1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclObjC.h" 19 #include "clang/AST/RecordLayout.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "llvm/Constants.h" 23 #include "llvm/Function.h" 24 #include "llvm/GlobalVariable.h" 25 #include "llvm/Intrinsics.h" 26 #include "llvm/Module.h" 27 #include "llvm/Support/CFG.h" 28 #include "llvm/Target/TargetData.h" 29 #include <cstdarg> 30 31 using namespace clang; 32 using namespace CodeGen; 33 using llvm::Value; 34 35 //===----------------------------------------------------------------------===// 36 // Scalar Expression Emitter 37 //===----------------------------------------------------------------------===// 38 39 struct BinOpInfo { 40 Value *LHS; 41 Value *RHS; 42 QualType Ty; // Computation Type. 43 const BinaryOperator *E; 44 }; 45 46 namespace { 47 class ScalarExprEmitter 48 : public StmtVisitor<ScalarExprEmitter, Value*> { 49 CodeGenFunction &CGF; 50 CGBuilderTy &Builder; 51 bool IgnoreResultAssign; 52 llvm::LLVMContext &VMContext; 53 public: 54 55 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 56 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 57 VMContext(cgf.getLLVMContext()) { 58 } 59 60 //===--------------------------------------------------------------------===// 61 // Utilities 62 //===--------------------------------------------------------------------===// 63 64 bool TestAndClearIgnoreResultAssign() { 65 bool I = IgnoreResultAssign; 66 IgnoreResultAssign = false; 67 return I; 68 } 69 70 const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 71 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 72 LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); } 73 74 Value *EmitLoadOfLValue(LValue LV, QualType T) { 75 return CGF.EmitLoadOfLValue(LV, T).getScalarVal(); 76 } 77 78 /// EmitLoadOfLValue - Given an expression with complex type that represents a 79 /// value l-value, this method emits the address of the l-value, then loads 80 /// and returns the result. 81 Value *EmitLoadOfLValue(const Expr *E) { 82 return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType()); 83 } 84 85 /// EmitConversionToBool - Convert the specified expression value to a 86 /// boolean (i1) truth value. This is equivalent to "Val != 0". 87 Value *EmitConversionToBool(Value *Src, QualType DstTy); 88 89 /// EmitScalarConversion - Emit a conversion from the specified type to the 90 /// specified destination type, both of which are LLVM scalar types. 91 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy); 92 93 /// EmitComplexToScalarConversion - Emit a conversion from the specified 94 /// complex type to the specified destination type, where the destination type 95 /// is an LLVM scalar type. 96 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 97 QualType SrcTy, QualType DstTy); 98 99 //===--------------------------------------------------------------------===// 100 // Visitor Methods 101 //===--------------------------------------------------------------------===// 102 103 Value *VisitStmt(Stmt *S) { 104 S->dump(CGF.getContext().getSourceManager()); 105 assert(0 && "Stmt can't have complex result type!"); 106 return 0; 107 } 108 Value *VisitExpr(Expr *S); 109 110 Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); } 111 112 // Leaves. 113 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 114 return llvm::ConstantInt::get(VMContext, E->getValue()); 115 } 116 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 117 return llvm::ConstantFP::get(VMContext, E->getValue()); 118 } 119 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 120 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 121 } 122 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 123 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 124 } 125 Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) { 126 return llvm::Constant::getNullValue(ConvertType(E->getType())); 127 } 128 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 129 return llvm::Constant::getNullValue(ConvertType(E->getType())); 130 } 131 Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) { 132 return llvm::ConstantInt::get(ConvertType(E->getType()), 133 CGF.getContext().typesAreCompatible( 134 E->getArgType1(), E->getArgType2())); 135 } 136 Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E); 137 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 138 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 139 return Builder.CreateBitCast(V, ConvertType(E->getType())); 140 } 141 142 // l-values. 143 Value *VisitDeclRefExpr(DeclRefExpr *E) { 144 Expr::EvalResult Result; 145 if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) { 146 assert(!Result.HasSideEffects && "Constant declref with side-effect?!"); 147 return llvm::ConstantInt::get(VMContext, Result.Val.getInt()); 148 } 149 return EmitLoadOfLValue(E); 150 } 151 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 152 return CGF.EmitObjCSelectorExpr(E); 153 } 154 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 155 return CGF.EmitObjCProtocolExpr(E); 156 } 157 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 158 return EmitLoadOfLValue(E); 159 } 160 Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 161 return EmitLoadOfLValue(E); 162 } 163 Value *VisitObjCImplicitSetterGetterRefExpr( 164 ObjCImplicitSetterGetterRefExpr *E) { 165 return EmitLoadOfLValue(E); 166 } 167 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 168 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 169 } 170 171 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 172 LValue LV = CGF.EmitObjCIsaExpr(E); 173 Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal(); 174 return V; 175 } 176 177 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 178 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 179 Value *VisitMemberExpr(MemberExpr *E); 180 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 181 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 182 return EmitLoadOfLValue(E); 183 } 184 Value *VisitStringLiteral(Expr *E) { return EmitLValue(E).getAddress(); } 185 Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 186 return EmitLValue(E).getAddress(); 187 } 188 189 Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); } 190 191 Value *VisitInitListExpr(InitListExpr *E); 192 193 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 194 return llvm::Constant::getNullValue(ConvertType(E->getType())); 195 } 196 Value *VisitCastExpr(CastExpr *E) { 197 // Make sure to evaluate VLA bounds now so that we have them for later. 198 if (E->getType()->isVariablyModifiedType()) 199 CGF.EmitVLASize(E->getType()); 200 201 return EmitCastExpr(E); 202 } 203 Value *EmitCastExpr(CastExpr *E); 204 205 Value *VisitCallExpr(const CallExpr *E) { 206 if (E->getCallReturnType()->isReferenceType()) 207 return EmitLoadOfLValue(E); 208 209 return CGF.EmitCallExpr(E).getScalarVal(); 210 } 211 212 Value *VisitStmtExpr(const StmtExpr *E); 213 214 Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E); 215 216 // Unary Operators. 217 Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre); 218 Value *VisitUnaryPostDec(const UnaryOperator *E) { 219 return VisitPrePostIncDec(E, false, false); 220 } 221 Value *VisitUnaryPostInc(const UnaryOperator *E) { 222 return VisitPrePostIncDec(E, true, false); 223 } 224 Value *VisitUnaryPreDec(const UnaryOperator *E) { 225 return VisitPrePostIncDec(E, false, true); 226 } 227 Value *VisitUnaryPreInc(const UnaryOperator *E) { 228 return VisitPrePostIncDec(E, true, true); 229 } 230 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 231 return EmitLValue(E->getSubExpr()).getAddress(); 232 } 233 Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 234 Value *VisitUnaryPlus(const UnaryOperator *E) { 235 // This differs from gcc, though, most likely due to a bug in gcc. 236 TestAndClearIgnoreResultAssign(); 237 return Visit(E->getSubExpr()); 238 } 239 Value *VisitUnaryMinus (const UnaryOperator *E); 240 Value *VisitUnaryNot (const UnaryOperator *E); 241 Value *VisitUnaryLNot (const UnaryOperator *E); 242 Value *VisitUnaryReal (const UnaryOperator *E); 243 Value *VisitUnaryImag (const UnaryOperator *E); 244 Value *VisitUnaryExtension(const UnaryOperator *E) { 245 return Visit(E->getSubExpr()); 246 } 247 Value *VisitUnaryOffsetOf(const UnaryOperator *E); 248 249 // C++ 250 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 251 return Visit(DAE->getExpr()); 252 } 253 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 254 return CGF.LoadCXXThis(); 255 } 256 257 Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) { 258 return CGF.EmitCXXExprWithTemporaries(E).getScalarVal(); 259 } 260 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 261 return CGF.EmitCXXNewExpr(E); 262 } 263 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 264 CGF.EmitCXXDeleteExpr(E); 265 return 0; 266 } 267 Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) { 268 return llvm::ConstantInt::get(Builder.getInt1Ty(), 269 E->EvaluateTrait(CGF.getContext())); 270 } 271 272 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 273 // C++ [expr.pseudo]p1: 274 // The result shall only be used as the operand for the function call 275 // operator (), and the result of such a call has type void. The only 276 // effect is the evaluation of the postfix-expression before the dot or 277 // arrow. 278 CGF.EmitScalarExpr(E->getBase()); 279 return 0; 280 } 281 282 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 283 return llvm::Constant::getNullValue(ConvertType(E->getType())); 284 } 285 286 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 287 CGF.EmitCXXThrowExpr(E); 288 return 0; 289 } 290 291 // Binary Operators. 292 Value *EmitMul(const BinOpInfo &Ops) { 293 if (CGF.getContext().getLangOptions().OverflowChecking 294 && Ops.Ty->isSignedIntegerType()) 295 return EmitOverflowCheckedBinOp(Ops); 296 if (Ops.LHS->getType()->isFPOrFPVector()) 297 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 298 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 299 } 300 /// Create a binary op that checks for overflow. 301 /// Currently only supports +, - and *. 302 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 303 Value *EmitDiv(const BinOpInfo &Ops); 304 Value *EmitRem(const BinOpInfo &Ops); 305 Value *EmitAdd(const BinOpInfo &Ops); 306 Value *EmitSub(const BinOpInfo &Ops); 307 Value *EmitShl(const BinOpInfo &Ops); 308 Value *EmitShr(const BinOpInfo &Ops); 309 Value *EmitAnd(const BinOpInfo &Ops) { 310 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 311 } 312 Value *EmitXor(const BinOpInfo &Ops) { 313 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 314 } 315 Value *EmitOr (const BinOpInfo &Ops) { 316 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 317 } 318 319 BinOpInfo EmitBinOps(const BinaryOperator *E); 320 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 321 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 322 323 // Binary operators and binary compound assignment operators. 324 #define HANDLEBINOP(OP) \ 325 Value *VisitBin ## OP(const BinaryOperator *E) { \ 326 return Emit ## OP(EmitBinOps(E)); \ 327 } \ 328 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 329 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 330 } 331 HANDLEBINOP(Mul) 332 HANDLEBINOP(Div) 333 HANDLEBINOP(Rem) 334 HANDLEBINOP(Add) 335 HANDLEBINOP(Sub) 336 HANDLEBINOP(Shl) 337 HANDLEBINOP(Shr) 338 HANDLEBINOP(And) 339 HANDLEBINOP(Xor) 340 HANDLEBINOP(Or) 341 #undef HANDLEBINOP 342 343 // Comparisons. 344 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, 345 unsigned SICmpOpc, unsigned FCmpOpc); 346 #define VISITCOMP(CODE, UI, SI, FP) \ 347 Value *VisitBin##CODE(const BinaryOperator *E) { \ 348 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 349 llvm::FCmpInst::FP); } 350 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 351 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 352 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 353 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 354 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 355 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 356 #undef VISITCOMP 357 358 Value *VisitBinAssign (const BinaryOperator *E); 359 360 Value *VisitBinLAnd (const BinaryOperator *E); 361 Value *VisitBinLOr (const BinaryOperator *E); 362 Value *VisitBinComma (const BinaryOperator *E); 363 364 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 365 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 366 367 // Other Operators. 368 Value *VisitBlockExpr(const BlockExpr *BE); 369 Value *VisitConditionalOperator(const ConditionalOperator *CO); 370 Value *VisitChooseExpr(ChooseExpr *CE); 371 Value *VisitVAArgExpr(VAArgExpr *VE); 372 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 373 return CGF.EmitObjCStringLiteral(E); 374 } 375 }; 376 } // end anonymous namespace. 377 378 //===----------------------------------------------------------------------===// 379 // Utilities 380 //===----------------------------------------------------------------------===// 381 382 /// EmitConversionToBool - Convert the specified expression value to a 383 /// boolean (i1) truth value. This is equivalent to "Val != 0". 384 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 385 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 386 387 if (SrcType->isRealFloatingType()) { 388 // Compare against 0.0 for fp scalars. 389 llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType()); 390 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 391 } 392 393 if (SrcType->isMemberPointerType()) { 394 // FIXME: This is ABI specific. 395 396 // Compare against -1. 397 llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(Src->getType()); 398 return Builder.CreateICmpNE(Src, NegativeOne, "tobool"); 399 } 400 401 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 402 "Unknown scalar type to convert"); 403 404 // Because of the type rules of C, we often end up computing a logical value, 405 // then zero extending it to int, then wanting it as a logical value again. 406 // Optimize this common case. 407 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) { 408 if (ZI->getOperand(0)->getType() == 409 llvm::Type::getInt1Ty(CGF.getLLVMContext())) { 410 Value *Result = ZI->getOperand(0); 411 // If there aren't any more uses, zap the instruction to save space. 412 // Note that there can be more uses, for example if this 413 // is the result of an assignment. 414 if (ZI->use_empty()) 415 ZI->eraseFromParent(); 416 return Result; 417 } 418 } 419 420 // Compare against an integer or pointer null. 421 llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType()); 422 return Builder.CreateICmpNE(Src, Zero, "tobool"); 423 } 424 425 /// EmitScalarConversion - Emit a conversion from the specified type to the 426 /// specified destination type, both of which are LLVM scalar types. 427 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 428 QualType DstType) { 429 SrcType = CGF.getContext().getCanonicalType(SrcType); 430 DstType = CGF.getContext().getCanonicalType(DstType); 431 if (SrcType == DstType) return Src; 432 433 if (DstType->isVoidType()) return 0; 434 435 llvm::LLVMContext &VMContext = CGF.getLLVMContext(); 436 437 // Handle conversions to bool first, they are special: comparisons against 0. 438 if (DstType->isBooleanType()) 439 return EmitConversionToBool(Src, SrcType); 440 441 const llvm::Type *DstTy = ConvertType(DstType); 442 443 // Ignore conversions like int -> uint. 444 if (Src->getType() == DstTy) 445 return Src; 446 447 // Handle pointer conversions next: pointers can only be converted to/from 448 // other pointers and integers. Check for pointer types in terms of LLVM, as 449 // some native types (like Obj-C id) may map to a pointer type. 450 if (isa<llvm::PointerType>(DstTy)) { 451 // The source value may be an integer, or a pointer. 452 if (isa<llvm::PointerType>(Src->getType())) 453 return Builder.CreateBitCast(Src, DstTy, "conv"); 454 455 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 456 // First, convert to the correct width so that we control the kind of 457 // extension. 458 const llvm::Type *MiddleTy = 459 llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth); 460 bool InputSigned = SrcType->isSignedIntegerType(); 461 llvm::Value* IntResult = 462 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 463 // Then, cast to pointer. 464 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 465 } 466 467 if (isa<llvm::PointerType>(Src->getType())) { 468 // Must be an ptr to int cast. 469 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 470 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 471 } 472 473 // A scalar can be splatted to an extended vector of the same element type 474 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 475 // Cast the scalar to element type 476 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType(); 477 llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy); 478 479 // Insert the element in element zero of an undef vector 480 llvm::Value *UnV = llvm::UndefValue::get(DstTy); 481 llvm::Value *Idx = 482 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0); 483 UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp"); 484 485 // Splat the element across to all elements 486 llvm::SmallVector<llvm::Constant*, 16> Args; 487 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 488 for (unsigned i = 0; i < NumElements; i++) 489 Args.push_back(llvm::ConstantInt::get( 490 llvm::Type::getInt32Ty(VMContext), 0)); 491 492 llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements); 493 llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat"); 494 return Yay; 495 } 496 497 // Allow bitcast from vector to integer/fp of the same size. 498 if (isa<llvm::VectorType>(Src->getType()) || 499 isa<llvm::VectorType>(DstTy)) 500 return Builder.CreateBitCast(Src, DstTy, "conv"); 501 502 // Finally, we have the arithmetic types: real int/float. 503 if (isa<llvm::IntegerType>(Src->getType())) { 504 bool InputSigned = SrcType->isSignedIntegerType(); 505 if (isa<llvm::IntegerType>(DstTy)) 506 return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 507 else if (InputSigned) 508 return Builder.CreateSIToFP(Src, DstTy, "conv"); 509 else 510 return Builder.CreateUIToFP(Src, DstTy, "conv"); 511 } 512 513 assert(Src->getType()->isFloatingPoint() && "Unknown real conversion"); 514 if (isa<llvm::IntegerType>(DstTy)) { 515 if (DstType->isSignedIntegerType()) 516 return Builder.CreateFPToSI(Src, DstTy, "conv"); 517 else 518 return Builder.CreateFPToUI(Src, DstTy, "conv"); 519 } 520 521 assert(DstTy->isFloatingPoint() && "Unknown real conversion"); 522 if (DstTy->getTypeID() < Src->getType()->getTypeID()) 523 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 524 else 525 return Builder.CreateFPExt(Src, DstTy, "conv"); 526 } 527 528 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 529 /// type to the specified destination type, where the destination type is an 530 /// LLVM scalar type. 531 Value *ScalarExprEmitter:: 532 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 533 QualType SrcTy, QualType DstTy) { 534 // Get the source element type. 535 SrcTy = SrcTy->getAs<ComplexType>()->getElementType(); 536 537 // Handle conversions to bool first, they are special: comparisons against 0. 538 if (DstTy->isBooleanType()) { 539 // Complex != 0 -> (Real != 0) | (Imag != 0) 540 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy); 541 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy); 542 return Builder.CreateOr(Src.first, Src.second, "tobool"); 543 } 544 545 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 546 // the imaginary part of the complex value is discarded and the value of the 547 // real part is converted according to the conversion rules for the 548 // corresponding real type. 549 return EmitScalarConversion(Src.first, SrcTy, DstTy); 550 } 551 552 553 //===----------------------------------------------------------------------===// 554 // Visitor Methods 555 //===----------------------------------------------------------------------===// 556 557 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 558 CGF.ErrorUnsupported(E, "scalar expression"); 559 if (E->getType()->isVoidType()) 560 return 0; 561 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 562 } 563 564 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 565 llvm::SmallVector<llvm::Constant*, 32> indices; 566 for (unsigned i = 2; i < E->getNumSubExprs(); i++) { 567 indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i)))); 568 } 569 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 570 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 571 Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size()); 572 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 573 } 574 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 575 Expr::EvalResult Result; 576 if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) { 577 if (E->isArrow()) 578 CGF.EmitScalarExpr(E->getBase()); 579 else 580 EmitLValue(E->getBase()); 581 return llvm::ConstantInt::get(VMContext, Result.Val.getInt()); 582 } 583 return EmitLoadOfLValue(E); 584 } 585 586 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 587 TestAndClearIgnoreResultAssign(); 588 589 // Emit subscript expressions in rvalue context's. For most cases, this just 590 // loads the lvalue formed by the subscript expr. However, we have to be 591 // careful, because the base of a vector subscript is occasionally an rvalue, 592 // so we can't get it as an lvalue. 593 if (!E->getBase()->getType()->isVectorType()) 594 return EmitLoadOfLValue(E); 595 596 // Handle the vector case. The base must be a vector, the index must be an 597 // integer value. 598 Value *Base = Visit(E->getBase()); 599 Value *Idx = Visit(E->getIdx()); 600 bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType(); 601 Idx = Builder.CreateIntCast(Idx, 602 llvm::Type::getInt32Ty(CGF.getLLVMContext()), 603 IdxSigned, 604 "vecidxcast"); 605 return Builder.CreateExtractElement(Base, Idx, "vecext"); 606 } 607 608 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 609 unsigned Off, const llvm::Type *I32Ty) { 610 int MV = SVI->getMaskValue(Idx); 611 if (MV == -1) 612 return llvm::UndefValue::get(I32Ty); 613 return llvm::ConstantInt::get(I32Ty, Off+MV); 614 } 615 616 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 617 bool Ignore = TestAndClearIgnoreResultAssign(); 618 (void)Ignore; 619 assert (Ignore == false && "init list ignored"); 620 unsigned NumInitElements = E->getNumInits(); 621 622 if (E->hadArrayRangeDesignator()) 623 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 624 625 const llvm::VectorType *VType = 626 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 627 628 // We have a scalar in braces. Just use the first element. 629 if (!VType) 630 return Visit(E->getInit(0)); 631 632 unsigned ResElts = VType->getNumElements(); 633 const llvm::Type *I32Ty = llvm::Type::getInt32Ty(CGF.getLLVMContext()); 634 635 // Loop over initializers collecting the Value for each, and remembering 636 // whether the source was swizzle (ExtVectorElementExpr). This will allow 637 // us to fold the shuffle for the swizzle into the shuffle for the vector 638 // initializer, since LLVM optimizers generally do not want to touch 639 // shuffles. 640 unsigned CurIdx = 0; 641 bool VIsUndefShuffle = false; 642 llvm::Value *V = llvm::UndefValue::get(VType); 643 for (unsigned i = 0; i != NumInitElements; ++i) { 644 Expr *IE = E->getInit(i); 645 Value *Init = Visit(IE); 646 llvm::SmallVector<llvm::Constant*, 16> Args; 647 648 const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 649 650 // Handle scalar elements. If the scalar initializer is actually one 651 // element of a different vector of the same width, use shuffle instead of 652 // extract+insert. 653 if (!VVT) { 654 if (isa<ExtVectorElementExpr>(IE)) { 655 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 656 657 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 658 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 659 Value *LHS = 0, *RHS = 0; 660 if (CurIdx == 0) { 661 // insert into undef -> shuffle (src, undef) 662 Args.push_back(C); 663 for (unsigned j = 1; j != ResElts; ++j) 664 Args.push_back(llvm::UndefValue::get(I32Ty)); 665 666 LHS = EI->getVectorOperand(); 667 RHS = V; 668 VIsUndefShuffle = true; 669 } else if (VIsUndefShuffle) { 670 // insert into undefshuffle && size match -> shuffle (v, src) 671 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 672 for (unsigned j = 0; j != CurIdx; ++j) 673 Args.push_back(getMaskElt(SVV, j, 0, I32Ty)); 674 Args.push_back(llvm::ConstantInt::get(I32Ty, 675 ResElts + C->getZExtValue())); 676 for (unsigned j = CurIdx + 1; j != ResElts; ++j) 677 Args.push_back(llvm::UndefValue::get(I32Ty)); 678 679 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 680 RHS = EI->getVectorOperand(); 681 VIsUndefShuffle = false; 682 } 683 if (!Args.empty()) { 684 llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts); 685 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 686 ++CurIdx; 687 continue; 688 } 689 } 690 } 691 Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx); 692 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 693 VIsUndefShuffle = false; 694 ++CurIdx; 695 continue; 696 } 697 698 unsigned InitElts = VVT->getNumElements(); 699 700 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 701 // input is the same width as the vector being constructed, generate an 702 // optimized shuffle of the swizzle input into the result. 703 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 704 if (isa<ExtVectorElementExpr>(IE)) { 705 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 706 Value *SVOp = SVI->getOperand(0); 707 const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 708 709 if (OpTy->getNumElements() == ResElts) { 710 for (unsigned j = 0; j != CurIdx; ++j) { 711 // If the current vector initializer is a shuffle with undef, merge 712 // this shuffle directly into it. 713 if (VIsUndefShuffle) { 714 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 715 I32Ty)); 716 } else { 717 Args.push_back(llvm::ConstantInt::get(I32Ty, j)); 718 } 719 } 720 for (unsigned j = 0, je = InitElts; j != je; ++j) 721 Args.push_back(getMaskElt(SVI, j, Offset, I32Ty)); 722 for (unsigned j = CurIdx + InitElts; j != ResElts; ++j) 723 Args.push_back(llvm::UndefValue::get(I32Ty)); 724 725 if (VIsUndefShuffle) 726 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 727 728 Init = SVOp; 729 } 730 } 731 732 // Extend init to result vector length, and then shuffle its contribution 733 // to the vector initializer into V. 734 if (Args.empty()) { 735 for (unsigned j = 0; j != InitElts; ++j) 736 Args.push_back(llvm::ConstantInt::get(I32Ty, j)); 737 for (unsigned j = InitElts; j != ResElts; ++j) 738 Args.push_back(llvm::UndefValue::get(I32Ty)); 739 llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts); 740 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 741 Mask, "vext"); 742 743 Args.clear(); 744 for (unsigned j = 0; j != CurIdx; ++j) 745 Args.push_back(llvm::ConstantInt::get(I32Ty, j)); 746 for (unsigned j = 0; j != InitElts; ++j) 747 Args.push_back(llvm::ConstantInt::get(I32Ty, j+Offset)); 748 for (unsigned j = CurIdx + InitElts; j != ResElts; ++j) 749 Args.push_back(llvm::UndefValue::get(I32Ty)); 750 } 751 752 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 753 // merging subsequent shuffles into this one. 754 if (CurIdx == 0) 755 std::swap(V, Init); 756 llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts); 757 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 758 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 759 CurIdx += InitElts; 760 } 761 762 // FIXME: evaluate codegen vs. shuffling against constant null vector. 763 // Emit remaining default initializers. 764 const llvm::Type *EltTy = VType->getElementType(); 765 766 // Emit remaining default initializers 767 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 768 Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx); 769 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 770 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 771 } 772 return V; 773 } 774 775 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) { 776 const Expr *E = CE->getSubExpr(); 777 778 if (isa<CXXThisExpr>(E)) { 779 // We always assume that 'this' is never null. 780 return false; 781 } 782 783 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 784 // And that lvalue casts are never null. 785 if (ICE->isLvalueCast()) 786 return false; 787 } 788 789 return true; 790 } 791 792 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 793 // have to handle a more broad range of conversions than explicit casts, as they 794 // handle things like function to ptr-to-function decay etc. 795 Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) { 796 Expr *E = CE->getSubExpr(); 797 QualType DestTy = CE->getType(); 798 CastExpr::CastKind Kind = CE->getCastKind(); 799 800 if (!DestTy->isVoidType()) 801 TestAndClearIgnoreResultAssign(); 802 803 // Since almost all cast kinds apply to scalars, this switch doesn't have 804 // a default case, so the compiler will warn on a missing case. The cases 805 // are in the same order as in the CastKind enum. 806 switch (Kind) { 807 case CastExpr::CK_Unknown: 808 // FIXME: All casts should have a known kind! 809 //assert(0 && "Unknown cast kind!"); 810 break; 811 812 case CastExpr::CK_AnyPointerToObjCPointerCast: 813 case CastExpr::CK_AnyPointerToBlockPointerCast: 814 case CastExpr::CK_BitCast: { 815 Value *Src = Visit(const_cast<Expr*>(E)); 816 return Builder.CreateBitCast(Src, ConvertType(DestTy)); 817 } 818 case CastExpr::CK_NoOp: 819 case CastExpr::CK_UserDefinedConversion: 820 return Visit(const_cast<Expr*>(E)); 821 822 case CastExpr::CK_BaseToDerived: { 823 const CXXRecordDecl *BaseClassDecl = 824 E->getType()->getCXXRecordDeclForPointerType(); 825 const CXXRecordDecl *DerivedClassDecl = 826 DestTy->getCXXRecordDeclForPointerType(); 827 828 Value *Src = Visit(const_cast<Expr*>(E)); 829 830 bool NullCheckValue = ShouldNullCheckClassCastValue(CE); 831 return CGF.GetAddressOfDerivedClass(Src, BaseClassDecl, DerivedClassDecl, 832 NullCheckValue); 833 } 834 case CastExpr::CK_DerivedToBase: { 835 const RecordType *DerivedClassTy = 836 E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>(); 837 CXXRecordDecl *DerivedClassDecl = 838 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 839 840 const RecordType *BaseClassTy = 841 DestTy->getAs<PointerType>()->getPointeeType()->getAs<RecordType>(); 842 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseClassTy->getDecl()); 843 844 Value *Src = Visit(const_cast<Expr*>(E)); 845 846 bool NullCheckValue = ShouldNullCheckClassCastValue(CE); 847 return CGF.GetAddressOfBaseClass(Src, DerivedClassDecl, BaseClassDecl, 848 NullCheckValue); 849 } 850 case CastExpr::CK_Dynamic: { 851 Value *V = Visit(const_cast<Expr*>(E)); 852 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 853 return CGF.EmitDynamicCast(V, DCE); 854 } 855 case CastExpr::CK_ToUnion: 856 assert(0 && "Should be unreachable!"); 857 break; 858 859 case CastExpr::CK_ArrayToPointerDecay: { 860 assert(E->getType()->isArrayType() && 861 "Array to pointer decay must have array source type!"); 862 863 Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays. 864 865 // Note that VLA pointers are always decayed, so we don't need to do 866 // anything here. 867 if (!E->getType()->isVariableArrayType()) { 868 assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer"); 869 assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType()) 870 ->getElementType()) && 871 "Expected pointer to array"); 872 V = Builder.CreateStructGEP(V, 0, "arraydecay"); 873 } 874 875 return V; 876 } 877 case CastExpr::CK_FunctionToPointerDecay: 878 return EmitLValue(E).getAddress(); 879 880 case CastExpr::CK_NullToMemberPointer: 881 return CGF.CGM.EmitNullConstant(DestTy); 882 883 case CastExpr::CK_BaseToDerivedMemberPointer: 884 case CastExpr::CK_DerivedToBaseMemberPointer: { 885 Value *Src = Visit(E); 886 887 // See if we need to adjust the pointer. 888 const CXXRecordDecl *BaseDecl = 889 cast<CXXRecordDecl>(E->getType()->getAs<MemberPointerType>()-> 890 getClass()->getAs<RecordType>()->getDecl()); 891 const CXXRecordDecl *DerivedDecl = 892 cast<CXXRecordDecl>(CE->getType()->getAs<MemberPointerType>()-> 893 getClass()->getAs<RecordType>()->getDecl()); 894 if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer) 895 std::swap(DerivedDecl, BaseDecl); 896 897 llvm::Constant *Adj = CGF.CGM.GetCXXBaseClassOffset(DerivedDecl, BaseDecl); 898 if (Adj) { 899 if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer) 900 Src = Builder.CreateSub(Src, Adj, "adj"); 901 else 902 Src = Builder.CreateAdd(Src, Adj, "adj"); 903 } 904 return Src; 905 } 906 907 case CastExpr::CK_ConstructorConversion: 908 assert(0 && "Should be unreachable!"); 909 break; 910 911 case CastExpr::CK_IntegralToPointer: { 912 Value *Src = Visit(const_cast<Expr*>(E)); 913 914 // First, convert to the correct width so that we control the kind of 915 // extension. 916 const llvm::Type *MiddleTy = 917 llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth); 918 bool InputSigned = E->getType()->isSignedIntegerType(); 919 llvm::Value* IntResult = 920 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 921 922 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); 923 } 924 case CastExpr::CK_PointerToIntegral: { 925 Value *Src = Visit(const_cast<Expr*>(E)); 926 return Builder.CreatePtrToInt(Src, ConvertType(DestTy)); 927 } 928 case CastExpr::CK_ToVoid: { 929 CGF.EmitAnyExpr(E, 0, false, true); 930 return 0; 931 } 932 case CastExpr::CK_VectorSplat: { 933 const llvm::Type *DstTy = ConvertType(DestTy); 934 Value *Elt = Visit(const_cast<Expr*>(E)); 935 936 // Insert the element in element zero of an undef vector 937 llvm::Value *UnV = llvm::UndefValue::get(DstTy); 938 llvm::Value *Idx = 939 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0); 940 UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp"); 941 942 // Splat the element across to all elements 943 llvm::SmallVector<llvm::Constant*, 16> Args; 944 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 945 for (unsigned i = 0; i < NumElements; i++) 946 Args.push_back(llvm::ConstantInt::get( 947 llvm::Type::getInt32Ty(VMContext), 0)); 948 949 llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements); 950 llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat"); 951 return Yay; 952 } 953 case CastExpr::CK_IntegralCast: 954 case CastExpr::CK_IntegralToFloating: 955 case CastExpr::CK_FloatingToIntegral: 956 case CastExpr::CK_FloatingCast: 957 return EmitScalarConversion(Visit(E), E->getType(), DestTy); 958 959 case CastExpr::CK_MemberPointerToBoolean: 960 return CGF.EvaluateExprAsBool(E); 961 } 962 963 // Handle cases where the source is an non-complex type. 964 965 if (!CGF.hasAggregateLLVMType(E->getType())) { 966 Value *Src = Visit(const_cast<Expr*>(E)); 967 968 // Use EmitScalarConversion to perform the conversion. 969 return EmitScalarConversion(Src, E->getType(), DestTy); 970 } 971 972 if (E->getType()->isAnyComplexType()) { 973 // Handle cases where the source is a complex type. 974 bool IgnoreImag = true; 975 bool IgnoreImagAssign = true; 976 bool IgnoreReal = IgnoreResultAssign; 977 bool IgnoreRealAssign = IgnoreResultAssign; 978 if (DestTy->isBooleanType()) 979 IgnoreImagAssign = IgnoreImag = false; 980 else if (DestTy->isVoidType()) { 981 IgnoreReal = IgnoreImag = false; 982 IgnoreRealAssign = IgnoreImagAssign = true; 983 } 984 CodeGenFunction::ComplexPairTy V 985 = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign, 986 IgnoreImagAssign); 987 return EmitComplexToScalarConversion(V, E->getType(), DestTy); 988 } 989 990 // Okay, this is a cast from an aggregate. It must be a cast to void. Just 991 // evaluate the result and return. 992 CGF.EmitAggExpr(E, 0, false, true); 993 return 0; 994 } 995 996 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 997 return CGF.EmitCompoundStmt(*E->getSubStmt(), 998 !E->getType()->isVoidType()).getScalarVal(); 999 } 1000 1001 Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 1002 llvm::Value *V = CGF.GetAddrOfBlockDecl(E); 1003 if (E->getType().isObjCGCWeak()) 1004 return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V); 1005 return Builder.CreateLoad(V, "tmp"); 1006 } 1007 1008 //===----------------------------------------------------------------------===// 1009 // Unary Operators 1010 //===----------------------------------------------------------------------===// 1011 1012 Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E, 1013 bool isInc, bool isPre) { 1014 LValue LV = EmitLValue(E->getSubExpr()); 1015 QualType ValTy = E->getSubExpr()->getType(); 1016 Value *InVal = CGF.EmitLoadOfLValue(LV, ValTy).getScalarVal(); 1017 1018 llvm::LLVMContext &VMContext = CGF.getLLVMContext(); 1019 1020 int AmountVal = isInc ? 1 : -1; 1021 1022 if (ValTy->isPointerType() && 1023 ValTy->getAs<PointerType>()->isVariableArrayType()) { 1024 // The amount of the addition/subtraction needs to account for the VLA size 1025 CGF.ErrorUnsupported(E, "VLA pointer inc/dec"); 1026 } 1027 1028 Value *NextVal; 1029 if (const llvm::PointerType *PT = 1030 dyn_cast<llvm::PointerType>(InVal->getType())) { 1031 llvm::Constant *Inc = 1032 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), AmountVal); 1033 if (!isa<llvm::FunctionType>(PT->getElementType())) { 1034 QualType PTEE = ValTy->getPointeeType(); 1035 if (const ObjCInterfaceType *OIT = 1036 dyn_cast<ObjCInterfaceType>(PTEE)) { 1037 // Handle interface types, which are not represented with a concrete type. 1038 int size = CGF.getContext().getTypeSize(OIT) / 8; 1039 if (!isInc) 1040 size = -size; 1041 Inc = llvm::ConstantInt::get(Inc->getType(), size); 1042 const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext); 1043 InVal = Builder.CreateBitCast(InVal, i8Ty); 1044 NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr"); 1045 llvm::Value *lhs = LV.getAddress(); 1046 lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty)); 1047 LV = LValue::MakeAddr(lhs, CGF.MakeQualifiers(ValTy)); 1048 } else 1049 NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec"); 1050 } else { 1051 const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext); 1052 NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp"); 1053 NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec"); 1054 NextVal = Builder.CreateBitCast(NextVal, InVal->getType()); 1055 } 1056 } else if (InVal->getType() == llvm::Type::getInt1Ty(VMContext) && isInc) { 1057 // Bool++ is an interesting case, due to promotion rules, we get: 1058 // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 -> 1059 // Bool = ((int)Bool+1) != 0 1060 // An interesting aspect of this is that increment is always true. 1061 // Decrement does not have this property. 1062 NextVal = llvm::ConstantInt::getTrue(VMContext); 1063 } else if (isa<llvm::IntegerType>(InVal->getType())) { 1064 NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal); 1065 1066 // Signed integer overflow is undefined behavior. 1067 if (ValTy->isSignedIntegerType()) 1068 NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec"); 1069 else 1070 NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec"); 1071 } else { 1072 // Add the inc/dec to the real part. 1073 if (InVal->getType()->isFloatTy()) 1074 NextVal = 1075 llvm::ConstantFP::get(VMContext, 1076 llvm::APFloat(static_cast<float>(AmountVal))); 1077 else if (InVal->getType()->isDoubleTy()) 1078 NextVal = 1079 llvm::ConstantFP::get(VMContext, 1080 llvm::APFloat(static_cast<double>(AmountVal))); 1081 else { 1082 llvm::APFloat F(static_cast<float>(AmountVal)); 1083 bool ignored; 1084 F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero, 1085 &ignored); 1086 NextVal = llvm::ConstantFP::get(VMContext, F); 1087 } 1088 NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec"); 1089 } 1090 1091 // Store the updated result through the lvalue. 1092 if (LV.isBitfield()) 1093 CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy, 1094 &NextVal); 1095 else 1096 CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy); 1097 1098 // If this is a postinc, return the value read from memory, otherwise use the 1099 // updated value. 1100 return isPre ? NextVal : InVal; 1101 } 1102 1103 1104 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1105 TestAndClearIgnoreResultAssign(); 1106 Value *Op = Visit(E->getSubExpr()); 1107 if (Op->getType()->isFPOrFPVector()) 1108 return Builder.CreateFNeg(Op, "neg"); 1109 return Builder.CreateNeg(Op, "neg"); 1110 } 1111 1112 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1113 TestAndClearIgnoreResultAssign(); 1114 Value *Op = Visit(E->getSubExpr()); 1115 return Builder.CreateNot(Op, "neg"); 1116 } 1117 1118 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1119 // Compare operand to zero. 1120 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1121 1122 // Invert value. 1123 // TODO: Could dynamically modify easy computations here. For example, if 1124 // the operand is an icmp ne, turn into icmp eq. 1125 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1126 1127 // ZExt result to the expr type. 1128 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1129 } 1130 1131 /// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of 1132 /// argument of the sizeof expression as an integer. 1133 Value * 1134 ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) { 1135 QualType TypeToSize = E->getTypeOfArgument(); 1136 if (E->isSizeOf()) { 1137 if (const VariableArrayType *VAT = 1138 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 1139 if (E->isArgumentType()) { 1140 // sizeof(type) - make sure to emit the VLA size. 1141 CGF.EmitVLASize(TypeToSize); 1142 } else { 1143 // C99 6.5.3.4p2: If the argument is an expression of type 1144 // VLA, it is evaluated. 1145 CGF.EmitAnyExpr(E->getArgumentExpr()); 1146 } 1147 1148 return CGF.GetVLASize(VAT); 1149 } 1150 } 1151 1152 // If this isn't sizeof(vla), the result must be constant; use the constant 1153 // folding logic so we don't have to duplicate it here. 1154 Expr::EvalResult Result; 1155 E->Evaluate(Result, CGF.getContext()); 1156 return llvm::ConstantInt::get(VMContext, Result.Val.getInt()); 1157 } 1158 1159 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 1160 Expr *Op = E->getSubExpr(); 1161 if (Op->getType()->isAnyComplexType()) 1162 return CGF.EmitComplexExpr(Op, false, true, false, true).first; 1163 return Visit(Op); 1164 } 1165 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 1166 Expr *Op = E->getSubExpr(); 1167 if (Op->getType()->isAnyComplexType()) 1168 return CGF.EmitComplexExpr(Op, true, false, true, false).second; 1169 1170 // __imag on a scalar returns zero. Emit the subexpr to ensure side 1171 // effects are evaluated, but not the actual value. 1172 if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid) 1173 CGF.EmitLValue(Op); 1174 else 1175 CGF.EmitScalarExpr(Op, true); 1176 return llvm::Constant::getNullValue(ConvertType(E->getType())); 1177 } 1178 1179 Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E) { 1180 Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress(); 1181 const llvm::Type* ResultType = ConvertType(E->getType()); 1182 return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof"); 1183 } 1184 1185 //===----------------------------------------------------------------------===// 1186 // Binary Operators 1187 //===----------------------------------------------------------------------===// 1188 1189 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 1190 TestAndClearIgnoreResultAssign(); 1191 BinOpInfo Result; 1192 Result.LHS = Visit(E->getLHS()); 1193 Result.RHS = Visit(E->getRHS()); 1194 Result.Ty = E->getType(); 1195 Result.E = E; 1196 return Result; 1197 } 1198 1199 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 1200 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 1201 bool Ignore = TestAndClearIgnoreResultAssign(); 1202 QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType(); 1203 1204 BinOpInfo OpInfo; 1205 1206 if (E->getComputationResultType()->isAnyComplexType()) { 1207 // This needs to go through the complex expression emitter, but it's a tad 1208 // complicated to do that... I'm leaving it out for now. (Note that we do 1209 // actually need the imaginary part of the RHS for multiplication and 1210 // division.) 1211 CGF.ErrorUnsupported(E, "complex compound assignment"); 1212 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1213 } 1214 1215 // Emit the RHS first. __block variables need to have the rhs evaluated 1216 // first, plus this should improve codegen a little. 1217 OpInfo.RHS = Visit(E->getRHS()); 1218 OpInfo.Ty = E->getComputationResultType(); 1219 OpInfo.E = E; 1220 // Load/convert the LHS. 1221 LValue LHSLV = EmitCheckedLValue(E->getLHS()); 1222 OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy); 1223 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, 1224 E->getComputationLHSType()); 1225 1226 // Expand the binary operator. 1227 Value *Result = (this->*Func)(OpInfo); 1228 1229 // Convert the result back to the LHS type. 1230 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy); 1231 1232 // Store the result value into the LHS lvalue. Bit-fields are handled 1233 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 1234 // 'An assignment expression has the value of the left operand after the 1235 // assignment...'. 1236 if (LHSLV.isBitfield()) { 1237 if (!LHSLV.isVolatileQualified()) { 1238 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy, 1239 &Result); 1240 return Result; 1241 } else 1242 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy); 1243 } else 1244 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy); 1245 if (Ignore) 1246 return 0; 1247 return EmitLoadOfLValue(LHSLV, E->getType()); 1248 } 1249 1250 1251 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 1252 if (Ops.LHS->getType()->isFPOrFPVector()) 1253 return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 1254 else if (Ops.Ty->isUnsignedIntegerType()) 1255 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 1256 else 1257 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 1258 } 1259 1260 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 1261 // Rem in C can't be a floating point type: C99 6.5.5p2. 1262 if (Ops.Ty->isUnsignedIntegerType()) 1263 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 1264 else 1265 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 1266 } 1267 1268 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 1269 unsigned IID; 1270 unsigned OpID = 0; 1271 1272 switch (Ops.E->getOpcode()) { 1273 case BinaryOperator::Add: 1274 case BinaryOperator::AddAssign: 1275 OpID = 1; 1276 IID = llvm::Intrinsic::sadd_with_overflow; 1277 break; 1278 case BinaryOperator::Sub: 1279 case BinaryOperator::SubAssign: 1280 OpID = 2; 1281 IID = llvm::Intrinsic::ssub_with_overflow; 1282 break; 1283 case BinaryOperator::Mul: 1284 case BinaryOperator::MulAssign: 1285 OpID = 3; 1286 IID = llvm::Intrinsic::smul_with_overflow; 1287 break; 1288 default: 1289 assert(false && "Unsupported operation for overflow detection"); 1290 IID = 0; 1291 } 1292 OpID <<= 1; 1293 OpID |= 1; 1294 1295 const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 1296 1297 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1); 1298 1299 Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS); 1300 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 1301 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 1302 1303 // Branch in case of overflow. 1304 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 1305 llvm::BasicBlock *overflowBB = 1306 CGF.createBasicBlock("overflow", CGF.CurFn); 1307 llvm::BasicBlock *continueBB = 1308 CGF.createBasicBlock("overflow.continue", CGF.CurFn); 1309 1310 Builder.CreateCondBr(overflow, overflowBB, continueBB); 1311 1312 // Handle overflow 1313 1314 Builder.SetInsertPoint(overflowBB); 1315 1316 // Handler is: 1317 // long long *__overflow_handler)(long long a, long long b, char op, 1318 // char width) 1319 std::vector<const llvm::Type*> handerArgTypes; 1320 handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext)); 1321 handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext)); 1322 handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext)); 1323 handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext)); 1324 llvm::FunctionType *handlerTy = llvm::FunctionType::get( 1325 llvm::Type::getInt64Ty(VMContext), handerArgTypes, false); 1326 llvm::Value *handlerFunction = 1327 CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler", 1328 llvm::PointerType::getUnqual(handlerTy)); 1329 handlerFunction = Builder.CreateLoad(handlerFunction); 1330 1331 llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction, 1332 Builder.CreateSExt(Ops.LHS, llvm::Type::getInt64Ty(VMContext)), 1333 Builder.CreateSExt(Ops.RHS, llvm::Type::getInt64Ty(VMContext)), 1334 llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), OpID), 1335 llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), 1336 cast<llvm::IntegerType>(opTy)->getBitWidth())); 1337 1338 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 1339 1340 Builder.CreateBr(continueBB); 1341 1342 // Set up the continuation 1343 Builder.SetInsertPoint(continueBB); 1344 // Get the correct result 1345 llvm::PHINode *phi = Builder.CreatePHI(opTy); 1346 phi->reserveOperandSpace(2); 1347 phi->addIncoming(result, initialBB); 1348 phi->addIncoming(handlerResult, overflowBB); 1349 1350 return phi; 1351 } 1352 1353 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) { 1354 if (!Ops.Ty->isAnyPointerType()) { 1355 if (CGF.getContext().getLangOptions().OverflowChecking && 1356 Ops.Ty->isSignedIntegerType()) 1357 return EmitOverflowCheckedBinOp(Ops); 1358 1359 if (Ops.LHS->getType()->isFPOrFPVector()) 1360 return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add"); 1361 1362 // Signed integer overflow is undefined behavior. 1363 if (Ops.Ty->isSignedIntegerType()) 1364 return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add"); 1365 1366 return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add"); 1367 } 1368 1369 if (Ops.Ty->isPointerType() && 1370 Ops.Ty->getAs<PointerType>()->isVariableArrayType()) { 1371 // The amount of the addition needs to account for the VLA size 1372 CGF.ErrorUnsupported(Ops.E, "VLA pointer addition"); 1373 } 1374 Value *Ptr, *Idx; 1375 Expr *IdxExp; 1376 const PointerType *PT = Ops.E->getLHS()->getType()->getAs<PointerType>(); 1377 const ObjCObjectPointerType *OPT = 1378 Ops.E->getLHS()->getType()->getAs<ObjCObjectPointerType>(); 1379 if (PT || OPT) { 1380 Ptr = Ops.LHS; 1381 Idx = Ops.RHS; 1382 IdxExp = Ops.E->getRHS(); 1383 } else { // int + pointer 1384 PT = Ops.E->getRHS()->getType()->getAs<PointerType>(); 1385 OPT = Ops.E->getRHS()->getType()->getAs<ObjCObjectPointerType>(); 1386 assert((PT || OPT) && "Invalid add expr"); 1387 Ptr = Ops.RHS; 1388 Idx = Ops.LHS; 1389 IdxExp = Ops.E->getLHS(); 1390 } 1391 1392 unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth(); 1393 if (Width < CGF.LLVMPointerWidth) { 1394 // Zero or sign extend the pointer value based on whether the index is 1395 // signed or not. 1396 const llvm::Type *IdxType = 1397 llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth); 1398 if (IdxExp->getType()->isSignedIntegerType()) 1399 Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext"); 1400 else 1401 Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext"); 1402 } 1403 const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType(); 1404 // Handle interface types, which are not represented with a concrete type. 1405 if (const ObjCInterfaceType *OIT = dyn_cast<ObjCInterfaceType>(ElementType)) { 1406 llvm::Value *InterfaceSize = 1407 llvm::ConstantInt::get(Idx->getType(), 1408 CGF.getContext().getTypeSize(OIT) / 8); 1409 Idx = Builder.CreateMul(Idx, InterfaceSize); 1410 const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext); 1411 Value *Casted = Builder.CreateBitCast(Ptr, i8Ty); 1412 Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr"); 1413 return Builder.CreateBitCast(Res, Ptr->getType()); 1414 } 1415 1416 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 1417 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 1418 // future proof. 1419 if (ElementType->isVoidType() || ElementType->isFunctionType()) { 1420 const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext); 1421 Value *Casted = Builder.CreateBitCast(Ptr, i8Ty); 1422 Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr"); 1423 return Builder.CreateBitCast(Res, Ptr->getType()); 1424 } 1425 1426 return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr"); 1427 } 1428 1429 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) { 1430 if (!isa<llvm::PointerType>(Ops.LHS->getType())) { 1431 if (CGF.getContext().getLangOptions().OverflowChecking 1432 && Ops.Ty->isSignedIntegerType()) 1433 return EmitOverflowCheckedBinOp(Ops); 1434 1435 if (Ops.LHS->getType()->isFPOrFPVector()) 1436 return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub"); 1437 return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub"); 1438 } 1439 1440 if (Ops.E->getLHS()->getType()->isPointerType() && 1441 Ops.E->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) { 1442 // The amount of the addition needs to account for the VLA size for 1443 // ptr-int 1444 // The amount of the division needs to account for the VLA size for 1445 // ptr-ptr. 1446 CGF.ErrorUnsupported(Ops.E, "VLA pointer subtraction"); 1447 } 1448 1449 const QualType LHSType = Ops.E->getLHS()->getType(); 1450 const QualType LHSElementType = LHSType->getPointeeType(); 1451 if (!isa<llvm::PointerType>(Ops.RHS->getType())) { 1452 // pointer - int 1453 Value *Idx = Ops.RHS; 1454 unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth(); 1455 if (Width < CGF.LLVMPointerWidth) { 1456 // Zero or sign extend the pointer value based on whether the index is 1457 // signed or not. 1458 const llvm::Type *IdxType = 1459 llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth); 1460 if (Ops.E->getRHS()->getType()->isSignedIntegerType()) 1461 Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext"); 1462 else 1463 Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext"); 1464 } 1465 Idx = Builder.CreateNeg(Idx, "sub.ptr.neg"); 1466 1467 // Handle interface types, which are not represented with a concrete type. 1468 if (const ObjCInterfaceType *OIT = 1469 dyn_cast<ObjCInterfaceType>(LHSElementType)) { 1470 llvm::Value *InterfaceSize = 1471 llvm::ConstantInt::get(Idx->getType(), 1472 CGF.getContext().getTypeSize(OIT) / 8); 1473 Idx = Builder.CreateMul(Idx, InterfaceSize); 1474 const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext); 1475 Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty); 1476 Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr"); 1477 return Builder.CreateBitCast(Res, Ops.LHS->getType()); 1478 } 1479 1480 // Explicitly handle GNU void* and function pointer arithmetic 1481 // extensions. The GNU void* casts amount to no-ops since our void* type is 1482 // i8*, but this is future proof. 1483 if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) { 1484 const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext); 1485 Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty); 1486 Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr"); 1487 return Builder.CreateBitCast(Res, Ops.LHS->getType()); 1488 } 1489 1490 return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr"); 1491 } else { 1492 // pointer - pointer 1493 Value *LHS = Ops.LHS; 1494 Value *RHS = Ops.RHS; 1495 1496 uint64_t ElementSize; 1497 1498 // Handle GCC extension for pointer arithmetic on void* and function pointer 1499 // types. 1500 if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) { 1501 ElementSize = 1; 1502 } else { 1503 ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8; 1504 } 1505 1506 const llvm::Type *ResultType = ConvertType(Ops.Ty); 1507 LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast"); 1508 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1509 Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 1510 1511 // Optimize out the shift for element size of 1. 1512 if (ElementSize == 1) 1513 return BytesBetween; 1514 1515 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 1516 // pointer difference in C is only defined in the case where both operands 1517 // are pointing to elements of an array. 1518 Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize); 1519 return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div"); 1520 } 1521 } 1522 1523 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 1524 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 1525 // RHS to the same size as the LHS. 1526 Value *RHS = Ops.RHS; 1527 if (Ops.LHS->getType() != RHS->getType()) 1528 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 1529 1530 if (CGF.CatchUndefined 1531 && isa<llvm::IntegerType>(Ops.LHS->getType())) { 1532 unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth(); 1533 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 1534 CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS, 1535 llvm::ConstantInt::get(RHS->getType(), Width)), 1536 Cont, CGF.getTrapBB()); 1537 CGF.EmitBlock(Cont); 1538 } 1539 1540 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 1541 } 1542 1543 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 1544 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 1545 // RHS to the same size as the LHS. 1546 Value *RHS = Ops.RHS; 1547 if (Ops.LHS->getType() != RHS->getType()) 1548 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 1549 1550 if (CGF.CatchUndefined 1551 && isa<llvm::IntegerType>(Ops.LHS->getType())) { 1552 unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth(); 1553 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 1554 CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS, 1555 llvm::ConstantInt::get(RHS->getType(), Width)), 1556 Cont, CGF.getTrapBB()); 1557 CGF.EmitBlock(Cont); 1558 } 1559 1560 if (Ops.Ty->isUnsignedIntegerType()) 1561 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 1562 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 1563 } 1564 1565 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, 1566 unsigned SICmpOpc, unsigned FCmpOpc) { 1567 TestAndClearIgnoreResultAssign(); 1568 Value *Result; 1569 QualType LHSTy = E->getLHS()->getType(); 1570 if (LHSTy->isMemberFunctionPointerType()) { 1571 Value *LHSPtr = CGF.EmitAnyExprToTemp(E->getLHS()).getAggregateAddr(); 1572 Value *RHSPtr = CGF.EmitAnyExprToTemp(E->getRHS()).getAggregateAddr(); 1573 llvm::Value *LHSFunc = Builder.CreateStructGEP(LHSPtr, 0); 1574 LHSFunc = Builder.CreateLoad(LHSFunc); 1575 llvm::Value *RHSFunc = Builder.CreateStructGEP(RHSPtr, 0); 1576 RHSFunc = Builder.CreateLoad(RHSFunc); 1577 Value *ResultF = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 1578 LHSFunc, RHSFunc, "cmp.func"); 1579 Value *NullPtr = llvm::Constant::getNullValue(LHSFunc->getType()); 1580 Value *ResultNull = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 1581 LHSFunc, NullPtr, "cmp.null"); 1582 llvm::Value *LHSAdj = Builder.CreateStructGEP(LHSPtr, 1); 1583 LHSAdj = Builder.CreateLoad(LHSAdj); 1584 llvm::Value *RHSAdj = Builder.CreateStructGEP(RHSPtr, 1); 1585 RHSAdj = Builder.CreateLoad(RHSAdj); 1586 Value *ResultA = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 1587 LHSAdj, RHSAdj, "cmp.adj"); 1588 if (E->getOpcode() == BinaryOperator::EQ) { 1589 Result = Builder.CreateOr(ResultNull, ResultA, "or.na"); 1590 Result = Builder.CreateAnd(Result, ResultF, "and.f"); 1591 } else { 1592 assert(E->getOpcode() == BinaryOperator::NE && 1593 "Member pointer comparison other than == or != ?"); 1594 Result = Builder.CreateAnd(ResultNull, ResultA, "and.na"); 1595 Result = Builder.CreateOr(Result, ResultF, "or.f"); 1596 } 1597 } else if (!LHSTy->isAnyComplexType()) { 1598 Value *LHS = Visit(E->getLHS()); 1599 Value *RHS = Visit(E->getRHS()); 1600 1601 if (LHS->getType()->isFPOrFPVector()) { 1602 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc, 1603 LHS, RHS, "cmp"); 1604 } else if (LHSTy->isSignedIntegerType()) { 1605 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, 1606 LHS, RHS, "cmp"); 1607 } else { 1608 // Unsigned integers and pointers. 1609 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 1610 LHS, RHS, "cmp"); 1611 } 1612 1613 // If this is a vector comparison, sign extend the result to the appropriate 1614 // vector integer type and return it (don't convert to bool). 1615 if (LHSTy->isVectorType()) 1616 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 1617 1618 } else { 1619 // Complex Comparison: can only be an equality comparison. 1620 CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS()); 1621 CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS()); 1622 1623 QualType CETy = LHSTy->getAs<ComplexType>()->getElementType(); 1624 1625 Value *ResultR, *ResultI; 1626 if (CETy->isRealFloatingType()) { 1627 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 1628 LHS.first, RHS.first, "cmp.r"); 1629 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 1630 LHS.second, RHS.second, "cmp.i"); 1631 } else { 1632 // Complex comparisons can only be equality comparisons. As such, signed 1633 // and unsigned opcodes are the same. 1634 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 1635 LHS.first, RHS.first, "cmp.r"); 1636 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 1637 LHS.second, RHS.second, "cmp.i"); 1638 } 1639 1640 if (E->getOpcode() == BinaryOperator::EQ) { 1641 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 1642 } else { 1643 assert(E->getOpcode() == BinaryOperator::NE && 1644 "Complex comparison other than == or != ?"); 1645 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 1646 } 1647 } 1648 1649 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 1650 } 1651 1652 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 1653 bool Ignore = TestAndClearIgnoreResultAssign(); 1654 1655 // __block variables need to have the rhs evaluated first, plus this should 1656 // improve codegen just a little. 1657 Value *RHS = Visit(E->getRHS()); 1658 LValue LHS = EmitCheckedLValue(E->getLHS()); 1659 1660 // Store the value into the LHS. Bit-fields are handled specially 1661 // because the result is altered by the store, i.e., [C99 6.5.16p1] 1662 // 'An assignment expression has the value of the left operand after 1663 // the assignment...'. 1664 if (LHS.isBitfield()) { 1665 if (!LHS.isVolatileQualified()) { 1666 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(), 1667 &RHS); 1668 return RHS; 1669 } else 1670 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType()); 1671 } else 1672 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType()); 1673 if (Ignore) 1674 return 0; 1675 return EmitLoadOfLValue(LHS, E->getType()); 1676 } 1677 1678 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 1679 const llvm::Type *ResTy = ConvertType(E->getType()); 1680 1681 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 1682 // If we have 1 && X, just emit X without inserting the control flow. 1683 if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) { 1684 if (Cond == 1) { // If we have 1 && X, just emit X. 1685 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 1686 // ZExt result to int or bool. 1687 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 1688 } 1689 1690 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 1691 if (!CGF.ContainsLabel(E->getRHS())) 1692 return llvm::Constant::getNullValue(ResTy); 1693 } 1694 1695 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 1696 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 1697 1698 // Branch on the LHS first. If it is false, go to the failure (cont) block. 1699 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock); 1700 1701 // Any edges into the ContBlock are now from an (indeterminate number of) 1702 // edges from this first condition. All of these values will be false. Start 1703 // setting up the PHI node in the Cont Block for this. 1704 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 1705 "", ContBlock); 1706 PN->reserveOperandSpace(2); // Normal case, two inputs. 1707 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 1708 PI != PE; ++PI) 1709 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 1710 1711 CGF.StartConditionalBranch(); 1712 CGF.EmitBlock(RHSBlock); 1713 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 1714 CGF.FinishConditionalBranch(); 1715 1716 // Reaquire the RHS block, as there may be subblocks inserted. 1717 RHSBlock = Builder.GetInsertBlock(); 1718 1719 // Emit an unconditional branch from this block to ContBlock. Insert an entry 1720 // into the phi node for the edge with the value of RHSCond. 1721 CGF.EmitBlock(ContBlock); 1722 PN->addIncoming(RHSCond, RHSBlock); 1723 1724 // ZExt result to int. 1725 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 1726 } 1727 1728 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 1729 const llvm::Type *ResTy = ConvertType(E->getType()); 1730 1731 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 1732 // If we have 0 || X, just emit X without inserting the control flow. 1733 if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) { 1734 if (Cond == -1) { // If we have 0 || X, just emit X. 1735 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 1736 // ZExt result to int or bool. 1737 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 1738 } 1739 1740 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 1741 if (!CGF.ContainsLabel(E->getRHS())) 1742 return llvm::ConstantInt::get(ResTy, 1); 1743 } 1744 1745 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 1746 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 1747 1748 // Branch on the LHS first. If it is true, go to the success (cont) block. 1749 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock); 1750 1751 // Any edges into the ContBlock are now from an (indeterminate number of) 1752 // edges from this first condition. All of these values will be true. Start 1753 // setting up the PHI node in the Cont Block for this. 1754 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 1755 "", ContBlock); 1756 PN->reserveOperandSpace(2); // Normal case, two inputs. 1757 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 1758 PI != PE; ++PI) 1759 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 1760 1761 CGF.StartConditionalBranch(); 1762 1763 // Emit the RHS condition as a bool value. 1764 CGF.EmitBlock(RHSBlock); 1765 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 1766 1767 CGF.FinishConditionalBranch(); 1768 1769 // Reaquire the RHS block, as there may be subblocks inserted. 1770 RHSBlock = Builder.GetInsertBlock(); 1771 1772 // Emit an unconditional branch from this block to ContBlock. Insert an entry 1773 // into the phi node for the edge with the value of RHSCond. 1774 CGF.EmitBlock(ContBlock); 1775 PN->addIncoming(RHSCond, RHSBlock); 1776 1777 // ZExt result to int. 1778 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 1779 } 1780 1781 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 1782 CGF.EmitStmt(E->getLHS()); 1783 CGF.EnsureInsertPoint(); 1784 return Visit(E->getRHS()); 1785 } 1786 1787 //===----------------------------------------------------------------------===// 1788 // Other Operators 1789 //===----------------------------------------------------------------------===// 1790 1791 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 1792 /// expression is cheap enough and side-effect-free enough to evaluate 1793 /// unconditionally instead of conditionally. This is used to convert control 1794 /// flow into selects in some cases. 1795 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 1796 CodeGenFunction &CGF) { 1797 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) 1798 return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF); 1799 1800 // TODO: Allow anything we can constant fold to an integer or fp constant. 1801 if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) || 1802 isa<FloatingLiteral>(E)) 1803 return true; 1804 1805 // Non-volatile automatic variables too, to get "cond ? X : Y" where 1806 // X and Y are local variables. 1807 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 1808 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) 1809 if (VD->hasLocalStorage() && !(CGF.getContext() 1810 .getCanonicalType(VD->getType()) 1811 .isVolatileQualified())) 1812 return true; 1813 1814 return false; 1815 } 1816 1817 1818 Value *ScalarExprEmitter:: 1819 VisitConditionalOperator(const ConditionalOperator *E) { 1820 TestAndClearIgnoreResultAssign(); 1821 // If the condition constant folds and can be elided, try to avoid emitting 1822 // the condition and the dead arm. 1823 if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){ 1824 Expr *Live = E->getLHS(), *Dead = E->getRHS(); 1825 if (Cond == -1) 1826 std::swap(Live, Dead); 1827 1828 // If the dead side doesn't have labels we need, and if the Live side isn't 1829 // the gnu missing ?: extension (which we could handle, but don't bother 1830 // to), just emit the Live part. 1831 if ((!Dead || !CGF.ContainsLabel(Dead)) && // No labels in dead part 1832 Live) // Live part isn't missing. 1833 return Visit(Live); 1834 } 1835 1836 1837 // If this is a really simple expression (like x ? 4 : 5), emit this as a 1838 // select instead of as control flow. We can only do this if it is cheap and 1839 // safe to evaluate the LHS and RHS unconditionally. 1840 if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(), 1841 CGF) && 1842 isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) { 1843 llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond()); 1844 llvm::Value *LHS = Visit(E->getLHS()); 1845 llvm::Value *RHS = Visit(E->getRHS()); 1846 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 1847 } 1848 1849 1850 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1851 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1852 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1853 Value *CondVal = 0; 1854 1855 // If we don't have the GNU missing condition extension, emit a branch on bool 1856 // the normal way. 1857 if (E->getLHS()) { 1858 // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for 1859 // the branch on bool. 1860 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 1861 } else { 1862 // Otherwise, for the ?: extension, evaluate the conditional and then 1863 // convert it to bool the hard way. We do this explicitly because we need 1864 // the unconverted value for the missing middle value of the ?:. 1865 CondVal = CGF.EmitScalarExpr(E->getCond()); 1866 1867 // In some cases, EmitScalarConversion will delete the "CondVal" expression 1868 // if there are no extra uses (an optimization). Inhibit this by making an 1869 // extra dead use, because we're going to add a use of CondVal later. We 1870 // don't use the builder for this, because we don't want it to get optimized 1871 // away. This leaves dead code, but the ?: extension isn't common. 1872 new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder", 1873 Builder.GetInsertBlock()); 1874 1875 Value *CondBoolVal = 1876 CGF.EmitScalarConversion(CondVal, E->getCond()->getType(), 1877 CGF.getContext().BoolTy); 1878 Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock); 1879 } 1880 1881 CGF.StartConditionalBranch(); 1882 CGF.EmitBlock(LHSBlock); 1883 1884 // Handle the GNU extension for missing LHS. 1885 Value *LHS; 1886 if (E->getLHS()) 1887 LHS = Visit(E->getLHS()); 1888 else // Perform promotions, to handle cases like "short ?: int" 1889 LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType()); 1890 1891 CGF.FinishConditionalBranch(); 1892 LHSBlock = Builder.GetInsertBlock(); 1893 CGF.EmitBranch(ContBlock); 1894 1895 CGF.StartConditionalBranch(); 1896 CGF.EmitBlock(RHSBlock); 1897 1898 Value *RHS = Visit(E->getRHS()); 1899 CGF.FinishConditionalBranch(); 1900 RHSBlock = Builder.GetInsertBlock(); 1901 CGF.EmitBranch(ContBlock); 1902 1903 CGF.EmitBlock(ContBlock); 1904 1905 // If the LHS or RHS is a throw expression, it will be legitimately null. 1906 if (!LHS) 1907 return RHS; 1908 if (!RHS) 1909 return LHS; 1910 1911 // Create a PHI node for the real part. 1912 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond"); 1913 PN->reserveOperandSpace(2); 1914 PN->addIncoming(LHS, LHSBlock); 1915 PN->addIncoming(RHS, RHSBlock); 1916 return PN; 1917 } 1918 1919 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 1920 return Visit(E->getChosenSubExpr(CGF.getContext())); 1921 } 1922 1923 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 1924 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 1925 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 1926 1927 // If EmitVAArg fails, we fall back to the LLVM instruction. 1928 if (!ArgPtr) 1929 return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType())); 1930 1931 // FIXME Volatility. 1932 return Builder.CreateLoad(ArgPtr); 1933 } 1934 1935 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) { 1936 return CGF.BuildBlockLiteralTmp(BE); 1937 } 1938 1939 //===----------------------------------------------------------------------===// 1940 // Entry Point into this File 1941 //===----------------------------------------------------------------------===// 1942 1943 /// EmitScalarExpr - Emit the computation of the specified expression of scalar 1944 /// type, ignoring the result. 1945 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 1946 assert(E && !hasAggregateLLVMType(E->getType()) && 1947 "Invalid scalar expression to emit"); 1948 1949 return ScalarExprEmitter(*this, IgnoreResultAssign) 1950 .Visit(const_cast<Expr*>(E)); 1951 } 1952 1953 /// EmitScalarConversion - Emit a conversion from the specified type to the 1954 /// specified destination type, both of which are LLVM scalar types. 1955 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 1956 QualType DstTy) { 1957 assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) && 1958 "Invalid scalar expression to emit"); 1959 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy); 1960 } 1961 1962 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 1963 /// type to the specified destination type, where the destination type is an 1964 /// LLVM scalar type. 1965 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 1966 QualType SrcTy, 1967 QualType DstTy) { 1968 assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) && 1969 "Invalid complex -> scalar conversion"); 1970 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy, 1971 DstTy); 1972 } 1973 1974 Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) { 1975 assert(V1->getType() == V2->getType() && 1976 "Vector operands must be of the same type"); 1977 unsigned NumElements = 1978 cast<llvm::VectorType>(V1->getType())->getNumElements(); 1979 1980 va_list va; 1981 va_start(va, V2); 1982 1983 llvm::SmallVector<llvm::Constant*, 16> Args; 1984 for (unsigned i = 0; i < NumElements; i++) { 1985 int n = va_arg(va, int); 1986 assert(n >= 0 && n < (int)NumElements * 2 && 1987 "Vector shuffle index out of bounds!"); 1988 Args.push_back(llvm::ConstantInt::get( 1989 llvm::Type::getInt32Ty(VMContext), n)); 1990 } 1991 1992 const char *Name = va_arg(va, const char *); 1993 va_end(va); 1994 1995 llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements); 1996 1997 return Builder.CreateShuffleVector(V1, V2, Mask, Name); 1998 } 1999 2000 llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals, 2001 unsigned NumVals, bool isSplat) { 2002 llvm::Value *Vec 2003 = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals)); 2004 2005 for (unsigned i = 0, e = NumVals; i != e; ++i) { 2006 llvm::Value *Val = isSplat ? Vals[0] : Vals[i]; 2007 llvm::Value *Idx = llvm::ConstantInt::get( 2008 llvm::Type::getInt32Ty(VMContext), i); 2009 Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp"); 2010 } 2011 2012 return Vec; 2013 } 2014 2015 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 2016 llvm::Value *V; 2017 // object->isa or (*object).isa 2018 // Generate code as for: *(Class*)object 2019 Expr *BaseExpr = E->getBase(); 2020 if (E->isArrow()) 2021 V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr); 2022 else 2023 V = EmitLValue(BaseExpr).getAddress(); 2024 2025 // build Class* type 2026 const llvm::Type *ClassPtrTy = ConvertType(E->getType()); 2027 ClassPtrTy = ClassPtrTy->getPointerTo(); 2028 V = Builder.CreateBitCast(V, ClassPtrTy); 2029 LValue LV = LValue::MakeAddr(V, MakeQualifiers(E->getType())); 2030 return LV; 2031 } 2032 2033