1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Module.h"
33 #include <cstdarg>
34 
35 using namespace clang;
36 using namespace CodeGen;
37 using llvm::Value;
38 
39 //===----------------------------------------------------------------------===//
40 //                         Scalar Expression Emitter
41 //===----------------------------------------------------------------------===//
42 
43 namespace {
44 struct BinOpInfo {
45   Value *LHS;
46   Value *RHS;
47   QualType Ty;  // Computation Type.
48   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
49   bool FPContractable;
50   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
51 };
52 
53 static bool MustVisitNullValue(const Expr *E) {
54   // If a null pointer expression's type is the C++0x nullptr_t, then
55   // it's not necessarily a simple constant and it must be evaluated
56   // for its potential side effects.
57   return E->getType()->isNullPtrType();
58 }
59 
60 class ScalarExprEmitter
61   : public StmtVisitor<ScalarExprEmitter, Value*> {
62   CodeGenFunction &CGF;
63   CGBuilderTy &Builder;
64   bool IgnoreResultAssign;
65   llvm::LLVMContext &VMContext;
66 public:
67 
68   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
69     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
70       VMContext(cgf.getLLVMContext()) {
71   }
72 
73   //===--------------------------------------------------------------------===//
74   //                               Utilities
75   //===--------------------------------------------------------------------===//
76 
77   bool TestAndClearIgnoreResultAssign() {
78     bool I = IgnoreResultAssign;
79     IgnoreResultAssign = false;
80     return I;
81   }
82 
83   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
84   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
85   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
86     return CGF.EmitCheckedLValue(E, TCK);
87   }
88 
89   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
90                       const BinOpInfo &Info);
91 
92   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
93     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
94   }
95 
96   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
97     const AlignValueAttr *AVAttr = nullptr;
98     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
99       const ValueDecl *VD = DRE->getDecl();
100 
101       if (VD->getType()->isReferenceType()) {
102         if (const auto *TTy =
103             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
104           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
105       } else {
106         // Assumptions for function parameters are emitted at the start of the
107         // function, so there is no need to repeat that here.
108         if (isa<ParmVarDecl>(VD))
109           return;
110 
111         AVAttr = VD->getAttr<AlignValueAttr>();
112       }
113     }
114 
115     if (!AVAttr)
116       if (const auto *TTy =
117           dyn_cast<TypedefType>(E->getType()))
118         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
119 
120     if (!AVAttr)
121       return;
122 
123     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
124     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
125     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
126   }
127 
128   /// EmitLoadOfLValue - Given an expression with complex type that represents a
129   /// value l-value, this method emits the address of the l-value, then loads
130   /// and returns the result.
131   Value *EmitLoadOfLValue(const Expr *E) {
132     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
133                                 E->getExprLoc());
134 
135     EmitLValueAlignmentAssumption(E, V);
136     return V;
137   }
138 
139   /// EmitConversionToBool - Convert the specified expression value to a
140   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
141   Value *EmitConversionToBool(Value *Src, QualType DstTy);
142 
143   /// Emit a check that a conversion to or from a floating-point type does not
144   /// overflow.
145   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
146                                 Value *Src, QualType SrcType, QualType DstType,
147                                 llvm::Type *DstTy, SourceLocation Loc);
148 
149   /// Emit a conversion from the specified type to the specified destination
150   /// type, both of which are LLVM scalar types.
151   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
152                               SourceLocation Loc);
153 
154   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
155                               SourceLocation Loc, bool TreatBooleanAsSigned);
156 
157   /// Emit a conversion from the specified complex type to the specified
158   /// destination type, where the destination type is an LLVM scalar type.
159   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
160                                        QualType SrcTy, QualType DstTy,
161                                        SourceLocation Loc);
162 
163   /// EmitNullValue - Emit a value that corresponds to null for the given type.
164   Value *EmitNullValue(QualType Ty);
165 
166   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
167   Value *EmitFloatToBoolConversion(Value *V) {
168     // Compare against 0.0 for fp scalars.
169     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
170     return Builder.CreateFCmpUNE(V, Zero, "tobool");
171   }
172 
173   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
174   Value *EmitPointerToBoolConversion(Value *V) {
175     Value *Zero = llvm::ConstantPointerNull::get(
176                                       cast<llvm::PointerType>(V->getType()));
177     return Builder.CreateICmpNE(V, Zero, "tobool");
178   }
179 
180   Value *EmitIntToBoolConversion(Value *V) {
181     // Because of the type rules of C, we often end up computing a
182     // logical value, then zero extending it to int, then wanting it
183     // as a logical value again.  Optimize this common case.
184     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
185       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
186         Value *Result = ZI->getOperand(0);
187         // If there aren't any more uses, zap the instruction to save space.
188         // Note that there can be more uses, for example if this
189         // is the result of an assignment.
190         if (ZI->use_empty())
191           ZI->eraseFromParent();
192         return Result;
193       }
194     }
195 
196     return Builder.CreateIsNotNull(V, "tobool");
197   }
198 
199   //===--------------------------------------------------------------------===//
200   //                            Visitor Methods
201   //===--------------------------------------------------------------------===//
202 
203   Value *Visit(Expr *E) {
204     ApplyDebugLocation DL(CGF, E);
205     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
206   }
207 
208   Value *VisitStmt(Stmt *S) {
209     S->dump(CGF.getContext().getSourceManager());
210     llvm_unreachable("Stmt can't have complex result type!");
211   }
212   Value *VisitExpr(Expr *S);
213 
214   Value *VisitParenExpr(ParenExpr *PE) {
215     return Visit(PE->getSubExpr());
216   }
217   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
218     return Visit(E->getReplacement());
219   }
220   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
221     return Visit(GE->getResultExpr());
222   }
223 
224   // Leaves.
225   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
226     return Builder.getInt(E->getValue());
227   }
228   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
229     return llvm::ConstantFP::get(VMContext, E->getValue());
230   }
231   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
232     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
233   }
234   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
235     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
236   }
237   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
238     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
239   }
240   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
241     return EmitNullValue(E->getType());
242   }
243   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
244     return EmitNullValue(E->getType());
245   }
246   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
247   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
248   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
249     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
250     return Builder.CreateBitCast(V, ConvertType(E->getType()));
251   }
252 
253   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
254     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
255   }
256 
257   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
258     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
259   }
260 
261   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
262     if (E->isGLValue())
263       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
264 
265     // Otherwise, assume the mapping is the scalar directly.
266     return CGF.getOpaqueRValueMapping(E).getScalarVal();
267   }
268 
269   // l-values.
270   Value *VisitDeclRefExpr(DeclRefExpr *E) {
271     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
272       if (result.isReference())
273         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
274                                 E->getExprLoc());
275       return result.getValue();
276     }
277     return EmitLoadOfLValue(E);
278   }
279 
280   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
281     return CGF.EmitObjCSelectorExpr(E);
282   }
283   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
284     return CGF.EmitObjCProtocolExpr(E);
285   }
286   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
287     return EmitLoadOfLValue(E);
288   }
289   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
290     if (E->getMethodDecl() &&
291         E->getMethodDecl()->getReturnType()->isReferenceType())
292       return EmitLoadOfLValue(E);
293     return CGF.EmitObjCMessageExpr(E).getScalarVal();
294   }
295 
296   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
297     LValue LV = CGF.EmitObjCIsaExpr(E);
298     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
299     return V;
300   }
301 
302   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
303   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
304   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
305   Value *VisitMemberExpr(MemberExpr *E);
306   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
307   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
308     return EmitLoadOfLValue(E);
309   }
310 
311   Value *VisitInitListExpr(InitListExpr *E);
312 
313   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
314     return EmitNullValue(E->getType());
315   }
316   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
317     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
318     return VisitCastExpr(E);
319   }
320   Value *VisitCastExpr(CastExpr *E);
321 
322   Value *VisitCallExpr(const CallExpr *E) {
323     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
324       return EmitLoadOfLValue(E);
325 
326     Value *V = CGF.EmitCallExpr(E).getScalarVal();
327 
328     EmitLValueAlignmentAssumption(E, V);
329     return V;
330   }
331 
332   Value *VisitStmtExpr(const StmtExpr *E);
333 
334   // Unary Operators.
335   Value *VisitUnaryPostDec(const UnaryOperator *E) {
336     LValue LV = EmitLValue(E->getSubExpr());
337     return EmitScalarPrePostIncDec(E, LV, false, false);
338   }
339   Value *VisitUnaryPostInc(const UnaryOperator *E) {
340     LValue LV = EmitLValue(E->getSubExpr());
341     return EmitScalarPrePostIncDec(E, LV, true, false);
342   }
343   Value *VisitUnaryPreDec(const UnaryOperator *E) {
344     LValue LV = EmitLValue(E->getSubExpr());
345     return EmitScalarPrePostIncDec(E, LV, false, true);
346   }
347   Value *VisitUnaryPreInc(const UnaryOperator *E) {
348     LValue LV = EmitLValue(E->getSubExpr());
349     return EmitScalarPrePostIncDec(E, LV, true, true);
350   }
351 
352   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
353                                                   llvm::Value *InVal,
354                                                   bool IsInc);
355 
356   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
357                                        bool isInc, bool isPre);
358 
359 
360   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
361     if (isa<MemberPointerType>(E->getType())) // never sugared
362       return CGF.CGM.getMemberPointerConstant(E);
363 
364     return EmitLValue(E->getSubExpr()).getPointer();
365   }
366   Value *VisitUnaryDeref(const UnaryOperator *E) {
367     if (E->getType()->isVoidType())
368       return Visit(E->getSubExpr()); // the actual value should be unused
369     return EmitLoadOfLValue(E);
370   }
371   Value *VisitUnaryPlus(const UnaryOperator *E) {
372     // This differs from gcc, though, most likely due to a bug in gcc.
373     TestAndClearIgnoreResultAssign();
374     return Visit(E->getSubExpr());
375   }
376   Value *VisitUnaryMinus    (const UnaryOperator *E);
377   Value *VisitUnaryNot      (const UnaryOperator *E);
378   Value *VisitUnaryLNot     (const UnaryOperator *E);
379   Value *VisitUnaryReal     (const UnaryOperator *E);
380   Value *VisitUnaryImag     (const UnaryOperator *E);
381   Value *VisitUnaryExtension(const UnaryOperator *E) {
382     return Visit(E->getSubExpr());
383   }
384 
385   // C++
386   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
387     return EmitLoadOfLValue(E);
388   }
389 
390   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
391     return Visit(DAE->getExpr());
392   }
393   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
394     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
395     return Visit(DIE->getExpr());
396   }
397   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
398     return CGF.LoadCXXThis();
399   }
400 
401   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
402     CGF.enterFullExpression(E);
403     CodeGenFunction::RunCleanupsScope Scope(CGF);
404     return Visit(E->getSubExpr());
405   }
406   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
407     return CGF.EmitCXXNewExpr(E);
408   }
409   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
410     CGF.EmitCXXDeleteExpr(E);
411     return nullptr;
412   }
413 
414   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
415     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
416   }
417 
418   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
419     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
420   }
421 
422   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
423     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
424   }
425 
426   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
427     // C++ [expr.pseudo]p1:
428     //   The result shall only be used as the operand for the function call
429     //   operator (), and the result of such a call has type void. The only
430     //   effect is the evaluation of the postfix-expression before the dot or
431     //   arrow.
432     CGF.EmitScalarExpr(E->getBase());
433     return nullptr;
434   }
435 
436   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
437     return EmitNullValue(E->getType());
438   }
439 
440   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
441     CGF.EmitCXXThrowExpr(E);
442     return nullptr;
443   }
444 
445   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
446     return Builder.getInt1(E->getValue());
447   }
448 
449   // Binary Operators.
450   Value *EmitMul(const BinOpInfo &Ops) {
451     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
452       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
453       case LangOptions::SOB_Defined:
454         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
455       case LangOptions::SOB_Undefined:
456         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
457           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
458         // Fall through.
459       case LangOptions::SOB_Trapping:
460         return EmitOverflowCheckedBinOp(Ops);
461       }
462     }
463 
464     if (Ops.Ty->isUnsignedIntegerType() &&
465         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
466       return EmitOverflowCheckedBinOp(Ops);
467 
468     if (Ops.LHS->getType()->isFPOrFPVectorTy())
469       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
470     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
471   }
472   /// Create a binary op that checks for overflow.
473   /// Currently only supports +, - and *.
474   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
475 
476   // Check for undefined division and modulus behaviors.
477   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
478                                                   llvm::Value *Zero,bool isDiv);
479   // Common helper for getting how wide LHS of shift is.
480   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
481   Value *EmitDiv(const BinOpInfo &Ops);
482   Value *EmitRem(const BinOpInfo &Ops);
483   Value *EmitAdd(const BinOpInfo &Ops);
484   Value *EmitSub(const BinOpInfo &Ops);
485   Value *EmitShl(const BinOpInfo &Ops);
486   Value *EmitShr(const BinOpInfo &Ops);
487   Value *EmitAnd(const BinOpInfo &Ops) {
488     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
489   }
490   Value *EmitXor(const BinOpInfo &Ops) {
491     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
492   }
493   Value *EmitOr (const BinOpInfo &Ops) {
494     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
495   }
496 
497   BinOpInfo EmitBinOps(const BinaryOperator *E);
498   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
499                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
500                                   Value *&Result);
501 
502   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
503                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
504 
505   // Binary operators and binary compound assignment operators.
506 #define HANDLEBINOP(OP) \
507   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
508     return Emit ## OP(EmitBinOps(E));                                      \
509   }                                                                        \
510   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
511     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
512   }
513   HANDLEBINOP(Mul)
514   HANDLEBINOP(Div)
515   HANDLEBINOP(Rem)
516   HANDLEBINOP(Add)
517   HANDLEBINOP(Sub)
518   HANDLEBINOP(Shl)
519   HANDLEBINOP(Shr)
520   HANDLEBINOP(And)
521   HANDLEBINOP(Xor)
522   HANDLEBINOP(Or)
523 #undef HANDLEBINOP
524 
525   // Comparisons.
526   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
527                      llvm::CmpInst::Predicate SICmpOpc,
528                      llvm::CmpInst::Predicate FCmpOpc);
529 #define VISITCOMP(CODE, UI, SI, FP) \
530     Value *VisitBin##CODE(const BinaryOperator *E) { \
531       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
532                          llvm::FCmpInst::FP); }
533   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
534   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
535   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
536   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
537   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
538   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
539 #undef VISITCOMP
540 
541   Value *VisitBinAssign     (const BinaryOperator *E);
542 
543   Value *VisitBinLAnd       (const BinaryOperator *E);
544   Value *VisitBinLOr        (const BinaryOperator *E);
545   Value *VisitBinComma      (const BinaryOperator *E);
546 
547   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
548   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
549 
550   // Other Operators.
551   Value *VisitBlockExpr(const BlockExpr *BE);
552   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
553   Value *VisitChooseExpr(ChooseExpr *CE);
554   Value *VisitVAArgExpr(VAArgExpr *VE);
555   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
556     return CGF.EmitObjCStringLiteral(E);
557   }
558   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
559     return CGF.EmitObjCBoxedExpr(E);
560   }
561   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
562     return CGF.EmitObjCArrayLiteral(E);
563   }
564   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
565     return CGF.EmitObjCDictionaryLiteral(E);
566   }
567   Value *VisitAsTypeExpr(AsTypeExpr *CE);
568   Value *VisitAtomicExpr(AtomicExpr *AE);
569 };
570 }  // end anonymous namespace.
571 
572 //===----------------------------------------------------------------------===//
573 //                                Utilities
574 //===----------------------------------------------------------------------===//
575 
576 /// EmitConversionToBool - Convert the specified expression value to a
577 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
578 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
579   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
580 
581   if (SrcType->isRealFloatingType())
582     return EmitFloatToBoolConversion(Src);
583 
584   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
585     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
586 
587   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
588          "Unknown scalar type to convert");
589 
590   if (isa<llvm::IntegerType>(Src->getType()))
591     return EmitIntToBoolConversion(Src);
592 
593   assert(isa<llvm::PointerType>(Src->getType()));
594   return EmitPointerToBoolConversion(Src);
595 }
596 
597 void ScalarExprEmitter::EmitFloatConversionCheck(
598     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
599     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
600   CodeGenFunction::SanitizerScope SanScope(&CGF);
601   using llvm::APFloat;
602   using llvm::APSInt;
603 
604   llvm::Type *SrcTy = Src->getType();
605 
606   llvm::Value *Check = nullptr;
607   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
608     // Integer to floating-point. This can fail for unsigned short -> __half
609     // or unsigned __int128 -> float.
610     assert(DstType->isFloatingType());
611     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
612 
613     APFloat LargestFloat =
614       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
615     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
616 
617     bool IsExact;
618     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
619                                       &IsExact) != APFloat::opOK)
620       // The range of representable values of this floating point type includes
621       // all values of this integer type. Don't need an overflow check.
622       return;
623 
624     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
625     if (SrcIsUnsigned)
626       Check = Builder.CreateICmpULE(Src, Max);
627     else {
628       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
629       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
630       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
631       Check = Builder.CreateAnd(GE, LE);
632     }
633   } else {
634     const llvm::fltSemantics &SrcSema =
635       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
636     if (isa<llvm::IntegerType>(DstTy)) {
637       // Floating-point to integer. This has undefined behavior if the source is
638       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
639       // to an integer).
640       unsigned Width = CGF.getContext().getIntWidth(DstType);
641       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
642 
643       APSInt Min = APSInt::getMinValue(Width, Unsigned);
644       APFloat MinSrc(SrcSema, APFloat::uninitialized);
645       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
646           APFloat::opOverflow)
647         // Don't need an overflow check for lower bound. Just check for
648         // -Inf/NaN.
649         MinSrc = APFloat::getInf(SrcSema, true);
650       else
651         // Find the largest value which is too small to represent (before
652         // truncation toward zero).
653         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
654 
655       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
656       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
657       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
658           APFloat::opOverflow)
659         // Don't need an overflow check for upper bound. Just check for
660         // +Inf/NaN.
661         MaxSrc = APFloat::getInf(SrcSema, false);
662       else
663         // Find the smallest value which is too large to represent (before
664         // truncation toward zero).
665         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
666 
667       // If we're converting from __half, convert the range to float to match
668       // the type of src.
669       if (OrigSrcType->isHalfType()) {
670         const llvm::fltSemantics &Sema =
671           CGF.getContext().getFloatTypeSemantics(SrcType);
672         bool IsInexact;
673         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
674         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
675       }
676 
677       llvm::Value *GE =
678         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
679       llvm::Value *LE =
680         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
681       Check = Builder.CreateAnd(GE, LE);
682     } else {
683       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
684       //
685       // Floating-point to floating-point. This has undefined behavior if the
686       // source is not in the range of representable values of the destination
687       // type. The C and C++ standards are spectacularly unclear here. We
688       // diagnose finite out-of-range conversions, but allow infinities and NaNs
689       // to convert to the corresponding value in the smaller type.
690       //
691       // C11 Annex F gives all such conversions defined behavior for IEC 60559
692       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
693       // does not.
694 
695       // Converting from a lower rank to a higher rank can never have
696       // undefined behavior, since higher-rank types must have a superset
697       // of values of lower-rank types.
698       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
699         return;
700 
701       assert(!OrigSrcType->isHalfType() &&
702              "should not check conversion from __half, it has the lowest rank");
703 
704       const llvm::fltSemantics &DstSema =
705         CGF.getContext().getFloatTypeSemantics(DstType);
706       APFloat MinBad = APFloat::getLargest(DstSema, false);
707       APFloat MaxBad = APFloat::getInf(DstSema, false);
708 
709       bool IsInexact;
710       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
711       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
712 
713       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
714         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
715       llvm::Value *GE =
716         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
717       llvm::Value *LE =
718         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
719       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
720     }
721   }
722 
723   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
724                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
725                                   CGF.EmitCheckTypeDescriptor(DstType)};
726   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
727                 "float_cast_overflow", StaticArgs, OrigSrc);
728 }
729 
730 /// Emit a conversion from the specified type to the specified destination type,
731 /// both of which are LLVM scalar types.
732 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
733                                                QualType DstType,
734                                                SourceLocation Loc) {
735   return EmitScalarConversion(Src, SrcType, DstType, Loc, false);
736 }
737 
738 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
739                                                QualType DstType,
740                                                SourceLocation Loc,
741                                                bool TreatBooleanAsSigned) {
742   SrcType = CGF.getContext().getCanonicalType(SrcType);
743   DstType = CGF.getContext().getCanonicalType(DstType);
744   if (SrcType == DstType) return Src;
745 
746   if (DstType->isVoidType()) return nullptr;
747 
748   llvm::Value *OrigSrc = Src;
749   QualType OrigSrcType = SrcType;
750   llvm::Type *SrcTy = Src->getType();
751 
752   // Handle conversions to bool first, they are special: comparisons against 0.
753   if (DstType->isBooleanType())
754     return EmitConversionToBool(Src, SrcType);
755 
756   llvm::Type *DstTy = ConvertType(DstType);
757 
758   // Cast from half through float if half isn't a native type.
759   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
760     // Cast to FP using the intrinsic if the half type itself isn't supported.
761     if (DstTy->isFloatingPointTy()) {
762       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
763         return Builder.CreateCall(
764             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
765             Src);
766     } else {
767       // Cast to other types through float, using either the intrinsic or FPExt,
768       // depending on whether the half type itself is supported
769       // (as opposed to operations on half, available with NativeHalfType).
770       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
771         Src = Builder.CreateCall(
772             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
773                                  CGF.CGM.FloatTy),
774             Src);
775       } else {
776         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
777       }
778       SrcType = CGF.getContext().FloatTy;
779       SrcTy = CGF.FloatTy;
780     }
781   }
782 
783   // Ignore conversions like int -> uint.
784   if (SrcTy == DstTy)
785     return Src;
786 
787   // Handle pointer conversions next: pointers can only be converted to/from
788   // other pointers and integers. Check for pointer types in terms of LLVM, as
789   // some native types (like Obj-C id) may map to a pointer type.
790   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
791     // The source value may be an integer, or a pointer.
792     if (isa<llvm::PointerType>(SrcTy))
793       return Builder.CreateBitCast(Src, DstTy, "conv");
794 
795     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
796     // First, convert to the correct width so that we control the kind of
797     // extension.
798     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
799     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
800     llvm::Value* IntResult =
801         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
802     // Then, cast to pointer.
803     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
804   }
805 
806   if (isa<llvm::PointerType>(SrcTy)) {
807     // Must be an ptr to int cast.
808     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
809     return Builder.CreatePtrToInt(Src, DstTy, "conv");
810   }
811 
812   // A scalar can be splatted to an extended vector of the same element type
813   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
814     // Sema should add casts to make sure that the source expression's type is
815     // the same as the vector's element type (sans qualifiers)
816     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
817                SrcType.getTypePtr() &&
818            "Splatted expr doesn't match with vector element type?");
819 
820     // Splat the element across to all elements
821     unsigned NumElements = DstTy->getVectorNumElements();
822     return Builder.CreateVectorSplat(NumElements, Src, "splat");
823   }
824 
825   // Allow bitcast from vector to integer/fp of the same size.
826   if (isa<llvm::VectorType>(SrcTy) ||
827       isa<llvm::VectorType>(DstTy))
828     return Builder.CreateBitCast(Src, DstTy, "conv");
829 
830   // Finally, we have the arithmetic types: real int/float.
831   Value *Res = nullptr;
832   llvm::Type *ResTy = DstTy;
833 
834   // An overflowing conversion has undefined behavior if either the source type
835   // or the destination type is a floating-point type.
836   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
837       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
838     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
839                              Loc);
840 
841   // Cast to half through float if half isn't a native type.
842   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
843     // Make sure we cast in a single step if from another FP type.
844     if (SrcTy->isFloatingPointTy()) {
845       // Use the intrinsic if the half type itself isn't supported
846       // (as opposed to operations on half, available with NativeHalfType).
847       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
848         return Builder.CreateCall(
849             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
850       // If the half type is supported, just use an fptrunc.
851       return Builder.CreateFPTrunc(Src, DstTy);
852     }
853     DstTy = CGF.FloatTy;
854   }
855 
856   if (isa<llvm::IntegerType>(SrcTy)) {
857     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
858     if (SrcType->isBooleanType() && TreatBooleanAsSigned) {
859       InputSigned = true;
860     }
861     if (isa<llvm::IntegerType>(DstTy))
862       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
863     else if (InputSigned)
864       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
865     else
866       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
867   } else if (isa<llvm::IntegerType>(DstTy)) {
868     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
869     if (DstType->isSignedIntegerOrEnumerationType())
870       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
871     else
872       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
873   } else {
874     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
875            "Unknown real conversion");
876     if (DstTy->getTypeID() < SrcTy->getTypeID())
877       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
878     else
879       Res = Builder.CreateFPExt(Src, DstTy, "conv");
880   }
881 
882   if (DstTy != ResTy) {
883     if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
884       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
885       Res = Builder.CreateCall(
886         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
887         Res);
888     } else {
889       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
890     }
891   }
892 
893   return Res;
894 }
895 
896 /// Emit a conversion from the specified complex type to the specified
897 /// destination type, where the destination type is an LLVM scalar type.
898 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
899     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
900     SourceLocation Loc) {
901   // Get the source element type.
902   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
903 
904   // Handle conversions to bool first, they are special: comparisons against 0.
905   if (DstTy->isBooleanType()) {
906     //  Complex != 0  -> (Real != 0) | (Imag != 0)
907     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
908     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
909     return Builder.CreateOr(Src.first, Src.second, "tobool");
910   }
911 
912   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
913   // the imaginary part of the complex value is discarded and the value of the
914   // real part is converted according to the conversion rules for the
915   // corresponding real type.
916   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
917 }
918 
919 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
920   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
921 }
922 
923 /// \brief Emit a sanitization check for the given "binary" operation (which
924 /// might actually be a unary increment which has been lowered to a binary
925 /// operation). The check passes if all values in \p Checks (which are \c i1),
926 /// are \c true.
927 void ScalarExprEmitter::EmitBinOpCheck(
928     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
929   assert(CGF.IsSanitizerScope);
930   StringRef CheckName;
931   SmallVector<llvm::Constant *, 4> StaticData;
932   SmallVector<llvm::Value *, 2> DynamicData;
933 
934   BinaryOperatorKind Opcode = Info.Opcode;
935   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
936     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
937 
938   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
939   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
940   if (UO && UO->getOpcode() == UO_Minus) {
941     CheckName = "negate_overflow";
942     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
943     DynamicData.push_back(Info.RHS);
944   } else {
945     if (BinaryOperator::isShiftOp(Opcode)) {
946       // Shift LHS negative or too large, or RHS out of bounds.
947       CheckName = "shift_out_of_bounds";
948       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
949       StaticData.push_back(
950         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
951       StaticData.push_back(
952         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
953     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
954       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
955       CheckName = "divrem_overflow";
956       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
957     } else {
958       // Arithmetic overflow (+, -, *).
959       switch (Opcode) {
960       case BO_Add: CheckName = "add_overflow"; break;
961       case BO_Sub: CheckName = "sub_overflow"; break;
962       case BO_Mul: CheckName = "mul_overflow"; break;
963       default: llvm_unreachable("unexpected opcode for bin op check");
964       }
965       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
966     }
967     DynamicData.push_back(Info.LHS);
968     DynamicData.push_back(Info.RHS);
969   }
970 
971   CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
972 }
973 
974 //===----------------------------------------------------------------------===//
975 //                            Visitor Methods
976 //===----------------------------------------------------------------------===//
977 
978 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
979   CGF.ErrorUnsupported(E, "scalar expression");
980   if (E->getType()->isVoidType())
981     return nullptr;
982   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
983 }
984 
985 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
986   // Vector Mask Case
987   if (E->getNumSubExprs() == 2) {
988     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
989     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
990     Value *Mask;
991 
992     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
993     unsigned LHSElts = LTy->getNumElements();
994 
995     Mask = RHS;
996 
997     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
998 
999     // Mask off the high bits of each shuffle index.
1000     Value *MaskBits =
1001         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1002     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1003 
1004     // newv = undef
1005     // mask = mask & maskbits
1006     // for each elt
1007     //   n = extract mask i
1008     //   x = extract val n
1009     //   newv = insert newv, x, i
1010     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1011                                                   MTy->getNumElements());
1012     Value* NewV = llvm::UndefValue::get(RTy);
1013     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1014       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1015       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1016 
1017       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1018       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1019     }
1020     return NewV;
1021   }
1022 
1023   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1024   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1025 
1026   SmallVector<llvm::Constant*, 32> indices;
1027   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1028     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1029     // Check for -1 and output it as undef in the IR.
1030     if (Idx.isSigned() && Idx.isAllOnesValue())
1031       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1032     else
1033       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1034   }
1035 
1036   Value *SV = llvm::ConstantVector::get(indices);
1037   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1038 }
1039 
1040 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1041   QualType SrcType = E->getSrcExpr()->getType(),
1042            DstType = E->getType();
1043 
1044   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1045 
1046   SrcType = CGF.getContext().getCanonicalType(SrcType);
1047   DstType = CGF.getContext().getCanonicalType(DstType);
1048   if (SrcType == DstType) return Src;
1049 
1050   assert(SrcType->isVectorType() &&
1051          "ConvertVector source type must be a vector");
1052   assert(DstType->isVectorType() &&
1053          "ConvertVector destination type must be a vector");
1054 
1055   llvm::Type *SrcTy = Src->getType();
1056   llvm::Type *DstTy = ConvertType(DstType);
1057 
1058   // Ignore conversions like int -> uint.
1059   if (SrcTy == DstTy)
1060     return Src;
1061 
1062   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1063            DstEltType = DstType->getAs<VectorType>()->getElementType();
1064 
1065   assert(SrcTy->isVectorTy() &&
1066          "ConvertVector source IR type must be a vector");
1067   assert(DstTy->isVectorTy() &&
1068          "ConvertVector destination IR type must be a vector");
1069 
1070   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1071              *DstEltTy = DstTy->getVectorElementType();
1072 
1073   if (DstEltType->isBooleanType()) {
1074     assert((SrcEltTy->isFloatingPointTy() ||
1075             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1076 
1077     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1078     if (SrcEltTy->isFloatingPointTy()) {
1079       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1080     } else {
1081       return Builder.CreateICmpNE(Src, Zero, "tobool");
1082     }
1083   }
1084 
1085   // We have the arithmetic types: real int/float.
1086   Value *Res = nullptr;
1087 
1088   if (isa<llvm::IntegerType>(SrcEltTy)) {
1089     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1090     if (isa<llvm::IntegerType>(DstEltTy))
1091       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1092     else if (InputSigned)
1093       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1094     else
1095       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1096   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1097     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1098     if (DstEltType->isSignedIntegerOrEnumerationType())
1099       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1100     else
1101       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1102   } else {
1103     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1104            "Unknown real conversion");
1105     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1106       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1107     else
1108       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1109   }
1110 
1111   return Res;
1112 }
1113 
1114 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1115   llvm::APSInt Value;
1116   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1117     if (E->isArrow())
1118       CGF.EmitScalarExpr(E->getBase());
1119     else
1120       EmitLValue(E->getBase());
1121     return Builder.getInt(Value);
1122   }
1123 
1124   return EmitLoadOfLValue(E);
1125 }
1126 
1127 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1128   TestAndClearIgnoreResultAssign();
1129 
1130   // Emit subscript expressions in rvalue context's.  For most cases, this just
1131   // loads the lvalue formed by the subscript expr.  However, we have to be
1132   // careful, because the base of a vector subscript is occasionally an rvalue,
1133   // so we can't get it as an lvalue.
1134   if (!E->getBase()->getType()->isVectorType())
1135     return EmitLoadOfLValue(E);
1136 
1137   // Handle the vector case.  The base must be a vector, the index must be an
1138   // integer value.
1139   Value *Base = Visit(E->getBase());
1140   Value *Idx  = Visit(E->getIdx());
1141   QualType IdxTy = E->getIdx()->getType();
1142 
1143   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1144     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1145 
1146   return Builder.CreateExtractElement(Base, Idx, "vecext");
1147 }
1148 
1149 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1150                                   unsigned Off, llvm::Type *I32Ty) {
1151   int MV = SVI->getMaskValue(Idx);
1152   if (MV == -1)
1153     return llvm::UndefValue::get(I32Ty);
1154   return llvm::ConstantInt::get(I32Ty, Off+MV);
1155 }
1156 
1157 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1158   if (C->getBitWidth() != 32) {
1159       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1160                                                     C->getZExtValue()) &&
1161              "Index operand too large for shufflevector mask!");
1162       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1163   }
1164   return C;
1165 }
1166 
1167 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1168   bool Ignore = TestAndClearIgnoreResultAssign();
1169   (void)Ignore;
1170   assert (Ignore == false && "init list ignored");
1171   unsigned NumInitElements = E->getNumInits();
1172 
1173   if (E->hadArrayRangeDesignator())
1174     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1175 
1176   llvm::VectorType *VType =
1177     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1178 
1179   if (!VType) {
1180     if (NumInitElements == 0) {
1181       // C++11 value-initialization for the scalar.
1182       return EmitNullValue(E->getType());
1183     }
1184     // We have a scalar in braces. Just use the first element.
1185     return Visit(E->getInit(0));
1186   }
1187 
1188   unsigned ResElts = VType->getNumElements();
1189 
1190   // Loop over initializers collecting the Value for each, and remembering
1191   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1192   // us to fold the shuffle for the swizzle into the shuffle for the vector
1193   // initializer, since LLVM optimizers generally do not want to touch
1194   // shuffles.
1195   unsigned CurIdx = 0;
1196   bool VIsUndefShuffle = false;
1197   llvm::Value *V = llvm::UndefValue::get(VType);
1198   for (unsigned i = 0; i != NumInitElements; ++i) {
1199     Expr *IE = E->getInit(i);
1200     Value *Init = Visit(IE);
1201     SmallVector<llvm::Constant*, 16> Args;
1202 
1203     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1204 
1205     // Handle scalar elements.  If the scalar initializer is actually one
1206     // element of a different vector of the same width, use shuffle instead of
1207     // extract+insert.
1208     if (!VVT) {
1209       if (isa<ExtVectorElementExpr>(IE)) {
1210         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1211 
1212         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1213           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1214           Value *LHS = nullptr, *RHS = nullptr;
1215           if (CurIdx == 0) {
1216             // insert into undef -> shuffle (src, undef)
1217             // shufflemask must use an i32
1218             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1219             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1220 
1221             LHS = EI->getVectorOperand();
1222             RHS = V;
1223             VIsUndefShuffle = true;
1224           } else if (VIsUndefShuffle) {
1225             // insert into undefshuffle && size match -> shuffle (v, src)
1226             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1227             for (unsigned j = 0; j != CurIdx; ++j)
1228               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1229             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1230             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1231 
1232             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1233             RHS = EI->getVectorOperand();
1234             VIsUndefShuffle = false;
1235           }
1236           if (!Args.empty()) {
1237             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1238             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1239             ++CurIdx;
1240             continue;
1241           }
1242         }
1243       }
1244       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1245                                       "vecinit");
1246       VIsUndefShuffle = false;
1247       ++CurIdx;
1248       continue;
1249     }
1250 
1251     unsigned InitElts = VVT->getNumElements();
1252 
1253     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1254     // input is the same width as the vector being constructed, generate an
1255     // optimized shuffle of the swizzle input into the result.
1256     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1257     if (isa<ExtVectorElementExpr>(IE)) {
1258       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1259       Value *SVOp = SVI->getOperand(0);
1260       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1261 
1262       if (OpTy->getNumElements() == ResElts) {
1263         for (unsigned j = 0; j != CurIdx; ++j) {
1264           // If the current vector initializer is a shuffle with undef, merge
1265           // this shuffle directly into it.
1266           if (VIsUndefShuffle) {
1267             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1268                                       CGF.Int32Ty));
1269           } else {
1270             Args.push_back(Builder.getInt32(j));
1271           }
1272         }
1273         for (unsigned j = 0, je = InitElts; j != je; ++j)
1274           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1275         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1276 
1277         if (VIsUndefShuffle)
1278           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1279 
1280         Init = SVOp;
1281       }
1282     }
1283 
1284     // Extend init to result vector length, and then shuffle its contribution
1285     // to the vector initializer into V.
1286     if (Args.empty()) {
1287       for (unsigned j = 0; j != InitElts; ++j)
1288         Args.push_back(Builder.getInt32(j));
1289       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1290       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1291       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1292                                          Mask, "vext");
1293 
1294       Args.clear();
1295       for (unsigned j = 0; j != CurIdx; ++j)
1296         Args.push_back(Builder.getInt32(j));
1297       for (unsigned j = 0; j != InitElts; ++j)
1298         Args.push_back(Builder.getInt32(j+Offset));
1299       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1300     }
1301 
1302     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1303     // merging subsequent shuffles into this one.
1304     if (CurIdx == 0)
1305       std::swap(V, Init);
1306     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1307     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1308     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1309     CurIdx += InitElts;
1310   }
1311 
1312   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1313   // Emit remaining default initializers.
1314   llvm::Type *EltTy = VType->getElementType();
1315 
1316   // Emit remaining default initializers
1317   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1318     Value *Idx = Builder.getInt32(CurIdx);
1319     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1320     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1321   }
1322   return V;
1323 }
1324 
1325 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1326   const Expr *E = CE->getSubExpr();
1327 
1328   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1329     return false;
1330 
1331   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1332     // We always assume that 'this' is never null.
1333     return false;
1334   }
1335 
1336   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1337     // And that glvalue casts are never null.
1338     if (ICE->getValueKind() != VK_RValue)
1339       return false;
1340   }
1341 
1342   return true;
1343 }
1344 
1345 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1346 // have to handle a more broad range of conversions than explicit casts, as they
1347 // handle things like function to ptr-to-function decay etc.
1348 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1349   Expr *E = CE->getSubExpr();
1350   QualType DestTy = CE->getType();
1351   CastKind Kind = CE->getCastKind();
1352 
1353   // These cases are generally not written to ignore the result of
1354   // evaluating their sub-expressions, so we clear this now.
1355   bool Ignored = TestAndClearIgnoreResultAssign();
1356 
1357   // Since almost all cast kinds apply to scalars, this switch doesn't have
1358   // a default case, so the compiler will warn on a missing case.  The cases
1359   // are in the same order as in the CastKind enum.
1360   switch (Kind) {
1361   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1362   case CK_BuiltinFnToFnPtr:
1363     llvm_unreachable("builtin functions are handled elsewhere");
1364 
1365   case CK_LValueBitCast:
1366   case CK_ObjCObjectLValueCast: {
1367     Address Addr = EmitLValue(E).getAddress();
1368     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1369     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1370     return EmitLoadOfLValue(LV, CE->getExprLoc());
1371   }
1372 
1373   case CK_CPointerToObjCPointerCast:
1374   case CK_BlockPointerToObjCPointerCast:
1375   case CK_AnyPointerToBlockPointerCast:
1376   case CK_BitCast: {
1377     Value *Src = Visit(const_cast<Expr*>(E));
1378     llvm::Type *SrcTy = Src->getType();
1379     llvm::Type *DstTy = ConvertType(DestTy);
1380     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1381         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1382       llvm_unreachable("wrong cast for pointers in different address spaces"
1383                        "(must be an address space cast)!");
1384     }
1385 
1386     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1387       if (auto PT = DestTy->getAs<PointerType>())
1388         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1389                                       /*MayBeNull=*/true,
1390                                       CodeGenFunction::CFITCK_UnrelatedCast,
1391                                       CE->getLocStart());
1392     }
1393 
1394     return Builder.CreateBitCast(Src, DstTy);
1395   }
1396   case CK_AddressSpaceConversion: {
1397     Value *Src = Visit(const_cast<Expr*>(E));
1398     // Since target may map different address spaces in AST to the same address
1399     // space, an address space conversion may end up as a bitcast.
1400     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src,
1401                                                        ConvertType(DestTy));
1402   }
1403   case CK_AtomicToNonAtomic:
1404   case CK_NonAtomicToAtomic:
1405   case CK_NoOp:
1406   case CK_UserDefinedConversion:
1407     return Visit(const_cast<Expr*>(E));
1408 
1409   case CK_BaseToDerived: {
1410     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1411     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1412 
1413     Address Base = CGF.EmitPointerWithAlignment(E);
1414     Address Derived =
1415       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
1416                                    CE->path_begin(), CE->path_end(),
1417                                    CGF.ShouldNullCheckClassCastValue(CE));
1418 
1419     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1420     // performed and the object is not of the derived type.
1421     if (CGF.sanitizePerformTypeCheck())
1422       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1423                         Derived.getPointer(), DestTy->getPointeeType());
1424 
1425     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1426       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
1427                                     Derived.getPointer(),
1428                                     /*MayBeNull=*/true,
1429                                     CodeGenFunction::CFITCK_DerivedCast,
1430                                     CE->getLocStart());
1431 
1432     return Derived.getPointer();
1433   }
1434   case CK_UncheckedDerivedToBase:
1435   case CK_DerivedToBase: {
1436     // The EmitPointerWithAlignment path does this fine; just discard
1437     // the alignment.
1438     return CGF.EmitPointerWithAlignment(CE).getPointer();
1439   }
1440 
1441   case CK_Dynamic: {
1442     Address V = CGF.EmitPointerWithAlignment(E);
1443     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1444     return CGF.EmitDynamicCast(V, DCE);
1445   }
1446 
1447   case CK_ArrayToPointerDecay:
1448     return CGF.EmitArrayToPointerDecay(E).getPointer();
1449   case CK_FunctionToPointerDecay:
1450     return EmitLValue(E).getPointer();
1451 
1452   case CK_NullToPointer:
1453     if (MustVisitNullValue(E))
1454       (void) Visit(E);
1455 
1456     return llvm::ConstantPointerNull::get(
1457                                cast<llvm::PointerType>(ConvertType(DestTy)));
1458 
1459   case CK_NullToMemberPointer: {
1460     if (MustVisitNullValue(E))
1461       (void) Visit(E);
1462 
1463     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1464     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1465   }
1466 
1467   case CK_ReinterpretMemberPointer:
1468   case CK_BaseToDerivedMemberPointer:
1469   case CK_DerivedToBaseMemberPointer: {
1470     Value *Src = Visit(E);
1471 
1472     // Note that the AST doesn't distinguish between checked and
1473     // unchecked member pointer conversions, so we always have to
1474     // implement checked conversions here.  This is inefficient when
1475     // actual control flow may be required in order to perform the
1476     // check, which it is for data member pointers (but not member
1477     // function pointers on Itanium and ARM).
1478     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1479   }
1480 
1481   case CK_ARCProduceObject:
1482     return CGF.EmitARCRetainScalarExpr(E);
1483   case CK_ARCConsumeObject:
1484     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1485   case CK_ARCReclaimReturnedObject:
1486     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
1487   case CK_ARCExtendBlockObject:
1488     return CGF.EmitARCExtendBlockObject(E);
1489 
1490   case CK_CopyAndAutoreleaseBlockObject:
1491     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1492 
1493   case CK_FloatingRealToComplex:
1494   case CK_FloatingComplexCast:
1495   case CK_IntegralRealToComplex:
1496   case CK_IntegralComplexCast:
1497   case CK_IntegralComplexToFloatingComplex:
1498   case CK_FloatingComplexToIntegralComplex:
1499   case CK_ConstructorConversion:
1500   case CK_ToUnion:
1501     llvm_unreachable("scalar cast to non-scalar value");
1502 
1503   case CK_LValueToRValue:
1504     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1505     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1506     return Visit(const_cast<Expr*>(E));
1507 
1508   case CK_IntegralToPointer: {
1509     Value *Src = Visit(const_cast<Expr*>(E));
1510 
1511     // First, convert to the correct width so that we control the kind of
1512     // extension.
1513     auto DestLLVMTy = ConvertType(DestTy);
1514     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
1515     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1516     llvm::Value* IntResult =
1517       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1518 
1519     return Builder.CreateIntToPtr(IntResult, DestLLVMTy);
1520   }
1521   case CK_PointerToIntegral:
1522     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1523     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1524 
1525   case CK_ToVoid: {
1526     CGF.EmitIgnoredExpr(E);
1527     return nullptr;
1528   }
1529   case CK_VectorSplat: {
1530     llvm::Type *DstTy = ConvertType(DestTy);
1531     Value *Elt = Visit(const_cast<Expr*>(E));
1532     // Splat the element across to all elements
1533     unsigned NumElements = DstTy->getVectorNumElements();
1534     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1535   }
1536 
1537   case CK_IntegralCast:
1538   case CK_IntegralToFloating:
1539   case CK_FloatingToIntegral:
1540   case CK_FloatingCast:
1541     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1542                                 CE->getExprLoc());
1543   case CK_BooleanToSignedIntegral:
1544     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1545                                 CE->getExprLoc(),
1546                                 /*TreatBooleanAsSigned=*/true);
1547   case CK_IntegralToBoolean:
1548     return EmitIntToBoolConversion(Visit(E));
1549   case CK_PointerToBoolean:
1550     return EmitPointerToBoolConversion(Visit(E));
1551   case CK_FloatingToBoolean:
1552     return EmitFloatToBoolConversion(Visit(E));
1553   case CK_MemberPointerToBoolean: {
1554     llvm::Value *MemPtr = Visit(E);
1555     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1556     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1557   }
1558 
1559   case CK_FloatingComplexToReal:
1560   case CK_IntegralComplexToReal:
1561     return CGF.EmitComplexExpr(E, false, true).first;
1562 
1563   case CK_FloatingComplexToBoolean:
1564   case CK_IntegralComplexToBoolean: {
1565     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1566 
1567     // TODO: kill this function off, inline appropriate case here
1568     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
1569                                          CE->getExprLoc());
1570   }
1571 
1572   case CK_ZeroToOCLEvent: {
1573     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1574     return llvm::Constant::getNullValue(ConvertType(DestTy));
1575   }
1576 
1577   case CK_IntToOCLSampler:
1578     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
1579 
1580   } // end of switch
1581 
1582   llvm_unreachable("unknown scalar cast");
1583 }
1584 
1585 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1586   CodeGenFunction::StmtExprEvaluation eval(CGF);
1587   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1588                                            !E->getType()->isVoidType());
1589   if (!RetAlloca.isValid())
1590     return nullptr;
1591   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1592                               E->getExprLoc());
1593 }
1594 
1595 //===----------------------------------------------------------------------===//
1596 //                             Unary Operators
1597 //===----------------------------------------------------------------------===//
1598 
1599 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1600                                            llvm::Value *InVal, bool IsInc) {
1601   BinOpInfo BinOp;
1602   BinOp.LHS = InVal;
1603   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1604   BinOp.Ty = E->getType();
1605   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1606   BinOp.FPContractable = false;
1607   BinOp.E = E;
1608   return BinOp;
1609 }
1610 
1611 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1612     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1613   llvm::Value *Amount =
1614       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1615   StringRef Name = IsInc ? "inc" : "dec";
1616   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1617   case LangOptions::SOB_Defined:
1618     return Builder.CreateAdd(InVal, Amount, Name);
1619   case LangOptions::SOB_Undefined:
1620     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1621       return Builder.CreateNSWAdd(InVal, Amount, Name);
1622     // Fall through.
1623   case LangOptions::SOB_Trapping:
1624     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1625   }
1626   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1627 }
1628 
1629 llvm::Value *
1630 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1631                                            bool isInc, bool isPre) {
1632 
1633   QualType type = E->getSubExpr()->getType();
1634   llvm::PHINode *atomicPHI = nullptr;
1635   llvm::Value *value;
1636   llvm::Value *input;
1637 
1638   int amount = (isInc ? 1 : -1);
1639 
1640   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1641     type = atomicTy->getValueType();
1642     if (isInc && type->isBooleanType()) {
1643       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1644       if (isPre) {
1645         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
1646           ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
1647         return Builder.getTrue();
1648       }
1649       // For atomic bool increment, we just store true and return it for
1650       // preincrement, do an atomic swap with true for postincrement
1651       return Builder.CreateAtomicRMW(
1652           llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
1653           llvm::AtomicOrdering::SequentiallyConsistent);
1654     }
1655     // Special case for atomic increment / decrement on integers, emit
1656     // atomicrmw instructions.  We skip this if we want to be doing overflow
1657     // checking, and fall into the slow path with the atomic cmpxchg loop.
1658     if (!type->isBooleanType() && type->isIntegerType() &&
1659         !(type->isUnsignedIntegerType() &&
1660           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1661         CGF.getLangOpts().getSignedOverflowBehavior() !=
1662             LangOptions::SOB_Trapping) {
1663       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1664         llvm::AtomicRMWInst::Sub;
1665       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1666         llvm::Instruction::Sub;
1667       llvm::Value *amt = CGF.EmitToMemory(
1668           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1669       llvm::Value *old = Builder.CreateAtomicRMW(aop,
1670           LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
1671       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1672     }
1673     value = EmitLoadOfLValue(LV, E->getExprLoc());
1674     input = value;
1675     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1676     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1677     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1678     value = CGF.EmitToMemory(value, type);
1679     Builder.CreateBr(opBB);
1680     Builder.SetInsertPoint(opBB);
1681     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1682     atomicPHI->addIncoming(value, startBB);
1683     value = atomicPHI;
1684   } else {
1685     value = EmitLoadOfLValue(LV, E->getExprLoc());
1686     input = value;
1687   }
1688 
1689   // Special case of integer increment that we have to check first: bool++.
1690   // Due to promotion rules, we get:
1691   //   bool++ -> bool = bool + 1
1692   //          -> bool = (int)bool + 1
1693   //          -> bool = ((int)bool + 1 != 0)
1694   // An interesting aspect of this is that increment is always true.
1695   // Decrement does not have this property.
1696   if (isInc && type->isBooleanType()) {
1697     value = Builder.getTrue();
1698 
1699   // Most common case by far: integer increment.
1700   } else if (type->isIntegerType()) {
1701     // Note that signed integer inc/dec with width less than int can't
1702     // overflow because of promotion rules; we're just eliding a few steps here.
1703     bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1704                        CGF.IntTy->getIntegerBitWidth();
1705     if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1706       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1707     } else if (CanOverflow && type->isUnsignedIntegerType() &&
1708                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1709       value =
1710           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1711     } else {
1712       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1713       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1714     }
1715 
1716   // Next most common: pointer increment.
1717   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1718     QualType type = ptr->getPointeeType();
1719 
1720     // VLA types don't have constant size.
1721     if (const VariableArrayType *vla
1722           = CGF.getContext().getAsVariableArrayType(type)) {
1723       llvm::Value *numElts = CGF.getVLASize(vla).first;
1724       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1725       if (CGF.getLangOpts().isSignedOverflowDefined())
1726         value = Builder.CreateGEP(value, numElts, "vla.inc");
1727       else
1728         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1729 
1730     // Arithmetic on function pointers (!) is just +-1.
1731     } else if (type->isFunctionType()) {
1732       llvm::Value *amt = Builder.getInt32(amount);
1733 
1734       value = CGF.EmitCastToVoidPtr(value);
1735       if (CGF.getLangOpts().isSignedOverflowDefined())
1736         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1737       else
1738         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1739       value = Builder.CreateBitCast(value, input->getType());
1740 
1741     // For everything else, we can just do a simple increment.
1742     } else {
1743       llvm::Value *amt = Builder.getInt32(amount);
1744       if (CGF.getLangOpts().isSignedOverflowDefined())
1745         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1746       else
1747         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1748     }
1749 
1750   // Vector increment/decrement.
1751   } else if (type->isVectorType()) {
1752     if (type->hasIntegerRepresentation()) {
1753       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1754 
1755       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1756     } else {
1757       value = Builder.CreateFAdd(
1758                   value,
1759                   llvm::ConstantFP::get(value->getType(), amount),
1760                   isInc ? "inc" : "dec");
1761     }
1762 
1763   // Floating point.
1764   } else if (type->isRealFloatingType()) {
1765     // Add the inc/dec to the real part.
1766     llvm::Value *amt;
1767 
1768     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1769       // Another special case: half FP increment should be done via float
1770       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1771         value = Builder.CreateCall(
1772             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1773                                  CGF.CGM.FloatTy),
1774             input, "incdec.conv");
1775       } else {
1776         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
1777       }
1778     }
1779 
1780     if (value->getType()->isFloatTy())
1781       amt = llvm::ConstantFP::get(VMContext,
1782                                   llvm::APFloat(static_cast<float>(amount)));
1783     else if (value->getType()->isDoubleTy())
1784       amt = llvm::ConstantFP::get(VMContext,
1785                                   llvm::APFloat(static_cast<double>(amount)));
1786     else {
1787       // Remaining types are Half, LongDouble or __float128. Convert from float.
1788       llvm::APFloat F(static_cast<float>(amount));
1789       bool ignored;
1790       const llvm::fltSemantics *FS;
1791       // Don't use getFloatTypeSemantics because Half isn't
1792       // necessarily represented using the "half" LLVM type.
1793       if (value->getType()->isFP128Ty())
1794         FS = &CGF.getTarget().getFloat128Format();
1795       else if (value->getType()->isHalfTy())
1796         FS = &CGF.getTarget().getHalfFormat();
1797       else
1798         FS = &CGF.getTarget().getLongDoubleFormat();
1799       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
1800       amt = llvm::ConstantFP::get(VMContext, F);
1801     }
1802     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1803 
1804     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1805       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1806         value = Builder.CreateCall(
1807             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
1808                                  CGF.CGM.FloatTy),
1809             value, "incdec.conv");
1810       } else {
1811         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
1812       }
1813     }
1814 
1815   // Objective-C pointer types.
1816   } else {
1817     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1818     value = CGF.EmitCastToVoidPtr(value);
1819 
1820     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1821     if (!isInc) size = -size;
1822     llvm::Value *sizeValue =
1823       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1824 
1825     if (CGF.getLangOpts().isSignedOverflowDefined())
1826       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1827     else
1828       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1829     value = Builder.CreateBitCast(value, input->getType());
1830   }
1831 
1832   if (atomicPHI) {
1833     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1834     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1835     auto Pair = CGF.EmitAtomicCompareExchange(
1836         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
1837     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
1838     llvm::Value *success = Pair.second;
1839     atomicPHI->addIncoming(old, opBB);
1840     Builder.CreateCondBr(success, contBB, opBB);
1841     Builder.SetInsertPoint(contBB);
1842     return isPre ? value : input;
1843   }
1844 
1845   // Store the updated result through the lvalue.
1846   if (LV.isBitField())
1847     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1848   else
1849     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1850 
1851   // If this is a postinc, return the value read from memory, otherwise use the
1852   // updated value.
1853   return isPre ? value : input;
1854 }
1855 
1856 
1857 
1858 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1859   TestAndClearIgnoreResultAssign();
1860   // Emit unary minus with EmitSub so we handle overflow cases etc.
1861   BinOpInfo BinOp;
1862   BinOp.RHS = Visit(E->getSubExpr());
1863 
1864   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1865     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1866   else
1867     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1868   BinOp.Ty = E->getType();
1869   BinOp.Opcode = BO_Sub;
1870   BinOp.FPContractable = false;
1871   BinOp.E = E;
1872   return EmitSub(BinOp);
1873 }
1874 
1875 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1876   TestAndClearIgnoreResultAssign();
1877   Value *Op = Visit(E->getSubExpr());
1878   return Builder.CreateNot(Op, "neg");
1879 }
1880 
1881 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1882   // Perform vector logical not on comparison with zero vector.
1883   if (E->getType()->isExtVectorType()) {
1884     Value *Oper = Visit(E->getSubExpr());
1885     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1886     Value *Result;
1887     if (Oper->getType()->isFPOrFPVectorTy())
1888       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1889     else
1890       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1891     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1892   }
1893 
1894   // Compare operand to zero.
1895   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1896 
1897   // Invert value.
1898   // TODO: Could dynamically modify easy computations here.  For example, if
1899   // the operand is an icmp ne, turn into icmp eq.
1900   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1901 
1902   // ZExt result to the expr type.
1903   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1904 }
1905 
1906 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1907   // Try folding the offsetof to a constant.
1908   llvm::APSInt Value;
1909   if (E->EvaluateAsInt(Value, CGF.getContext()))
1910     return Builder.getInt(Value);
1911 
1912   // Loop over the components of the offsetof to compute the value.
1913   unsigned n = E->getNumComponents();
1914   llvm::Type* ResultType = ConvertType(E->getType());
1915   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1916   QualType CurrentType = E->getTypeSourceInfo()->getType();
1917   for (unsigned i = 0; i != n; ++i) {
1918     OffsetOfNode ON = E->getComponent(i);
1919     llvm::Value *Offset = nullptr;
1920     switch (ON.getKind()) {
1921     case OffsetOfNode::Array: {
1922       // Compute the index
1923       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1924       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1925       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1926       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1927 
1928       // Save the element type
1929       CurrentType =
1930           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1931 
1932       // Compute the element size
1933       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1934           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1935 
1936       // Multiply out to compute the result
1937       Offset = Builder.CreateMul(Idx, ElemSize);
1938       break;
1939     }
1940 
1941     case OffsetOfNode::Field: {
1942       FieldDecl *MemberDecl = ON.getField();
1943       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1944       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1945 
1946       // Compute the index of the field in its parent.
1947       unsigned i = 0;
1948       // FIXME: It would be nice if we didn't have to loop here!
1949       for (RecordDecl::field_iterator Field = RD->field_begin(),
1950                                       FieldEnd = RD->field_end();
1951            Field != FieldEnd; ++Field, ++i) {
1952         if (*Field == MemberDecl)
1953           break;
1954       }
1955       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1956 
1957       // Compute the offset to the field
1958       int64_t OffsetInt = RL.getFieldOffset(i) /
1959                           CGF.getContext().getCharWidth();
1960       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1961 
1962       // Save the element type.
1963       CurrentType = MemberDecl->getType();
1964       break;
1965     }
1966 
1967     case OffsetOfNode::Identifier:
1968       llvm_unreachable("dependent __builtin_offsetof");
1969 
1970     case OffsetOfNode::Base: {
1971       if (ON.getBase()->isVirtual()) {
1972         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1973         continue;
1974       }
1975 
1976       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1977       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1978 
1979       // Save the element type.
1980       CurrentType = ON.getBase()->getType();
1981 
1982       // Compute the offset to the base.
1983       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1984       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1985       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1986       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1987       break;
1988     }
1989     }
1990     Result = Builder.CreateAdd(Result, Offset);
1991   }
1992   return Result;
1993 }
1994 
1995 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1996 /// argument of the sizeof expression as an integer.
1997 Value *
1998 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1999                               const UnaryExprOrTypeTraitExpr *E) {
2000   QualType TypeToSize = E->getTypeOfArgument();
2001   if (E->getKind() == UETT_SizeOf) {
2002     if (const VariableArrayType *VAT =
2003           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2004       if (E->isArgumentType()) {
2005         // sizeof(type) - make sure to emit the VLA size.
2006         CGF.EmitVariablyModifiedType(TypeToSize);
2007       } else {
2008         // C99 6.5.3.4p2: If the argument is an expression of type
2009         // VLA, it is evaluated.
2010         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2011       }
2012 
2013       QualType eltType;
2014       llvm::Value *numElts;
2015       std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2016 
2017       llvm::Value *size = numElts;
2018 
2019       // Scale the number of non-VLA elements by the non-VLA element size.
2020       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2021       if (!eltSize.isOne())
2022         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2023 
2024       return size;
2025     }
2026   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2027     auto Alignment =
2028         CGF.getContext()
2029             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2030                 E->getTypeOfArgument()->getPointeeType()))
2031             .getQuantity();
2032     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2033   }
2034 
2035   // If this isn't sizeof(vla), the result must be constant; use the constant
2036   // folding logic so we don't have to duplicate it here.
2037   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2038 }
2039 
2040 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2041   Expr *Op = E->getSubExpr();
2042   if (Op->getType()->isAnyComplexType()) {
2043     // If it's an l-value, load through the appropriate subobject l-value.
2044     // Note that we have to ask E because Op might be an l-value that
2045     // this won't work for, e.g. an Obj-C property.
2046     if (E->isGLValue())
2047       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2048                                   E->getExprLoc()).getScalarVal();
2049 
2050     // Otherwise, calculate and project.
2051     return CGF.EmitComplexExpr(Op, false, true).first;
2052   }
2053 
2054   return Visit(Op);
2055 }
2056 
2057 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2058   Expr *Op = E->getSubExpr();
2059   if (Op->getType()->isAnyComplexType()) {
2060     // If it's an l-value, load through the appropriate subobject l-value.
2061     // Note that we have to ask E because Op might be an l-value that
2062     // this won't work for, e.g. an Obj-C property.
2063     if (Op->isGLValue())
2064       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2065                                   E->getExprLoc()).getScalarVal();
2066 
2067     // Otherwise, calculate and project.
2068     return CGF.EmitComplexExpr(Op, true, false).second;
2069   }
2070 
2071   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2072   // effects are evaluated, but not the actual value.
2073   if (Op->isGLValue())
2074     CGF.EmitLValue(Op);
2075   else
2076     CGF.EmitScalarExpr(Op, true);
2077   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2078 }
2079 
2080 //===----------------------------------------------------------------------===//
2081 //                           Binary Operators
2082 //===----------------------------------------------------------------------===//
2083 
2084 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2085   TestAndClearIgnoreResultAssign();
2086   BinOpInfo Result;
2087   Result.LHS = Visit(E->getLHS());
2088   Result.RHS = Visit(E->getRHS());
2089   Result.Ty  = E->getType();
2090   Result.Opcode = E->getOpcode();
2091   Result.FPContractable = E->isFPContractable();
2092   Result.E = E;
2093   return Result;
2094 }
2095 
2096 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2097                                               const CompoundAssignOperator *E,
2098                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2099                                                    Value *&Result) {
2100   QualType LHSTy = E->getLHS()->getType();
2101   BinOpInfo OpInfo;
2102 
2103   if (E->getComputationResultType()->isAnyComplexType())
2104     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2105 
2106   // Emit the RHS first.  __block variables need to have the rhs evaluated
2107   // first, plus this should improve codegen a little.
2108   OpInfo.RHS = Visit(E->getRHS());
2109   OpInfo.Ty = E->getComputationResultType();
2110   OpInfo.Opcode = E->getOpcode();
2111   OpInfo.FPContractable = E->isFPContractable();
2112   OpInfo.E = E;
2113   // Load/convert the LHS.
2114   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2115 
2116   llvm::PHINode *atomicPHI = nullptr;
2117   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2118     QualType type = atomicTy->getValueType();
2119     if (!type->isBooleanType() && type->isIntegerType() &&
2120         !(type->isUnsignedIntegerType() &&
2121           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2122         CGF.getLangOpts().getSignedOverflowBehavior() !=
2123             LangOptions::SOB_Trapping) {
2124       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2125       switch (OpInfo.Opcode) {
2126         // We don't have atomicrmw operands for *, %, /, <<, >>
2127         case BO_MulAssign: case BO_DivAssign:
2128         case BO_RemAssign:
2129         case BO_ShlAssign:
2130         case BO_ShrAssign:
2131           break;
2132         case BO_AddAssign:
2133           aop = llvm::AtomicRMWInst::Add;
2134           break;
2135         case BO_SubAssign:
2136           aop = llvm::AtomicRMWInst::Sub;
2137           break;
2138         case BO_AndAssign:
2139           aop = llvm::AtomicRMWInst::And;
2140           break;
2141         case BO_XorAssign:
2142           aop = llvm::AtomicRMWInst::Xor;
2143           break;
2144         case BO_OrAssign:
2145           aop = llvm::AtomicRMWInst::Or;
2146           break;
2147         default:
2148           llvm_unreachable("Invalid compound assignment type");
2149       }
2150       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2151         llvm::Value *amt = CGF.EmitToMemory(
2152             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2153                                  E->getExprLoc()),
2154             LHSTy);
2155         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2156             llvm::AtomicOrdering::SequentiallyConsistent);
2157         return LHSLV;
2158       }
2159     }
2160     // FIXME: For floating point types, we should be saving and restoring the
2161     // floating point environment in the loop.
2162     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2163     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2164     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2165     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2166     Builder.CreateBr(opBB);
2167     Builder.SetInsertPoint(opBB);
2168     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2169     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2170     OpInfo.LHS = atomicPHI;
2171   }
2172   else
2173     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2174 
2175   SourceLocation Loc = E->getExprLoc();
2176   OpInfo.LHS =
2177       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2178 
2179   // Expand the binary operator.
2180   Result = (this->*Func)(OpInfo);
2181 
2182   // Convert the result back to the LHS type.
2183   Result =
2184       EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2185 
2186   if (atomicPHI) {
2187     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2188     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2189     auto Pair = CGF.EmitAtomicCompareExchange(
2190         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2191     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2192     llvm::Value *success = Pair.second;
2193     atomicPHI->addIncoming(old, opBB);
2194     Builder.CreateCondBr(success, contBB, opBB);
2195     Builder.SetInsertPoint(contBB);
2196     return LHSLV;
2197   }
2198 
2199   // Store the result value into the LHS lvalue. Bit-fields are handled
2200   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2201   // 'An assignment expression has the value of the left operand after the
2202   // assignment...'.
2203   if (LHSLV.isBitField())
2204     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2205   else
2206     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2207 
2208   return LHSLV;
2209 }
2210 
2211 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2212                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2213   bool Ignore = TestAndClearIgnoreResultAssign();
2214   Value *RHS;
2215   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2216 
2217   // If the result is clearly ignored, return now.
2218   if (Ignore)
2219     return nullptr;
2220 
2221   // The result of an assignment in C is the assigned r-value.
2222   if (!CGF.getLangOpts().CPlusPlus)
2223     return RHS;
2224 
2225   // If the lvalue is non-volatile, return the computed value of the assignment.
2226   if (!LHS.isVolatileQualified())
2227     return RHS;
2228 
2229   // Otherwise, reload the value.
2230   return EmitLoadOfLValue(LHS, E->getExprLoc());
2231 }
2232 
2233 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2234     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2235   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2236 
2237   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2238     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2239                                     SanitizerKind::IntegerDivideByZero));
2240   }
2241 
2242   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2243       Ops.Ty->hasSignedIntegerRepresentation()) {
2244     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2245 
2246     llvm::Value *IntMin =
2247       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2248     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2249 
2250     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2251     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2252     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2253     Checks.push_back(
2254         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2255   }
2256 
2257   if (Checks.size() > 0)
2258     EmitBinOpCheck(Checks, Ops);
2259 }
2260 
2261 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2262   {
2263     CodeGenFunction::SanitizerScope SanScope(&CGF);
2264     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2265          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2266         Ops.Ty->isIntegerType()) {
2267       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2268       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2269     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2270                Ops.Ty->isRealFloatingType()) {
2271       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2272       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2273       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2274                      Ops);
2275     }
2276   }
2277 
2278   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2279     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2280     if (CGF.getLangOpts().OpenCL &&
2281         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
2282       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
2283       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
2284       // build option allows an application to specify that single precision
2285       // floating-point divide (x/y and 1/x) and sqrt used in the program
2286       // source are correctly rounded.
2287       llvm::Type *ValTy = Val->getType();
2288       if (ValTy->isFloatTy() ||
2289           (isa<llvm::VectorType>(ValTy) &&
2290            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2291         CGF.SetFPAccuracy(Val, 2.5);
2292     }
2293     return Val;
2294   }
2295   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2296     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2297   else
2298     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2299 }
2300 
2301 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2302   // Rem in C can't be a floating point type: C99 6.5.5p2.
2303   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2304     CodeGenFunction::SanitizerScope SanScope(&CGF);
2305     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2306 
2307     if (Ops.Ty->isIntegerType())
2308       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2309   }
2310 
2311   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2312     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2313   else
2314     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2315 }
2316 
2317 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2318   unsigned IID;
2319   unsigned OpID = 0;
2320 
2321   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2322   switch (Ops.Opcode) {
2323   case BO_Add:
2324   case BO_AddAssign:
2325     OpID = 1;
2326     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2327                      llvm::Intrinsic::uadd_with_overflow;
2328     break;
2329   case BO_Sub:
2330   case BO_SubAssign:
2331     OpID = 2;
2332     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2333                      llvm::Intrinsic::usub_with_overflow;
2334     break;
2335   case BO_Mul:
2336   case BO_MulAssign:
2337     OpID = 3;
2338     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2339                      llvm::Intrinsic::umul_with_overflow;
2340     break;
2341   default:
2342     llvm_unreachable("Unsupported operation for overflow detection");
2343   }
2344   OpID <<= 1;
2345   if (isSigned)
2346     OpID |= 1;
2347 
2348   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2349 
2350   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2351 
2352   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2353   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2354   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2355 
2356   // Handle overflow with llvm.trap if no custom handler has been specified.
2357   const std::string *handlerName =
2358     &CGF.getLangOpts().OverflowHandler;
2359   if (handlerName->empty()) {
2360     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2361     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2362     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2363       CodeGenFunction::SanitizerScope SanScope(&CGF);
2364       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2365       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2366                               : SanitizerKind::UnsignedIntegerOverflow;
2367       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2368     } else
2369       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2370     return result;
2371   }
2372 
2373   // Branch in case of overflow.
2374   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2375   llvm::BasicBlock *continueBB =
2376       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
2377   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2378 
2379   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2380 
2381   // If an overflow handler is set, then we want to call it and then use its
2382   // result, if it returns.
2383   Builder.SetInsertPoint(overflowBB);
2384 
2385   // Get the overflow handler.
2386   llvm::Type *Int8Ty = CGF.Int8Ty;
2387   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2388   llvm::FunctionType *handlerTy =
2389       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2390   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2391 
2392   // Sign extend the args to 64-bit, so that we can use the same handler for
2393   // all types of overflow.
2394   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2395   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2396 
2397   // Call the handler with the two arguments, the operation, and the size of
2398   // the result.
2399   llvm::Value *handlerArgs[] = {
2400     lhs,
2401     rhs,
2402     Builder.getInt8(OpID),
2403     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2404   };
2405   llvm::Value *handlerResult =
2406     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2407 
2408   // Truncate the result back to the desired size.
2409   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2410   Builder.CreateBr(continueBB);
2411 
2412   Builder.SetInsertPoint(continueBB);
2413   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2414   phi->addIncoming(result, initialBB);
2415   phi->addIncoming(handlerResult, overflowBB);
2416 
2417   return phi;
2418 }
2419 
2420 /// Emit pointer + index arithmetic.
2421 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2422                                     const BinOpInfo &op,
2423                                     bool isSubtraction) {
2424   // Must have binary (not unary) expr here.  Unary pointer
2425   // increment/decrement doesn't use this path.
2426   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2427 
2428   Value *pointer = op.LHS;
2429   Expr *pointerOperand = expr->getLHS();
2430   Value *index = op.RHS;
2431   Expr *indexOperand = expr->getRHS();
2432 
2433   // In a subtraction, the LHS is always the pointer.
2434   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2435     std::swap(pointer, index);
2436     std::swap(pointerOperand, indexOperand);
2437   }
2438 
2439   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2440   auto &DL = CGF.CGM.getDataLayout();
2441   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
2442   if (width != DL.getTypeSizeInBits(PtrTy)) {
2443     // Zero-extend or sign-extend the pointer value according to
2444     // whether the index is signed or not.
2445     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2446     index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
2447                                       "idx.ext");
2448   }
2449 
2450   // If this is subtraction, negate the index.
2451   if (isSubtraction)
2452     index = CGF.Builder.CreateNeg(index, "idx.neg");
2453 
2454   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2455     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2456                         /*Accessed*/ false);
2457 
2458   const PointerType *pointerType
2459     = pointerOperand->getType()->getAs<PointerType>();
2460   if (!pointerType) {
2461     QualType objectType = pointerOperand->getType()
2462                                         ->castAs<ObjCObjectPointerType>()
2463                                         ->getPointeeType();
2464     llvm::Value *objectSize
2465       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2466 
2467     index = CGF.Builder.CreateMul(index, objectSize);
2468 
2469     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2470     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2471     return CGF.Builder.CreateBitCast(result, pointer->getType());
2472   }
2473 
2474   QualType elementType = pointerType->getPointeeType();
2475   if (const VariableArrayType *vla
2476         = CGF.getContext().getAsVariableArrayType(elementType)) {
2477     // The element count here is the total number of non-VLA elements.
2478     llvm::Value *numElements = CGF.getVLASize(vla).first;
2479 
2480     // Effectively, the multiply by the VLA size is part of the GEP.
2481     // GEP indexes are signed, and scaling an index isn't permitted to
2482     // signed-overflow, so we use the same semantics for our explicit
2483     // multiply.  We suppress this if overflow is not undefined behavior.
2484     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2485       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2486       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2487     } else {
2488       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2489       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2490     }
2491     return pointer;
2492   }
2493 
2494   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2495   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2496   // future proof.
2497   if (elementType->isVoidType() || elementType->isFunctionType()) {
2498     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2499     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2500     return CGF.Builder.CreateBitCast(result, pointer->getType());
2501   }
2502 
2503   if (CGF.getLangOpts().isSignedOverflowDefined())
2504     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2505 
2506   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2507 }
2508 
2509 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2510 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2511 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2512 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2513 // efficient operations.
2514 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2515                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2516                            bool negMul, bool negAdd) {
2517   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2518 
2519   Value *MulOp0 = MulOp->getOperand(0);
2520   Value *MulOp1 = MulOp->getOperand(1);
2521   if (negMul) {
2522     MulOp0 =
2523       Builder.CreateFSub(
2524         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2525         "neg");
2526   } else if (negAdd) {
2527     Addend =
2528       Builder.CreateFSub(
2529         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2530         "neg");
2531   }
2532 
2533   Value *FMulAdd = Builder.CreateCall(
2534       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2535       {MulOp0, MulOp1, Addend});
2536    MulOp->eraseFromParent();
2537 
2538    return FMulAdd;
2539 }
2540 
2541 // Check whether it would be legal to emit an fmuladd intrinsic call to
2542 // represent op and if so, build the fmuladd.
2543 //
2544 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2545 // Does NOT check the type of the operation - it's assumed that this function
2546 // will be called from contexts where it's known that the type is contractable.
2547 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2548                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2549                          bool isSub=false) {
2550 
2551   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2552           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2553          "Only fadd/fsub can be the root of an fmuladd.");
2554 
2555   // Check whether this op is marked as fusable.
2556   if (!op.FPContractable)
2557     return nullptr;
2558 
2559   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2560   // either disabled, or handled entirely by the LLVM backend).
2561   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2562     return nullptr;
2563 
2564   // We have a potentially fusable op. Look for a mul on one of the operands.
2565   // Also, make sure that the mul result isn't used directly. In that case,
2566   // there's no point creating a muladd operation.
2567   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2568     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2569         LHSBinOp->use_empty())
2570       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2571   }
2572   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2573     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2574         RHSBinOp->use_empty())
2575       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2576   }
2577 
2578   return nullptr;
2579 }
2580 
2581 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2582   if (op.LHS->getType()->isPointerTy() ||
2583       op.RHS->getType()->isPointerTy())
2584     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2585 
2586   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2587     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2588     case LangOptions::SOB_Defined:
2589       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2590     case LangOptions::SOB_Undefined:
2591       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2592         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2593       // Fall through.
2594     case LangOptions::SOB_Trapping:
2595       return EmitOverflowCheckedBinOp(op);
2596     }
2597   }
2598 
2599   if (op.Ty->isUnsignedIntegerType() &&
2600       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2601     return EmitOverflowCheckedBinOp(op);
2602 
2603   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2604     // Try to form an fmuladd.
2605     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2606       return FMulAdd;
2607 
2608     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2609   }
2610 
2611   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2612 }
2613 
2614 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2615   // The LHS is always a pointer if either side is.
2616   if (!op.LHS->getType()->isPointerTy()) {
2617     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2618       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2619       case LangOptions::SOB_Defined:
2620         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2621       case LangOptions::SOB_Undefined:
2622         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2623           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2624         // Fall through.
2625       case LangOptions::SOB_Trapping:
2626         return EmitOverflowCheckedBinOp(op);
2627       }
2628     }
2629 
2630     if (op.Ty->isUnsignedIntegerType() &&
2631         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2632       return EmitOverflowCheckedBinOp(op);
2633 
2634     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2635       // Try to form an fmuladd.
2636       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2637         return FMulAdd;
2638       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2639     }
2640 
2641     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2642   }
2643 
2644   // If the RHS is not a pointer, then we have normal pointer
2645   // arithmetic.
2646   if (!op.RHS->getType()->isPointerTy())
2647     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2648 
2649   // Otherwise, this is a pointer subtraction.
2650 
2651   // Do the raw subtraction part.
2652   llvm::Value *LHS
2653     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2654   llvm::Value *RHS
2655     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2656   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2657 
2658   // Okay, figure out the element size.
2659   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2660   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2661 
2662   llvm::Value *divisor = nullptr;
2663 
2664   // For a variable-length array, this is going to be non-constant.
2665   if (const VariableArrayType *vla
2666         = CGF.getContext().getAsVariableArrayType(elementType)) {
2667     llvm::Value *numElements;
2668     std::tie(numElements, elementType) = CGF.getVLASize(vla);
2669 
2670     divisor = numElements;
2671 
2672     // Scale the number of non-VLA elements by the non-VLA element size.
2673     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2674     if (!eltSize.isOne())
2675       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2676 
2677   // For everything elese, we can just compute it, safe in the
2678   // assumption that Sema won't let anything through that we can't
2679   // safely compute the size of.
2680   } else {
2681     CharUnits elementSize;
2682     // Handle GCC extension for pointer arithmetic on void* and
2683     // function pointer types.
2684     if (elementType->isVoidType() || elementType->isFunctionType())
2685       elementSize = CharUnits::One();
2686     else
2687       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2688 
2689     // Don't even emit the divide for element size of 1.
2690     if (elementSize.isOne())
2691       return diffInChars;
2692 
2693     divisor = CGF.CGM.getSize(elementSize);
2694   }
2695 
2696   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2697   // pointer difference in C is only defined in the case where both operands
2698   // are pointing to elements of an array.
2699   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2700 }
2701 
2702 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2703   llvm::IntegerType *Ty;
2704   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2705     Ty = cast<llvm::IntegerType>(VT->getElementType());
2706   else
2707     Ty = cast<llvm::IntegerType>(LHS->getType());
2708   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2709 }
2710 
2711 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2712   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2713   // RHS to the same size as the LHS.
2714   Value *RHS = Ops.RHS;
2715   if (Ops.LHS->getType() != RHS->getType())
2716     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2717 
2718   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
2719                       Ops.Ty->hasSignedIntegerRepresentation() &&
2720                       !CGF.getLangOpts().isSignedOverflowDefined();
2721   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
2722   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2723   if (CGF.getLangOpts().OpenCL)
2724     RHS =
2725         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2726   else if ((SanitizeBase || SanitizeExponent) &&
2727            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2728     CodeGenFunction::SanitizerScope SanScope(&CGF);
2729     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
2730     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2731     llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
2732 
2733     if (SanitizeExponent) {
2734       Checks.push_back(
2735           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
2736     }
2737 
2738     if (SanitizeBase) {
2739       // Check whether we are shifting any non-zero bits off the top of the
2740       // integer. We only emit this check if exponent is valid - otherwise
2741       // instructions below will have undefined behavior themselves.
2742       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2743       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2744       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
2745       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
2746       CGF.EmitBlock(CheckShiftBase);
2747       llvm::Value *BitsShiftedOff =
2748         Builder.CreateLShr(Ops.LHS,
2749                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2750                                              /*NUW*/true, /*NSW*/true),
2751                            "shl.check");
2752       if (CGF.getLangOpts().CPlusPlus) {
2753         // In C99, we are not permitted to shift a 1 bit into the sign bit.
2754         // Under C++11's rules, shifting a 1 bit into the sign bit is
2755         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2756         // define signed left shifts, so we use the C99 and C++11 rules there).
2757         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2758         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2759       }
2760       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2761       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2762       CGF.EmitBlock(Cont);
2763       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
2764       BaseCheck->addIncoming(Builder.getTrue(), Orig);
2765       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
2766       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
2767     }
2768 
2769     assert(!Checks.empty());
2770     EmitBinOpCheck(Checks, Ops);
2771   }
2772 
2773   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2774 }
2775 
2776 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2777   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2778   // RHS to the same size as the LHS.
2779   Value *RHS = Ops.RHS;
2780   if (Ops.LHS->getType() != RHS->getType())
2781     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2782 
2783   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2784   if (CGF.getLangOpts().OpenCL)
2785     RHS =
2786         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2787   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
2788            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2789     CodeGenFunction::SanitizerScope SanScope(&CGF);
2790     llvm::Value *Valid =
2791         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
2792     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
2793   }
2794 
2795   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2796     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2797   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2798 }
2799 
2800 enum IntrinsicType { VCMPEQ, VCMPGT };
2801 // return corresponding comparison intrinsic for given vector type
2802 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2803                                         BuiltinType::Kind ElemKind) {
2804   switch (ElemKind) {
2805   default: llvm_unreachable("unexpected element type");
2806   case BuiltinType::Char_U:
2807   case BuiltinType::UChar:
2808     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2809                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2810   case BuiltinType::Char_S:
2811   case BuiltinType::SChar:
2812     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2813                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2814   case BuiltinType::UShort:
2815     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2816                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2817   case BuiltinType::Short:
2818     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2819                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2820   case BuiltinType::UInt:
2821   case BuiltinType::ULong:
2822     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2823                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2824   case BuiltinType::Int:
2825   case BuiltinType::Long:
2826     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2827                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2828   case BuiltinType::Float:
2829     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2830                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2831   }
2832 }
2833 
2834 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
2835                                       llvm::CmpInst::Predicate UICmpOpc,
2836                                       llvm::CmpInst::Predicate SICmpOpc,
2837                                       llvm::CmpInst::Predicate FCmpOpc) {
2838   TestAndClearIgnoreResultAssign();
2839   Value *Result;
2840   QualType LHSTy = E->getLHS()->getType();
2841   QualType RHSTy = E->getRHS()->getType();
2842   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2843     assert(E->getOpcode() == BO_EQ ||
2844            E->getOpcode() == BO_NE);
2845     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2846     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2847     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2848                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2849   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
2850     Value *LHS = Visit(E->getLHS());
2851     Value *RHS = Visit(E->getRHS());
2852 
2853     // If AltiVec, the comparison results in a numeric type, so we use
2854     // intrinsics comparing vectors and giving 0 or 1 as a result
2855     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2856       // constants for mapping CR6 register bits to predicate result
2857       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2858 
2859       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2860 
2861       // in several cases vector arguments order will be reversed
2862       Value *FirstVecArg = LHS,
2863             *SecondVecArg = RHS;
2864 
2865       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2866       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2867       BuiltinType::Kind ElementKind = BTy->getKind();
2868 
2869       switch(E->getOpcode()) {
2870       default: llvm_unreachable("is not a comparison operation");
2871       case BO_EQ:
2872         CR6 = CR6_LT;
2873         ID = GetIntrinsic(VCMPEQ, ElementKind);
2874         break;
2875       case BO_NE:
2876         CR6 = CR6_EQ;
2877         ID = GetIntrinsic(VCMPEQ, ElementKind);
2878         break;
2879       case BO_LT:
2880         CR6 = CR6_LT;
2881         ID = GetIntrinsic(VCMPGT, ElementKind);
2882         std::swap(FirstVecArg, SecondVecArg);
2883         break;
2884       case BO_GT:
2885         CR6 = CR6_LT;
2886         ID = GetIntrinsic(VCMPGT, ElementKind);
2887         break;
2888       case BO_LE:
2889         if (ElementKind == BuiltinType::Float) {
2890           CR6 = CR6_LT;
2891           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2892           std::swap(FirstVecArg, SecondVecArg);
2893         }
2894         else {
2895           CR6 = CR6_EQ;
2896           ID = GetIntrinsic(VCMPGT, ElementKind);
2897         }
2898         break;
2899       case BO_GE:
2900         if (ElementKind == BuiltinType::Float) {
2901           CR6 = CR6_LT;
2902           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2903         }
2904         else {
2905           CR6 = CR6_EQ;
2906           ID = GetIntrinsic(VCMPGT, ElementKind);
2907           std::swap(FirstVecArg, SecondVecArg);
2908         }
2909         break;
2910       }
2911 
2912       Value *CR6Param = Builder.getInt32(CR6);
2913       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2914       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
2915       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2916                                   E->getExprLoc());
2917     }
2918 
2919     if (LHS->getType()->isFPOrFPVectorTy()) {
2920       Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
2921     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2922       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
2923     } else {
2924       // Unsigned integers and pointers.
2925       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
2926     }
2927 
2928     // If this is a vector comparison, sign extend the result to the appropriate
2929     // vector integer type and return it (don't convert to bool).
2930     if (LHSTy->isVectorType())
2931       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2932 
2933   } else {
2934     // Complex Comparison: can only be an equality comparison.
2935     CodeGenFunction::ComplexPairTy LHS, RHS;
2936     QualType CETy;
2937     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
2938       LHS = CGF.EmitComplexExpr(E->getLHS());
2939       CETy = CTy->getElementType();
2940     } else {
2941       LHS.first = Visit(E->getLHS());
2942       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
2943       CETy = LHSTy;
2944     }
2945     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
2946       RHS = CGF.EmitComplexExpr(E->getRHS());
2947       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
2948                                                      CTy->getElementType()) &&
2949              "The element types must always match.");
2950       (void)CTy;
2951     } else {
2952       RHS.first = Visit(E->getRHS());
2953       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
2954       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
2955              "The element types must always match.");
2956     }
2957 
2958     Value *ResultR, *ResultI;
2959     if (CETy->isRealFloatingType()) {
2960       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
2961       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
2962     } else {
2963       // Complex comparisons can only be equality comparisons.  As such, signed
2964       // and unsigned opcodes are the same.
2965       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
2966       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
2967     }
2968 
2969     if (E->getOpcode() == BO_EQ) {
2970       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2971     } else {
2972       assert(E->getOpcode() == BO_NE &&
2973              "Complex comparison other than == or != ?");
2974       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2975     }
2976   }
2977 
2978   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2979                               E->getExprLoc());
2980 }
2981 
2982 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2983   bool Ignore = TestAndClearIgnoreResultAssign();
2984 
2985   Value *RHS;
2986   LValue LHS;
2987 
2988   switch (E->getLHS()->getType().getObjCLifetime()) {
2989   case Qualifiers::OCL_Strong:
2990     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2991     break;
2992 
2993   case Qualifiers::OCL_Autoreleasing:
2994     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
2995     break;
2996 
2997   case Qualifiers::OCL_ExplicitNone:
2998     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
2999     break;
3000 
3001   case Qualifiers::OCL_Weak:
3002     RHS = Visit(E->getRHS());
3003     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3004     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3005     break;
3006 
3007   case Qualifiers::OCL_None:
3008     // __block variables need to have the rhs evaluated first, plus
3009     // this should improve codegen just a little.
3010     RHS = Visit(E->getRHS());
3011     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3012 
3013     // Store the value into the LHS.  Bit-fields are handled specially
3014     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3015     // 'An assignment expression has the value of the left operand after
3016     // the assignment...'.
3017     if (LHS.isBitField())
3018       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3019     else
3020       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3021   }
3022 
3023   // If the result is clearly ignored, return now.
3024   if (Ignore)
3025     return nullptr;
3026 
3027   // The result of an assignment in C is the assigned r-value.
3028   if (!CGF.getLangOpts().CPlusPlus)
3029     return RHS;
3030 
3031   // If the lvalue is non-volatile, return the computed value of the assignment.
3032   if (!LHS.isVolatileQualified())
3033     return RHS;
3034 
3035   // Otherwise, reload the value.
3036   return EmitLoadOfLValue(LHS, E->getExprLoc());
3037 }
3038 
3039 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3040   // Perform vector logical and on comparisons with zero vectors.
3041   if (E->getType()->isVectorType()) {
3042     CGF.incrementProfileCounter(E);
3043 
3044     Value *LHS = Visit(E->getLHS());
3045     Value *RHS = Visit(E->getRHS());
3046     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3047     if (LHS->getType()->isFPOrFPVectorTy()) {
3048       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3049       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3050     } else {
3051       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3052       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3053     }
3054     Value *And = Builder.CreateAnd(LHS, RHS);
3055     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3056   }
3057 
3058   llvm::Type *ResTy = ConvertType(E->getType());
3059 
3060   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3061   // If we have 1 && X, just emit X without inserting the control flow.
3062   bool LHSCondVal;
3063   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3064     if (LHSCondVal) { // If we have 1 && X, just emit X.
3065       CGF.incrementProfileCounter(E);
3066 
3067       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3068       // ZExt result to int or bool.
3069       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3070     }
3071 
3072     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3073     if (!CGF.ContainsLabel(E->getRHS()))
3074       return llvm::Constant::getNullValue(ResTy);
3075   }
3076 
3077   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3078   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3079 
3080   CodeGenFunction::ConditionalEvaluation eval(CGF);
3081 
3082   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3083   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3084                            CGF.getProfileCount(E->getRHS()));
3085 
3086   // Any edges into the ContBlock are now from an (indeterminate number of)
3087   // edges from this first condition.  All of these values will be false.  Start
3088   // setting up the PHI node in the Cont Block for this.
3089   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3090                                             "", ContBlock);
3091   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3092        PI != PE; ++PI)
3093     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3094 
3095   eval.begin(CGF);
3096   CGF.EmitBlock(RHSBlock);
3097   CGF.incrementProfileCounter(E);
3098   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3099   eval.end(CGF);
3100 
3101   // Reaquire the RHS block, as there may be subblocks inserted.
3102   RHSBlock = Builder.GetInsertBlock();
3103 
3104   // Emit an unconditional branch from this block to ContBlock.
3105   {
3106     // There is no need to emit line number for unconditional branch.
3107     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3108     CGF.EmitBlock(ContBlock);
3109   }
3110   // Insert an entry into the phi node for the edge with the value of RHSCond.
3111   PN->addIncoming(RHSCond, RHSBlock);
3112 
3113   // ZExt result to int.
3114   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3115 }
3116 
3117 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3118   // Perform vector logical or on comparisons with zero vectors.
3119   if (E->getType()->isVectorType()) {
3120     CGF.incrementProfileCounter(E);
3121 
3122     Value *LHS = Visit(E->getLHS());
3123     Value *RHS = Visit(E->getRHS());
3124     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3125     if (LHS->getType()->isFPOrFPVectorTy()) {
3126       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3127       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3128     } else {
3129       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3130       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3131     }
3132     Value *Or = Builder.CreateOr(LHS, RHS);
3133     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3134   }
3135 
3136   llvm::Type *ResTy = ConvertType(E->getType());
3137 
3138   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3139   // If we have 0 || X, just emit X without inserting the control flow.
3140   bool LHSCondVal;
3141   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3142     if (!LHSCondVal) { // If we have 0 || X, just emit X.
3143       CGF.incrementProfileCounter(E);
3144 
3145       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3146       // ZExt result to int or bool.
3147       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3148     }
3149 
3150     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3151     if (!CGF.ContainsLabel(E->getRHS()))
3152       return llvm::ConstantInt::get(ResTy, 1);
3153   }
3154 
3155   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3156   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3157 
3158   CodeGenFunction::ConditionalEvaluation eval(CGF);
3159 
3160   // Branch on the LHS first.  If it is true, go to the success (cont) block.
3161   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3162                            CGF.getCurrentProfileCount() -
3163                                CGF.getProfileCount(E->getRHS()));
3164 
3165   // Any edges into the ContBlock are now from an (indeterminate number of)
3166   // edges from this first condition.  All of these values will be true.  Start
3167   // setting up the PHI node in the Cont Block for this.
3168   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3169                                             "", ContBlock);
3170   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3171        PI != PE; ++PI)
3172     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3173 
3174   eval.begin(CGF);
3175 
3176   // Emit the RHS condition as a bool value.
3177   CGF.EmitBlock(RHSBlock);
3178   CGF.incrementProfileCounter(E);
3179   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3180 
3181   eval.end(CGF);
3182 
3183   // Reaquire the RHS block, as there may be subblocks inserted.
3184   RHSBlock = Builder.GetInsertBlock();
3185 
3186   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3187   // into the phi node for the edge with the value of RHSCond.
3188   CGF.EmitBlock(ContBlock);
3189   PN->addIncoming(RHSCond, RHSBlock);
3190 
3191   // ZExt result to int.
3192   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3193 }
3194 
3195 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3196   CGF.EmitIgnoredExpr(E->getLHS());
3197   CGF.EnsureInsertPoint();
3198   return Visit(E->getRHS());
3199 }
3200 
3201 //===----------------------------------------------------------------------===//
3202 //                             Other Operators
3203 //===----------------------------------------------------------------------===//
3204 
3205 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3206 /// expression is cheap enough and side-effect-free enough to evaluate
3207 /// unconditionally instead of conditionally.  This is used to convert control
3208 /// flow into selects in some cases.
3209 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3210                                                    CodeGenFunction &CGF) {
3211   // Anything that is an integer or floating point constant is fine.
3212   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3213 
3214   // Even non-volatile automatic variables can't be evaluated unconditionally.
3215   // Referencing a thread_local may cause non-trivial initialization work to
3216   // occur. If we're inside a lambda and one of the variables is from the scope
3217   // outside the lambda, that function may have returned already. Reading its
3218   // locals is a bad idea. Also, these reads may introduce races there didn't
3219   // exist in the source-level program.
3220 }
3221 
3222 
3223 Value *ScalarExprEmitter::
3224 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3225   TestAndClearIgnoreResultAssign();
3226 
3227   // Bind the common expression if necessary.
3228   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3229 
3230   Expr *condExpr = E->getCond();
3231   Expr *lhsExpr = E->getTrueExpr();
3232   Expr *rhsExpr = E->getFalseExpr();
3233 
3234   // If the condition constant folds and can be elided, try to avoid emitting
3235   // the condition and the dead arm.
3236   bool CondExprBool;
3237   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3238     Expr *live = lhsExpr, *dead = rhsExpr;
3239     if (!CondExprBool) std::swap(live, dead);
3240 
3241     // If the dead side doesn't have labels we need, just emit the Live part.
3242     if (!CGF.ContainsLabel(dead)) {
3243       if (CondExprBool)
3244         CGF.incrementProfileCounter(E);
3245       Value *Result = Visit(live);
3246 
3247       // If the live part is a throw expression, it acts like it has a void
3248       // type, so evaluating it returns a null Value*.  However, a conditional
3249       // with non-void type must return a non-null Value*.
3250       if (!Result && !E->getType()->isVoidType())
3251         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3252 
3253       return Result;
3254     }
3255   }
3256 
3257   // OpenCL: If the condition is a vector, we can treat this condition like
3258   // the select function.
3259   if (CGF.getLangOpts().OpenCL
3260       && condExpr->getType()->isVectorType()) {
3261     CGF.incrementProfileCounter(E);
3262 
3263     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3264     llvm::Value *LHS = Visit(lhsExpr);
3265     llvm::Value *RHS = Visit(rhsExpr);
3266 
3267     llvm::Type *condType = ConvertType(condExpr->getType());
3268     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3269 
3270     unsigned numElem = vecTy->getNumElements();
3271     llvm::Type *elemType = vecTy->getElementType();
3272 
3273     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3274     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3275     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3276                                           llvm::VectorType::get(elemType,
3277                                                                 numElem),
3278                                           "sext");
3279     llvm::Value *tmp2 = Builder.CreateNot(tmp);
3280 
3281     // Cast float to int to perform ANDs if necessary.
3282     llvm::Value *RHSTmp = RHS;
3283     llvm::Value *LHSTmp = LHS;
3284     bool wasCast = false;
3285     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3286     if (rhsVTy->getElementType()->isFloatingPointTy()) {
3287       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3288       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3289       wasCast = true;
3290     }
3291 
3292     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3293     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3294     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3295     if (wasCast)
3296       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3297 
3298     return tmp5;
3299   }
3300 
3301   // If this is a really simple expression (like x ? 4 : 5), emit this as a
3302   // select instead of as control flow.  We can only do this if it is cheap and
3303   // safe to evaluate the LHS and RHS unconditionally.
3304   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3305       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3306     CGF.incrementProfileCounter(E);
3307 
3308     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3309     llvm::Value *LHS = Visit(lhsExpr);
3310     llvm::Value *RHS = Visit(rhsExpr);
3311     if (!LHS) {
3312       // If the conditional has void type, make sure we return a null Value*.
3313       assert(!RHS && "LHS and RHS types must match");
3314       return nullptr;
3315     }
3316     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3317   }
3318 
3319   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3320   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3321   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3322 
3323   CodeGenFunction::ConditionalEvaluation eval(CGF);
3324   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3325                            CGF.getProfileCount(lhsExpr));
3326 
3327   CGF.EmitBlock(LHSBlock);
3328   CGF.incrementProfileCounter(E);
3329   eval.begin(CGF);
3330   Value *LHS = Visit(lhsExpr);
3331   eval.end(CGF);
3332 
3333   LHSBlock = Builder.GetInsertBlock();
3334   Builder.CreateBr(ContBlock);
3335 
3336   CGF.EmitBlock(RHSBlock);
3337   eval.begin(CGF);
3338   Value *RHS = Visit(rhsExpr);
3339   eval.end(CGF);
3340 
3341   RHSBlock = Builder.GetInsertBlock();
3342   CGF.EmitBlock(ContBlock);
3343 
3344   // If the LHS or RHS is a throw expression, it will be legitimately null.
3345   if (!LHS)
3346     return RHS;
3347   if (!RHS)
3348     return LHS;
3349 
3350   // Create a PHI node for the real part.
3351   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3352   PN->addIncoming(LHS, LHSBlock);
3353   PN->addIncoming(RHS, RHSBlock);
3354   return PN;
3355 }
3356 
3357 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3358   return Visit(E->getChosenSubExpr());
3359 }
3360 
3361 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3362   QualType Ty = VE->getType();
3363 
3364   if (Ty->isVariablyModifiedType())
3365     CGF.EmitVariablyModifiedType(Ty);
3366 
3367   Address ArgValue = Address::invalid();
3368   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
3369 
3370   llvm::Type *ArgTy = ConvertType(VE->getType());
3371 
3372   // If EmitVAArg fails, emit an error.
3373   if (!ArgPtr.isValid()) {
3374     CGF.ErrorUnsupported(VE, "va_arg expression");
3375     return llvm::UndefValue::get(ArgTy);
3376   }
3377 
3378   // FIXME Volatility.
3379   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3380 
3381   // If EmitVAArg promoted the type, we must truncate it.
3382   if (ArgTy != Val->getType()) {
3383     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3384       Val = Builder.CreateIntToPtr(Val, ArgTy);
3385     else
3386       Val = Builder.CreateTrunc(Val, ArgTy);
3387   }
3388 
3389   return Val;
3390 }
3391 
3392 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3393   return CGF.EmitBlockLiteral(block);
3394 }
3395 
3396 // Convert a vec3 to vec4, or vice versa.
3397 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
3398                                  Value *Src, unsigned NumElementsDst) {
3399   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3400   SmallVector<llvm::Constant*, 4> Args;
3401   Args.push_back(Builder.getInt32(0));
3402   Args.push_back(Builder.getInt32(1));
3403   Args.push_back(Builder.getInt32(2));
3404   if (NumElementsDst == 4)
3405     Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3406   llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3407   return Builder.CreateShuffleVector(Src, UnV, Mask);
3408 }
3409 
3410 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
3411 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
3412 // but could be scalar or vectors of different lengths, and either can be
3413 // pointer.
3414 // There are 4 cases:
3415 // 1. non-pointer -> non-pointer  : needs 1 bitcast
3416 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
3417 // 3. pointer -> non-pointer
3418 //   a) pointer -> intptr_t       : needs 1 ptrtoint
3419 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
3420 // 4. non-pointer -> pointer
3421 //   a) intptr_t -> pointer       : needs 1 inttoptr
3422 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
3423 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
3424 // allow casting directly between pointer types and non-integer non-pointer
3425 // types.
3426 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
3427                                            const llvm::DataLayout &DL,
3428                                            Value *Src, llvm::Type *DstTy,
3429                                            StringRef Name = "") {
3430   auto SrcTy = Src->getType();
3431 
3432   // Case 1.
3433   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
3434     return Builder.CreateBitCast(Src, DstTy, Name);
3435 
3436   // Case 2.
3437   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
3438     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
3439 
3440   // Case 3.
3441   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
3442     // Case 3b.
3443     if (!DstTy->isIntegerTy())
3444       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
3445     // Cases 3a and 3b.
3446     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
3447   }
3448 
3449   // Case 4b.
3450   if (!SrcTy->isIntegerTy())
3451     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
3452   // Cases 4a and 4b.
3453   return Builder.CreateIntToPtr(Src, DstTy, Name);
3454 }
3455 
3456 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3457   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3458   llvm::Type *DstTy = ConvertType(E->getType());
3459 
3460   llvm::Type *SrcTy = Src->getType();
3461   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
3462     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
3463   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
3464     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
3465 
3466   // Going from vec3 to non-vec3 is a special case and requires a shuffle
3467   // vector to get a vec4, then a bitcast if the target type is different.
3468   if (NumElementsSrc == 3 && NumElementsDst != 3) {
3469     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
3470     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3471                                        DstTy);
3472     Src->setName("astype");
3473     return Src;
3474   }
3475 
3476   // Going from non-vec3 to vec3 is a special case and requires a bitcast
3477   // to vec4 if the original type is not vec4, then a shuffle vector to
3478   // get a vec3.
3479   if (NumElementsSrc != 3 && NumElementsDst == 3) {
3480     auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
3481     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3482                                        Vec4Ty);
3483     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
3484     Src->setName("astype");
3485     return Src;
3486   }
3487 
3488   return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
3489                                             Src, DstTy, "astype");
3490 }
3491 
3492 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3493   return CGF.EmitAtomicExpr(E).getScalarVal();
3494 }
3495 
3496 //===----------------------------------------------------------------------===//
3497 //                         Entry Point into this File
3498 //===----------------------------------------------------------------------===//
3499 
3500 /// Emit the computation of the specified expression of scalar type, ignoring
3501 /// the result.
3502 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3503   assert(E && hasScalarEvaluationKind(E->getType()) &&
3504          "Invalid scalar expression to emit");
3505 
3506   return ScalarExprEmitter(*this, IgnoreResultAssign)
3507       .Visit(const_cast<Expr *>(E));
3508 }
3509 
3510 /// Emit a conversion from the specified type to the specified destination type,
3511 /// both of which are LLVM scalar types.
3512 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3513                                              QualType DstTy,
3514                                              SourceLocation Loc) {
3515   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3516          "Invalid scalar expression to emit");
3517   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
3518 }
3519 
3520 /// Emit a conversion from the specified complex type to the specified
3521 /// destination type, where the destination type is an LLVM scalar type.
3522 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3523                                                       QualType SrcTy,
3524                                                       QualType DstTy,
3525                                                       SourceLocation Loc) {
3526   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3527          "Invalid complex -> scalar conversion");
3528   return ScalarExprEmitter(*this)
3529       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
3530 }
3531 
3532 
3533 llvm::Value *CodeGenFunction::
3534 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3535                         bool isInc, bool isPre) {
3536   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3537 }
3538 
3539 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3540   // object->isa or (*object).isa
3541   // Generate code as for: *(Class*)object
3542 
3543   Expr *BaseExpr = E->getBase();
3544   Address Addr = Address::invalid();
3545   if (BaseExpr->isRValue()) {
3546     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
3547   } else {
3548     Addr = EmitLValue(BaseExpr).getAddress();
3549   }
3550 
3551   // Cast the address to Class*.
3552   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
3553   return MakeAddrLValue(Addr, E->getType());
3554 }
3555 
3556 
3557 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3558                                             const CompoundAssignOperator *E) {
3559   ScalarExprEmitter Scalar(*this);
3560   Value *Result = nullptr;
3561   switch (E->getOpcode()) {
3562 #define COMPOUND_OP(Op)                                                       \
3563     case BO_##Op##Assign:                                                     \
3564       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3565                                              Result)
3566   COMPOUND_OP(Mul);
3567   COMPOUND_OP(Div);
3568   COMPOUND_OP(Rem);
3569   COMPOUND_OP(Add);
3570   COMPOUND_OP(Sub);
3571   COMPOUND_OP(Shl);
3572   COMPOUND_OP(Shr);
3573   COMPOUND_OP(And);
3574   COMPOUND_OP(Xor);
3575   COMPOUND_OP(Or);
3576 #undef COMPOUND_OP
3577 
3578   case BO_PtrMemD:
3579   case BO_PtrMemI:
3580   case BO_Mul:
3581   case BO_Div:
3582   case BO_Rem:
3583   case BO_Add:
3584   case BO_Sub:
3585   case BO_Shl:
3586   case BO_Shr:
3587   case BO_LT:
3588   case BO_GT:
3589   case BO_LE:
3590   case BO_GE:
3591   case BO_EQ:
3592   case BO_NE:
3593   case BO_And:
3594   case BO_Xor:
3595   case BO_Or:
3596   case BO_LAnd:
3597   case BO_LOr:
3598   case BO_Assign:
3599   case BO_Comma:
3600     llvm_unreachable("Not valid compound assignment operators");
3601   }
3602 
3603   llvm_unreachable("Unhandled compound assignment operator");
3604 }
3605