731 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3732 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3733 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3734 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3735 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3736 BinOpInfo BOInfo = EmitBinOps(E); 3737 Value *LHS = BOInfo.LHS; 3738 Value *RHS = BOInfo.RHS; 3739 3740 // If AltiVec, the comparison results in a numeric type, so we use 3741 // intrinsics comparing vectors and giving 0 or 1 as a result 3742 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3743 // constants for mapping CR6 register bits to predicate result 3744 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3745 3746 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3747 3748 // in several cases vector arguments order will be reversed 3749 Value *FirstVecArg = LHS, 3750 *SecondVecArg = RHS; 3751 3752 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 3753 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 3754 BuiltinType::Kind ElementKind = BTy->getKind(); 3755 3756 switch(E->getOpcode()) { 3757 default: llvm_unreachable("is not a comparison operation"); 3758 case BO_EQ: 3759 CR6 = CR6_LT; 3760 ID = GetIntrinsic(VCMPEQ, ElementKind); 3761 break; 3762 case BO_NE: 3763 CR6 = CR6_EQ; 3764 ID = GetIntrinsic(VCMPEQ, ElementKind); 3765 break; 3766 case BO_LT: 3767 CR6 = CR6_LT; 3768 ID = GetIntrinsic(VCMPGT, ElementKind); 3769 std::swap(FirstVecArg, SecondVecArg); 3770 break; 3771 case BO_GT: 3772 CR6 = CR6_LT; 3773 ID = GetIntrinsic(VCMPGT, ElementKind); 3774 break; 3775 case BO_LE: 3776 if (ElementKind == BuiltinType::Float) { 3777 CR6 = CR6_LT; 3778 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3779 std::swap(FirstVecArg, SecondVecArg); 3780 } 3781 else { 3782 CR6 = CR6_EQ; 3783 ID = GetIntrinsic(VCMPGT, ElementKind); 3784 } 3785 break; 3786 case BO_GE: 3787 if (ElementKind == BuiltinType::Float) { 3788 CR6 = CR6_LT; 3789 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3790 } 3791 else { 3792 CR6 = CR6_EQ; 3793 ID = GetIntrinsic(VCMPGT, ElementKind); 3794 std::swap(FirstVecArg, SecondVecArg); 3795 } 3796 break; 3797 } 3798 3799 Value *CR6Param = Builder.getInt32(CR6); 3800 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 3801 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 3802 3803 // The result type of intrinsic may not be same as E->getType(). 3804 // If E->getType() is not BoolTy, EmitScalarConversion will do the 3805 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 3806 // do nothing, if ResultTy is not i1 at the same time, it will cause 3807 // crash later. 3808 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 3809 if (ResultTy->getBitWidth() > 1 && 3810 E->getType() == CGF.getContext().BoolTy) 3811 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 3812 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3813 E->getExprLoc()); 3814 } 3815 3816 if (BOInfo.isFixedPointBinOp()) { 3817 Result = EmitFixedPointBinOp(BOInfo); 3818 } else if (LHS->getType()->isFPOrFPVectorTy()) { 3819 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 3820 } else if (LHSTy->hasSignedIntegerRepresentation()) { 3821 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 3822 } else { 3823 // Unsigned integers and pointers. 3824 3825 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 3826 !isa<llvm::ConstantPointerNull>(LHS) && 3827 !isa<llvm::ConstantPointerNull>(RHS)) { 3828 3829 // Dynamic information is required to be stripped for comparisons, 3830 // because it could leak the dynamic information. Based on comparisons 3831 // of pointers to dynamic objects, the optimizer can replace one pointer 3832 // with another, which might be incorrect in presence of invariant 3833 // groups. Comparison with null is safe because null does not carry any 3834 // dynamic information. 3835 if (LHSTy.mayBeDynamicClass()) 3836 LHS = Builder.CreateStripInvariantGroup(LHS); 3837 if (RHSTy.mayBeDynamicClass()) 3838 RHS = Builder.CreateStripInvariantGroup(RHS); 3839 } 3840 3841 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 3842 } 3843 3844 // If this is a vector comparison, sign extend the result to the appropriate 3845 // vector integer type and return it (don't convert to bool). 3846 if (LHSTy->isVectorType()) 3847 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 3848 3849 } else { 3850 // Complex Comparison: can only be an equality comparison. 3851 CodeGenFunction::ComplexPairTy LHS, RHS; 3852 QualType CETy; 3853 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 3854 LHS = CGF.EmitComplexExpr(E->getLHS()); 3855 CETy = CTy->getElementType(); 3856 } else { 3857 LHS.first = Visit(E->getLHS()); 3858 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 3859 CETy = LHSTy; 3860 } 3861 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 3862 RHS = CGF.EmitComplexExpr(E->getRHS()); 3863 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 3864 CTy->getElementType()) && 3865 "The element types must always match."); 3866 (void)CTy; 3867 } else { 3868 RHS.first = Visit(E->getRHS()); 3869 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 3870 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 3871 "The element types must always match."); 3872 } 3873 3874 Value *ResultR, *ResultI; 3875 if (CETy->isRealFloatingType()) { 3876 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 3877 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 3878 } else { 3879 // Complex comparisons can only be equality comparisons. As such, signed 3880 // and unsigned opcodes are the same. 3881 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 3882 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 3883 } 3884 3885 if (E->getOpcode() == BO_EQ) { 3886 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 3887 } else { 3888 assert(E->getOpcode() == BO_NE && 3889 "Complex comparison other than == or != ?"); 3890 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 3891 } 3892 } 3893 3894 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3895 E->getExprLoc()); 3896 } 3897 3898 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 3899 bool Ignore = TestAndClearIgnoreResultAssign(); 3900 3901 Value *RHS; 3902 LValue LHS; 3903 3904 switch (E->getLHS()->getType().getObjCLifetime()) { 3905 case Qualifiers::OCL_Strong: 3906 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 3907 break; 3908 3909 case Qualifiers::OCL_Autoreleasing: 3910 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3911 break; 3912 3913 case Qualifiers::OCL_ExplicitNone: 3914 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 3915 break; 3916 3917 case Qualifiers::OCL_Weak: 3918 RHS = Visit(E->getRHS()); 3919 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3920 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3921 break; 3922 3923 case Qualifiers::OCL_None: 3924 // __block variables need to have the rhs evaluated first, plus 3925 // this should improve codegen just a little. 3926 RHS = Visit(E->getRHS()); 3927 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3928 3929 // Store the value into the LHS. Bit-fields are handled specially 3930 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3931 // 'An assignment expression has the value of the left operand after 3932 // the assignment...'. 3933 if (LHS.isBitField()) { 3934 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3935 } else { 3936 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 3937 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3938 } 3939 } 3940 3941 // If the result is clearly ignored, return now. 3942 if (Ignore) 3943 return nullptr; 3944 3945 // The result of an assignment in C is the assigned r-value. 3946 if (!CGF.getLangOpts().CPlusPlus) 3947 return RHS; 3948 3949 // If the lvalue is non-volatile, return the computed value of the assignment. 3950 if (!LHS.isVolatileQualified()) 3951 return RHS; 3952 3953 // Otherwise, reload the value. 3954 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3955 } 3956 3957 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3958 // Perform vector logical and on comparisons with zero vectors. 3959 if (E->getType()->isVectorType()) { 3960 CGF.incrementProfileCounter(E); 3961 3962 Value *LHS = Visit(E->getLHS()); 3963 Value *RHS = Visit(E->getRHS()); 3964 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3965 if (LHS->getType()->isFPOrFPVectorTy()) { 3966 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3967 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3968 } else { 3969 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3970 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3971 } 3972 Value *And = Builder.CreateAnd(LHS, RHS); 3973 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3974 } 3975 3976 llvm::Type *ResTy = ConvertType(E->getType()); 3977 3978 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3979 // If we have 1 && X, just emit X without inserting the control flow. 3980 bool LHSCondVal; 3981 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3982 if (LHSCondVal) { // If we have 1 && X, just emit X. 3983 CGF.incrementProfileCounter(E); 3984 3985 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3986 // ZExt result to int or bool. 3987 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3988 } 3989 3990 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3991 if (!CGF.ContainsLabel(E->getRHS())) 3992 return llvm::Constant::getNullValue(ResTy); 3993 } 3994 3995 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3996 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3997 3998 CodeGenFunction::ConditionalEvaluation eval(CGF); 3999 4000 // Branch on the LHS first. If it is false, go to the failure (cont) block. 4001 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 4002 CGF.getProfileCount(E->getRHS())); 4003 4004 // Any edges into the ContBlock are now from an (indeterminate number of) 4005 // edges from this first condition. All of these values will be false. Start 4006 // setting up the PHI node in the Cont Block for this. 4007 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4008 "", ContBlock); 4009 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4010 PI != PE; ++PI) 4011 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 4012 4013 eval.begin(CGF); 4014 CGF.EmitBlock(RHSBlock); 4015 CGF.incrementProfileCounter(E); 4016 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4017 eval.end(CGF); 4018 4019 // Reaquire the RHS block, as there may be subblocks inserted. 4020 RHSBlock = Builder.GetInsertBlock(); 4021 4022 // Emit an unconditional branch from this block to ContBlock. 4023 { 4024 // There is no need to emit line number for unconditional branch. 4025 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4026 CGF.EmitBlock(ContBlock); 4027 } 4028 // Insert an entry into the phi node for the edge with the value of RHSCond. 4029 PN->addIncoming(RHSCond, RHSBlock); 4030 4031 // Artificial location to preserve the scope information 4032 { 4033 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 4034 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 4035 } 4036 4037 // ZExt result to int. 4038 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 4039 } 4040 4041 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 4042 // Perform vector logical or on comparisons with zero vectors. 4043 if (E->getType()->isVectorType()) { 4044 CGF.incrementProfileCounter(E); 4045 4046 Value *LHS = Visit(E->getLHS()); 4047 Value *RHS = Visit(E->getRHS()); 4048 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4049 if (LHS->getType()->isFPOrFPVectorTy()) { 4050 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4051 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4052 } else { 4053 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4054 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4055 } 4056 Value *Or = Builder.CreateOr(LHS, RHS); 4057 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 4058 } 4059 4060 llvm::Type *ResTy = ConvertType(E->getType()); 4061 4062 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 4063 // If we have 0 || X, just emit X without inserting the control flow. 4064 bool LHSCondVal; 4065 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4066 if (!LHSCondVal) { // If we have 0 || X, just emit X. 4067 CGF.incrementProfileCounter(E); 4068 4069 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4070 // ZExt result to int or bool. 4071 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 4072 } 4073 4074 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 4075 if (!CGF.ContainsLabel(E->getRHS())) 4076 return llvm::ConstantInt::get(ResTy, 1); 4077 } 4078 4079 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 4080 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 4081 4082 CodeGenFunction::ConditionalEvaluation eval(CGF); 4083 4084 // Branch on the LHS first. If it is true, go to the success (cont) block. 4085 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 4086 CGF.getCurrentProfileCount() - 4087 CGF.getProfileCount(E->getRHS())); 4088 4089 // Any edges into the ContBlock are now from an (indeterminate number of) 4090 // edges from this first condition. All of these values will be true. Start 4091 // setting up the PHI node in the Cont Block for this. 4092 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4093 "", ContBlock); 4094 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4095 PI != PE; ++PI) 4096 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 4097 4098 eval.begin(CGF); 4099 4100 // Emit the RHS condition as a bool value. 4101 CGF.EmitBlock(RHSBlock); 4102 CGF.incrementProfileCounter(E); 4103 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4104 4105 eval.end(CGF); 4106 4107 // Reaquire the RHS block, as there may be subblocks inserted. 4108 RHSBlock = Builder.GetInsertBlock(); 4109 4110 // Emit an unconditional branch from this block to ContBlock. Insert an entry 4111 // into the phi node for the edge with the value of RHSCond. 4112 CGF.EmitBlock(ContBlock); 4113 PN->addIncoming(RHSCond, RHSBlock); 4114 4115 // ZExt result to int. 4116 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 4117 } 4118 4119 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 4120 CGF.EmitIgnoredExpr(E->getLHS()); 4121 CGF.EnsureInsertPoint(); 4122 return Visit(E->getRHS()); 4123 } 4124 4125 //===----------------------------------------------------------------------===// 4126 // Other Operators 4127 //===----------------------------------------------------------------------===// 4128 4129 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 4130 /// expression is cheap enough and side-effect-free enough to evaluate 4131 /// unconditionally instead of conditionally. This is used to convert control 4132 /// flow into selects in some cases. 4133 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 4134 CodeGenFunction &CGF) { 4135 // Anything that is an integer or floating point constant is fine. 4136 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 4137 4138 // Even non-volatile automatic variables can't be evaluated unconditionally. 4139 // Referencing a thread_local may cause non-trivial initialization work to 4140 // occur. If we're inside a lambda and one of the variables is from the scope 4141 // outside the lambda, that function may have returned already. Reading its 4142 // locals is a bad idea. Also, these reads may introduce races there didn't 4143 // exist in the source-level program. 4144 } 4145 4146 4147 Value *ScalarExprEmitter:: 4148 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 4149 TestAndClearIgnoreResultAssign(); 4150 4151 // Bind the common expression if necessary. 4152 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4153 4154 Expr *condExpr = E->getCond(); 4155 Expr *lhsExpr = E->getTrueExpr(); 4156 Expr *rhsExpr = E->getFalseExpr(); 4157 4158 // If the condition constant folds and can be elided, try to avoid emitting 4159 // the condition and the dead arm. 4160 bool CondExprBool; 4161 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4162 Expr *live = lhsExpr, *dead = rhsExpr; 4163 if (!CondExprBool) std::swap(live, dead); 4164 4165 // If the dead side doesn't have labels we need, just emit the Live part. 4166 if (!CGF.ContainsLabel(dead)) { 4167 if (CondExprBool) 4168 CGF.incrementProfileCounter(E); 4169 Value *Result = Visit(live); 4170 4171 // If the live part is a throw expression, it acts like it has a void 4172 // type, so evaluating it returns a null Value*. However, a conditional 4173 // with non-void type must return a non-null Value*. 4174 if (!Result && !E->getType()->isVoidType()) 4175 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4176 4177 return Result; 4178 } 4179 } 4180 4181 // OpenCL: If the condition is a vector, we can treat this condition like 4182 // the select function. 4183 if (CGF.getLangOpts().OpenCL 4184 && condExpr->getType()->isVectorType()) { 4185 CGF.incrementProfileCounter(E); 4186 4187 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4188 llvm::Value *LHS = Visit(lhsExpr); 4189 llvm::Value *RHS = Visit(rhsExpr); 4190 4191 llvm::Type *condType = ConvertType(condExpr->getType()); 4192 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 4193 4194 unsigned numElem = vecTy->getNumElements(); 4195 llvm::Type *elemType = vecTy->getElementType(); 4196 4197 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4198 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4199 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 4200 llvm::VectorType::get(elemType, 4201 numElem), 4202 "sext"); 4203 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4204 4205 // Cast float to int to perform ANDs if necessary. 4206 llvm::Value *RHSTmp = RHS; 4207 llvm::Value *LHSTmp = LHS; 4208 bool wasCast = false; 4209 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4210 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4211 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4212 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4213 wasCast = true; 4214 } 4215 4216 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4217 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4218 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4219 if (wasCast) 4220 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4221 4222 return tmp5; 4223 } 4224 4225 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4226 // select instead of as control flow. We can only do this if it is cheap and 4227 // safe to evaluate the LHS and RHS unconditionally. 4228 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4229 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4230 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4231 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4232 4233 CGF.incrementProfileCounter(E, StepV); 4234 4235 llvm::Value *LHS = Visit(lhsExpr); 4236 llvm::Value *RHS = Visit(rhsExpr); 4237 if (!LHS) { 4238 // If the conditional has void type, make sure we return a null Value*. 4239 assert(!RHS && "LHS and RHS types must match"); 4240 return nullptr; 4241 } 4242 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4243 } 4244 4245 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4246 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4247 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4248 4249 CodeGenFunction::ConditionalEvaluation eval(CGF); 4250 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4251 CGF.getProfileCount(lhsExpr)); 4252 4253 CGF.EmitBlock(LHSBlock); 4254 CGF.incrementProfileCounter(E); 4255 eval.begin(CGF); 4256 Value *LHS = Visit(lhsExpr); 4257 eval.end(CGF); 4258 4259 LHSBlock = Builder.GetInsertBlock(); 4260 Builder.CreateBr(ContBlock); 4261 4262 CGF.EmitBlock(RHSBlock); 4263 eval.begin(CGF); 4264 Value *RHS = Visit(rhsExpr); 4265 eval.end(CGF); 4266 4267 RHSBlock = Builder.GetInsertBlock(); 4268 CGF.EmitBlock(ContBlock); 4269 4270 // If the LHS or RHS is a throw expression, it will be legitimately null. 4271 if (!LHS) 4272 return RHS; 4273 if (!RHS) 4274 return LHS; 4275 4276 // Create a PHI node for the real part. 4277 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4278 PN->addIncoming(LHS, LHSBlock); 4279 PN->addIncoming(RHS, RHSBlock); 4280 return PN; 4281 } 4282 4283 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4284 return Visit(E->getChosenSubExpr()); 4285 } 4286 4287 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4288 QualType Ty = VE->getType(); 4289 4290 if (Ty->isVariablyModifiedType()) 4291 CGF.EmitVariablyModifiedType(Ty); 4292 4293 Address ArgValue = Address::invalid(); 4294 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4295 4296 llvm::Type *ArgTy = ConvertType(VE->getType()); 4297 4298 // If EmitVAArg fails, emit an error. 4299 if (!ArgPtr.isValid()) { 4300 CGF.ErrorUnsupported(VE, "va_arg expression"); 4301 return llvm::UndefValue::get(ArgTy); 4302 } 4303 4304 // FIXME Volatility. 4305 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4306 4307 // If EmitVAArg promoted the type, we must truncate it. 4308 if (ArgTy != Val->getType()) { 4309 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4310 Val = Builder.CreateIntToPtr(Val, ArgTy); 4311 else 4312 Val = Builder.CreateTrunc(Val, ArgTy); 4313 } 4314 4315 return Val; 4316 } 4317 4318 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4319 return CGF.EmitBlockLiteral(block); 4320 } 4321 4322 // Convert a vec3 to vec4, or vice versa. 4323 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4324 Value *Src, unsigned NumElementsDst) { 4325 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 4326 SmallVector<llvm::Constant*, 4> Args; 4327 Args.push_back(Builder.getInt32(0)); 4328 Args.push_back(Builder.getInt32(1)); 4329 Args.push_back(Builder.getInt32(2)); 4330 if (NumElementsDst == 4) 4331 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 4332 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 4333 return Builder.CreateShuffleVector(Src, UnV, Mask); 4334 } 4335 4336 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4337 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4338 // but could be scalar or vectors of different lengths, and either can be 4339 // pointer. 4340 // There are 4 cases: 4341 // 1. non-pointer -> non-pointer : needs 1 bitcast 4342 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4343 // 3. pointer -> non-pointer 4344 // a) pointer -> intptr_t : needs 1 ptrtoint 4345 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4346 // 4. non-pointer -> pointer 4347 // a) intptr_t -> pointer : needs 1 inttoptr 4348 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4349 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4350 // allow casting directly between pointer types and non-integer non-pointer 4351 // types. 4352 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4353 const llvm::DataLayout &DL, 4354 Value *Src, llvm::Type *DstTy, 4355 StringRef Name = "") { 4356 auto SrcTy = Src->getType(); 4357 4358 // Case 1. 4359 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4360 return Builder.CreateBitCast(Src, DstTy, Name); 4361 4362 // Case 2. 4363 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4364 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4365 4366 // Case 3. 4367 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4368 // Case 3b. 4369 if (!DstTy->isIntegerTy()) 4370 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4371 // Cases 3a and 3b. 4372 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4373 } 4374 4375 // Case 4b. 4376 if (!SrcTy->isIntegerTy()) 4377 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4378 // Cases 4a and 4b. 4379 return Builder.CreateIntToPtr(Src, DstTy, Name); 4380 } 4381 4382 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4383 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4384 llvm::Type *DstTy = ConvertType(E->getType()); 4385 4386 llvm::Type *SrcTy = Src->getType(); 4387 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 4388 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 4389 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 4390 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 4391 4392 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4393 // vector to get a vec4, then a bitcast if the target type is different. 4394 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4395 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4396 4397 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4398 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4399 DstTy); 4400 } 4401 4402 Src->setName("astype"); 4403 return Src; 4404 } 4405 4406 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4407 // to vec4 if the original type is not vec4, then a shuffle vector to 4408 // get a vec3. 4409 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4410 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4411 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 4412 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4413 Vec4Ty); 4414 } 4415 4416 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4417 Src->setName("astype"); 4418 return Src; 4419 } 4420 4421 return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4422 Src, DstTy, "astype"); 4423 } 4424 4425 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4426 return CGF.EmitAtomicExpr(E).getScalarVal(); 4427 } 4428 4429 //===----------------------------------------------------------------------===// 4430 // Entry Point into this File 4431 //===----------------------------------------------------------------------===// 4432 4433 /// Emit the computation of the specified expression of scalar type, ignoring 4434 /// the result. 4435 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4436 assert(E && hasScalarEvaluationKind(E->getType()) && 4437 "Invalid scalar expression to emit"); 4438 4439 return ScalarExprEmitter(*this, IgnoreResultAssign) 4440 .Visit(const_cast<Expr *>(E)); 4441 } 4442 4443 /// Emit a conversion from the specified type to the specified destination type, 4444 /// both of which are LLVM scalar types. 4445 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4446 QualType DstTy, 4447 SourceLocation Loc) { 4448 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4449 "Invalid scalar expression to emit"); 4450 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4451 } 4452 4453 /// Emit a conversion from the specified complex type to the specified 4454 /// destination type, where the destination type is an LLVM scalar type. 4455 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4456 QualType SrcTy, 4457 QualType DstTy, 4458 SourceLocation Loc) { 4459 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4460 "Invalid complex -> scalar conversion"); 4461 return ScalarExprEmitter(*this) 4462 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4463 } 4464 4465 4466 llvm::Value *CodeGenFunction:: 4467 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4468 bool isInc, bool isPre) { 4469 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4470 } 4471 4472 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4473 // object->isa or (*object).isa 4474 // Generate code as for: *(Class*)object 4475 4476 Expr *BaseExpr = E->getBase(); 4477 Address Addr = Address::invalid(); 4478 if (BaseExpr->isRValue()) { 4479 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4480 } else { 4481 Addr = EmitLValue(BaseExpr).getAddress(); 4482 } 4483 4484 // Cast the address to Class*. 4485 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4486 return MakeAddrLValue(Addr, E->getType()); 4487 } 4488 4489 4490 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4491 const CompoundAssignOperator *E) { 4492 ScalarExprEmitter Scalar(*this); 4493 Value *Result = nullptr; 4494 switch (E->getOpcode()) { 4495 #define COMPOUND_OP(Op) \ 4496 case BO_##Op##Assign: \ 4497 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4498 Result) 4499 COMPOUND_OP(Mul); 4500 COMPOUND_OP(Div); 4501 COMPOUND_OP(Rem); 4502 COMPOUND_OP(Add); 4503 COMPOUND_OP(Sub); 4504 COMPOUND_OP(Shl); 4505 COMPOUND_OP(Shr); 4506 COMPOUND_OP(And); 4507 COMPOUND_OP(Xor); 4508 COMPOUND_OP(Or); 4509 #undef COMPOUND_OP 4510 4511 case BO_PtrMemD: 4512 case BO_PtrMemI: 4513 case BO_Mul: 4514 case BO_Div: 4515 case BO_Rem: 4516 case BO_Add: 4517 case BO_Sub: 4518 case BO_Shl: 4519 case BO_Shr: 4520 case BO_LT: 4521 case BO_GT: 4522 case BO_LE: 4523 case BO_GE: 4524 case BO_EQ: 4525 case BO_NE: 4526 case BO_Cmp: 4527 case BO_And: 4528 case BO_Xor: 4529 case BO_Or: 4530 case BO_LAnd: 4531 case BO_LOr: 4532 case BO_Assign: 4533 case BO_Comma: 4534 llvm_unreachable("Not valid compound assignment operators"); 4535 } 4536 4537 llvm_unreachable("Unhandled compound assignment operator"); 4538 } 4539 4540 Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, 4541 ArrayRef<Value *> IdxList, 4542 bool SignedIndices, 4543 bool IsSubtraction, 4544 SourceLocation Loc, 4545 const Twine &Name) { 4546 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 4547 4548 // If the pointer overflow sanitizer isn't enabled, do nothing. 4549 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 4550 return GEPVal; 4551 4552 // If the GEP has already been reduced to a constant, leave it be. 4553 if (isa<llvm::Constant>(GEPVal)) 4554 return GEPVal; 4555 4556 // Only check for overflows in the default address space. 4557 if (GEPVal->getType()->getPointerAddressSpace()) 4558 return GEPVal; 4559 4560 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4561 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4562 4563 SanitizerScope SanScope(this); 4564 auto &VMContext = getLLVMContext(); 4565 const auto &DL = CGM.getDataLayout(); 4566 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4567 4568 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4569 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4570 auto *SAddIntrinsic = 4571 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4572 auto *SMulIntrinsic = 4573 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4574 4575 // The total (signed) byte offset for the GEP. 4576 llvm::Value *TotalOffset = nullptr; 4577 // The offset overflow flag - true if the total offset overflows. 4578 llvm::Value *OffsetOverflows = Builder.getFalse(); 4579 4580 /// Return the result of the given binary operation. 4581 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 4582 llvm::Value *RHS) -> llvm::Value * { 4583 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 4584 4585 // If the operands are constants, return a constant result. 4586 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 4587 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 4588 llvm::APInt N; 4589 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 4590 /*Signed=*/true, N); 4591 if (HasOverflow) 4592 OffsetOverflows = Builder.getTrue(); 4593 return llvm::ConstantInt::get(VMContext, N); 4594 } 4595 } 4596 4597 // Otherwise, compute the result with checked arithmetic. 4598 auto *ResultAndOverflow = Builder.CreateCall( 4599 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 4600 OffsetOverflows = Builder.CreateOr( 4601 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 4602 return Builder.CreateExtractValue(ResultAndOverflow, 0); 4603 }; 4604 4605 // Determine the total byte offset by looking at each GEP operand. 4606 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 4607 GTI != GTE; ++GTI) { 4608 llvm::Value *LocalOffset; 4609 auto *Index = GTI.getOperand(); 4610 // Compute the local offset contributed by this indexing step: 4611 if (auto *STy = GTI.getStructTypeOrNull()) { 4612 // For struct indexing, the local offset is the byte position of the 4613 // specified field. 4614 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 4615 LocalOffset = llvm::ConstantInt::get( 4616 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 4617 } else { 4618 // Otherwise this is array-like indexing. The local offset is the index 4619 // multiplied by the element size. 4620 auto *ElementSize = llvm::ConstantInt::get( 4621 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 4622 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 4623 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 4624 } 4625 4626 // If this is the first offset, set it as the total offset. Otherwise, add 4627 // the local offset into the running total. 4628 if (!TotalOffset || TotalOffset == Zero) 4629 TotalOffset = LocalOffset; 4630 else 4631 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 4632 } 4633 4634 // Common case: if the total offset is zero, don't emit a check. 4635 if (TotalOffset == Zero) 4636 return GEPVal; 4637 4638 // Now that we've computed the total offset, add it to the base pointer (with 4639 // wrapping semantics). 4640 auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy); 4641 auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset); 4642 4643 // The GEP is valid if: 4644 // 1) The total offset doesn't overflow, and 4645 // 2) The sign of the difference between the computed address and the base 4646 // pointer matches the sign of the total offset. 4647 llvm::Value *ValidGEP; 4648 auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows); 4649 if (SignedIndices) { 4650 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4651 auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero); 4652 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 4653 ValidGEP = Builder.CreateAnd( 4654 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid), 4655 NoOffsetOverflow); 4656 } else if (!SignedIndices && !IsSubtraction) { 4657 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4658 ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow); 4659 } else { 4660 auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr); 4661 ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow); 4662 } 4663 4664 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 4665 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 4666 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 4667 EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow), 4668 SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 4669 4670 return GEPVal; 4671 } 4672