1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtVisitor.h" 26 #include "clang/Basic/FixedPoint.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/ADT/Optional.h" 30 #include "llvm/IR/CFG.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/Module.h" 38 #include <cstdarg> 39 40 using namespace clang; 41 using namespace CodeGen; 42 using llvm::Value; 43 44 //===----------------------------------------------------------------------===// 45 // Scalar Expression Emitter 46 //===----------------------------------------------------------------------===// 47 48 namespace { 49 50 /// Determine whether the given binary operation may overflow. 51 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 52 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 53 /// the returned overflow check is precise. The returned value is 'true' for 54 /// all other opcodes, to be conservative. 55 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 56 BinaryOperator::Opcode Opcode, bool Signed, 57 llvm::APInt &Result) { 58 // Assume overflow is possible, unless we can prove otherwise. 59 bool Overflow = true; 60 const auto &LHSAP = LHS->getValue(); 61 const auto &RHSAP = RHS->getValue(); 62 if (Opcode == BO_Add) { 63 if (Signed) 64 Result = LHSAP.sadd_ov(RHSAP, Overflow); 65 else 66 Result = LHSAP.uadd_ov(RHSAP, Overflow); 67 } else if (Opcode == BO_Sub) { 68 if (Signed) 69 Result = LHSAP.ssub_ov(RHSAP, Overflow); 70 else 71 Result = LHSAP.usub_ov(RHSAP, Overflow); 72 } else if (Opcode == BO_Mul) { 73 if (Signed) 74 Result = LHSAP.smul_ov(RHSAP, Overflow); 75 else 76 Result = LHSAP.umul_ov(RHSAP, Overflow); 77 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 78 if (Signed && !RHS->isZero()) 79 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 80 else 81 return false; 82 } 83 return Overflow; 84 } 85 86 struct BinOpInfo { 87 Value *LHS; 88 Value *RHS; 89 QualType Ty; // Computation Type. 90 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 91 FPOptions FPFeatures; 92 const Expr *E; // Entire expr, for error unsupported. May not be binop. 93 94 /// Check if the binop can result in integer overflow. 95 bool mayHaveIntegerOverflow() const { 96 // Without constant input, we can't rule out overflow. 97 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 98 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 99 if (!LHSCI || !RHSCI) 100 return true; 101 102 llvm::APInt Result; 103 return ::mayHaveIntegerOverflow( 104 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 105 } 106 107 /// Check if the binop computes a division or a remainder. 108 bool isDivremOp() const { 109 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 110 Opcode == BO_RemAssign; 111 } 112 113 /// Check if the binop can result in an integer division by zero. 114 bool mayHaveIntegerDivisionByZero() const { 115 if (isDivremOp()) 116 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 117 return CI->isZero(); 118 return true; 119 } 120 121 /// Check if the binop can result in a float division by zero. 122 bool mayHaveFloatDivisionByZero() const { 123 if (isDivremOp()) 124 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 125 return CFP->isZero(); 126 return true; 127 } 128 }; 129 130 static bool MustVisitNullValue(const Expr *E) { 131 // If a null pointer expression's type is the C++0x nullptr_t, then 132 // it's not necessarily a simple constant and it must be evaluated 133 // for its potential side effects. 134 return E->getType()->isNullPtrType(); 135 } 136 137 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 138 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 139 const Expr *E) { 140 const Expr *Base = E->IgnoreImpCasts(); 141 if (E == Base) 142 return llvm::None; 143 144 QualType BaseTy = Base->getType(); 145 if (!BaseTy->isPromotableIntegerType() || 146 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 147 return llvm::None; 148 149 return BaseTy; 150 } 151 152 /// Check if \p E is a widened promoted integer. 153 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 154 return getUnwidenedIntegerType(Ctx, E).hasValue(); 155 } 156 157 /// Check if we can skip the overflow check for \p Op. 158 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 159 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 160 "Expected a unary or binary operator"); 161 162 // If the binop has constant inputs and we can prove there is no overflow, 163 // we can elide the overflow check. 164 if (!Op.mayHaveIntegerOverflow()) 165 return true; 166 167 // If a unary op has a widened operand, the op cannot overflow. 168 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 169 return !UO->canOverflow(); 170 171 // We usually don't need overflow checks for binops with widened operands. 172 // Multiplication with promoted unsigned operands is a special case. 173 const auto *BO = cast<BinaryOperator>(Op.E); 174 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 175 if (!OptionalLHSTy) 176 return false; 177 178 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 179 if (!OptionalRHSTy) 180 return false; 181 182 QualType LHSTy = *OptionalLHSTy; 183 QualType RHSTy = *OptionalRHSTy; 184 185 // This is the simple case: binops without unsigned multiplication, and with 186 // widened operands. No overflow check is needed here. 187 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 188 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 189 return true; 190 191 // For unsigned multiplication the overflow check can be elided if either one 192 // of the unpromoted types are less than half the size of the promoted type. 193 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 194 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 195 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 196 } 197 198 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions. 199 static void updateFastMathFlags(llvm::FastMathFlags &FMF, 200 FPOptions FPFeatures) { 201 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 202 } 203 204 /// Propagate fast-math flags from \p Op to the instruction in \p V. 205 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) { 206 if (auto *I = dyn_cast<llvm::Instruction>(V)) { 207 llvm::FastMathFlags FMF = I->getFastMathFlags(); 208 updateFastMathFlags(FMF, Op.FPFeatures); 209 I->setFastMathFlags(FMF); 210 } 211 return V; 212 } 213 214 class ScalarExprEmitter 215 : public StmtVisitor<ScalarExprEmitter, Value*> { 216 CodeGenFunction &CGF; 217 CGBuilderTy &Builder; 218 bool IgnoreResultAssign; 219 llvm::LLVMContext &VMContext; 220 public: 221 222 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 223 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 224 VMContext(cgf.getLLVMContext()) { 225 } 226 227 //===--------------------------------------------------------------------===// 228 // Utilities 229 //===--------------------------------------------------------------------===// 230 231 bool TestAndClearIgnoreResultAssign() { 232 bool I = IgnoreResultAssign; 233 IgnoreResultAssign = false; 234 return I; 235 } 236 237 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 238 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 239 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 240 return CGF.EmitCheckedLValue(E, TCK); 241 } 242 243 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 244 const BinOpInfo &Info); 245 246 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 247 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 248 } 249 250 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 251 const AlignValueAttr *AVAttr = nullptr; 252 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 253 const ValueDecl *VD = DRE->getDecl(); 254 255 if (VD->getType()->isReferenceType()) { 256 if (const auto *TTy = 257 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 258 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 259 } else { 260 // Assumptions for function parameters are emitted at the start of the 261 // function, so there is no need to repeat that here. 262 if (isa<ParmVarDecl>(VD)) 263 return; 264 265 AVAttr = VD->getAttr<AlignValueAttr>(); 266 } 267 } 268 269 if (!AVAttr) 270 if (const auto *TTy = 271 dyn_cast<TypedefType>(E->getType())) 272 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 273 274 if (!AVAttr) 275 return; 276 277 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 278 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 279 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); 280 } 281 282 /// EmitLoadOfLValue - Given an expression with complex type that represents a 283 /// value l-value, this method emits the address of the l-value, then loads 284 /// and returns the result. 285 Value *EmitLoadOfLValue(const Expr *E) { 286 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 287 E->getExprLoc()); 288 289 EmitLValueAlignmentAssumption(E, V); 290 return V; 291 } 292 293 /// EmitConversionToBool - Convert the specified expression value to a 294 /// boolean (i1) truth value. This is equivalent to "Val != 0". 295 Value *EmitConversionToBool(Value *Src, QualType DstTy); 296 297 /// Emit a check that a conversion to or from a floating-point type does not 298 /// overflow. 299 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 300 Value *Src, QualType SrcType, QualType DstType, 301 llvm::Type *DstTy, SourceLocation Loc); 302 303 /// Known implicit conversion check kinds. 304 /// Keep in sync with the enum of the same name in ubsan_handlers.h 305 enum ImplicitConversionCheckKind : unsigned char { 306 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 307 ICCK_UnsignedIntegerTruncation = 1, 308 ICCK_SignedIntegerTruncation = 2, 309 ICCK_IntegerSignChange = 3, 310 ICCK_SignedIntegerTruncationOrSignChange = 4, 311 }; 312 313 /// Emit a check that an [implicit] truncation of an integer does not 314 /// discard any bits. It is not UB, so we use the value after truncation. 315 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 316 QualType DstType, SourceLocation Loc); 317 318 /// Emit a check that an [implicit] conversion of an integer does not change 319 /// the sign of the value. It is not UB, so we use the value after conversion. 320 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 321 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 322 QualType DstType, SourceLocation Loc); 323 324 /// Emit a conversion from the specified type to the specified destination 325 /// type, both of which are LLVM scalar types. 326 struct ScalarConversionOpts { 327 bool TreatBooleanAsSigned; 328 bool EmitImplicitIntegerTruncationChecks; 329 bool EmitImplicitIntegerSignChangeChecks; 330 331 ScalarConversionOpts() 332 : TreatBooleanAsSigned(false), 333 EmitImplicitIntegerTruncationChecks(false), 334 EmitImplicitIntegerSignChangeChecks(false) {} 335 }; 336 Value * 337 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 338 SourceLocation Loc, 339 ScalarConversionOpts Opts = ScalarConversionOpts()); 340 341 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 342 SourceLocation Loc); 343 344 /// Emit a conversion from the specified complex type to the specified 345 /// destination type, where the destination type is an LLVM scalar type. 346 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 347 QualType SrcTy, QualType DstTy, 348 SourceLocation Loc); 349 350 /// EmitNullValue - Emit a value that corresponds to null for the given type. 351 Value *EmitNullValue(QualType Ty); 352 353 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 354 Value *EmitFloatToBoolConversion(Value *V) { 355 // Compare against 0.0 for fp scalars. 356 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 357 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 358 } 359 360 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 361 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 362 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 363 364 return Builder.CreateICmpNE(V, Zero, "tobool"); 365 } 366 367 Value *EmitIntToBoolConversion(Value *V) { 368 // Because of the type rules of C, we often end up computing a 369 // logical value, then zero extending it to int, then wanting it 370 // as a logical value again. Optimize this common case. 371 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 372 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 373 Value *Result = ZI->getOperand(0); 374 // If there aren't any more uses, zap the instruction to save space. 375 // Note that there can be more uses, for example if this 376 // is the result of an assignment. 377 if (ZI->use_empty()) 378 ZI->eraseFromParent(); 379 return Result; 380 } 381 } 382 383 return Builder.CreateIsNotNull(V, "tobool"); 384 } 385 386 //===--------------------------------------------------------------------===// 387 // Visitor Methods 388 //===--------------------------------------------------------------------===// 389 390 Value *Visit(Expr *E) { 391 ApplyDebugLocation DL(CGF, E); 392 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 393 } 394 395 Value *VisitStmt(Stmt *S) { 396 S->dump(CGF.getContext().getSourceManager()); 397 llvm_unreachable("Stmt can't have complex result type!"); 398 } 399 Value *VisitExpr(Expr *S); 400 401 Value *VisitParenExpr(ParenExpr *PE) { 402 return Visit(PE->getSubExpr()); 403 } 404 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 405 return Visit(E->getReplacement()); 406 } 407 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 408 return Visit(GE->getResultExpr()); 409 } 410 Value *VisitCoawaitExpr(CoawaitExpr *S) { 411 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 412 } 413 Value *VisitCoyieldExpr(CoyieldExpr *S) { 414 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 415 } 416 Value *VisitUnaryCoawait(const UnaryOperator *E) { 417 return Visit(E->getSubExpr()); 418 } 419 420 // Leaves. 421 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 422 return Builder.getInt(E->getValue()); 423 } 424 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 425 return Builder.getInt(E->getValue()); 426 } 427 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 428 return llvm::ConstantFP::get(VMContext, E->getValue()); 429 } 430 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 431 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 432 } 433 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 434 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 435 } 436 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 437 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 438 } 439 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 440 return EmitNullValue(E->getType()); 441 } 442 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 443 return EmitNullValue(E->getType()); 444 } 445 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 446 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 447 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 448 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 449 return Builder.CreateBitCast(V, ConvertType(E->getType())); 450 } 451 452 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 453 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 454 } 455 456 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 457 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 458 } 459 460 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 461 if (E->isGLValue()) 462 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 463 E->getExprLoc()); 464 465 // Otherwise, assume the mapping is the scalar directly. 466 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 467 } 468 469 // l-values. 470 Value *VisitDeclRefExpr(DeclRefExpr *E) { 471 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 472 return CGF.emitScalarConstant(Constant, E); 473 return EmitLoadOfLValue(E); 474 } 475 476 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 477 return CGF.EmitObjCSelectorExpr(E); 478 } 479 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 480 return CGF.EmitObjCProtocolExpr(E); 481 } 482 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 483 return EmitLoadOfLValue(E); 484 } 485 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 486 if (E->getMethodDecl() && 487 E->getMethodDecl()->getReturnType()->isReferenceType()) 488 return EmitLoadOfLValue(E); 489 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 490 } 491 492 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 493 LValue LV = CGF.EmitObjCIsaExpr(E); 494 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 495 return V; 496 } 497 498 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 499 VersionTuple Version = E->getVersion(); 500 501 // If we're checking for a platform older than our minimum deployment 502 // target, we can fold the check away. 503 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 504 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 505 506 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 507 llvm::Value *Args[] = { 508 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), 509 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), 510 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), 511 }; 512 513 return CGF.EmitBuiltinAvailable(Args); 514 } 515 516 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 517 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 518 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 519 Value *VisitMemberExpr(MemberExpr *E); 520 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 521 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 522 return EmitLoadOfLValue(E); 523 } 524 525 Value *VisitInitListExpr(InitListExpr *E); 526 527 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 528 assert(CGF.getArrayInitIndex() && 529 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 530 return CGF.getArrayInitIndex(); 531 } 532 533 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 534 return EmitNullValue(E->getType()); 535 } 536 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 537 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 538 return VisitCastExpr(E); 539 } 540 Value *VisitCastExpr(CastExpr *E); 541 542 Value *VisitCallExpr(const CallExpr *E) { 543 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 544 return EmitLoadOfLValue(E); 545 546 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 547 548 EmitLValueAlignmentAssumption(E, V); 549 return V; 550 } 551 552 Value *VisitStmtExpr(const StmtExpr *E); 553 554 // Unary Operators. 555 Value *VisitUnaryPostDec(const UnaryOperator *E) { 556 LValue LV = EmitLValue(E->getSubExpr()); 557 return EmitScalarPrePostIncDec(E, LV, false, false); 558 } 559 Value *VisitUnaryPostInc(const UnaryOperator *E) { 560 LValue LV = EmitLValue(E->getSubExpr()); 561 return EmitScalarPrePostIncDec(E, LV, true, false); 562 } 563 Value *VisitUnaryPreDec(const UnaryOperator *E) { 564 LValue LV = EmitLValue(E->getSubExpr()); 565 return EmitScalarPrePostIncDec(E, LV, false, true); 566 } 567 Value *VisitUnaryPreInc(const UnaryOperator *E) { 568 LValue LV = EmitLValue(E->getSubExpr()); 569 return EmitScalarPrePostIncDec(E, LV, true, true); 570 } 571 572 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 573 llvm::Value *InVal, 574 bool IsInc); 575 576 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 577 bool isInc, bool isPre); 578 579 580 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 581 if (isa<MemberPointerType>(E->getType())) // never sugared 582 return CGF.CGM.getMemberPointerConstant(E); 583 584 return EmitLValue(E->getSubExpr()).getPointer(); 585 } 586 Value *VisitUnaryDeref(const UnaryOperator *E) { 587 if (E->getType()->isVoidType()) 588 return Visit(E->getSubExpr()); // the actual value should be unused 589 return EmitLoadOfLValue(E); 590 } 591 Value *VisitUnaryPlus(const UnaryOperator *E) { 592 // This differs from gcc, though, most likely due to a bug in gcc. 593 TestAndClearIgnoreResultAssign(); 594 return Visit(E->getSubExpr()); 595 } 596 Value *VisitUnaryMinus (const UnaryOperator *E); 597 Value *VisitUnaryNot (const UnaryOperator *E); 598 Value *VisitUnaryLNot (const UnaryOperator *E); 599 Value *VisitUnaryReal (const UnaryOperator *E); 600 Value *VisitUnaryImag (const UnaryOperator *E); 601 Value *VisitUnaryExtension(const UnaryOperator *E) { 602 return Visit(E->getSubExpr()); 603 } 604 605 // C++ 606 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 607 return EmitLoadOfLValue(E); 608 } 609 610 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 611 return Visit(DAE->getExpr()); 612 } 613 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 614 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 615 return Visit(DIE->getExpr()); 616 } 617 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 618 return CGF.LoadCXXThis(); 619 } 620 621 Value *VisitExprWithCleanups(ExprWithCleanups *E); 622 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 623 return CGF.EmitCXXNewExpr(E); 624 } 625 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 626 CGF.EmitCXXDeleteExpr(E); 627 return nullptr; 628 } 629 630 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 631 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 632 } 633 634 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 635 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 636 } 637 638 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 639 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 640 } 641 642 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 643 // C++ [expr.pseudo]p1: 644 // The result shall only be used as the operand for the function call 645 // operator (), and the result of such a call has type void. The only 646 // effect is the evaluation of the postfix-expression before the dot or 647 // arrow. 648 CGF.EmitScalarExpr(E->getBase()); 649 return nullptr; 650 } 651 652 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 653 return EmitNullValue(E->getType()); 654 } 655 656 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 657 CGF.EmitCXXThrowExpr(E); 658 return nullptr; 659 } 660 661 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 662 return Builder.getInt1(E->getValue()); 663 } 664 665 // Binary Operators. 666 Value *EmitMul(const BinOpInfo &Ops) { 667 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 668 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 669 case LangOptions::SOB_Defined: 670 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 671 case LangOptions::SOB_Undefined: 672 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 673 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 674 LLVM_FALLTHROUGH; 675 case LangOptions::SOB_Trapping: 676 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 677 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 678 return EmitOverflowCheckedBinOp(Ops); 679 } 680 } 681 682 if (Ops.Ty->isUnsignedIntegerType() && 683 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 684 !CanElideOverflowCheck(CGF.getContext(), Ops)) 685 return EmitOverflowCheckedBinOp(Ops); 686 687 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 688 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 689 return propagateFMFlags(V, Ops); 690 } 691 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 692 } 693 /// Create a binary op that checks for overflow. 694 /// Currently only supports +, - and *. 695 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 696 697 // Check for undefined division and modulus behaviors. 698 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 699 llvm::Value *Zero,bool isDiv); 700 // Common helper for getting how wide LHS of shift is. 701 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 702 Value *EmitDiv(const BinOpInfo &Ops); 703 Value *EmitRem(const BinOpInfo &Ops); 704 Value *EmitAdd(const BinOpInfo &Ops); 705 Value *EmitSub(const BinOpInfo &Ops); 706 Value *EmitShl(const BinOpInfo &Ops); 707 Value *EmitShr(const BinOpInfo &Ops); 708 Value *EmitAnd(const BinOpInfo &Ops) { 709 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 710 } 711 Value *EmitXor(const BinOpInfo &Ops) { 712 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 713 } 714 Value *EmitOr (const BinOpInfo &Ops) { 715 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 716 } 717 718 BinOpInfo EmitBinOps(const BinaryOperator *E); 719 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 720 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 721 Value *&Result); 722 723 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 724 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 725 726 // Binary operators and binary compound assignment operators. 727 #define HANDLEBINOP(OP) \ 728 Value *VisitBin ## OP(const BinaryOperator *E) { \ 729 return Emit ## OP(EmitBinOps(E)); \ 730 } \ 731 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 732 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 733 } 734 HANDLEBINOP(Mul) 735 HANDLEBINOP(Div) 736 HANDLEBINOP(Rem) 737 HANDLEBINOP(Add) 738 HANDLEBINOP(Sub) 739 HANDLEBINOP(Shl) 740 HANDLEBINOP(Shr) 741 HANDLEBINOP(And) 742 HANDLEBINOP(Xor) 743 HANDLEBINOP(Or) 744 #undef HANDLEBINOP 745 746 // Comparisons. 747 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 748 llvm::CmpInst::Predicate SICmpOpc, 749 llvm::CmpInst::Predicate FCmpOpc); 750 #define VISITCOMP(CODE, UI, SI, FP) \ 751 Value *VisitBin##CODE(const BinaryOperator *E) { \ 752 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 753 llvm::FCmpInst::FP); } 754 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 755 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 756 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 757 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 758 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 759 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 760 #undef VISITCOMP 761 762 Value *VisitBinAssign (const BinaryOperator *E); 763 764 Value *VisitBinLAnd (const BinaryOperator *E); 765 Value *VisitBinLOr (const BinaryOperator *E); 766 Value *VisitBinComma (const BinaryOperator *E); 767 768 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 769 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 770 771 // Other Operators. 772 Value *VisitBlockExpr(const BlockExpr *BE); 773 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 774 Value *VisitChooseExpr(ChooseExpr *CE); 775 Value *VisitVAArgExpr(VAArgExpr *VE); 776 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 777 return CGF.EmitObjCStringLiteral(E); 778 } 779 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 780 return CGF.EmitObjCBoxedExpr(E); 781 } 782 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 783 return CGF.EmitObjCArrayLiteral(E); 784 } 785 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 786 return CGF.EmitObjCDictionaryLiteral(E); 787 } 788 Value *VisitAsTypeExpr(AsTypeExpr *CE); 789 Value *VisitAtomicExpr(AtomicExpr *AE); 790 }; 791 } // end anonymous namespace. 792 793 //===----------------------------------------------------------------------===// 794 // Utilities 795 //===----------------------------------------------------------------------===// 796 797 /// EmitConversionToBool - Convert the specified expression value to a 798 /// boolean (i1) truth value. This is equivalent to "Val != 0". 799 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 800 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 801 802 if (SrcType->isRealFloatingType()) 803 return EmitFloatToBoolConversion(Src); 804 805 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 806 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 807 808 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 809 "Unknown scalar type to convert"); 810 811 if (isa<llvm::IntegerType>(Src->getType())) 812 return EmitIntToBoolConversion(Src); 813 814 assert(isa<llvm::PointerType>(Src->getType())); 815 return EmitPointerToBoolConversion(Src, SrcType); 816 } 817 818 void ScalarExprEmitter::EmitFloatConversionCheck( 819 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 820 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 821 CodeGenFunction::SanitizerScope SanScope(&CGF); 822 using llvm::APFloat; 823 using llvm::APSInt; 824 825 llvm::Type *SrcTy = Src->getType(); 826 827 llvm::Value *Check = nullptr; 828 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 829 // Integer to floating-point. This can fail for unsigned short -> __half 830 // or unsigned __int128 -> float. 831 assert(DstType->isFloatingType()); 832 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 833 834 APFloat LargestFloat = 835 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 836 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 837 838 bool IsExact; 839 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 840 &IsExact) != APFloat::opOK) 841 // The range of representable values of this floating point type includes 842 // all values of this integer type. Don't need an overflow check. 843 return; 844 845 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 846 if (SrcIsUnsigned) 847 Check = Builder.CreateICmpULE(Src, Max); 848 else { 849 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 850 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 851 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 852 Check = Builder.CreateAnd(GE, LE); 853 } 854 } else { 855 const llvm::fltSemantics &SrcSema = 856 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 857 if (isa<llvm::IntegerType>(DstTy)) { 858 // Floating-point to integer. This has undefined behavior if the source is 859 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 860 // to an integer). 861 unsigned Width = CGF.getContext().getIntWidth(DstType); 862 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 863 864 APSInt Min = APSInt::getMinValue(Width, Unsigned); 865 APFloat MinSrc(SrcSema, APFloat::uninitialized); 866 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 867 APFloat::opOverflow) 868 // Don't need an overflow check for lower bound. Just check for 869 // -Inf/NaN. 870 MinSrc = APFloat::getInf(SrcSema, true); 871 else 872 // Find the largest value which is too small to represent (before 873 // truncation toward zero). 874 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 875 876 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 877 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 878 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 879 APFloat::opOverflow) 880 // Don't need an overflow check for upper bound. Just check for 881 // +Inf/NaN. 882 MaxSrc = APFloat::getInf(SrcSema, false); 883 else 884 // Find the smallest value which is too large to represent (before 885 // truncation toward zero). 886 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 887 888 // If we're converting from __half, convert the range to float to match 889 // the type of src. 890 if (OrigSrcType->isHalfType()) { 891 const llvm::fltSemantics &Sema = 892 CGF.getContext().getFloatTypeSemantics(SrcType); 893 bool IsInexact; 894 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 895 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 896 } 897 898 llvm::Value *GE = 899 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 900 llvm::Value *LE = 901 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 902 Check = Builder.CreateAnd(GE, LE); 903 } else { 904 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 905 // 906 // Floating-point to floating-point. This has undefined behavior if the 907 // source is not in the range of representable values of the destination 908 // type. The C and C++ standards are spectacularly unclear here. We 909 // diagnose finite out-of-range conversions, but allow infinities and NaNs 910 // to convert to the corresponding value in the smaller type. 911 // 912 // C11 Annex F gives all such conversions defined behavior for IEC 60559 913 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 914 // does not. 915 916 // Converting from a lower rank to a higher rank can never have 917 // undefined behavior, since higher-rank types must have a superset 918 // of values of lower-rank types. 919 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 920 return; 921 922 assert(!OrigSrcType->isHalfType() && 923 "should not check conversion from __half, it has the lowest rank"); 924 925 const llvm::fltSemantics &DstSema = 926 CGF.getContext().getFloatTypeSemantics(DstType); 927 APFloat MinBad = APFloat::getLargest(DstSema, false); 928 APFloat MaxBad = APFloat::getInf(DstSema, false); 929 930 bool IsInexact; 931 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 932 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 933 934 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 935 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 936 llvm::Value *GE = 937 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 938 llvm::Value *LE = 939 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 940 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 941 } 942 } 943 944 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 945 CGF.EmitCheckTypeDescriptor(OrigSrcType), 946 CGF.EmitCheckTypeDescriptor(DstType)}; 947 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 948 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 949 } 950 951 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 952 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 953 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 954 std::pair<llvm::Value *, SanitizerMask>> 955 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 956 QualType DstType, CGBuilderTy &Builder) { 957 llvm::Type *SrcTy = Src->getType(); 958 llvm::Type *DstTy = Dst->getType(); 959 (void)DstTy; // Only used in assert() 960 961 // This should be truncation of integral types. 962 assert(Src != Dst); 963 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 964 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 965 "non-integer llvm type"); 966 967 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 968 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 969 970 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 971 // Else, it is a signed truncation. 972 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 973 SanitizerMask Mask; 974 if (!SrcSigned && !DstSigned) { 975 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 976 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 977 } else { 978 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 979 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 980 } 981 982 llvm::Value *Check = nullptr; 983 // 1. Extend the truncated value back to the same width as the Src. 984 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 985 // 2. Equality-compare with the original source value 986 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 987 // If the comparison result is 'i1 false', then the truncation was lossy. 988 return std::make_pair(Kind, std::make_pair(Check, Mask)); 989 } 990 991 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 992 Value *Dst, QualType DstType, 993 SourceLocation Loc) { 994 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 995 return; 996 997 // We only care about int->int conversions here. 998 // We ignore conversions to/from pointer and/or bool. 999 if (!(SrcType->isIntegerType() && DstType->isIntegerType())) 1000 return; 1001 1002 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 1003 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 1004 // This must be truncation. Else we do not care. 1005 if (SrcBits <= DstBits) 1006 return; 1007 1008 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 1009 1010 // If the integer sign change sanitizer is enabled, 1011 // and we are truncating from larger unsigned type to smaller signed type, 1012 // let that next sanitizer deal with it. 1013 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1014 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1015 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 1016 (!SrcSigned && DstSigned)) 1017 return; 1018 1019 CodeGenFunction::SanitizerScope SanScope(&CGF); 1020 1021 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1022 std::pair<llvm::Value *, SanitizerMask>> 1023 Check = 1024 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1025 // If the comparison result is 'i1 false', then the truncation was lossy. 1026 1027 // Do we care about this type of truncation? 1028 if (!CGF.SanOpts.has(Check.second.second)) 1029 return; 1030 1031 llvm::Constant *StaticArgs[] = { 1032 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1033 CGF.EmitCheckTypeDescriptor(DstType), 1034 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1035 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1036 {Src, Dst}); 1037 } 1038 1039 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1040 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1041 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1042 std::pair<llvm::Value *, SanitizerMask>> 1043 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1044 QualType DstType, CGBuilderTy &Builder) { 1045 llvm::Type *SrcTy = Src->getType(); 1046 llvm::Type *DstTy = Dst->getType(); 1047 1048 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1049 "non-integer llvm type"); 1050 1051 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1052 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1053 (void)SrcSigned; // Only used in assert() 1054 (void)DstSigned; // Only used in assert() 1055 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1056 unsigned DstBits = DstTy->getScalarSizeInBits(); 1057 (void)SrcBits; // Only used in assert() 1058 (void)DstBits; // Only used in assert() 1059 1060 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1061 "either the widths should be different, or the signednesses."); 1062 1063 // NOTE: zero value is considered to be non-negative. 1064 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1065 const char *Name) -> Value * { 1066 // Is this value a signed type? 1067 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1068 llvm::Type *VTy = V->getType(); 1069 if (!VSigned) { 1070 // If the value is unsigned, then it is never negative. 1071 // FIXME: can we encounter non-scalar VTy here? 1072 return llvm::ConstantInt::getFalse(VTy->getContext()); 1073 } 1074 // Get the zero of the same type with which we will be comparing. 1075 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1076 // %V.isnegative = icmp slt %V, 0 1077 // I.e is %V *strictly* less than zero, does it have negative value? 1078 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1079 llvm::Twine(Name) + "." + V->getName() + 1080 ".negativitycheck"); 1081 }; 1082 1083 // 1. Was the old Value negative? 1084 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1085 // 2. Is the new Value negative? 1086 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1087 // 3. Now, was the 'negativity status' preserved during the conversion? 1088 // NOTE: conversion from negative to zero is considered to change the sign. 1089 // (We want to get 'false' when the conversion changed the sign) 1090 // So we should just equality-compare the negativity statuses. 1091 llvm::Value *Check = nullptr; 1092 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1093 // If the comparison result is 'false', then the conversion changed the sign. 1094 return std::make_pair( 1095 ScalarExprEmitter::ICCK_IntegerSignChange, 1096 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1097 } 1098 1099 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1100 Value *Dst, QualType DstType, 1101 SourceLocation Loc) { 1102 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1103 return; 1104 1105 llvm::Type *SrcTy = Src->getType(); 1106 llvm::Type *DstTy = Dst->getType(); 1107 1108 // We only care about int->int conversions here. 1109 // We ignore conversions to/from pointer and/or bool. 1110 if (!(SrcType->isIntegerType() && DstType->isIntegerType())) 1111 return; 1112 1113 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1114 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1115 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1116 unsigned DstBits = DstTy->getScalarSizeInBits(); 1117 1118 // Now, we do not need to emit the check in *all* of the cases. 1119 // We can avoid emitting it in some obvious cases where it would have been 1120 // dropped by the opt passes (instcombine) always anyways. 1121 // If it's a cast between effectively the same type, no check. 1122 // NOTE: this is *not* equivalent to checking the canonical types. 1123 if (SrcSigned == DstSigned && SrcBits == DstBits) 1124 return; 1125 // At least one of the values needs to have signed type. 1126 // If both are unsigned, then obviously, neither of them can be negative. 1127 if (!SrcSigned && !DstSigned) 1128 return; 1129 // If the conversion is to *larger* *signed* type, then no check is needed. 1130 // Because either sign-extension happens (so the sign will remain), 1131 // or zero-extension will happen (the sign bit will be zero.) 1132 if ((DstBits > SrcBits) && DstSigned) 1133 return; 1134 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1135 (SrcBits > DstBits) && SrcSigned) { 1136 // If the signed integer truncation sanitizer is enabled, 1137 // and this is a truncation from signed type, then no check is needed. 1138 // Because here sign change check is interchangeable with truncation check. 1139 return; 1140 } 1141 // That's it. We can't rule out any more cases with the data we have. 1142 1143 CodeGenFunction::SanitizerScope SanScope(&CGF); 1144 1145 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1146 std::pair<llvm::Value *, SanitizerMask>> 1147 Check; 1148 1149 // Each of these checks needs to return 'false' when an issue was detected. 1150 ImplicitConversionCheckKind CheckKind; 1151 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1152 // So we can 'and' all the checks together, and still get 'false', 1153 // if at least one of the checks detected an issue. 1154 1155 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1156 CheckKind = Check.first; 1157 Checks.emplace_back(Check.second); 1158 1159 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1160 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1161 // If the signed integer truncation sanitizer was enabled, 1162 // and we are truncating from larger unsigned type to smaller signed type, 1163 // let's handle the case we skipped in that check. 1164 Check = 1165 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1166 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1167 Checks.emplace_back(Check.second); 1168 // If the comparison result is 'i1 false', then the truncation was lossy. 1169 } 1170 1171 llvm::Constant *StaticArgs[] = { 1172 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1173 CGF.EmitCheckTypeDescriptor(DstType), 1174 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1175 // EmitCheck() will 'and' all the checks together. 1176 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1177 {Src, Dst}); 1178 } 1179 1180 /// Emit a conversion from the specified type to the specified destination type, 1181 /// both of which are LLVM scalar types. 1182 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1183 QualType DstType, 1184 SourceLocation Loc, 1185 ScalarConversionOpts Opts) { 1186 // All conversions involving fixed point types should be handled by the 1187 // EmitFixedPoint family functions. This is done to prevent bloating up this 1188 // function more, and although fixed point numbers are represented by 1189 // integers, we do not want to follow any logic that assumes they should be 1190 // treated as integers. 1191 // TODO(leonardchan): When necessary, add another if statement checking for 1192 // conversions to fixed point types from other types. 1193 if (SrcType->isFixedPointType()) { 1194 if (DstType->isFixedPointType()) { 1195 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1196 } else if (DstType->isBooleanType()) { 1197 // We do not need to check the padding bit on unsigned types if unsigned 1198 // padding is enabled because overflow into this bit is undefined 1199 // behavior. 1200 return Builder.CreateIsNotNull(Src, "tobool"); 1201 } 1202 1203 llvm_unreachable( 1204 "Unhandled scalar conversion involving a fixed point type."); 1205 } 1206 1207 QualType NoncanonicalSrcType = SrcType; 1208 QualType NoncanonicalDstType = DstType; 1209 1210 SrcType = CGF.getContext().getCanonicalType(SrcType); 1211 DstType = CGF.getContext().getCanonicalType(DstType); 1212 if (SrcType == DstType) return Src; 1213 1214 if (DstType->isVoidType()) return nullptr; 1215 1216 llvm::Value *OrigSrc = Src; 1217 QualType OrigSrcType = SrcType; 1218 llvm::Type *SrcTy = Src->getType(); 1219 1220 // Handle conversions to bool first, they are special: comparisons against 0. 1221 if (DstType->isBooleanType()) 1222 return EmitConversionToBool(Src, SrcType); 1223 1224 llvm::Type *DstTy = ConvertType(DstType); 1225 1226 // Cast from half through float if half isn't a native type. 1227 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1228 // Cast to FP using the intrinsic if the half type itself isn't supported. 1229 if (DstTy->isFloatingPointTy()) { 1230 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1231 return Builder.CreateCall( 1232 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1233 Src); 1234 } else { 1235 // Cast to other types through float, using either the intrinsic or FPExt, 1236 // depending on whether the half type itself is supported 1237 // (as opposed to operations on half, available with NativeHalfType). 1238 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1239 Src = Builder.CreateCall( 1240 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1241 CGF.CGM.FloatTy), 1242 Src); 1243 } else { 1244 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1245 } 1246 SrcType = CGF.getContext().FloatTy; 1247 SrcTy = CGF.FloatTy; 1248 } 1249 } 1250 1251 // Ignore conversions like int -> uint. 1252 if (SrcTy == DstTy) { 1253 if (Opts.EmitImplicitIntegerSignChangeChecks) 1254 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1255 NoncanonicalDstType, Loc); 1256 1257 return Src; 1258 } 1259 1260 // Handle pointer conversions next: pointers can only be converted to/from 1261 // other pointers and integers. Check for pointer types in terms of LLVM, as 1262 // some native types (like Obj-C id) may map to a pointer type. 1263 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1264 // The source value may be an integer, or a pointer. 1265 if (isa<llvm::PointerType>(SrcTy)) 1266 return Builder.CreateBitCast(Src, DstTy, "conv"); 1267 1268 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1269 // First, convert to the correct width so that we control the kind of 1270 // extension. 1271 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1272 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1273 llvm::Value* IntResult = 1274 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1275 // Then, cast to pointer. 1276 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1277 } 1278 1279 if (isa<llvm::PointerType>(SrcTy)) { 1280 // Must be an ptr to int cast. 1281 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1282 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1283 } 1284 1285 // A scalar can be splatted to an extended vector of the same element type 1286 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1287 // Sema should add casts to make sure that the source expression's type is 1288 // the same as the vector's element type (sans qualifiers) 1289 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1290 SrcType.getTypePtr() && 1291 "Splatted expr doesn't match with vector element type?"); 1292 1293 // Splat the element across to all elements 1294 unsigned NumElements = DstTy->getVectorNumElements(); 1295 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1296 } 1297 1298 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1299 // Allow bitcast from vector to integer/fp of the same size. 1300 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1301 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1302 if (SrcSize == DstSize) 1303 return Builder.CreateBitCast(Src, DstTy, "conv"); 1304 1305 // Conversions between vectors of different sizes are not allowed except 1306 // when vectors of half are involved. Operations on storage-only half 1307 // vectors require promoting half vector operands to float vectors and 1308 // truncating the result, which is either an int or float vector, to a 1309 // short or half vector. 1310 1311 // Source and destination are both expected to be vectors. 1312 llvm::Type *SrcElementTy = SrcTy->getVectorElementType(); 1313 llvm::Type *DstElementTy = DstTy->getVectorElementType(); 1314 (void)DstElementTy; 1315 1316 assert(((SrcElementTy->isIntegerTy() && 1317 DstElementTy->isIntegerTy()) || 1318 (SrcElementTy->isFloatingPointTy() && 1319 DstElementTy->isFloatingPointTy())) && 1320 "unexpected conversion between a floating-point vector and an " 1321 "integer vector"); 1322 1323 // Truncate an i32 vector to an i16 vector. 1324 if (SrcElementTy->isIntegerTy()) 1325 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1326 1327 // Truncate a float vector to a half vector. 1328 if (SrcSize > DstSize) 1329 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1330 1331 // Promote a half vector to a float vector. 1332 return Builder.CreateFPExt(Src, DstTy, "conv"); 1333 } 1334 1335 // Finally, we have the arithmetic types: real int/float. 1336 Value *Res = nullptr; 1337 llvm::Type *ResTy = DstTy; 1338 1339 // An overflowing conversion has undefined behavior if either the source type 1340 // or the destination type is a floating-point type. 1341 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1342 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 1343 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1344 Loc); 1345 1346 // Cast to half through float if half isn't a native type. 1347 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1348 // Make sure we cast in a single step if from another FP type. 1349 if (SrcTy->isFloatingPointTy()) { 1350 // Use the intrinsic if the half type itself isn't supported 1351 // (as opposed to operations on half, available with NativeHalfType). 1352 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1353 return Builder.CreateCall( 1354 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1355 // If the half type is supported, just use an fptrunc. 1356 return Builder.CreateFPTrunc(Src, DstTy); 1357 } 1358 DstTy = CGF.FloatTy; 1359 } 1360 1361 if (isa<llvm::IntegerType>(SrcTy)) { 1362 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1363 if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1364 InputSigned = true; 1365 } 1366 if (isa<llvm::IntegerType>(DstTy)) 1367 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1368 else if (InputSigned) 1369 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1370 else 1371 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1372 } else if (isa<llvm::IntegerType>(DstTy)) { 1373 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1374 if (DstType->isSignedIntegerOrEnumerationType()) 1375 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1376 else 1377 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1378 } else { 1379 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1380 "Unknown real conversion"); 1381 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1382 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1383 else 1384 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1385 } 1386 1387 if (DstTy != ResTy) { 1388 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1389 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1390 Res = Builder.CreateCall( 1391 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1392 Res); 1393 } else { 1394 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1395 } 1396 } 1397 1398 if (Opts.EmitImplicitIntegerTruncationChecks) 1399 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1400 NoncanonicalDstType, Loc); 1401 1402 if (Opts.EmitImplicitIntegerSignChangeChecks) 1403 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1404 NoncanonicalDstType, Loc); 1405 1406 return Res; 1407 } 1408 1409 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1410 QualType DstTy, 1411 SourceLocation Loc) { 1412 using llvm::APInt; 1413 using llvm::ConstantInt; 1414 using llvm::Value; 1415 1416 assert(SrcTy->isFixedPointType()); 1417 assert(DstTy->isFixedPointType()); 1418 1419 FixedPointSemantics SrcFPSema = 1420 CGF.getContext().getFixedPointSemantics(SrcTy); 1421 FixedPointSemantics DstFPSema = 1422 CGF.getContext().getFixedPointSemantics(DstTy); 1423 unsigned SrcWidth = SrcFPSema.getWidth(); 1424 unsigned DstWidth = DstFPSema.getWidth(); 1425 unsigned SrcScale = SrcFPSema.getScale(); 1426 unsigned DstScale = DstFPSema.getScale(); 1427 bool SrcIsSigned = SrcFPSema.isSigned(); 1428 bool DstIsSigned = DstFPSema.isSigned(); 1429 1430 llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth); 1431 1432 Value *Result = Src; 1433 unsigned ResultWidth = SrcWidth; 1434 1435 if (!DstFPSema.isSaturated()) { 1436 // Downscale. 1437 if (DstScale < SrcScale) 1438 Result = SrcIsSigned ? 1439 Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") : 1440 Builder.CreateLShr(Result, SrcScale - DstScale, "downscale"); 1441 1442 // Resize. 1443 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1444 1445 // Upscale. 1446 if (DstScale > SrcScale) 1447 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1448 } else { 1449 // Adjust the number of fractional bits. 1450 if (DstScale > SrcScale) { 1451 ResultWidth = SrcWidth + DstScale - SrcScale; 1452 llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth); 1453 Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize"); 1454 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1455 } else if (DstScale < SrcScale) { 1456 Result = SrcIsSigned ? 1457 Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") : 1458 Builder.CreateLShr(Result, SrcScale - DstScale, "downscale"); 1459 } 1460 1461 // Handle saturation. 1462 bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits(); 1463 if (LessIntBits) { 1464 Value *Max = ConstantInt::get( 1465 CGF.getLLVMContext(), 1466 APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1467 Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max) 1468 : Builder.CreateICmpUGT(Result, Max); 1469 Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax"); 1470 } 1471 // Cannot overflow min to dest type if src is unsigned since all fixed 1472 // point types can cover the unsigned min of 0. 1473 if (SrcIsSigned && (LessIntBits || !DstIsSigned)) { 1474 Value *Min = ConstantInt::get( 1475 CGF.getLLVMContext(), 1476 APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1477 Value *TooLow = Builder.CreateICmpSLT(Result, Min); 1478 Result = Builder.CreateSelect(TooLow, Min, Result, "satmin"); 1479 } 1480 1481 // Resize the integer part to get the final destination size. 1482 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1483 } 1484 return Result; 1485 } 1486 1487 /// Emit a conversion from the specified complex type to the specified 1488 /// destination type, where the destination type is an LLVM scalar type. 1489 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1490 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1491 SourceLocation Loc) { 1492 // Get the source element type. 1493 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1494 1495 // Handle conversions to bool first, they are special: comparisons against 0. 1496 if (DstTy->isBooleanType()) { 1497 // Complex != 0 -> (Real != 0) | (Imag != 0) 1498 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1499 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1500 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1501 } 1502 1503 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1504 // the imaginary part of the complex value is discarded and the value of the 1505 // real part is converted according to the conversion rules for the 1506 // corresponding real type. 1507 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1508 } 1509 1510 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1511 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1512 } 1513 1514 /// Emit a sanitization check for the given "binary" operation (which 1515 /// might actually be a unary increment which has been lowered to a binary 1516 /// operation). The check passes if all values in \p Checks (which are \c i1), 1517 /// are \c true. 1518 void ScalarExprEmitter::EmitBinOpCheck( 1519 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1520 assert(CGF.IsSanitizerScope); 1521 SanitizerHandler Check; 1522 SmallVector<llvm::Constant *, 4> StaticData; 1523 SmallVector<llvm::Value *, 2> DynamicData; 1524 1525 BinaryOperatorKind Opcode = Info.Opcode; 1526 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1527 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1528 1529 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1530 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1531 if (UO && UO->getOpcode() == UO_Minus) { 1532 Check = SanitizerHandler::NegateOverflow; 1533 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1534 DynamicData.push_back(Info.RHS); 1535 } else { 1536 if (BinaryOperator::isShiftOp(Opcode)) { 1537 // Shift LHS negative or too large, or RHS out of bounds. 1538 Check = SanitizerHandler::ShiftOutOfBounds; 1539 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1540 StaticData.push_back( 1541 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1542 StaticData.push_back( 1543 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1544 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1545 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1546 Check = SanitizerHandler::DivremOverflow; 1547 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1548 } else { 1549 // Arithmetic overflow (+, -, *). 1550 switch (Opcode) { 1551 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1552 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1553 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1554 default: llvm_unreachable("unexpected opcode for bin op check"); 1555 } 1556 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1557 } 1558 DynamicData.push_back(Info.LHS); 1559 DynamicData.push_back(Info.RHS); 1560 } 1561 1562 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1563 } 1564 1565 //===----------------------------------------------------------------------===// 1566 // Visitor Methods 1567 //===----------------------------------------------------------------------===// 1568 1569 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1570 CGF.ErrorUnsupported(E, "scalar expression"); 1571 if (E->getType()->isVoidType()) 1572 return nullptr; 1573 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1574 } 1575 1576 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1577 // Vector Mask Case 1578 if (E->getNumSubExprs() == 2) { 1579 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1580 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1581 Value *Mask; 1582 1583 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 1584 unsigned LHSElts = LTy->getNumElements(); 1585 1586 Mask = RHS; 1587 1588 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1589 1590 // Mask off the high bits of each shuffle index. 1591 Value *MaskBits = 1592 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1593 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1594 1595 // newv = undef 1596 // mask = mask & maskbits 1597 // for each elt 1598 // n = extract mask i 1599 // x = extract val n 1600 // newv = insert newv, x, i 1601 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1602 MTy->getNumElements()); 1603 Value* NewV = llvm::UndefValue::get(RTy); 1604 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1605 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1606 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1607 1608 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1609 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1610 } 1611 return NewV; 1612 } 1613 1614 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1615 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1616 1617 SmallVector<llvm::Constant*, 32> indices; 1618 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1619 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1620 // Check for -1 and output it as undef in the IR. 1621 if (Idx.isSigned() && Idx.isAllOnesValue()) 1622 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1623 else 1624 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1625 } 1626 1627 Value *SV = llvm::ConstantVector::get(indices); 1628 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1629 } 1630 1631 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1632 QualType SrcType = E->getSrcExpr()->getType(), 1633 DstType = E->getType(); 1634 1635 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1636 1637 SrcType = CGF.getContext().getCanonicalType(SrcType); 1638 DstType = CGF.getContext().getCanonicalType(DstType); 1639 if (SrcType == DstType) return Src; 1640 1641 assert(SrcType->isVectorType() && 1642 "ConvertVector source type must be a vector"); 1643 assert(DstType->isVectorType() && 1644 "ConvertVector destination type must be a vector"); 1645 1646 llvm::Type *SrcTy = Src->getType(); 1647 llvm::Type *DstTy = ConvertType(DstType); 1648 1649 // Ignore conversions like int -> uint. 1650 if (SrcTy == DstTy) 1651 return Src; 1652 1653 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1654 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1655 1656 assert(SrcTy->isVectorTy() && 1657 "ConvertVector source IR type must be a vector"); 1658 assert(DstTy->isVectorTy() && 1659 "ConvertVector destination IR type must be a vector"); 1660 1661 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1662 *DstEltTy = DstTy->getVectorElementType(); 1663 1664 if (DstEltType->isBooleanType()) { 1665 assert((SrcEltTy->isFloatingPointTy() || 1666 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1667 1668 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1669 if (SrcEltTy->isFloatingPointTy()) { 1670 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1671 } else { 1672 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1673 } 1674 } 1675 1676 // We have the arithmetic types: real int/float. 1677 Value *Res = nullptr; 1678 1679 if (isa<llvm::IntegerType>(SrcEltTy)) { 1680 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1681 if (isa<llvm::IntegerType>(DstEltTy)) 1682 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1683 else if (InputSigned) 1684 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1685 else 1686 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1687 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1688 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1689 if (DstEltType->isSignedIntegerOrEnumerationType()) 1690 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1691 else 1692 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1693 } else { 1694 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1695 "Unknown real conversion"); 1696 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1697 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1698 else 1699 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1700 } 1701 1702 return Res; 1703 } 1704 1705 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1706 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1707 CGF.EmitIgnoredExpr(E->getBase()); 1708 return CGF.emitScalarConstant(Constant, E); 1709 } else { 1710 llvm::APSInt Value; 1711 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1712 CGF.EmitIgnoredExpr(E->getBase()); 1713 return Builder.getInt(Value); 1714 } 1715 } 1716 1717 return EmitLoadOfLValue(E); 1718 } 1719 1720 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1721 TestAndClearIgnoreResultAssign(); 1722 1723 // Emit subscript expressions in rvalue context's. For most cases, this just 1724 // loads the lvalue formed by the subscript expr. However, we have to be 1725 // careful, because the base of a vector subscript is occasionally an rvalue, 1726 // so we can't get it as an lvalue. 1727 if (!E->getBase()->getType()->isVectorType()) 1728 return EmitLoadOfLValue(E); 1729 1730 // Handle the vector case. The base must be a vector, the index must be an 1731 // integer value. 1732 Value *Base = Visit(E->getBase()); 1733 Value *Idx = Visit(E->getIdx()); 1734 QualType IdxTy = E->getIdx()->getType(); 1735 1736 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1737 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1738 1739 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1740 } 1741 1742 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1743 unsigned Off, llvm::Type *I32Ty) { 1744 int MV = SVI->getMaskValue(Idx); 1745 if (MV == -1) 1746 return llvm::UndefValue::get(I32Ty); 1747 return llvm::ConstantInt::get(I32Ty, Off+MV); 1748 } 1749 1750 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1751 if (C->getBitWidth() != 32) { 1752 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1753 C->getZExtValue()) && 1754 "Index operand too large for shufflevector mask!"); 1755 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1756 } 1757 return C; 1758 } 1759 1760 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1761 bool Ignore = TestAndClearIgnoreResultAssign(); 1762 (void)Ignore; 1763 assert (Ignore == false && "init list ignored"); 1764 unsigned NumInitElements = E->getNumInits(); 1765 1766 if (E->hadArrayRangeDesignator()) 1767 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1768 1769 llvm::VectorType *VType = 1770 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1771 1772 if (!VType) { 1773 if (NumInitElements == 0) { 1774 // C++11 value-initialization for the scalar. 1775 return EmitNullValue(E->getType()); 1776 } 1777 // We have a scalar in braces. Just use the first element. 1778 return Visit(E->getInit(0)); 1779 } 1780 1781 unsigned ResElts = VType->getNumElements(); 1782 1783 // Loop over initializers collecting the Value for each, and remembering 1784 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1785 // us to fold the shuffle for the swizzle into the shuffle for the vector 1786 // initializer, since LLVM optimizers generally do not want to touch 1787 // shuffles. 1788 unsigned CurIdx = 0; 1789 bool VIsUndefShuffle = false; 1790 llvm::Value *V = llvm::UndefValue::get(VType); 1791 for (unsigned i = 0; i != NumInitElements; ++i) { 1792 Expr *IE = E->getInit(i); 1793 Value *Init = Visit(IE); 1794 SmallVector<llvm::Constant*, 16> Args; 1795 1796 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1797 1798 // Handle scalar elements. If the scalar initializer is actually one 1799 // element of a different vector of the same width, use shuffle instead of 1800 // extract+insert. 1801 if (!VVT) { 1802 if (isa<ExtVectorElementExpr>(IE)) { 1803 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1804 1805 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1806 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1807 Value *LHS = nullptr, *RHS = nullptr; 1808 if (CurIdx == 0) { 1809 // insert into undef -> shuffle (src, undef) 1810 // shufflemask must use an i32 1811 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1812 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1813 1814 LHS = EI->getVectorOperand(); 1815 RHS = V; 1816 VIsUndefShuffle = true; 1817 } else if (VIsUndefShuffle) { 1818 // insert into undefshuffle && size match -> shuffle (v, src) 1819 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1820 for (unsigned j = 0; j != CurIdx; ++j) 1821 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1822 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1823 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1824 1825 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1826 RHS = EI->getVectorOperand(); 1827 VIsUndefShuffle = false; 1828 } 1829 if (!Args.empty()) { 1830 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1831 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1832 ++CurIdx; 1833 continue; 1834 } 1835 } 1836 } 1837 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1838 "vecinit"); 1839 VIsUndefShuffle = false; 1840 ++CurIdx; 1841 continue; 1842 } 1843 1844 unsigned InitElts = VVT->getNumElements(); 1845 1846 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1847 // input is the same width as the vector being constructed, generate an 1848 // optimized shuffle of the swizzle input into the result. 1849 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1850 if (isa<ExtVectorElementExpr>(IE)) { 1851 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1852 Value *SVOp = SVI->getOperand(0); 1853 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1854 1855 if (OpTy->getNumElements() == ResElts) { 1856 for (unsigned j = 0; j != CurIdx; ++j) { 1857 // If the current vector initializer is a shuffle with undef, merge 1858 // this shuffle directly into it. 1859 if (VIsUndefShuffle) { 1860 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1861 CGF.Int32Ty)); 1862 } else { 1863 Args.push_back(Builder.getInt32(j)); 1864 } 1865 } 1866 for (unsigned j = 0, je = InitElts; j != je; ++j) 1867 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1868 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1869 1870 if (VIsUndefShuffle) 1871 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1872 1873 Init = SVOp; 1874 } 1875 } 1876 1877 // Extend init to result vector length, and then shuffle its contribution 1878 // to the vector initializer into V. 1879 if (Args.empty()) { 1880 for (unsigned j = 0; j != InitElts; ++j) 1881 Args.push_back(Builder.getInt32(j)); 1882 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1883 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1884 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1885 Mask, "vext"); 1886 1887 Args.clear(); 1888 for (unsigned j = 0; j != CurIdx; ++j) 1889 Args.push_back(Builder.getInt32(j)); 1890 for (unsigned j = 0; j != InitElts; ++j) 1891 Args.push_back(Builder.getInt32(j+Offset)); 1892 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1893 } 1894 1895 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1896 // merging subsequent shuffles into this one. 1897 if (CurIdx == 0) 1898 std::swap(V, Init); 1899 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1900 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1901 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1902 CurIdx += InitElts; 1903 } 1904 1905 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1906 // Emit remaining default initializers. 1907 llvm::Type *EltTy = VType->getElementType(); 1908 1909 // Emit remaining default initializers 1910 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1911 Value *Idx = Builder.getInt32(CurIdx); 1912 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1913 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1914 } 1915 return V; 1916 } 1917 1918 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1919 const Expr *E = CE->getSubExpr(); 1920 1921 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1922 return false; 1923 1924 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1925 // We always assume that 'this' is never null. 1926 return false; 1927 } 1928 1929 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1930 // And that glvalue casts are never null. 1931 if (ICE->getValueKind() != VK_RValue) 1932 return false; 1933 } 1934 1935 return true; 1936 } 1937 1938 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1939 // have to handle a more broad range of conversions than explicit casts, as they 1940 // handle things like function to ptr-to-function decay etc. 1941 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1942 Expr *E = CE->getSubExpr(); 1943 QualType DestTy = CE->getType(); 1944 CastKind Kind = CE->getCastKind(); 1945 1946 // These cases are generally not written to ignore the result of 1947 // evaluating their sub-expressions, so we clear this now. 1948 bool Ignored = TestAndClearIgnoreResultAssign(); 1949 1950 // Since almost all cast kinds apply to scalars, this switch doesn't have 1951 // a default case, so the compiler will warn on a missing case. The cases 1952 // are in the same order as in the CastKind enum. 1953 switch (Kind) { 1954 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1955 case CK_BuiltinFnToFnPtr: 1956 llvm_unreachable("builtin functions are handled elsewhere"); 1957 1958 case CK_LValueBitCast: 1959 case CK_ObjCObjectLValueCast: { 1960 Address Addr = EmitLValue(E).getAddress(); 1961 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1962 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1963 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1964 } 1965 1966 case CK_CPointerToObjCPointerCast: 1967 case CK_BlockPointerToObjCPointerCast: 1968 case CK_AnyPointerToBlockPointerCast: 1969 case CK_BitCast: { 1970 Value *Src = Visit(const_cast<Expr*>(E)); 1971 llvm::Type *SrcTy = Src->getType(); 1972 llvm::Type *DstTy = ConvertType(DestTy); 1973 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1974 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1975 llvm_unreachable("wrong cast for pointers in different address spaces" 1976 "(must be an address space cast)!"); 1977 } 1978 1979 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1980 if (auto PT = DestTy->getAs<PointerType>()) 1981 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1982 /*MayBeNull=*/true, 1983 CodeGenFunction::CFITCK_UnrelatedCast, 1984 CE->getBeginLoc()); 1985 } 1986 1987 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 1988 const QualType SrcType = E->getType(); 1989 1990 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 1991 // Casting to pointer that could carry dynamic information (provided by 1992 // invariant.group) requires launder. 1993 Src = Builder.CreateLaunderInvariantGroup(Src); 1994 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 1995 // Casting to pointer that does not carry dynamic information (provided 1996 // by invariant.group) requires stripping it. Note that we don't do it 1997 // if the source could not be dynamic type and destination could be 1998 // dynamic because dynamic information is already laundered. It is 1999 // because launder(strip(src)) == launder(src), so there is no need to 2000 // add extra strip before launder. 2001 Src = Builder.CreateStripInvariantGroup(Src); 2002 } 2003 } 2004 2005 return Builder.CreateBitCast(Src, DstTy); 2006 } 2007 case CK_AddressSpaceConversion: { 2008 Expr::EvalResult Result; 2009 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2010 Result.Val.isNullPointer()) { 2011 // If E has side effect, it is emitted even if its final result is a 2012 // null pointer. In that case, a DCE pass should be able to 2013 // eliminate the useless instructions emitted during translating E. 2014 if (Result.HasSideEffects) 2015 Visit(E); 2016 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2017 ConvertType(DestTy)), DestTy); 2018 } 2019 // Since target may map different address spaces in AST to the same address 2020 // space, an address space conversion may end up as a bitcast. 2021 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2022 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2023 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2024 } 2025 case CK_AtomicToNonAtomic: 2026 case CK_NonAtomicToAtomic: 2027 case CK_NoOp: 2028 case CK_UserDefinedConversion: 2029 return Visit(const_cast<Expr*>(E)); 2030 2031 case CK_BaseToDerived: { 2032 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2033 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2034 2035 Address Base = CGF.EmitPointerWithAlignment(E); 2036 Address Derived = 2037 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2038 CE->path_begin(), CE->path_end(), 2039 CGF.ShouldNullCheckClassCastValue(CE)); 2040 2041 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2042 // performed and the object is not of the derived type. 2043 if (CGF.sanitizePerformTypeCheck()) 2044 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2045 Derived.getPointer(), DestTy->getPointeeType()); 2046 2047 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2048 CGF.EmitVTablePtrCheckForCast( 2049 DestTy->getPointeeType(), Derived.getPointer(), 2050 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 2051 CE->getBeginLoc()); 2052 2053 return Derived.getPointer(); 2054 } 2055 case CK_UncheckedDerivedToBase: 2056 case CK_DerivedToBase: { 2057 // The EmitPointerWithAlignment path does this fine; just discard 2058 // the alignment. 2059 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2060 } 2061 2062 case CK_Dynamic: { 2063 Address V = CGF.EmitPointerWithAlignment(E); 2064 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2065 return CGF.EmitDynamicCast(V, DCE); 2066 } 2067 2068 case CK_ArrayToPointerDecay: 2069 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2070 case CK_FunctionToPointerDecay: 2071 return EmitLValue(E).getPointer(); 2072 2073 case CK_NullToPointer: 2074 if (MustVisitNullValue(E)) 2075 (void) Visit(E); 2076 2077 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2078 DestTy); 2079 2080 case CK_NullToMemberPointer: { 2081 if (MustVisitNullValue(E)) 2082 (void) Visit(E); 2083 2084 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2085 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2086 } 2087 2088 case CK_ReinterpretMemberPointer: 2089 case CK_BaseToDerivedMemberPointer: 2090 case CK_DerivedToBaseMemberPointer: { 2091 Value *Src = Visit(E); 2092 2093 // Note that the AST doesn't distinguish between checked and 2094 // unchecked member pointer conversions, so we always have to 2095 // implement checked conversions here. This is inefficient when 2096 // actual control flow may be required in order to perform the 2097 // check, which it is for data member pointers (but not member 2098 // function pointers on Itanium and ARM). 2099 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2100 } 2101 2102 case CK_ARCProduceObject: 2103 return CGF.EmitARCRetainScalarExpr(E); 2104 case CK_ARCConsumeObject: 2105 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2106 case CK_ARCReclaimReturnedObject: 2107 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2108 case CK_ARCExtendBlockObject: 2109 return CGF.EmitARCExtendBlockObject(E); 2110 2111 case CK_CopyAndAutoreleaseBlockObject: 2112 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2113 2114 case CK_FloatingRealToComplex: 2115 case CK_FloatingComplexCast: 2116 case CK_IntegralRealToComplex: 2117 case CK_IntegralComplexCast: 2118 case CK_IntegralComplexToFloatingComplex: 2119 case CK_FloatingComplexToIntegralComplex: 2120 case CK_ConstructorConversion: 2121 case CK_ToUnion: 2122 llvm_unreachable("scalar cast to non-scalar value"); 2123 2124 case CK_LValueToRValue: 2125 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2126 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2127 return Visit(const_cast<Expr*>(E)); 2128 2129 case CK_IntegralToPointer: { 2130 Value *Src = Visit(const_cast<Expr*>(E)); 2131 2132 // First, convert to the correct width so that we control the kind of 2133 // extension. 2134 auto DestLLVMTy = ConvertType(DestTy); 2135 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2136 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2137 llvm::Value* IntResult = 2138 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2139 2140 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2141 2142 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2143 // Going from integer to pointer that could be dynamic requires reloading 2144 // dynamic information from invariant.group. 2145 if (DestTy.mayBeDynamicClass()) 2146 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2147 } 2148 return IntToPtr; 2149 } 2150 case CK_PointerToIntegral: { 2151 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2152 auto *PtrExpr = Visit(E); 2153 2154 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2155 const QualType SrcType = E->getType(); 2156 2157 // Casting to integer requires stripping dynamic information as it does 2158 // not carries it. 2159 if (SrcType.mayBeDynamicClass()) 2160 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2161 } 2162 2163 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2164 } 2165 case CK_ToVoid: { 2166 CGF.EmitIgnoredExpr(E); 2167 return nullptr; 2168 } 2169 case CK_VectorSplat: { 2170 llvm::Type *DstTy = ConvertType(DestTy); 2171 Value *Elt = Visit(const_cast<Expr*>(E)); 2172 // Splat the element across to all elements 2173 unsigned NumElements = DstTy->getVectorNumElements(); 2174 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2175 } 2176 2177 case CK_FixedPointCast: 2178 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2179 CE->getExprLoc()); 2180 2181 case CK_FixedPointToBoolean: 2182 assert(E->getType()->isFixedPointType() && 2183 "Expected src type to be fixed point type"); 2184 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2185 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2186 CE->getExprLoc()); 2187 2188 case CK_IntegralCast: { 2189 ScalarConversionOpts Opts; 2190 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2191 if (CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitConversion) && 2192 !ICE->isPartOfExplicitCast()) { 2193 Opts.EmitImplicitIntegerTruncationChecks = 2194 CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation); 2195 Opts.EmitImplicitIntegerSignChangeChecks = 2196 CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange); 2197 } 2198 } 2199 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2200 CE->getExprLoc(), Opts); 2201 } 2202 case CK_IntegralToFloating: 2203 case CK_FloatingToIntegral: 2204 case CK_FloatingCast: 2205 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2206 CE->getExprLoc()); 2207 case CK_BooleanToSignedIntegral: { 2208 ScalarConversionOpts Opts; 2209 Opts.TreatBooleanAsSigned = true; 2210 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2211 CE->getExprLoc(), Opts); 2212 } 2213 case CK_IntegralToBoolean: 2214 return EmitIntToBoolConversion(Visit(E)); 2215 case CK_PointerToBoolean: 2216 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2217 case CK_FloatingToBoolean: 2218 return EmitFloatToBoolConversion(Visit(E)); 2219 case CK_MemberPointerToBoolean: { 2220 llvm::Value *MemPtr = Visit(E); 2221 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2222 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2223 } 2224 2225 case CK_FloatingComplexToReal: 2226 case CK_IntegralComplexToReal: 2227 return CGF.EmitComplexExpr(E, false, true).first; 2228 2229 case CK_FloatingComplexToBoolean: 2230 case CK_IntegralComplexToBoolean: { 2231 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2232 2233 // TODO: kill this function off, inline appropriate case here 2234 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2235 CE->getExprLoc()); 2236 } 2237 2238 case CK_ZeroToOCLOpaqueType: { 2239 assert((DestTy->isEventT() || DestTy->isQueueT()) && 2240 "CK_ZeroToOCLEvent cast on non-event type"); 2241 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2242 } 2243 2244 case CK_IntToOCLSampler: 2245 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2246 2247 } // end of switch 2248 2249 llvm_unreachable("unknown scalar cast"); 2250 } 2251 2252 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2253 CodeGenFunction::StmtExprEvaluation eval(CGF); 2254 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2255 !E->getType()->isVoidType()); 2256 if (!RetAlloca.isValid()) 2257 return nullptr; 2258 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2259 E->getExprLoc()); 2260 } 2261 2262 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2263 CGF.enterFullExpression(E); 2264 CodeGenFunction::RunCleanupsScope Scope(CGF); 2265 Value *V = Visit(E->getSubExpr()); 2266 // Defend against dominance problems caused by jumps out of expression 2267 // evaluation through the shared cleanup block. 2268 Scope.ForceCleanup({&V}); 2269 return V; 2270 } 2271 2272 //===----------------------------------------------------------------------===// 2273 // Unary Operators 2274 //===----------------------------------------------------------------------===// 2275 2276 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2277 llvm::Value *InVal, bool IsInc) { 2278 BinOpInfo BinOp; 2279 BinOp.LHS = InVal; 2280 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2281 BinOp.Ty = E->getType(); 2282 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2283 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2284 BinOp.E = E; 2285 return BinOp; 2286 } 2287 2288 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2289 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2290 llvm::Value *Amount = 2291 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2292 StringRef Name = IsInc ? "inc" : "dec"; 2293 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2294 case LangOptions::SOB_Defined: 2295 return Builder.CreateAdd(InVal, Amount, Name); 2296 case LangOptions::SOB_Undefined: 2297 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2298 return Builder.CreateNSWAdd(InVal, Amount, Name); 2299 LLVM_FALLTHROUGH; 2300 case LangOptions::SOB_Trapping: 2301 if (!E->canOverflow()) 2302 return Builder.CreateNSWAdd(InVal, Amount, Name); 2303 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 2304 } 2305 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2306 } 2307 2308 llvm::Value * 2309 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2310 bool isInc, bool isPre) { 2311 2312 QualType type = E->getSubExpr()->getType(); 2313 llvm::PHINode *atomicPHI = nullptr; 2314 llvm::Value *value; 2315 llvm::Value *input; 2316 2317 int amount = (isInc ? 1 : -1); 2318 bool isSubtraction = !isInc; 2319 2320 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2321 type = atomicTy->getValueType(); 2322 if (isInc && type->isBooleanType()) { 2323 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2324 if (isPre) { 2325 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 2326 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2327 return Builder.getTrue(); 2328 } 2329 // For atomic bool increment, we just store true and return it for 2330 // preincrement, do an atomic swap with true for postincrement 2331 return Builder.CreateAtomicRMW( 2332 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, 2333 llvm::AtomicOrdering::SequentiallyConsistent); 2334 } 2335 // Special case for atomic increment / decrement on integers, emit 2336 // atomicrmw instructions. We skip this if we want to be doing overflow 2337 // checking, and fall into the slow path with the atomic cmpxchg loop. 2338 if (!type->isBooleanType() && type->isIntegerType() && 2339 !(type->isUnsignedIntegerType() && 2340 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2341 CGF.getLangOpts().getSignedOverflowBehavior() != 2342 LangOptions::SOB_Trapping) { 2343 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2344 llvm::AtomicRMWInst::Sub; 2345 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2346 llvm::Instruction::Sub; 2347 llvm::Value *amt = CGF.EmitToMemory( 2348 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2349 llvm::Value *old = Builder.CreateAtomicRMW(aop, 2350 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); 2351 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2352 } 2353 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2354 input = value; 2355 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2356 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2357 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2358 value = CGF.EmitToMemory(value, type); 2359 Builder.CreateBr(opBB); 2360 Builder.SetInsertPoint(opBB); 2361 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2362 atomicPHI->addIncoming(value, startBB); 2363 value = atomicPHI; 2364 } else { 2365 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2366 input = value; 2367 } 2368 2369 // Special case of integer increment that we have to check first: bool++. 2370 // Due to promotion rules, we get: 2371 // bool++ -> bool = bool + 1 2372 // -> bool = (int)bool + 1 2373 // -> bool = ((int)bool + 1 != 0) 2374 // An interesting aspect of this is that increment is always true. 2375 // Decrement does not have this property. 2376 if (isInc && type->isBooleanType()) { 2377 value = Builder.getTrue(); 2378 2379 // Most common case by far: integer increment. 2380 } else if (type->isIntegerType()) { 2381 // Note that signed integer inc/dec with width less than int can't 2382 // overflow because of promotion rules; we're just eliding a few steps here. 2383 if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2384 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2385 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2386 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2387 value = 2388 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 2389 } else { 2390 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2391 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2392 } 2393 2394 // Next most common: pointer increment. 2395 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2396 QualType type = ptr->getPointeeType(); 2397 2398 // VLA types don't have constant size. 2399 if (const VariableArrayType *vla 2400 = CGF.getContext().getAsVariableArrayType(type)) { 2401 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2402 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2403 if (CGF.getLangOpts().isSignedOverflowDefined()) 2404 value = Builder.CreateGEP(value, numElts, "vla.inc"); 2405 else 2406 value = CGF.EmitCheckedInBoundsGEP( 2407 value, numElts, /*SignedIndices=*/false, isSubtraction, 2408 E->getExprLoc(), "vla.inc"); 2409 2410 // Arithmetic on function pointers (!) is just +-1. 2411 } else if (type->isFunctionType()) { 2412 llvm::Value *amt = Builder.getInt32(amount); 2413 2414 value = CGF.EmitCastToVoidPtr(value); 2415 if (CGF.getLangOpts().isSignedOverflowDefined()) 2416 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 2417 else 2418 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2419 isSubtraction, E->getExprLoc(), 2420 "incdec.funcptr"); 2421 value = Builder.CreateBitCast(value, input->getType()); 2422 2423 // For everything else, we can just do a simple increment. 2424 } else { 2425 llvm::Value *amt = Builder.getInt32(amount); 2426 if (CGF.getLangOpts().isSignedOverflowDefined()) 2427 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 2428 else 2429 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2430 isSubtraction, E->getExprLoc(), 2431 "incdec.ptr"); 2432 } 2433 2434 // Vector increment/decrement. 2435 } else if (type->isVectorType()) { 2436 if (type->hasIntegerRepresentation()) { 2437 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2438 2439 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2440 } else { 2441 value = Builder.CreateFAdd( 2442 value, 2443 llvm::ConstantFP::get(value->getType(), amount), 2444 isInc ? "inc" : "dec"); 2445 } 2446 2447 // Floating point. 2448 } else if (type->isRealFloatingType()) { 2449 // Add the inc/dec to the real part. 2450 llvm::Value *amt; 2451 2452 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2453 // Another special case: half FP increment should be done via float 2454 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2455 value = Builder.CreateCall( 2456 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2457 CGF.CGM.FloatTy), 2458 input, "incdec.conv"); 2459 } else { 2460 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2461 } 2462 } 2463 2464 if (value->getType()->isFloatTy()) 2465 amt = llvm::ConstantFP::get(VMContext, 2466 llvm::APFloat(static_cast<float>(amount))); 2467 else if (value->getType()->isDoubleTy()) 2468 amt = llvm::ConstantFP::get(VMContext, 2469 llvm::APFloat(static_cast<double>(amount))); 2470 else { 2471 // Remaining types are Half, LongDouble or __float128. Convert from float. 2472 llvm::APFloat F(static_cast<float>(amount)); 2473 bool ignored; 2474 const llvm::fltSemantics *FS; 2475 // Don't use getFloatTypeSemantics because Half isn't 2476 // necessarily represented using the "half" LLVM type. 2477 if (value->getType()->isFP128Ty()) 2478 FS = &CGF.getTarget().getFloat128Format(); 2479 else if (value->getType()->isHalfTy()) 2480 FS = &CGF.getTarget().getHalfFormat(); 2481 else 2482 FS = &CGF.getTarget().getLongDoubleFormat(); 2483 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2484 amt = llvm::ConstantFP::get(VMContext, F); 2485 } 2486 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2487 2488 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2489 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2490 value = Builder.CreateCall( 2491 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2492 CGF.CGM.FloatTy), 2493 value, "incdec.conv"); 2494 } else { 2495 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2496 } 2497 } 2498 2499 // Objective-C pointer types. 2500 } else { 2501 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2502 value = CGF.EmitCastToVoidPtr(value); 2503 2504 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2505 if (!isInc) size = -size; 2506 llvm::Value *sizeValue = 2507 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2508 2509 if (CGF.getLangOpts().isSignedOverflowDefined()) 2510 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2511 else 2512 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2513 /*SignedIndices=*/false, isSubtraction, 2514 E->getExprLoc(), "incdec.objptr"); 2515 value = Builder.CreateBitCast(value, input->getType()); 2516 } 2517 2518 if (atomicPHI) { 2519 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2520 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2521 auto Pair = CGF.EmitAtomicCompareExchange( 2522 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2523 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2524 llvm::Value *success = Pair.second; 2525 atomicPHI->addIncoming(old, opBB); 2526 Builder.CreateCondBr(success, contBB, opBB); 2527 Builder.SetInsertPoint(contBB); 2528 return isPre ? value : input; 2529 } 2530 2531 // Store the updated result through the lvalue. 2532 if (LV.isBitField()) 2533 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2534 else 2535 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2536 2537 // If this is a postinc, return the value read from memory, otherwise use the 2538 // updated value. 2539 return isPre ? value : input; 2540 } 2541 2542 2543 2544 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2545 TestAndClearIgnoreResultAssign(); 2546 // Emit unary minus with EmitSub so we handle overflow cases etc. 2547 BinOpInfo BinOp; 2548 BinOp.RHS = Visit(E->getSubExpr()); 2549 2550 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 2551 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 2552 else 2553 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2554 BinOp.Ty = E->getType(); 2555 BinOp.Opcode = BO_Sub; 2556 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2557 BinOp.E = E; 2558 return EmitSub(BinOp); 2559 } 2560 2561 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2562 TestAndClearIgnoreResultAssign(); 2563 Value *Op = Visit(E->getSubExpr()); 2564 return Builder.CreateNot(Op, "neg"); 2565 } 2566 2567 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2568 // Perform vector logical not on comparison with zero vector. 2569 if (E->getType()->isExtVectorType()) { 2570 Value *Oper = Visit(E->getSubExpr()); 2571 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2572 Value *Result; 2573 if (Oper->getType()->isFPOrFPVectorTy()) 2574 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2575 else 2576 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2577 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2578 } 2579 2580 // Compare operand to zero. 2581 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2582 2583 // Invert value. 2584 // TODO: Could dynamically modify easy computations here. For example, if 2585 // the operand is an icmp ne, turn into icmp eq. 2586 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2587 2588 // ZExt result to the expr type. 2589 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2590 } 2591 2592 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2593 // Try folding the offsetof to a constant. 2594 llvm::APSInt Value; 2595 if (E->EvaluateAsInt(Value, CGF.getContext())) 2596 return Builder.getInt(Value); 2597 2598 // Loop over the components of the offsetof to compute the value. 2599 unsigned n = E->getNumComponents(); 2600 llvm::Type* ResultType = ConvertType(E->getType()); 2601 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2602 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2603 for (unsigned i = 0; i != n; ++i) { 2604 OffsetOfNode ON = E->getComponent(i); 2605 llvm::Value *Offset = nullptr; 2606 switch (ON.getKind()) { 2607 case OffsetOfNode::Array: { 2608 // Compute the index 2609 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2610 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2611 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2612 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2613 2614 // Save the element type 2615 CurrentType = 2616 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2617 2618 // Compute the element size 2619 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2620 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2621 2622 // Multiply out to compute the result 2623 Offset = Builder.CreateMul(Idx, ElemSize); 2624 break; 2625 } 2626 2627 case OffsetOfNode::Field: { 2628 FieldDecl *MemberDecl = ON.getField(); 2629 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2630 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2631 2632 // Compute the index of the field in its parent. 2633 unsigned i = 0; 2634 // FIXME: It would be nice if we didn't have to loop here! 2635 for (RecordDecl::field_iterator Field = RD->field_begin(), 2636 FieldEnd = RD->field_end(); 2637 Field != FieldEnd; ++Field, ++i) { 2638 if (*Field == MemberDecl) 2639 break; 2640 } 2641 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2642 2643 // Compute the offset to the field 2644 int64_t OffsetInt = RL.getFieldOffset(i) / 2645 CGF.getContext().getCharWidth(); 2646 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2647 2648 // Save the element type. 2649 CurrentType = MemberDecl->getType(); 2650 break; 2651 } 2652 2653 case OffsetOfNode::Identifier: 2654 llvm_unreachable("dependent __builtin_offsetof"); 2655 2656 case OffsetOfNode::Base: { 2657 if (ON.getBase()->isVirtual()) { 2658 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2659 continue; 2660 } 2661 2662 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2663 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2664 2665 // Save the element type. 2666 CurrentType = ON.getBase()->getType(); 2667 2668 // Compute the offset to the base. 2669 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2670 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2671 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2672 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2673 break; 2674 } 2675 } 2676 Result = Builder.CreateAdd(Result, Offset); 2677 } 2678 return Result; 2679 } 2680 2681 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2682 /// argument of the sizeof expression as an integer. 2683 Value * 2684 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2685 const UnaryExprOrTypeTraitExpr *E) { 2686 QualType TypeToSize = E->getTypeOfArgument(); 2687 if (E->getKind() == UETT_SizeOf) { 2688 if (const VariableArrayType *VAT = 2689 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2690 if (E->isArgumentType()) { 2691 // sizeof(type) - make sure to emit the VLA size. 2692 CGF.EmitVariablyModifiedType(TypeToSize); 2693 } else { 2694 // C99 6.5.3.4p2: If the argument is an expression of type 2695 // VLA, it is evaluated. 2696 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2697 } 2698 2699 auto VlaSize = CGF.getVLASize(VAT); 2700 llvm::Value *size = VlaSize.NumElts; 2701 2702 // Scale the number of non-VLA elements by the non-VLA element size. 2703 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2704 if (!eltSize.isOne()) 2705 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2706 2707 return size; 2708 } 2709 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2710 auto Alignment = 2711 CGF.getContext() 2712 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2713 E->getTypeOfArgument()->getPointeeType())) 2714 .getQuantity(); 2715 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2716 } 2717 2718 // If this isn't sizeof(vla), the result must be constant; use the constant 2719 // folding logic so we don't have to duplicate it here. 2720 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2721 } 2722 2723 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2724 Expr *Op = E->getSubExpr(); 2725 if (Op->getType()->isAnyComplexType()) { 2726 // If it's an l-value, load through the appropriate subobject l-value. 2727 // Note that we have to ask E because Op might be an l-value that 2728 // this won't work for, e.g. an Obj-C property. 2729 if (E->isGLValue()) 2730 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2731 E->getExprLoc()).getScalarVal(); 2732 2733 // Otherwise, calculate and project. 2734 return CGF.EmitComplexExpr(Op, false, true).first; 2735 } 2736 2737 return Visit(Op); 2738 } 2739 2740 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2741 Expr *Op = E->getSubExpr(); 2742 if (Op->getType()->isAnyComplexType()) { 2743 // If it's an l-value, load through the appropriate subobject l-value. 2744 // Note that we have to ask E because Op might be an l-value that 2745 // this won't work for, e.g. an Obj-C property. 2746 if (Op->isGLValue()) 2747 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2748 E->getExprLoc()).getScalarVal(); 2749 2750 // Otherwise, calculate and project. 2751 return CGF.EmitComplexExpr(Op, true, false).second; 2752 } 2753 2754 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2755 // effects are evaluated, but not the actual value. 2756 if (Op->isGLValue()) 2757 CGF.EmitLValue(Op); 2758 else 2759 CGF.EmitScalarExpr(Op, true); 2760 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2761 } 2762 2763 //===----------------------------------------------------------------------===// 2764 // Binary Operators 2765 //===----------------------------------------------------------------------===// 2766 2767 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2768 TestAndClearIgnoreResultAssign(); 2769 BinOpInfo Result; 2770 Result.LHS = Visit(E->getLHS()); 2771 Result.RHS = Visit(E->getRHS()); 2772 Result.Ty = E->getType(); 2773 Result.Opcode = E->getOpcode(); 2774 Result.FPFeatures = E->getFPFeatures(); 2775 Result.E = E; 2776 return Result; 2777 } 2778 2779 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2780 const CompoundAssignOperator *E, 2781 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2782 Value *&Result) { 2783 QualType LHSTy = E->getLHS()->getType(); 2784 BinOpInfo OpInfo; 2785 2786 if (E->getComputationResultType()->isAnyComplexType()) 2787 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2788 2789 // Emit the RHS first. __block variables need to have the rhs evaluated 2790 // first, plus this should improve codegen a little. 2791 OpInfo.RHS = Visit(E->getRHS()); 2792 OpInfo.Ty = E->getComputationResultType(); 2793 OpInfo.Opcode = E->getOpcode(); 2794 OpInfo.FPFeatures = E->getFPFeatures(); 2795 OpInfo.E = E; 2796 // Load/convert the LHS. 2797 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2798 2799 llvm::PHINode *atomicPHI = nullptr; 2800 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2801 QualType type = atomicTy->getValueType(); 2802 if (!type->isBooleanType() && type->isIntegerType() && 2803 !(type->isUnsignedIntegerType() && 2804 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2805 CGF.getLangOpts().getSignedOverflowBehavior() != 2806 LangOptions::SOB_Trapping) { 2807 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2808 switch (OpInfo.Opcode) { 2809 // We don't have atomicrmw operands for *, %, /, <<, >> 2810 case BO_MulAssign: case BO_DivAssign: 2811 case BO_RemAssign: 2812 case BO_ShlAssign: 2813 case BO_ShrAssign: 2814 break; 2815 case BO_AddAssign: 2816 aop = llvm::AtomicRMWInst::Add; 2817 break; 2818 case BO_SubAssign: 2819 aop = llvm::AtomicRMWInst::Sub; 2820 break; 2821 case BO_AndAssign: 2822 aop = llvm::AtomicRMWInst::And; 2823 break; 2824 case BO_XorAssign: 2825 aop = llvm::AtomicRMWInst::Xor; 2826 break; 2827 case BO_OrAssign: 2828 aop = llvm::AtomicRMWInst::Or; 2829 break; 2830 default: 2831 llvm_unreachable("Invalid compound assignment type"); 2832 } 2833 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2834 llvm::Value *amt = CGF.EmitToMemory( 2835 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2836 E->getExprLoc()), 2837 LHSTy); 2838 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2839 llvm::AtomicOrdering::SequentiallyConsistent); 2840 return LHSLV; 2841 } 2842 } 2843 // FIXME: For floating point types, we should be saving and restoring the 2844 // floating point environment in the loop. 2845 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2846 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2847 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2848 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2849 Builder.CreateBr(opBB); 2850 Builder.SetInsertPoint(opBB); 2851 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2852 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2853 OpInfo.LHS = atomicPHI; 2854 } 2855 else 2856 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2857 2858 SourceLocation Loc = E->getExprLoc(); 2859 OpInfo.LHS = 2860 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2861 2862 // Expand the binary operator. 2863 Result = (this->*Func)(OpInfo); 2864 2865 // Convert the result back to the LHS type. 2866 Result = 2867 EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc); 2868 2869 if (atomicPHI) { 2870 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2871 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2872 auto Pair = CGF.EmitAtomicCompareExchange( 2873 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2874 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2875 llvm::Value *success = Pair.second; 2876 atomicPHI->addIncoming(old, opBB); 2877 Builder.CreateCondBr(success, contBB, opBB); 2878 Builder.SetInsertPoint(contBB); 2879 return LHSLV; 2880 } 2881 2882 // Store the result value into the LHS lvalue. Bit-fields are handled 2883 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2884 // 'An assignment expression has the value of the left operand after the 2885 // assignment...'. 2886 if (LHSLV.isBitField()) 2887 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2888 else 2889 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2890 2891 return LHSLV; 2892 } 2893 2894 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2895 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2896 bool Ignore = TestAndClearIgnoreResultAssign(); 2897 Value *RHS; 2898 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2899 2900 // If the result is clearly ignored, return now. 2901 if (Ignore) 2902 return nullptr; 2903 2904 // The result of an assignment in C is the assigned r-value. 2905 if (!CGF.getLangOpts().CPlusPlus) 2906 return RHS; 2907 2908 // If the lvalue is non-volatile, return the computed value of the assignment. 2909 if (!LHS.isVolatileQualified()) 2910 return RHS; 2911 2912 // Otherwise, reload the value. 2913 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2914 } 2915 2916 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2917 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2918 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2919 2920 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2921 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2922 SanitizerKind::IntegerDivideByZero)); 2923 } 2924 2925 const auto *BO = cast<BinaryOperator>(Ops.E); 2926 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2927 Ops.Ty->hasSignedIntegerRepresentation() && 2928 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 2929 Ops.mayHaveIntegerOverflow()) { 2930 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2931 2932 llvm::Value *IntMin = 2933 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2934 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2935 2936 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2937 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2938 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2939 Checks.push_back( 2940 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2941 } 2942 2943 if (Checks.size() > 0) 2944 EmitBinOpCheck(Checks, Ops); 2945 } 2946 2947 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2948 { 2949 CodeGenFunction::SanitizerScope SanScope(&CGF); 2950 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2951 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2952 Ops.Ty->isIntegerType() && 2953 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 2954 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2955 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2956 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2957 Ops.Ty->isRealFloatingType() && 2958 Ops.mayHaveFloatDivisionByZero()) { 2959 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2960 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2961 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2962 Ops); 2963 } 2964 } 2965 2966 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2967 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2968 if (CGF.getLangOpts().OpenCL && 2969 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 2970 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 2971 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 2972 // build option allows an application to specify that single precision 2973 // floating-point divide (x/y and 1/x) and sqrt used in the program 2974 // source are correctly rounded. 2975 llvm::Type *ValTy = Val->getType(); 2976 if (ValTy->isFloatTy() || 2977 (isa<llvm::VectorType>(ValTy) && 2978 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2979 CGF.SetFPAccuracy(Val, 2.5); 2980 } 2981 return Val; 2982 } 2983 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2984 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2985 else 2986 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2987 } 2988 2989 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2990 // Rem in C can't be a floating point type: C99 6.5.5p2. 2991 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2992 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2993 Ops.Ty->isIntegerType() && 2994 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 2995 CodeGenFunction::SanitizerScope SanScope(&CGF); 2996 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2997 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2998 } 2999 3000 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3001 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3002 else 3003 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3004 } 3005 3006 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3007 unsigned IID; 3008 unsigned OpID = 0; 3009 3010 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3011 switch (Ops.Opcode) { 3012 case BO_Add: 3013 case BO_AddAssign: 3014 OpID = 1; 3015 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3016 llvm::Intrinsic::uadd_with_overflow; 3017 break; 3018 case BO_Sub: 3019 case BO_SubAssign: 3020 OpID = 2; 3021 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3022 llvm::Intrinsic::usub_with_overflow; 3023 break; 3024 case BO_Mul: 3025 case BO_MulAssign: 3026 OpID = 3; 3027 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3028 llvm::Intrinsic::umul_with_overflow; 3029 break; 3030 default: 3031 llvm_unreachable("Unsupported operation for overflow detection"); 3032 } 3033 OpID <<= 1; 3034 if (isSigned) 3035 OpID |= 1; 3036 3037 CodeGenFunction::SanitizerScope SanScope(&CGF); 3038 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3039 3040 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3041 3042 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3043 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3044 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3045 3046 // Handle overflow with llvm.trap if no custom handler has been specified. 3047 const std::string *handlerName = 3048 &CGF.getLangOpts().OverflowHandler; 3049 if (handlerName->empty()) { 3050 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3051 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3052 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3053 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3054 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3055 : SanitizerKind::UnsignedIntegerOverflow; 3056 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3057 } else 3058 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 3059 return result; 3060 } 3061 3062 // Branch in case of overflow. 3063 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3064 llvm::BasicBlock *continueBB = 3065 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3066 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3067 3068 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3069 3070 // If an overflow handler is set, then we want to call it and then use its 3071 // result, if it returns. 3072 Builder.SetInsertPoint(overflowBB); 3073 3074 // Get the overflow handler. 3075 llvm::Type *Int8Ty = CGF.Int8Ty; 3076 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3077 llvm::FunctionType *handlerTy = 3078 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3079 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3080 3081 // Sign extend the args to 64-bit, so that we can use the same handler for 3082 // all types of overflow. 3083 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3084 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3085 3086 // Call the handler with the two arguments, the operation, and the size of 3087 // the result. 3088 llvm::Value *handlerArgs[] = { 3089 lhs, 3090 rhs, 3091 Builder.getInt8(OpID), 3092 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3093 }; 3094 llvm::Value *handlerResult = 3095 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3096 3097 // Truncate the result back to the desired size. 3098 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3099 Builder.CreateBr(continueBB); 3100 3101 Builder.SetInsertPoint(continueBB); 3102 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3103 phi->addIncoming(result, initialBB); 3104 phi->addIncoming(handlerResult, overflowBB); 3105 3106 return phi; 3107 } 3108 3109 /// Emit pointer + index arithmetic. 3110 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3111 const BinOpInfo &op, 3112 bool isSubtraction) { 3113 // Must have binary (not unary) expr here. Unary pointer 3114 // increment/decrement doesn't use this path. 3115 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3116 3117 Value *pointer = op.LHS; 3118 Expr *pointerOperand = expr->getLHS(); 3119 Value *index = op.RHS; 3120 Expr *indexOperand = expr->getRHS(); 3121 3122 // In a subtraction, the LHS is always the pointer. 3123 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3124 std::swap(pointer, index); 3125 std::swap(pointerOperand, indexOperand); 3126 } 3127 3128 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3129 3130 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3131 auto &DL = CGF.CGM.getDataLayout(); 3132 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3133 3134 // Some versions of glibc and gcc use idioms (particularly in their malloc 3135 // routines) that add a pointer-sized integer (known to be a pointer value) 3136 // to a null pointer in order to cast the value back to an integer or as 3137 // part of a pointer alignment algorithm. This is undefined behavior, but 3138 // we'd like to be able to compile programs that use it. 3139 // 3140 // Normally, we'd generate a GEP with a null-pointer base here in response 3141 // to that code, but it's also UB to dereference a pointer created that 3142 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3143 // generate a direct cast of the integer value to a pointer. 3144 // 3145 // The idiom (p = nullptr + N) is not met if any of the following are true: 3146 // 3147 // The operation is subtraction. 3148 // The index is not pointer-sized. 3149 // The pointer type is not byte-sized. 3150 // 3151 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3152 op.Opcode, 3153 expr->getLHS(), 3154 expr->getRHS())) 3155 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3156 3157 if (width != DL.getTypeSizeInBits(PtrTy)) { 3158 // Zero-extend or sign-extend the pointer value according to 3159 // whether the index is signed or not. 3160 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned, 3161 "idx.ext"); 3162 } 3163 3164 // If this is subtraction, negate the index. 3165 if (isSubtraction) 3166 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3167 3168 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3169 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3170 /*Accessed*/ false); 3171 3172 const PointerType *pointerType 3173 = pointerOperand->getType()->getAs<PointerType>(); 3174 if (!pointerType) { 3175 QualType objectType = pointerOperand->getType() 3176 ->castAs<ObjCObjectPointerType>() 3177 ->getPointeeType(); 3178 llvm::Value *objectSize 3179 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3180 3181 index = CGF.Builder.CreateMul(index, objectSize); 3182 3183 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3184 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3185 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3186 } 3187 3188 QualType elementType = pointerType->getPointeeType(); 3189 if (const VariableArrayType *vla 3190 = CGF.getContext().getAsVariableArrayType(elementType)) { 3191 // The element count here is the total number of non-VLA elements. 3192 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3193 3194 // Effectively, the multiply by the VLA size is part of the GEP. 3195 // GEP indexes are signed, and scaling an index isn't permitted to 3196 // signed-overflow, so we use the same semantics for our explicit 3197 // multiply. We suppress this if overflow is not undefined behavior. 3198 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3199 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3200 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3201 } else { 3202 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3203 pointer = 3204 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3205 op.E->getExprLoc(), "add.ptr"); 3206 } 3207 return pointer; 3208 } 3209 3210 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3211 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3212 // future proof. 3213 if (elementType->isVoidType() || elementType->isFunctionType()) { 3214 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3215 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3216 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3217 } 3218 3219 if (CGF.getLangOpts().isSignedOverflowDefined()) 3220 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3221 3222 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3223 op.E->getExprLoc(), "add.ptr"); 3224 } 3225 3226 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3227 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3228 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3229 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3230 // efficient operations. 3231 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 3232 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3233 bool negMul, bool negAdd) { 3234 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3235 3236 Value *MulOp0 = MulOp->getOperand(0); 3237 Value *MulOp1 = MulOp->getOperand(1); 3238 if (negMul) { 3239 MulOp0 = 3240 Builder.CreateFSub( 3241 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 3242 "neg"); 3243 } else if (negAdd) { 3244 Addend = 3245 Builder.CreateFSub( 3246 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 3247 "neg"); 3248 } 3249 3250 Value *FMulAdd = Builder.CreateCall( 3251 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3252 {MulOp0, MulOp1, Addend}); 3253 MulOp->eraseFromParent(); 3254 3255 return FMulAdd; 3256 } 3257 3258 // Check whether it would be legal to emit an fmuladd intrinsic call to 3259 // represent op and if so, build the fmuladd. 3260 // 3261 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3262 // Does NOT check the type of the operation - it's assumed that this function 3263 // will be called from contexts where it's known that the type is contractable. 3264 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3265 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3266 bool isSub=false) { 3267 3268 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3269 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3270 "Only fadd/fsub can be the root of an fmuladd."); 3271 3272 // Check whether this op is marked as fusable. 3273 if (!op.FPFeatures.allowFPContractWithinStatement()) 3274 return nullptr; 3275 3276 // We have a potentially fusable op. Look for a mul on one of the operands. 3277 // Also, make sure that the mul result isn't used directly. In that case, 3278 // there's no point creating a muladd operation. 3279 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3280 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3281 LHSBinOp->use_empty()) 3282 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3283 } 3284 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3285 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3286 RHSBinOp->use_empty()) 3287 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3288 } 3289 3290 return nullptr; 3291 } 3292 3293 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3294 if (op.LHS->getType()->isPointerTy() || 3295 op.RHS->getType()->isPointerTy()) 3296 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3297 3298 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3299 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3300 case LangOptions::SOB_Defined: 3301 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3302 case LangOptions::SOB_Undefined: 3303 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3304 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3305 LLVM_FALLTHROUGH; 3306 case LangOptions::SOB_Trapping: 3307 if (CanElideOverflowCheck(CGF.getContext(), op)) 3308 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3309 return EmitOverflowCheckedBinOp(op); 3310 } 3311 } 3312 3313 if (op.Ty->isUnsignedIntegerType() && 3314 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3315 !CanElideOverflowCheck(CGF.getContext(), op)) 3316 return EmitOverflowCheckedBinOp(op); 3317 3318 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3319 // Try to form an fmuladd. 3320 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3321 return FMulAdd; 3322 3323 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3324 return propagateFMFlags(V, op); 3325 } 3326 3327 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3328 } 3329 3330 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3331 // The LHS is always a pointer if either side is. 3332 if (!op.LHS->getType()->isPointerTy()) { 3333 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3334 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3335 case LangOptions::SOB_Defined: 3336 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3337 case LangOptions::SOB_Undefined: 3338 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3339 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3340 LLVM_FALLTHROUGH; 3341 case LangOptions::SOB_Trapping: 3342 if (CanElideOverflowCheck(CGF.getContext(), op)) 3343 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3344 return EmitOverflowCheckedBinOp(op); 3345 } 3346 } 3347 3348 if (op.Ty->isUnsignedIntegerType() && 3349 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3350 !CanElideOverflowCheck(CGF.getContext(), op)) 3351 return EmitOverflowCheckedBinOp(op); 3352 3353 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3354 // Try to form an fmuladd. 3355 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3356 return FMulAdd; 3357 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3358 return propagateFMFlags(V, op); 3359 } 3360 3361 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3362 } 3363 3364 // If the RHS is not a pointer, then we have normal pointer 3365 // arithmetic. 3366 if (!op.RHS->getType()->isPointerTy()) 3367 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3368 3369 // Otherwise, this is a pointer subtraction. 3370 3371 // Do the raw subtraction part. 3372 llvm::Value *LHS 3373 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3374 llvm::Value *RHS 3375 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3376 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3377 3378 // Okay, figure out the element size. 3379 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3380 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3381 3382 llvm::Value *divisor = nullptr; 3383 3384 // For a variable-length array, this is going to be non-constant. 3385 if (const VariableArrayType *vla 3386 = CGF.getContext().getAsVariableArrayType(elementType)) { 3387 auto VlaSize = CGF.getVLASize(vla); 3388 elementType = VlaSize.Type; 3389 divisor = VlaSize.NumElts; 3390 3391 // Scale the number of non-VLA elements by the non-VLA element size. 3392 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3393 if (!eltSize.isOne()) 3394 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3395 3396 // For everything elese, we can just compute it, safe in the 3397 // assumption that Sema won't let anything through that we can't 3398 // safely compute the size of. 3399 } else { 3400 CharUnits elementSize; 3401 // Handle GCC extension for pointer arithmetic on void* and 3402 // function pointer types. 3403 if (elementType->isVoidType() || elementType->isFunctionType()) 3404 elementSize = CharUnits::One(); 3405 else 3406 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3407 3408 // Don't even emit the divide for element size of 1. 3409 if (elementSize.isOne()) 3410 return diffInChars; 3411 3412 divisor = CGF.CGM.getSize(elementSize); 3413 } 3414 3415 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3416 // pointer difference in C is only defined in the case where both operands 3417 // are pointing to elements of an array. 3418 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3419 } 3420 3421 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3422 llvm::IntegerType *Ty; 3423 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3424 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3425 else 3426 Ty = cast<llvm::IntegerType>(LHS->getType()); 3427 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3428 } 3429 3430 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3431 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3432 // RHS to the same size as the LHS. 3433 Value *RHS = Ops.RHS; 3434 if (Ops.LHS->getType() != RHS->getType()) 3435 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3436 3437 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3438 Ops.Ty->hasSignedIntegerRepresentation() && 3439 !CGF.getLangOpts().isSignedOverflowDefined(); 3440 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3441 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3442 if (CGF.getLangOpts().OpenCL) 3443 RHS = 3444 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 3445 else if ((SanitizeBase || SanitizeExponent) && 3446 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3447 CodeGenFunction::SanitizerScope SanScope(&CGF); 3448 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3449 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3450 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3451 3452 if (SanitizeExponent) { 3453 Checks.push_back( 3454 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3455 } 3456 3457 if (SanitizeBase) { 3458 // Check whether we are shifting any non-zero bits off the top of the 3459 // integer. We only emit this check if exponent is valid - otherwise 3460 // instructions below will have undefined behavior themselves. 3461 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3462 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3463 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3464 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3465 llvm::Value *PromotedWidthMinusOne = 3466 (RHS == Ops.RHS) ? WidthMinusOne 3467 : GetWidthMinusOneValue(Ops.LHS, RHS); 3468 CGF.EmitBlock(CheckShiftBase); 3469 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3470 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3471 /*NUW*/ true, /*NSW*/ true), 3472 "shl.check"); 3473 if (CGF.getLangOpts().CPlusPlus) { 3474 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3475 // Under C++11's rules, shifting a 1 bit into the sign bit is 3476 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3477 // define signed left shifts, so we use the C99 and C++11 rules there). 3478 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3479 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3480 } 3481 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3482 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3483 CGF.EmitBlock(Cont); 3484 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3485 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3486 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3487 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 3488 } 3489 3490 assert(!Checks.empty()); 3491 EmitBinOpCheck(Checks, Ops); 3492 } 3493 3494 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3495 } 3496 3497 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3498 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3499 // RHS to the same size as the LHS. 3500 Value *RHS = Ops.RHS; 3501 if (Ops.LHS->getType() != RHS->getType()) 3502 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3503 3504 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3505 if (CGF.getLangOpts().OpenCL) 3506 RHS = 3507 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 3508 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3509 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3510 CodeGenFunction::SanitizerScope SanScope(&CGF); 3511 llvm::Value *Valid = 3512 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3513 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3514 } 3515 3516 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3517 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3518 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3519 } 3520 3521 enum IntrinsicType { VCMPEQ, VCMPGT }; 3522 // return corresponding comparison intrinsic for given vector type 3523 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3524 BuiltinType::Kind ElemKind) { 3525 switch (ElemKind) { 3526 default: llvm_unreachable("unexpected element type"); 3527 case BuiltinType::Char_U: 3528 case BuiltinType::UChar: 3529 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3530 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3531 case BuiltinType::Char_S: 3532 case BuiltinType::SChar: 3533 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3534 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3535 case BuiltinType::UShort: 3536 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3537 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3538 case BuiltinType::Short: 3539 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3540 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3541 case BuiltinType::UInt: 3542 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3543 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3544 case BuiltinType::Int: 3545 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3546 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3547 case BuiltinType::ULong: 3548 case BuiltinType::ULongLong: 3549 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3550 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 3551 case BuiltinType::Long: 3552 case BuiltinType::LongLong: 3553 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3554 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 3555 case BuiltinType::Float: 3556 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3557 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3558 case BuiltinType::Double: 3559 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 3560 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 3561 } 3562 } 3563 3564 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3565 llvm::CmpInst::Predicate UICmpOpc, 3566 llvm::CmpInst::Predicate SICmpOpc, 3567 llvm::CmpInst::Predicate FCmpOpc) { 3568 TestAndClearIgnoreResultAssign(); 3569 Value *Result; 3570 QualType LHSTy = E->getLHS()->getType(); 3571 QualType RHSTy = E->getRHS()->getType(); 3572 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3573 assert(E->getOpcode() == BO_EQ || 3574 E->getOpcode() == BO_NE); 3575 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3576 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3577 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3578 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3579 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3580 Value *LHS = Visit(E->getLHS()); 3581 Value *RHS = Visit(E->getRHS()); 3582 3583 // If AltiVec, the comparison results in a numeric type, so we use 3584 // intrinsics comparing vectors and giving 0 or 1 as a result 3585 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3586 // constants for mapping CR6 register bits to predicate result 3587 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3588 3589 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3590 3591 // in several cases vector arguments order will be reversed 3592 Value *FirstVecArg = LHS, 3593 *SecondVecArg = RHS; 3594 3595 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 3596 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 3597 BuiltinType::Kind ElementKind = BTy->getKind(); 3598 3599 switch(E->getOpcode()) { 3600 default: llvm_unreachable("is not a comparison operation"); 3601 case BO_EQ: 3602 CR6 = CR6_LT; 3603 ID = GetIntrinsic(VCMPEQ, ElementKind); 3604 break; 3605 case BO_NE: 3606 CR6 = CR6_EQ; 3607 ID = GetIntrinsic(VCMPEQ, ElementKind); 3608 break; 3609 case BO_LT: 3610 CR6 = CR6_LT; 3611 ID = GetIntrinsic(VCMPGT, ElementKind); 3612 std::swap(FirstVecArg, SecondVecArg); 3613 break; 3614 case BO_GT: 3615 CR6 = CR6_LT; 3616 ID = GetIntrinsic(VCMPGT, ElementKind); 3617 break; 3618 case BO_LE: 3619 if (ElementKind == BuiltinType::Float) { 3620 CR6 = CR6_LT; 3621 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3622 std::swap(FirstVecArg, SecondVecArg); 3623 } 3624 else { 3625 CR6 = CR6_EQ; 3626 ID = GetIntrinsic(VCMPGT, ElementKind); 3627 } 3628 break; 3629 case BO_GE: 3630 if (ElementKind == BuiltinType::Float) { 3631 CR6 = CR6_LT; 3632 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3633 } 3634 else { 3635 CR6 = CR6_EQ; 3636 ID = GetIntrinsic(VCMPGT, ElementKind); 3637 std::swap(FirstVecArg, SecondVecArg); 3638 } 3639 break; 3640 } 3641 3642 Value *CR6Param = Builder.getInt32(CR6); 3643 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 3644 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 3645 3646 // The result type of intrinsic may not be same as E->getType(). 3647 // If E->getType() is not BoolTy, EmitScalarConversion will do the 3648 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 3649 // do nothing, if ResultTy is not i1 at the same time, it will cause 3650 // crash later. 3651 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 3652 if (ResultTy->getBitWidth() > 1 && 3653 E->getType() == CGF.getContext().BoolTy) 3654 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 3655 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3656 E->getExprLoc()); 3657 } 3658 3659 if (LHS->getType()->isFPOrFPVectorTy()) { 3660 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 3661 } else if (LHSTy->hasSignedIntegerRepresentation()) { 3662 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 3663 } else { 3664 // Unsigned integers and pointers. 3665 3666 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 3667 !isa<llvm::ConstantPointerNull>(LHS) && 3668 !isa<llvm::ConstantPointerNull>(RHS)) { 3669 3670 // Dynamic information is required to be stripped for comparisons, 3671 // because it could leak the dynamic information. Based on comparisons 3672 // of pointers to dynamic objects, the optimizer can replace one pointer 3673 // with another, which might be incorrect in presence of invariant 3674 // groups. Comparison with null is safe because null does not carry any 3675 // dynamic information. 3676 if (LHSTy.mayBeDynamicClass()) 3677 LHS = Builder.CreateStripInvariantGroup(LHS); 3678 if (RHSTy.mayBeDynamicClass()) 3679 RHS = Builder.CreateStripInvariantGroup(RHS); 3680 } 3681 3682 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 3683 } 3684 3685 // If this is a vector comparison, sign extend the result to the appropriate 3686 // vector integer type and return it (don't convert to bool). 3687 if (LHSTy->isVectorType()) 3688 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 3689 3690 } else { 3691 // Complex Comparison: can only be an equality comparison. 3692 CodeGenFunction::ComplexPairTy LHS, RHS; 3693 QualType CETy; 3694 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 3695 LHS = CGF.EmitComplexExpr(E->getLHS()); 3696 CETy = CTy->getElementType(); 3697 } else { 3698 LHS.first = Visit(E->getLHS()); 3699 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 3700 CETy = LHSTy; 3701 } 3702 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 3703 RHS = CGF.EmitComplexExpr(E->getRHS()); 3704 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 3705 CTy->getElementType()) && 3706 "The element types must always match."); 3707 (void)CTy; 3708 } else { 3709 RHS.first = Visit(E->getRHS()); 3710 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 3711 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 3712 "The element types must always match."); 3713 } 3714 3715 Value *ResultR, *ResultI; 3716 if (CETy->isRealFloatingType()) { 3717 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 3718 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 3719 } else { 3720 // Complex comparisons can only be equality comparisons. As such, signed 3721 // and unsigned opcodes are the same. 3722 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 3723 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 3724 } 3725 3726 if (E->getOpcode() == BO_EQ) { 3727 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 3728 } else { 3729 assert(E->getOpcode() == BO_NE && 3730 "Complex comparison other than == or != ?"); 3731 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 3732 } 3733 } 3734 3735 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3736 E->getExprLoc()); 3737 } 3738 3739 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 3740 bool Ignore = TestAndClearIgnoreResultAssign(); 3741 3742 Value *RHS; 3743 LValue LHS; 3744 3745 switch (E->getLHS()->getType().getObjCLifetime()) { 3746 case Qualifiers::OCL_Strong: 3747 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 3748 break; 3749 3750 case Qualifiers::OCL_Autoreleasing: 3751 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3752 break; 3753 3754 case Qualifiers::OCL_ExplicitNone: 3755 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 3756 break; 3757 3758 case Qualifiers::OCL_Weak: 3759 RHS = Visit(E->getRHS()); 3760 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3761 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3762 break; 3763 3764 case Qualifiers::OCL_None: 3765 // __block variables need to have the rhs evaluated first, plus 3766 // this should improve codegen just a little. 3767 RHS = Visit(E->getRHS()); 3768 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3769 3770 // Store the value into the LHS. Bit-fields are handled specially 3771 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3772 // 'An assignment expression has the value of the left operand after 3773 // the assignment...'. 3774 if (LHS.isBitField()) { 3775 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3776 } else { 3777 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 3778 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3779 } 3780 } 3781 3782 // If the result is clearly ignored, return now. 3783 if (Ignore) 3784 return nullptr; 3785 3786 // The result of an assignment in C is the assigned r-value. 3787 if (!CGF.getLangOpts().CPlusPlus) 3788 return RHS; 3789 3790 // If the lvalue is non-volatile, return the computed value of the assignment. 3791 if (!LHS.isVolatileQualified()) 3792 return RHS; 3793 3794 // Otherwise, reload the value. 3795 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3796 } 3797 3798 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3799 // Perform vector logical and on comparisons with zero vectors. 3800 if (E->getType()->isVectorType()) { 3801 CGF.incrementProfileCounter(E); 3802 3803 Value *LHS = Visit(E->getLHS()); 3804 Value *RHS = Visit(E->getRHS()); 3805 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3806 if (LHS->getType()->isFPOrFPVectorTy()) { 3807 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3808 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3809 } else { 3810 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3811 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3812 } 3813 Value *And = Builder.CreateAnd(LHS, RHS); 3814 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3815 } 3816 3817 llvm::Type *ResTy = ConvertType(E->getType()); 3818 3819 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3820 // If we have 1 && X, just emit X without inserting the control flow. 3821 bool LHSCondVal; 3822 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3823 if (LHSCondVal) { // If we have 1 && X, just emit X. 3824 CGF.incrementProfileCounter(E); 3825 3826 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3827 // ZExt result to int or bool. 3828 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3829 } 3830 3831 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3832 if (!CGF.ContainsLabel(E->getRHS())) 3833 return llvm::Constant::getNullValue(ResTy); 3834 } 3835 3836 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3837 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3838 3839 CodeGenFunction::ConditionalEvaluation eval(CGF); 3840 3841 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3842 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 3843 CGF.getProfileCount(E->getRHS())); 3844 3845 // Any edges into the ContBlock are now from an (indeterminate number of) 3846 // edges from this first condition. All of these values will be false. Start 3847 // setting up the PHI node in the Cont Block for this. 3848 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3849 "", ContBlock); 3850 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3851 PI != PE; ++PI) 3852 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3853 3854 eval.begin(CGF); 3855 CGF.EmitBlock(RHSBlock); 3856 CGF.incrementProfileCounter(E); 3857 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3858 eval.end(CGF); 3859 3860 // Reaquire the RHS block, as there may be subblocks inserted. 3861 RHSBlock = Builder.GetInsertBlock(); 3862 3863 // Emit an unconditional branch from this block to ContBlock. 3864 { 3865 // There is no need to emit line number for unconditional branch. 3866 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3867 CGF.EmitBlock(ContBlock); 3868 } 3869 // Insert an entry into the phi node for the edge with the value of RHSCond. 3870 PN->addIncoming(RHSCond, RHSBlock); 3871 3872 // Artificial location to preserve the scope information 3873 { 3874 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 3875 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 3876 } 3877 3878 // ZExt result to int. 3879 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3880 } 3881 3882 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3883 // Perform vector logical or on comparisons with zero vectors. 3884 if (E->getType()->isVectorType()) { 3885 CGF.incrementProfileCounter(E); 3886 3887 Value *LHS = Visit(E->getLHS()); 3888 Value *RHS = Visit(E->getRHS()); 3889 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3890 if (LHS->getType()->isFPOrFPVectorTy()) { 3891 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3892 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3893 } else { 3894 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3895 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3896 } 3897 Value *Or = Builder.CreateOr(LHS, RHS); 3898 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3899 } 3900 3901 llvm::Type *ResTy = ConvertType(E->getType()); 3902 3903 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3904 // If we have 0 || X, just emit X without inserting the control flow. 3905 bool LHSCondVal; 3906 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3907 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3908 CGF.incrementProfileCounter(E); 3909 3910 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3911 // ZExt result to int or bool. 3912 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3913 } 3914 3915 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3916 if (!CGF.ContainsLabel(E->getRHS())) 3917 return llvm::ConstantInt::get(ResTy, 1); 3918 } 3919 3920 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3921 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3922 3923 CodeGenFunction::ConditionalEvaluation eval(CGF); 3924 3925 // Branch on the LHS first. If it is true, go to the success (cont) block. 3926 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3927 CGF.getCurrentProfileCount() - 3928 CGF.getProfileCount(E->getRHS())); 3929 3930 // Any edges into the ContBlock are now from an (indeterminate number of) 3931 // edges from this first condition. All of these values will be true. Start 3932 // setting up the PHI node in the Cont Block for this. 3933 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3934 "", ContBlock); 3935 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3936 PI != PE; ++PI) 3937 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3938 3939 eval.begin(CGF); 3940 3941 // Emit the RHS condition as a bool value. 3942 CGF.EmitBlock(RHSBlock); 3943 CGF.incrementProfileCounter(E); 3944 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3945 3946 eval.end(CGF); 3947 3948 // Reaquire the RHS block, as there may be subblocks inserted. 3949 RHSBlock = Builder.GetInsertBlock(); 3950 3951 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3952 // into the phi node for the edge with the value of RHSCond. 3953 CGF.EmitBlock(ContBlock); 3954 PN->addIncoming(RHSCond, RHSBlock); 3955 3956 // ZExt result to int. 3957 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3958 } 3959 3960 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3961 CGF.EmitIgnoredExpr(E->getLHS()); 3962 CGF.EnsureInsertPoint(); 3963 return Visit(E->getRHS()); 3964 } 3965 3966 //===----------------------------------------------------------------------===// 3967 // Other Operators 3968 //===----------------------------------------------------------------------===// 3969 3970 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3971 /// expression is cheap enough and side-effect-free enough to evaluate 3972 /// unconditionally instead of conditionally. This is used to convert control 3973 /// flow into selects in some cases. 3974 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3975 CodeGenFunction &CGF) { 3976 // Anything that is an integer or floating point constant is fine. 3977 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3978 3979 // Even non-volatile automatic variables can't be evaluated unconditionally. 3980 // Referencing a thread_local may cause non-trivial initialization work to 3981 // occur. If we're inside a lambda and one of the variables is from the scope 3982 // outside the lambda, that function may have returned already. Reading its 3983 // locals is a bad idea. Also, these reads may introduce races there didn't 3984 // exist in the source-level program. 3985 } 3986 3987 3988 Value *ScalarExprEmitter:: 3989 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3990 TestAndClearIgnoreResultAssign(); 3991 3992 // Bind the common expression if necessary. 3993 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3994 3995 Expr *condExpr = E->getCond(); 3996 Expr *lhsExpr = E->getTrueExpr(); 3997 Expr *rhsExpr = E->getFalseExpr(); 3998 3999 // If the condition constant folds and can be elided, try to avoid emitting 4000 // the condition and the dead arm. 4001 bool CondExprBool; 4002 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4003 Expr *live = lhsExpr, *dead = rhsExpr; 4004 if (!CondExprBool) std::swap(live, dead); 4005 4006 // If the dead side doesn't have labels we need, just emit the Live part. 4007 if (!CGF.ContainsLabel(dead)) { 4008 if (CondExprBool) 4009 CGF.incrementProfileCounter(E); 4010 Value *Result = Visit(live); 4011 4012 // If the live part is a throw expression, it acts like it has a void 4013 // type, so evaluating it returns a null Value*. However, a conditional 4014 // with non-void type must return a non-null Value*. 4015 if (!Result && !E->getType()->isVoidType()) 4016 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4017 4018 return Result; 4019 } 4020 } 4021 4022 // OpenCL: If the condition is a vector, we can treat this condition like 4023 // the select function. 4024 if (CGF.getLangOpts().OpenCL 4025 && condExpr->getType()->isVectorType()) { 4026 CGF.incrementProfileCounter(E); 4027 4028 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4029 llvm::Value *LHS = Visit(lhsExpr); 4030 llvm::Value *RHS = Visit(rhsExpr); 4031 4032 llvm::Type *condType = ConvertType(condExpr->getType()); 4033 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 4034 4035 unsigned numElem = vecTy->getNumElements(); 4036 llvm::Type *elemType = vecTy->getElementType(); 4037 4038 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4039 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4040 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 4041 llvm::VectorType::get(elemType, 4042 numElem), 4043 "sext"); 4044 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4045 4046 // Cast float to int to perform ANDs if necessary. 4047 llvm::Value *RHSTmp = RHS; 4048 llvm::Value *LHSTmp = LHS; 4049 bool wasCast = false; 4050 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4051 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4052 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4053 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4054 wasCast = true; 4055 } 4056 4057 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4058 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4059 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4060 if (wasCast) 4061 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4062 4063 return tmp5; 4064 } 4065 4066 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4067 // select instead of as control flow. We can only do this if it is cheap and 4068 // safe to evaluate the LHS and RHS unconditionally. 4069 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4070 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4071 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4072 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4073 4074 CGF.incrementProfileCounter(E, StepV); 4075 4076 llvm::Value *LHS = Visit(lhsExpr); 4077 llvm::Value *RHS = Visit(rhsExpr); 4078 if (!LHS) { 4079 // If the conditional has void type, make sure we return a null Value*. 4080 assert(!RHS && "LHS and RHS types must match"); 4081 return nullptr; 4082 } 4083 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4084 } 4085 4086 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4087 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4088 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4089 4090 CodeGenFunction::ConditionalEvaluation eval(CGF); 4091 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4092 CGF.getProfileCount(lhsExpr)); 4093 4094 CGF.EmitBlock(LHSBlock); 4095 CGF.incrementProfileCounter(E); 4096 eval.begin(CGF); 4097 Value *LHS = Visit(lhsExpr); 4098 eval.end(CGF); 4099 4100 LHSBlock = Builder.GetInsertBlock(); 4101 Builder.CreateBr(ContBlock); 4102 4103 CGF.EmitBlock(RHSBlock); 4104 eval.begin(CGF); 4105 Value *RHS = Visit(rhsExpr); 4106 eval.end(CGF); 4107 4108 RHSBlock = Builder.GetInsertBlock(); 4109 CGF.EmitBlock(ContBlock); 4110 4111 // If the LHS or RHS is a throw expression, it will be legitimately null. 4112 if (!LHS) 4113 return RHS; 4114 if (!RHS) 4115 return LHS; 4116 4117 // Create a PHI node for the real part. 4118 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4119 PN->addIncoming(LHS, LHSBlock); 4120 PN->addIncoming(RHS, RHSBlock); 4121 return PN; 4122 } 4123 4124 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4125 return Visit(E->getChosenSubExpr()); 4126 } 4127 4128 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4129 QualType Ty = VE->getType(); 4130 4131 if (Ty->isVariablyModifiedType()) 4132 CGF.EmitVariablyModifiedType(Ty); 4133 4134 Address ArgValue = Address::invalid(); 4135 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4136 4137 llvm::Type *ArgTy = ConvertType(VE->getType()); 4138 4139 // If EmitVAArg fails, emit an error. 4140 if (!ArgPtr.isValid()) { 4141 CGF.ErrorUnsupported(VE, "va_arg expression"); 4142 return llvm::UndefValue::get(ArgTy); 4143 } 4144 4145 // FIXME Volatility. 4146 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4147 4148 // If EmitVAArg promoted the type, we must truncate it. 4149 if (ArgTy != Val->getType()) { 4150 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4151 Val = Builder.CreateIntToPtr(Val, ArgTy); 4152 else 4153 Val = Builder.CreateTrunc(Val, ArgTy); 4154 } 4155 4156 return Val; 4157 } 4158 4159 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4160 return CGF.EmitBlockLiteral(block); 4161 } 4162 4163 // Convert a vec3 to vec4, or vice versa. 4164 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4165 Value *Src, unsigned NumElementsDst) { 4166 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 4167 SmallVector<llvm::Constant*, 4> Args; 4168 Args.push_back(Builder.getInt32(0)); 4169 Args.push_back(Builder.getInt32(1)); 4170 Args.push_back(Builder.getInt32(2)); 4171 if (NumElementsDst == 4) 4172 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 4173 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 4174 return Builder.CreateShuffleVector(Src, UnV, Mask); 4175 } 4176 4177 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4178 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4179 // but could be scalar or vectors of different lengths, and either can be 4180 // pointer. 4181 // There are 4 cases: 4182 // 1. non-pointer -> non-pointer : needs 1 bitcast 4183 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4184 // 3. pointer -> non-pointer 4185 // a) pointer -> intptr_t : needs 1 ptrtoint 4186 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4187 // 4. non-pointer -> pointer 4188 // a) intptr_t -> pointer : needs 1 inttoptr 4189 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4190 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4191 // allow casting directly between pointer types and non-integer non-pointer 4192 // types. 4193 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4194 const llvm::DataLayout &DL, 4195 Value *Src, llvm::Type *DstTy, 4196 StringRef Name = "") { 4197 auto SrcTy = Src->getType(); 4198 4199 // Case 1. 4200 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4201 return Builder.CreateBitCast(Src, DstTy, Name); 4202 4203 // Case 2. 4204 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4205 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4206 4207 // Case 3. 4208 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4209 // Case 3b. 4210 if (!DstTy->isIntegerTy()) 4211 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4212 // Cases 3a and 3b. 4213 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4214 } 4215 4216 // Case 4b. 4217 if (!SrcTy->isIntegerTy()) 4218 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4219 // Cases 4a and 4b. 4220 return Builder.CreateIntToPtr(Src, DstTy, Name); 4221 } 4222 4223 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4224 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4225 llvm::Type *DstTy = ConvertType(E->getType()); 4226 4227 llvm::Type *SrcTy = Src->getType(); 4228 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 4229 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 4230 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 4231 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 4232 4233 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4234 // vector to get a vec4, then a bitcast if the target type is different. 4235 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4236 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4237 4238 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4239 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4240 DstTy); 4241 } 4242 4243 Src->setName("astype"); 4244 return Src; 4245 } 4246 4247 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4248 // to vec4 if the original type is not vec4, then a shuffle vector to 4249 // get a vec3. 4250 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4251 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4252 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 4253 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4254 Vec4Ty); 4255 } 4256 4257 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4258 Src->setName("astype"); 4259 return Src; 4260 } 4261 4262 return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4263 Src, DstTy, "astype"); 4264 } 4265 4266 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4267 return CGF.EmitAtomicExpr(E).getScalarVal(); 4268 } 4269 4270 //===----------------------------------------------------------------------===// 4271 // Entry Point into this File 4272 //===----------------------------------------------------------------------===// 4273 4274 /// Emit the computation of the specified expression of scalar type, ignoring 4275 /// the result. 4276 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4277 assert(E && hasScalarEvaluationKind(E->getType()) && 4278 "Invalid scalar expression to emit"); 4279 4280 return ScalarExprEmitter(*this, IgnoreResultAssign) 4281 .Visit(const_cast<Expr *>(E)); 4282 } 4283 4284 /// Emit a conversion from the specified type to the specified destination type, 4285 /// both of which are LLVM scalar types. 4286 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4287 QualType DstTy, 4288 SourceLocation Loc) { 4289 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4290 "Invalid scalar expression to emit"); 4291 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4292 } 4293 4294 /// Emit a conversion from the specified complex type to the specified 4295 /// destination type, where the destination type is an LLVM scalar type. 4296 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4297 QualType SrcTy, 4298 QualType DstTy, 4299 SourceLocation Loc) { 4300 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4301 "Invalid complex -> scalar conversion"); 4302 return ScalarExprEmitter(*this) 4303 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4304 } 4305 4306 4307 llvm::Value *CodeGenFunction:: 4308 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4309 bool isInc, bool isPre) { 4310 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4311 } 4312 4313 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4314 // object->isa or (*object).isa 4315 // Generate code as for: *(Class*)object 4316 4317 Expr *BaseExpr = E->getBase(); 4318 Address Addr = Address::invalid(); 4319 if (BaseExpr->isRValue()) { 4320 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4321 } else { 4322 Addr = EmitLValue(BaseExpr).getAddress(); 4323 } 4324 4325 // Cast the address to Class*. 4326 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4327 return MakeAddrLValue(Addr, E->getType()); 4328 } 4329 4330 4331 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4332 const CompoundAssignOperator *E) { 4333 ScalarExprEmitter Scalar(*this); 4334 Value *Result = nullptr; 4335 switch (E->getOpcode()) { 4336 #define COMPOUND_OP(Op) \ 4337 case BO_##Op##Assign: \ 4338 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4339 Result) 4340 COMPOUND_OP(Mul); 4341 COMPOUND_OP(Div); 4342 COMPOUND_OP(Rem); 4343 COMPOUND_OP(Add); 4344 COMPOUND_OP(Sub); 4345 COMPOUND_OP(Shl); 4346 COMPOUND_OP(Shr); 4347 COMPOUND_OP(And); 4348 COMPOUND_OP(Xor); 4349 COMPOUND_OP(Or); 4350 #undef COMPOUND_OP 4351 4352 case BO_PtrMemD: 4353 case BO_PtrMemI: 4354 case BO_Mul: 4355 case BO_Div: 4356 case BO_Rem: 4357 case BO_Add: 4358 case BO_Sub: 4359 case BO_Shl: 4360 case BO_Shr: 4361 case BO_LT: 4362 case BO_GT: 4363 case BO_LE: 4364 case BO_GE: 4365 case BO_EQ: 4366 case BO_NE: 4367 case BO_Cmp: 4368 case BO_And: 4369 case BO_Xor: 4370 case BO_Or: 4371 case BO_LAnd: 4372 case BO_LOr: 4373 case BO_Assign: 4374 case BO_Comma: 4375 llvm_unreachable("Not valid compound assignment operators"); 4376 } 4377 4378 llvm_unreachable("Unhandled compound assignment operator"); 4379 } 4380 4381 Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, 4382 ArrayRef<Value *> IdxList, 4383 bool SignedIndices, 4384 bool IsSubtraction, 4385 SourceLocation Loc, 4386 const Twine &Name) { 4387 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 4388 4389 // If the pointer overflow sanitizer isn't enabled, do nothing. 4390 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 4391 return GEPVal; 4392 4393 // If the GEP has already been reduced to a constant, leave it be. 4394 if (isa<llvm::Constant>(GEPVal)) 4395 return GEPVal; 4396 4397 // Only check for overflows in the default address space. 4398 if (GEPVal->getType()->getPointerAddressSpace()) 4399 return GEPVal; 4400 4401 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4402 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4403 4404 SanitizerScope SanScope(this); 4405 auto &VMContext = getLLVMContext(); 4406 const auto &DL = CGM.getDataLayout(); 4407 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4408 4409 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4410 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4411 auto *SAddIntrinsic = 4412 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4413 auto *SMulIntrinsic = 4414 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4415 4416 // The total (signed) byte offset for the GEP. 4417 llvm::Value *TotalOffset = nullptr; 4418 // The offset overflow flag - true if the total offset overflows. 4419 llvm::Value *OffsetOverflows = Builder.getFalse(); 4420 4421 /// Return the result of the given binary operation. 4422 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 4423 llvm::Value *RHS) -> llvm::Value * { 4424 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 4425 4426 // If the operands are constants, return a constant result. 4427 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 4428 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 4429 llvm::APInt N; 4430 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 4431 /*Signed=*/true, N); 4432 if (HasOverflow) 4433 OffsetOverflows = Builder.getTrue(); 4434 return llvm::ConstantInt::get(VMContext, N); 4435 } 4436 } 4437 4438 // Otherwise, compute the result with checked arithmetic. 4439 auto *ResultAndOverflow = Builder.CreateCall( 4440 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 4441 OffsetOverflows = Builder.CreateOr( 4442 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 4443 return Builder.CreateExtractValue(ResultAndOverflow, 0); 4444 }; 4445 4446 // Determine the total byte offset by looking at each GEP operand. 4447 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 4448 GTI != GTE; ++GTI) { 4449 llvm::Value *LocalOffset; 4450 auto *Index = GTI.getOperand(); 4451 // Compute the local offset contributed by this indexing step: 4452 if (auto *STy = GTI.getStructTypeOrNull()) { 4453 // For struct indexing, the local offset is the byte position of the 4454 // specified field. 4455 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 4456 LocalOffset = llvm::ConstantInt::get( 4457 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 4458 } else { 4459 // Otherwise this is array-like indexing. The local offset is the index 4460 // multiplied by the element size. 4461 auto *ElementSize = llvm::ConstantInt::get( 4462 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 4463 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 4464 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 4465 } 4466 4467 // If this is the first offset, set it as the total offset. Otherwise, add 4468 // the local offset into the running total. 4469 if (!TotalOffset || TotalOffset == Zero) 4470 TotalOffset = LocalOffset; 4471 else 4472 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 4473 } 4474 4475 // Common case: if the total offset is zero, don't emit a check. 4476 if (TotalOffset == Zero) 4477 return GEPVal; 4478 4479 // Now that we've computed the total offset, add it to the base pointer (with 4480 // wrapping semantics). 4481 auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy); 4482 auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset); 4483 4484 // The GEP is valid if: 4485 // 1) The total offset doesn't overflow, and 4486 // 2) The sign of the difference between the computed address and the base 4487 // pointer matches the sign of the total offset. 4488 llvm::Value *ValidGEP; 4489 auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows); 4490 if (SignedIndices) { 4491 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4492 auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero); 4493 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 4494 ValidGEP = Builder.CreateAnd( 4495 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid), 4496 NoOffsetOverflow); 4497 } else if (!SignedIndices && !IsSubtraction) { 4498 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4499 ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow); 4500 } else { 4501 auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr); 4502 ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow); 4503 } 4504 4505 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 4506 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 4507 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 4508 EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow), 4509 SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 4510 4511 return GEPVal; 4512 } 4513