1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/IR/CFG.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Module.h"
34 #include <cstdarg>
35 
36 using namespace clang;
37 using namespace CodeGen;
38 using llvm::Value;
39 
40 //===----------------------------------------------------------------------===//
41 //                         Scalar Expression Emitter
42 //===----------------------------------------------------------------------===//
43 
44 namespace {
45 struct BinOpInfo {
46   Value *LHS;
47   Value *RHS;
48   QualType Ty;  // Computation Type.
49   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
50   bool FPContractable;
51   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
52 };
53 
54 static bool MustVisitNullValue(const Expr *E) {
55   // If a null pointer expression's type is the C++0x nullptr_t, then
56   // it's not necessarily a simple constant and it must be evaluated
57   // for its potential side effects.
58   return E->getType()->isNullPtrType();
59 }
60 
61 class ScalarExprEmitter
62   : public StmtVisitor<ScalarExprEmitter, Value*> {
63   CodeGenFunction &CGF;
64   CGBuilderTy &Builder;
65   bool IgnoreResultAssign;
66   llvm::LLVMContext &VMContext;
67 public:
68 
69   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
70     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
71       VMContext(cgf.getLLVMContext()) {
72   }
73 
74   //===--------------------------------------------------------------------===//
75   //                               Utilities
76   //===--------------------------------------------------------------------===//
77 
78   bool TestAndClearIgnoreResultAssign() {
79     bool I = IgnoreResultAssign;
80     IgnoreResultAssign = false;
81     return I;
82   }
83 
84   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
85   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
86   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
87     return CGF.EmitCheckedLValue(E, TCK);
88   }
89 
90   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
91                       const BinOpInfo &Info);
92 
93   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
94     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
95   }
96 
97   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
98     const AlignValueAttr *AVAttr = nullptr;
99     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
100       const ValueDecl *VD = DRE->getDecl();
101 
102       if (VD->getType()->isReferenceType()) {
103         if (const auto *TTy =
104             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
105           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
106       } else {
107         // Assumptions for function parameters are emitted at the start of the
108         // function, so there is no need to repeat that here.
109         if (isa<ParmVarDecl>(VD))
110           return;
111 
112         AVAttr = VD->getAttr<AlignValueAttr>();
113       }
114     }
115 
116     if (!AVAttr)
117       if (const auto *TTy =
118           dyn_cast<TypedefType>(E->getType()))
119         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
120 
121     if (!AVAttr)
122       return;
123 
124     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
125     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
126     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
127   }
128 
129   /// EmitLoadOfLValue - Given an expression with complex type that represents a
130   /// value l-value, this method emits the address of the l-value, then loads
131   /// and returns the result.
132   Value *EmitLoadOfLValue(const Expr *E) {
133     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
134                                 E->getExprLoc());
135 
136     EmitLValueAlignmentAssumption(E, V);
137     return V;
138   }
139 
140   /// EmitConversionToBool - Convert the specified expression value to a
141   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
142   Value *EmitConversionToBool(Value *Src, QualType DstTy);
143 
144   /// Emit a check that a conversion to or from a floating-point type does not
145   /// overflow.
146   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
147                                 Value *Src, QualType SrcType, QualType DstType,
148                                 llvm::Type *DstTy, SourceLocation Loc);
149 
150   /// Emit a conversion from the specified type to the specified destination
151   /// type, both of which are LLVM scalar types.
152   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
153                               SourceLocation Loc);
154 
155   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
156                               SourceLocation Loc, bool TreatBooleanAsSigned);
157 
158   /// Emit a conversion from the specified complex type to the specified
159   /// destination type, where the destination type is an LLVM scalar type.
160   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
161                                        QualType SrcTy, QualType DstTy,
162                                        SourceLocation Loc);
163 
164   /// EmitNullValue - Emit a value that corresponds to null for the given type.
165   Value *EmitNullValue(QualType Ty);
166 
167   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
168   Value *EmitFloatToBoolConversion(Value *V) {
169     // Compare against 0.0 for fp scalars.
170     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
171     return Builder.CreateFCmpUNE(V, Zero, "tobool");
172   }
173 
174   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
175   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
176     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
177 
178     return Builder.CreateICmpNE(V, Zero, "tobool");
179   }
180 
181   Value *EmitIntToBoolConversion(Value *V) {
182     // Because of the type rules of C, we often end up computing a
183     // logical value, then zero extending it to int, then wanting it
184     // as a logical value again.  Optimize this common case.
185     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
186       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
187         Value *Result = ZI->getOperand(0);
188         // If there aren't any more uses, zap the instruction to save space.
189         // Note that there can be more uses, for example if this
190         // is the result of an assignment.
191         if (ZI->use_empty())
192           ZI->eraseFromParent();
193         return Result;
194       }
195     }
196 
197     return Builder.CreateIsNotNull(V, "tobool");
198   }
199 
200   //===--------------------------------------------------------------------===//
201   //                            Visitor Methods
202   //===--------------------------------------------------------------------===//
203 
204   Value *Visit(Expr *E) {
205     ApplyDebugLocation DL(CGF, E);
206     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
207   }
208 
209   Value *VisitStmt(Stmt *S) {
210     S->dump(CGF.getContext().getSourceManager());
211     llvm_unreachable("Stmt can't have complex result type!");
212   }
213   Value *VisitExpr(Expr *S);
214 
215   Value *VisitParenExpr(ParenExpr *PE) {
216     return Visit(PE->getSubExpr());
217   }
218   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
219     return Visit(E->getReplacement());
220   }
221   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
222     return Visit(GE->getResultExpr());
223   }
224 
225   // Leaves.
226   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
227     return Builder.getInt(E->getValue());
228   }
229   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
230     return llvm::ConstantFP::get(VMContext, E->getValue());
231   }
232   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
233     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
234   }
235   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
236     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
237   }
238   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
239     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
240   }
241   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
242     return EmitNullValue(E->getType());
243   }
244   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
245     return EmitNullValue(E->getType());
246   }
247   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
248   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
249   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
250     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
251     return Builder.CreateBitCast(V, ConvertType(E->getType()));
252   }
253 
254   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
255     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
256   }
257 
258   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
259     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
260   }
261 
262   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
263     if (E->isGLValue())
264       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
265 
266     // Otherwise, assume the mapping is the scalar directly.
267     return CGF.getOpaqueRValueMapping(E).getScalarVal();
268   }
269 
270   // l-values.
271   Value *VisitDeclRefExpr(DeclRefExpr *E) {
272     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
273       if (result.isReference())
274         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
275                                 E->getExprLoc());
276       return result.getValue();
277     }
278     return EmitLoadOfLValue(E);
279   }
280 
281   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
282     return CGF.EmitObjCSelectorExpr(E);
283   }
284   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
285     return CGF.EmitObjCProtocolExpr(E);
286   }
287   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
288     return EmitLoadOfLValue(E);
289   }
290   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
291     if (E->getMethodDecl() &&
292         E->getMethodDecl()->getReturnType()->isReferenceType())
293       return EmitLoadOfLValue(E);
294     return CGF.EmitObjCMessageExpr(E).getScalarVal();
295   }
296 
297   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
298     LValue LV = CGF.EmitObjCIsaExpr(E);
299     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
300     return V;
301   }
302 
303   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
304   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
305   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
306   Value *VisitMemberExpr(MemberExpr *E);
307   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
308   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
309     return EmitLoadOfLValue(E);
310   }
311 
312   Value *VisitInitListExpr(InitListExpr *E);
313 
314   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
315     assert(CGF.getArrayInitIndex() &&
316            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
317     return CGF.getArrayInitIndex();
318   }
319 
320   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
321     return EmitNullValue(E->getType());
322   }
323   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
324     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
325     return VisitCastExpr(E);
326   }
327   Value *VisitCastExpr(CastExpr *E);
328 
329   Value *VisitCallExpr(const CallExpr *E) {
330     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
331       return EmitLoadOfLValue(E);
332 
333     Value *V = CGF.EmitCallExpr(E).getScalarVal();
334 
335     EmitLValueAlignmentAssumption(E, V);
336     return V;
337   }
338 
339   Value *VisitStmtExpr(const StmtExpr *E);
340 
341   // Unary Operators.
342   Value *VisitUnaryPostDec(const UnaryOperator *E) {
343     LValue LV = EmitLValue(E->getSubExpr());
344     return EmitScalarPrePostIncDec(E, LV, false, false);
345   }
346   Value *VisitUnaryPostInc(const UnaryOperator *E) {
347     LValue LV = EmitLValue(E->getSubExpr());
348     return EmitScalarPrePostIncDec(E, LV, true, false);
349   }
350   Value *VisitUnaryPreDec(const UnaryOperator *E) {
351     LValue LV = EmitLValue(E->getSubExpr());
352     return EmitScalarPrePostIncDec(E, LV, false, true);
353   }
354   Value *VisitUnaryPreInc(const UnaryOperator *E) {
355     LValue LV = EmitLValue(E->getSubExpr());
356     return EmitScalarPrePostIncDec(E, LV, true, true);
357   }
358 
359   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
360                                                   llvm::Value *InVal,
361                                                   bool IsInc);
362 
363   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
364                                        bool isInc, bool isPre);
365 
366 
367   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
368     if (isa<MemberPointerType>(E->getType())) // never sugared
369       return CGF.CGM.getMemberPointerConstant(E);
370 
371     return EmitLValue(E->getSubExpr()).getPointer();
372   }
373   Value *VisitUnaryDeref(const UnaryOperator *E) {
374     if (E->getType()->isVoidType())
375       return Visit(E->getSubExpr()); // the actual value should be unused
376     return EmitLoadOfLValue(E);
377   }
378   Value *VisitUnaryPlus(const UnaryOperator *E) {
379     // This differs from gcc, though, most likely due to a bug in gcc.
380     TestAndClearIgnoreResultAssign();
381     return Visit(E->getSubExpr());
382   }
383   Value *VisitUnaryMinus    (const UnaryOperator *E);
384   Value *VisitUnaryNot      (const UnaryOperator *E);
385   Value *VisitUnaryLNot     (const UnaryOperator *E);
386   Value *VisitUnaryReal     (const UnaryOperator *E);
387   Value *VisitUnaryImag     (const UnaryOperator *E);
388   Value *VisitUnaryExtension(const UnaryOperator *E) {
389     return Visit(E->getSubExpr());
390   }
391 
392   // C++
393   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
394     return EmitLoadOfLValue(E);
395   }
396 
397   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
398     return Visit(DAE->getExpr());
399   }
400   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
401     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
402     return Visit(DIE->getExpr());
403   }
404   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
405     return CGF.LoadCXXThis();
406   }
407 
408   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
409     CGF.enterFullExpression(E);
410     CodeGenFunction::RunCleanupsScope Scope(CGF);
411     return Visit(E->getSubExpr());
412   }
413   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
414     return CGF.EmitCXXNewExpr(E);
415   }
416   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
417     CGF.EmitCXXDeleteExpr(E);
418     return nullptr;
419   }
420 
421   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
422     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
423   }
424 
425   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
426     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
427   }
428 
429   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
430     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
431   }
432 
433   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
434     // C++ [expr.pseudo]p1:
435     //   The result shall only be used as the operand for the function call
436     //   operator (), and the result of such a call has type void. The only
437     //   effect is the evaluation of the postfix-expression before the dot or
438     //   arrow.
439     CGF.EmitScalarExpr(E->getBase());
440     return nullptr;
441   }
442 
443   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
444     return EmitNullValue(E->getType());
445   }
446 
447   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
448     CGF.EmitCXXThrowExpr(E);
449     return nullptr;
450   }
451 
452   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
453     return Builder.getInt1(E->getValue());
454   }
455 
456   // Binary Operators.
457   Value *EmitMul(const BinOpInfo &Ops) {
458     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
459       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
460       case LangOptions::SOB_Defined:
461         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
462       case LangOptions::SOB_Undefined:
463         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
464           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
465         // Fall through.
466       case LangOptions::SOB_Trapping:
467         return EmitOverflowCheckedBinOp(Ops);
468       }
469     }
470 
471     if (Ops.Ty->isUnsignedIntegerType() &&
472         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
473       return EmitOverflowCheckedBinOp(Ops);
474 
475     if (Ops.LHS->getType()->isFPOrFPVectorTy())
476       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
477     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
478   }
479   /// Create a binary op that checks for overflow.
480   /// Currently only supports +, - and *.
481   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
482 
483   // Check for undefined division and modulus behaviors.
484   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
485                                                   llvm::Value *Zero,bool isDiv);
486   // Common helper for getting how wide LHS of shift is.
487   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
488   Value *EmitDiv(const BinOpInfo &Ops);
489   Value *EmitRem(const BinOpInfo &Ops);
490   Value *EmitAdd(const BinOpInfo &Ops);
491   Value *EmitSub(const BinOpInfo &Ops);
492   Value *EmitShl(const BinOpInfo &Ops);
493   Value *EmitShr(const BinOpInfo &Ops);
494   Value *EmitAnd(const BinOpInfo &Ops) {
495     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
496   }
497   Value *EmitXor(const BinOpInfo &Ops) {
498     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
499   }
500   Value *EmitOr (const BinOpInfo &Ops) {
501     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
502   }
503 
504   BinOpInfo EmitBinOps(const BinaryOperator *E);
505   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
506                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
507                                   Value *&Result);
508 
509   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
510                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
511 
512   // Binary operators and binary compound assignment operators.
513 #define HANDLEBINOP(OP) \
514   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
515     return Emit ## OP(EmitBinOps(E));                                      \
516   }                                                                        \
517   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
518     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
519   }
520   HANDLEBINOP(Mul)
521   HANDLEBINOP(Div)
522   HANDLEBINOP(Rem)
523   HANDLEBINOP(Add)
524   HANDLEBINOP(Sub)
525   HANDLEBINOP(Shl)
526   HANDLEBINOP(Shr)
527   HANDLEBINOP(And)
528   HANDLEBINOP(Xor)
529   HANDLEBINOP(Or)
530 #undef HANDLEBINOP
531 
532   // Comparisons.
533   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
534                      llvm::CmpInst::Predicate SICmpOpc,
535                      llvm::CmpInst::Predicate FCmpOpc);
536 #define VISITCOMP(CODE, UI, SI, FP) \
537     Value *VisitBin##CODE(const BinaryOperator *E) { \
538       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
539                          llvm::FCmpInst::FP); }
540   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
541   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
542   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
543   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
544   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
545   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
546 #undef VISITCOMP
547 
548   Value *VisitBinAssign     (const BinaryOperator *E);
549 
550   Value *VisitBinLAnd       (const BinaryOperator *E);
551   Value *VisitBinLOr        (const BinaryOperator *E);
552   Value *VisitBinComma      (const BinaryOperator *E);
553 
554   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
555   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
556 
557   // Other Operators.
558   Value *VisitBlockExpr(const BlockExpr *BE);
559   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
560   Value *VisitChooseExpr(ChooseExpr *CE);
561   Value *VisitVAArgExpr(VAArgExpr *VE);
562   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
563     return CGF.EmitObjCStringLiteral(E);
564   }
565   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
566     return CGF.EmitObjCBoxedExpr(E);
567   }
568   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
569     return CGF.EmitObjCArrayLiteral(E);
570   }
571   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
572     return CGF.EmitObjCDictionaryLiteral(E);
573   }
574   Value *VisitAsTypeExpr(AsTypeExpr *CE);
575   Value *VisitAtomicExpr(AtomicExpr *AE);
576 };
577 }  // end anonymous namespace.
578 
579 //===----------------------------------------------------------------------===//
580 //                                Utilities
581 //===----------------------------------------------------------------------===//
582 
583 /// EmitConversionToBool - Convert the specified expression value to a
584 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
585 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
586   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
587 
588   if (SrcType->isRealFloatingType())
589     return EmitFloatToBoolConversion(Src);
590 
591   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
592     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
593 
594   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
595          "Unknown scalar type to convert");
596 
597   if (isa<llvm::IntegerType>(Src->getType()))
598     return EmitIntToBoolConversion(Src);
599 
600   assert(isa<llvm::PointerType>(Src->getType()));
601   return EmitPointerToBoolConversion(Src, SrcType);
602 }
603 
604 void ScalarExprEmitter::EmitFloatConversionCheck(
605     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
606     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
607   CodeGenFunction::SanitizerScope SanScope(&CGF);
608   using llvm::APFloat;
609   using llvm::APSInt;
610 
611   llvm::Type *SrcTy = Src->getType();
612 
613   llvm::Value *Check = nullptr;
614   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
615     // Integer to floating-point. This can fail for unsigned short -> __half
616     // or unsigned __int128 -> float.
617     assert(DstType->isFloatingType());
618     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
619 
620     APFloat LargestFloat =
621       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
622     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
623 
624     bool IsExact;
625     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
626                                       &IsExact) != APFloat::opOK)
627       // The range of representable values of this floating point type includes
628       // all values of this integer type. Don't need an overflow check.
629       return;
630 
631     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
632     if (SrcIsUnsigned)
633       Check = Builder.CreateICmpULE(Src, Max);
634     else {
635       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
636       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
637       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
638       Check = Builder.CreateAnd(GE, LE);
639     }
640   } else {
641     const llvm::fltSemantics &SrcSema =
642       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
643     if (isa<llvm::IntegerType>(DstTy)) {
644       // Floating-point to integer. This has undefined behavior if the source is
645       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
646       // to an integer).
647       unsigned Width = CGF.getContext().getIntWidth(DstType);
648       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
649 
650       APSInt Min = APSInt::getMinValue(Width, Unsigned);
651       APFloat MinSrc(SrcSema, APFloat::uninitialized);
652       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
653           APFloat::opOverflow)
654         // Don't need an overflow check for lower bound. Just check for
655         // -Inf/NaN.
656         MinSrc = APFloat::getInf(SrcSema, true);
657       else
658         // Find the largest value which is too small to represent (before
659         // truncation toward zero).
660         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
661 
662       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
663       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
664       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
665           APFloat::opOverflow)
666         // Don't need an overflow check for upper bound. Just check for
667         // +Inf/NaN.
668         MaxSrc = APFloat::getInf(SrcSema, false);
669       else
670         // Find the smallest value which is too large to represent (before
671         // truncation toward zero).
672         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
673 
674       // If we're converting from __half, convert the range to float to match
675       // the type of src.
676       if (OrigSrcType->isHalfType()) {
677         const llvm::fltSemantics &Sema =
678           CGF.getContext().getFloatTypeSemantics(SrcType);
679         bool IsInexact;
680         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
681         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
682       }
683 
684       llvm::Value *GE =
685         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
686       llvm::Value *LE =
687         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
688       Check = Builder.CreateAnd(GE, LE);
689     } else {
690       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
691       //
692       // Floating-point to floating-point. This has undefined behavior if the
693       // source is not in the range of representable values of the destination
694       // type. The C and C++ standards are spectacularly unclear here. We
695       // diagnose finite out-of-range conversions, but allow infinities and NaNs
696       // to convert to the corresponding value in the smaller type.
697       //
698       // C11 Annex F gives all such conversions defined behavior for IEC 60559
699       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
700       // does not.
701 
702       // Converting from a lower rank to a higher rank can never have
703       // undefined behavior, since higher-rank types must have a superset
704       // of values of lower-rank types.
705       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
706         return;
707 
708       assert(!OrigSrcType->isHalfType() &&
709              "should not check conversion from __half, it has the lowest rank");
710 
711       const llvm::fltSemantics &DstSema =
712         CGF.getContext().getFloatTypeSemantics(DstType);
713       APFloat MinBad = APFloat::getLargest(DstSema, false);
714       APFloat MaxBad = APFloat::getInf(DstSema, false);
715 
716       bool IsInexact;
717       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
718       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
719 
720       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
721         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
722       llvm::Value *GE =
723         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
724       llvm::Value *LE =
725         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
726       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
727     }
728   }
729 
730   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
731                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
732                                   CGF.EmitCheckTypeDescriptor(DstType)};
733   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
734                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
735 }
736 
737 /// Emit a conversion from the specified type to the specified destination type,
738 /// both of which are LLVM scalar types.
739 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
740                                                QualType DstType,
741                                                SourceLocation Loc) {
742   return EmitScalarConversion(Src, SrcType, DstType, Loc, false);
743 }
744 
745 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
746                                                QualType DstType,
747                                                SourceLocation Loc,
748                                                bool TreatBooleanAsSigned) {
749   SrcType = CGF.getContext().getCanonicalType(SrcType);
750   DstType = CGF.getContext().getCanonicalType(DstType);
751   if (SrcType == DstType) return Src;
752 
753   if (DstType->isVoidType()) return nullptr;
754 
755   llvm::Value *OrigSrc = Src;
756   QualType OrigSrcType = SrcType;
757   llvm::Type *SrcTy = Src->getType();
758 
759   // Handle conversions to bool first, they are special: comparisons against 0.
760   if (DstType->isBooleanType())
761     return EmitConversionToBool(Src, SrcType);
762 
763   llvm::Type *DstTy = ConvertType(DstType);
764 
765   // Cast from half through float if half isn't a native type.
766   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
767     // Cast to FP using the intrinsic if the half type itself isn't supported.
768     if (DstTy->isFloatingPointTy()) {
769       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
770         return Builder.CreateCall(
771             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
772             Src);
773     } else {
774       // Cast to other types through float, using either the intrinsic or FPExt,
775       // depending on whether the half type itself is supported
776       // (as opposed to operations on half, available with NativeHalfType).
777       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
778         Src = Builder.CreateCall(
779             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
780                                  CGF.CGM.FloatTy),
781             Src);
782       } else {
783         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
784       }
785       SrcType = CGF.getContext().FloatTy;
786       SrcTy = CGF.FloatTy;
787     }
788   }
789 
790   // Ignore conversions like int -> uint.
791   if (SrcTy == DstTy)
792     return Src;
793 
794   // Handle pointer conversions next: pointers can only be converted to/from
795   // other pointers and integers. Check for pointer types in terms of LLVM, as
796   // some native types (like Obj-C id) may map to a pointer type.
797   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
798     // The source value may be an integer, or a pointer.
799     if (isa<llvm::PointerType>(SrcTy))
800       return Builder.CreateBitCast(Src, DstTy, "conv");
801 
802     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
803     // First, convert to the correct width so that we control the kind of
804     // extension.
805     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
806     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
807     llvm::Value* IntResult =
808         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
809     // Then, cast to pointer.
810     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
811   }
812 
813   if (isa<llvm::PointerType>(SrcTy)) {
814     // Must be an ptr to int cast.
815     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
816     return Builder.CreatePtrToInt(Src, DstTy, "conv");
817   }
818 
819   // A scalar can be splatted to an extended vector of the same element type
820   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
821     // Sema should add casts to make sure that the source expression's type is
822     // the same as the vector's element type (sans qualifiers)
823     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
824                SrcType.getTypePtr() &&
825            "Splatted expr doesn't match with vector element type?");
826 
827     // Splat the element across to all elements
828     unsigned NumElements = DstTy->getVectorNumElements();
829     return Builder.CreateVectorSplat(NumElements, Src, "splat");
830   }
831 
832   // Allow bitcast from vector to integer/fp of the same size.
833   if (isa<llvm::VectorType>(SrcTy) ||
834       isa<llvm::VectorType>(DstTy))
835     return Builder.CreateBitCast(Src, DstTy, "conv");
836 
837   // Finally, we have the arithmetic types: real int/float.
838   Value *Res = nullptr;
839   llvm::Type *ResTy = DstTy;
840 
841   // An overflowing conversion has undefined behavior if either the source type
842   // or the destination type is a floating-point type.
843   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
844       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
845     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
846                              Loc);
847 
848   // Cast to half through float if half isn't a native type.
849   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
850     // Make sure we cast in a single step if from another FP type.
851     if (SrcTy->isFloatingPointTy()) {
852       // Use the intrinsic if the half type itself isn't supported
853       // (as opposed to operations on half, available with NativeHalfType).
854       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
855         return Builder.CreateCall(
856             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
857       // If the half type is supported, just use an fptrunc.
858       return Builder.CreateFPTrunc(Src, DstTy);
859     }
860     DstTy = CGF.FloatTy;
861   }
862 
863   if (isa<llvm::IntegerType>(SrcTy)) {
864     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
865     if (SrcType->isBooleanType() && TreatBooleanAsSigned) {
866       InputSigned = true;
867     }
868     if (isa<llvm::IntegerType>(DstTy))
869       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
870     else if (InputSigned)
871       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
872     else
873       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
874   } else if (isa<llvm::IntegerType>(DstTy)) {
875     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
876     if (DstType->isSignedIntegerOrEnumerationType())
877       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
878     else
879       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
880   } else {
881     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
882            "Unknown real conversion");
883     if (DstTy->getTypeID() < SrcTy->getTypeID())
884       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
885     else
886       Res = Builder.CreateFPExt(Src, DstTy, "conv");
887   }
888 
889   if (DstTy != ResTy) {
890     if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
891       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
892       Res = Builder.CreateCall(
893         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
894         Res);
895     } else {
896       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
897     }
898   }
899 
900   return Res;
901 }
902 
903 /// Emit a conversion from the specified complex type to the specified
904 /// destination type, where the destination type is an LLVM scalar type.
905 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
906     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
907     SourceLocation Loc) {
908   // Get the source element type.
909   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
910 
911   // Handle conversions to bool first, they are special: comparisons against 0.
912   if (DstTy->isBooleanType()) {
913     //  Complex != 0  -> (Real != 0) | (Imag != 0)
914     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
915     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
916     return Builder.CreateOr(Src.first, Src.second, "tobool");
917   }
918 
919   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
920   // the imaginary part of the complex value is discarded and the value of the
921   // real part is converted according to the conversion rules for the
922   // corresponding real type.
923   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
924 }
925 
926 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
927   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
928 }
929 
930 /// \brief Emit a sanitization check for the given "binary" operation (which
931 /// might actually be a unary increment which has been lowered to a binary
932 /// operation). The check passes if all values in \p Checks (which are \c i1),
933 /// are \c true.
934 void ScalarExprEmitter::EmitBinOpCheck(
935     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
936   assert(CGF.IsSanitizerScope);
937   SanitizerHandler Check;
938   SmallVector<llvm::Constant *, 4> StaticData;
939   SmallVector<llvm::Value *, 2> DynamicData;
940 
941   BinaryOperatorKind Opcode = Info.Opcode;
942   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
943     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
944 
945   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
946   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
947   if (UO && UO->getOpcode() == UO_Minus) {
948     Check = SanitizerHandler::NegateOverflow;
949     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
950     DynamicData.push_back(Info.RHS);
951   } else {
952     if (BinaryOperator::isShiftOp(Opcode)) {
953       // Shift LHS negative or too large, or RHS out of bounds.
954       Check = SanitizerHandler::ShiftOutOfBounds;
955       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
956       StaticData.push_back(
957         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
958       StaticData.push_back(
959         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
960     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
961       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
962       Check = SanitizerHandler::DivremOverflow;
963       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
964     } else {
965       // Arithmetic overflow (+, -, *).
966       switch (Opcode) {
967       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
968       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
969       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
970       default: llvm_unreachable("unexpected opcode for bin op check");
971       }
972       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
973     }
974     DynamicData.push_back(Info.LHS);
975     DynamicData.push_back(Info.RHS);
976   }
977 
978   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
979 }
980 
981 //===----------------------------------------------------------------------===//
982 //                            Visitor Methods
983 //===----------------------------------------------------------------------===//
984 
985 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
986   CGF.ErrorUnsupported(E, "scalar expression");
987   if (E->getType()->isVoidType())
988     return nullptr;
989   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
990 }
991 
992 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
993   // Vector Mask Case
994   if (E->getNumSubExprs() == 2) {
995     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
996     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
997     Value *Mask;
998 
999     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1000     unsigned LHSElts = LTy->getNumElements();
1001 
1002     Mask = RHS;
1003 
1004     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1005 
1006     // Mask off the high bits of each shuffle index.
1007     Value *MaskBits =
1008         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1009     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1010 
1011     // newv = undef
1012     // mask = mask & maskbits
1013     // for each elt
1014     //   n = extract mask i
1015     //   x = extract val n
1016     //   newv = insert newv, x, i
1017     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1018                                                   MTy->getNumElements());
1019     Value* NewV = llvm::UndefValue::get(RTy);
1020     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1021       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1022       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1023 
1024       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1025       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1026     }
1027     return NewV;
1028   }
1029 
1030   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1031   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1032 
1033   SmallVector<llvm::Constant*, 32> indices;
1034   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1035     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1036     // Check for -1 and output it as undef in the IR.
1037     if (Idx.isSigned() && Idx.isAllOnesValue())
1038       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1039     else
1040       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1041   }
1042 
1043   Value *SV = llvm::ConstantVector::get(indices);
1044   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1045 }
1046 
1047 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1048   QualType SrcType = E->getSrcExpr()->getType(),
1049            DstType = E->getType();
1050 
1051   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1052 
1053   SrcType = CGF.getContext().getCanonicalType(SrcType);
1054   DstType = CGF.getContext().getCanonicalType(DstType);
1055   if (SrcType == DstType) return Src;
1056 
1057   assert(SrcType->isVectorType() &&
1058          "ConvertVector source type must be a vector");
1059   assert(DstType->isVectorType() &&
1060          "ConvertVector destination type must be a vector");
1061 
1062   llvm::Type *SrcTy = Src->getType();
1063   llvm::Type *DstTy = ConvertType(DstType);
1064 
1065   // Ignore conversions like int -> uint.
1066   if (SrcTy == DstTy)
1067     return Src;
1068 
1069   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1070            DstEltType = DstType->getAs<VectorType>()->getElementType();
1071 
1072   assert(SrcTy->isVectorTy() &&
1073          "ConvertVector source IR type must be a vector");
1074   assert(DstTy->isVectorTy() &&
1075          "ConvertVector destination IR type must be a vector");
1076 
1077   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1078              *DstEltTy = DstTy->getVectorElementType();
1079 
1080   if (DstEltType->isBooleanType()) {
1081     assert((SrcEltTy->isFloatingPointTy() ||
1082             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1083 
1084     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1085     if (SrcEltTy->isFloatingPointTy()) {
1086       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1087     } else {
1088       return Builder.CreateICmpNE(Src, Zero, "tobool");
1089     }
1090   }
1091 
1092   // We have the arithmetic types: real int/float.
1093   Value *Res = nullptr;
1094 
1095   if (isa<llvm::IntegerType>(SrcEltTy)) {
1096     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1097     if (isa<llvm::IntegerType>(DstEltTy))
1098       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1099     else if (InputSigned)
1100       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1101     else
1102       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1103   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1104     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1105     if (DstEltType->isSignedIntegerOrEnumerationType())
1106       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1107     else
1108       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1109   } else {
1110     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1111            "Unknown real conversion");
1112     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1113       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1114     else
1115       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1116   }
1117 
1118   return Res;
1119 }
1120 
1121 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1122   llvm::APSInt Value;
1123   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1124     if (E->isArrow())
1125       CGF.EmitScalarExpr(E->getBase());
1126     else
1127       EmitLValue(E->getBase());
1128     return Builder.getInt(Value);
1129   }
1130 
1131   return EmitLoadOfLValue(E);
1132 }
1133 
1134 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1135   TestAndClearIgnoreResultAssign();
1136 
1137   // Emit subscript expressions in rvalue context's.  For most cases, this just
1138   // loads the lvalue formed by the subscript expr.  However, we have to be
1139   // careful, because the base of a vector subscript is occasionally an rvalue,
1140   // so we can't get it as an lvalue.
1141   if (!E->getBase()->getType()->isVectorType())
1142     return EmitLoadOfLValue(E);
1143 
1144   // Handle the vector case.  The base must be a vector, the index must be an
1145   // integer value.
1146   Value *Base = Visit(E->getBase());
1147   Value *Idx  = Visit(E->getIdx());
1148   QualType IdxTy = E->getIdx()->getType();
1149 
1150   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1151     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1152 
1153   return Builder.CreateExtractElement(Base, Idx, "vecext");
1154 }
1155 
1156 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1157                                   unsigned Off, llvm::Type *I32Ty) {
1158   int MV = SVI->getMaskValue(Idx);
1159   if (MV == -1)
1160     return llvm::UndefValue::get(I32Ty);
1161   return llvm::ConstantInt::get(I32Ty, Off+MV);
1162 }
1163 
1164 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1165   if (C->getBitWidth() != 32) {
1166       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1167                                                     C->getZExtValue()) &&
1168              "Index operand too large for shufflevector mask!");
1169       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1170   }
1171   return C;
1172 }
1173 
1174 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1175   bool Ignore = TestAndClearIgnoreResultAssign();
1176   (void)Ignore;
1177   assert (Ignore == false && "init list ignored");
1178   unsigned NumInitElements = E->getNumInits();
1179 
1180   if (E->hadArrayRangeDesignator())
1181     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1182 
1183   llvm::VectorType *VType =
1184     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1185 
1186   if (!VType) {
1187     if (NumInitElements == 0) {
1188       // C++11 value-initialization for the scalar.
1189       return EmitNullValue(E->getType());
1190     }
1191     // We have a scalar in braces. Just use the first element.
1192     return Visit(E->getInit(0));
1193   }
1194 
1195   unsigned ResElts = VType->getNumElements();
1196 
1197   // Loop over initializers collecting the Value for each, and remembering
1198   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1199   // us to fold the shuffle for the swizzle into the shuffle for the vector
1200   // initializer, since LLVM optimizers generally do not want to touch
1201   // shuffles.
1202   unsigned CurIdx = 0;
1203   bool VIsUndefShuffle = false;
1204   llvm::Value *V = llvm::UndefValue::get(VType);
1205   for (unsigned i = 0; i != NumInitElements; ++i) {
1206     Expr *IE = E->getInit(i);
1207     Value *Init = Visit(IE);
1208     SmallVector<llvm::Constant*, 16> Args;
1209 
1210     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1211 
1212     // Handle scalar elements.  If the scalar initializer is actually one
1213     // element of a different vector of the same width, use shuffle instead of
1214     // extract+insert.
1215     if (!VVT) {
1216       if (isa<ExtVectorElementExpr>(IE)) {
1217         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1218 
1219         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1220           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1221           Value *LHS = nullptr, *RHS = nullptr;
1222           if (CurIdx == 0) {
1223             // insert into undef -> shuffle (src, undef)
1224             // shufflemask must use an i32
1225             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1226             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1227 
1228             LHS = EI->getVectorOperand();
1229             RHS = V;
1230             VIsUndefShuffle = true;
1231           } else if (VIsUndefShuffle) {
1232             // insert into undefshuffle && size match -> shuffle (v, src)
1233             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1234             for (unsigned j = 0; j != CurIdx; ++j)
1235               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1236             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1237             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1238 
1239             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1240             RHS = EI->getVectorOperand();
1241             VIsUndefShuffle = false;
1242           }
1243           if (!Args.empty()) {
1244             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1245             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1246             ++CurIdx;
1247             continue;
1248           }
1249         }
1250       }
1251       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1252                                       "vecinit");
1253       VIsUndefShuffle = false;
1254       ++CurIdx;
1255       continue;
1256     }
1257 
1258     unsigned InitElts = VVT->getNumElements();
1259 
1260     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1261     // input is the same width as the vector being constructed, generate an
1262     // optimized shuffle of the swizzle input into the result.
1263     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1264     if (isa<ExtVectorElementExpr>(IE)) {
1265       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1266       Value *SVOp = SVI->getOperand(0);
1267       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1268 
1269       if (OpTy->getNumElements() == ResElts) {
1270         for (unsigned j = 0; j != CurIdx; ++j) {
1271           // If the current vector initializer is a shuffle with undef, merge
1272           // this shuffle directly into it.
1273           if (VIsUndefShuffle) {
1274             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1275                                       CGF.Int32Ty));
1276           } else {
1277             Args.push_back(Builder.getInt32(j));
1278           }
1279         }
1280         for (unsigned j = 0, je = InitElts; j != je; ++j)
1281           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1282         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1283 
1284         if (VIsUndefShuffle)
1285           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1286 
1287         Init = SVOp;
1288       }
1289     }
1290 
1291     // Extend init to result vector length, and then shuffle its contribution
1292     // to the vector initializer into V.
1293     if (Args.empty()) {
1294       for (unsigned j = 0; j != InitElts; ++j)
1295         Args.push_back(Builder.getInt32(j));
1296       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1297       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1298       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1299                                          Mask, "vext");
1300 
1301       Args.clear();
1302       for (unsigned j = 0; j != CurIdx; ++j)
1303         Args.push_back(Builder.getInt32(j));
1304       for (unsigned j = 0; j != InitElts; ++j)
1305         Args.push_back(Builder.getInt32(j+Offset));
1306       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1307     }
1308 
1309     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1310     // merging subsequent shuffles into this one.
1311     if (CurIdx == 0)
1312       std::swap(V, Init);
1313     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1314     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1315     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1316     CurIdx += InitElts;
1317   }
1318 
1319   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1320   // Emit remaining default initializers.
1321   llvm::Type *EltTy = VType->getElementType();
1322 
1323   // Emit remaining default initializers
1324   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1325     Value *Idx = Builder.getInt32(CurIdx);
1326     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1327     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1328   }
1329   return V;
1330 }
1331 
1332 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1333   const Expr *E = CE->getSubExpr();
1334 
1335   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1336     return false;
1337 
1338   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1339     // We always assume that 'this' is never null.
1340     return false;
1341   }
1342 
1343   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1344     // And that glvalue casts are never null.
1345     if (ICE->getValueKind() != VK_RValue)
1346       return false;
1347   }
1348 
1349   return true;
1350 }
1351 
1352 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1353 // have to handle a more broad range of conversions than explicit casts, as they
1354 // handle things like function to ptr-to-function decay etc.
1355 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1356   Expr *E = CE->getSubExpr();
1357   QualType DestTy = CE->getType();
1358   CastKind Kind = CE->getCastKind();
1359 
1360   // These cases are generally not written to ignore the result of
1361   // evaluating their sub-expressions, so we clear this now.
1362   bool Ignored = TestAndClearIgnoreResultAssign();
1363 
1364   // Since almost all cast kinds apply to scalars, this switch doesn't have
1365   // a default case, so the compiler will warn on a missing case.  The cases
1366   // are in the same order as in the CastKind enum.
1367   switch (Kind) {
1368   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1369   case CK_BuiltinFnToFnPtr:
1370     llvm_unreachable("builtin functions are handled elsewhere");
1371 
1372   case CK_LValueBitCast:
1373   case CK_ObjCObjectLValueCast: {
1374     Address Addr = EmitLValue(E).getAddress();
1375     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1376     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1377     return EmitLoadOfLValue(LV, CE->getExprLoc());
1378   }
1379 
1380   case CK_CPointerToObjCPointerCast:
1381   case CK_BlockPointerToObjCPointerCast:
1382   case CK_AnyPointerToBlockPointerCast:
1383   case CK_BitCast: {
1384     Value *Src = Visit(const_cast<Expr*>(E));
1385     llvm::Type *SrcTy = Src->getType();
1386     llvm::Type *DstTy = ConvertType(DestTy);
1387     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1388         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1389       llvm_unreachable("wrong cast for pointers in different address spaces"
1390                        "(must be an address space cast)!");
1391     }
1392 
1393     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1394       if (auto PT = DestTy->getAs<PointerType>())
1395         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1396                                       /*MayBeNull=*/true,
1397                                       CodeGenFunction::CFITCK_UnrelatedCast,
1398                                       CE->getLocStart());
1399     }
1400 
1401     return Builder.CreateBitCast(Src, DstTy);
1402   }
1403   case CK_AddressSpaceConversion: {
1404     Expr::EvalResult Result;
1405     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
1406         Result.Val.isNullPointer()) {
1407       // If E has side effect, it is emitted even if its final result is a
1408       // null pointer. In that case, a DCE pass should be able to
1409       // eliminate the useless instructions emitted during translating E.
1410       if (Result.HasSideEffects)
1411         Visit(E);
1412       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
1413           ConvertType(DestTy)), DestTy);
1414     }
1415     // Since target may map different address spaces in AST to the same address
1416     // space, an address space conversion may end up as a bitcast.
1417     auto *Src = Visit(E);
1418     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGF, Src,
1419                                                                E->getType(),
1420                                                                DestTy);
1421   }
1422   case CK_AtomicToNonAtomic:
1423   case CK_NonAtomicToAtomic:
1424   case CK_NoOp:
1425   case CK_UserDefinedConversion:
1426     return Visit(const_cast<Expr*>(E));
1427 
1428   case CK_BaseToDerived: {
1429     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1430     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1431 
1432     Address Base = CGF.EmitPointerWithAlignment(E);
1433     Address Derived =
1434       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
1435                                    CE->path_begin(), CE->path_end(),
1436                                    CGF.ShouldNullCheckClassCastValue(CE));
1437 
1438     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1439     // performed and the object is not of the derived type.
1440     if (CGF.sanitizePerformTypeCheck())
1441       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1442                         Derived.getPointer(), DestTy->getPointeeType());
1443 
1444     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1445       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
1446                                     Derived.getPointer(),
1447                                     /*MayBeNull=*/true,
1448                                     CodeGenFunction::CFITCK_DerivedCast,
1449                                     CE->getLocStart());
1450 
1451     return Derived.getPointer();
1452   }
1453   case CK_UncheckedDerivedToBase:
1454   case CK_DerivedToBase: {
1455     // The EmitPointerWithAlignment path does this fine; just discard
1456     // the alignment.
1457     return CGF.EmitPointerWithAlignment(CE).getPointer();
1458   }
1459 
1460   case CK_Dynamic: {
1461     Address V = CGF.EmitPointerWithAlignment(E);
1462     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1463     return CGF.EmitDynamicCast(V, DCE);
1464   }
1465 
1466   case CK_ArrayToPointerDecay:
1467     return CGF.EmitArrayToPointerDecay(E).getPointer();
1468   case CK_FunctionToPointerDecay:
1469     return EmitLValue(E).getPointer();
1470 
1471   case CK_NullToPointer:
1472     if (MustVisitNullValue(E))
1473       (void) Visit(E);
1474 
1475     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
1476                               DestTy);
1477 
1478   case CK_NullToMemberPointer: {
1479     if (MustVisitNullValue(E))
1480       (void) Visit(E);
1481 
1482     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1483     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1484   }
1485 
1486   case CK_ReinterpretMemberPointer:
1487   case CK_BaseToDerivedMemberPointer:
1488   case CK_DerivedToBaseMemberPointer: {
1489     Value *Src = Visit(E);
1490 
1491     // Note that the AST doesn't distinguish between checked and
1492     // unchecked member pointer conversions, so we always have to
1493     // implement checked conversions here.  This is inefficient when
1494     // actual control flow may be required in order to perform the
1495     // check, which it is for data member pointers (but not member
1496     // function pointers on Itanium and ARM).
1497     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1498   }
1499 
1500   case CK_ARCProduceObject:
1501     return CGF.EmitARCRetainScalarExpr(E);
1502   case CK_ARCConsumeObject:
1503     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1504   case CK_ARCReclaimReturnedObject:
1505     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
1506   case CK_ARCExtendBlockObject:
1507     return CGF.EmitARCExtendBlockObject(E);
1508 
1509   case CK_CopyAndAutoreleaseBlockObject:
1510     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1511 
1512   case CK_FloatingRealToComplex:
1513   case CK_FloatingComplexCast:
1514   case CK_IntegralRealToComplex:
1515   case CK_IntegralComplexCast:
1516   case CK_IntegralComplexToFloatingComplex:
1517   case CK_FloatingComplexToIntegralComplex:
1518   case CK_ConstructorConversion:
1519   case CK_ToUnion:
1520     llvm_unreachable("scalar cast to non-scalar value");
1521 
1522   case CK_LValueToRValue:
1523     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1524     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1525     return Visit(const_cast<Expr*>(E));
1526 
1527   case CK_IntegralToPointer: {
1528     Value *Src = Visit(const_cast<Expr*>(E));
1529 
1530     // First, convert to the correct width so that we control the kind of
1531     // extension.
1532     auto DestLLVMTy = ConvertType(DestTy);
1533     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
1534     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1535     llvm::Value* IntResult =
1536       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1537 
1538     return Builder.CreateIntToPtr(IntResult, DestLLVMTy);
1539   }
1540   case CK_PointerToIntegral:
1541     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1542     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1543 
1544   case CK_ToVoid: {
1545     CGF.EmitIgnoredExpr(E);
1546     return nullptr;
1547   }
1548   case CK_VectorSplat: {
1549     llvm::Type *DstTy = ConvertType(DestTy);
1550     Value *Elt = Visit(const_cast<Expr*>(E));
1551     // Splat the element across to all elements
1552     unsigned NumElements = DstTy->getVectorNumElements();
1553     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1554   }
1555 
1556   case CK_IntegralCast:
1557   case CK_IntegralToFloating:
1558   case CK_FloatingToIntegral:
1559   case CK_FloatingCast:
1560     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1561                                 CE->getExprLoc());
1562   case CK_BooleanToSignedIntegral:
1563     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1564                                 CE->getExprLoc(),
1565                                 /*TreatBooleanAsSigned=*/true);
1566   case CK_IntegralToBoolean:
1567     return EmitIntToBoolConversion(Visit(E));
1568   case CK_PointerToBoolean:
1569     return EmitPointerToBoolConversion(Visit(E), E->getType());
1570   case CK_FloatingToBoolean:
1571     return EmitFloatToBoolConversion(Visit(E));
1572   case CK_MemberPointerToBoolean: {
1573     llvm::Value *MemPtr = Visit(E);
1574     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1575     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1576   }
1577 
1578   case CK_FloatingComplexToReal:
1579   case CK_IntegralComplexToReal:
1580     return CGF.EmitComplexExpr(E, false, true).first;
1581 
1582   case CK_FloatingComplexToBoolean:
1583   case CK_IntegralComplexToBoolean: {
1584     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1585 
1586     // TODO: kill this function off, inline appropriate case here
1587     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
1588                                          CE->getExprLoc());
1589   }
1590 
1591   case CK_ZeroToOCLEvent: {
1592     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1593     return llvm::Constant::getNullValue(ConvertType(DestTy));
1594   }
1595 
1596   case CK_IntToOCLSampler:
1597     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
1598 
1599   } // end of switch
1600 
1601   llvm_unreachable("unknown scalar cast");
1602 }
1603 
1604 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1605   CodeGenFunction::StmtExprEvaluation eval(CGF);
1606   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1607                                            !E->getType()->isVoidType());
1608   if (!RetAlloca.isValid())
1609     return nullptr;
1610   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1611                               E->getExprLoc());
1612 }
1613 
1614 //===----------------------------------------------------------------------===//
1615 //                             Unary Operators
1616 //===----------------------------------------------------------------------===//
1617 
1618 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1619                                            llvm::Value *InVal, bool IsInc) {
1620   BinOpInfo BinOp;
1621   BinOp.LHS = InVal;
1622   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1623   BinOp.Ty = E->getType();
1624   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1625   BinOp.FPContractable = false;
1626   BinOp.E = E;
1627   return BinOp;
1628 }
1629 
1630 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1631     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1632   llvm::Value *Amount =
1633       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1634   StringRef Name = IsInc ? "inc" : "dec";
1635   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1636   case LangOptions::SOB_Defined:
1637     return Builder.CreateAdd(InVal, Amount, Name);
1638   case LangOptions::SOB_Undefined:
1639     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1640       return Builder.CreateNSWAdd(InVal, Amount, Name);
1641     // Fall through.
1642   case LangOptions::SOB_Trapping:
1643     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1644   }
1645   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1646 }
1647 
1648 llvm::Value *
1649 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1650                                            bool isInc, bool isPre) {
1651 
1652   QualType type = E->getSubExpr()->getType();
1653   llvm::PHINode *atomicPHI = nullptr;
1654   llvm::Value *value;
1655   llvm::Value *input;
1656 
1657   int amount = (isInc ? 1 : -1);
1658 
1659   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1660     type = atomicTy->getValueType();
1661     if (isInc && type->isBooleanType()) {
1662       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1663       if (isPre) {
1664         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
1665           ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
1666         return Builder.getTrue();
1667       }
1668       // For atomic bool increment, we just store true and return it for
1669       // preincrement, do an atomic swap with true for postincrement
1670       return Builder.CreateAtomicRMW(
1671           llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
1672           llvm::AtomicOrdering::SequentiallyConsistent);
1673     }
1674     // Special case for atomic increment / decrement on integers, emit
1675     // atomicrmw instructions.  We skip this if we want to be doing overflow
1676     // checking, and fall into the slow path with the atomic cmpxchg loop.
1677     if (!type->isBooleanType() && type->isIntegerType() &&
1678         !(type->isUnsignedIntegerType() &&
1679           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1680         CGF.getLangOpts().getSignedOverflowBehavior() !=
1681             LangOptions::SOB_Trapping) {
1682       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1683         llvm::AtomicRMWInst::Sub;
1684       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1685         llvm::Instruction::Sub;
1686       llvm::Value *amt = CGF.EmitToMemory(
1687           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1688       llvm::Value *old = Builder.CreateAtomicRMW(aop,
1689           LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
1690       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1691     }
1692     value = EmitLoadOfLValue(LV, E->getExprLoc());
1693     input = value;
1694     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1695     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1696     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1697     value = CGF.EmitToMemory(value, type);
1698     Builder.CreateBr(opBB);
1699     Builder.SetInsertPoint(opBB);
1700     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1701     atomicPHI->addIncoming(value, startBB);
1702     value = atomicPHI;
1703   } else {
1704     value = EmitLoadOfLValue(LV, E->getExprLoc());
1705     input = value;
1706   }
1707 
1708   // Special case of integer increment that we have to check first: bool++.
1709   // Due to promotion rules, we get:
1710   //   bool++ -> bool = bool + 1
1711   //          -> bool = (int)bool + 1
1712   //          -> bool = ((int)bool + 1 != 0)
1713   // An interesting aspect of this is that increment is always true.
1714   // Decrement does not have this property.
1715   if (isInc && type->isBooleanType()) {
1716     value = Builder.getTrue();
1717 
1718   // Most common case by far: integer increment.
1719   } else if (type->isIntegerType()) {
1720     // Note that signed integer inc/dec with width less than int can't
1721     // overflow because of promotion rules; we're just eliding a few steps here.
1722     bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1723                        CGF.IntTy->getIntegerBitWidth();
1724     if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1725       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1726     } else if (CanOverflow && type->isUnsignedIntegerType() &&
1727                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1728       value =
1729           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1730     } else {
1731       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1732       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1733     }
1734 
1735   // Next most common: pointer increment.
1736   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1737     QualType type = ptr->getPointeeType();
1738 
1739     // VLA types don't have constant size.
1740     if (const VariableArrayType *vla
1741           = CGF.getContext().getAsVariableArrayType(type)) {
1742       llvm::Value *numElts = CGF.getVLASize(vla).first;
1743       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1744       if (CGF.getLangOpts().isSignedOverflowDefined())
1745         value = Builder.CreateGEP(value, numElts, "vla.inc");
1746       else
1747         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1748 
1749     // Arithmetic on function pointers (!) is just +-1.
1750     } else if (type->isFunctionType()) {
1751       llvm::Value *amt = Builder.getInt32(amount);
1752 
1753       value = CGF.EmitCastToVoidPtr(value);
1754       if (CGF.getLangOpts().isSignedOverflowDefined())
1755         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1756       else
1757         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1758       value = Builder.CreateBitCast(value, input->getType());
1759 
1760     // For everything else, we can just do a simple increment.
1761     } else {
1762       llvm::Value *amt = Builder.getInt32(amount);
1763       if (CGF.getLangOpts().isSignedOverflowDefined())
1764         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1765       else
1766         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1767     }
1768 
1769   // Vector increment/decrement.
1770   } else if (type->isVectorType()) {
1771     if (type->hasIntegerRepresentation()) {
1772       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1773 
1774       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1775     } else {
1776       value = Builder.CreateFAdd(
1777                   value,
1778                   llvm::ConstantFP::get(value->getType(), amount),
1779                   isInc ? "inc" : "dec");
1780     }
1781 
1782   // Floating point.
1783   } else if (type->isRealFloatingType()) {
1784     // Add the inc/dec to the real part.
1785     llvm::Value *amt;
1786 
1787     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1788       // Another special case: half FP increment should be done via float
1789       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1790         value = Builder.CreateCall(
1791             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1792                                  CGF.CGM.FloatTy),
1793             input, "incdec.conv");
1794       } else {
1795         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
1796       }
1797     }
1798 
1799     if (value->getType()->isFloatTy())
1800       amt = llvm::ConstantFP::get(VMContext,
1801                                   llvm::APFloat(static_cast<float>(amount)));
1802     else if (value->getType()->isDoubleTy())
1803       amt = llvm::ConstantFP::get(VMContext,
1804                                   llvm::APFloat(static_cast<double>(amount)));
1805     else {
1806       // Remaining types are Half, LongDouble or __float128. Convert from float.
1807       llvm::APFloat F(static_cast<float>(amount));
1808       bool ignored;
1809       const llvm::fltSemantics *FS;
1810       // Don't use getFloatTypeSemantics because Half isn't
1811       // necessarily represented using the "half" LLVM type.
1812       if (value->getType()->isFP128Ty())
1813         FS = &CGF.getTarget().getFloat128Format();
1814       else if (value->getType()->isHalfTy())
1815         FS = &CGF.getTarget().getHalfFormat();
1816       else
1817         FS = &CGF.getTarget().getLongDoubleFormat();
1818       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
1819       amt = llvm::ConstantFP::get(VMContext, F);
1820     }
1821     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1822 
1823     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1824       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1825         value = Builder.CreateCall(
1826             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
1827                                  CGF.CGM.FloatTy),
1828             value, "incdec.conv");
1829       } else {
1830         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
1831       }
1832     }
1833 
1834   // Objective-C pointer types.
1835   } else {
1836     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1837     value = CGF.EmitCastToVoidPtr(value);
1838 
1839     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1840     if (!isInc) size = -size;
1841     llvm::Value *sizeValue =
1842       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1843 
1844     if (CGF.getLangOpts().isSignedOverflowDefined())
1845       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1846     else
1847       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1848     value = Builder.CreateBitCast(value, input->getType());
1849   }
1850 
1851   if (atomicPHI) {
1852     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1853     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1854     auto Pair = CGF.EmitAtomicCompareExchange(
1855         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
1856     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
1857     llvm::Value *success = Pair.second;
1858     atomicPHI->addIncoming(old, opBB);
1859     Builder.CreateCondBr(success, contBB, opBB);
1860     Builder.SetInsertPoint(contBB);
1861     return isPre ? value : input;
1862   }
1863 
1864   // Store the updated result through the lvalue.
1865   if (LV.isBitField())
1866     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1867   else
1868     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1869 
1870   // If this is a postinc, return the value read from memory, otherwise use the
1871   // updated value.
1872   return isPre ? value : input;
1873 }
1874 
1875 
1876 
1877 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1878   TestAndClearIgnoreResultAssign();
1879   // Emit unary minus with EmitSub so we handle overflow cases etc.
1880   BinOpInfo BinOp;
1881   BinOp.RHS = Visit(E->getSubExpr());
1882 
1883   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1884     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1885   else
1886     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1887   BinOp.Ty = E->getType();
1888   BinOp.Opcode = BO_Sub;
1889   BinOp.FPContractable = false;
1890   BinOp.E = E;
1891   return EmitSub(BinOp);
1892 }
1893 
1894 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1895   TestAndClearIgnoreResultAssign();
1896   Value *Op = Visit(E->getSubExpr());
1897   return Builder.CreateNot(Op, "neg");
1898 }
1899 
1900 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1901   // Perform vector logical not on comparison with zero vector.
1902   if (E->getType()->isExtVectorType()) {
1903     Value *Oper = Visit(E->getSubExpr());
1904     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1905     Value *Result;
1906     if (Oper->getType()->isFPOrFPVectorTy())
1907       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1908     else
1909       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1910     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1911   }
1912 
1913   // Compare operand to zero.
1914   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1915 
1916   // Invert value.
1917   // TODO: Could dynamically modify easy computations here.  For example, if
1918   // the operand is an icmp ne, turn into icmp eq.
1919   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1920 
1921   // ZExt result to the expr type.
1922   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1923 }
1924 
1925 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1926   // Try folding the offsetof to a constant.
1927   llvm::APSInt Value;
1928   if (E->EvaluateAsInt(Value, CGF.getContext()))
1929     return Builder.getInt(Value);
1930 
1931   // Loop over the components of the offsetof to compute the value.
1932   unsigned n = E->getNumComponents();
1933   llvm::Type* ResultType = ConvertType(E->getType());
1934   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1935   QualType CurrentType = E->getTypeSourceInfo()->getType();
1936   for (unsigned i = 0; i != n; ++i) {
1937     OffsetOfNode ON = E->getComponent(i);
1938     llvm::Value *Offset = nullptr;
1939     switch (ON.getKind()) {
1940     case OffsetOfNode::Array: {
1941       // Compute the index
1942       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1943       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1944       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1945       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1946 
1947       // Save the element type
1948       CurrentType =
1949           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1950 
1951       // Compute the element size
1952       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1953           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1954 
1955       // Multiply out to compute the result
1956       Offset = Builder.CreateMul(Idx, ElemSize);
1957       break;
1958     }
1959 
1960     case OffsetOfNode::Field: {
1961       FieldDecl *MemberDecl = ON.getField();
1962       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1963       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1964 
1965       // Compute the index of the field in its parent.
1966       unsigned i = 0;
1967       // FIXME: It would be nice if we didn't have to loop here!
1968       for (RecordDecl::field_iterator Field = RD->field_begin(),
1969                                       FieldEnd = RD->field_end();
1970            Field != FieldEnd; ++Field, ++i) {
1971         if (*Field == MemberDecl)
1972           break;
1973       }
1974       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1975 
1976       // Compute the offset to the field
1977       int64_t OffsetInt = RL.getFieldOffset(i) /
1978                           CGF.getContext().getCharWidth();
1979       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1980 
1981       // Save the element type.
1982       CurrentType = MemberDecl->getType();
1983       break;
1984     }
1985 
1986     case OffsetOfNode::Identifier:
1987       llvm_unreachable("dependent __builtin_offsetof");
1988 
1989     case OffsetOfNode::Base: {
1990       if (ON.getBase()->isVirtual()) {
1991         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1992         continue;
1993       }
1994 
1995       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1996       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1997 
1998       // Save the element type.
1999       CurrentType = ON.getBase()->getType();
2000 
2001       // Compute the offset to the base.
2002       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2003       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2004       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2005       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2006       break;
2007     }
2008     }
2009     Result = Builder.CreateAdd(Result, Offset);
2010   }
2011   return Result;
2012 }
2013 
2014 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2015 /// argument of the sizeof expression as an integer.
2016 Value *
2017 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2018                               const UnaryExprOrTypeTraitExpr *E) {
2019   QualType TypeToSize = E->getTypeOfArgument();
2020   if (E->getKind() == UETT_SizeOf) {
2021     if (const VariableArrayType *VAT =
2022           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2023       if (E->isArgumentType()) {
2024         // sizeof(type) - make sure to emit the VLA size.
2025         CGF.EmitVariablyModifiedType(TypeToSize);
2026       } else {
2027         // C99 6.5.3.4p2: If the argument is an expression of type
2028         // VLA, it is evaluated.
2029         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2030       }
2031 
2032       QualType eltType;
2033       llvm::Value *numElts;
2034       std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2035 
2036       llvm::Value *size = numElts;
2037 
2038       // Scale the number of non-VLA elements by the non-VLA element size.
2039       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2040       if (!eltSize.isOne())
2041         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2042 
2043       return size;
2044     }
2045   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2046     auto Alignment =
2047         CGF.getContext()
2048             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2049                 E->getTypeOfArgument()->getPointeeType()))
2050             .getQuantity();
2051     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2052   }
2053 
2054   // If this isn't sizeof(vla), the result must be constant; use the constant
2055   // folding logic so we don't have to duplicate it here.
2056   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2057 }
2058 
2059 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2060   Expr *Op = E->getSubExpr();
2061   if (Op->getType()->isAnyComplexType()) {
2062     // If it's an l-value, load through the appropriate subobject l-value.
2063     // Note that we have to ask E because Op might be an l-value that
2064     // this won't work for, e.g. an Obj-C property.
2065     if (E->isGLValue())
2066       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2067                                   E->getExprLoc()).getScalarVal();
2068 
2069     // Otherwise, calculate and project.
2070     return CGF.EmitComplexExpr(Op, false, true).first;
2071   }
2072 
2073   return Visit(Op);
2074 }
2075 
2076 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2077   Expr *Op = E->getSubExpr();
2078   if (Op->getType()->isAnyComplexType()) {
2079     // If it's an l-value, load through the appropriate subobject l-value.
2080     // Note that we have to ask E because Op might be an l-value that
2081     // this won't work for, e.g. an Obj-C property.
2082     if (Op->isGLValue())
2083       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2084                                   E->getExprLoc()).getScalarVal();
2085 
2086     // Otherwise, calculate and project.
2087     return CGF.EmitComplexExpr(Op, true, false).second;
2088   }
2089 
2090   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2091   // effects are evaluated, but not the actual value.
2092   if (Op->isGLValue())
2093     CGF.EmitLValue(Op);
2094   else
2095     CGF.EmitScalarExpr(Op, true);
2096   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2097 }
2098 
2099 //===----------------------------------------------------------------------===//
2100 //                           Binary Operators
2101 //===----------------------------------------------------------------------===//
2102 
2103 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2104   TestAndClearIgnoreResultAssign();
2105   BinOpInfo Result;
2106   Result.LHS = Visit(E->getLHS());
2107   Result.RHS = Visit(E->getRHS());
2108   Result.Ty  = E->getType();
2109   Result.Opcode = E->getOpcode();
2110   Result.FPContractable = E->isFPContractable();
2111   Result.E = E;
2112   return Result;
2113 }
2114 
2115 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2116                                               const CompoundAssignOperator *E,
2117                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2118                                                    Value *&Result) {
2119   QualType LHSTy = E->getLHS()->getType();
2120   BinOpInfo OpInfo;
2121 
2122   if (E->getComputationResultType()->isAnyComplexType())
2123     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2124 
2125   // Emit the RHS first.  __block variables need to have the rhs evaluated
2126   // first, plus this should improve codegen a little.
2127   OpInfo.RHS = Visit(E->getRHS());
2128   OpInfo.Ty = E->getComputationResultType();
2129   OpInfo.Opcode = E->getOpcode();
2130   OpInfo.FPContractable = E->isFPContractable();
2131   OpInfo.E = E;
2132   // Load/convert the LHS.
2133   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2134 
2135   llvm::PHINode *atomicPHI = nullptr;
2136   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2137     QualType type = atomicTy->getValueType();
2138     if (!type->isBooleanType() && type->isIntegerType() &&
2139         !(type->isUnsignedIntegerType() &&
2140           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2141         CGF.getLangOpts().getSignedOverflowBehavior() !=
2142             LangOptions::SOB_Trapping) {
2143       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2144       switch (OpInfo.Opcode) {
2145         // We don't have atomicrmw operands for *, %, /, <<, >>
2146         case BO_MulAssign: case BO_DivAssign:
2147         case BO_RemAssign:
2148         case BO_ShlAssign:
2149         case BO_ShrAssign:
2150           break;
2151         case BO_AddAssign:
2152           aop = llvm::AtomicRMWInst::Add;
2153           break;
2154         case BO_SubAssign:
2155           aop = llvm::AtomicRMWInst::Sub;
2156           break;
2157         case BO_AndAssign:
2158           aop = llvm::AtomicRMWInst::And;
2159           break;
2160         case BO_XorAssign:
2161           aop = llvm::AtomicRMWInst::Xor;
2162           break;
2163         case BO_OrAssign:
2164           aop = llvm::AtomicRMWInst::Or;
2165           break;
2166         default:
2167           llvm_unreachable("Invalid compound assignment type");
2168       }
2169       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2170         llvm::Value *amt = CGF.EmitToMemory(
2171             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2172                                  E->getExprLoc()),
2173             LHSTy);
2174         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2175             llvm::AtomicOrdering::SequentiallyConsistent);
2176         return LHSLV;
2177       }
2178     }
2179     // FIXME: For floating point types, we should be saving and restoring the
2180     // floating point environment in the loop.
2181     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2182     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2183     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2184     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2185     Builder.CreateBr(opBB);
2186     Builder.SetInsertPoint(opBB);
2187     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2188     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2189     OpInfo.LHS = atomicPHI;
2190   }
2191   else
2192     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2193 
2194   SourceLocation Loc = E->getExprLoc();
2195   OpInfo.LHS =
2196       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2197 
2198   // Expand the binary operator.
2199   Result = (this->*Func)(OpInfo);
2200 
2201   // Convert the result back to the LHS type.
2202   Result =
2203       EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2204 
2205   if (atomicPHI) {
2206     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2207     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2208     auto Pair = CGF.EmitAtomicCompareExchange(
2209         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2210     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2211     llvm::Value *success = Pair.second;
2212     atomicPHI->addIncoming(old, opBB);
2213     Builder.CreateCondBr(success, contBB, opBB);
2214     Builder.SetInsertPoint(contBB);
2215     return LHSLV;
2216   }
2217 
2218   // Store the result value into the LHS lvalue. Bit-fields are handled
2219   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2220   // 'An assignment expression has the value of the left operand after the
2221   // assignment...'.
2222   if (LHSLV.isBitField())
2223     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2224   else
2225     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2226 
2227   return LHSLV;
2228 }
2229 
2230 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2231                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2232   bool Ignore = TestAndClearIgnoreResultAssign();
2233   Value *RHS;
2234   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2235 
2236   // If the result is clearly ignored, return now.
2237   if (Ignore)
2238     return nullptr;
2239 
2240   // The result of an assignment in C is the assigned r-value.
2241   if (!CGF.getLangOpts().CPlusPlus)
2242     return RHS;
2243 
2244   // If the lvalue is non-volatile, return the computed value of the assignment.
2245   if (!LHS.isVolatileQualified())
2246     return RHS;
2247 
2248   // Otherwise, reload the value.
2249   return EmitLoadOfLValue(LHS, E->getExprLoc());
2250 }
2251 
2252 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2253     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2254   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2255 
2256   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2257     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2258                                     SanitizerKind::IntegerDivideByZero));
2259   }
2260 
2261   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2262       Ops.Ty->hasSignedIntegerRepresentation()) {
2263     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2264 
2265     llvm::Value *IntMin =
2266       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2267     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2268 
2269     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2270     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2271     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2272     Checks.push_back(
2273         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2274   }
2275 
2276   if (Checks.size() > 0)
2277     EmitBinOpCheck(Checks, Ops);
2278 }
2279 
2280 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2281   {
2282     CodeGenFunction::SanitizerScope SanScope(&CGF);
2283     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2284          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2285         Ops.Ty->isIntegerType()) {
2286       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2287       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2288     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2289                Ops.Ty->isRealFloatingType()) {
2290       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2291       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2292       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2293                      Ops);
2294     }
2295   }
2296 
2297   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2298     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2299     if (CGF.getLangOpts().OpenCL &&
2300         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
2301       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
2302       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
2303       // build option allows an application to specify that single precision
2304       // floating-point divide (x/y and 1/x) and sqrt used in the program
2305       // source are correctly rounded.
2306       llvm::Type *ValTy = Val->getType();
2307       if (ValTy->isFloatTy() ||
2308           (isa<llvm::VectorType>(ValTy) &&
2309            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2310         CGF.SetFPAccuracy(Val, 2.5);
2311     }
2312     return Val;
2313   }
2314   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2315     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2316   else
2317     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2318 }
2319 
2320 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2321   // Rem in C can't be a floating point type: C99 6.5.5p2.
2322   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2323     CodeGenFunction::SanitizerScope SanScope(&CGF);
2324     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2325 
2326     if (Ops.Ty->isIntegerType())
2327       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2328   }
2329 
2330   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2331     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2332   else
2333     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2334 }
2335 
2336 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2337   unsigned IID;
2338   unsigned OpID = 0;
2339 
2340   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2341   switch (Ops.Opcode) {
2342   case BO_Add:
2343   case BO_AddAssign:
2344     OpID = 1;
2345     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2346                      llvm::Intrinsic::uadd_with_overflow;
2347     break;
2348   case BO_Sub:
2349   case BO_SubAssign:
2350     OpID = 2;
2351     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2352                      llvm::Intrinsic::usub_with_overflow;
2353     break;
2354   case BO_Mul:
2355   case BO_MulAssign:
2356     OpID = 3;
2357     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2358                      llvm::Intrinsic::umul_with_overflow;
2359     break;
2360   default:
2361     llvm_unreachable("Unsupported operation for overflow detection");
2362   }
2363   OpID <<= 1;
2364   if (isSigned)
2365     OpID |= 1;
2366 
2367   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2368 
2369   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2370 
2371   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2372   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2373   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2374 
2375   // Handle overflow with llvm.trap if no custom handler has been specified.
2376   const std::string *handlerName =
2377     &CGF.getLangOpts().OverflowHandler;
2378   if (handlerName->empty()) {
2379     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2380     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2381     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2382       CodeGenFunction::SanitizerScope SanScope(&CGF);
2383       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2384       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2385                               : SanitizerKind::UnsignedIntegerOverflow;
2386       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2387     } else
2388       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2389     return result;
2390   }
2391 
2392   // Branch in case of overflow.
2393   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2394   llvm::BasicBlock *continueBB =
2395       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
2396   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2397 
2398   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2399 
2400   // If an overflow handler is set, then we want to call it and then use its
2401   // result, if it returns.
2402   Builder.SetInsertPoint(overflowBB);
2403 
2404   // Get the overflow handler.
2405   llvm::Type *Int8Ty = CGF.Int8Ty;
2406   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2407   llvm::FunctionType *handlerTy =
2408       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2409   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2410 
2411   // Sign extend the args to 64-bit, so that we can use the same handler for
2412   // all types of overflow.
2413   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2414   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2415 
2416   // Call the handler with the two arguments, the operation, and the size of
2417   // the result.
2418   llvm::Value *handlerArgs[] = {
2419     lhs,
2420     rhs,
2421     Builder.getInt8(OpID),
2422     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2423   };
2424   llvm::Value *handlerResult =
2425     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2426 
2427   // Truncate the result back to the desired size.
2428   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2429   Builder.CreateBr(continueBB);
2430 
2431   Builder.SetInsertPoint(continueBB);
2432   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2433   phi->addIncoming(result, initialBB);
2434   phi->addIncoming(handlerResult, overflowBB);
2435 
2436   return phi;
2437 }
2438 
2439 /// Emit pointer + index arithmetic.
2440 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2441                                     const BinOpInfo &op,
2442                                     bool isSubtraction) {
2443   // Must have binary (not unary) expr here.  Unary pointer
2444   // increment/decrement doesn't use this path.
2445   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2446 
2447   Value *pointer = op.LHS;
2448   Expr *pointerOperand = expr->getLHS();
2449   Value *index = op.RHS;
2450   Expr *indexOperand = expr->getRHS();
2451 
2452   // In a subtraction, the LHS is always the pointer.
2453   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2454     std::swap(pointer, index);
2455     std::swap(pointerOperand, indexOperand);
2456   }
2457 
2458   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2459   auto &DL = CGF.CGM.getDataLayout();
2460   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
2461   if (width != DL.getTypeSizeInBits(PtrTy)) {
2462     // Zero-extend or sign-extend the pointer value according to
2463     // whether the index is signed or not.
2464     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2465     index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
2466                                       "idx.ext");
2467   }
2468 
2469   // If this is subtraction, negate the index.
2470   if (isSubtraction)
2471     index = CGF.Builder.CreateNeg(index, "idx.neg");
2472 
2473   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2474     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2475                         /*Accessed*/ false);
2476 
2477   const PointerType *pointerType
2478     = pointerOperand->getType()->getAs<PointerType>();
2479   if (!pointerType) {
2480     QualType objectType = pointerOperand->getType()
2481                                         ->castAs<ObjCObjectPointerType>()
2482                                         ->getPointeeType();
2483     llvm::Value *objectSize
2484       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2485 
2486     index = CGF.Builder.CreateMul(index, objectSize);
2487 
2488     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2489     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2490     return CGF.Builder.CreateBitCast(result, pointer->getType());
2491   }
2492 
2493   QualType elementType = pointerType->getPointeeType();
2494   if (const VariableArrayType *vla
2495         = CGF.getContext().getAsVariableArrayType(elementType)) {
2496     // The element count here is the total number of non-VLA elements.
2497     llvm::Value *numElements = CGF.getVLASize(vla).first;
2498 
2499     // Effectively, the multiply by the VLA size is part of the GEP.
2500     // GEP indexes are signed, and scaling an index isn't permitted to
2501     // signed-overflow, so we use the same semantics for our explicit
2502     // multiply.  We suppress this if overflow is not undefined behavior.
2503     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2504       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2505       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2506     } else {
2507       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2508       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2509     }
2510     return pointer;
2511   }
2512 
2513   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2514   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2515   // future proof.
2516   if (elementType->isVoidType() || elementType->isFunctionType()) {
2517     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2518     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2519     return CGF.Builder.CreateBitCast(result, pointer->getType());
2520   }
2521 
2522   if (CGF.getLangOpts().isSignedOverflowDefined())
2523     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2524 
2525   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2526 }
2527 
2528 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2529 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2530 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2531 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2532 // efficient operations.
2533 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2534                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2535                            bool negMul, bool negAdd) {
2536   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2537 
2538   Value *MulOp0 = MulOp->getOperand(0);
2539   Value *MulOp1 = MulOp->getOperand(1);
2540   if (negMul) {
2541     MulOp0 =
2542       Builder.CreateFSub(
2543         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2544         "neg");
2545   } else if (negAdd) {
2546     Addend =
2547       Builder.CreateFSub(
2548         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2549         "neg");
2550   }
2551 
2552   Value *FMulAdd = Builder.CreateCall(
2553       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2554       {MulOp0, MulOp1, Addend});
2555    MulOp->eraseFromParent();
2556 
2557    return FMulAdd;
2558 }
2559 
2560 // Check whether it would be legal to emit an fmuladd intrinsic call to
2561 // represent op and if so, build the fmuladd.
2562 //
2563 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2564 // Does NOT check the type of the operation - it's assumed that this function
2565 // will be called from contexts where it's known that the type is contractable.
2566 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2567                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2568                          bool isSub=false) {
2569 
2570   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2571           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2572          "Only fadd/fsub can be the root of an fmuladd.");
2573 
2574   // Check whether this op is marked as fusable.
2575   if (!op.FPContractable)
2576     return nullptr;
2577 
2578   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2579   // either disabled, or handled entirely by the LLVM backend).
2580   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2581     return nullptr;
2582 
2583   // We have a potentially fusable op. Look for a mul on one of the operands.
2584   // Also, make sure that the mul result isn't used directly. In that case,
2585   // there's no point creating a muladd operation.
2586   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2587     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2588         LHSBinOp->use_empty())
2589       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2590   }
2591   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2592     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2593         RHSBinOp->use_empty())
2594       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2595   }
2596 
2597   return nullptr;
2598 }
2599 
2600 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2601   if (op.LHS->getType()->isPointerTy() ||
2602       op.RHS->getType()->isPointerTy())
2603     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2604 
2605   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2606     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2607     case LangOptions::SOB_Defined:
2608       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2609     case LangOptions::SOB_Undefined:
2610       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2611         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2612       // Fall through.
2613     case LangOptions::SOB_Trapping:
2614       return EmitOverflowCheckedBinOp(op);
2615     }
2616   }
2617 
2618   if (op.Ty->isUnsignedIntegerType() &&
2619       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2620     return EmitOverflowCheckedBinOp(op);
2621 
2622   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2623     // Try to form an fmuladd.
2624     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2625       return FMulAdd;
2626 
2627     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2628   }
2629 
2630   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2631 }
2632 
2633 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2634   // The LHS is always a pointer if either side is.
2635   if (!op.LHS->getType()->isPointerTy()) {
2636     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2637       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2638       case LangOptions::SOB_Defined:
2639         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2640       case LangOptions::SOB_Undefined:
2641         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2642           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2643         // Fall through.
2644       case LangOptions::SOB_Trapping:
2645         return EmitOverflowCheckedBinOp(op);
2646       }
2647     }
2648 
2649     if (op.Ty->isUnsignedIntegerType() &&
2650         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2651       return EmitOverflowCheckedBinOp(op);
2652 
2653     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2654       // Try to form an fmuladd.
2655       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2656         return FMulAdd;
2657       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2658     }
2659 
2660     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2661   }
2662 
2663   // If the RHS is not a pointer, then we have normal pointer
2664   // arithmetic.
2665   if (!op.RHS->getType()->isPointerTy())
2666     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2667 
2668   // Otherwise, this is a pointer subtraction.
2669 
2670   // Do the raw subtraction part.
2671   llvm::Value *LHS
2672     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2673   llvm::Value *RHS
2674     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2675   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2676 
2677   // Okay, figure out the element size.
2678   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2679   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2680 
2681   llvm::Value *divisor = nullptr;
2682 
2683   // For a variable-length array, this is going to be non-constant.
2684   if (const VariableArrayType *vla
2685         = CGF.getContext().getAsVariableArrayType(elementType)) {
2686     llvm::Value *numElements;
2687     std::tie(numElements, elementType) = CGF.getVLASize(vla);
2688 
2689     divisor = numElements;
2690 
2691     // Scale the number of non-VLA elements by the non-VLA element size.
2692     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2693     if (!eltSize.isOne())
2694       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2695 
2696   // For everything elese, we can just compute it, safe in the
2697   // assumption that Sema won't let anything through that we can't
2698   // safely compute the size of.
2699   } else {
2700     CharUnits elementSize;
2701     // Handle GCC extension for pointer arithmetic on void* and
2702     // function pointer types.
2703     if (elementType->isVoidType() || elementType->isFunctionType())
2704       elementSize = CharUnits::One();
2705     else
2706       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2707 
2708     // Don't even emit the divide for element size of 1.
2709     if (elementSize.isOne())
2710       return diffInChars;
2711 
2712     divisor = CGF.CGM.getSize(elementSize);
2713   }
2714 
2715   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2716   // pointer difference in C is only defined in the case where both operands
2717   // are pointing to elements of an array.
2718   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2719 }
2720 
2721 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2722   llvm::IntegerType *Ty;
2723   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2724     Ty = cast<llvm::IntegerType>(VT->getElementType());
2725   else
2726     Ty = cast<llvm::IntegerType>(LHS->getType());
2727   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2728 }
2729 
2730 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2731   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2732   // RHS to the same size as the LHS.
2733   Value *RHS = Ops.RHS;
2734   if (Ops.LHS->getType() != RHS->getType())
2735     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2736 
2737   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
2738                       Ops.Ty->hasSignedIntegerRepresentation() &&
2739                       !CGF.getLangOpts().isSignedOverflowDefined();
2740   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
2741   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2742   if (CGF.getLangOpts().OpenCL)
2743     RHS =
2744         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2745   else if ((SanitizeBase || SanitizeExponent) &&
2746            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2747     CodeGenFunction::SanitizerScope SanScope(&CGF);
2748     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
2749     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2750     llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
2751 
2752     if (SanitizeExponent) {
2753       Checks.push_back(
2754           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
2755     }
2756 
2757     if (SanitizeBase) {
2758       // Check whether we are shifting any non-zero bits off the top of the
2759       // integer. We only emit this check if exponent is valid - otherwise
2760       // instructions below will have undefined behavior themselves.
2761       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2762       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2763       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
2764       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
2765       CGF.EmitBlock(CheckShiftBase);
2766       llvm::Value *BitsShiftedOff =
2767         Builder.CreateLShr(Ops.LHS,
2768                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2769                                              /*NUW*/true, /*NSW*/true),
2770                            "shl.check");
2771       if (CGF.getLangOpts().CPlusPlus) {
2772         // In C99, we are not permitted to shift a 1 bit into the sign bit.
2773         // Under C++11's rules, shifting a 1 bit into the sign bit is
2774         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2775         // define signed left shifts, so we use the C99 and C++11 rules there).
2776         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2777         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2778       }
2779       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2780       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2781       CGF.EmitBlock(Cont);
2782       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
2783       BaseCheck->addIncoming(Builder.getTrue(), Orig);
2784       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
2785       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
2786     }
2787 
2788     assert(!Checks.empty());
2789     EmitBinOpCheck(Checks, Ops);
2790   }
2791 
2792   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2793 }
2794 
2795 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2796   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2797   // RHS to the same size as the LHS.
2798   Value *RHS = Ops.RHS;
2799   if (Ops.LHS->getType() != RHS->getType())
2800     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2801 
2802   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2803   if (CGF.getLangOpts().OpenCL)
2804     RHS =
2805         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2806   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
2807            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2808     CodeGenFunction::SanitizerScope SanScope(&CGF);
2809     llvm::Value *Valid =
2810         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
2811     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
2812   }
2813 
2814   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2815     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2816   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2817 }
2818 
2819 enum IntrinsicType { VCMPEQ, VCMPGT };
2820 // return corresponding comparison intrinsic for given vector type
2821 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2822                                         BuiltinType::Kind ElemKind) {
2823   switch (ElemKind) {
2824   default: llvm_unreachable("unexpected element type");
2825   case BuiltinType::Char_U:
2826   case BuiltinType::UChar:
2827     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2828                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2829   case BuiltinType::Char_S:
2830   case BuiltinType::SChar:
2831     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2832                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2833   case BuiltinType::UShort:
2834     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2835                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2836   case BuiltinType::Short:
2837     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2838                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2839   case BuiltinType::UInt:
2840   case BuiltinType::ULong:
2841     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2842                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2843   case BuiltinType::Int:
2844   case BuiltinType::Long:
2845     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2846                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2847   case BuiltinType::Float:
2848     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2849                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2850   }
2851 }
2852 
2853 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
2854                                       llvm::CmpInst::Predicate UICmpOpc,
2855                                       llvm::CmpInst::Predicate SICmpOpc,
2856                                       llvm::CmpInst::Predicate FCmpOpc) {
2857   TestAndClearIgnoreResultAssign();
2858   Value *Result;
2859   QualType LHSTy = E->getLHS()->getType();
2860   QualType RHSTy = E->getRHS()->getType();
2861   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2862     assert(E->getOpcode() == BO_EQ ||
2863            E->getOpcode() == BO_NE);
2864     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2865     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2866     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2867                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2868   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
2869     Value *LHS = Visit(E->getLHS());
2870     Value *RHS = Visit(E->getRHS());
2871 
2872     // If AltiVec, the comparison results in a numeric type, so we use
2873     // intrinsics comparing vectors and giving 0 or 1 as a result
2874     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2875       // constants for mapping CR6 register bits to predicate result
2876       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2877 
2878       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2879 
2880       // in several cases vector arguments order will be reversed
2881       Value *FirstVecArg = LHS,
2882             *SecondVecArg = RHS;
2883 
2884       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2885       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2886       BuiltinType::Kind ElementKind = BTy->getKind();
2887 
2888       switch(E->getOpcode()) {
2889       default: llvm_unreachable("is not a comparison operation");
2890       case BO_EQ:
2891         CR6 = CR6_LT;
2892         ID = GetIntrinsic(VCMPEQ, ElementKind);
2893         break;
2894       case BO_NE:
2895         CR6 = CR6_EQ;
2896         ID = GetIntrinsic(VCMPEQ, ElementKind);
2897         break;
2898       case BO_LT:
2899         CR6 = CR6_LT;
2900         ID = GetIntrinsic(VCMPGT, ElementKind);
2901         std::swap(FirstVecArg, SecondVecArg);
2902         break;
2903       case BO_GT:
2904         CR6 = CR6_LT;
2905         ID = GetIntrinsic(VCMPGT, ElementKind);
2906         break;
2907       case BO_LE:
2908         if (ElementKind == BuiltinType::Float) {
2909           CR6 = CR6_LT;
2910           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2911           std::swap(FirstVecArg, SecondVecArg);
2912         }
2913         else {
2914           CR6 = CR6_EQ;
2915           ID = GetIntrinsic(VCMPGT, ElementKind);
2916         }
2917         break;
2918       case BO_GE:
2919         if (ElementKind == BuiltinType::Float) {
2920           CR6 = CR6_LT;
2921           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2922         }
2923         else {
2924           CR6 = CR6_EQ;
2925           ID = GetIntrinsic(VCMPGT, ElementKind);
2926           std::swap(FirstVecArg, SecondVecArg);
2927         }
2928         break;
2929       }
2930 
2931       Value *CR6Param = Builder.getInt32(CR6);
2932       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2933       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
2934       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2935                                   E->getExprLoc());
2936     }
2937 
2938     if (LHS->getType()->isFPOrFPVectorTy()) {
2939       Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
2940     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2941       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
2942     } else {
2943       // Unsigned integers and pointers.
2944       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
2945     }
2946 
2947     // If this is a vector comparison, sign extend the result to the appropriate
2948     // vector integer type and return it (don't convert to bool).
2949     if (LHSTy->isVectorType())
2950       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2951 
2952   } else {
2953     // Complex Comparison: can only be an equality comparison.
2954     CodeGenFunction::ComplexPairTy LHS, RHS;
2955     QualType CETy;
2956     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
2957       LHS = CGF.EmitComplexExpr(E->getLHS());
2958       CETy = CTy->getElementType();
2959     } else {
2960       LHS.first = Visit(E->getLHS());
2961       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
2962       CETy = LHSTy;
2963     }
2964     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
2965       RHS = CGF.EmitComplexExpr(E->getRHS());
2966       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
2967                                                      CTy->getElementType()) &&
2968              "The element types must always match.");
2969       (void)CTy;
2970     } else {
2971       RHS.first = Visit(E->getRHS());
2972       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
2973       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
2974              "The element types must always match.");
2975     }
2976 
2977     Value *ResultR, *ResultI;
2978     if (CETy->isRealFloatingType()) {
2979       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
2980       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
2981     } else {
2982       // Complex comparisons can only be equality comparisons.  As such, signed
2983       // and unsigned opcodes are the same.
2984       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
2985       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
2986     }
2987 
2988     if (E->getOpcode() == BO_EQ) {
2989       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2990     } else {
2991       assert(E->getOpcode() == BO_NE &&
2992              "Complex comparison other than == or != ?");
2993       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2994     }
2995   }
2996 
2997   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2998                               E->getExprLoc());
2999 }
3000 
3001 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3002   bool Ignore = TestAndClearIgnoreResultAssign();
3003 
3004   Value *RHS;
3005   LValue LHS;
3006 
3007   switch (E->getLHS()->getType().getObjCLifetime()) {
3008   case Qualifiers::OCL_Strong:
3009     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3010     break;
3011 
3012   case Qualifiers::OCL_Autoreleasing:
3013     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3014     break;
3015 
3016   case Qualifiers::OCL_ExplicitNone:
3017     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3018     break;
3019 
3020   case Qualifiers::OCL_Weak:
3021     RHS = Visit(E->getRHS());
3022     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3023     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3024     break;
3025 
3026   case Qualifiers::OCL_None:
3027     // __block variables need to have the rhs evaluated first, plus
3028     // this should improve codegen just a little.
3029     RHS = Visit(E->getRHS());
3030     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3031 
3032     // Store the value into the LHS.  Bit-fields are handled specially
3033     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3034     // 'An assignment expression has the value of the left operand after
3035     // the assignment...'.
3036     if (LHS.isBitField())
3037       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3038     else
3039       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3040   }
3041 
3042   // If the result is clearly ignored, return now.
3043   if (Ignore)
3044     return nullptr;
3045 
3046   // The result of an assignment in C is the assigned r-value.
3047   if (!CGF.getLangOpts().CPlusPlus)
3048     return RHS;
3049 
3050   // If the lvalue is non-volatile, return the computed value of the assignment.
3051   if (!LHS.isVolatileQualified())
3052     return RHS;
3053 
3054   // Otherwise, reload the value.
3055   return EmitLoadOfLValue(LHS, E->getExprLoc());
3056 }
3057 
3058 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3059   // Perform vector logical and on comparisons with zero vectors.
3060   if (E->getType()->isVectorType()) {
3061     CGF.incrementProfileCounter(E);
3062 
3063     Value *LHS = Visit(E->getLHS());
3064     Value *RHS = Visit(E->getRHS());
3065     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3066     if (LHS->getType()->isFPOrFPVectorTy()) {
3067       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3068       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3069     } else {
3070       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3071       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3072     }
3073     Value *And = Builder.CreateAnd(LHS, RHS);
3074     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3075   }
3076 
3077   llvm::Type *ResTy = ConvertType(E->getType());
3078 
3079   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3080   // If we have 1 && X, just emit X without inserting the control flow.
3081   bool LHSCondVal;
3082   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3083     if (LHSCondVal) { // If we have 1 && X, just emit X.
3084       CGF.incrementProfileCounter(E);
3085 
3086       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3087       // ZExt result to int or bool.
3088       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3089     }
3090 
3091     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3092     if (!CGF.ContainsLabel(E->getRHS()))
3093       return llvm::Constant::getNullValue(ResTy);
3094   }
3095 
3096   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3097   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3098 
3099   CodeGenFunction::ConditionalEvaluation eval(CGF);
3100 
3101   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3102   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3103                            CGF.getProfileCount(E->getRHS()));
3104 
3105   // Any edges into the ContBlock are now from an (indeterminate number of)
3106   // edges from this first condition.  All of these values will be false.  Start
3107   // setting up the PHI node in the Cont Block for this.
3108   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3109                                             "", ContBlock);
3110   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3111        PI != PE; ++PI)
3112     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3113 
3114   eval.begin(CGF);
3115   CGF.EmitBlock(RHSBlock);
3116   CGF.incrementProfileCounter(E);
3117   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3118   eval.end(CGF);
3119 
3120   // Reaquire the RHS block, as there may be subblocks inserted.
3121   RHSBlock = Builder.GetInsertBlock();
3122 
3123   // Emit an unconditional branch from this block to ContBlock.
3124   {
3125     // There is no need to emit line number for unconditional branch.
3126     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3127     CGF.EmitBlock(ContBlock);
3128   }
3129   // Insert an entry into the phi node for the edge with the value of RHSCond.
3130   PN->addIncoming(RHSCond, RHSBlock);
3131 
3132   // ZExt result to int.
3133   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3134 }
3135 
3136 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3137   // Perform vector logical or on comparisons with zero vectors.
3138   if (E->getType()->isVectorType()) {
3139     CGF.incrementProfileCounter(E);
3140 
3141     Value *LHS = Visit(E->getLHS());
3142     Value *RHS = Visit(E->getRHS());
3143     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3144     if (LHS->getType()->isFPOrFPVectorTy()) {
3145       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3146       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3147     } else {
3148       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3149       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3150     }
3151     Value *Or = Builder.CreateOr(LHS, RHS);
3152     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3153   }
3154 
3155   llvm::Type *ResTy = ConvertType(E->getType());
3156 
3157   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3158   // If we have 0 || X, just emit X without inserting the control flow.
3159   bool LHSCondVal;
3160   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3161     if (!LHSCondVal) { // If we have 0 || X, just emit X.
3162       CGF.incrementProfileCounter(E);
3163 
3164       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3165       // ZExt result to int or bool.
3166       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3167     }
3168 
3169     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3170     if (!CGF.ContainsLabel(E->getRHS()))
3171       return llvm::ConstantInt::get(ResTy, 1);
3172   }
3173 
3174   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3175   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3176 
3177   CodeGenFunction::ConditionalEvaluation eval(CGF);
3178 
3179   // Branch on the LHS first.  If it is true, go to the success (cont) block.
3180   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3181                            CGF.getCurrentProfileCount() -
3182                                CGF.getProfileCount(E->getRHS()));
3183 
3184   // Any edges into the ContBlock are now from an (indeterminate number of)
3185   // edges from this first condition.  All of these values will be true.  Start
3186   // setting up the PHI node in the Cont Block for this.
3187   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3188                                             "", ContBlock);
3189   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3190        PI != PE; ++PI)
3191     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3192 
3193   eval.begin(CGF);
3194 
3195   // Emit the RHS condition as a bool value.
3196   CGF.EmitBlock(RHSBlock);
3197   CGF.incrementProfileCounter(E);
3198   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3199 
3200   eval.end(CGF);
3201 
3202   // Reaquire the RHS block, as there may be subblocks inserted.
3203   RHSBlock = Builder.GetInsertBlock();
3204 
3205   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3206   // into the phi node for the edge with the value of RHSCond.
3207   CGF.EmitBlock(ContBlock);
3208   PN->addIncoming(RHSCond, RHSBlock);
3209 
3210   // ZExt result to int.
3211   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3212 }
3213 
3214 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3215   CGF.EmitIgnoredExpr(E->getLHS());
3216   CGF.EnsureInsertPoint();
3217   return Visit(E->getRHS());
3218 }
3219 
3220 //===----------------------------------------------------------------------===//
3221 //                             Other Operators
3222 //===----------------------------------------------------------------------===//
3223 
3224 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3225 /// expression is cheap enough and side-effect-free enough to evaluate
3226 /// unconditionally instead of conditionally.  This is used to convert control
3227 /// flow into selects in some cases.
3228 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3229                                                    CodeGenFunction &CGF) {
3230   // Anything that is an integer or floating point constant is fine.
3231   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3232 
3233   // Even non-volatile automatic variables can't be evaluated unconditionally.
3234   // Referencing a thread_local may cause non-trivial initialization work to
3235   // occur. If we're inside a lambda and one of the variables is from the scope
3236   // outside the lambda, that function may have returned already. Reading its
3237   // locals is a bad idea. Also, these reads may introduce races there didn't
3238   // exist in the source-level program.
3239 }
3240 
3241 
3242 Value *ScalarExprEmitter::
3243 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3244   TestAndClearIgnoreResultAssign();
3245 
3246   // Bind the common expression if necessary.
3247   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3248 
3249   Expr *condExpr = E->getCond();
3250   Expr *lhsExpr = E->getTrueExpr();
3251   Expr *rhsExpr = E->getFalseExpr();
3252 
3253   // If the condition constant folds and can be elided, try to avoid emitting
3254   // the condition and the dead arm.
3255   bool CondExprBool;
3256   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3257     Expr *live = lhsExpr, *dead = rhsExpr;
3258     if (!CondExprBool) std::swap(live, dead);
3259 
3260     // If the dead side doesn't have labels we need, just emit the Live part.
3261     if (!CGF.ContainsLabel(dead)) {
3262       if (CondExprBool)
3263         CGF.incrementProfileCounter(E);
3264       Value *Result = Visit(live);
3265 
3266       // If the live part is a throw expression, it acts like it has a void
3267       // type, so evaluating it returns a null Value*.  However, a conditional
3268       // with non-void type must return a non-null Value*.
3269       if (!Result && !E->getType()->isVoidType())
3270         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3271 
3272       return Result;
3273     }
3274   }
3275 
3276   // OpenCL: If the condition is a vector, we can treat this condition like
3277   // the select function.
3278   if (CGF.getLangOpts().OpenCL
3279       && condExpr->getType()->isVectorType()) {
3280     CGF.incrementProfileCounter(E);
3281 
3282     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3283     llvm::Value *LHS = Visit(lhsExpr);
3284     llvm::Value *RHS = Visit(rhsExpr);
3285 
3286     llvm::Type *condType = ConvertType(condExpr->getType());
3287     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3288 
3289     unsigned numElem = vecTy->getNumElements();
3290     llvm::Type *elemType = vecTy->getElementType();
3291 
3292     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3293     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3294     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3295                                           llvm::VectorType::get(elemType,
3296                                                                 numElem),
3297                                           "sext");
3298     llvm::Value *tmp2 = Builder.CreateNot(tmp);
3299 
3300     // Cast float to int to perform ANDs if necessary.
3301     llvm::Value *RHSTmp = RHS;
3302     llvm::Value *LHSTmp = LHS;
3303     bool wasCast = false;
3304     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3305     if (rhsVTy->getElementType()->isFloatingPointTy()) {
3306       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3307       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3308       wasCast = true;
3309     }
3310 
3311     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3312     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3313     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3314     if (wasCast)
3315       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3316 
3317     return tmp5;
3318   }
3319 
3320   // If this is a really simple expression (like x ? 4 : 5), emit this as a
3321   // select instead of as control flow.  We can only do this if it is cheap and
3322   // safe to evaluate the LHS and RHS unconditionally.
3323   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3324       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3325     CGF.incrementProfileCounter(E);
3326 
3327     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3328     llvm::Value *LHS = Visit(lhsExpr);
3329     llvm::Value *RHS = Visit(rhsExpr);
3330     if (!LHS) {
3331       // If the conditional has void type, make sure we return a null Value*.
3332       assert(!RHS && "LHS and RHS types must match");
3333       return nullptr;
3334     }
3335     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3336   }
3337 
3338   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3339   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3340   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3341 
3342   CodeGenFunction::ConditionalEvaluation eval(CGF);
3343   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3344                            CGF.getProfileCount(lhsExpr));
3345 
3346   CGF.EmitBlock(LHSBlock);
3347   CGF.incrementProfileCounter(E);
3348   eval.begin(CGF);
3349   Value *LHS = Visit(lhsExpr);
3350   eval.end(CGF);
3351 
3352   LHSBlock = Builder.GetInsertBlock();
3353   Builder.CreateBr(ContBlock);
3354 
3355   CGF.EmitBlock(RHSBlock);
3356   eval.begin(CGF);
3357   Value *RHS = Visit(rhsExpr);
3358   eval.end(CGF);
3359 
3360   RHSBlock = Builder.GetInsertBlock();
3361   CGF.EmitBlock(ContBlock);
3362 
3363   // If the LHS or RHS is a throw expression, it will be legitimately null.
3364   if (!LHS)
3365     return RHS;
3366   if (!RHS)
3367     return LHS;
3368 
3369   // Create a PHI node for the real part.
3370   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3371   PN->addIncoming(LHS, LHSBlock);
3372   PN->addIncoming(RHS, RHSBlock);
3373   return PN;
3374 }
3375 
3376 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3377   return Visit(E->getChosenSubExpr());
3378 }
3379 
3380 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3381   QualType Ty = VE->getType();
3382 
3383   if (Ty->isVariablyModifiedType())
3384     CGF.EmitVariablyModifiedType(Ty);
3385 
3386   Address ArgValue = Address::invalid();
3387   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
3388 
3389   llvm::Type *ArgTy = ConvertType(VE->getType());
3390 
3391   // If EmitVAArg fails, emit an error.
3392   if (!ArgPtr.isValid()) {
3393     CGF.ErrorUnsupported(VE, "va_arg expression");
3394     return llvm::UndefValue::get(ArgTy);
3395   }
3396 
3397   // FIXME Volatility.
3398   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3399 
3400   // If EmitVAArg promoted the type, we must truncate it.
3401   if (ArgTy != Val->getType()) {
3402     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3403       Val = Builder.CreateIntToPtr(Val, ArgTy);
3404     else
3405       Val = Builder.CreateTrunc(Val, ArgTy);
3406   }
3407 
3408   return Val;
3409 }
3410 
3411 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3412   return CGF.EmitBlockLiteral(block);
3413 }
3414 
3415 // Convert a vec3 to vec4, or vice versa.
3416 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
3417                                  Value *Src, unsigned NumElementsDst) {
3418   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3419   SmallVector<llvm::Constant*, 4> Args;
3420   Args.push_back(Builder.getInt32(0));
3421   Args.push_back(Builder.getInt32(1));
3422   Args.push_back(Builder.getInt32(2));
3423   if (NumElementsDst == 4)
3424     Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3425   llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3426   return Builder.CreateShuffleVector(Src, UnV, Mask);
3427 }
3428 
3429 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
3430 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
3431 // but could be scalar or vectors of different lengths, and either can be
3432 // pointer.
3433 // There are 4 cases:
3434 // 1. non-pointer -> non-pointer  : needs 1 bitcast
3435 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
3436 // 3. pointer -> non-pointer
3437 //   a) pointer -> intptr_t       : needs 1 ptrtoint
3438 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
3439 // 4. non-pointer -> pointer
3440 //   a) intptr_t -> pointer       : needs 1 inttoptr
3441 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
3442 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
3443 // allow casting directly between pointer types and non-integer non-pointer
3444 // types.
3445 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
3446                                            const llvm::DataLayout &DL,
3447                                            Value *Src, llvm::Type *DstTy,
3448                                            StringRef Name = "") {
3449   auto SrcTy = Src->getType();
3450 
3451   // Case 1.
3452   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
3453     return Builder.CreateBitCast(Src, DstTy, Name);
3454 
3455   // Case 2.
3456   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
3457     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
3458 
3459   // Case 3.
3460   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
3461     // Case 3b.
3462     if (!DstTy->isIntegerTy())
3463       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
3464     // Cases 3a and 3b.
3465     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
3466   }
3467 
3468   // Case 4b.
3469   if (!SrcTy->isIntegerTy())
3470     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
3471   // Cases 4a and 4b.
3472   return Builder.CreateIntToPtr(Src, DstTy, Name);
3473 }
3474 
3475 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3476   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3477   llvm::Type *DstTy = ConvertType(E->getType());
3478 
3479   llvm::Type *SrcTy = Src->getType();
3480   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
3481     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
3482   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
3483     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
3484 
3485   // Going from vec3 to non-vec3 is a special case and requires a shuffle
3486   // vector to get a vec4, then a bitcast if the target type is different.
3487   if (NumElementsSrc == 3 && NumElementsDst != 3) {
3488     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
3489     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3490                                        DstTy);
3491     Src->setName("astype");
3492     return Src;
3493   }
3494 
3495   // Going from non-vec3 to vec3 is a special case and requires a bitcast
3496   // to vec4 if the original type is not vec4, then a shuffle vector to
3497   // get a vec3.
3498   if (NumElementsSrc != 3 && NumElementsDst == 3) {
3499     auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
3500     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3501                                        Vec4Ty);
3502     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
3503     Src->setName("astype");
3504     return Src;
3505   }
3506 
3507   return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
3508                                             Src, DstTy, "astype");
3509 }
3510 
3511 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3512   return CGF.EmitAtomicExpr(E).getScalarVal();
3513 }
3514 
3515 //===----------------------------------------------------------------------===//
3516 //                         Entry Point into this File
3517 //===----------------------------------------------------------------------===//
3518 
3519 /// Emit the computation of the specified expression of scalar type, ignoring
3520 /// the result.
3521 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3522   assert(E && hasScalarEvaluationKind(E->getType()) &&
3523          "Invalid scalar expression to emit");
3524 
3525   return ScalarExprEmitter(*this, IgnoreResultAssign)
3526       .Visit(const_cast<Expr *>(E));
3527 }
3528 
3529 /// Emit a conversion from the specified type to the specified destination type,
3530 /// both of which are LLVM scalar types.
3531 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3532                                              QualType DstTy,
3533                                              SourceLocation Loc) {
3534   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3535          "Invalid scalar expression to emit");
3536   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
3537 }
3538 
3539 /// Emit a conversion from the specified complex type to the specified
3540 /// destination type, where the destination type is an LLVM scalar type.
3541 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3542                                                       QualType SrcTy,
3543                                                       QualType DstTy,
3544                                                       SourceLocation Loc) {
3545   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3546          "Invalid complex -> scalar conversion");
3547   return ScalarExprEmitter(*this)
3548       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
3549 }
3550 
3551 
3552 llvm::Value *CodeGenFunction::
3553 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3554                         bool isInc, bool isPre) {
3555   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3556 }
3557 
3558 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3559   // object->isa or (*object).isa
3560   // Generate code as for: *(Class*)object
3561 
3562   Expr *BaseExpr = E->getBase();
3563   Address Addr = Address::invalid();
3564   if (BaseExpr->isRValue()) {
3565     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
3566   } else {
3567     Addr = EmitLValue(BaseExpr).getAddress();
3568   }
3569 
3570   // Cast the address to Class*.
3571   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
3572   return MakeAddrLValue(Addr, E->getType());
3573 }
3574 
3575 
3576 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3577                                             const CompoundAssignOperator *E) {
3578   ScalarExprEmitter Scalar(*this);
3579   Value *Result = nullptr;
3580   switch (E->getOpcode()) {
3581 #define COMPOUND_OP(Op)                                                       \
3582     case BO_##Op##Assign:                                                     \
3583       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3584                                              Result)
3585   COMPOUND_OP(Mul);
3586   COMPOUND_OP(Div);
3587   COMPOUND_OP(Rem);
3588   COMPOUND_OP(Add);
3589   COMPOUND_OP(Sub);
3590   COMPOUND_OP(Shl);
3591   COMPOUND_OP(Shr);
3592   COMPOUND_OP(And);
3593   COMPOUND_OP(Xor);
3594   COMPOUND_OP(Or);
3595 #undef COMPOUND_OP
3596 
3597   case BO_PtrMemD:
3598   case BO_PtrMemI:
3599   case BO_Mul:
3600   case BO_Div:
3601   case BO_Rem:
3602   case BO_Add:
3603   case BO_Sub:
3604   case BO_Shl:
3605   case BO_Shr:
3606   case BO_LT:
3607   case BO_GT:
3608   case BO_LE:
3609   case BO_GE:
3610   case BO_EQ:
3611   case BO_NE:
3612   case BO_And:
3613   case BO_Xor:
3614   case BO_Or:
3615   case BO_LAnd:
3616   case BO_LOr:
3617   case BO_Assign:
3618   case BO_Comma:
3619     llvm_unreachable("Not valid compound assignment operators");
3620   }
3621 
3622   llvm_unreachable("Unhandled compound assignment operator");
3623 }
3624