1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCXXABI.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Basic/FixedPoint.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Frontend/CodeGenOptions.h"
29 #include "llvm/ADT/Optional.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/Module.h"
38 #include <cstdarg>
39 
40 using namespace clang;
41 using namespace CodeGen;
42 using llvm::Value;
43 
44 //===----------------------------------------------------------------------===//
45 //                         Scalar Expression Emitter
46 //===----------------------------------------------------------------------===//
47 
48 namespace {
49 
50 /// Determine whether the given binary operation may overflow.
51 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
52 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
53 /// the returned overflow check is precise. The returned value is 'true' for
54 /// all other opcodes, to be conservative.
55 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
56                              BinaryOperator::Opcode Opcode, bool Signed,
57                              llvm::APInt &Result) {
58   // Assume overflow is possible, unless we can prove otherwise.
59   bool Overflow = true;
60   const auto &LHSAP = LHS->getValue();
61   const auto &RHSAP = RHS->getValue();
62   if (Opcode == BO_Add) {
63     if (Signed)
64       Result = LHSAP.sadd_ov(RHSAP, Overflow);
65     else
66       Result = LHSAP.uadd_ov(RHSAP, Overflow);
67   } else if (Opcode == BO_Sub) {
68     if (Signed)
69       Result = LHSAP.ssub_ov(RHSAP, Overflow);
70     else
71       Result = LHSAP.usub_ov(RHSAP, Overflow);
72   } else if (Opcode == BO_Mul) {
73     if (Signed)
74       Result = LHSAP.smul_ov(RHSAP, Overflow);
75     else
76       Result = LHSAP.umul_ov(RHSAP, Overflow);
77   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
78     if (Signed && !RHS->isZero())
79       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
80     else
81       return false;
82   }
83   return Overflow;
84 }
85 
86 struct BinOpInfo {
87   Value *LHS;
88   Value *RHS;
89   QualType Ty;  // Computation Type.
90   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
91   FPOptions FPFeatures;
92   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
93 
94   /// Check if the binop can result in integer overflow.
95   bool mayHaveIntegerOverflow() const {
96     // Without constant input, we can't rule out overflow.
97     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
98     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
99     if (!LHSCI || !RHSCI)
100       return true;
101 
102     llvm::APInt Result;
103     return ::mayHaveIntegerOverflow(
104         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
105   }
106 
107   /// Check if the binop computes a division or a remainder.
108   bool isDivremOp() const {
109     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
110            Opcode == BO_RemAssign;
111   }
112 
113   /// Check if the binop can result in an integer division by zero.
114   bool mayHaveIntegerDivisionByZero() const {
115     if (isDivremOp())
116       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
117         return CI->isZero();
118     return true;
119   }
120 
121   /// Check if the binop can result in a float division by zero.
122   bool mayHaveFloatDivisionByZero() const {
123     if (isDivremOp())
124       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
125         return CFP->isZero();
126     return true;
127   }
128 };
129 
130 static bool MustVisitNullValue(const Expr *E) {
131   // If a null pointer expression's type is the C++0x nullptr_t, then
132   // it's not necessarily a simple constant and it must be evaluated
133   // for its potential side effects.
134   return E->getType()->isNullPtrType();
135 }
136 
137 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
138 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
139                                                         const Expr *E) {
140   const Expr *Base = E->IgnoreImpCasts();
141   if (E == Base)
142     return llvm::None;
143 
144   QualType BaseTy = Base->getType();
145   if (!BaseTy->isPromotableIntegerType() ||
146       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
147     return llvm::None;
148 
149   return BaseTy;
150 }
151 
152 /// Check if \p E is a widened promoted integer.
153 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
154   return getUnwidenedIntegerType(Ctx, E).hasValue();
155 }
156 
157 /// Check if we can skip the overflow check for \p Op.
158 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
159   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
160          "Expected a unary or binary operator");
161 
162   // If the binop has constant inputs and we can prove there is no overflow,
163   // we can elide the overflow check.
164   if (!Op.mayHaveIntegerOverflow())
165     return true;
166 
167   // If a unary op has a widened operand, the op cannot overflow.
168   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
169     return !UO->canOverflow();
170 
171   // We usually don't need overflow checks for binops with widened operands.
172   // Multiplication with promoted unsigned operands is a special case.
173   const auto *BO = cast<BinaryOperator>(Op.E);
174   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
175   if (!OptionalLHSTy)
176     return false;
177 
178   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
179   if (!OptionalRHSTy)
180     return false;
181 
182   QualType LHSTy = *OptionalLHSTy;
183   QualType RHSTy = *OptionalRHSTy;
184 
185   // This is the simple case: binops without unsigned multiplication, and with
186   // widened operands. No overflow check is needed here.
187   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
188       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
189     return true;
190 
191   // For unsigned multiplication the overflow check can be elided if either one
192   // of the unpromoted types are less than half the size of the promoted type.
193   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
194   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
195          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
196 }
197 
198 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
199 static void updateFastMathFlags(llvm::FastMathFlags &FMF,
200                                 FPOptions FPFeatures) {
201   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
202 }
203 
204 /// Propagate fast-math flags from \p Op to the instruction in \p V.
205 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
206   if (auto *I = dyn_cast<llvm::Instruction>(V)) {
207     llvm::FastMathFlags FMF = I->getFastMathFlags();
208     updateFastMathFlags(FMF, Op.FPFeatures);
209     I->setFastMathFlags(FMF);
210   }
211   return V;
212 }
213 
214 class ScalarExprEmitter
215   : public StmtVisitor<ScalarExprEmitter, Value*> {
216   CodeGenFunction &CGF;
217   CGBuilderTy &Builder;
218   bool IgnoreResultAssign;
219   llvm::LLVMContext &VMContext;
220 public:
221 
222   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
223     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
224       VMContext(cgf.getLLVMContext()) {
225   }
226 
227   //===--------------------------------------------------------------------===//
228   //                               Utilities
229   //===--------------------------------------------------------------------===//
230 
231   bool TestAndClearIgnoreResultAssign() {
232     bool I = IgnoreResultAssign;
233     IgnoreResultAssign = false;
234     return I;
235   }
236 
237   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
238   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
239   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
240     return CGF.EmitCheckedLValue(E, TCK);
241   }
242 
243   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
244                       const BinOpInfo &Info);
245 
246   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
247     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
248   }
249 
250   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
251     const AlignValueAttr *AVAttr = nullptr;
252     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
253       const ValueDecl *VD = DRE->getDecl();
254 
255       if (VD->getType()->isReferenceType()) {
256         if (const auto *TTy =
257             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
258           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
259       } else {
260         // Assumptions for function parameters are emitted at the start of the
261         // function, so there is no need to repeat that here.
262         if (isa<ParmVarDecl>(VD))
263           return;
264 
265         AVAttr = VD->getAttr<AlignValueAttr>();
266       }
267     }
268 
269     if (!AVAttr)
270       if (const auto *TTy =
271           dyn_cast<TypedefType>(E->getType()))
272         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
273 
274     if (!AVAttr)
275       return;
276 
277     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
278     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
279     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
280   }
281 
282   /// EmitLoadOfLValue - Given an expression with complex type that represents a
283   /// value l-value, this method emits the address of the l-value, then loads
284   /// and returns the result.
285   Value *EmitLoadOfLValue(const Expr *E) {
286     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
287                                 E->getExprLoc());
288 
289     EmitLValueAlignmentAssumption(E, V);
290     return V;
291   }
292 
293   /// EmitConversionToBool - Convert the specified expression value to a
294   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
295   Value *EmitConversionToBool(Value *Src, QualType DstTy);
296 
297   /// Emit a check that a conversion to or from a floating-point type does not
298   /// overflow.
299   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
300                                 Value *Src, QualType SrcType, QualType DstType,
301                                 llvm::Type *DstTy, SourceLocation Loc);
302 
303   /// Known implicit conversion check kinds.
304   /// Keep in sync with the enum of the same name in ubsan_handlers.h
305   enum ImplicitConversionCheckKind : unsigned char {
306     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
307     ICCK_UnsignedIntegerTruncation = 1,
308     ICCK_SignedIntegerTruncation = 2,
309     ICCK_IntegerSignChange = 3,
310     ICCK_SignedIntegerTruncationOrSignChange = 4,
311   };
312 
313   /// Emit a check that an [implicit] truncation of an integer  does not
314   /// discard any bits. It is not UB, so we use the value after truncation.
315   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
316                                   QualType DstType, SourceLocation Loc);
317 
318   /// Emit a check that an [implicit] conversion of an integer does not change
319   /// the sign of the value. It is not UB, so we use the value after conversion.
320   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
321   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
322                                   QualType DstType, SourceLocation Loc);
323 
324   /// Emit a conversion from the specified type to the specified destination
325   /// type, both of which are LLVM scalar types.
326   struct ScalarConversionOpts {
327     bool TreatBooleanAsSigned;
328     bool EmitImplicitIntegerTruncationChecks;
329     bool EmitImplicitIntegerSignChangeChecks;
330 
331     ScalarConversionOpts()
332         : TreatBooleanAsSigned(false),
333           EmitImplicitIntegerTruncationChecks(false),
334           EmitImplicitIntegerSignChangeChecks(false) {}
335   };
336   Value *
337   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
338                        SourceLocation Loc,
339                        ScalarConversionOpts Opts = ScalarConversionOpts());
340 
341   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
342                                   SourceLocation Loc);
343 
344   /// Emit a conversion from the specified complex type to the specified
345   /// destination type, where the destination type is an LLVM scalar type.
346   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
347                                        QualType SrcTy, QualType DstTy,
348                                        SourceLocation Loc);
349 
350   /// EmitNullValue - Emit a value that corresponds to null for the given type.
351   Value *EmitNullValue(QualType Ty);
352 
353   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
354   Value *EmitFloatToBoolConversion(Value *V) {
355     // Compare against 0.0 for fp scalars.
356     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
357     return Builder.CreateFCmpUNE(V, Zero, "tobool");
358   }
359 
360   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
361   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
362     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
363 
364     return Builder.CreateICmpNE(V, Zero, "tobool");
365   }
366 
367   Value *EmitIntToBoolConversion(Value *V) {
368     // Because of the type rules of C, we often end up computing a
369     // logical value, then zero extending it to int, then wanting it
370     // as a logical value again.  Optimize this common case.
371     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
372       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
373         Value *Result = ZI->getOperand(0);
374         // If there aren't any more uses, zap the instruction to save space.
375         // Note that there can be more uses, for example if this
376         // is the result of an assignment.
377         if (ZI->use_empty())
378           ZI->eraseFromParent();
379         return Result;
380       }
381     }
382 
383     return Builder.CreateIsNotNull(V, "tobool");
384   }
385 
386   //===--------------------------------------------------------------------===//
387   //                            Visitor Methods
388   //===--------------------------------------------------------------------===//
389 
390   Value *Visit(Expr *E) {
391     ApplyDebugLocation DL(CGF, E);
392     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
393   }
394 
395   Value *VisitStmt(Stmt *S) {
396     S->dump(CGF.getContext().getSourceManager());
397     llvm_unreachable("Stmt can't have complex result type!");
398   }
399   Value *VisitExpr(Expr *S);
400 
401   Value *VisitParenExpr(ParenExpr *PE) {
402     return Visit(PE->getSubExpr());
403   }
404   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
405     return Visit(E->getReplacement());
406   }
407   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
408     return Visit(GE->getResultExpr());
409   }
410   Value *VisitCoawaitExpr(CoawaitExpr *S) {
411     return CGF.EmitCoawaitExpr(*S).getScalarVal();
412   }
413   Value *VisitCoyieldExpr(CoyieldExpr *S) {
414     return CGF.EmitCoyieldExpr(*S).getScalarVal();
415   }
416   Value *VisitUnaryCoawait(const UnaryOperator *E) {
417     return Visit(E->getSubExpr());
418   }
419 
420   // Leaves.
421   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
422     return Builder.getInt(E->getValue());
423   }
424   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
425     return Builder.getInt(E->getValue());
426   }
427   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
428     return llvm::ConstantFP::get(VMContext, E->getValue());
429   }
430   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
431     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
432   }
433   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
434     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
435   }
436   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
437     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
438   }
439   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
440     return EmitNullValue(E->getType());
441   }
442   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
443     return EmitNullValue(E->getType());
444   }
445   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
446   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
447   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
448     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
449     return Builder.CreateBitCast(V, ConvertType(E->getType()));
450   }
451 
452   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
453     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
454   }
455 
456   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
457     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
458   }
459 
460   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
461     if (E->isGLValue())
462       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
463                               E->getExprLoc());
464 
465     // Otherwise, assume the mapping is the scalar directly.
466     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
467   }
468 
469   // l-values.
470   Value *VisitDeclRefExpr(DeclRefExpr *E) {
471     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
472       return CGF.emitScalarConstant(Constant, E);
473     return EmitLoadOfLValue(E);
474   }
475 
476   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
477     return CGF.EmitObjCSelectorExpr(E);
478   }
479   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
480     return CGF.EmitObjCProtocolExpr(E);
481   }
482   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
483     return EmitLoadOfLValue(E);
484   }
485   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
486     if (E->getMethodDecl() &&
487         E->getMethodDecl()->getReturnType()->isReferenceType())
488       return EmitLoadOfLValue(E);
489     return CGF.EmitObjCMessageExpr(E).getScalarVal();
490   }
491 
492   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
493     LValue LV = CGF.EmitObjCIsaExpr(E);
494     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
495     return V;
496   }
497 
498   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
499     VersionTuple Version = E->getVersion();
500 
501     // If we're checking for a platform older than our minimum deployment
502     // target, we can fold the check away.
503     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
504       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
505 
506     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
507     llvm::Value *Args[] = {
508         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
509         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
510         llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
511     };
512 
513     return CGF.EmitBuiltinAvailable(Args);
514   }
515 
516   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
517   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
518   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
519   Value *VisitMemberExpr(MemberExpr *E);
520   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
521   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
522     return EmitLoadOfLValue(E);
523   }
524 
525   Value *VisitInitListExpr(InitListExpr *E);
526 
527   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
528     assert(CGF.getArrayInitIndex() &&
529            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
530     return CGF.getArrayInitIndex();
531   }
532 
533   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
534     return EmitNullValue(E->getType());
535   }
536   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
537     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
538     return VisitCastExpr(E);
539   }
540   Value *VisitCastExpr(CastExpr *E);
541 
542   Value *VisitCallExpr(const CallExpr *E) {
543     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
544       return EmitLoadOfLValue(E);
545 
546     Value *V = CGF.EmitCallExpr(E).getScalarVal();
547 
548     EmitLValueAlignmentAssumption(E, V);
549     return V;
550   }
551 
552   Value *VisitStmtExpr(const StmtExpr *E);
553 
554   // Unary Operators.
555   Value *VisitUnaryPostDec(const UnaryOperator *E) {
556     LValue LV = EmitLValue(E->getSubExpr());
557     return EmitScalarPrePostIncDec(E, LV, false, false);
558   }
559   Value *VisitUnaryPostInc(const UnaryOperator *E) {
560     LValue LV = EmitLValue(E->getSubExpr());
561     return EmitScalarPrePostIncDec(E, LV, true, false);
562   }
563   Value *VisitUnaryPreDec(const UnaryOperator *E) {
564     LValue LV = EmitLValue(E->getSubExpr());
565     return EmitScalarPrePostIncDec(E, LV, false, true);
566   }
567   Value *VisitUnaryPreInc(const UnaryOperator *E) {
568     LValue LV = EmitLValue(E->getSubExpr());
569     return EmitScalarPrePostIncDec(E, LV, true, true);
570   }
571 
572   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
573                                                   llvm::Value *InVal,
574                                                   bool IsInc);
575 
576   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
577                                        bool isInc, bool isPre);
578 
579 
580   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
581     if (isa<MemberPointerType>(E->getType())) // never sugared
582       return CGF.CGM.getMemberPointerConstant(E);
583 
584     return EmitLValue(E->getSubExpr()).getPointer();
585   }
586   Value *VisitUnaryDeref(const UnaryOperator *E) {
587     if (E->getType()->isVoidType())
588       return Visit(E->getSubExpr()); // the actual value should be unused
589     return EmitLoadOfLValue(E);
590   }
591   Value *VisitUnaryPlus(const UnaryOperator *E) {
592     // This differs from gcc, though, most likely due to a bug in gcc.
593     TestAndClearIgnoreResultAssign();
594     return Visit(E->getSubExpr());
595   }
596   Value *VisitUnaryMinus    (const UnaryOperator *E);
597   Value *VisitUnaryNot      (const UnaryOperator *E);
598   Value *VisitUnaryLNot     (const UnaryOperator *E);
599   Value *VisitUnaryReal     (const UnaryOperator *E);
600   Value *VisitUnaryImag     (const UnaryOperator *E);
601   Value *VisitUnaryExtension(const UnaryOperator *E) {
602     return Visit(E->getSubExpr());
603   }
604 
605   // C++
606   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
607     return EmitLoadOfLValue(E);
608   }
609 
610   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
611     return Visit(DAE->getExpr());
612   }
613   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
614     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
615     return Visit(DIE->getExpr());
616   }
617   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
618     return CGF.LoadCXXThis();
619   }
620 
621   Value *VisitExprWithCleanups(ExprWithCleanups *E);
622   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
623     return CGF.EmitCXXNewExpr(E);
624   }
625   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
626     CGF.EmitCXXDeleteExpr(E);
627     return nullptr;
628   }
629 
630   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
631     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
632   }
633 
634   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
635     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
636   }
637 
638   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
639     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
640   }
641 
642   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
643     // C++ [expr.pseudo]p1:
644     //   The result shall only be used as the operand for the function call
645     //   operator (), and the result of such a call has type void. The only
646     //   effect is the evaluation of the postfix-expression before the dot or
647     //   arrow.
648     CGF.EmitScalarExpr(E->getBase());
649     return nullptr;
650   }
651 
652   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
653     return EmitNullValue(E->getType());
654   }
655 
656   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
657     CGF.EmitCXXThrowExpr(E);
658     return nullptr;
659   }
660 
661   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
662     return Builder.getInt1(E->getValue());
663   }
664 
665   // Binary Operators.
666   Value *EmitMul(const BinOpInfo &Ops) {
667     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
668       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
669       case LangOptions::SOB_Defined:
670         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
671       case LangOptions::SOB_Undefined:
672         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
673           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
674         LLVM_FALLTHROUGH;
675       case LangOptions::SOB_Trapping:
676         if (CanElideOverflowCheck(CGF.getContext(), Ops))
677           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
678         return EmitOverflowCheckedBinOp(Ops);
679       }
680     }
681 
682     if (Ops.Ty->isUnsignedIntegerType() &&
683         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
684         !CanElideOverflowCheck(CGF.getContext(), Ops))
685       return EmitOverflowCheckedBinOp(Ops);
686 
687     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
688       Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
689       return propagateFMFlags(V, Ops);
690     }
691     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
692   }
693   /// Create a binary op that checks for overflow.
694   /// Currently only supports +, - and *.
695   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
696 
697   // Check for undefined division and modulus behaviors.
698   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
699                                                   llvm::Value *Zero,bool isDiv);
700   // Common helper for getting how wide LHS of shift is.
701   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
702   Value *EmitDiv(const BinOpInfo &Ops);
703   Value *EmitRem(const BinOpInfo &Ops);
704   Value *EmitAdd(const BinOpInfo &Ops);
705   Value *EmitSub(const BinOpInfo &Ops);
706   Value *EmitShl(const BinOpInfo &Ops);
707   Value *EmitShr(const BinOpInfo &Ops);
708   Value *EmitAnd(const BinOpInfo &Ops) {
709     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
710   }
711   Value *EmitXor(const BinOpInfo &Ops) {
712     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
713   }
714   Value *EmitOr (const BinOpInfo &Ops) {
715     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
716   }
717 
718   BinOpInfo EmitBinOps(const BinaryOperator *E);
719   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
720                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
721                                   Value *&Result);
722 
723   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
724                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
725 
726   // Binary operators and binary compound assignment operators.
727 #define HANDLEBINOP(OP) \
728   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
729     return Emit ## OP(EmitBinOps(E));                                      \
730   }                                                                        \
731   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
732     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
733   }
734   HANDLEBINOP(Mul)
735   HANDLEBINOP(Div)
736   HANDLEBINOP(Rem)
737   HANDLEBINOP(Add)
738   HANDLEBINOP(Sub)
739   HANDLEBINOP(Shl)
740   HANDLEBINOP(Shr)
741   HANDLEBINOP(And)
742   HANDLEBINOP(Xor)
743   HANDLEBINOP(Or)
744 #undef HANDLEBINOP
745 
746   // Comparisons.
747   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
748                      llvm::CmpInst::Predicate SICmpOpc,
749                      llvm::CmpInst::Predicate FCmpOpc);
750 #define VISITCOMP(CODE, UI, SI, FP) \
751     Value *VisitBin##CODE(const BinaryOperator *E) { \
752       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
753                          llvm::FCmpInst::FP); }
754   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
755   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
756   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
757   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
758   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
759   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
760 #undef VISITCOMP
761 
762   Value *VisitBinAssign     (const BinaryOperator *E);
763 
764   Value *VisitBinLAnd       (const BinaryOperator *E);
765   Value *VisitBinLOr        (const BinaryOperator *E);
766   Value *VisitBinComma      (const BinaryOperator *E);
767 
768   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
769   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
770 
771   // Other Operators.
772   Value *VisitBlockExpr(const BlockExpr *BE);
773   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
774   Value *VisitChooseExpr(ChooseExpr *CE);
775   Value *VisitVAArgExpr(VAArgExpr *VE);
776   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
777     return CGF.EmitObjCStringLiteral(E);
778   }
779   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
780     return CGF.EmitObjCBoxedExpr(E);
781   }
782   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
783     return CGF.EmitObjCArrayLiteral(E);
784   }
785   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
786     return CGF.EmitObjCDictionaryLiteral(E);
787   }
788   Value *VisitAsTypeExpr(AsTypeExpr *CE);
789   Value *VisitAtomicExpr(AtomicExpr *AE);
790 };
791 }  // end anonymous namespace.
792 
793 //===----------------------------------------------------------------------===//
794 //                                Utilities
795 //===----------------------------------------------------------------------===//
796 
797 /// EmitConversionToBool - Convert the specified expression value to a
798 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
799 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
800   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
801 
802   if (SrcType->isRealFloatingType())
803     return EmitFloatToBoolConversion(Src);
804 
805   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
806     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
807 
808   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
809          "Unknown scalar type to convert");
810 
811   if (isa<llvm::IntegerType>(Src->getType()))
812     return EmitIntToBoolConversion(Src);
813 
814   assert(isa<llvm::PointerType>(Src->getType()));
815   return EmitPointerToBoolConversion(Src, SrcType);
816 }
817 
818 void ScalarExprEmitter::EmitFloatConversionCheck(
819     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
820     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
821   CodeGenFunction::SanitizerScope SanScope(&CGF);
822   using llvm::APFloat;
823   using llvm::APSInt;
824 
825   llvm::Type *SrcTy = Src->getType();
826 
827   llvm::Value *Check = nullptr;
828   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
829     // Integer to floating-point. This can fail for unsigned short -> __half
830     // or unsigned __int128 -> float.
831     assert(DstType->isFloatingType());
832     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
833 
834     APFloat LargestFloat =
835       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
836     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
837 
838     bool IsExact;
839     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
840                                       &IsExact) != APFloat::opOK)
841       // The range of representable values of this floating point type includes
842       // all values of this integer type. Don't need an overflow check.
843       return;
844 
845     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
846     if (SrcIsUnsigned)
847       Check = Builder.CreateICmpULE(Src, Max);
848     else {
849       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
850       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
851       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
852       Check = Builder.CreateAnd(GE, LE);
853     }
854   } else {
855     const llvm::fltSemantics &SrcSema =
856       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
857     if (isa<llvm::IntegerType>(DstTy)) {
858       // Floating-point to integer. This has undefined behavior if the source is
859       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
860       // to an integer).
861       unsigned Width = CGF.getContext().getIntWidth(DstType);
862       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
863 
864       APSInt Min = APSInt::getMinValue(Width, Unsigned);
865       APFloat MinSrc(SrcSema, APFloat::uninitialized);
866       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
867           APFloat::opOverflow)
868         // Don't need an overflow check for lower bound. Just check for
869         // -Inf/NaN.
870         MinSrc = APFloat::getInf(SrcSema, true);
871       else
872         // Find the largest value which is too small to represent (before
873         // truncation toward zero).
874         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
875 
876       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
877       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
878       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
879           APFloat::opOverflow)
880         // Don't need an overflow check for upper bound. Just check for
881         // +Inf/NaN.
882         MaxSrc = APFloat::getInf(SrcSema, false);
883       else
884         // Find the smallest value which is too large to represent (before
885         // truncation toward zero).
886         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
887 
888       // If we're converting from __half, convert the range to float to match
889       // the type of src.
890       if (OrigSrcType->isHalfType()) {
891         const llvm::fltSemantics &Sema =
892           CGF.getContext().getFloatTypeSemantics(SrcType);
893         bool IsInexact;
894         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
895         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
896       }
897 
898       llvm::Value *GE =
899         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
900       llvm::Value *LE =
901         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
902       Check = Builder.CreateAnd(GE, LE);
903     } else {
904       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
905       //
906       // Floating-point to floating-point. This has undefined behavior if the
907       // source is not in the range of representable values of the destination
908       // type. The C and C++ standards are spectacularly unclear here. We
909       // diagnose finite out-of-range conversions, but allow infinities and NaNs
910       // to convert to the corresponding value in the smaller type.
911       //
912       // C11 Annex F gives all such conversions defined behavior for IEC 60559
913       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
914       // does not.
915 
916       // Converting from a lower rank to a higher rank can never have
917       // undefined behavior, since higher-rank types must have a superset
918       // of values of lower-rank types.
919       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
920         return;
921 
922       assert(!OrigSrcType->isHalfType() &&
923              "should not check conversion from __half, it has the lowest rank");
924 
925       const llvm::fltSemantics &DstSema =
926         CGF.getContext().getFloatTypeSemantics(DstType);
927       APFloat MinBad = APFloat::getLargest(DstSema, false);
928       APFloat MaxBad = APFloat::getInf(DstSema, false);
929 
930       bool IsInexact;
931       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
932       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
933 
934       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
935         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
936       llvm::Value *GE =
937         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
938       llvm::Value *LE =
939         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
940       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
941     }
942   }
943 
944   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
945                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
946                                   CGF.EmitCheckTypeDescriptor(DstType)};
947   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
948                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
949 }
950 
951 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
952 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
953 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
954                  std::pair<llvm::Value *, SanitizerMask>>
955 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
956                                  QualType DstType, CGBuilderTy &Builder) {
957   llvm::Type *SrcTy = Src->getType();
958   llvm::Type *DstTy = Dst->getType();
959   (void)DstTy; // Only used in assert()
960 
961   // This should be truncation of integral types.
962   assert(Src != Dst);
963   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
964   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
965          "non-integer llvm type");
966 
967   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
968   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
969 
970   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
971   // Else, it is a signed truncation.
972   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
973   SanitizerMask Mask;
974   if (!SrcSigned && !DstSigned) {
975     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
976     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
977   } else {
978     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
979     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
980   }
981 
982   llvm::Value *Check = nullptr;
983   // 1. Extend the truncated value back to the same width as the Src.
984   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
985   // 2. Equality-compare with the original source value
986   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
987   // If the comparison result is 'i1 false', then the truncation was lossy.
988   return std::make_pair(Kind, std::make_pair(Check, Mask));
989 }
990 
991 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
992                                                    Value *Dst, QualType DstType,
993                                                    SourceLocation Loc) {
994   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
995     return;
996 
997   // We only care about int->int conversions here.
998   // We ignore conversions to/from pointer and/or bool.
999   if (!(SrcType->isIntegerType() && DstType->isIntegerType()))
1000     return;
1001 
1002   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1003   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1004   // This must be truncation. Else we do not care.
1005   if (SrcBits <= DstBits)
1006     return;
1007 
1008   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1009 
1010   // If the integer sign change sanitizer is enabled,
1011   // and we are truncating from larger unsigned type to smaller signed type,
1012   // let that next sanitizer deal with it.
1013   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1014   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1015   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1016       (!SrcSigned && DstSigned))
1017     return;
1018 
1019   CodeGenFunction::SanitizerScope SanScope(&CGF);
1020 
1021   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1022             std::pair<llvm::Value *, SanitizerMask>>
1023       Check =
1024           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1025   // If the comparison result is 'i1 false', then the truncation was lossy.
1026 
1027   // Do we care about this type of truncation?
1028   if (!CGF.SanOpts.has(Check.second.second))
1029     return;
1030 
1031   llvm::Constant *StaticArgs[] = {
1032       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1033       CGF.EmitCheckTypeDescriptor(DstType),
1034       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1035   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1036                 {Src, Dst});
1037 }
1038 
1039 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1040 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1041 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1042                  std::pair<llvm::Value *, SanitizerMask>>
1043 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1044                                  QualType DstType, CGBuilderTy &Builder) {
1045   llvm::Type *SrcTy = Src->getType();
1046   llvm::Type *DstTy = Dst->getType();
1047 
1048   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1049          "non-integer llvm type");
1050 
1051   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1052   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1053   (void)SrcSigned; // Only used in assert()
1054   (void)DstSigned; // Only used in assert()
1055   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1056   unsigned DstBits = DstTy->getScalarSizeInBits();
1057   (void)SrcBits; // Only used in assert()
1058   (void)DstBits; // Only used in assert()
1059 
1060   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1061          "either the widths should be different, or the signednesses.");
1062 
1063   // NOTE: zero value is considered to be non-negative.
1064   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1065                                        const char *Name) -> Value * {
1066     // Is this value a signed type?
1067     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1068     llvm::Type *VTy = V->getType();
1069     if (!VSigned) {
1070       // If the value is unsigned, then it is never negative.
1071       // FIXME: can we encounter non-scalar VTy here?
1072       return llvm::ConstantInt::getFalse(VTy->getContext());
1073     }
1074     // Get the zero of the same type with which we will be comparing.
1075     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1076     // %V.isnegative = icmp slt %V, 0
1077     // I.e is %V *strictly* less than zero, does it have negative value?
1078     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1079                               llvm::Twine(Name) + "." + V->getName() +
1080                                   ".negativitycheck");
1081   };
1082 
1083   // 1. Was the old Value negative?
1084   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1085   // 2. Is the new Value negative?
1086   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1087   // 3. Now, was the 'negativity status' preserved during the conversion?
1088   //    NOTE: conversion from negative to zero is considered to change the sign.
1089   //    (We want to get 'false' when the conversion changed the sign)
1090   //    So we should just equality-compare the negativity statuses.
1091   llvm::Value *Check = nullptr;
1092   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1093   // If the comparison result is 'false', then the conversion changed the sign.
1094   return std::make_pair(
1095       ScalarExprEmitter::ICCK_IntegerSignChange,
1096       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1097 }
1098 
1099 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1100                                                    Value *Dst, QualType DstType,
1101                                                    SourceLocation Loc) {
1102   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1103     return;
1104 
1105   llvm::Type *SrcTy = Src->getType();
1106   llvm::Type *DstTy = Dst->getType();
1107 
1108   // We only care about int->int conversions here.
1109   // We ignore conversions to/from pointer and/or bool.
1110   if (!(SrcType->isIntegerType() && DstType->isIntegerType()))
1111     return;
1112 
1113   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1114   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1115   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1116   unsigned DstBits = DstTy->getScalarSizeInBits();
1117 
1118   // Now, we do not need to emit the check in *all* of the cases.
1119   // We can avoid emitting it in some obvious cases where it would have been
1120   // dropped by the opt passes (instcombine) always anyways.
1121   // If it's a cast between effectively the same type, no check.
1122   // NOTE: this is *not* equivalent to checking the canonical types.
1123   if (SrcSigned == DstSigned && SrcBits == DstBits)
1124     return;
1125   // At least one of the values needs to have signed type.
1126   // If both are unsigned, then obviously, neither of them can be negative.
1127   if (!SrcSigned && !DstSigned)
1128     return;
1129   // If the conversion is to *larger* *signed* type, then no check is needed.
1130   // Because either sign-extension happens (so the sign will remain),
1131   // or zero-extension will happen (the sign bit will be zero.)
1132   if ((DstBits > SrcBits) && DstSigned)
1133     return;
1134   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1135       (SrcBits > DstBits) && SrcSigned) {
1136     // If the signed integer truncation sanitizer is enabled,
1137     // and this is a truncation from signed type, then no check is needed.
1138     // Because here sign change check is interchangeable with truncation check.
1139     return;
1140   }
1141   // That's it. We can't rule out any more cases with the data we have.
1142 
1143   CodeGenFunction::SanitizerScope SanScope(&CGF);
1144 
1145   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1146             std::pair<llvm::Value *, SanitizerMask>>
1147       Check;
1148 
1149   // Each of these checks needs to return 'false' when an issue was detected.
1150   ImplicitConversionCheckKind CheckKind;
1151   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1152   // So we can 'and' all the checks together, and still get 'false',
1153   // if at least one of the checks detected an issue.
1154 
1155   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1156   CheckKind = Check.first;
1157   Checks.emplace_back(Check.second);
1158 
1159   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1160       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1161     // If the signed integer truncation sanitizer was enabled,
1162     // and we are truncating from larger unsigned type to smaller signed type,
1163     // let's handle the case we skipped in that check.
1164     Check =
1165         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1166     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1167     Checks.emplace_back(Check.second);
1168     // If the comparison result is 'i1 false', then the truncation was lossy.
1169   }
1170 
1171   llvm::Constant *StaticArgs[] = {
1172       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1173       CGF.EmitCheckTypeDescriptor(DstType),
1174       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1175   // EmitCheck() will 'and' all the checks together.
1176   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1177                 {Src, Dst});
1178 }
1179 
1180 /// Emit a conversion from the specified type to the specified destination type,
1181 /// both of which are LLVM scalar types.
1182 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1183                                                QualType DstType,
1184                                                SourceLocation Loc,
1185                                                ScalarConversionOpts Opts) {
1186   // All conversions involving fixed point types should be handled by the
1187   // EmitFixedPoint family functions. This is done to prevent bloating up this
1188   // function more, and although fixed point numbers are represented by
1189   // integers, we do not want to follow any logic that assumes they should be
1190   // treated as integers.
1191   // TODO(leonardchan): When necessary, add another if statement checking for
1192   // conversions to fixed point types from other types.
1193   if (SrcType->isFixedPointType()) {
1194     if (DstType->isFixedPointType()) {
1195       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1196     } else if (DstType->isBooleanType()) {
1197       // We do not need to check the padding bit on unsigned types if unsigned
1198       // padding is enabled because overflow into this bit is undefined
1199       // behavior.
1200       return Builder.CreateIsNotNull(Src, "tobool");
1201     }
1202 
1203     llvm_unreachable(
1204         "Unhandled scalar conversion involving a fixed point type.");
1205   }
1206 
1207   QualType NoncanonicalSrcType = SrcType;
1208   QualType NoncanonicalDstType = DstType;
1209 
1210   SrcType = CGF.getContext().getCanonicalType(SrcType);
1211   DstType = CGF.getContext().getCanonicalType(DstType);
1212   if (SrcType == DstType) return Src;
1213 
1214   if (DstType->isVoidType()) return nullptr;
1215 
1216   llvm::Value *OrigSrc = Src;
1217   QualType OrigSrcType = SrcType;
1218   llvm::Type *SrcTy = Src->getType();
1219 
1220   // Handle conversions to bool first, they are special: comparisons against 0.
1221   if (DstType->isBooleanType())
1222     return EmitConversionToBool(Src, SrcType);
1223 
1224   llvm::Type *DstTy = ConvertType(DstType);
1225 
1226   // Cast from half through float if half isn't a native type.
1227   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1228     // Cast to FP using the intrinsic if the half type itself isn't supported.
1229     if (DstTy->isFloatingPointTy()) {
1230       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1231         return Builder.CreateCall(
1232             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1233             Src);
1234     } else {
1235       // Cast to other types through float, using either the intrinsic or FPExt,
1236       // depending on whether the half type itself is supported
1237       // (as opposed to operations on half, available with NativeHalfType).
1238       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1239         Src = Builder.CreateCall(
1240             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1241                                  CGF.CGM.FloatTy),
1242             Src);
1243       } else {
1244         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1245       }
1246       SrcType = CGF.getContext().FloatTy;
1247       SrcTy = CGF.FloatTy;
1248     }
1249   }
1250 
1251   // Ignore conversions like int -> uint.
1252   if (SrcTy == DstTy) {
1253     if (Opts.EmitImplicitIntegerSignChangeChecks)
1254       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1255                                  NoncanonicalDstType, Loc);
1256 
1257     return Src;
1258   }
1259 
1260   // Handle pointer conversions next: pointers can only be converted to/from
1261   // other pointers and integers. Check for pointer types in terms of LLVM, as
1262   // some native types (like Obj-C id) may map to a pointer type.
1263   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1264     // The source value may be an integer, or a pointer.
1265     if (isa<llvm::PointerType>(SrcTy))
1266       return Builder.CreateBitCast(Src, DstTy, "conv");
1267 
1268     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1269     // First, convert to the correct width so that we control the kind of
1270     // extension.
1271     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1272     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1273     llvm::Value* IntResult =
1274         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1275     // Then, cast to pointer.
1276     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1277   }
1278 
1279   if (isa<llvm::PointerType>(SrcTy)) {
1280     // Must be an ptr to int cast.
1281     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1282     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1283   }
1284 
1285   // A scalar can be splatted to an extended vector of the same element type
1286   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1287     // Sema should add casts to make sure that the source expression's type is
1288     // the same as the vector's element type (sans qualifiers)
1289     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1290                SrcType.getTypePtr() &&
1291            "Splatted expr doesn't match with vector element type?");
1292 
1293     // Splat the element across to all elements
1294     unsigned NumElements = DstTy->getVectorNumElements();
1295     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1296   }
1297 
1298   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1299     // Allow bitcast from vector to integer/fp of the same size.
1300     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1301     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1302     if (SrcSize == DstSize)
1303       return Builder.CreateBitCast(Src, DstTy, "conv");
1304 
1305     // Conversions between vectors of different sizes are not allowed except
1306     // when vectors of half are involved. Operations on storage-only half
1307     // vectors require promoting half vector operands to float vectors and
1308     // truncating the result, which is either an int or float vector, to a
1309     // short or half vector.
1310 
1311     // Source and destination are both expected to be vectors.
1312     llvm::Type *SrcElementTy = SrcTy->getVectorElementType();
1313     llvm::Type *DstElementTy = DstTy->getVectorElementType();
1314     (void)DstElementTy;
1315 
1316     assert(((SrcElementTy->isIntegerTy() &&
1317              DstElementTy->isIntegerTy()) ||
1318             (SrcElementTy->isFloatingPointTy() &&
1319              DstElementTy->isFloatingPointTy())) &&
1320            "unexpected conversion between a floating-point vector and an "
1321            "integer vector");
1322 
1323     // Truncate an i32 vector to an i16 vector.
1324     if (SrcElementTy->isIntegerTy())
1325       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1326 
1327     // Truncate a float vector to a half vector.
1328     if (SrcSize > DstSize)
1329       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1330 
1331     // Promote a half vector to a float vector.
1332     return Builder.CreateFPExt(Src, DstTy, "conv");
1333   }
1334 
1335   // Finally, we have the arithmetic types: real int/float.
1336   Value *Res = nullptr;
1337   llvm::Type *ResTy = DstTy;
1338 
1339   // An overflowing conversion has undefined behavior if either the source type
1340   // or the destination type is a floating-point type.
1341   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1342       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
1343     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1344                              Loc);
1345 
1346   // Cast to half through float if half isn't a native type.
1347   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1348     // Make sure we cast in a single step if from another FP type.
1349     if (SrcTy->isFloatingPointTy()) {
1350       // Use the intrinsic if the half type itself isn't supported
1351       // (as opposed to operations on half, available with NativeHalfType).
1352       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1353         return Builder.CreateCall(
1354             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1355       // If the half type is supported, just use an fptrunc.
1356       return Builder.CreateFPTrunc(Src, DstTy);
1357     }
1358     DstTy = CGF.FloatTy;
1359   }
1360 
1361   if (isa<llvm::IntegerType>(SrcTy)) {
1362     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1363     if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1364       InputSigned = true;
1365     }
1366     if (isa<llvm::IntegerType>(DstTy))
1367       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1368     else if (InputSigned)
1369       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1370     else
1371       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1372   } else if (isa<llvm::IntegerType>(DstTy)) {
1373     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1374     if (DstType->isSignedIntegerOrEnumerationType())
1375       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1376     else
1377       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1378   } else {
1379     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1380            "Unknown real conversion");
1381     if (DstTy->getTypeID() < SrcTy->getTypeID())
1382       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1383     else
1384       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1385   }
1386 
1387   if (DstTy != ResTy) {
1388     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1389       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1390       Res = Builder.CreateCall(
1391         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1392         Res);
1393     } else {
1394       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1395     }
1396   }
1397 
1398   if (Opts.EmitImplicitIntegerTruncationChecks)
1399     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1400                                NoncanonicalDstType, Loc);
1401 
1402   if (Opts.EmitImplicitIntegerSignChangeChecks)
1403     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1404                                NoncanonicalDstType, Loc);
1405 
1406   return Res;
1407 }
1408 
1409 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1410                                                    QualType DstTy,
1411                                                    SourceLocation Loc) {
1412   using llvm::APInt;
1413   using llvm::ConstantInt;
1414   using llvm::Value;
1415 
1416   assert(SrcTy->isFixedPointType());
1417   assert(DstTy->isFixedPointType());
1418 
1419   FixedPointSemantics SrcFPSema =
1420       CGF.getContext().getFixedPointSemantics(SrcTy);
1421   FixedPointSemantics DstFPSema =
1422       CGF.getContext().getFixedPointSemantics(DstTy);
1423   unsigned SrcWidth = SrcFPSema.getWidth();
1424   unsigned DstWidth = DstFPSema.getWidth();
1425   unsigned SrcScale = SrcFPSema.getScale();
1426   unsigned DstScale = DstFPSema.getScale();
1427   bool SrcIsSigned = SrcFPSema.isSigned();
1428   bool DstIsSigned = DstFPSema.isSigned();
1429 
1430   llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth);
1431 
1432   Value *Result = Src;
1433   unsigned ResultWidth = SrcWidth;
1434 
1435   if (!DstFPSema.isSaturated()) {
1436     // Downscale.
1437     if (DstScale < SrcScale)
1438       Result = SrcIsSigned ?
1439           Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") :
1440           Builder.CreateLShr(Result, SrcScale - DstScale, "downscale");
1441 
1442     // Resize.
1443     Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1444 
1445     // Upscale.
1446     if (DstScale > SrcScale)
1447       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1448   } else {
1449     // Adjust the number of fractional bits.
1450     if (DstScale > SrcScale) {
1451       ResultWidth = SrcWidth + DstScale - SrcScale;
1452       llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth);
1453       Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize");
1454       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1455     } else if (DstScale < SrcScale) {
1456       Result = SrcIsSigned ?
1457           Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") :
1458           Builder.CreateLShr(Result, SrcScale - DstScale, "downscale");
1459     }
1460 
1461     // Handle saturation.
1462     bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits();
1463     if (LessIntBits) {
1464       Value *Max = ConstantInt::get(
1465           CGF.getLLVMContext(),
1466           APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth));
1467       Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max)
1468                                    : Builder.CreateICmpUGT(Result, Max);
1469       Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax");
1470     }
1471     // Cannot overflow min to dest type if src is unsigned since all fixed
1472     // point types can cover the unsigned min of 0.
1473     if (SrcIsSigned && (LessIntBits || !DstIsSigned)) {
1474       Value *Min = ConstantInt::get(
1475           CGF.getLLVMContext(),
1476           APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth));
1477       Value *TooLow = Builder.CreateICmpSLT(Result, Min);
1478       Result = Builder.CreateSelect(TooLow, Min, Result, "satmin");
1479     }
1480 
1481     // Resize the integer part to get the final destination size.
1482     Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1483   }
1484   return Result;
1485 }
1486 
1487 /// Emit a conversion from the specified complex type to the specified
1488 /// destination type, where the destination type is an LLVM scalar type.
1489 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1490     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1491     SourceLocation Loc) {
1492   // Get the source element type.
1493   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1494 
1495   // Handle conversions to bool first, they are special: comparisons against 0.
1496   if (DstTy->isBooleanType()) {
1497     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1498     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1499     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1500     return Builder.CreateOr(Src.first, Src.second, "tobool");
1501   }
1502 
1503   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1504   // the imaginary part of the complex value is discarded and the value of the
1505   // real part is converted according to the conversion rules for the
1506   // corresponding real type.
1507   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1508 }
1509 
1510 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1511   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1512 }
1513 
1514 /// Emit a sanitization check for the given "binary" operation (which
1515 /// might actually be a unary increment which has been lowered to a binary
1516 /// operation). The check passes if all values in \p Checks (which are \c i1),
1517 /// are \c true.
1518 void ScalarExprEmitter::EmitBinOpCheck(
1519     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1520   assert(CGF.IsSanitizerScope);
1521   SanitizerHandler Check;
1522   SmallVector<llvm::Constant *, 4> StaticData;
1523   SmallVector<llvm::Value *, 2> DynamicData;
1524 
1525   BinaryOperatorKind Opcode = Info.Opcode;
1526   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1527     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1528 
1529   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1530   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1531   if (UO && UO->getOpcode() == UO_Minus) {
1532     Check = SanitizerHandler::NegateOverflow;
1533     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1534     DynamicData.push_back(Info.RHS);
1535   } else {
1536     if (BinaryOperator::isShiftOp(Opcode)) {
1537       // Shift LHS negative or too large, or RHS out of bounds.
1538       Check = SanitizerHandler::ShiftOutOfBounds;
1539       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1540       StaticData.push_back(
1541         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1542       StaticData.push_back(
1543         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1544     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1545       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1546       Check = SanitizerHandler::DivremOverflow;
1547       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1548     } else {
1549       // Arithmetic overflow (+, -, *).
1550       switch (Opcode) {
1551       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1552       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1553       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1554       default: llvm_unreachable("unexpected opcode for bin op check");
1555       }
1556       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1557     }
1558     DynamicData.push_back(Info.LHS);
1559     DynamicData.push_back(Info.RHS);
1560   }
1561 
1562   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1563 }
1564 
1565 //===----------------------------------------------------------------------===//
1566 //                            Visitor Methods
1567 //===----------------------------------------------------------------------===//
1568 
1569 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1570   CGF.ErrorUnsupported(E, "scalar expression");
1571   if (E->getType()->isVoidType())
1572     return nullptr;
1573   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1574 }
1575 
1576 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1577   // Vector Mask Case
1578   if (E->getNumSubExprs() == 2) {
1579     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1580     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1581     Value *Mask;
1582 
1583     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1584     unsigned LHSElts = LTy->getNumElements();
1585 
1586     Mask = RHS;
1587 
1588     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1589 
1590     // Mask off the high bits of each shuffle index.
1591     Value *MaskBits =
1592         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1593     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1594 
1595     // newv = undef
1596     // mask = mask & maskbits
1597     // for each elt
1598     //   n = extract mask i
1599     //   x = extract val n
1600     //   newv = insert newv, x, i
1601     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1602                                                   MTy->getNumElements());
1603     Value* NewV = llvm::UndefValue::get(RTy);
1604     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1605       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1606       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1607 
1608       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1609       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1610     }
1611     return NewV;
1612   }
1613 
1614   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1615   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1616 
1617   SmallVector<llvm::Constant*, 32> indices;
1618   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1619     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1620     // Check for -1 and output it as undef in the IR.
1621     if (Idx.isSigned() && Idx.isAllOnesValue())
1622       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1623     else
1624       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1625   }
1626 
1627   Value *SV = llvm::ConstantVector::get(indices);
1628   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1629 }
1630 
1631 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1632   QualType SrcType = E->getSrcExpr()->getType(),
1633            DstType = E->getType();
1634 
1635   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1636 
1637   SrcType = CGF.getContext().getCanonicalType(SrcType);
1638   DstType = CGF.getContext().getCanonicalType(DstType);
1639   if (SrcType == DstType) return Src;
1640 
1641   assert(SrcType->isVectorType() &&
1642          "ConvertVector source type must be a vector");
1643   assert(DstType->isVectorType() &&
1644          "ConvertVector destination type must be a vector");
1645 
1646   llvm::Type *SrcTy = Src->getType();
1647   llvm::Type *DstTy = ConvertType(DstType);
1648 
1649   // Ignore conversions like int -> uint.
1650   if (SrcTy == DstTy)
1651     return Src;
1652 
1653   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1654            DstEltType = DstType->getAs<VectorType>()->getElementType();
1655 
1656   assert(SrcTy->isVectorTy() &&
1657          "ConvertVector source IR type must be a vector");
1658   assert(DstTy->isVectorTy() &&
1659          "ConvertVector destination IR type must be a vector");
1660 
1661   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1662              *DstEltTy = DstTy->getVectorElementType();
1663 
1664   if (DstEltType->isBooleanType()) {
1665     assert((SrcEltTy->isFloatingPointTy() ||
1666             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1667 
1668     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1669     if (SrcEltTy->isFloatingPointTy()) {
1670       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1671     } else {
1672       return Builder.CreateICmpNE(Src, Zero, "tobool");
1673     }
1674   }
1675 
1676   // We have the arithmetic types: real int/float.
1677   Value *Res = nullptr;
1678 
1679   if (isa<llvm::IntegerType>(SrcEltTy)) {
1680     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1681     if (isa<llvm::IntegerType>(DstEltTy))
1682       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1683     else if (InputSigned)
1684       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1685     else
1686       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1687   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1688     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1689     if (DstEltType->isSignedIntegerOrEnumerationType())
1690       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1691     else
1692       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1693   } else {
1694     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1695            "Unknown real conversion");
1696     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1697       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1698     else
1699       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1700   }
1701 
1702   return Res;
1703 }
1704 
1705 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1706   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1707     CGF.EmitIgnoredExpr(E->getBase());
1708     return CGF.emitScalarConstant(Constant, E);
1709   } else {
1710     llvm::APSInt Value;
1711     if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1712       CGF.EmitIgnoredExpr(E->getBase());
1713       return Builder.getInt(Value);
1714     }
1715   }
1716 
1717   return EmitLoadOfLValue(E);
1718 }
1719 
1720 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1721   TestAndClearIgnoreResultAssign();
1722 
1723   // Emit subscript expressions in rvalue context's.  For most cases, this just
1724   // loads the lvalue formed by the subscript expr.  However, we have to be
1725   // careful, because the base of a vector subscript is occasionally an rvalue,
1726   // so we can't get it as an lvalue.
1727   if (!E->getBase()->getType()->isVectorType())
1728     return EmitLoadOfLValue(E);
1729 
1730   // Handle the vector case.  The base must be a vector, the index must be an
1731   // integer value.
1732   Value *Base = Visit(E->getBase());
1733   Value *Idx  = Visit(E->getIdx());
1734   QualType IdxTy = E->getIdx()->getType();
1735 
1736   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1737     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1738 
1739   return Builder.CreateExtractElement(Base, Idx, "vecext");
1740 }
1741 
1742 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1743                                   unsigned Off, llvm::Type *I32Ty) {
1744   int MV = SVI->getMaskValue(Idx);
1745   if (MV == -1)
1746     return llvm::UndefValue::get(I32Ty);
1747   return llvm::ConstantInt::get(I32Ty, Off+MV);
1748 }
1749 
1750 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1751   if (C->getBitWidth() != 32) {
1752       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1753                                                     C->getZExtValue()) &&
1754              "Index operand too large for shufflevector mask!");
1755       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1756   }
1757   return C;
1758 }
1759 
1760 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1761   bool Ignore = TestAndClearIgnoreResultAssign();
1762   (void)Ignore;
1763   assert (Ignore == false && "init list ignored");
1764   unsigned NumInitElements = E->getNumInits();
1765 
1766   if (E->hadArrayRangeDesignator())
1767     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1768 
1769   llvm::VectorType *VType =
1770     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1771 
1772   if (!VType) {
1773     if (NumInitElements == 0) {
1774       // C++11 value-initialization for the scalar.
1775       return EmitNullValue(E->getType());
1776     }
1777     // We have a scalar in braces. Just use the first element.
1778     return Visit(E->getInit(0));
1779   }
1780 
1781   unsigned ResElts = VType->getNumElements();
1782 
1783   // Loop over initializers collecting the Value for each, and remembering
1784   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1785   // us to fold the shuffle for the swizzle into the shuffle for the vector
1786   // initializer, since LLVM optimizers generally do not want to touch
1787   // shuffles.
1788   unsigned CurIdx = 0;
1789   bool VIsUndefShuffle = false;
1790   llvm::Value *V = llvm::UndefValue::get(VType);
1791   for (unsigned i = 0; i != NumInitElements; ++i) {
1792     Expr *IE = E->getInit(i);
1793     Value *Init = Visit(IE);
1794     SmallVector<llvm::Constant*, 16> Args;
1795 
1796     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1797 
1798     // Handle scalar elements.  If the scalar initializer is actually one
1799     // element of a different vector of the same width, use shuffle instead of
1800     // extract+insert.
1801     if (!VVT) {
1802       if (isa<ExtVectorElementExpr>(IE)) {
1803         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1804 
1805         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1806           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1807           Value *LHS = nullptr, *RHS = nullptr;
1808           if (CurIdx == 0) {
1809             // insert into undef -> shuffle (src, undef)
1810             // shufflemask must use an i32
1811             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1812             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1813 
1814             LHS = EI->getVectorOperand();
1815             RHS = V;
1816             VIsUndefShuffle = true;
1817           } else if (VIsUndefShuffle) {
1818             // insert into undefshuffle && size match -> shuffle (v, src)
1819             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1820             for (unsigned j = 0; j != CurIdx; ++j)
1821               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1822             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1823             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1824 
1825             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1826             RHS = EI->getVectorOperand();
1827             VIsUndefShuffle = false;
1828           }
1829           if (!Args.empty()) {
1830             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1831             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1832             ++CurIdx;
1833             continue;
1834           }
1835         }
1836       }
1837       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1838                                       "vecinit");
1839       VIsUndefShuffle = false;
1840       ++CurIdx;
1841       continue;
1842     }
1843 
1844     unsigned InitElts = VVT->getNumElements();
1845 
1846     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1847     // input is the same width as the vector being constructed, generate an
1848     // optimized shuffle of the swizzle input into the result.
1849     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1850     if (isa<ExtVectorElementExpr>(IE)) {
1851       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1852       Value *SVOp = SVI->getOperand(0);
1853       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1854 
1855       if (OpTy->getNumElements() == ResElts) {
1856         for (unsigned j = 0; j != CurIdx; ++j) {
1857           // If the current vector initializer is a shuffle with undef, merge
1858           // this shuffle directly into it.
1859           if (VIsUndefShuffle) {
1860             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1861                                       CGF.Int32Ty));
1862           } else {
1863             Args.push_back(Builder.getInt32(j));
1864           }
1865         }
1866         for (unsigned j = 0, je = InitElts; j != je; ++j)
1867           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1868         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1869 
1870         if (VIsUndefShuffle)
1871           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1872 
1873         Init = SVOp;
1874       }
1875     }
1876 
1877     // Extend init to result vector length, and then shuffle its contribution
1878     // to the vector initializer into V.
1879     if (Args.empty()) {
1880       for (unsigned j = 0; j != InitElts; ++j)
1881         Args.push_back(Builder.getInt32(j));
1882       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1883       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1884       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1885                                          Mask, "vext");
1886 
1887       Args.clear();
1888       for (unsigned j = 0; j != CurIdx; ++j)
1889         Args.push_back(Builder.getInt32(j));
1890       for (unsigned j = 0; j != InitElts; ++j)
1891         Args.push_back(Builder.getInt32(j+Offset));
1892       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1893     }
1894 
1895     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1896     // merging subsequent shuffles into this one.
1897     if (CurIdx == 0)
1898       std::swap(V, Init);
1899     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1900     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1901     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1902     CurIdx += InitElts;
1903   }
1904 
1905   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1906   // Emit remaining default initializers.
1907   llvm::Type *EltTy = VType->getElementType();
1908 
1909   // Emit remaining default initializers
1910   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1911     Value *Idx = Builder.getInt32(CurIdx);
1912     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1913     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1914   }
1915   return V;
1916 }
1917 
1918 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1919   const Expr *E = CE->getSubExpr();
1920 
1921   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1922     return false;
1923 
1924   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1925     // We always assume that 'this' is never null.
1926     return false;
1927   }
1928 
1929   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1930     // And that glvalue casts are never null.
1931     if (ICE->getValueKind() != VK_RValue)
1932       return false;
1933   }
1934 
1935   return true;
1936 }
1937 
1938 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1939 // have to handle a more broad range of conversions than explicit casts, as they
1940 // handle things like function to ptr-to-function decay etc.
1941 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1942   Expr *E = CE->getSubExpr();
1943   QualType DestTy = CE->getType();
1944   CastKind Kind = CE->getCastKind();
1945 
1946   // These cases are generally not written to ignore the result of
1947   // evaluating their sub-expressions, so we clear this now.
1948   bool Ignored = TestAndClearIgnoreResultAssign();
1949 
1950   // Since almost all cast kinds apply to scalars, this switch doesn't have
1951   // a default case, so the compiler will warn on a missing case.  The cases
1952   // are in the same order as in the CastKind enum.
1953   switch (Kind) {
1954   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1955   case CK_BuiltinFnToFnPtr:
1956     llvm_unreachable("builtin functions are handled elsewhere");
1957 
1958   case CK_LValueBitCast:
1959   case CK_ObjCObjectLValueCast: {
1960     Address Addr = EmitLValue(E).getAddress();
1961     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1962     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1963     return EmitLoadOfLValue(LV, CE->getExprLoc());
1964   }
1965 
1966   case CK_CPointerToObjCPointerCast:
1967   case CK_BlockPointerToObjCPointerCast:
1968   case CK_AnyPointerToBlockPointerCast:
1969   case CK_BitCast: {
1970     Value *Src = Visit(const_cast<Expr*>(E));
1971     llvm::Type *SrcTy = Src->getType();
1972     llvm::Type *DstTy = ConvertType(DestTy);
1973     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1974         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1975       llvm_unreachable("wrong cast for pointers in different address spaces"
1976                        "(must be an address space cast)!");
1977     }
1978 
1979     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1980       if (auto PT = DestTy->getAs<PointerType>())
1981         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1982                                       /*MayBeNull=*/true,
1983                                       CodeGenFunction::CFITCK_UnrelatedCast,
1984                                       CE->getBeginLoc());
1985     }
1986 
1987     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
1988       const QualType SrcType = E->getType();
1989 
1990       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
1991         // Casting to pointer that could carry dynamic information (provided by
1992         // invariant.group) requires launder.
1993         Src = Builder.CreateLaunderInvariantGroup(Src);
1994       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
1995         // Casting to pointer that does not carry dynamic information (provided
1996         // by invariant.group) requires stripping it.  Note that we don't do it
1997         // if the source could not be dynamic type and destination could be
1998         // dynamic because dynamic information is already laundered.  It is
1999         // because launder(strip(src)) == launder(src), so there is no need to
2000         // add extra strip before launder.
2001         Src = Builder.CreateStripInvariantGroup(Src);
2002       }
2003     }
2004 
2005     return Builder.CreateBitCast(Src, DstTy);
2006   }
2007   case CK_AddressSpaceConversion: {
2008     Expr::EvalResult Result;
2009     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2010         Result.Val.isNullPointer()) {
2011       // If E has side effect, it is emitted even if its final result is a
2012       // null pointer. In that case, a DCE pass should be able to
2013       // eliminate the useless instructions emitted during translating E.
2014       if (Result.HasSideEffects)
2015         Visit(E);
2016       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2017           ConvertType(DestTy)), DestTy);
2018     }
2019     // Since target may map different address spaces in AST to the same address
2020     // space, an address space conversion may end up as a bitcast.
2021     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2022         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2023         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2024   }
2025   case CK_AtomicToNonAtomic:
2026   case CK_NonAtomicToAtomic:
2027   case CK_NoOp:
2028   case CK_UserDefinedConversion:
2029     return Visit(const_cast<Expr*>(E));
2030 
2031   case CK_BaseToDerived: {
2032     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2033     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2034 
2035     Address Base = CGF.EmitPointerWithAlignment(E);
2036     Address Derived =
2037       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2038                                    CE->path_begin(), CE->path_end(),
2039                                    CGF.ShouldNullCheckClassCastValue(CE));
2040 
2041     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2042     // performed and the object is not of the derived type.
2043     if (CGF.sanitizePerformTypeCheck())
2044       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2045                         Derived.getPointer(), DestTy->getPointeeType());
2046 
2047     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2048       CGF.EmitVTablePtrCheckForCast(
2049           DestTy->getPointeeType(), Derived.getPointer(),
2050           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2051           CE->getBeginLoc());
2052 
2053     return Derived.getPointer();
2054   }
2055   case CK_UncheckedDerivedToBase:
2056   case CK_DerivedToBase: {
2057     // The EmitPointerWithAlignment path does this fine; just discard
2058     // the alignment.
2059     return CGF.EmitPointerWithAlignment(CE).getPointer();
2060   }
2061 
2062   case CK_Dynamic: {
2063     Address V = CGF.EmitPointerWithAlignment(E);
2064     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2065     return CGF.EmitDynamicCast(V, DCE);
2066   }
2067 
2068   case CK_ArrayToPointerDecay:
2069     return CGF.EmitArrayToPointerDecay(E).getPointer();
2070   case CK_FunctionToPointerDecay:
2071     return EmitLValue(E).getPointer();
2072 
2073   case CK_NullToPointer:
2074     if (MustVisitNullValue(E))
2075       (void) Visit(E);
2076 
2077     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2078                               DestTy);
2079 
2080   case CK_NullToMemberPointer: {
2081     if (MustVisitNullValue(E))
2082       (void) Visit(E);
2083 
2084     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2085     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2086   }
2087 
2088   case CK_ReinterpretMemberPointer:
2089   case CK_BaseToDerivedMemberPointer:
2090   case CK_DerivedToBaseMemberPointer: {
2091     Value *Src = Visit(E);
2092 
2093     // Note that the AST doesn't distinguish between checked and
2094     // unchecked member pointer conversions, so we always have to
2095     // implement checked conversions here.  This is inefficient when
2096     // actual control flow may be required in order to perform the
2097     // check, which it is for data member pointers (but not member
2098     // function pointers on Itanium and ARM).
2099     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2100   }
2101 
2102   case CK_ARCProduceObject:
2103     return CGF.EmitARCRetainScalarExpr(E);
2104   case CK_ARCConsumeObject:
2105     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2106   case CK_ARCReclaimReturnedObject:
2107     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2108   case CK_ARCExtendBlockObject:
2109     return CGF.EmitARCExtendBlockObject(E);
2110 
2111   case CK_CopyAndAutoreleaseBlockObject:
2112     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2113 
2114   case CK_FloatingRealToComplex:
2115   case CK_FloatingComplexCast:
2116   case CK_IntegralRealToComplex:
2117   case CK_IntegralComplexCast:
2118   case CK_IntegralComplexToFloatingComplex:
2119   case CK_FloatingComplexToIntegralComplex:
2120   case CK_ConstructorConversion:
2121   case CK_ToUnion:
2122     llvm_unreachable("scalar cast to non-scalar value");
2123 
2124   case CK_LValueToRValue:
2125     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2126     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2127     return Visit(const_cast<Expr*>(E));
2128 
2129   case CK_IntegralToPointer: {
2130     Value *Src = Visit(const_cast<Expr*>(E));
2131 
2132     // First, convert to the correct width so that we control the kind of
2133     // extension.
2134     auto DestLLVMTy = ConvertType(DestTy);
2135     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2136     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2137     llvm::Value* IntResult =
2138       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2139 
2140     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2141 
2142     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2143       // Going from integer to pointer that could be dynamic requires reloading
2144       // dynamic information from invariant.group.
2145       if (DestTy.mayBeDynamicClass())
2146         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2147     }
2148     return IntToPtr;
2149   }
2150   case CK_PointerToIntegral: {
2151     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2152     auto *PtrExpr = Visit(E);
2153 
2154     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2155       const QualType SrcType = E->getType();
2156 
2157       // Casting to integer requires stripping dynamic information as it does
2158       // not carries it.
2159       if (SrcType.mayBeDynamicClass())
2160         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2161     }
2162 
2163     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2164   }
2165   case CK_ToVoid: {
2166     CGF.EmitIgnoredExpr(E);
2167     return nullptr;
2168   }
2169   case CK_VectorSplat: {
2170     llvm::Type *DstTy = ConvertType(DestTy);
2171     Value *Elt = Visit(const_cast<Expr*>(E));
2172     // Splat the element across to all elements
2173     unsigned NumElements = DstTy->getVectorNumElements();
2174     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2175   }
2176 
2177   case CK_FixedPointCast:
2178     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2179                                 CE->getExprLoc());
2180 
2181   case CK_FixedPointToBoolean:
2182     assert(E->getType()->isFixedPointType() &&
2183            "Expected src type to be fixed point type");
2184     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2185     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2186                                 CE->getExprLoc());
2187 
2188   case CK_IntegralCast: {
2189     ScalarConversionOpts Opts;
2190     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2191       if (CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitConversion) &&
2192           !ICE->isPartOfExplicitCast()) {
2193         Opts.EmitImplicitIntegerTruncationChecks =
2194             CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation);
2195         Opts.EmitImplicitIntegerSignChangeChecks =
2196             CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange);
2197       }
2198     }
2199     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2200                                 CE->getExprLoc(), Opts);
2201   }
2202   case CK_IntegralToFloating:
2203   case CK_FloatingToIntegral:
2204   case CK_FloatingCast:
2205     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2206                                 CE->getExprLoc());
2207   case CK_BooleanToSignedIntegral: {
2208     ScalarConversionOpts Opts;
2209     Opts.TreatBooleanAsSigned = true;
2210     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2211                                 CE->getExprLoc(), Opts);
2212   }
2213   case CK_IntegralToBoolean:
2214     return EmitIntToBoolConversion(Visit(E));
2215   case CK_PointerToBoolean:
2216     return EmitPointerToBoolConversion(Visit(E), E->getType());
2217   case CK_FloatingToBoolean:
2218     return EmitFloatToBoolConversion(Visit(E));
2219   case CK_MemberPointerToBoolean: {
2220     llvm::Value *MemPtr = Visit(E);
2221     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2222     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2223   }
2224 
2225   case CK_FloatingComplexToReal:
2226   case CK_IntegralComplexToReal:
2227     return CGF.EmitComplexExpr(E, false, true).first;
2228 
2229   case CK_FloatingComplexToBoolean:
2230   case CK_IntegralComplexToBoolean: {
2231     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2232 
2233     // TODO: kill this function off, inline appropriate case here
2234     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2235                                          CE->getExprLoc());
2236   }
2237 
2238   case CK_ZeroToOCLOpaqueType: {
2239     assert((DestTy->isEventT() || DestTy->isQueueT()) &&
2240            "CK_ZeroToOCLEvent cast on non-event type");
2241     return llvm::Constant::getNullValue(ConvertType(DestTy));
2242   }
2243 
2244   case CK_IntToOCLSampler:
2245     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2246 
2247   } // end of switch
2248 
2249   llvm_unreachable("unknown scalar cast");
2250 }
2251 
2252 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2253   CodeGenFunction::StmtExprEvaluation eval(CGF);
2254   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2255                                            !E->getType()->isVoidType());
2256   if (!RetAlloca.isValid())
2257     return nullptr;
2258   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2259                               E->getExprLoc());
2260 }
2261 
2262 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2263   CGF.enterFullExpression(E);
2264   CodeGenFunction::RunCleanupsScope Scope(CGF);
2265   Value *V = Visit(E->getSubExpr());
2266   // Defend against dominance problems caused by jumps out of expression
2267   // evaluation through the shared cleanup block.
2268   Scope.ForceCleanup({&V});
2269   return V;
2270 }
2271 
2272 //===----------------------------------------------------------------------===//
2273 //                             Unary Operators
2274 //===----------------------------------------------------------------------===//
2275 
2276 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2277                                            llvm::Value *InVal, bool IsInc) {
2278   BinOpInfo BinOp;
2279   BinOp.LHS = InVal;
2280   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2281   BinOp.Ty = E->getType();
2282   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2283   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2284   BinOp.E = E;
2285   return BinOp;
2286 }
2287 
2288 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2289     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2290   llvm::Value *Amount =
2291       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2292   StringRef Name = IsInc ? "inc" : "dec";
2293   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2294   case LangOptions::SOB_Defined:
2295     return Builder.CreateAdd(InVal, Amount, Name);
2296   case LangOptions::SOB_Undefined:
2297     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2298       return Builder.CreateNSWAdd(InVal, Amount, Name);
2299     LLVM_FALLTHROUGH;
2300   case LangOptions::SOB_Trapping:
2301     if (!E->canOverflow())
2302       return Builder.CreateNSWAdd(InVal, Amount, Name);
2303     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
2304   }
2305   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2306 }
2307 
2308 llvm::Value *
2309 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2310                                            bool isInc, bool isPre) {
2311 
2312   QualType type = E->getSubExpr()->getType();
2313   llvm::PHINode *atomicPHI = nullptr;
2314   llvm::Value *value;
2315   llvm::Value *input;
2316 
2317   int amount = (isInc ? 1 : -1);
2318   bool isSubtraction = !isInc;
2319 
2320   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2321     type = atomicTy->getValueType();
2322     if (isInc && type->isBooleanType()) {
2323       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2324       if (isPre) {
2325         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
2326           ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2327         return Builder.getTrue();
2328       }
2329       // For atomic bool increment, we just store true and return it for
2330       // preincrement, do an atomic swap with true for postincrement
2331       return Builder.CreateAtomicRMW(
2332           llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
2333           llvm::AtomicOrdering::SequentiallyConsistent);
2334     }
2335     // Special case for atomic increment / decrement on integers, emit
2336     // atomicrmw instructions.  We skip this if we want to be doing overflow
2337     // checking, and fall into the slow path with the atomic cmpxchg loop.
2338     if (!type->isBooleanType() && type->isIntegerType() &&
2339         !(type->isUnsignedIntegerType() &&
2340           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2341         CGF.getLangOpts().getSignedOverflowBehavior() !=
2342             LangOptions::SOB_Trapping) {
2343       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2344         llvm::AtomicRMWInst::Sub;
2345       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2346         llvm::Instruction::Sub;
2347       llvm::Value *amt = CGF.EmitToMemory(
2348           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2349       llvm::Value *old = Builder.CreateAtomicRMW(aop,
2350           LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
2351       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2352     }
2353     value = EmitLoadOfLValue(LV, E->getExprLoc());
2354     input = value;
2355     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2356     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2357     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2358     value = CGF.EmitToMemory(value, type);
2359     Builder.CreateBr(opBB);
2360     Builder.SetInsertPoint(opBB);
2361     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2362     atomicPHI->addIncoming(value, startBB);
2363     value = atomicPHI;
2364   } else {
2365     value = EmitLoadOfLValue(LV, E->getExprLoc());
2366     input = value;
2367   }
2368 
2369   // Special case of integer increment that we have to check first: bool++.
2370   // Due to promotion rules, we get:
2371   //   bool++ -> bool = bool + 1
2372   //          -> bool = (int)bool + 1
2373   //          -> bool = ((int)bool + 1 != 0)
2374   // An interesting aspect of this is that increment is always true.
2375   // Decrement does not have this property.
2376   if (isInc && type->isBooleanType()) {
2377     value = Builder.getTrue();
2378 
2379   // Most common case by far: integer increment.
2380   } else if (type->isIntegerType()) {
2381     // Note that signed integer inc/dec with width less than int can't
2382     // overflow because of promotion rules; we're just eliding a few steps here.
2383     if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2384       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2385     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2386                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2387       value =
2388           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
2389     } else {
2390       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2391       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2392     }
2393 
2394   // Next most common: pointer increment.
2395   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2396     QualType type = ptr->getPointeeType();
2397 
2398     // VLA types don't have constant size.
2399     if (const VariableArrayType *vla
2400           = CGF.getContext().getAsVariableArrayType(type)) {
2401       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2402       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2403       if (CGF.getLangOpts().isSignedOverflowDefined())
2404         value = Builder.CreateGEP(value, numElts, "vla.inc");
2405       else
2406         value = CGF.EmitCheckedInBoundsGEP(
2407             value, numElts, /*SignedIndices=*/false, isSubtraction,
2408             E->getExprLoc(), "vla.inc");
2409 
2410     // Arithmetic on function pointers (!) is just +-1.
2411     } else if (type->isFunctionType()) {
2412       llvm::Value *amt = Builder.getInt32(amount);
2413 
2414       value = CGF.EmitCastToVoidPtr(value);
2415       if (CGF.getLangOpts().isSignedOverflowDefined())
2416         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2417       else
2418         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2419                                            isSubtraction, E->getExprLoc(),
2420                                            "incdec.funcptr");
2421       value = Builder.CreateBitCast(value, input->getType());
2422 
2423     // For everything else, we can just do a simple increment.
2424     } else {
2425       llvm::Value *amt = Builder.getInt32(amount);
2426       if (CGF.getLangOpts().isSignedOverflowDefined())
2427         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2428       else
2429         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2430                                            isSubtraction, E->getExprLoc(),
2431                                            "incdec.ptr");
2432     }
2433 
2434   // Vector increment/decrement.
2435   } else if (type->isVectorType()) {
2436     if (type->hasIntegerRepresentation()) {
2437       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2438 
2439       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2440     } else {
2441       value = Builder.CreateFAdd(
2442                   value,
2443                   llvm::ConstantFP::get(value->getType(), amount),
2444                   isInc ? "inc" : "dec");
2445     }
2446 
2447   // Floating point.
2448   } else if (type->isRealFloatingType()) {
2449     // Add the inc/dec to the real part.
2450     llvm::Value *amt;
2451 
2452     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2453       // Another special case: half FP increment should be done via float
2454       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2455         value = Builder.CreateCall(
2456             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2457                                  CGF.CGM.FloatTy),
2458             input, "incdec.conv");
2459       } else {
2460         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2461       }
2462     }
2463 
2464     if (value->getType()->isFloatTy())
2465       amt = llvm::ConstantFP::get(VMContext,
2466                                   llvm::APFloat(static_cast<float>(amount)));
2467     else if (value->getType()->isDoubleTy())
2468       amt = llvm::ConstantFP::get(VMContext,
2469                                   llvm::APFloat(static_cast<double>(amount)));
2470     else {
2471       // Remaining types are Half, LongDouble or __float128. Convert from float.
2472       llvm::APFloat F(static_cast<float>(amount));
2473       bool ignored;
2474       const llvm::fltSemantics *FS;
2475       // Don't use getFloatTypeSemantics because Half isn't
2476       // necessarily represented using the "half" LLVM type.
2477       if (value->getType()->isFP128Ty())
2478         FS = &CGF.getTarget().getFloat128Format();
2479       else if (value->getType()->isHalfTy())
2480         FS = &CGF.getTarget().getHalfFormat();
2481       else
2482         FS = &CGF.getTarget().getLongDoubleFormat();
2483       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2484       amt = llvm::ConstantFP::get(VMContext, F);
2485     }
2486     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2487 
2488     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2489       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2490         value = Builder.CreateCall(
2491             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2492                                  CGF.CGM.FloatTy),
2493             value, "incdec.conv");
2494       } else {
2495         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2496       }
2497     }
2498 
2499   // Objective-C pointer types.
2500   } else {
2501     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2502     value = CGF.EmitCastToVoidPtr(value);
2503 
2504     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2505     if (!isInc) size = -size;
2506     llvm::Value *sizeValue =
2507       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2508 
2509     if (CGF.getLangOpts().isSignedOverflowDefined())
2510       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2511     else
2512       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2513                                          /*SignedIndices=*/false, isSubtraction,
2514                                          E->getExprLoc(), "incdec.objptr");
2515     value = Builder.CreateBitCast(value, input->getType());
2516   }
2517 
2518   if (atomicPHI) {
2519     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2520     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2521     auto Pair = CGF.EmitAtomicCompareExchange(
2522         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2523     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2524     llvm::Value *success = Pair.second;
2525     atomicPHI->addIncoming(old, opBB);
2526     Builder.CreateCondBr(success, contBB, opBB);
2527     Builder.SetInsertPoint(contBB);
2528     return isPre ? value : input;
2529   }
2530 
2531   // Store the updated result through the lvalue.
2532   if (LV.isBitField())
2533     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2534   else
2535     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2536 
2537   // If this is a postinc, return the value read from memory, otherwise use the
2538   // updated value.
2539   return isPre ? value : input;
2540 }
2541 
2542 
2543 
2544 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2545   TestAndClearIgnoreResultAssign();
2546   // Emit unary minus with EmitSub so we handle overflow cases etc.
2547   BinOpInfo BinOp;
2548   BinOp.RHS = Visit(E->getSubExpr());
2549 
2550   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
2551     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
2552   else
2553     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2554   BinOp.Ty = E->getType();
2555   BinOp.Opcode = BO_Sub;
2556   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2557   BinOp.E = E;
2558   return EmitSub(BinOp);
2559 }
2560 
2561 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2562   TestAndClearIgnoreResultAssign();
2563   Value *Op = Visit(E->getSubExpr());
2564   return Builder.CreateNot(Op, "neg");
2565 }
2566 
2567 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2568   // Perform vector logical not on comparison with zero vector.
2569   if (E->getType()->isExtVectorType()) {
2570     Value *Oper = Visit(E->getSubExpr());
2571     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2572     Value *Result;
2573     if (Oper->getType()->isFPOrFPVectorTy())
2574       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2575     else
2576       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2577     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2578   }
2579 
2580   // Compare operand to zero.
2581   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2582 
2583   // Invert value.
2584   // TODO: Could dynamically modify easy computations here.  For example, if
2585   // the operand is an icmp ne, turn into icmp eq.
2586   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2587 
2588   // ZExt result to the expr type.
2589   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2590 }
2591 
2592 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2593   // Try folding the offsetof to a constant.
2594   llvm::APSInt Value;
2595   if (E->EvaluateAsInt(Value, CGF.getContext()))
2596     return Builder.getInt(Value);
2597 
2598   // Loop over the components of the offsetof to compute the value.
2599   unsigned n = E->getNumComponents();
2600   llvm::Type* ResultType = ConvertType(E->getType());
2601   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2602   QualType CurrentType = E->getTypeSourceInfo()->getType();
2603   for (unsigned i = 0; i != n; ++i) {
2604     OffsetOfNode ON = E->getComponent(i);
2605     llvm::Value *Offset = nullptr;
2606     switch (ON.getKind()) {
2607     case OffsetOfNode::Array: {
2608       // Compute the index
2609       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2610       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2611       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2612       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2613 
2614       // Save the element type
2615       CurrentType =
2616           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2617 
2618       // Compute the element size
2619       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2620           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2621 
2622       // Multiply out to compute the result
2623       Offset = Builder.CreateMul(Idx, ElemSize);
2624       break;
2625     }
2626 
2627     case OffsetOfNode::Field: {
2628       FieldDecl *MemberDecl = ON.getField();
2629       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2630       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2631 
2632       // Compute the index of the field in its parent.
2633       unsigned i = 0;
2634       // FIXME: It would be nice if we didn't have to loop here!
2635       for (RecordDecl::field_iterator Field = RD->field_begin(),
2636                                       FieldEnd = RD->field_end();
2637            Field != FieldEnd; ++Field, ++i) {
2638         if (*Field == MemberDecl)
2639           break;
2640       }
2641       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2642 
2643       // Compute the offset to the field
2644       int64_t OffsetInt = RL.getFieldOffset(i) /
2645                           CGF.getContext().getCharWidth();
2646       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2647 
2648       // Save the element type.
2649       CurrentType = MemberDecl->getType();
2650       break;
2651     }
2652 
2653     case OffsetOfNode::Identifier:
2654       llvm_unreachable("dependent __builtin_offsetof");
2655 
2656     case OffsetOfNode::Base: {
2657       if (ON.getBase()->isVirtual()) {
2658         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2659         continue;
2660       }
2661 
2662       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2663       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2664 
2665       // Save the element type.
2666       CurrentType = ON.getBase()->getType();
2667 
2668       // Compute the offset to the base.
2669       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2670       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2671       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2672       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2673       break;
2674     }
2675     }
2676     Result = Builder.CreateAdd(Result, Offset);
2677   }
2678   return Result;
2679 }
2680 
2681 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2682 /// argument of the sizeof expression as an integer.
2683 Value *
2684 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2685                               const UnaryExprOrTypeTraitExpr *E) {
2686   QualType TypeToSize = E->getTypeOfArgument();
2687   if (E->getKind() == UETT_SizeOf) {
2688     if (const VariableArrayType *VAT =
2689           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2690       if (E->isArgumentType()) {
2691         // sizeof(type) - make sure to emit the VLA size.
2692         CGF.EmitVariablyModifiedType(TypeToSize);
2693       } else {
2694         // C99 6.5.3.4p2: If the argument is an expression of type
2695         // VLA, it is evaluated.
2696         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2697       }
2698 
2699       auto VlaSize = CGF.getVLASize(VAT);
2700       llvm::Value *size = VlaSize.NumElts;
2701 
2702       // Scale the number of non-VLA elements by the non-VLA element size.
2703       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2704       if (!eltSize.isOne())
2705         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2706 
2707       return size;
2708     }
2709   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2710     auto Alignment =
2711         CGF.getContext()
2712             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2713                 E->getTypeOfArgument()->getPointeeType()))
2714             .getQuantity();
2715     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2716   }
2717 
2718   // If this isn't sizeof(vla), the result must be constant; use the constant
2719   // folding logic so we don't have to duplicate it here.
2720   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2721 }
2722 
2723 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2724   Expr *Op = E->getSubExpr();
2725   if (Op->getType()->isAnyComplexType()) {
2726     // If it's an l-value, load through the appropriate subobject l-value.
2727     // Note that we have to ask E because Op might be an l-value that
2728     // this won't work for, e.g. an Obj-C property.
2729     if (E->isGLValue())
2730       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2731                                   E->getExprLoc()).getScalarVal();
2732 
2733     // Otherwise, calculate and project.
2734     return CGF.EmitComplexExpr(Op, false, true).first;
2735   }
2736 
2737   return Visit(Op);
2738 }
2739 
2740 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2741   Expr *Op = E->getSubExpr();
2742   if (Op->getType()->isAnyComplexType()) {
2743     // If it's an l-value, load through the appropriate subobject l-value.
2744     // Note that we have to ask E because Op might be an l-value that
2745     // this won't work for, e.g. an Obj-C property.
2746     if (Op->isGLValue())
2747       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2748                                   E->getExprLoc()).getScalarVal();
2749 
2750     // Otherwise, calculate and project.
2751     return CGF.EmitComplexExpr(Op, true, false).second;
2752   }
2753 
2754   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2755   // effects are evaluated, but not the actual value.
2756   if (Op->isGLValue())
2757     CGF.EmitLValue(Op);
2758   else
2759     CGF.EmitScalarExpr(Op, true);
2760   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2761 }
2762 
2763 //===----------------------------------------------------------------------===//
2764 //                           Binary Operators
2765 //===----------------------------------------------------------------------===//
2766 
2767 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2768   TestAndClearIgnoreResultAssign();
2769   BinOpInfo Result;
2770   Result.LHS = Visit(E->getLHS());
2771   Result.RHS = Visit(E->getRHS());
2772   Result.Ty  = E->getType();
2773   Result.Opcode = E->getOpcode();
2774   Result.FPFeatures = E->getFPFeatures();
2775   Result.E = E;
2776   return Result;
2777 }
2778 
2779 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2780                                               const CompoundAssignOperator *E,
2781                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2782                                                    Value *&Result) {
2783   QualType LHSTy = E->getLHS()->getType();
2784   BinOpInfo OpInfo;
2785 
2786   if (E->getComputationResultType()->isAnyComplexType())
2787     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2788 
2789   // Emit the RHS first.  __block variables need to have the rhs evaluated
2790   // first, plus this should improve codegen a little.
2791   OpInfo.RHS = Visit(E->getRHS());
2792   OpInfo.Ty = E->getComputationResultType();
2793   OpInfo.Opcode = E->getOpcode();
2794   OpInfo.FPFeatures = E->getFPFeatures();
2795   OpInfo.E = E;
2796   // Load/convert the LHS.
2797   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2798 
2799   llvm::PHINode *atomicPHI = nullptr;
2800   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2801     QualType type = atomicTy->getValueType();
2802     if (!type->isBooleanType() && type->isIntegerType() &&
2803         !(type->isUnsignedIntegerType() &&
2804           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2805         CGF.getLangOpts().getSignedOverflowBehavior() !=
2806             LangOptions::SOB_Trapping) {
2807       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2808       switch (OpInfo.Opcode) {
2809         // We don't have atomicrmw operands for *, %, /, <<, >>
2810         case BO_MulAssign: case BO_DivAssign:
2811         case BO_RemAssign:
2812         case BO_ShlAssign:
2813         case BO_ShrAssign:
2814           break;
2815         case BO_AddAssign:
2816           aop = llvm::AtomicRMWInst::Add;
2817           break;
2818         case BO_SubAssign:
2819           aop = llvm::AtomicRMWInst::Sub;
2820           break;
2821         case BO_AndAssign:
2822           aop = llvm::AtomicRMWInst::And;
2823           break;
2824         case BO_XorAssign:
2825           aop = llvm::AtomicRMWInst::Xor;
2826           break;
2827         case BO_OrAssign:
2828           aop = llvm::AtomicRMWInst::Or;
2829           break;
2830         default:
2831           llvm_unreachable("Invalid compound assignment type");
2832       }
2833       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2834         llvm::Value *amt = CGF.EmitToMemory(
2835             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2836                                  E->getExprLoc()),
2837             LHSTy);
2838         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2839             llvm::AtomicOrdering::SequentiallyConsistent);
2840         return LHSLV;
2841       }
2842     }
2843     // FIXME: For floating point types, we should be saving and restoring the
2844     // floating point environment in the loop.
2845     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2846     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2847     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2848     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2849     Builder.CreateBr(opBB);
2850     Builder.SetInsertPoint(opBB);
2851     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2852     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2853     OpInfo.LHS = atomicPHI;
2854   }
2855   else
2856     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2857 
2858   SourceLocation Loc = E->getExprLoc();
2859   OpInfo.LHS =
2860       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2861 
2862   // Expand the binary operator.
2863   Result = (this->*Func)(OpInfo);
2864 
2865   // Convert the result back to the LHS type.
2866   Result =
2867       EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2868 
2869   if (atomicPHI) {
2870     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2871     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2872     auto Pair = CGF.EmitAtomicCompareExchange(
2873         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2874     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2875     llvm::Value *success = Pair.second;
2876     atomicPHI->addIncoming(old, opBB);
2877     Builder.CreateCondBr(success, contBB, opBB);
2878     Builder.SetInsertPoint(contBB);
2879     return LHSLV;
2880   }
2881 
2882   // Store the result value into the LHS lvalue. Bit-fields are handled
2883   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2884   // 'An assignment expression has the value of the left operand after the
2885   // assignment...'.
2886   if (LHSLV.isBitField())
2887     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2888   else
2889     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2890 
2891   return LHSLV;
2892 }
2893 
2894 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2895                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2896   bool Ignore = TestAndClearIgnoreResultAssign();
2897   Value *RHS;
2898   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2899 
2900   // If the result is clearly ignored, return now.
2901   if (Ignore)
2902     return nullptr;
2903 
2904   // The result of an assignment in C is the assigned r-value.
2905   if (!CGF.getLangOpts().CPlusPlus)
2906     return RHS;
2907 
2908   // If the lvalue is non-volatile, return the computed value of the assignment.
2909   if (!LHS.isVolatileQualified())
2910     return RHS;
2911 
2912   // Otherwise, reload the value.
2913   return EmitLoadOfLValue(LHS, E->getExprLoc());
2914 }
2915 
2916 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2917     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2918   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2919 
2920   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2921     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2922                                     SanitizerKind::IntegerDivideByZero));
2923   }
2924 
2925   const auto *BO = cast<BinaryOperator>(Ops.E);
2926   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2927       Ops.Ty->hasSignedIntegerRepresentation() &&
2928       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
2929       Ops.mayHaveIntegerOverflow()) {
2930     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2931 
2932     llvm::Value *IntMin =
2933       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2934     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2935 
2936     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2937     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2938     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2939     Checks.push_back(
2940         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2941   }
2942 
2943   if (Checks.size() > 0)
2944     EmitBinOpCheck(Checks, Ops);
2945 }
2946 
2947 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2948   {
2949     CodeGenFunction::SanitizerScope SanScope(&CGF);
2950     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2951          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2952         Ops.Ty->isIntegerType() &&
2953         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
2954       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2955       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2956     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2957                Ops.Ty->isRealFloatingType() &&
2958                Ops.mayHaveFloatDivisionByZero()) {
2959       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2960       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2961       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2962                      Ops);
2963     }
2964   }
2965 
2966   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2967     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2968     if (CGF.getLangOpts().OpenCL &&
2969         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
2970       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
2971       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
2972       // build option allows an application to specify that single precision
2973       // floating-point divide (x/y and 1/x) and sqrt used in the program
2974       // source are correctly rounded.
2975       llvm::Type *ValTy = Val->getType();
2976       if (ValTy->isFloatTy() ||
2977           (isa<llvm::VectorType>(ValTy) &&
2978            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2979         CGF.SetFPAccuracy(Val, 2.5);
2980     }
2981     return Val;
2982   }
2983   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2984     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2985   else
2986     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2987 }
2988 
2989 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2990   // Rem in C can't be a floating point type: C99 6.5.5p2.
2991   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2992        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2993       Ops.Ty->isIntegerType() &&
2994       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
2995     CodeGenFunction::SanitizerScope SanScope(&CGF);
2996     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2997     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2998   }
2999 
3000   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3001     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3002   else
3003     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3004 }
3005 
3006 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3007   unsigned IID;
3008   unsigned OpID = 0;
3009 
3010   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3011   switch (Ops.Opcode) {
3012   case BO_Add:
3013   case BO_AddAssign:
3014     OpID = 1;
3015     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3016                      llvm::Intrinsic::uadd_with_overflow;
3017     break;
3018   case BO_Sub:
3019   case BO_SubAssign:
3020     OpID = 2;
3021     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3022                      llvm::Intrinsic::usub_with_overflow;
3023     break;
3024   case BO_Mul:
3025   case BO_MulAssign:
3026     OpID = 3;
3027     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3028                      llvm::Intrinsic::umul_with_overflow;
3029     break;
3030   default:
3031     llvm_unreachable("Unsupported operation for overflow detection");
3032   }
3033   OpID <<= 1;
3034   if (isSigned)
3035     OpID |= 1;
3036 
3037   CodeGenFunction::SanitizerScope SanScope(&CGF);
3038   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3039 
3040   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3041 
3042   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3043   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3044   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3045 
3046   // Handle overflow with llvm.trap if no custom handler has been specified.
3047   const std::string *handlerName =
3048     &CGF.getLangOpts().OverflowHandler;
3049   if (handlerName->empty()) {
3050     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3051     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3052     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3053       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3054       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3055                               : SanitizerKind::UnsignedIntegerOverflow;
3056       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3057     } else
3058       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
3059     return result;
3060   }
3061 
3062   // Branch in case of overflow.
3063   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3064   llvm::BasicBlock *continueBB =
3065       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3066   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3067 
3068   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3069 
3070   // If an overflow handler is set, then we want to call it and then use its
3071   // result, if it returns.
3072   Builder.SetInsertPoint(overflowBB);
3073 
3074   // Get the overflow handler.
3075   llvm::Type *Int8Ty = CGF.Int8Ty;
3076   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3077   llvm::FunctionType *handlerTy =
3078       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3079   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3080 
3081   // Sign extend the args to 64-bit, so that we can use the same handler for
3082   // all types of overflow.
3083   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3084   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3085 
3086   // Call the handler with the two arguments, the operation, and the size of
3087   // the result.
3088   llvm::Value *handlerArgs[] = {
3089     lhs,
3090     rhs,
3091     Builder.getInt8(OpID),
3092     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3093   };
3094   llvm::Value *handlerResult =
3095     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3096 
3097   // Truncate the result back to the desired size.
3098   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3099   Builder.CreateBr(continueBB);
3100 
3101   Builder.SetInsertPoint(continueBB);
3102   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3103   phi->addIncoming(result, initialBB);
3104   phi->addIncoming(handlerResult, overflowBB);
3105 
3106   return phi;
3107 }
3108 
3109 /// Emit pointer + index arithmetic.
3110 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3111                                     const BinOpInfo &op,
3112                                     bool isSubtraction) {
3113   // Must have binary (not unary) expr here.  Unary pointer
3114   // increment/decrement doesn't use this path.
3115   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3116 
3117   Value *pointer = op.LHS;
3118   Expr *pointerOperand = expr->getLHS();
3119   Value *index = op.RHS;
3120   Expr *indexOperand = expr->getRHS();
3121 
3122   // In a subtraction, the LHS is always the pointer.
3123   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3124     std::swap(pointer, index);
3125     std::swap(pointerOperand, indexOperand);
3126   }
3127 
3128   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3129 
3130   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3131   auto &DL = CGF.CGM.getDataLayout();
3132   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3133 
3134   // Some versions of glibc and gcc use idioms (particularly in their malloc
3135   // routines) that add a pointer-sized integer (known to be a pointer value)
3136   // to a null pointer in order to cast the value back to an integer or as
3137   // part of a pointer alignment algorithm.  This is undefined behavior, but
3138   // we'd like to be able to compile programs that use it.
3139   //
3140   // Normally, we'd generate a GEP with a null-pointer base here in response
3141   // to that code, but it's also UB to dereference a pointer created that
3142   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3143   // generate a direct cast of the integer value to a pointer.
3144   //
3145   // The idiom (p = nullptr + N) is not met if any of the following are true:
3146   //
3147   //   The operation is subtraction.
3148   //   The index is not pointer-sized.
3149   //   The pointer type is not byte-sized.
3150   //
3151   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3152                                                        op.Opcode,
3153                                                        expr->getLHS(),
3154                                                        expr->getRHS()))
3155     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3156 
3157   if (width != DL.getTypeSizeInBits(PtrTy)) {
3158     // Zero-extend or sign-extend the pointer value according to
3159     // whether the index is signed or not.
3160     index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
3161                                       "idx.ext");
3162   }
3163 
3164   // If this is subtraction, negate the index.
3165   if (isSubtraction)
3166     index = CGF.Builder.CreateNeg(index, "idx.neg");
3167 
3168   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3169     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3170                         /*Accessed*/ false);
3171 
3172   const PointerType *pointerType
3173     = pointerOperand->getType()->getAs<PointerType>();
3174   if (!pointerType) {
3175     QualType objectType = pointerOperand->getType()
3176                                         ->castAs<ObjCObjectPointerType>()
3177                                         ->getPointeeType();
3178     llvm::Value *objectSize
3179       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3180 
3181     index = CGF.Builder.CreateMul(index, objectSize);
3182 
3183     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3184     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3185     return CGF.Builder.CreateBitCast(result, pointer->getType());
3186   }
3187 
3188   QualType elementType = pointerType->getPointeeType();
3189   if (const VariableArrayType *vla
3190         = CGF.getContext().getAsVariableArrayType(elementType)) {
3191     // The element count here is the total number of non-VLA elements.
3192     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3193 
3194     // Effectively, the multiply by the VLA size is part of the GEP.
3195     // GEP indexes are signed, and scaling an index isn't permitted to
3196     // signed-overflow, so we use the same semantics for our explicit
3197     // multiply.  We suppress this if overflow is not undefined behavior.
3198     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3199       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3200       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3201     } else {
3202       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3203       pointer =
3204           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3205                                      op.E->getExprLoc(), "add.ptr");
3206     }
3207     return pointer;
3208   }
3209 
3210   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3211   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3212   // future proof.
3213   if (elementType->isVoidType() || elementType->isFunctionType()) {
3214     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3215     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3216     return CGF.Builder.CreateBitCast(result, pointer->getType());
3217   }
3218 
3219   if (CGF.getLangOpts().isSignedOverflowDefined())
3220     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3221 
3222   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3223                                     op.E->getExprLoc(), "add.ptr");
3224 }
3225 
3226 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3227 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3228 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3229 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3230 // efficient operations.
3231 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
3232                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3233                            bool negMul, bool negAdd) {
3234   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3235 
3236   Value *MulOp0 = MulOp->getOperand(0);
3237   Value *MulOp1 = MulOp->getOperand(1);
3238   if (negMul) {
3239     MulOp0 =
3240       Builder.CreateFSub(
3241         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
3242         "neg");
3243   } else if (negAdd) {
3244     Addend =
3245       Builder.CreateFSub(
3246         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
3247         "neg");
3248   }
3249 
3250   Value *FMulAdd = Builder.CreateCall(
3251       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3252       {MulOp0, MulOp1, Addend});
3253    MulOp->eraseFromParent();
3254 
3255    return FMulAdd;
3256 }
3257 
3258 // Check whether it would be legal to emit an fmuladd intrinsic call to
3259 // represent op and if so, build the fmuladd.
3260 //
3261 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3262 // Does NOT check the type of the operation - it's assumed that this function
3263 // will be called from contexts where it's known that the type is contractable.
3264 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3265                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3266                          bool isSub=false) {
3267 
3268   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3269           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3270          "Only fadd/fsub can be the root of an fmuladd.");
3271 
3272   // Check whether this op is marked as fusable.
3273   if (!op.FPFeatures.allowFPContractWithinStatement())
3274     return nullptr;
3275 
3276   // We have a potentially fusable op. Look for a mul on one of the operands.
3277   // Also, make sure that the mul result isn't used directly. In that case,
3278   // there's no point creating a muladd operation.
3279   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3280     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3281         LHSBinOp->use_empty())
3282       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3283   }
3284   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3285     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3286         RHSBinOp->use_empty())
3287       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3288   }
3289 
3290   return nullptr;
3291 }
3292 
3293 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3294   if (op.LHS->getType()->isPointerTy() ||
3295       op.RHS->getType()->isPointerTy())
3296     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3297 
3298   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3299     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3300     case LangOptions::SOB_Defined:
3301       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3302     case LangOptions::SOB_Undefined:
3303       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3304         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3305       LLVM_FALLTHROUGH;
3306     case LangOptions::SOB_Trapping:
3307       if (CanElideOverflowCheck(CGF.getContext(), op))
3308         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3309       return EmitOverflowCheckedBinOp(op);
3310     }
3311   }
3312 
3313   if (op.Ty->isUnsignedIntegerType() &&
3314       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3315       !CanElideOverflowCheck(CGF.getContext(), op))
3316     return EmitOverflowCheckedBinOp(op);
3317 
3318   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3319     // Try to form an fmuladd.
3320     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3321       return FMulAdd;
3322 
3323     Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
3324     return propagateFMFlags(V, op);
3325   }
3326 
3327   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3328 }
3329 
3330 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3331   // The LHS is always a pointer if either side is.
3332   if (!op.LHS->getType()->isPointerTy()) {
3333     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3334       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3335       case LangOptions::SOB_Defined:
3336         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3337       case LangOptions::SOB_Undefined:
3338         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3339           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3340         LLVM_FALLTHROUGH;
3341       case LangOptions::SOB_Trapping:
3342         if (CanElideOverflowCheck(CGF.getContext(), op))
3343           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3344         return EmitOverflowCheckedBinOp(op);
3345       }
3346     }
3347 
3348     if (op.Ty->isUnsignedIntegerType() &&
3349         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3350         !CanElideOverflowCheck(CGF.getContext(), op))
3351       return EmitOverflowCheckedBinOp(op);
3352 
3353     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3354       // Try to form an fmuladd.
3355       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3356         return FMulAdd;
3357       Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
3358       return propagateFMFlags(V, op);
3359     }
3360 
3361     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3362   }
3363 
3364   // If the RHS is not a pointer, then we have normal pointer
3365   // arithmetic.
3366   if (!op.RHS->getType()->isPointerTy())
3367     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3368 
3369   // Otherwise, this is a pointer subtraction.
3370 
3371   // Do the raw subtraction part.
3372   llvm::Value *LHS
3373     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3374   llvm::Value *RHS
3375     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3376   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3377 
3378   // Okay, figure out the element size.
3379   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3380   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3381 
3382   llvm::Value *divisor = nullptr;
3383 
3384   // For a variable-length array, this is going to be non-constant.
3385   if (const VariableArrayType *vla
3386         = CGF.getContext().getAsVariableArrayType(elementType)) {
3387     auto VlaSize = CGF.getVLASize(vla);
3388     elementType = VlaSize.Type;
3389     divisor = VlaSize.NumElts;
3390 
3391     // Scale the number of non-VLA elements by the non-VLA element size.
3392     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3393     if (!eltSize.isOne())
3394       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3395 
3396   // For everything elese, we can just compute it, safe in the
3397   // assumption that Sema won't let anything through that we can't
3398   // safely compute the size of.
3399   } else {
3400     CharUnits elementSize;
3401     // Handle GCC extension for pointer arithmetic on void* and
3402     // function pointer types.
3403     if (elementType->isVoidType() || elementType->isFunctionType())
3404       elementSize = CharUnits::One();
3405     else
3406       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3407 
3408     // Don't even emit the divide for element size of 1.
3409     if (elementSize.isOne())
3410       return diffInChars;
3411 
3412     divisor = CGF.CGM.getSize(elementSize);
3413   }
3414 
3415   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3416   // pointer difference in C is only defined in the case where both operands
3417   // are pointing to elements of an array.
3418   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3419 }
3420 
3421 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3422   llvm::IntegerType *Ty;
3423   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3424     Ty = cast<llvm::IntegerType>(VT->getElementType());
3425   else
3426     Ty = cast<llvm::IntegerType>(LHS->getType());
3427   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3428 }
3429 
3430 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3431   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3432   // RHS to the same size as the LHS.
3433   Value *RHS = Ops.RHS;
3434   if (Ops.LHS->getType() != RHS->getType())
3435     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3436 
3437   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3438                       Ops.Ty->hasSignedIntegerRepresentation() &&
3439                       !CGF.getLangOpts().isSignedOverflowDefined();
3440   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3441   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3442   if (CGF.getLangOpts().OpenCL)
3443     RHS =
3444         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
3445   else if ((SanitizeBase || SanitizeExponent) &&
3446            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3447     CodeGenFunction::SanitizerScope SanScope(&CGF);
3448     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3449     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3450     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3451 
3452     if (SanitizeExponent) {
3453       Checks.push_back(
3454           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3455     }
3456 
3457     if (SanitizeBase) {
3458       // Check whether we are shifting any non-zero bits off the top of the
3459       // integer. We only emit this check if exponent is valid - otherwise
3460       // instructions below will have undefined behavior themselves.
3461       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3462       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3463       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3464       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3465       llvm::Value *PromotedWidthMinusOne =
3466           (RHS == Ops.RHS) ? WidthMinusOne
3467                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3468       CGF.EmitBlock(CheckShiftBase);
3469       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3470           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3471                                      /*NUW*/ true, /*NSW*/ true),
3472           "shl.check");
3473       if (CGF.getLangOpts().CPlusPlus) {
3474         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3475         // Under C++11's rules, shifting a 1 bit into the sign bit is
3476         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3477         // define signed left shifts, so we use the C99 and C++11 rules there).
3478         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3479         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3480       }
3481       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3482       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3483       CGF.EmitBlock(Cont);
3484       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3485       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3486       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3487       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3488     }
3489 
3490     assert(!Checks.empty());
3491     EmitBinOpCheck(Checks, Ops);
3492   }
3493 
3494   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3495 }
3496 
3497 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3498   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3499   // RHS to the same size as the LHS.
3500   Value *RHS = Ops.RHS;
3501   if (Ops.LHS->getType() != RHS->getType())
3502     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3503 
3504   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3505   if (CGF.getLangOpts().OpenCL)
3506     RHS =
3507         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
3508   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3509            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3510     CodeGenFunction::SanitizerScope SanScope(&CGF);
3511     llvm::Value *Valid =
3512         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3513     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3514   }
3515 
3516   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3517     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3518   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3519 }
3520 
3521 enum IntrinsicType { VCMPEQ, VCMPGT };
3522 // return corresponding comparison intrinsic for given vector type
3523 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3524                                         BuiltinType::Kind ElemKind) {
3525   switch (ElemKind) {
3526   default: llvm_unreachable("unexpected element type");
3527   case BuiltinType::Char_U:
3528   case BuiltinType::UChar:
3529     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3530                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3531   case BuiltinType::Char_S:
3532   case BuiltinType::SChar:
3533     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3534                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3535   case BuiltinType::UShort:
3536     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3537                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3538   case BuiltinType::Short:
3539     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3540                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3541   case BuiltinType::UInt:
3542     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3543                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3544   case BuiltinType::Int:
3545     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3546                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3547   case BuiltinType::ULong:
3548   case BuiltinType::ULongLong:
3549     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3550                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3551   case BuiltinType::Long:
3552   case BuiltinType::LongLong:
3553     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3554                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3555   case BuiltinType::Float:
3556     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3557                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3558   case BuiltinType::Double:
3559     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3560                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3561   }
3562 }
3563 
3564 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3565                                       llvm::CmpInst::Predicate UICmpOpc,
3566                                       llvm::CmpInst::Predicate SICmpOpc,
3567                                       llvm::CmpInst::Predicate FCmpOpc) {
3568   TestAndClearIgnoreResultAssign();
3569   Value *Result;
3570   QualType LHSTy = E->getLHS()->getType();
3571   QualType RHSTy = E->getRHS()->getType();
3572   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3573     assert(E->getOpcode() == BO_EQ ||
3574            E->getOpcode() == BO_NE);
3575     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3576     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3577     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3578                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3579   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3580     Value *LHS = Visit(E->getLHS());
3581     Value *RHS = Visit(E->getRHS());
3582 
3583     // If AltiVec, the comparison results in a numeric type, so we use
3584     // intrinsics comparing vectors and giving 0 or 1 as a result
3585     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3586       // constants for mapping CR6 register bits to predicate result
3587       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3588 
3589       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3590 
3591       // in several cases vector arguments order will be reversed
3592       Value *FirstVecArg = LHS,
3593             *SecondVecArg = RHS;
3594 
3595       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
3596       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
3597       BuiltinType::Kind ElementKind = BTy->getKind();
3598 
3599       switch(E->getOpcode()) {
3600       default: llvm_unreachable("is not a comparison operation");
3601       case BO_EQ:
3602         CR6 = CR6_LT;
3603         ID = GetIntrinsic(VCMPEQ, ElementKind);
3604         break;
3605       case BO_NE:
3606         CR6 = CR6_EQ;
3607         ID = GetIntrinsic(VCMPEQ, ElementKind);
3608         break;
3609       case BO_LT:
3610         CR6 = CR6_LT;
3611         ID = GetIntrinsic(VCMPGT, ElementKind);
3612         std::swap(FirstVecArg, SecondVecArg);
3613         break;
3614       case BO_GT:
3615         CR6 = CR6_LT;
3616         ID = GetIntrinsic(VCMPGT, ElementKind);
3617         break;
3618       case BO_LE:
3619         if (ElementKind == BuiltinType::Float) {
3620           CR6 = CR6_LT;
3621           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3622           std::swap(FirstVecArg, SecondVecArg);
3623         }
3624         else {
3625           CR6 = CR6_EQ;
3626           ID = GetIntrinsic(VCMPGT, ElementKind);
3627         }
3628         break;
3629       case BO_GE:
3630         if (ElementKind == BuiltinType::Float) {
3631           CR6 = CR6_LT;
3632           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3633         }
3634         else {
3635           CR6 = CR6_EQ;
3636           ID = GetIntrinsic(VCMPGT, ElementKind);
3637           std::swap(FirstVecArg, SecondVecArg);
3638         }
3639         break;
3640       }
3641 
3642       Value *CR6Param = Builder.getInt32(CR6);
3643       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3644       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3645 
3646       // The result type of intrinsic may not be same as E->getType().
3647       // If E->getType() is not BoolTy, EmitScalarConversion will do the
3648       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3649       // do nothing, if ResultTy is not i1 at the same time, it will cause
3650       // crash later.
3651       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3652       if (ResultTy->getBitWidth() > 1 &&
3653           E->getType() == CGF.getContext().BoolTy)
3654         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3655       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3656                                   E->getExprLoc());
3657     }
3658 
3659     if (LHS->getType()->isFPOrFPVectorTy()) {
3660       Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3661     } else if (LHSTy->hasSignedIntegerRepresentation()) {
3662       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3663     } else {
3664       // Unsigned integers and pointers.
3665 
3666       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
3667           !isa<llvm::ConstantPointerNull>(LHS) &&
3668           !isa<llvm::ConstantPointerNull>(RHS)) {
3669 
3670         // Dynamic information is required to be stripped for comparisons,
3671         // because it could leak the dynamic information.  Based on comparisons
3672         // of pointers to dynamic objects, the optimizer can replace one pointer
3673         // with another, which might be incorrect in presence of invariant
3674         // groups. Comparison with null is safe because null does not carry any
3675         // dynamic information.
3676         if (LHSTy.mayBeDynamicClass())
3677           LHS = Builder.CreateStripInvariantGroup(LHS);
3678         if (RHSTy.mayBeDynamicClass())
3679           RHS = Builder.CreateStripInvariantGroup(RHS);
3680       }
3681 
3682       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3683     }
3684 
3685     // If this is a vector comparison, sign extend the result to the appropriate
3686     // vector integer type and return it (don't convert to bool).
3687     if (LHSTy->isVectorType())
3688       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3689 
3690   } else {
3691     // Complex Comparison: can only be an equality comparison.
3692     CodeGenFunction::ComplexPairTy LHS, RHS;
3693     QualType CETy;
3694     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3695       LHS = CGF.EmitComplexExpr(E->getLHS());
3696       CETy = CTy->getElementType();
3697     } else {
3698       LHS.first = Visit(E->getLHS());
3699       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3700       CETy = LHSTy;
3701     }
3702     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3703       RHS = CGF.EmitComplexExpr(E->getRHS());
3704       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
3705                                                      CTy->getElementType()) &&
3706              "The element types must always match.");
3707       (void)CTy;
3708     } else {
3709       RHS.first = Visit(E->getRHS());
3710       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
3711       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
3712              "The element types must always match.");
3713     }
3714 
3715     Value *ResultR, *ResultI;
3716     if (CETy->isRealFloatingType()) {
3717       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
3718       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
3719     } else {
3720       // Complex comparisons can only be equality comparisons.  As such, signed
3721       // and unsigned opcodes are the same.
3722       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
3723       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
3724     }
3725 
3726     if (E->getOpcode() == BO_EQ) {
3727       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
3728     } else {
3729       assert(E->getOpcode() == BO_NE &&
3730              "Complex comparison other than == or != ?");
3731       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
3732     }
3733   }
3734 
3735   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3736                               E->getExprLoc());
3737 }
3738 
3739 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3740   bool Ignore = TestAndClearIgnoreResultAssign();
3741 
3742   Value *RHS;
3743   LValue LHS;
3744 
3745   switch (E->getLHS()->getType().getObjCLifetime()) {
3746   case Qualifiers::OCL_Strong:
3747     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3748     break;
3749 
3750   case Qualifiers::OCL_Autoreleasing:
3751     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3752     break;
3753 
3754   case Qualifiers::OCL_ExplicitNone:
3755     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3756     break;
3757 
3758   case Qualifiers::OCL_Weak:
3759     RHS = Visit(E->getRHS());
3760     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3761     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3762     break;
3763 
3764   case Qualifiers::OCL_None:
3765     // __block variables need to have the rhs evaluated first, plus
3766     // this should improve codegen just a little.
3767     RHS = Visit(E->getRHS());
3768     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3769 
3770     // Store the value into the LHS.  Bit-fields are handled specially
3771     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3772     // 'An assignment expression has the value of the left operand after
3773     // the assignment...'.
3774     if (LHS.isBitField()) {
3775       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3776     } else {
3777       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
3778       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3779     }
3780   }
3781 
3782   // If the result is clearly ignored, return now.
3783   if (Ignore)
3784     return nullptr;
3785 
3786   // The result of an assignment in C is the assigned r-value.
3787   if (!CGF.getLangOpts().CPlusPlus)
3788     return RHS;
3789 
3790   // If the lvalue is non-volatile, return the computed value of the assignment.
3791   if (!LHS.isVolatileQualified())
3792     return RHS;
3793 
3794   // Otherwise, reload the value.
3795   return EmitLoadOfLValue(LHS, E->getExprLoc());
3796 }
3797 
3798 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3799   // Perform vector logical and on comparisons with zero vectors.
3800   if (E->getType()->isVectorType()) {
3801     CGF.incrementProfileCounter(E);
3802 
3803     Value *LHS = Visit(E->getLHS());
3804     Value *RHS = Visit(E->getRHS());
3805     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3806     if (LHS->getType()->isFPOrFPVectorTy()) {
3807       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3808       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3809     } else {
3810       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3811       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3812     }
3813     Value *And = Builder.CreateAnd(LHS, RHS);
3814     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3815   }
3816 
3817   llvm::Type *ResTy = ConvertType(E->getType());
3818 
3819   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3820   // If we have 1 && X, just emit X without inserting the control flow.
3821   bool LHSCondVal;
3822   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3823     if (LHSCondVal) { // If we have 1 && X, just emit X.
3824       CGF.incrementProfileCounter(E);
3825 
3826       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3827       // ZExt result to int or bool.
3828       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3829     }
3830 
3831     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3832     if (!CGF.ContainsLabel(E->getRHS()))
3833       return llvm::Constant::getNullValue(ResTy);
3834   }
3835 
3836   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3837   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3838 
3839   CodeGenFunction::ConditionalEvaluation eval(CGF);
3840 
3841   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3842   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3843                            CGF.getProfileCount(E->getRHS()));
3844 
3845   // Any edges into the ContBlock are now from an (indeterminate number of)
3846   // edges from this first condition.  All of these values will be false.  Start
3847   // setting up the PHI node in the Cont Block for this.
3848   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3849                                             "", ContBlock);
3850   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3851        PI != PE; ++PI)
3852     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3853 
3854   eval.begin(CGF);
3855   CGF.EmitBlock(RHSBlock);
3856   CGF.incrementProfileCounter(E);
3857   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3858   eval.end(CGF);
3859 
3860   // Reaquire the RHS block, as there may be subblocks inserted.
3861   RHSBlock = Builder.GetInsertBlock();
3862 
3863   // Emit an unconditional branch from this block to ContBlock.
3864   {
3865     // There is no need to emit line number for unconditional branch.
3866     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3867     CGF.EmitBlock(ContBlock);
3868   }
3869   // Insert an entry into the phi node for the edge with the value of RHSCond.
3870   PN->addIncoming(RHSCond, RHSBlock);
3871 
3872   // Artificial location to preserve the scope information
3873   {
3874     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
3875     PN->setDebugLoc(Builder.getCurrentDebugLocation());
3876   }
3877 
3878   // ZExt result to int.
3879   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3880 }
3881 
3882 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3883   // Perform vector logical or on comparisons with zero vectors.
3884   if (E->getType()->isVectorType()) {
3885     CGF.incrementProfileCounter(E);
3886 
3887     Value *LHS = Visit(E->getLHS());
3888     Value *RHS = Visit(E->getRHS());
3889     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3890     if (LHS->getType()->isFPOrFPVectorTy()) {
3891       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3892       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3893     } else {
3894       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3895       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3896     }
3897     Value *Or = Builder.CreateOr(LHS, RHS);
3898     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3899   }
3900 
3901   llvm::Type *ResTy = ConvertType(E->getType());
3902 
3903   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3904   // If we have 0 || X, just emit X without inserting the control flow.
3905   bool LHSCondVal;
3906   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3907     if (!LHSCondVal) { // If we have 0 || X, just emit X.
3908       CGF.incrementProfileCounter(E);
3909 
3910       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3911       // ZExt result to int or bool.
3912       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3913     }
3914 
3915     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3916     if (!CGF.ContainsLabel(E->getRHS()))
3917       return llvm::ConstantInt::get(ResTy, 1);
3918   }
3919 
3920   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3921   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3922 
3923   CodeGenFunction::ConditionalEvaluation eval(CGF);
3924 
3925   // Branch on the LHS first.  If it is true, go to the success (cont) block.
3926   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3927                            CGF.getCurrentProfileCount() -
3928                                CGF.getProfileCount(E->getRHS()));
3929 
3930   // Any edges into the ContBlock are now from an (indeterminate number of)
3931   // edges from this first condition.  All of these values will be true.  Start
3932   // setting up the PHI node in the Cont Block for this.
3933   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3934                                             "", ContBlock);
3935   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3936        PI != PE; ++PI)
3937     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3938 
3939   eval.begin(CGF);
3940 
3941   // Emit the RHS condition as a bool value.
3942   CGF.EmitBlock(RHSBlock);
3943   CGF.incrementProfileCounter(E);
3944   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3945 
3946   eval.end(CGF);
3947 
3948   // Reaquire the RHS block, as there may be subblocks inserted.
3949   RHSBlock = Builder.GetInsertBlock();
3950 
3951   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3952   // into the phi node for the edge with the value of RHSCond.
3953   CGF.EmitBlock(ContBlock);
3954   PN->addIncoming(RHSCond, RHSBlock);
3955 
3956   // ZExt result to int.
3957   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3958 }
3959 
3960 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3961   CGF.EmitIgnoredExpr(E->getLHS());
3962   CGF.EnsureInsertPoint();
3963   return Visit(E->getRHS());
3964 }
3965 
3966 //===----------------------------------------------------------------------===//
3967 //                             Other Operators
3968 //===----------------------------------------------------------------------===//
3969 
3970 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3971 /// expression is cheap enough and side-effect-free enough to evaluate
3972 /// unconditionally instead of conditionally.  This is used to convert control
3973 /// flow into selects in some cases.
3974 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3975                                                    CodeGenFunction &CGF) {
3976   // Anything that is an integer or floating point constant is fine.
3977   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3978 
3979   // Even non-volatile automatic variables can't be evaluated unconditionally.
3980   // Referencing a thread_local may cause non-trivial initialization work to
3981   // occur. If we're inside a lambda and one of the variables is from the scope
3982   // outside the lambda, that function may have returned already. Reading its
3983   // locals is a bad idea. Also, these reads may introduce races there didn't
3984   // exist in the source-level program.
3985 }
3986 
3987 
3988 Value *ScalarExprEmitter::
3989 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3990   TestAndClearIgnoreResultAssign();
3991 
3992   // Bind the common expression if necessary.
3993   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3994 
3995   Expr *condExpr = E->getCond();
3996   Expr *lhsExpr = E->getTrueExpr();
3997   Expr *rhsExpr = E->getFalseExpr();
3998 
3999   // If the condition constant folds and can be elided, try to avoid emitting
4000   // the condition and the dead arm.
4001   bool CondExprBool;
4002   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4003     Expr *live = lhsExpr, *dead = rhsExpr;
4004     if (!CondExprBool) std::swap(live, dead);
4005 
4006     // If the dead side doesn't have labels we need, just emit the Live part.
4007     if (!CGF.ContainsLabel(dead)) {
4008       if (CondExprBool)
4009         CGF.incrementProfileCounter(E);
4010       Value *Result = Visit(live);
4011 
4012       // If the live part is a throw expression, it acts like it has a void
4013       // type, so evaluating it returns a null Value*.  However, a conditional
4014       // with non-void type must return a non-null Value*.
4015       if (!Result && !E->getType()->isVoidType())
4016         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4017 
4018       return Result;
4019     }
4020   }
4021 
4022   // OpenCL: If the condition is a vector, we can treat this condition like
4023   // the select function.
4024   if (CGF.getLangOpts().OpenCL
4025       && condExpr->getType()->isVectorType()) {
4026     CGF.incrementProfileCounter(E);
4027 
4028     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4029     llvm::Value *LHS = Visit(lhsExpr);
4030     llvm::Value *RHS = Visit(rhsExpr);
4031 
4032     llvm::Type *condType = ConvertType(condExpr->getType());
4033     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
4034 
4035     unsigned numElem = vecTy->getNumElements();
4036     llvm::Type *elemType = vecTy->getElementType();
4037 
4038     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4039     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4040     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
4041                                           llvm::VectorType::get(elemType,
4042                                                                 numElem),
4043                                           "sext");
4044     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4045 
4046     // Cast float to int to perform ANDs if necessary.
4047     llvm::Value *RHSTmp = RHS;
4048     llvm::Value *LHSTmp = LHS;
4049     bool wasCast = false;
4050     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4051     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4052       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4053       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4054       wasCast = true;
4055     }
4056 
4057     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4058     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4059     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4060     if (wasCast)
4061       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4062 
4063     return tmp5;
4064   }
4065 
4066   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4067   // select instead of as control flow.  We can only do this if it is cheap and
4068   // safe to evaluate the LHS and RHS unconditionally.
4069   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4070       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4071     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4072     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4073 
4074     CGF.incrementProfileCounter(E, StepV);
4075 
4076     llvm::Value *LHS = Visit(lhsExpr);
4077     llvm::Value *RHS = Visit(rhsExpr);
4078     if (!LHS) {
4079       // If the conditional has void type, make sure we return a null Value*.
4080       assert(!RHS && "LHS and RHS types must match");
4081       return nullptr;
4082     }
4083     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4084   }
4085 
4086   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4087   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4088   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4089 
4090   CodeGenFunction::ConditionalEvaluation eval(CGF);
4091   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4092                            CGF.getProfileCount(lhsExpr));
4093 
4094   CGF.EmitBlock(LHSBlock);
4095   CGF.incrementProfileCounter(E);
4096   eval.begin(CGF);
4097   Value *LHS = Visit(lhsExpr);
4098   eval.end(CGF);
4099 
4100   LHSBlock = Builder.GetInsertBlock();
4101   Builder.CreateBr(ContBlock);
4102 
4103   CGF.EmitBlock(RHSBlock);
4104   eval.begin(CGF);
4105   Value *RHS = Visit(rhsExpr);
4106   eval.end(CGF);
4107 
4108   RHSBlock = Builder.GetInsertBlock();
4109   CGF.EmitBlock(ContBlock);
4110 
4111   // If the LHS or RHS is a throw expression, it will be legitimately null.
4112   if (!LHS)
4113     return RHS;
4114   if (!RHS)
4115     return LHS;
4116 
4117   // Create a PHI node for the real part.
4118   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4119   PN->addIncoming(LHS, LHSBlock);
4120   PN->addIncoming(RHS, RHSBlock);
4121   return PN;
4122 }
4123 
4124 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4125   return Visit(E->getChosenSubExpr());
4126 }
4127 
4128 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4129   QualType Ty = VE->getType();
4130 
4131   if (Ty->isVariablyModifiedType())
4132     CGF.EmitVariablyModifiedType(Ty);
4133 
4134   Address ArgValue = Address::invalid();
4135   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4136 
4137   llvm::Type *ArgTy = ConvertType(VE->getType());
4138 
4139   // If EmitVAArg fails, emit an error.
4140   if (!ArgPtr.isValid()) {
4141     CGF.ErrorUnsupported(VE, "va_arg expression");
4142     return llvm::UndefValue::get(ArgTy);
4143   }
4144 
4145   // FIXME Volatility.
4146   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4147 
4148   // If EmitVAArg promoted the type, we must truncate it.
4149   if (ArgTy != Val->getType()) {
4150     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4151       Val = Builder.CreateIntToPtr(Val, ArgTy);
4152     else
4153       Val = Builder.CreateTrunc(Val, ArgTy);
4154   }
4155 
4156   return Val;
4157 }
4158 
4159 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4160   return CGF.EmitBlockLiteral(block);
4161 }
4162 
4163 // Convert a vec3 to vec4, or vice versa.
4164 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4165                                  Value *Src, unsigned NumElementsDst) {
4166   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
4167   SmallVector<llvm::Constant*, 4> Args;
4168   Args.push_back(Builder.getInt32(0));
4169   Args.push_back(Builder.getInt32(1));
4170   Args.push_back(Builder.getInt32(2));
4171   if (NumElementsDst == 4)
4172     Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
4173   llvm::Constant *Mask = llvm::ConstantVector::get(Args);
4174   return Builder.CreateShuffleVector(Src, UnV, Mask);
4175 }
4176 
4177 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4178 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4179 // but could be scalar or vectors of different lengths, and either can be
4180 // pointer.
4181 // There are 4 cases:
4182 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4183 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4184 // 3. pointer -> non-pointer
4185 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4186 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4187 // 4. non-pointer -> pointer
4188 //   a) intptr_t -> pointer       : needs 1 inttoptr
4189 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4190 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4191 // allow casting directly between pointer types and non-integer non-pointer
4192 // types.
4193 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4194                                            const llvm::DataLayout &DL,
4195                                            Value *Src, llvm::Type *DstTy,
4196                                            StringRef Name = "") {
4197   auto SrcTy = Src->getType();
4198 
4199   // Case 1.
4200   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4201     return Builder.CreateBitCast(Src, DstTy, Name);
4202 
4203   // Case 2.
4204   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4205     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4206 
4207   // Case 3.
4208   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4209     // Case 3b.
4210     if (!DstTy->isIntegerTy())
4211       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4212     // Cases 3a and 3b.
4213     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4214   }
4215 
4216   // Case 4b.
4217   if (!SrcTy->isIntegerTy())
4218     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4219   // Cases 4a and 4b.
4220   return Builder.CreateIntToPtr(Src, DstTy, Name);
4221 }
4222 
4223 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4224   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4225   llvm::Type *DstTy = ConvertType(E->getType());
4226 
4227   llvm::Type *SrcTy = Src->getType();
4228   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
4229     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
4230   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
4231     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
4232 
4233   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4234   // vector to get a vec4, then a bitcast if the target type is different.
4235   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4236     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4237 
4238     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4239       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4240                                          DstTy);
4241     }
4242 
4243     Src->setName("astype");
4244     return Src;
4245   }
4246 
4247   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4248   // to vec4 if the original type is not vec4, then a shuffle vector to
4249   // get a vec3.
4250   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4251     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4252       auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
4253       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4254                                          Vec4Ty);
4255     }
4256 
4257     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4258     Src->setName("astype");
4259     return Src;
4260   }
4261 
4262   return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4263                                             Src, DstTy, "astype");
4264 }
4265 
4266 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4267   return CGF.EmitAtomicExpr(E).getScalarVal();
4268 }
4269 
4270 //===----------------------------------------------------------------------===//
4271 //                         Entry Point into this File
4272 //===----------------------------------------------------------------------===//
4273 
4274 /// Emit the computation of the specified expression of scalar type, ignoring
4275 /// the result.
4276 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4277   assert(E && hasScalarEvaluationKind(E->getType()) &&
4278          "Invalid scalar expression to emit");
4279 
4280   return ScalarExprEmitter(*this, IgnoreResultAssign)
4281       .Visit(const_cast<Expr *>(E));
4282 }
4283 
4284 /// Emit a conversion from the specified type to the specified destination type,
4285 /// both of which are LLVM scalar types.
4286 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4287                                              QualType DstTy,
4288                                              SourceLocation Loc) {
4289   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4290          "Invalid scalar expression to emit");
4291   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4292 }
4293 
4294 /// Emit a conversion from the specified complex type to the specified
4295 /// destination type, where the destination type is an LLVM scalar type.
4296 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4297                                                       QualType SrcTy,
4298                                                       QualType DstTy,
4299                                                       SourceLocation Loc) {
4300   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4301          "Invalid complex -> scalar conversion");
4302   return ScalarExprEmitter(*this)
4303       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4304 }
4305 
4306 
4307 llvm::Value *CodeGenFunction::
4308 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4309                         bool isInc, bool isPre) {
4310   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4311 }
4312 
4313 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4314   // object->isa or (*object).isa
4315   // Generate code as for: *(Class*)object
4316 
4317   Expr *BaseExpr = E->getBase();
4318   Address Addr = Address::invalid();
4319   if (BaseExpr->isRValue()) {
4320     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4321   } else {
4322     Addr = EmitLValue(BaseExpr).getAddress();
4323   }
4324 
4325   // Cast the address to Class*.
4326   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4327   return MakeAddrLValue(Addr, E->getType());
4328 }
4329 
4330 
4331 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4332                                             const CompoundAssignOperator *E) {
4333   ScalarExprEmitter Scalar(*this);
4334   Value *Result = nullptr;
4335   switch (E->getOpcode()) {
4336 #define COMPOUND_OP(Op)                                                       \
4337     case BO_##Op##Assign:                                                     \
4338       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4339                                              Result)
4340   COMPOUND_OP(Mul);
4341   COMPOUND_OP(Div);
4342   COMPOUND_OP(Rem);
4343   COMPOUND_OP(Add);
4344   COMPOUND_OP(Sub);
4345   COMPOUND_OP(Shl);
4346   COMPOUND_OP(Shr);
4347   COMPOUND_OP(And);
4348   COMPOUND_OP(Xor);
4349   COMPOUND_OP(Or);
4350 #undef COMPOUND_OP
4351 
4352   case BO_PtrMemD:
4353   case BO_PtrMemI:
4354   case BO_Mul:
4355   case BO_Div:
4356   case BO_Rem:
4357   case BO_Add:
4358   case BO_Sub:
4359   case BO_Shl:
4360   case BO_Shr:
4361   case BO_LT:
4362   case BO_GT:
4363   case BO_LE:
4364   case BO_GE:
4365   case BO_EQ:
4366   case BO_NE:
4367   case BO_Cmp:
4368   case BO_And:
4369   case BO_Xor:
4370   case BO_Or:
4371   case BO_LAnd:
4372   case BO_LOr:
4373   case BO_Assign:
4374   case BO_Comma:
4375     llvm_unreachable("Not valid compound assignment operators");
4376   }
4377 
4378   llvm_unreachable("Unhandled compound assignment operator");
4379 }
4380 
4381 Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr,
4382                                                ArrayRef<Value *> IdxList,
4383                                                bool SignedIndices,
4384                                                bool IsSubtraction,
4385                                                SourceLocation Loc,
4386                                                const Twine &Name) {
4387   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4388 
4389   // If the pointer overflow sanitizer isn't enabled, do nothing.
4390   if (!SanOpts.has(SanitizerKind::PointerOverflow))
4391     return GEPVal;
4392 
4393   // If the GEP has already been reduced to a constant, leave it be.
4394   if (isa<llvm::Constant>(GEPVal))
4395     return GEPVal;
4396 
4397   // Only check for overflows in the default address space.
4398   if (GEPVal->getType()->getPointerAddressSpace())
4399     return GEPVal;
4400 
4401   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4402   assert(GEP->isInBounds() && "Expected inbounds GEP");
4403 
4404   SanitizerScope SanScope(this);
4405   auto &VMContext = getLLVMContext();
4406   const auto &DL = CGM.getDataLayout();
4407   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4408 
4409   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4410   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4411   auto *SAddIntrinsic =
4412       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4413   auto *SMulIntrinsic =
4414       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4415 
4416   // The total (signed) byte offset for the GEP.
4417   llvm::Value *TotalOffset = nullptr;
4418   // The offset overflow flag - true if the total offset overflows.
4419   llvm::Value *OffsetOverflows = Builder.getFalse();
4420 
4421   /// Return the result of the given binary operation.
4422   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4423                   llvm::Value *RHS) -> llvm::Value * {
4424     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4425 
4426     // If the operands are constants, return a constant result.
4427     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4428       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4429         llvm::APInt N;
4430         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4431                                                   /*Signed=*/true, N);
4432         if (HasOverflow)
4433           OffsetOverflows = Builder.getTrue();
4434         return llvm::ConstantInt::get(VMContext, N);
4435       }
4436     }
4437 
4438     // Otherwise, compute the result with checked arithmetic.
4439     auto *ResultAndOverflow = Builder.CreateCall(
4440         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4441     OffsetOverflows = Builder.CreateOr(
4442         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4443     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4444   };
4445 
4446   // Determine the total byte offset by looking at each GEP operand.
4447   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4448        GTI != GTE; ++GTI) {
4449     llvm::Value *LocalOffset;
4450     auto *Index = GTI.getOperand();
4451     // Compute the local offset contributed by this indexing step:
4452     if (auto *STy = GTI.getStructTypeOrNull()) {
4453       // For struct indexing, the local offset is the byte position of the
4454       // specified field.
4455       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4456       LocalOffset = llvm::ConstantInt::get(
4457           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4458     } else {
4459       // Otherwise this is array-like indexing. The local offset is the index
4460       // multiplied by the element size.
4461       auto *ElementSize = llvm::ConstantInt::get(
4462           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4463       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4464       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4465     }
4466 
4467     // If this is the first offset, set it as the total offset. Otherwise, add
4468     // the local offset into the running total.
4469     if (!TotalOffset || TotalOffset == Zero)
4470       TotalOffset = LocalOffset;
4471     else
4472       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4473   }
4474 
4475   // Common case: if the total offset is zero, don't emit a check.
4476   if (TotalOffset == Zero)
4477     return GEPVal;
4478 
4479   // Now that we've computed the total offset, add it to the base pointer (with
4480   // wrapping semantics).
4481   auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy);
4482   auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset);
4483 
4484   // The GEP is valid if:
4485   // 1) The total offset doesn't overflow, and
4486   // 2) The sign of the difference between the computed address and the base
4487   // pointer matches the sign of the total offset.
4488   llvm::Value *ValidGEP;
4489   auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows);
4490   if (SignedIndices) {
4491     auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4492     auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero);
4493     llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4494     ValidGEP = Builder.CreateAnd(
4495         Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid),
4496         NoOffsetOverflow);
4497   } else if (!SignedIndices && !IsSubtraction) {
4498     auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4499     ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow);
4500   } else {
4501     auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4502     ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow);
4503   }
4504 
4505   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4506   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4507   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4508   EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow),
4509             SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4510 
4511   return GEPVal;
4512 }
4513