1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCleanup.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Frontend/CodeGenOptions.h"
28 #include "llvm/ADT/Optional.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/Module.h"
37 #include <cstdarg>
38 
39 using namespace clang;
40 using namespace CodeGen;
41 using llvm::Value;
42 
43 //===----------------------------------------------------------------------===//
44 //                         Scalar Expression Emitter
45 //===----------------------------------------------------------------------===//
46 
47 namespace {
48 
49 /// Determine whether the given binary operation may overflow.
50 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
51 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
52 /// the returned overflow check is precise. The returned value is 'true' for
53 /// all other opcodes, to be conservative.
54 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
55                              BinaryOperator::Opcode Opcode, bool Signed,
56                              llvm::APInt &Result) {
57   // Assume overflow is possible, unless we can prove otherwise.
58   bool Overflow = true;
59   const auto &LHSAP = LHS->getValue();
60   const auto &RHSAP = RHS->getValue();
61   if (Opcode == BO_Add) {
62     if (Signed)
63       Result = LHSAP.sadd_ov(RHSAP, Overflow);
64     else
65       Result = LHSAP.uadd_ov(RHSAP, Overflow);
66   } else if (Opcode == BO_Sub) {
67     if (Signed)
68       Result = LHSAP.ssub_ov(RHSAP, Overflow);
69     else
70       Result = LHSAP.usub_ov(RHSAP, Overflow);
71   } else if (Opcode == BO_Mul) {
72     if (Signed)
73       Result = LHSAP.smul_ov(RHSAP, Overflow);
74     else
75       Result = LHSAP.umul_ov(RHSAP, Overflow);
76   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
77     if (Signed && !RHS->isZero())
78       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
79     else
80       return false;
81   }
82   return Overflow;
83 }
84 
85 struct BinOpInfo {
86   Value *LHS;
87   Value *RHS;
88   QualType Ty;  // Computation Type.
89   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
90   FPOptions FPFeatures;
91   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
92 
93   /// Check if the binop can result in integer overflow.
94   bool mayHaveIntegerOverflow() const {
95     // Without constant input, we can't rule out overflow.
96     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
97     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
98     if (!LHSCI || !RHSCI)
99       return true;
100 
101     llvm::APInt Result;
102     return ::mayHaveIntegerOverflow(
103         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
104   }
105 
106   /// Check if the binop computes a division or a remainder.
107   bool isDivremOp() const {
108     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
109            Opcode == BO_RemAssign;
110   }
111 
112   /// Check if the binop can result in an integer division by zero.
113   bool mayHaveIntegerDivisionByZero() const {
114     if (isDivremOp())
115       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
116         return CI->isZero();
117     return true;
118   }
119 
120   /// Check if the binop can result in a float division by zero.
121   bool mayHaveFloatDivisionByZero() const {
122     if (isDivremOp())
123       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
124         return CFP->isZero();
125     return true;
126   }
127 };
128 
129 static bool MustVisitNullValue(const Expr *E) {
130   // If a null pointer expression's type is the C++0x nullptr_t, then
131   // it's not necessarily a simple constant and it must be evaluated
132   // for its potential side effects.
133   return E->getType()->isNullPtrType();
134 }
135 
136 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
137 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
138                                                         const Expr *E) {
139   const Expr *Base = E->IgnoreImpCasts();
140   if (E == Base)
141     return llvm::None;
142 
143   QualType BaseTy = Base->getType();
144   if (!BaseTy->isPromotableIntegerType() ||
145       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
146     return llvm::None;
147 
148   return BaseTy;
149 }
150 
151 /// Check if \p E is a widened promoted integer.
152 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
153   return getUnwidenedIntegerType(Ctx, E).hasValue();
154 }
155 
156 /// Check if we can skip the overflow check for \p Op.
157 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
158   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
159          "Expected a unary or binary operator");
160 
161   // If the binop has constant inputs and we can prove there is no overflow,
162   // we can elide the overflow check.
163   if (!Op.mayHaveIntegerOverflow())
164     return true;
165 
166   // If a unary op has a widened operand, the op cannot overflow.
167   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
168     return IsWidenedIntegerOp(Ctx, UO->getSubExpr());
169 
170   // We usually don't need overflow checks for binops with widened operands.
171   // Multiplication with promoted unsigned operands is a special case.
172   const auto *BO = cast<BinaryOperator>(Op.E);
173   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
174   if (!OptionalLHSTy)
175     return false;
176 
177   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
178   if (!OptionalRHSTy)
179     return false;
180 
181   QualType LHSTy = *OptionalLHSTy;
182   QualType RHSTy = *OptionalRHSTy;
183 
184   // This is the simple case: binops without unsigned multiplication, and with
185   // widened operands. No overflow check is needed here.
186   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
187       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
188     return true;
189 
190   // For unsigned multiplication the overflow check can be elided if either one
191   // of the unpromoted types are less than half the size of the promoted type.
192   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
193   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
194          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
195 }
196 
197 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
198 static void updateFastMathFlags(llvm::FastMathFlags &FMF,
199                                 FPOptions FPFeatures) {
200   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
201 }
202 
203 /// Propagate fast-math flags from \p Op to the instruction in \p V.
204 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
205   if (auto *I = dyn_cast<llvm::Instruction>(V)) {
206     llvm::FastMathFlags FMF = I->getFastMathFlags();
207     updateFastMathFlags(FMF, Op.FPFeatures);
208     I->setFastMathFlags(FMF);
209   }
210   return V;
211 }
212 
213 class ScalarExprEmitter
214   : public StmtVisitor<ScalarExprEmitter, Value*> {
215   CodeGenFunction &CGF;
216   CGBuilderTy &Builder;
217   bool IgnoreResultAssign;
218   llvm::LLVMContext &VMContext;
219 public:
220 
221   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
222     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
223       VMContext(cgf.getLLVMContext()) {
224   }
225 
226   //===--------------------------------------------------------------------===//
227   //                               Utilities
228   //===--------------------------------------------------------------------===//
229 
230   bool TestAndClearIgnoreResultAssign() {
231     bool I = IgnoreResultAssign;
232     IgnoreResultAssign = false;
233     return I;
234   }
235 
236   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
237   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
238   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
239     return CGF.EmitCheckedLValue(E, TCK);
240   }
241 
242   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
243                       const BinOpInfo &Info);
244 
245   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
246     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
247   }
248 
249   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
250     const AlignValueAttr *AVAttr = nullptr;
251     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
252       const ValueDecl *VD = DRE->getDecl();
253 
254       if (VD->getType()->isReferenceType()) {
255         if (const auto *TTy =
256             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
257           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
258       } else {
259         // Assumptions for function parameters are emitted at the start of the
260         // function, so there is no need to repeat that here.
261         if (isa<ParmVarDecl>(VD))
262           return;
263 
264         AVAttr = VD->getAttr<AlignValueAttr>();
265       }
266     }
267 
268     if (!AVAttr)
269       if (const auto *TTy =
270           dyn_cast<TypedefType>(E->getType()))
271         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
272 
273     if (!AVAttr)
274       return;
275 
276     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
277     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
278     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
279   }
280 
281   /// EmitLoadOfLValue - Given an expression with complex type that represents a
282   /// value l-value, this method emits the address of the l-value, then loads
283   /// and returns the result.
284   Value *EmitLoadOfLValue(const Expr *E) {
285     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
286                                 E->getExprLoc());
287 
288     EmitLValueAlignmentAssumption(E, V);
289     return V;
290   }
291 
292   /// EmitConversionToBool - Convert the specified expression value to a
293   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
294   Value *EmitConversionToBool(Value *Src, QualType DstTy);
295 
296   /// Emit a check that a conversion to or from a floating-point type does not
297   /// overflow.
298   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
299                                 Value *Src, QualType SrcType, QualType DstType,
300                                 llvm::Type *DstTy, SourceLocation Loc);
301 
302   /// Emit a conversion from the specified type to the specified destination
303   /// type, both of which are LLVM scalar types.
304   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
305                               SourceLocation Loc);
306 
307   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
308                               SourceLocation Loc, bool TreatBooleanAsSigned);
309 
310   /// Emit a conversion from the specified complex type to the specified
311   /// destination type, where the destination type is an LLVM scalar type.
312   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
313                                        QualType SrcTy, QualType DstTy,
314                                        SourceLocation Loc);
315 
316   /// EmitNullValue - Emit a value that corresponds to null for the given type.
317   Value *EmitNullValue(QualType Ty);
318 
319   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
320   Value *EmitFloatToBoolConversion(Value *V) {
321     // Compare against 0.0 for fp scalars.
322     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
323     return Builder.CreateFCmpUNE(V, Zero, "tobool");
324   }
325 
326   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
327   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
328     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
329 
330     return Builder.CreateICmpNE(V, Zero, "tobool");
331   }
332 
333   Value *EmitIntToBoolConversion(Value *V) {
334     // Because of the type rules of C, we often end up computing a
335     // logical value, then zero extending it to int, then wanting it
336     // as a logical value again.  Optimize this common case.
337     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
338       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
339         Value *Result = ZI->getOperand(0);
340         // If there aren't any more uses, zap the instruction to save space.
341         // Note that there can be more uses, for example if this
342         // is the result of an assignment.
343         if (ZI->use_empty())
344           ZI->eraseFromParent();
345         return Result;
346       }
347     }
348 
349     return Builder.CreateIsNotNull(V, "tobool");
350   }
351 
352   //===--------------------------------------------------------------------===//
353   //                            Visitor Methods
354   //===--------------------------------------------------------------------===//
355 
356   Value *Visit(Expr *E) {
357     ApplyDebugLocation DL(CGF, E);
358     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
359   }
360 
361   Value *VisitStmt(Stmt *S) {
362     S->dump(CGF.getContext().getSourceManager());
363     llvm_unreachable("Stmt can't have complex result type!");
364   }
365   Value *VisitExpr(Expr *S);
366 
367   Value *VisitParenExpr(ParenExpr *PE) {
368     return Visit(PE->getSubExpr());
369   }
370   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
371     return Visit(E->getReplacement());
372   }
373   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
374     return Visit(GE->getResultExpr());
375   }
376   Value *VisitCoawaitExpr(CoawaitExpr *S) {
377     return CGF.EmitCoawaitExpr(*S).getScalarVal();
378   }
379   Value *VisitCoyieldExpr(CoyieldExpr *S) {
380     return CGF.EmitCoyieldExpr(*S).getScalarVal();
381   }
382   Value *VisitUnaryCoawait(const UnaryOperator *E) {
383     return Visit(E->getSubExpr());
384   }
385 
386   // Leaves.
387   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
388     return Builder.getInt(E->getValue());
389   }
390   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
391     return llvm::ConstantFP::get(VMContext, E->getValue());
392   }
393   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
394     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
395   }
396   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
397     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
398   }
399   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
400     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
401   }
402   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
403     return EmitNullValue(E->getType());
404   }
405   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
406     return EmitNullValue(E->getType());
407   }
408   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
409   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
410   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
411     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
412     return Builder.CreateBitCast(V, ConvertType(E->getType()));
413   }
414 
415   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
416     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
417   }
418 
419   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
420     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
421   }
422 
423   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
424     if (E->isGLValue())
425       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
426 
427     // Otherwise, assume the mapping is the scalar directly.
428     return CGF.getOpaqueRValueMapping(E).getScalarVal();
429   }
430 
431   Value *emitConstant(const CodeGenFunction::ConstantEmission &Constant,
432                       Expr *E) {
433     assert(Constant && "not a constant");
434     if (Constant.isReference())
435       return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E),
436                               E->getExprLoc());
437     return Constant.getValue();
438   }
439 
440   // l-values.
441   Value *VisitDeclRefExpr(DeclRefExpr *E) {
442     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
443       return emitConstant(Constant, E);
444     return EmitLoadOfLValue(E);
445   }
446 
447   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
448     return CGF.EmitObjCSelectorExpr(E);
449   }
450   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
451     return CGF.EmitObjCProtocolExpr(E);
452   }
453   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
454     return EmitLoadOfLValue(E);
455   }
456   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
457     if (E->getMethodDecl() &&
458         E->getMethodDecl()->getReturnType()->isReferenceType())
459       return EmitLoadOfLValue(E);
460     return CGF.EmitObjCMessageExpr(E).getScalarVal();
461   }
462 
463   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
464     LValue LV = CGF.EmitObjCIsaExpr(E);
465     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
466     return V;
467   }
468 
469   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
470     VersionTuple Version = E->getVersion();
471 
472     // If we're checking for a platform older than our minimum deployment
473     // target, we can fold the check away.
474     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
475       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
476 
477     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
478     llvm::Value *Args[] = {
479         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
480         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
481         llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
482     };
483 
484     return CGF.EmitBuiltinAvailable(Args);
485   }
486 
487   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
488   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
489   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
490   Value *VisitMemberExpr(MemberExpr *E);
491   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
492   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
493     return EmitLoadOfLValue(E);
494   }
495 
496   Value *VisitInitListExpr(InitListExpr *E);
497 
498   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
499     assert(CGF.getArrayInitIndex() &&
500            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
501     return CGF.getArrayInitIndex();
502   }
503 
504   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
505     return EmitNullValue(E->getType());
506   }
507   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
508     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
509     return VisitCastExpr(E);
510   }
511   Value *VisitCastExpr(CastExpr *E);
512 
513   Value *VisitCallExpr(const CallExpr *E) {
514     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
515       return EmitLoadOfLValue(E);
516 
517     Value *V = CGF.EmitCallExpr(E).getScalarVal();
518 
519     EmitLValueAlignmentAssumption(E, V);
520     return V;
521   }
522 
523   Value *VisitStmtExpr(const StmtExpr *E);
524 
525   // Unary Operators.
526   Value *VisitUnaryPostDec(const UnaryOperator *E) {
527     LValue LV = EmitLValue(E->getSubExpr());
528     return EmitScalarPrePostIncDec(E, LV, false, false);
529   }
530   Value *VisitUnaryPostInc(const UnaryOperator *E) {
531     LValue LV = EmitLValue(E->getSubExpr());
532     return EmitScalarPrePostIncDec(E, LV, true, false);
533   }
534   Value *VisitUnaryPreDec(const UnaryOperator *E) {
535     LValue LV = EmitLValue(E->getSubExpr());
536     return EmitScalarPrePostIncDec(E, LV, false, true);
537   }
538   Value *VisitUnaryPreInc(const UnaryOperator *E) {
539     LValue LV = EmitLValue(E->getSubExpr());
540     return EmitScalarPrePostIncDec(E, LV, true, true);
541   }
542 
543   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
544                                                   llvm::Value *InVal,
545                                                   bool IsInc);
546 
547   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
548                                        bool isInc, bool isPre);
549 
550 
551   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
552     if (isa<MemberPointerType>(E->getType())) // never sugared
553       return CGF.CGM.getMemberPointerConstant(E);
554 
555     return EmitLValue(E->getSubExpr()).getPointer();
556   }
557   Value *VisitUnaryDeref(const UnaryOperator *E) {
558     if (E->getType()->isVoidType())
559       return Visit(E->getSubExpr()); // the actual value should be unused
560     return EmitLoadOfLValue(E);
561   }
562   Value *VisitUnaryPlus(const UnaryOperator *E) {
563     // This differs from gcc, though, most likely due to a bug in gcc.
564     TestAndClearIgnoreResultAssign();
565     return Visit(E->getSubExpr());
566   }
567   Value *VisitUnaryMinus    (const UnaryOperator *E);
568   Value *VisitUnaryNot      (const UnaryOperator *E);
569   Value *VisitUnaryLNot     (const UnaryOperator *E);
570   Value *VisitUnaryReal     (const UnaryOperator *E);
571   Value *VisitUnaryImag     (const UnaryOperator *E);
572   Value *VisitUnaryExtension(const UnaryOperator *E) {
573     return Visit(E->getSubExpr());
574   }
575 
576   // C++
577   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
578     return EmitLoadOfLValue(E);
579   }
580 
581   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
582     return Visit(DAE->getExpr());
583   }
584   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
585     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
586     return Visit(DIE->getExpr());
587   }
588   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
589     return CGF.LoadCXXThis();
590   }
591 
592   Value *VisitExprWithCleanups(ExprWithCleanups *E);
593   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
594     return CGF.EmitCXXNewExpr(E);
595   }
596   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
597     CGF.EmitCXXDeleteExpr(E);
598     return nullptr;
599   }
600 
601   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
602     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
603   }
604 
605   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
606     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
607   }
608 
609   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
610     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
611   }
612 
613   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
614     // C++ [expr.pseudo]p1:
615     //   The result shall only be used as the operand for the function call
616     //   operator (), and the result of such a call has type void. The only
617     //   effect is the evaluation of the postfix-expression before the dot or
618     //   arrow.
619     CGF.EmitScalarExpr(E->getBase());
620     return nullptr;
621   }
622 
623   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
624     return EmitNullValue(E->getType());
625   }
626 
627   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
628     CGF.EmitCXXThrowExpr(E);
629     return nullptr;
630   }
631 
632   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
633     return Builder.getInt1(E->getValue());
634   }
635 
636   // Binary Operators.
637   Value *EmitMul(const BinOpInfo &Ops) {
638     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
639       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
640       case LangOptions::SOB_Defined:
641         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
642       case LangOptions::SOB_Undefined:
643         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
644           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
645         // Fall through.
646       case LangOptions::SOB_Trapping:
647         if (CanElideOverflowCheck(CGF.getContext(), Ops))
648           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
649         return EmitOverflowCheckedBinOp(Ops);
650       }
651     }
652 
653     if (Ops.Ty->isUnsignedIntegerType() &&
654         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
655         !CanElideOverflowCheck(CGF.getContext(), Ops))
656       return EmitOverflowCheckedBinOp(Ops);
657 
658     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
659       Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
660       return propagateFMFlags(V, Ops);
661     }
662     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
663   }
664   /// Create a binary op that checks for overflow.
665   /// Currently only supports +, - and *.
666   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
667 
668   // Check for undefined division and modulus behaviors.
669   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
670                                                   llvm::Value *Zero,bool isDiv);
671   // Common helper for getting how wide LHS of shift is.
672   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
673   Value *EmitDiv(const BinOpInfo &Ops);
674   Value *EmitRem(const BinOpInfo &Ops);
675   Value *EmitAdd(const BinOpInfo &Ops);
676   Value *EmitSub(const BinOpInfo &Ops);
677   Value *EmitShl(const BinOpInfo &Ops);
678   Value *EmitShr(const BinOpInfo &Ops);
679   Value *EmitAnd(const BinOpInfo &Ops) {
680     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
681   }
682   Value *EmitXor(const BinOpInfo &Ops) {
683     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
684   }
685   Value *EmitOr (const BinOpInfo &Ops) {
686     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
687   }
688 
689   BinOpInfo EmitBinOps(const BinaryOperator *E);
690   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
691                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
692                                   Value *&Result);
693 
694   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
695                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
696 
697   // Binary operators and binary compound assignment operators.
698 #define HANDLEBINOP(OP) \
699   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
700     return Emit ## OP(EmitBinOps(E));                                      \
701   }                                                                        \
702   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
703     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
704   }
705   HANDLEBINOP(Mul)
706   HANDLEBINOP(Div)
707   HANDLEBINOP(Rem)
708   HANDLEBINOP(Add)
709   HANDLEBINOP(Sub)
710   HANDLEBINOP(Shl)
711   HANDLEBINOP(Shr)
712   HANDLEBINOP(And)
713   HANDLEBINOP(Xor)
714   HANDLEBINOP(Or)
715 #undef HANDLEBINOP
716 
717   // Comparisons.
718   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
719                      llvm::CmpInst::Predicate SICmpOpc,
720                      llvm::CmpInst::Predicate FCmpOpc);
721 #define VISITCOMP(CODE, UI, SI, FP) \
722     Value *VisitBin##CODE(const BinaryOperator *E) { \
723       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
724                          llvm::FCmpInst::FP); }
725   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
726   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
727   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
728   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
729   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
730   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
731 #undef VISITCOMP
732 
733   Value *VisitBinAssign     (const BinaryOperator *E);
734 
735   Value *VisitBinLAnd       (const BinaryOperator *E);
736   Value *VisitBinLOr        (const BinaryOperator *E);
737   Value *VisitBinComma      (const BinaryOperator *E);
738 
739   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
740   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
741 
742   // Other Operators.
743   Value *VisitBlockExpr(const BlockExpr *BE);
744   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
745   Value *VisitChooseExpr(ChooseExpr *CE);
746   Value *VisitVAArgExpr(VAArgExpr *VE);
747   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
748     return CGF.EmitObjCStringLiteral(E);
749   }
750   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
751     return CGF.EmitObjCBoxedExpr(E);
752   }
753   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
754     return CGF.EmitObjCArrayLiteral(E);
755   }
756   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
757     return CGF.EmitObjCDictionaryLiteral(E);
758   }
759   Value *VisitAsTypeExpr(AsTypeExpr *CE);
760   Value *VisitAtomicExpr(AtomicExpr *AE);
761 };
762 }  // end anonymous namespace.
763 
764 //===----------------------------------------------------------------------===//
765 //                                Utilities
766 //===----------------------------------------------------------------------===//
767 
768 /// EmitConversionToBool - Convert the specified expression value to a
769 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
770 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
771   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
772 
773   if (SrcType->isRealFloatingType())
774     return EmitFloatToBoolConversion(Src);
775 
776   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
777     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
778 
779   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
780          "Unknown scalar type to convert");
781 
782   if (isa<llvm::IntegerType>(Src->getType()))
783     return EmitIntToBoolConversion(Src);
784 
785   assert(isa<llvm::PointerType>(Src->getType()));
786   return EmitPointerToBoolConversion(Src, SrcType);
787 }
788 
789 void ScalarExprEmitter::EmitFloatConversionCheck(
790     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
791     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
792   CodeGenFunction::SanitizerScope SanScope(&CGF);
793   using llvm::APFloat;
794   using llvm::APSInt;
795 
796   llvm::Type *SrcTy = Src->getType();
797 
798   llvm::Value *Check = nullptr;
799   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
800     // Integer to floating-point. This can fail for unsigned short -> __half
801     // or unsigned __int128 -> float.
802     assert(DstType->isFloatingType());
803     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
804 
805     APFloat LargestFloat =
806       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
807     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
808 
809     bool IsExact;
810     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
811                                       &IsExact) != APFloat::opOK)
812       // The range of representable values of this floating point type includes
813       // all values of this integer type. Don't need an overflow check.
814       return;
815 
816     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
817     if (SrcIsUnsigned)
818       Check = Builder.CreateICmpULE(Src, Max);
819     else {
820       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
821       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
822       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
823       Check = Builder.CreateAnd(GE, LE);
824     }
825   } else {
826     const llvm::fltSemantics &SrcSema =
827       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
828     if (isa<llvm::IntegerType>(DstTy)) {
829       // Floating-point to integer. This has undefined behavior if the source is
830       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
831       // to an integer).
832       unsigned Width = CGF.getContext().getIntWidth(DstType);
833       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
834 
835       APSInt Min = APSInt::getMinValue(Width, Unsigned);
836       APFloat MinSrc(SrcSema, APFloat::uninitialized);
837       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
838           APFloat::opOverflow)
839         // Don't need an overflow check for lower bound. Just check for
840         // -Inf/NaN.
841         MinSrc = APFloat::getInf(SrcSema, true);
842       else
843         // Find the largest value which is too small to represent (before
844         // truncation toward zero).
845         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
846 
847       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
848       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
849       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
850           APFloat::opOverflow)
851         // Don't need an overflow check for upper bound. Just check for
852         // +Inf/NaN.
853         MaxSrc = APFloat::getInf(SrcSema, false);
854       else
855         // Find the smallest value which is too large to represent (before
856         // truncation toward zero).
857         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
858 
859       // If we're converting from __half, convert the range to float to match
860       // the type of src.
861       if (OrigSrcType->isHalfType()) {
862         const llvm::fltSemantics &Sema =
863           CGF.getContext().getFloatTypeSemantics(SrcType);
864         bool IsInexact;
865         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
866         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
867       }
868 
869       llvm::Value *GE =
870         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
871       llvm::Value *LE =
872         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
873       Check = Builder.CreateAnd(GE, LE);
874     } else {
875       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
876       //
877       // Floating-point to floating-point. This has undefined behavior if the
878       // source is not in the range of representable values of the destination
879       // type. The C and C++ standards are spectacularly unclear here. We
880       // diagnose finite out-of-range conversions, but allow infinities and NaNs
881       // to convert to the corresponding value in the smaller type.
882       //
883       // C11 Annex F gives all such conversions defined behavior for IEC 60559
884       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
885       // does not.
886 
887       // Converting from a lower rank to a higher rank can never have
888       // undefined behavior, since higher-rank types must have a superset
889       // of values of lower-rank types.
890       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
891         return;
892 
893       assert(!OrigSrcType->isHalfType() &&
894              "should not check conversion from __half, it has the lowest rank");
895 
896       const llvm::fltSemantics &DstSema =
897         CGF.getContext().getFloatTypeSemantics(DstType);
898       APFloat MinBad = APFloat::getLargest(DstSema, false);
899       APFloat MaxBad = APFloat::getInf(DstSema, false);
900 
901       bool IsInexact;
902       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
903       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
904 
905       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
906         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
907       llvm::Value *GE =
908         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
909       llvm::Value *LE =
910         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
911       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
912     }
913   }
914 
915   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
916                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
917                                   CGF.EmitCheckTypeDescriptor(DstType)};
918   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
919                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
920 }
921 
922 /// Emit a conversion from the specified type to the specified destination type,
923 /// both of which are LLVM scalar types.
924 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
925                                                QualType DstType,
926                                                SourceLocation Loc) {
927   return EmitScalarConversion(Src, SrcType, DstType, Loc, false);
928 }
929 
930 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
931                                                QualType DstType,
932                                                SourceLocation Loc,
933                                                bool TreatBooleanAsSigned) {
934   SrcType = CGF.getContext().getCanonicalType(SrcType);
935   DstType = CGF.getContext().getCanonicalType(DstType);
936   if (SrcType == DstType) return Src;
937 
938   if (DstType->isVoidType()) return nullptr;
939 
940   llvm::Value *OrigSrc = Src;
941   QualType OrigSrcType = SrcType;
942   llvm::Type *SrcTy = Src->getType();
943 
944   // Handle conversions to bool first, they are special: comparisons against 0.
945   if (DstType->isBooleanType())
946     return EmitConversionToBool(Src, SrcType);
947 
948   llvm::Type *DstTy = ConvertType(DstType);
949 
950   // Cast from half through float if half isn't a native type.
951   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
952     // Cast to FP using the intrinsic if the half type itself isn't supported.
953     if (DstTy->isFloatingPointTy()) {
954       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
955         return Builder.CreateCall(
956             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
957             Src);
958     } else {
959       // Cast to other types through float, using either the intrinsic or FPExt,
960       // depending on whether the half type itself is supported
961       // (as opposed to operations on half, available with NativeHalfType).
962       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
963         Src = Builder.CreateCall(
964             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
965                                  CGF.CGM.FloatTy),
966             Src);
967       } else {
968         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
969       }
970       SrcType = CGF.getContext().FloatTy;
971       SrcTy = CGF.FloatTy;
972     }
973   }
974 
975   // Ignore conversions like int -> uint.
976   if (SrcTy == DstTy)
977     return Src;
978 
979   // Handle pointer conversions next: pointers can only be converted to/from
980   // other pointers and integers. Check for pointer types in terms of LLVM, as
981   // some native types (like Obj-C id) may map to a pointer type.
982   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
983     // The source value may be an integer, or a pointer.
984     if (isa<llvm::PointerType>(SrcTy))
985       return Builder.CreateBitCast(Src, DstTy, "conv");
986 
987     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
988     // First, convert to the correct width so that we control the kind of
989     // extension.
990     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
991     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
992     llvm::Value* IntResult =
993         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
994     // Then, cast to pointer.
995     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
996   }
997 
998   if (isa<llvm::PointerType>(SrcTy)) {
999     // Must be an ptr to int cast.
1000     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1001     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1002   }
1003 
1004   // A scalar can be splatted to an extended vector of the same element type
1005   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1006     // Sema should add casts to make sure that the source expression's type is
1007     // the same as the vector's element type (sans qualifiers)
1008     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1009                SrcType.getTypePtr() &&
1010            "Splatted expr doesn't match with vector element type?");
1011 
1012     // Splat the element across to all elements
1013     unsigned NumElements = DstTy->getVectorNumElements();
1014     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1015   }
1016 
1017   // Allow bitcast from vector to integer/fp of the same size.
1018   if (isa<llvm::VectorType>(SrcTy) ||
1019       isa<llvm::VectorType>(DstTy))
1020     return Builder.CreateBitCast(Src, DstTy, "conv");
1021 
1022   // Finally, we have the arithmetic types: real int/float.
1023   Value *Res = nullptr;
1024   llvm::Type *ResTy = DstTy;
1025 
1026   // An overflowing conversion has undefined behavior if either the source type
1027   // or the destination type is a floating-point type.
1028   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1029       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
1030     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1031                              Loc);
1032 
1033   // Cast to half through float if half isn't a native type.
1034   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1035     // Make sure we cast in a single step if from another FP type.
1036     if (SrcTy->isFloatingPointTy()) {
1037       // Use the intrinsic if the half type itself isn't supported
1038       // (as opposed to operations on half, available with NativeHalfType).
1039       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
1040         return Builder.CreateCall(
1041             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1042       // If the half type is supported, just use an fptrunc.
1043       return Builder.CreateFPTrunc(Src, DstTy);
1044     }
1045     DstTy = CGF.FloatTy;
1046   }
1047 
1048   if (isa<llvm::IntegerType>(SrcTy)) {
1049     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1050     if (SrcType->isBooleanType() && TreatBooleanAsSigned) {
1051       InputSigned = true;
1052     }
1053     if (isa<llvm::IntegerType>(DstTy))
1054       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1055     else if (InputSigned)
1056       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1057     else
1058       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1059   } else if (isa<llvm::IntegerType>(DstTy)) {
1060     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1061     if (DstType->isSignedIntegerOrEnumerationType())
1062       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1063     else
1064       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1065   } else {
1066     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1067            "Unknown real conversion");
1068     if (DstTy->getTypeID() < SrcTy->getTypeID())
1069       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1070     else
1071       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1072   }
1073 
1074   if (DstTy != ResTy) {
1075     if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1076       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1077       Res = Builder.CreateCall(
1078         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1079         Res);
1080     } else {
1081       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1082     }
1083   }
1084 
1085   return Res;
1086 }
1087 
1088 /// Emit a conversion from the specified complex type to the specified
1089 /// destination type, where the destination type is an LLVM scalar type.
1090 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1091     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1092     SourceLocation Loc) {
1093   // Get the source element type.
1094   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1095 
1096   // Handle conversions to bool first, they are special: comparisons against 0.
1097   if (DstTy->isBooleanType()) {
1098     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1099     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1100     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1101     return Builder.CreateOr(Src.first, Src.second, "tobool");
1102   }
1103 
1104   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1105   // the imaginary part of the complex value is discarded and the value of the
1106   // real part is converted according to the conversion rules for the
1107   // corresponding real type.
1108   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1109 }
1110 
1111 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1112   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1113 }
1114 
1115 /// \brief Emit a sanitization check for the given "binary" operation (which
1116 /// might actually be a unary increment which has been lowered to a binary
1117 /// operation). The check passes if all values in \p Checks (which are \c i1),
1118 /// are \c true.
1119 void ScalarExprEmitter::EmitBinOpCheck(
1120     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1121   assert(CGF.IsSanitizerScope);
1122   SanitizerHandler Check;
1123   SmallVector<llvm::Constant *, 4> StaticData;
1124   SmallVector<llvm::Value *, 2> DynamicData;
1125 
1126   BinaryOperatorKind Opcode = Info.Opcode;
1127   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1128     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1129 
1130   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1131   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1132   if (UO && UO->getOpcode() == UO_Minus) {
1133     Check = SanitizerHandler::NegateOverflow;
1134     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1135     DynamicData.push_back(Info.RHS);
1136   } else {
1137     if (BinaryOperator::isShiftOp(Opcode)) {
1138       // Shift LHS negative or too large, or RHS out of bounds.
1139       Check = SanitizerHandler::ShiftOutOfBounds;
1140       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1141       StaticData.push_back(
1142         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1143       StaticData.push_back(
1144         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1145     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1146       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1147       Check = SanitizerHandler::DivremOverflow;
1148       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1149     } else {
1150       // Arithmetic overflow (+, -, *).
1151       switch (Opcode) {
1152       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1153       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1154       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1155       default: llvm_unreachable("unexpected opcode for bin op check");
1156       }
1157       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1158     }
1159     DynamicData.push_back(Info.LHS);
1160     DynamicData.push_back(Info.RHS);
1161   }
1162 
1163   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1164 }
1165 
1166 //===----------------------------------------------------------------------===//
1167 //                            Visitor Methods
1168 //===----------------------------------------------------------------------===//
1169 
1170 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1171   CGF.ErrorUnsupported(E, "scalar expression");
1172   if (E->getType()->isVoidType())
1173     return nullptr;
1174   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1175 }
1176 
1177 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1178   // Vector Mask Case
1179   if (E->getNumSubExprs() == 2) {
1180     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1181     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1182     Value *Mask;
1183 
1184     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1185     unsigned LHSElts = LTy->getNumElements();
1186 
1187     Mask = RHS;
1188 
1189     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1190 
1191     // Mask off the high bits of each shuffle index.
1192     Value *MaskBits =
1193         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1194     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1195 
1196     // newv = undef
1197     // mask = mask & maskbits
1198     // for each elt
1199     //   n = extract mask i
1200     //   x = extract val n
1201     //   newv = insert newv, x, i
1202     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1203                                                   MTy->getNumElements());
1204     Value* NewV = llvm::UndefValue::get(RTy);
1205     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1206       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1207       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1208 
1209       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1210       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1211     }
1212     return NewV;
1213   }
1214 
1215   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1216   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1217 
1218   SmallVector<llvm::Constant*, 32> indices;
1219   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1220     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1221     // Check for -1 and output it as undef in the IR.
1222     if (Idx.isSigned() && Idx.isAllOnesValue())
1223       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1224     else
1225       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1226   }
1227 
1228   Value *SV = llvm::ConstantVector::get(indices);
1229   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1230 }
1231 
1232 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1233   QualType SrcType = E->getSrcExpr()->getType(),
1234            DstType = E->getType();
1235 
1236   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1237 
1238   SrcType = CGF.getContext().getCanonicalType(SrcType);
1239   DstType = CGF.getContext().getCanonicalType(DstType);
1240   if (SrcType == DstType) return Src;
1241 
1242   assert(SrcType->isVectorType() &&
1243          "ConvertVector source type must be a vector");
1244   assert(DstType->isVectorType() &&
1245          "ConvertVector destination type must be a vector");
1246 
1247   llvm::Type *SrcTy = Src->getType();
1248   llvm::Type *DstTy = ConvertType(DstType);
1249 
1250   // Ignore conversions like int -> uint.
1251   if (SrcTy == DstTy)
1252     return Src;
1253 
1254   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1255            DstEltType = DstType->getAs<VectorType>()->getElementType();
1256 
1257   assert(SrcTy->isVectorTy() &&
1258          "ConvertVector source IR type must be a vector");
1259   assert(DstTy->isVectorTy() &&
1260          "ConvertVector destination IR type must be a vector");
1261 
1262   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1263              *DstEltTy = DstTy->getVectorElementType();
1264 
1265   if (DstEltType->isBooleanType()) {
1266     assert((SrcEltTy->isFloatingPointTy() ||
1267             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1268 
1269     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1270     if (SrcEltTy->isFloatingPointTy()) {
1271       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1272     } else {
1273       return Builder.CreateICmpNE(Src, Zero, "tobool");
1274     }
1275   }
1276 
1277   // We have the arithmetic types: real int/float.
1278   Value *Res = nullptr;
1279 
1280   if (isa<llvm::IntegerType>(SrcEltTy)) {
1281     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1282     if (isa<llvm::IntegerType>(DstEltTy))
1283       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1284     else if (InputSigned)
1285       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1286     else
1287       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1288   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1289     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1290     if (DstEltType->isSignedIntegerOrEnumerationType())
1291       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1292     else
1293       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1294   } else {
1295     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1296            "Unknown real conversion");
1297     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1298       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1299     else
1300       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1301   }
1302 
1303   return Res;
1304 }
1305 
1306 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1307   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1308     CGF.EmitIgnoredExpr(E->getBase());
1309     return emitConstant(Constant, E);
1310   } else {
1311     llvm::APSInt Value;
1312     if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1313       CGF.EmitIgnoredExpr(E->getBase());
1314       return Builder.getInt(Value);
1315     }
1316   }
1317 
1318   return EmitLoadOfLValue(E);
1319 }
1320 
1321 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1322   TestAndClearIgnoreResultAssign();
1323 
1324   // Emit subscript expressions in rvalue context's.  For most cases, this just
1325   // loads the lvalue formed by the subscript expr.  However, we have to be
1326   // careful, because the base of a vector subscript is occasionally an rvalue,
1327   // so we can't get it as an lvalue.
1328   if (!E->getBase()->getType()->isVectorType())
1329     return EmitLoadOfLValue(E);
1330 
1331   // Handle the vector case.  The base must be a vector, the index must be an
1332   // integer value.
1333   Value *Base = Visit(E->getBase());
1334   Value *Idx  = Visit(E->getIdx());
1335   QualType IdxTy = E->getIdx()->getType();
1336 
1337   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1338     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1339 
1340   return Builder.CreateExtractElement(Base, Idx, "vecext");
1341 }
1342 
1343 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1344                                   unsigned Off, llvm::Type *I32Ty) {
1345   int MV = SVI->getMaskValue(Idx);
1346   if (MV == -1)
1347     return llvm::UndefValue::get(I32Ty);
1348   return llvm::ConstantInt::get(I32Ty, Off+MV);
1349 }
1350 
1351 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1352   if (C->getBitWidth() != 32) {
1353       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1354                                                     C->getZExtValue()) &&
1355              "Index operand too large for shufflevector mask!");
1356       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1357   }
1358   return C;
1359 }
1360 
1361 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1362   bool Ignore = TestAndClearIgnoreResultAssign();
1363   (void)Ignore;
1364   assert (Ignore == false && "init list ignored");
1365   unsigned NumInitElements = E->getNumInits();
1366 
1367   if (E->hadArrayRangeDesignator())
1368     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1369 
1370   llvm::VectorType *VType =
1371     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1372 
1373   if (!VType) {
1374     if (NumInitElements == 0) {
1375       // C++11 value-initialization for the scalar.
1376       return EmitNullValue(E->getType());
1377     }
1378     // We have a scalar in braces. Just use the first element.
1379     return Visit(E->getInit(0));
1380   }
1381 
1382   unsigned ResElts = VType->getNumElements();
1383 
1384   // Loop over initializers collecting the Value for each, and remembering
1385   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1386   // us to fold the shuffle for the swizzle into the shuffle for the vector
1387   // initializer, since LLVM optimizers generally do not want to touch
1388   // shuffles.
1389   unsigned CurIdx = 0;
1390   bool VIsUndefShuffle = false;
1391   llvm::Value *V = llvm::UndefValue::get(VType);
1392   for (unsigned i = 0; i != NumInitElements; ++i) {
1393     Expr *IE = E->getInit(i);
1394     Value *Init = Visit(IE);
1395     SmallVector<llvm::Constant*, 16> Args;
1396 
1397     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1398 
1399     // Handle scalar elements.  If the scalar initializer is actually one
1400     // element of a different vector of the same width, use shuffle instead of
1401     // extract+insert.
1402     if (!VVT) {
1403       if (isa<ExtVectorElementExpr>(IE)) {
1404         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1405 
1406         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1407           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1408           Value *LHS = nullptr, *RHS = nullptr;
1409           if (CurIdx == 0) {
1410             // insert into undef -> shuffle (src, undef)
1411             // shufflemask must use an i32
1412             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1413             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1414 
1415             LHS = EI->getVectorOperand();
1416             RHS = V;
1417             VIsUndefShuffle = true;
1418           } else if (VIsUndefShuffle) {
1419             // insert into undefshuffle && size match -> shuffle (v, src)
1420             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1421             for (unsigned j = 0; j != CurIdx; ++j)
1422               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1423             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1424             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1425 
1426             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1427             RHS = EI->getVectorOperand();
1428             VIsUndefShuffle = false;
1429           }
1430           if (!Args.empty()) {
1431             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1432             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1433             ++CurIdx;
1434             continue;
1435           }
1436         }
1437       }
1438       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1439                                       "vecinit");
1440       VIsUndefShuffle = false;
1441       ++CurIdx;
1442       continue;
1443     }
1444 
1445     unsigned InitElts = VVT->getNumElements();
1446 
1447     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1448     // input is the same width as the vector being constructed, generate an
1449     // optimized shuffle of the swizzle input into the result.
1450     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1451     if (isa<ExtVectorElementExpr>(IE)) {
1452       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1453       Value *SVOp = SVI->getOperand(0);
1454       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1455 
1456       if (OpTy->getNumElements() == ResElts) {
1457         for (unsigned j = 0; j != CurIdx; ++j) {
1458           // If the current vector initializer is a shuffle with undef, merge
1459           // this shuffle directly into it.
1460           if (VIsUndefShuffle) {
1461             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1462                                       CGF.Int32Ty));
1463           } else {
1464             Args.push_back(Builder.getInt32(j));
1465           }
1466         }
1467         for (unsigned j = 0, je = InitElts; j != je; ++j)
1468           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1469         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1470 
1471         if (VIsUndefShuffle)
1472           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1473 
1474         Init = SVOp;
1475       }
1476     }
1477 
1478     // Extend init to result vector length, and then shuffle its contribution
1479     // to the vector initializer into V.
1480     if (Args.empty()) {
1481       for (unsigned j = 0; j != InitElts; ++j)
1482         Args.push_back(Builder.getInt32(j));
1483       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1484       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1485       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1486                                          Mask, "vext");
1487 
1488       Args.clear();
1489       for (unsigned j = 0; j != CurIdx; ++j)
1490         Args.push_back(Builder.getInt32(j));
1491       for (unsigned j = 0; j != InitElts; ++j)
1492         Args.push_back(Builder.getInt32(j+Offset));
1493       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1494     }
1495 
1496     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1497     // merging subsequent shuffles into this one.
1498     if (CurIdx == 0)
1499       std::swap(V, Init);
1500     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1501     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1502     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1503     CurIdx += InitElts;
1504   }
1505 
1506   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1507   // Emit remaining default initializers.
1508   llvm::Type *EltTy = VType->getElementType();
1509 
1510   // Emit remaining default initializers
1511   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1512     Value *Idx = Builder.getInt32(CurIdx);
1513     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1514     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1515   }
1516   return V;
1517 }
1518 
1519 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1520   const Expr *E = CE->getSubExpr();
1521 
1522   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1523     return false;
1524 
1525   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1526     // We always assume that 'this' is never null.
1527     return false;
1528   }
1529 
1530   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1531     // And that glvalue casts are never null.
1532     if (ICE->getValueKind() != VK_RValue)
1533       return false;
1534   }
1535 
1536   return true;
1537 }
1538 
1539 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1540 // have to handle a more broad range of conversions than explicit casts, as they
1541 // handle things like function to ptr-to-function decay etc.
1542 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1543   Expr *E = CE->getSubExpr();
1544   QualType DestTy = CE->getType();
1545   CastKind Kind = CE->getCastKind();
1546 
1547   // These cases are generally not written to ignore the result of
1548   // evaluating their sub-expressions, so we clear this now.
1549   bool Ignored = TestAndClearIgnoreResultAssign();
1550 
1551   // Since almost all cast kinds apply to scalars, this switch doesn't have
1552   // a default case, so the compiler will warn on a missing case.  The cases
1553   // are in the same order as in the CastKind enum.
1554   switch (Kind) {
1555   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1556   case CK_BuiltinFnToFnPtr:
1557     llvm_unreachable("builtin functions are handled elsewhere");
1558 
1559   case CK_LValueBitCast:
1560   case CK_ObjCObjectLValueCast: {
1561     Address Addr = EmitLValue(E).getAddress();
1562     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1563     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1564     return EmitLoadOfLValue(LV, CE->getExprLoc());
1565   }
1566 
1567   case CK_CPointerToObjCPointerCast:
1568   case CK_BlockPointerToObjCPointerCast:
1569   case CK_AnyPointerToBlockPointerCast:
1570   case CK_BitCast: {
1571     Value *Src = Visit(const_cast<Expr*>(E));
1572     llvm::Type *SrcTy = Src->getType();
1573     llvm::Type *DstTy = ConvertType(DestTy);
1574     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1575         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1576       llvm_unreachable("wrong cast for pointers in different address spaces"
1577                        "(must be an address space cast)!");
1578     }
1579 
1580     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1581       if (auto PT = DestTy->getAs<PointerType>())
1582         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1583                                       /*MayBeNull=*/true,
1584                                       CodeGenFunction::CFITCK_UnrelatedCast,
1585                                       CE->getLocStart());
1586     }
1587 
1588     return Builder.CreateBitCast(Src, DstTy);
1589   }
1590   case CK_AddressSpaceConversion: {
1591     Expr::EvalResult Result;
1592     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
1593         Result.Val.isNullPointer()) {
1594       // If E has side effect, it is emitted even if its final result is a
1595       // null pointer. In that case, a DCE pass should be able to
1596       // eliminate the useless instructions emitted during translating E.
1597       if (Result.HasSideEffects)
1598         Visit(E);
1599       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
1600           ConvertType(DestTy)), DestTy);
1601     }
1602     // Since target may map different address spaces in AST to the same address
1603     // space, an address space conversion may end up as a bitcast.
1604     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
1605         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
1606         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
1607   }
1608   case CK_AtomicToNonAtomic:
1609   case CK_NonAtomicToAtomic:
1610   case CK_NoOp:
1611   case CK_UserDefinedConversion:
1612     return Visit(const_cast<Expr*>(E));
1613 
1614   case CK_BaseToDerived: {
1615     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1616     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1617 
1618     Address Base = CGF.EmitPointerWithAlignment(E);
1619     Address Derived =
1620       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
1621                                    CE->path_begin(), CE->path_end(),
1622                                    CGF.ShouldNullCheckClassCastValue(CE));
1623 
1624     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1625     // performed and the object is not of the derived type.
1626     if (CGF.sanitizePerformTypeCheck())
1627       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1628                         Derived.getPointer(), DestTy->getPointeeType());
1629 
1630     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1631       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
1632                                     Derived.getPointer(),
1633                                     /*MayBeNull=*/true,
1634                                     CodeGenFunction::CFITCK_DerivedCast,
1635                                     CE->getLocStart());
1636 
1637     return Derived.getPointer();
1638   }
1639   case CK_UncheckedDerivedToBase:
1640   case CK_DerivedToBase: {
1641     // The EmitPointerWithAlignment path does this fine; just discard
1642     // the alignment.
1643     return CGF.EmitPointerWithAlignment(CE).getPointer();
1644   }
1645 
1646   case CK_Dynamic: {
1647     Address V = CGF.EmitPointerWithAlignment(E);
1648     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1649     return CGF.EmitDynamicCast(V, DCE);
1650   }
1651 
1652   case CK_ArrayToPointerDecay:
1653     return CGF.EmitArrayToPointerDecay(E).getPointer();
1654   case CK_FunctionToPointerDecay:
1655     return EmitLValue(E).getPointer();
1656 
1657   case CK_NullToPointer:
1658     if (MustVisitNullValue(E))
1659       (void) Visit(E);
1660 
1661     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
1662                               DestTy);
1663 
1664   case CK_NullToMemberPointer: {
1665     if (MustVisitNullValue(E))
1666       (void) Visit(E);
1667 
1668     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1669     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1670   }
1671 
1672   case CK_ReinterpretMemberPointer:
1673   case CK_BaseToDerivedMemberPointer:
1674   case CK_DerivedToBaseMemberPointer: {
1675     Value *Src = Visit(E);
1676 
1677     // Note that the AST doesn't distinguish between checked and
1678     // unchecked member pointer conversions, so we always have to
1679     // implement checked conversions here.  This is inefficient when
1680     // actual control flow may be required in order to perform the
1681     // check, which it is for data member pointers (but not member
1682     // function pointers on Itanium and ARM).
1683     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1684   }
1685 
1686   case CK_ARCProduceObject:
1687     return CGF.EmitARCRetainScalarExpr(E);
1688   case CK_ARCConsumeObject:
1689     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1690   case CK_ARCReclaimReturnedObject:
1691     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
1692   case CK_ARCExtendBlockObject:
1693     return CGF.EmitARCExtendBlockObject(E);
1694 
1695   case CK_CopyAndAutoreleaseBlockObject:
1696     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1697 
1698   case CK_FloatingRealToComplex:
1699   case CK_FloatingComplexCast:
1700   case CK_IntegralRealToComplex:
1701   case CK_IntegralComplexCast:
1702   case CK_IntegralComplexToFloatingComplex:
1703   case CK_FloatingComplexToIntegralComplex:
1704   case CK_ConstructorConversion:
1705   case CK_ToUnion:
1706     llvm_unreachable("scalar cast to non-scalar value");
1707 
1708   case CK_LValueToRValue:
1709     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1710     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1711     return Visit(const_cast<Expr*>(E));
1712 
1713   case CK_IntegralToPointer: {
1714     Value *Src = Visit(const_cast<Expr*>(E));
1715 
1716     // First, convert to the correct width so that we control the kind of
1717     // extension.
1718     auto DestLLVMTy = ConvertType(DestTy);
1719     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
1720     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1721     llvm::Value* IntResult =
1722       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1723 
1724     return Builder.CreateIntToPtr(IntResult, DestLLVMTy);
1725   }
1726   case CK_PointerToIntegral:
1727     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1728     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1729 
1730   case CK_ToVoid: {
1731     CGF.EmitIgnoredExpr(E);
1732     return nullptr;
1733   }
1734   case CK_VectorSplat: {
1735     llvm::Type *DstTy = ConvertType(DestTy);
1736     Value *Elt = Visit(const_cast<Expr*>(E));
1737     // Splat the element across to all elements
1738     unsigned NumElements = DstTy->getVectorNumElements();
1739     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1740   }
1741 
1742   case CK_IntegralCast:
1743   case CK_IntegralToFloating:
1744   case CK_FloatingToIntegral:
1745   case CK_FloatingCast:
1746     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1747                                 CE->getExprLoc());
1748   case CK_BooleanToSignedIntegral:
1749     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1750                                 CE->getExprLoc(),
1751                                 /*TreatBooleanAsSigned=*/true);
1752   case CK_IntegralToBoolean:
1753     return EmitIntToBoolConversion(Visit(E));
1754   case CK_PointerToBoolean:
1755     return EmitPointerToBoolConversion(Visit(E), E->getType());
1756   case CK_FloatingToBoolean:
1757     return EmitFloatToBoolConversion(Visit(E));
1758   case CK_MemberPointerToBoolean: {
1759     llvm::Value *MemPtr = Visit(E);
1760     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1761     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1762   }
1763 
1764   case CK_FloatingComplexToReal:
1765   case CK_IntegralComplexToReal:
1766     return CGF.EmitComplexExpr(E, false, true).first;
1767 
1768   case CK_FloatingComplexToBoolean:
1769   case CK_IntegralComplexToBoolean: {
1770     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1771 
1772     // TODO: kill this function off, inline appropriate case here
1773     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
1774                                          CE->getExprLoc());
1775   }
1776 
1777   case CK_ZeroToOCLEvent: {
1778     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1779     return llvm::Constant::getNullValue(ConvertType(DestTy));
1780   }
1781 
1782   case CK_ZeroToOCLQueue: {
1783     assert(DestTy->isQueueT() && "CK_ZeroToOCLQueue cast on non queue_t type");
1784     return llvm::Constant::getNullValue(ConvertType(DestTy));
1785   }
1786 
1787   case CK_IntToOCLSampler:
1788     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
1789 
1790   } // end of switch
1791 
1792   llvm_unreachable("unknown scalar cast");
1793 }
1794 
1795 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1796   CodeGenFunction::StmtExprEvaluation eval(CGF);
1797   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1798                                            !E->getType()->isVoidType());
1799   if (!RetAlloca.isValid())
1800     return nullptr;
1801   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1802                               E->getExprLoc());
1803 }
1804 
1805 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1806   CGF.enterFullExpression(E);
1807   CodeGenFunction::RunCleanupsScope Scope(CGF);
1808   Value *V = Visit(E->getSubExpr());
1809   // Defend against dominance problems caused by jumps out of expression
1810   // evaluation through the shared cleanup block.
1811   Scope.ForceCleanup({&V});
1812   return V;
1813 }
1814 
1815 //===----------------------------------------------------------------------===//
1816 //                             Unary Operators
1817 //===----------------------------------------------------------------------===//
1818 
1819 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1820                                            llvm::Value *InVal, bool IsInc) {
1821   BinOpInfo BinOp;
1822   BinOp.LHS = InVal;
1823   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1824   BinOp.Ty = E->getType();
1825   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1826   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
1827   BinOp.E = E;
1828   return BinOp;
1829 }
1830 
1831 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1832     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1833   llvm::Value *Amount =
1834       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1835   StringRef Name = IsInc ? "inc" : "dec";
1836   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1837   case LangOptions::SOB_Defined:
1838     return Builder.CreateAdd(InVal, Amount, Name);
1839   case LangOptions::SOB_Undefined:
1840     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1841       return Builder.CreateNSWAdd(InVal, Amount, Name);
1842     // Fall through.
1843   case LangOptions::SOB_Trapping:
1844     if (IsWidenedIntegerOp(CGF.getContext(), E->getSubExpr()))
1845       return Builder.CreateNSWAdd(InVal, Amount, Name);
1846     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1847   }
1848   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1849 }
1850 
1851 llvm::Value *
1852 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1853                                            bool isInc, bool isPre) {
1854 
1855   QualType type = E->getSubExpr()->getType();
1856   llvm::PHINode *atomicPHI = nullptr;
1857   llvm::Value *value;
1858   llvm::Value *input;
1859 
1860   int amount = (isInc ? 1 : -1);
1861   bool isSubtraction = !isInc;
1862 
1863   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1864     type = atomicTy->getValueType();
1865     if (isInc && type->isBooleanType()) {
1866       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1867       if (isPre) {
1868         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
1869           ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
1870         return Builder.getTrue();
1871       }
1872       // For atomic bool increment, we just store true and return it for
1873       // preincrement, do an atomic swap with true for postincrement
1874       return Builder.CreateAtomicRMW(
1875           llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
1876           llvm::AtomicOrdering::SequentiallyConsistent);
1877     }
1878     // Special case for atomic increment / decrement on integers, emit
1879     // atomicrmw instructions.  We skip this if we want to be doing overflow
1880     // checking, and fall into the slow path with the atomic cmpxchg loop.
1881     if (!type->isBooleanType() && type->isIntegerType() &&
1882         !(type->isUnsignedIntegerType() &&
1883           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1884         CGF.getLangOpts().getSignedOverflowBehavior() !=
1885             LangOptions::SOB_Trapping) {
1886       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1887         llvm::AtomicRMWInst::Sub;
1888       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1889         llvm::Instruction::Sub;
1890       llvm::Value *amt = CGF.EmitToMemory(
1891           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1892       llvm::Value *old = Builder.CreateAtomicRMW(aop,
1893           LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
1894       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1895     }
1896     value = EmitLoadOfLValue(LV, E->getExprLoc());
1897     input = value;
1898     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1899     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1900     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1901     value = CGF.EmitToMemory(value, type);
1902     Builder.CreateBr(opBB);
1903     Builder.SetInsertPoint(opBB);
1904     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1905     atomicPHI->addIncoming(value, startBB);
1906     value = atomicPHI;
1907   } else {
1908     value = EmitLoadOfLValue(LV, E->getExprLoc());
1909     input = value;
1910   }
1911 
1912   // Special case of integer increment that we have to check first: bool++.
1913   // Due to promotion rules, we get:
1914   //   bool++ -> bool = bool + 1
1915   //          -> bool = (int)bool + 1
1916   //          -> bool = ((int)bool + 1 != 0)
1917   // An interesting aspect of this is that increment is always true.
1918   // Decrement does not have this property.
1919   if (isInc && type->isBooleanType()) {
1920     value = Builder.getTrue();
1921 
1922   // Most common case by far: integer increment.
1923   } else if (type->isIntegerType()) {
1924     // Note that signed integer inc/dec with width less than int can't
1925     // overflow because of promotion rules; we're just eliding a few steps here.
1926     bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1927                        CGF.IntTy->getIntegerBitWidth();
1928     if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1929       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1930     } else if (CanOverflow && type->isUnsignedIntegerType() &&
1931                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1932       value =
1933           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1934     } else {
1935       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1936       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1937     }
1938 
1939   // Next most common: pointer increment.
1940   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1941     QualType type = ptr->getPointeeType();
1942 
1943     // VLA types don't have constant size.
1944     if (const VariableArrayType *vla
1945           = CGF.getContext().getAsVariableArrayType(type)) {
1946       llvm::Value *numElts = CGF.getVLASize(vla).first;
1947       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1948       if (CGF.getLangOpts().isSignedOverflowDefined())
1949         value = Builder.CreateGEP(value, numElts, "vla.inc");
1950       else
1951         value = CGF.EmitCheckedInBoundsGEP(
1952             value, numElts, /*SignedIndices=*/false, isSubtraction,
1953             E->getExprLoc(), "vla.inc");
1954 
1955     // Arithmetic on function pointers (!) is just +-1.
1956     } else if (type->isFunctionType()) {
1957       llvm::Value *amt = Builder.getInt32(amount);
1958 
1959       value = CGF.EmitCastToVoidPtr(value);
1960       if (CGF.getLangOpts().isSignedOverflowDefined())
1961         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1962       else
1963         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
1964                                            isSubtraction, E->getExprLoc(),
1965                                            "incdec.funcptr");
1966       value = Builder.CreateBitCast(value, input->getType());
1967 
1968     // For everything else, we can just do a simple increment.
1969     } else {
1970       llvm::Value *amt = Builder.getInt32(amount);
1971       if (CGF.getLangOpts().isSignedOverflowDefined())
1972         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1973       else
1974         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
1975                                            isSubtraction, E->getExprLoc(),
1976                                            "incdec.ptr");
1977     }
1978 
1979   // Vector increment/decrement.
1980   } else if (type->isVectorType()) {
1981     if (type->hasIntegerRepresentation()) {
1982       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1983 
1984       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1985     } else {
1986       value = Builder.CreateFAdd(
1987                   value,
1988                   llvm::ConstantFP::get(value->getType(), amount),
1989                   isInc ? "inc" : "dec");
1990     }
1991 
1992   // Floating point.
1993   } else if (type->isRealFloatingType()) {
1994     // Add the inc/dec to the real part.
1995     llvm::Value *amt;
1996 
1997     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1998       // Another special case: half FP increment should be done via float
1999       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
2000         value = Builder.CreateCall(
2001             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2002                                  CGF.CGM.FloatTy),
2003             input, "incdec.conv");
2004       } else {
2005         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2006       }
2007     }
2008 
2009     if (value->getType()->isFloatTy())
2010       amt = llvm::ConstantFP::get(VMContext,
2011                                   llvm::APFloat(static_cast<float>(amount)));
2012     else if (value->getType()->isDoubleTy())
2013       amt = llvm::ConstantFP::get(VMContext,
2014                                   llvm::APFloat(static_cast<double>(amount)));
2015     else {
2016       // Remaining types are Half, LongDouble or __float128. Convert from float.
2017       llvm::APFloat F(static_cast<float>(amount));
2018       bool ignored;
2019       const llvm::fltSemantics *FS;
2020       // Don't use getFloatTypeSemantics because Half isn't
2021       // necessarily represented using the "half" LLVM type.
2022       if (value->getType()->isFP128Ty())
2023         FS = &CGF.getTarget().getFloat128Format();
2024       else if (value->getType()->isHalfTy())
2025         FS = &CGF.getTarget().getHalfFormat();
2026       else
2027         FS = &CGF.getTarget().getLongDoubleFormat();
2028       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2029       amt = llvm::ConstantFP::get(VMContext, F);
2030     }
2031     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2032 
2033     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2034       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
2035         value = Builder.CreateCall(
2036             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2037                                  CGF.CGM.FloatTy),
2038             value, "incdec.conv");
2039       } else {
2040         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2041       }
2042     }
2043 
2044   // Objective-C pointer types.
2045   } else {
2046     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2047     value = CGF.EmitCastToVoidPtr(value);
2048 
2049     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2050     if (!isInc) size = -size;
2051     llvm::Value *sizeValue =
2052       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2053 
2054     if (CGF.getLangOpts().isSignedOverflowDefined())
2055       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2056     else
2057       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2058                                          /*SignedIndices=*/false, isSubtraction,
2059                                          E->getExprLoc(), "incdec.objptr");
2060     value = Builder.CreateBitCast(value, input->getType());
2061   }
2062 
2063   if (atomicPHI) {
2064     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2065     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2066     auto Pair = CGF.EmitAtomicCompareExchange(
2067         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2068     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2069     llvm::Value *success = Pair.second;
2070     atomicPHI->addIncoming(old, opBB);
2071     Builder.CreateCondBr(success, contBB, opBB);
2072     Builder.SetInsertPoint(contBB);
2073     return isPre ? value : input;
2074   }
2075 
2076   // Store the updated result through the lvalue.
2077   if (LV.isBitField())
2078     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2079   else
2080     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2081 
2082   // If this is a postinc, return the value read from memory, otherwise use the
2083   // updated value.
2084   return isPre ? value : input;
2085 }
2086 
2087 
2088 
2089 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2090   TestAndClearIgnoreResultAssign();
2091   // Emit unary minus with EmitSub so we handle overflow cases etc.
2092   BinOpInfo BinOp;
2093   BinOp.RHS = Visit(E->getSubExpr());
2094 
2095   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
2096     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
2097   else
2098     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2099   BinOp.Ty = E->getType();
2100   BinOp.Opcode = BO_Sub;
2101   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2102   BinOp.E = E;
2103   return EmitSub(BinOp);
2104 }
2105 
2106 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2107   TestAndClearIgnoreResultAssign();
2108   Value *Op = Visit(E->getSubExpr());
2109   return Builder.CreateNot(Op, "neg");
2110 }
2111 
2112 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2113   // Perform vector logical not on comparison with zero vector.
2114   if (E->getType()->isExtVectorType()) {
2115     Value *Oper = Visit(E->getSubExpr());
2116     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2117     Value *Result;
2118     if (Oper->getType()->isFPOrFPVectorTy())
2119       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2120     else
2121       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2122     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2123   }
2124 
2125   // Compare operand to zero.
2126   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2127 
2128   // Invert value.
2129   // TODO: Could dynamically modify easy computations here.  For example, if
2130   // the operand is an icmp ne, turn into icmp eq.
2131   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2132 
2133   // ZExt result to the expr type.
2134   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2135 }
2136 
2137 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2138   // Try folding the offsetof to a constant.
2139   llvm::APSInt Value;
2140   if (E->EvaluateAsInt(Value, CGF.getContext()))
2141     return Builder.getInt(Value);
2142 
2143   // Loop over the components of the offsetof to compute the value.
2144   unsigned n = E->getNumComponents();
2145   llvm::Type* ResultType = ConvertType(E->getType());
2146   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2147   QualType CurrentType = E->getTypeSourceInfo()->getType();
2148   for (unsigned i = 0; i != n; ++i) {
2149     OffsetOfNode ON = E->getComponent(i);
2150     llvm::Value *Offset = nullptr;
2151     switch (ON.getKind()) {
2152     case OffsetOfNode::Array: {
2153       // Compute the index
2154       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2155       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2156       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2157       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2158 
2159       // Save the element type
2160       CurrentType =
2161           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2162 
2163       // Compute the element size
2164       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2165           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2166 
2167       // Multiply out to compute the result
2168       Offset = Builder.CreateMul(Idx, ElemSize);
2169       break;
2170     }
2171 
2172     case OffsetOfNode::Field: {
2173       FieldDecl *MemberDecl = ON.getField();
2174       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2175       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2176 
2177       // Compute the index of the field in its parent.
2178       unsigned i = 0;
2179       // FIXME: It would be nice if we didn't have to loop here!
2180       for (RecordDecl::field_iterator Field = RD->field_begin(),
2181                                       FieldEnd = RD->field_end();
2182            Field != FieldEnd; ++Field, ++i) {
2183         if (*Field == MemberDecl)
2184           break;
2185       }
2186       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2187 
2188       // Compute the offset to the field
2189       int64_t OffsetInt = RL.getFieldOffset(i) /
2190                           CGF.getContext().getCharWidth();
2191       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2192 
2193       // Save the element type.
2194       CurrentType = MemberDecl->getType();
2195       break;
2196     }
2197 
2198     case OffsetOfNode::Identifier:
2199       llvm_unreachable("dependent __builtin_offsetof");
2200 
2201     case OffsetOfNode::Base: {
2202       if (ON.getBase()->isVirtual()) {
2203         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2204         continue;
2205       }
2206 
2207       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2208       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2209 
2210       // Save the element type.
2211       CurrentType = ON.getBase()->getType();
2212 
2213       // Compute the offset to the base.
2214       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2215       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2216       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2217       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2218       break;
2219     }
2220     }
2221     Result = Builder.CreateAdd(Result, Offset);
2222   }
2223   return Result;
2224 }
2225 
2226 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2227 /// argument of the sizeof expression as an integer.
2228 Value *
2229 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2230                               const UnaryExprOrTypeTraitExpr *E) {
2231   QualType TypeToSize = E->getTypeOfArgument();
2232   if (E->getKind() == UETT_SizeOf) {
2233     if (const VariableArrayType *VAT =
2234           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2235       if (E->isArgumentType()) {
2236         // sizeof(type) - make sure to emit the VLA size.
2237         CGF.EmitVariablyModifiedType(TypeToSize);
2238       } else {
2239         // C99 6.5.3.4p2: If the argument is an expression of type
2240         // VLA, it is evaluated.
2241         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2242       }
2243 
2244       QualType eltType;
2245       llvm::Value *numElts;
2246       std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2247 
2248       llvm::Value *size = numElts;
2249 
2250       // Scale the number of non-VLA elements by the non-VLA element size.
2251       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2252       if (!eltSize.isOne())
2253         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2254 
2255       return size;
2256     }
2257   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2258     auto Alignment =
2259         CGF.getContext()
2260             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2261                 E->getTypeOfArgument()->getPointeeType()))
2262             .getQuantity();
2263     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2264   }
2265 
2266   // If this isn't sizeof(vla), the result must be constant; use the constant
2267   // folding logic so we don't have to duplicate it here.
2268   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2269 }
2270 
2271 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2272   Expr *Op = E->getSubExpr();
2273   if (Op->getType()->isAnyComplexType()) {
2274     // If it's an l-value, load through the appropriate subobject l-value.
2275     // Note that we have to ask E because Op might be an l-value that
2276     // this won't work for, e.g. an Obj-C property.
2277     if (E->isGLValue())
2278       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2279                                   E->getExprLoc()).getScalarVal();
2280 
2281     // Otherwise, calculate and project.
2282     return CGF.EmitComplexExpr(Op, false, true).first;
2283   }
2284 
2285   return Visit(Op);
2286 }
2287 
2288 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2289   Expr *Op = E->getSubExpr();
2290   if (Op->getType()->isAnyComplexType()) {
2291     // If it's an l-value, load through the appropriate subobject l-value.
2292     // Note that we have to ask E because Op might be an l-value that
2293     // this won't work for, e.g. an Obj-C property.
2294     if (Op->isGLValue())
2295       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2296                                   E->getExprLoc()).getScalarVal();
2297 
2298     // Otherwise, calculate and project.
2299     return CGF.EmitComplexExpr(Op, true, false).second;
2300   }
2301 
2302   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2303   // effects are evaluated, but not the actual value.
2304   if (Op->isGLValue())
2305     CGF.EmitLValue(Op);
2306   else
2307     CGF.EmitScalarExpr(Op, true);
2308   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2309 }
2310 
2311 //===----------------------------------------------------------------------===//
2312 //                           Binary Operators
2313 //===----------------------------------------------------------------------===//
2314 
2315 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2316   TestAndClearIgnoreResultAssign();
2317   BinOpInfo Result;
2318   Result.LHS = Visit(E->getLHS());
2319   Result.RHS = Visit(E->getRHS());
2320   Result.Ty  = E->getType();
2321   Result.Opcode = E->getOpcode();
2322   Result.FPFeatures = E->getFPFeatures();
2323   Result.E = E;
2324   return Result;
2325 }
2326 
2327 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2328                                               const CompoundAssignOperator *E,
2329                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2330                                                    Value *&Result) {
2331   QualType LHSTy = E->getLHS()->getType();
2332   BinOpInfo OpInfo;
2333 
2334   if (E->getComputationResultType()->isAnyComplexType())
2335     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2336 
2337   // Emit the RHS first.  __block variables need to have the rhs evaluated
2338   // first, plus this should improve codegen a little.
2339   OpInfo.RHS = Visit(E->getRHS());
2340   OpInfo.Ty = E->getComputationResultType();
2341   OpInfo.Opcode = E->getOpcode();
2342   OpInfo.FPFeatures = E->getFPFeatures();
2343   OpInfo.E = E;
2344   // Load/convert the LHS.
2345   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2346 
2347   llvm::PHINode *atomicPHI = nullptr;
2348   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2349     QualType type = atomicTy->getValueType();
2350     if (!type->isBooleanType() && type->isIntegerType() &&
2351         !(type->isUnsignedIntegerType() &&
2352           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2353         CGF.getLangOpts().getSignedOverflowBehavior() !=
2354             LangOptions::SOB_Trapping) {
2355       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2356       switch (OpInfo.Opcode) {
2357         // We don't have atomicrmw operands for *, %, /, <<, >>
2358         case BO_MulAssign: case BO_DivAssign:
2359         case BO_RemAssign:
2360         case BO_ShlAssign:
2361         case BO_ShrAssign:
2362           break;
2363         case BO_AddAssign:
2364           aop = llvm::AtomicRMWInst::Add;
2365           break;
2366         case BO_SubAssign:
2367           aop = llvm::AtomicRMWInst::Sub;
2368           break;
2369         case BO_AndAssign:
2370           aop = llvm::AtomicRMWInst::And;
2371           break;
2372         case BO_XorAssign:
2373           aop = llvm::AtomicRMWInst::Xor;
2374           break;
2375         case BO_OrAssign:
2376           aop = llvm::AtomicRMWInst::Or;
2377           break;
2378         default:
2379           llvm_unreachable("Invalid compound assignment type");
2380       }
2381       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2382         llvm::Value *amt = CGF.EmitToMemory(
2383             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2384                                  E->getExprLoc()),
2385             LHSTy);
2386         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2387             llvm::AtomicOrdering::SequentiallyConsistent);
2388         return LHSLV;
2389       }
2390     }
2391     // FIXME: For floating point types, we should be saving and restoring the
2392     // floating point environment in the loop.
2393     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2394     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2395     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2396     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2397     Builder.CreateBr(opBB);
2398     Builder.SetInsertPoint(opBB);
2399     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2400     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2401     OpInfo.LHS = atomicPHI;
2402   }
2403   else
2404     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2405 
2406   SourceLocation Loc = E->getExprLoc();
2407   OpInfo.LHS =
2408       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2409 
2410   // Expand the binary operator.
2411   Result = (this->*Func)(OpInfo);
2412 
2413   // Convert the result back to the LHS type.
2414   Result =
2415       EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2416 
2417   if (atomicPHI) {
2418     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2419     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2420     auto Pair = CGF.EmitAtomicCompareExchange(
2421         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2422     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2423     llvm::Value *success = Pair.second;
2424     atomicPHI->addIncoming(old, opBB);
2425     Builder.CreateCondBr(success, contBB, opBB);
2426     Builder.SetInsertPoint(contBB);
2427     return LHSLV;
2428   }
2429 
2430   // Store the result value into the LHS lvalue. Bit-fields are handled
2431   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2432   // 'An assignment expression has the value of the left operand after the
2433   // assignment...'.
2434   if (LHSLV.isBitField())
2435     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2436   else
2437     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2438 
2439   return LHSLV;
2440 }
2441 
2442 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2443                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2444   bool Ignore = TestAndClearIgnoreResultAssign();
2445   Value *RHS;
2446   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2447 
2448   // If the result is clearly ignored, return now.
2449   if (Ignore)
2450     return nullptr;
2451 
2452   // The result of an assignment in C is the assigned r-value.
2453   if (!CGF.getLangOpts().CPlusPlus)
2454     return RHS;
2455 
2456   // If the lvalue is non-volatile, return the computed value of the assignment.
2457   if (!LHS.isVolatileQualified())
2458     return RHS;
2459 
2460   // Otherwise, reload the value.
2461   return EmitLoadOfLValue(LHS, E->getExprLoc());
2462 }
2463 
2464 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2465     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2466   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2467 
2468   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2469     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2470                                     SanitizerKind::IntegerDivideByZero));
2471   }
2472 
2473   const auto *BO = cast<BinaryOperator>(Ops.E);
2474   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2475       Ops.Ty->hasSignedIntegerRepresentation() &&
2476       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
2477       Ops.mayHaveIntegerOverflow()) {
2478     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2479 
2480     llvm::Value *IntMin =
2481       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2482     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2483 
2484     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2485     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2486     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2487     Checks.push_back(
2488         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2489   }
2490 
2491   if (Checks.size() > 0)
2492     EmitBinOpCheck(Checks, Ops);
2493 }
2494 
2495 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2496   {
2497     CodeGenFunction::SanitizerScope SanScope(&CGF);
2498     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2499          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2500         Ops.Ty->isIntegerType() &&
2501         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
2502       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2503       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2504     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2505                Ops.Ty->isRealFloatingType() &&
2506                Ops.mayHaveFloatDivisionByZero()) {
2507       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2508       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2509       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2510                      Ops);
2511     }
2512   }
2513 
2514   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2515     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2516     if (CGF.getLangOpts().OpenCL &&
2517         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
2518       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
2519       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
2520       // build option allows an application to specify that single precision
2521       // floating-point divide (x/y and 1/x) and sqrt used in the program
2522       // source are correctly rounded.
2523       llvm::Type *ValTy = Val->getType();
2524       if (ValTy->isFloatTy() ||
2525           (isa<llvm::VectorType>(ValTy) &&
2526            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2527         CGF.SetFPAccuracy(Val, 2.5);
2528     }
2529     return Val;
2530   }
2531   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2532     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2533   else
2534     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2535 }
2536 
2537 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2538   // Rem in C can't be a floating point type: C99 6.5.5p2.
2539   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2540        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2541       Ops.Ty->isIntegerType() &&
2542       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
2543     CodeGenFunction::SanitizerScope SanScope(&CGF);
2544     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2545     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2546   }
2547 
2548   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2549     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2550   else
2551     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2552 }
2553 
2554 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2555   unsigned IID;
2556   unsigned OpID = 0;
2557 
2558   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2559   switch (Ops.Opcode) {
2560   case BO_Add:
2561   case BO_AddAssign:
2562     OpID = 1;
2563     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2564                      llvm::Intrinsic::uadd_with_overflow;
2565     break;
2566   case BO_Sub:
2567   case BO_SubAssign:
2568     OpID = 2;
2569     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2570                      llvm::Intrinsic::usub_with_overflow;
2571     break;
2572   case BO_Mul:
2573   case BO_MulAssign:
2574     OpID = 3;
2575     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2576                      llvm::Intrinsic::umul_with_overflow;
2577     break;
2578   default:
2579     llvm_unreachable("Unsupported operation for overflow detection");
2580   }
2581   OpID <<= 1;
2582   if (isSigned)
2583     OpID |= 1;
2584 
2585   CodeGenFunction::SanitizerScope SanScope(&CGF);
2586   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2587 
2588   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2589 
2590   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2591   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2592   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2593 
2594   // Handle overflow with llvm.trap if no custom handler has been specified.
2595   const std::string *handlerName =
2596     &CGF.getLangOpts().OverflowHandler;
2597   if (handlerName->empty()) {
2598     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2599     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2600     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2601       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2602       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2603                               : SanitizerKind::UnsignedIntegerOverflow;
2604       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2605     } else
2606       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2607     return result;
2608   }
2609 
2610   // Branch in case of overflow.
2611   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2612   llvm::BasicBlock *continueBB =
2613       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
2614   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2615 
2616   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2617 
2618   // If an overflow handler is set, then we want to call it and then use its
2619   // result, if it returns.
2620   Builder.SetInsertPoint(overflowBB);
2621 
2622   // Get the overflow handler.
2623   llvm::Type *Int8Ty = CGF.Int8Ty;
2624   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2625   llvm::FunctionType *handlerTy =
2626       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2627   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2628 
2629   // Sign extend the args to 64-bit, so that we can use the same handler for
2630   // all types of overflow.
2631   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2632   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2633 
2634   // Call the handler with the two arguments, the operation, and the size of
2635   // the result.
2636   llvm::Value *handlerArgs[] = {
2637     lhs,
2638     rhs,
2639     Builder.getInt8(OpID),
2640     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2641   };
2642   llvm::Value *handlerResult =
2643     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2644 
2645   // Truncate the result back to the desired size.
2646   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2647   Builder.CreateBr(continueBB);
2648 
2649   Builder.SetInsertPoint(continueBB);
2650   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2651   phi->addIncoming(result, initialBB);
2652   phi->addIncoming(handlerResult, overflowBB);
2653 
2654   return phi;
2655 }
2656 
2657 /// Emit pointer + index arithmetic.
2658 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2659                                     const BinOpInfo &op,
2660                                     bool isSubtraction) {
2661   // Must have binary (not unary) expr here.  Unary pointer
2662   // increment/decrement doesn't use this path.
2663   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2664 
2665   Value *pointer = op.LHS;
2666   Expr *pointerOperand = expr->getLHS();
2667   Value *index = op.RHS;
2668   Expr *indexOperand = expr->getRHS();
2669 
2670   // In a subtraction, the LHS is always the pointer.
2671   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2672     std::swap(pointer, index);
2673     std::swap(pointerOperand, indexOperand);
2674   }
2675 
2676   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2677 
2678   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2679   auto &DL = CGF.CGM.getDataLayout();
2680   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
2681   if (width != DL.getTypeSizeInBits(PtrTy)) {
2682     // Zero-extend or sign-extend the pointer value according to
2683     // whether the index is signed or not.
2684     index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
2685                                       "idx.ext");
2686   }
2687 
2688   // If this is subtraction, negate the index.
2689   if (isSubtraction)
2690     index = CGF.Builder.CreateNeg(index, "idx.neg");
2691 
2692   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2693     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2694                         /*Accessed*/ false);
2695 
2696   const PointerType *pointerType
2697     = pointerOperand->getType()->getAs<PointerType>();
2698   if (!pointerType) {
2699     QualType objectType = pointerOperand->getType()
2700                                         ->castAs<ObjCObjectPointerType>()
2701                                         ->getPointeeType();
2702     llvm::Value *objectSize
2703       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2704 
2705     index = CGF.Builder.CreateMul(index, objectSize);
2706 
2707     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2708     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2709     return CGF.Builder.CreateBitCast(result, pointer->getType());
2710   }
2711 
2712   QualType elementType = pointerType->getPointeeType();
2713   if (const VariableArrayType *vla
2714         = CGF.getContext().getAsVariableArrayType(elementType)) {
2715     // The element count here is the total number of non-VLA elements.
2716     llvm::Value *numElements = CGF.getVLASize(vla).first;
2717 
2718     // Effectively, the multiply by the VLA size is part of the GEP.
2719     // GEP indexes are signed, and scaling an index isn't permitted to
2720     // signed-overflow, so we use the same semantics for our explicit
2721     // multiply.  We suppress this if overflow is not undefined behavior.
2722     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2723       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2724       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2725     } else {
2726       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2727       pointer =
2728           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
2729                                      op.E->getExprLoc(), "add.ptr");
2730     }
2731     return pointer;
2732   }
2733 
2734   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2735   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2736   // future proof.
2737   if (elementType->isVoidType() || elementType->isFunctionType()) {
2738     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2739     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2740     return CGF.Builder.CreateBitCast(result, pointer->getType());
2741   }
2742 
2743   if (CGF.getLangOpts().isSignedOverflowDefined())
2744     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2745 
2746   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
2747                                     op.E->getExprLoc(), "add.ptr");
2748 }
2749 
2750 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2751 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2752 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2753 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2754 // efficient operations.
2755 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2756                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2757                            bool negMul, bool negAdd) {
2758   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2759 
2760   Value *MulOp0 = MulOp->getOperand(0);
2761   Value *MulOp1 = MulOp->getOperand(1);
2762   if (negMul) {
2763     MulOp0 =
2764       Builder.CreateFSub(
2765         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2766         "neg");
2767   } else if (negAdd) {
2768     Addend =
2769       Builder.CreateFSub(
2770         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2771         "neg");
2772   }
2773 
2774   Value *FMulAdd = Builder.CreateCall(
2775       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2776       {MulOp0, MulOp1, Addend});
2777    MulOp->eraseFromParent();
2778 
2779    return FMulAdd;
2780 }
2781 
2782 // Check whether it would be legal to emit an fmuladd intrinsic call to
2783 // represent op and if so, build the fmuladd.
2784 //
2785 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2786 // Does NOT check the type of the operation - it's assumed that this function
2787 // will be called from contexts where it's known that the type is contractable.
2788 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2789                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2790                          bool isSub=false) {
2791 
2792   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2793           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2794          "Only fadd/fsub can be the root of an fmuladd.");
2795 
2796   // Check whether this op is marked as fusable.
2797   if (!op.FPFeatures.allowFPContractWithinStatement())
2798     return nullptr;
2799 
2800   // We have a potentially fusable op. Look for a mul on one of the operands.
2801   // Also, make sure that the mul result isn't used directly. In that case,
2802   // there's no point creating a muladd operation.
2803   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2804     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2805         LHSBinOp->use_empty())
2806       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2807   }
2808   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2809     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2810         RHSBinOp->use_empty())
2811       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2812   }
2813 
2814   return nullptr;
2815 }
2816 
2817 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2818   if (op.LHS->getType()->isPointerTy() ||
2819       op.RHS->getType()->isPointerTy())
2820     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
2821 
2822   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2823     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2824     case LangOptions::SOB_Defined:
2825       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2826     case LangOptions::SOB_Undefined:
2827       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2828         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2829       // Fall through.
2830     case LangOptions::SOB_Trapping:
2831       if (CanElideOverflowCheck(CGF.getContext(), op))
2832         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2833       return EmitOverflowCheckedBinOp(op);
2834     }
2835   }
2836 
2837   if (op.Ty->isUnsignedIntegerType() &&
2838       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
2839       !CanElideOverflowCheck(CGF.getContext(), op))
2840     return EmitOverflowCheckedBinOp(op);
2841 
2842   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2843     // Try to form an fmuladd.
2844     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2845       return FMulAdd;
2846 
2847     Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
2848     return propagateFMFlags(V, op);
2849   }
2850 
2851   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2852 }
2853 
2854 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2855   // The LHS is always a pointer if either side is.
2856   if (!op.LHS->getType()->isPointerTy()) {
2857     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2858       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2859       case LangOptions::SOB_Defined:
2860         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2861       case LangOptions::SOB_Undefined:
2862         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2863           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2864         // Fall through.
2865       case LangOptions::SOB_Trapping:
2866         if (CanElideOverflowCheck(CGF.getContext(), op))
2867           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2868         return EmitOverflowCheckedBinOp(op);
2869       }
2870     }
2871 
2872     if (op.Ty->isUnsignedIntegerType() &&
2873         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
2874         !CanElideOverflowCheck(CGF.getContext(), op))
2875       return EmitOverflowCheckedBinOp(op);
2876 
2877     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2878       // Try to form an fmuladd.
2879       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2880         return FMulAdd;
2881       Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
2882       return propagateFMFlags(V, op);
2883     }
2884 
2885     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2886   }
2887 
2888   // If the RHS is not a pointer, then we have normal pointer
2889   // arithmetic.
2890   if (!op.RHS->getType()->isPointerTy())
2891     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
2892 
2893   // Otherwise, this is a pointer subtraction.
2894 
2895   // Do the raw subtraction part.
2896   llvm::Value *LHS
2897     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2898   llvm::Value *RHS
2899     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2900   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2901 
2902   // Okay, figure out the element size.
2903   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2904   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2905 
2906   llvm::Value *divisor = nullptr;
2907 
2908   // For a variable-length array, this is going to be non-constant.
2909   if (const VariableArrayType *vla
2910         = CGF.getContext().getAsVariableArrayType(elementType)) {
2911     llvm::Value *numElements;
2912     std::tie(numElements, elementType) = CGF.getVLASize(vla);
2913 
2914     divisor = numElements;
2915 
2916     // Scale the number of non-VLA elements by the non-VLA element size.
2917     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2918     if (!eltSize.isOne())
2919       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2920 
2921   // For everything elese, we can just compute it, safe in the
2922   // assumption that Sema won't let anything through that we can't
2923   // safely compute the size of.
2924   } else {
2925     CharUnits elementSize;
2926     // Handle GCC extension for pointer arithmetic on void* and
2927     // function pointer types.
2928     if (elementType->isVoidType() || elementType->isFunctionType())
2929       elementSize = CharUnits::One();
2930     else
2931       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2932 
2933     // Don't even emit the divide for element size of 1.
2934     if (elementSize.isOne())
2935       return diffInChars;
2936 
2937     divisor = CGF.CGM.getSize(elementSize);
2938   }
2939 
2940   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2941   // pointer difference in C is only defined in the case where both operands
2942   // are pointing to elements of an array.
2943   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2944 }
2945 
2946 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2947   llvm::IntegerType *Ty;
2948   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2949     Ty = cast<llvm::IntegerType>(VT->getElementType());
2950   else
2951     Ty = cast<llvm::IntegerType>(LHS->getType());
2952   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2953 }
2954 
2955 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2956   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2957   // RHS to the same size as the LHS.
2958   Value *RHS = Ops.RHS;
2959   if (Ops.LHS->getType() != RHS->getType())
2960     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2961 
2962   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
2963                       Ops.Ty->hasSignedIntegerRepresentation() &&
2964                       !CGF.getLangOpts().isSignedOverflowDefined();
2965   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
2966   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2967   if (CGF.getLangOpts().OpenCL)
2968     RHS =
2969         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2970   else if ((SanitizeBase || SanitizeExponent) &&
2971            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2972     CodeGenFunction::SanitizerScope SanScope(&CGF);
2973     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
2974     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
2975     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
2976 
2977     if (SanitizeExponent) {
2978       Checks.push_back(
2979           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
2980     }
2981 
2982     if (SanitizeBase) {
2983       // Check whether we are shifting any non-zero bits off the top of the
2984       // integer. We only emit this check if exponent is valid - otherwise
2985       // instructions below will have undefined behavior themselves.
2986       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2987       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2988       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
2989       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
2990       llvm::Value *PromotedWidthMinusOne =
2991           (RHS == Ops.RHS) ? WidthMinusOne
2992                            : GetWidthMinusOneValue(Ops.LHS, RHS);
2993       CGF.EmitBlock(CheckShiftBase);
2994       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
2995           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
2996                                      /*NUW*/ true, /*NSW*/ true),
2997           "shl.check");
2998       if (CGF.getLangOpts().CPlusPlus) {
2999         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3000         // Under C++11's rules, shifting a 1 bit into the sign bit is
3001         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3002         // define signed left shifts, so we use the C99 and C++11 rules there).
3003         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3004         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3005       }
3006       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3007       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3008       CGF.EmitBlock(Cont);
3009       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3010       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3011       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3012       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3013     }
3014 
3015     assert(!Checks.empty());
3016     EmitBinOpCheck(Checks, Ops);
3017   }
3018 
3019   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3020 }
3021 
3022 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3023   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3024   // RHS to the same size as the LHS.
3025   Value *RHS = Ops.RHS;
3026   if (Ops.LHS->getType() != RHS->getType())
3027     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3028 
3029   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3030   if (CGF.getLangOpts().OpenCL)
3031     RHS =
3032         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
3033   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3034            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3035     CodeGenFunction::SanitizerScope SanScope(&CGF);
3036     llvm::Value *Valid =
3037         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3038     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3039   }
3040 
3041   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3042     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3043   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3044 }
3045 
3046 enum IntrinsicType { VCMPEQ, VCMPGT };
3047 // return corresponding comparison intrinsic for given vector type
3048 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3049                                         BuiltinType::Kind ElemKind) {
3050   switch (ElemKind) {
3051   default: llvm_unreachable("unexpected element type");
3052   case BuiltinType::Char_U:
3053   case BuiltinType::UChar:
3054     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3055                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3056   case BuiltinType::Char_S:
3057   case BuiltinType::SChar:
3058     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3059                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3060   case BuiltinType::UShort:
3061     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3062                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3063   case BuiltinType::Short:
3064     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3065                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3066   case BuiltinType::UInt:
3067   case BuiltinType::ULong:
3068     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3069                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3070   case BuiltinType::Int:
3071   case BuiltinType::Long:
3072     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3073                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3074   case BuiltinType::Float:
3075     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3076                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3077   }
3078 }
3079 
3080 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3081                                       llvm::CmpInst::Predicate UICmpOpc,
3082                                       llvm::CmpInst::Predicate SICmpOpc,
3083                                       llvm::CmpInst::Predicate FCmpOpc) {
3084   TestAndClearIgnoreResultAssign();
3085   Value *Result;
3086   QualType LHSTy = E->getLHS()->getType();
3087   QualType RHSTy = E->getRHS()->getType();
3088   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3089     assert(E->getOpcode() == BO_EQ ||
3090            E->getOpcode() == BO_NE);
3091     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3092     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3093     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3094                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3095   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3096     Value *LHS = Visit(E->getLHS());
3097     Value *RHS = Visit(E->getRHS());
3098 
3099     // If AltiVec, the comparison results in a numeric type, so we use
3100     // intrinsics comparing vectors and giving 0 or 1 as a result
3101     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3102       // constants for mapping CR6 register bits to predicate result
3103       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3104 
3105       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3106 
3107       // in several cases vector arguments order will be reversed
3108       Value *FirstVecArg = LHS,
3109             *SecondVecArg = RHS;
3110 
3111       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
3112       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
3113       BuiltinType::Kind ElementKind = BTy->getKind();
3114 
3115       switch(E->getOpcode()) {
3116       default: llvm_unreachable("is not a comparison operation");
3117       case BO_EQ:
3118         CR6 = CR6_LT;
3119         ID = GetIntrinsic(VCMPEQ, ElementKind);
3120         break;
3121       case BO_NE:
3122         CR6 = CR6_EQ;
3123         ID = GetIntrinsic(VCMPEQ, ElementKind);
3124         break;
3125       case BO_LT:
3126         CR6 = CR6_LT;
3127         ID = GetIntrinsic(VCMPGT, ElementKind);
3128         std::swap(FirstVecArg, SecondVecArg);
3129         break;
3130       case BO_GT:
3131         CR6 = CR6_LT;
3132         ID = GetIntrinsic(VCMPGT, ElementKind);
3133         break;
3134       case BO_LE:
3135         if (ElementKind == BuiltinType::Float) {
3136           CR6 = CR6_LT;
3137           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3138           std::swap(FirstVecArg, SecondVecArg);
3139         }
3140         else {
3141           CR6 = CR6_EQ;
3142           ID = GetIntrinsic(VCMPGT, ElementKind);
3143         }
3144         break;
3145       case BO_GE:
3146         if (ElementKind == BuiltinType::Float) {
3147           CR6 = CR6_LT;
3148           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3149         }
3150         else {
3151           CR6 = CR6_EQ;
3152           ID = GetIntrinsic(VCMPGT, ElementKind);
3153           std::swap(FirstVecArg, SecondVecArg);
3154         }
3155         break;
3156       }
3157 
3158       Value *CR6Param = Builder.getInt32(CR6);
3159       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3160       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3161       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3162                                   E->getExprLoc());
3163     }
3164 
3165     if (LHS->getType()->isFPOrFPVectorTy()) {
3166       Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3167     } else if (LHSTy->hasSignedIntegerRepresentation()) {
3168       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3169     } else {
3170       // Unsigned integers and pointers.
3171       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3172     }
3173 
3174     // If this is a vector comparison, sign extend the result to the appropriate
3175     // vector integer type and return it (don't convert to bool).
3176     if (LHSTy->isVectorType())
3177       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3178 
3179   } else {
3180     // Complex Comparison: can only be an equality comparison.
3181     CodeGenFunction::ComplexPairTy LHS, RHS;
3182     QualType CETy;
3183     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3184       LHS = CGF.EmitComplexExpr(E->getLHS());
3185       CETy = CTy->getElementType();
3186     } else {
3187       LHS.first = Visit(E->getLHS());
3188       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3189       CETy = LHSTy;
3190     }
3191     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3192       RHS = CGF.EmitComplexExpr(E->getRHS());
3193       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
3194                                                      CTy->getElementType()) &&
3195              "The element types must always match.");
3196       (void)CTy;
3197     } else {
3198       RHS.first = Visit(E->getRHS());
3199       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
3200       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
3201              "The element types must always match.");
3202     }
3203 
3204     Value *ResultR, *ResultI;
3205     if (CETy->isRealFloatingType()) {
3206       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
3207       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
3208     } else {
3209       // Complex comparisons can only be equality comparisons.  As such, signed
3210       // and unsigned opcodes are the same.
3211       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
3212       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
3213     }
3214 
3215     if (E->getOpcode() == BO_EQ) {
3216       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
3217     } else {
3218       assert(E->getOpcode() == BO_NE &&
3219              "Complex comparison other than == or != ?");
3220       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
3221     }
3222   }
3223 
3224   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3225                               E->getExprLoc());
3226 }
3227 
3228 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3229   bool Ignore = TestAndClearIgnoreResultAssign();
3230 
3231   Value *RHS;
3232   LValue LHS;
3233 
3234   switch (E->getLHS()->getType().getObjCLifetime()) {
3235   case Qualifiers::OCL_Strong:
3236     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3237     break;
3238 
3239   case Qualifiers::OCL_Autoreleasing:
3240     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3241     break;
3242 
3243   case Qualifiers::OCL_ExplicitNone:
3244     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3245     break;
3246 
3247   case Qualifiers::OCL_Weak:
3248     RHS = Visit(E->getRHS());
3249     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3250     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3251     break;
3252 
3253   case Qualifiers::OCL_None:
3254     // __block variables need to have the rhs evaluated first, plus
3255     // this should improve codegen just a little.
3256     RHS = Visit(E->getRHS());
3257     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3258 
3259     // Store the value into the LHS.  Bit-fields are handled specially
3260     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3261     // 'An assignment expression has the value of the left operand after
3262     // the assignment...'.
3263     if (LHS.isBitField()) {
3264       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3265     } else {
3266       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
3267       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3268     }
3269   }
3270 
3271   // If the result is clearly ignored, return now.
3272   if (Ignore)
3273     return nullptr;
3274 
3275   // The result of an assignment in C is the assigned r-value.
3276   if (!CGF.getLangOpts().CPlusPlus)
3277     return RHS;
3278 
3279   // If the lvalue is non-volatile, return the computed value of the assignment.
3280   if (!LHS.isVolatileQualified())
3281     return RHS;
3282 
3283   // Otherwise, reload the value.
3284   return EmitLoadOfLValue(LHS, E->getExprLoc());
3285 }
3286 
3287 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3288   // Perform vector logical and on comparisons with zero vectors.
3289   if (E->getType()->isVectorType()) {
3290     CGF.incrementProfileCounter(E);
3291 
3292     Value *LHS = Visit(E->getLHS());
3293     Value *RHS = Visit(E->getRHS());
3294     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3295     if (LHS->getType()->isFPOrFPVectorTy()) {
3296       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3297       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3298     } else {
3299       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3300       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3301     }
3302     Value *And = Builder.CreateAnd(LHS, RHS);
3303     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3304   }
3305 
3306   llvm::Type *ResTy = ConvertType(E->getType());
3307 
3308   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3309   // If we have 1 && X, just emit X without inserting the control flow.
3310   bool LHSCondVal;
3311   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3312     if (LHSCondVal) { // If we have 1 && X, just emit X.
3313       CGF.incrementProfileCounter(E);
3314 
3315       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3316       // ZExt result to int or bool.
3317       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3318     }
3319 
3320     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3321     if (!CGF.ContainsLabel(E->getRHS()))
3322       return llvm::Constant::getNullValue(ResTy);
3323   }
3324 
3325   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3326   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3327 
3328   CodeGenFunction::ConditionalEvaluation eval(CGF);
3329 
3330   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3331   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3332                            CGF.getProfileCount(E->getRHS()));
3333 
3334   // Any edges into the ContBlock are now from an (indeterminate number of)
3335   // edges from this first condition.  All of these values will be false.  Start
3336   // setting up the PHI node in the Cont Block for this.
3337   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3338                                             "", ContBlock);
3339   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3340        PI != PE; ++PI)
3341     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3342 
3343   eval.begin(CGF);
3344   CGF.EmitBlock(RHSBlock);
3345   CGF.incrementProfileCounter(E);
3346   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3347   eval.end(CGF);
3348 
3349   // Reaquire the RHS block, as there may be subblocks inserted.
3350   RHSBlock = Builder.GetInsertBlock();
3351 
3352   // Emit an unconditional branch from this block to ContBlock.
3353   {
3354     // There is no need to emit line number for unconditional branch.
3355     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3356     CGF.EmitBlock(ContBlock);
3357   }
3358   // Insert an entry into the phi node for the edge with the value of RHSCond.
3359   PN->addIncoming(RHSCond, RHSBlock);
3360 
3361   // ZExt result to int.
3362   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3363 }
3364 
3365 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3366   // Perform vector logical or on comparisons with zero vectors.
3367   if (E->getType()->isVectorType()) {
3368     CGF.incrementProfileCounter(E);
3369 
3370     Value *LHS = Visit(E->getLHS());
3371     Value *RHS = Visit(E->getRHS());
3372     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3373     if (LHS->getType()->isFPOrFPVectorTy()) {
3374       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3375       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3376     } else {
3377       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3378       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3379     }
3380     Value *Or = Builder.CreateOr(LHS, RHS);
3381     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3382   }
3383 
3384   llvm::Type *ResTy = ConvertType(E->getType());
3385 
3386   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3387   // If we have 0 || X, just emit X without inserting the control flow.
3388   bool LHSCondVal;
3389   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3390     if (!LHSCondVal) { // If we have 0 || X, just emit X.
3391       CGF.incrementProfileCounter(E);
3392 
3393       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3394       // ZExt result to int or bool.
3395       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3396     }
3397 
3398     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3399     if (!CGF.ContainsLabel(E->getRHS()))
3400       return llvm::ConstantInt::get(ResTy, 1);
3401   }
3402 
3403   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3404   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3405 
3406   CodeGenFunction::ConditionalEvaluation eval(CGF);
3407 
3408   // Branch on the LHS first.  If it is true, go to the success (cont) block.
3409   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3410                            CGF.getCurrentProfileCount() -
3411                                CGF.getProfileCount(E->getRHS()));
3412 
3413   // Any edges into the ContBlock are now from an (indeterminate number of)
3414   // edges from this first condition.  All of these values will be true.  Start
3415   // setting up the PHI node in the Cont Block for this.
3416   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3417                                             "", ContBlock);
3418   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3419        PI != PE; ++PI)
3420     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3421 
3422   eval.begin(CGF);
3423 
3424   // Emit the RHS condition as a bool value.
3425   CGF.EmitBlock(RHSBlock);
3426   CGF.incrementProfileCounter(E);
3427   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3428 
3429   eval.end(CGF);
3430 
3431   // Reaquire the RHS block, as there may be subblocks inserted.
3432   RHSBlock = Builder.GetInsertBlock();
3433 
3434   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3435   // into the phi node for the edge with the value of RHSCond.
3436   CGF.EmitBlock(ContBlock);
3437   PN->addIncoming(RHSCond, RHSBlock);
3438 
3439   // ZExt result to int.
3440   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3441 }
3442 
3443 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3444   CGF.EmitIgnoredExpr(E->getLHS());
3445   CGF.EnsureInsertPoint();
3446   return Visit(E->getRHS());
3447 }
3448 
3449 //===----------------------------------------------------------------------===//
3450 //                             Other Operators
3451 //===----------------------------------------------------------------------===//
3452 
3453 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3454 /// expression is cheap enough and side-effect-free enough to evaluate
3455 /// unconditionally instead of conditionally.  This is used to convert control
3456 /// flow into selects in some cases.
3457 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3458                                                    CodeGenFunction &CGF) {
3459   // Anything that is an integer or floating point constant is fine.
3460   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3461 
3462   // Even non-volatile automatic variables can't be evaluated unconditionally.
3463   // Referencing a thread_local may cause non-trivial initialization work to
3464   // occur. If we're inside a lambda and one of the variables is from the scope
3465   // outside the lambda, that function may have returned already. Reading its
3466   // locals is a bad idea. Also, these reads may introduce races there didn't
3467   // exist in the source-level program.
3468 }
3469 
3470 
3471 Value *ScalarExprEmitter::
3472 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3473   TestAndClearIgnoreResultAssign();
3474 
3475   // Bind the common expression if necessary.
3476   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3477 
3478   Expr *condExpr = E->getCond();
3479   Expr *lhsExpr = E->getTrueExpr();
3480   Expr *rhsExpr = E->getFalseExpr();
3481 
3482   // If the condition constant folds and can be elided, try to avoid emitting
3483   // the condition and the dead arm.
3484   bool CondExprBool;
3485   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3486     Expr *live = lhsExpr, *dead = rhsExpr;
3487     if (!CondExprBool) std::swap(live, dead);
3488 
3489     // If the dead side doesn't have labels we need, just emit the Live part.
3490     if (!CGF.ContainsLabel(dead)) {
3491       if (CondExprBool)
3492         CGF.incrementProfileCounter(E);
3493       Value *Result = Visit(live);
3494 
3495       // If the live part is a throw expression, it acts like it has a void
3496       // type, so evaluating it returns a null Value*.  However, a conditional
3497       // with non-void type must return a non-null Value*.
3498       if (!Result && !E->getType()->isVoidType())
3499         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3500 
3501       return Result;
3502     }
3503   }
3504 
3505   // OpenCL: If the condition is a vector, we can treat this condition like
3506   // the select function.
3507   if (CGF.getLangOpts().OpenCL
3508       && condExpr->getType()->isVectorType()) {
3509     CGF.incrementProfileCounter(E);
3510 
3511     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3512     llvm::Value *LHS = Visit(lhsExpr);
3513     llvm::Value *RHS = Visit(rhsExpr);
3514 
3515     llvm::Type *condType = ConvertType(condExpr->getType());
3516     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3517 
3518     unsigned numElem = vecTy->getNumElements();
3519     llvm::Type *elemType = vecTy->getElementType();
3520 
3521     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3522     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3523     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3524                                           llvm::VectorType::get(elemType,
3525                                                                 numElem),
3526                                           "sext");
3527     llvm::Value *tmp2 = Builder.CreateNot(tmp);
3528 
3529     // Cast float to int to perform ANDs if necessary.
3530     llvm::Value *RHSTmp = RHS;
3531     llvm::Value *LHSTmp = LHS;
3532     bool wasCast = false;
3533     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3534     if (rhsVTy->getElementType()->isFloatingPointTy()) {
3535       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3536       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3537       wasCast = true;
3538     }
3539 
3540     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3541     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3542     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3543     if (wasCast)
3544       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3545 
3546     return tmp5;
3547   }
3548 
3549   // If this is a really simple expression (like x ? 4 : 5), emit this as a
3550   // select instead of as control flow.  We can only do this if it is cheap and
3551   // safe to evaluate the LHS and RHS unconditionally.
3552   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3553       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3554     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3555     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
3556 
3557     CGF.incrementProfileCounter(E, StepV);
3558 
3559     llvm::Value *LHS = Visit(lhsExpr);
3560     llvm::Value *RHS = Visit(rhsExpr);
3561     if (!LHS) {
3562       // If the conditional has void type, make sure we return a null Value*.
3563       assert(!RHS && "LHS and RHS types must match");
3564       return nullptr;
3565     }
3566     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3567   }
3568 
3569   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3570   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3571   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3572 
3573   CodeGenFunction::ConditionalEvaluation eval(CGF);
3574   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3575                            CGF.getProfileCount(lhsExpr));
3576 
3577   CGF.EmitBlock(LHSBlock);
3578   CGF.incrementProfileCounter(E);
3579   eval.begin(CGF);
3580   Value *LHS = Visit(lhsExpr);
3581   eval.end(CGF);
3582 
3583   LHSBlock = Builder.GetInsertBlock();
3584   Builder.CreateBr(ContBlock);
3585 
3586   CGF.EmitBlock(RHSBlock);
3587   eval.begin(CGF);
3588   Value *RHS = Visit(rhsExpr);
3589   eval.end(CGF);
3590 
3591   RHSBlock = Builder.GetInsertBlock();
3592   CGF.EmitBlock(ContBlock);
3593 
3594   // If the LHS or RHS is a throw expression, it will be legitimately null.
3595   if (!LHS)
3596     return RHS;
3597   if (!RHS)
3598     return LHS;
3599 
3600   // Create a PHI node for the real part.
3601   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3602   PN->addIncoming(LHS, LHSBlock);
3603   PN->addIncoming(RHS, RHSBlock);
3604   return PN;
3605 }
3606 
3607 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3608   return Visit(E->getChosenSubExpr());
3609 }
3610 
3611 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3612   QualType Ty = VE->getType();
3613 
3614   if (Ty->isVariablyModifiedType())
3615     CGF.EmitVariablyModifiedType(Ty);
3616 
3617   Address ArgValue = Address::invalid();
3618   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
3619 
3620   llvm::Type *ArgTy = ConvertType(VE->getType());
3621 
3622   // If EmitVAArg fails, emit an error.
3623   if (!ArgPtr.isValid()) {
3624     CGF.ErrorUnsupported(VE, "va_arg expression");
3625     return llvm::UndefValue::get(ArgTy);
3626   }
3627 
3628   // FIXME Volatility.
3629   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3630 
3631   // If EmitVAArg promoted the type, we must truncate it.
3632   if (ArgTy != Val->getType()) {
3633     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3634       Val = Builder.CreateIntToPtr(Val, ArgTy);
3635     else
3636       Val = Builder.CreateTrunc(Val, ArgTy);
3637   }
3638 
3639   return Val;
3640 }
3641 
3642 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3643   return CGF.EmitBlockLiteral(block);
3644 }
3645 
3646 // Convert a vec3 to vec4, or vice versa.
3647 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
3648                                  Value *Src, unsigned NumElementsDst) {
3649   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3650   SmallVector<llvm::Constant*, 4> Args;
3651   Args.push_back(Builder.getInt32(0));
3652   Args.push_back(Builder.getInt32(1));
3653   Args.push_back(Builder.getInt32(2));
3654   if (NumElementsDst == 4)
3655     Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3656   llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3657   return Builder.CreateShuffleVector(Src, UnV, Mask);
3658 }
3659 
3660 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
3661 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
3662 // but could be scalar or vectors of different lengths, and either can be
3663 // pointer.
3664 // There are 4 cases:
3665 // 1. non-pointer -> non-pointer  : needs 1 bitcast
3666 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
3667 // 3. pointer -> non-pointer
3668 //   a) pointer -> intptr_t       : needs 1 ptrtoint
3669 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
3670 // 4. non-pointer -> pointer
3671 //   a) intptr_t -> pointer       : needs 1 inttoptr
3672 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
3673 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
3674 // allow casting directly between pointer types and non-integer non-pointer
3675 // types.
3676 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
3677                                            const llvm::DataLayout &DL,
3678                                            Value *Src, llvm::Type *DstTy,
3679                                            StringRef Name = "") {
3680   auto SrcTy = Src->getType();
3681 
3682   // Case 1.
3683   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
3684     return Builder.CreateBitCast(Src, DstTy, Name);
3685 
3686   // Case 2.
3687   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
3688     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
3689 
3690   // Case 3.
3691   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
3692     // Case 3b.
3693     if (!DstTy->isIntegerTy())
3694       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
3695     // Cases 3a and 3b.
3696     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
3697   }
3698 
3699   // Case 4b.
3700   if (!SrcTy->isIntegerTy())
3701     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
3702   // Cases 4a and 4b.
3703   return Builder.CreateIntToPtr(Src, DstTy, Name);
3704 }
3705 
3706 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3707   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3708   llvm::Type *DstTy = ConvertType(E->getType());
3709 
3710   llvm::Type *SrcTy = Src->getType();
3711   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
3712     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
3713   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
3714     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
3715 
3716   // Going from vec3 to non-vec3 is a special case and requires a shuffle
3717   // vector to get a vec4, then a bitcast if the target type is different.
3718   if (NumElementsSrc == 3 && NumElementsDst != 3) {
3719     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
3720 
3721     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
3722       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3723                                          DstTy);
3724     }
3725 
3726     Src->setName("astype");
3727     return Src;
3728   }
3729 
3730   // Going from non-vec3 to vec3 is a special case and requires a bitcast
3731   // to vec4 if the original type is not vec4, then a shuffle vector to
3732   // get a vec3.
3733   if (NumElementsSrc != 3 && NumElementsDst == 3) {
3734     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
3735       auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
3736       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3737                                          Vec4Ty);
3738     }
3739 
3740     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
3741     Src->setName("astype");
3742     return Src;
3743   }
3744 
3745   return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
3746                                             Src, DstTy, "astype");
3747 }
3748 
3749 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3750   return CGF.EmitAtomicExpr(E).getScalarVal();
3751 }
3752 
3753 //===----------------------------------------------------------------------===//
3754 //                         Entry Point into this File
3755 //===----------------------------------------------------------------------===//
3756 
3757 /// Emit the computation of the specified expression of scalar type, ignoring
3758 /// the result.
3759 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3760   assert(E && hasScalarEvaluationKind(E->getType()) &&
3761          "Invalid scalar expression to emit");
3762 
3763   return ScalarExprEmitter(*this, IgnoreResultAssign)
3764       .Visit(const_cast<Expr *>(E));
3765 }
3766 
3767 /// Emit a conversion from the specified type to the specified destination type,
3768 /// both of which are LLVM scalar types.
3769 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3770                                              QualType DstTy,
3771                                              SourceLocation Loc) {
3772   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3773          "Invalid scalar expression to emit");
3774   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
3775 }
3776 
3777 /// Emit a conversion from the specified complex type to the specified
3778 /// destination type, where the destination type is an LLVM scalar type.
3779 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3780                                                       QualType SrcTy,
3781                                                       QualType DstTy,
3782                                                       SourceLocation Loc) {
3783   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3784          "Invalid complex -> scalar conversion");
3785   return ScalarExprEmitter(*this)
3786       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
3787 }
3788 
3789 
3790 llvm::Value *CodeGenFunction::
3791 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3792                         bool isInc, bool isPre) {
3793   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3794 }
3795 
3796 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3797   // object->isa or (*object).isa
3798   // Generate code as for: *(Class*)object
3799 
3800   Expr *BaseExpr = E->getBase();
3801   Address Addr = Address::invalid();
3802   if (BaseExpr->isRValue()) {
3803     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
3804   } else {
3805     Addr = EmitLValue(BaseExpr).getAddress();
3806   }
3807 
3808   // Cast the address to Class*.
3809   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
3810   return MakeAddrLValue(Addr, E->getType());
3811 }
3812 
3813 
3814 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3815                                             const CompoundAssignOperator *E) {
3816   ScalarExprEmitter Scalar(*this);
3817   Value *Result = nullptr;
3818   switch (E->getOpcode()) {
3819 #define COMPOUND_OP(Op)                                                       \
3820     case BO_##Op##Assign:                                                     \
3821       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3822                                              Result)
3823   COMPOUND_OP(Mul);
3824   COMPOUND_OP(Div);
3825   COMPOUND_OP(Rem);
3826   COMPOUND_OP(Add);
3827   COMPOUND_OP(Sub);
3828   COMPOUND_OP(Shl);
3829   COMPOUND_OP(Shr);
3830   COMPOUND_OP(And);
3831   COMPOUND_OP(Xor);
3832   COMPOUND_OP(Or);
3833 #undef COMPOUND_OP
3834 
3835   case BO_PtrMemD:
3836   case BO_PtrMemI:
3837   case BO_Mul:
3838   case BO_Div:
3839   case BO_Rem:
3840   case BO_Add:
3841   case BO_Sub:
3842   case BO_Shl:
3843   case BO_Shr:
3844   case BO_LT:
3845   case BO_GT:
3846   case BO_LE:
3847   case BO_GE:
3848   case BO_EQ:
3849   case BO_NE:
3850   case BO_And:
3851   case BO_Xor:
3852   case BO_Or:
3853   case BO_LAnd:
3854   case BO_LOr:
3855   case BO_Assign:
3856   case BO_Comma:
3857     llvm_unreachable("Not valid compound assignment operators");
3858   }
3859 
3860   llvm_unreachable("Unhandled compound assignment operator");
3861 }
3862 
3863 Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr,
3864                                                ArrayRef<Value *> IdxList,
3865                                                bool SignedIndices,
3866                                                bool IsSubtraction,
3867                                                SourceLocation Loc,
3868                                                const Twine &Name) {
3869   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
3870 
3871   // If the pointer overflow sanitizer isn't enabled, do nothing.
3872   if (!SanOpts.has(SanitizerKind::PointerOverflow))
3873     return GEPVal;
3874 
3875   // If the GEP has already been reduced to a constant, leave it be.
3876   if (isa<llvm::Constant>(GEPVal))
3877     return GEPVal;
3878 
3879   // Only check for overflows in the default address space.
3880   if (GEPVal->getType()->getPointerAddressSpace())
3881     return GEPVal;
3882 
3883   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
3884   assert(GEP->isInBounds() && "Expected inbounds GEP");
3885 
3886   SanitizerScope SanScope(this);
3887   auto &VMContext = getLLVMContext();
3888   const auto &DL = CGM.getDataLayout();
3889   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
3890 
3891   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
3892   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
3893   auto *SAddIntrinsic =
3894       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
3895   auto *SMulIntrinsic =
3896       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
3897 
3898   // The total (signed) byte offset for the GEP.
3899   llvm::Value *TotalOffset = nullptr;
3900   // The offset overflow flag - true if the total offset overflows.
3901   llvm::Value *OffsetOverflows = Builder.getFalse();
3902 
3903   /// Return the result of the given binary operation.
3904   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
3905                   llvm::Value *RHS) -> llvm::Value * {
3906     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
3907 
3908     // If the operands are constants, return a constant result.
3909     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
3910       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
3911         llvm::APInt N;
3912         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
3913                                                   /*Signed=*/true, N);
3914         if (HasOverflow)
3915           OffsetOverflows = Builder.getTrue();
3916         return llvm::ConstantInt::get(VMContext, N);
3917       }
3918     }
3919 
3920     // Otherwise, compute the result with checked arithmetic.
3921     auto *ResultAndOverflow = Builder.CreateCall(
3922         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
3923     OffsetOverflows = Builder.CreateOr(
3924         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
3925     return Builder.CreateExtractValue(ResultAndOverflow, 0);
3926   };
3927 
3928   // Determine the total byte offset by looking at each GEP operand.
3929   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
3930        GTI != GTE; ++GTI) {
3931     llvm::Value *LocalOffset;
3932     auto *Index = GTI.getOperand();
3933     // Compute the local offset contributed by this indexing step:
3934     if (auto *STy = GTI.getStructTypeOrNull()) {
3935       // For struct indexing, the local offset is the byte position of the
3936       // specified field.
3937       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
3938       LocalOffset = llvm::ConstantInt::get(
3939           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
3940     } else {
3941       // Otherwise this is array-like indexing. The local offset is the index
3942       // multiplied by the element size.
3943       auto *ElementSize = llvm::ConstantInt::get(
3944           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
3945       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
3946       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
3947     }
3948 
3949     // If this is the first offset, set it as the total offset. Otherwise, add
3950     // the local offset into the running total.
3951     if (!TotalOffset || TotalOffset == Zero)
3952       TotalOffset = LocalOffset;
3953     else
3954       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
3955   }
3956 
3957   // Common case: if the total offset is zero, don't emit a check.
3958   if (TotalOffset == Zero)
3959     return GEPVal;
3960 
3961   // Now that we've computed the total offset, add it to the base pointer (with
3962   // wrapping semantics).
3963   auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy);
3964   auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset);
3965 
3966   // The GEP is valid if:
3967   // 1) The total offset doesn't overflow, and
3968   // 2) The sign of the difference between the computed address and the base
3969   // pointer matches the sign of the total offset.
3970   llvm::Value *ValidGEP;
3971   auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows);
3972   if (SignedIndices) {
3973     auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
3974     auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero);
3975     llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
3976     ValidGEP = Builder.CreateAnd(
3977         Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid),
3978         NoOffsetOverflow);
3979   } else if (!SignedIndices && !IsSubtraction) {
3980     auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
3981     ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow);
3982   } else {
3983     auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr);
3984     ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow);
3985   }
3986 
3987   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
3988   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
3989   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
3990   EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow),
3991             SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
3992 
3993   return GEPVal;
3994 }
3995