1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCleanup.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CodeGenModule.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtVisitor.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/ADT/Optional.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/Module.h" 37 #include <cstdarg> 38 39 using namespace clang; 40 using namespace CodeGen; 41 using llvm::Value; 42 43 //===----------------------------------------------------------------------===// 44 // Scalar Expression Emitter 45 //===----------------------------------------------------------------------===// 46 47 namespace { 48 49 /// Determine whether the given binary operation may overflow. 50 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 51 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 52 /// the returned overflow check is precise. The returned value is 'true' for 53 /// all other opcodes, to be conservative. 54 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 55 BinaryOperator::Opcode Opcode, bool Signed, 56 llvm::APInt &Result) { 57 // Assume overflow is possible, unless we can prove otherwise. 58 bool Overflow = true; 59 const auto &LHSAP = LHS->getValue(); 60 const auto &RHSAP = RHS->getValue(); 61 if (Opcode == BO_Add) { 62 if (Signed) 63 Result = LHSAP.sadd_ov(RHSAP, Overflow); 64 else 65 Result = LHSAP.uadd_ov(RHSAP, Overflow); 66 } else if (Opcode == BO_Sub) { 67 if (Signed) 68 Result = LHSAP.ssub_ov(RHSAP, Overflow); 69 else 70 Result = LHSAP.usub_ov(RHSAP, Overflow); 71 } else if (Opcode == BO_Mul) { 72 if (Signed) 73 Result = LHSAP.smul_ov(RHSAP, Overflow); 74 else 75 Result = LHSAP.umul_ov(RHSAP, Overflow); 76 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 77 if (Signed && !RHS->isZero()) 78 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 79 else 80 return false; 81 } 82 return Overflow; 83 } 84 85 struct BinOpInfo { 86 Value *LHS; 87 Value *RHS; 88 QualType Ty; // Computation Type. 89 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 90 FPOptions FPFeatures; 91 const Expr *E; // Entire expr, for error unsupported. May not be binop. 92 93 /// Check if the binop can result in integer overflow. 94 bool mayHaveIntegerOverflow() const { 95 // Without constant input, we can't rule out overflow. 96 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 97 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 98 if (!LHSCI || !RHSCI) 99 return true; 100 101 llvm::APInt Result; 102 return ::mayHaveIntegerOverflow( 103 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 104 } 105 106 /// Check if the binop computes a division or a remainder. 107 bool isDivremOp() const { 108 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 109 Opcode == BO_RemAssign; 110 } 111 112 /// Check if the binop can result in an integer division by zero. 113 bool mayHaveIntegerDivisionByZero() const { 114 if (isDivremOp()) 115 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 116 return CI->isZero(); 117 return true; 118 } 119 120 /// Check if the binop can result in a float division by zero. 121 bool mayHaveFloatDivisionByZero() const { 122 if (isDivremOp()) 123 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 124 return CFP->isZero(); 125 return true; 126 } 127 }; 128 129 static bool MustVisitNullValue(const Expr *E) { 130 // If a null pointer expression's type is the C++0x nullptr_t, then 131 // it's not necessarily a simple constant and it must be evaluated 132 // for its potential side effects. 133 return E->getType()->isNullPtrType(); 134 } 135 136 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 137 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 138 const Expr *E) { 139 const Expr *Base = E->IgnoreImpCasts(); 140 if (E == Base) 141 return llvm::None; 142 143 QualType BaseTy = Base->getType(); 144 if (!BaseTy->isPromotableIntegerType() || 145 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 146 return llvm::None; 147 148 return BaseTy; 149 } 150 151 /// Check if \p E is a widened promoted integer. 152 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 153 return getUnwidenedIntegerType(Ctx, E).hasValue(); 154 } 155 156 /// Check if we can skip the overflow check for \p Op. 157 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 158 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 159 "Expected a unary or binary operator"); 160 161 // If the binop has constant inputs and we can prove there is no overflow, 162 // we can elide the overflow check. 163 if (!Op.mayHaveIntegerOverflow()) 164 return true; 165 166 // If a unary op has a widened operand, the op cannot overflow. 167 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 168 return IsWidenedIntegerOp(Ctx, UO->getSubExpr()); 169 170 // We usually don't need overflow checks for binops with widened operands. 171 // Multiplication with promoted unsigned operands is a special case. 172 const auto *BO = cast<BinaryOperator>(Op.E); 173 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 174 if (!OptionalLHSTy) 175 return false; 176 177 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 178 if (!OptionalRHSTy) 179 return false; 180 181 QualType LHSTy = *OptionalLHSTy; 182 QualType RHSTy = *OptionalRHSTy; 183 184 // This is the simple case: binops without unsigned multiplication, and with 185 // widened operands. No overflow check is needed here. 186 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 187 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 188 return true; 189 190 // For unsigned multiplication the overflow check can be elided if either one 191 // of the unpromoted types are less than half the size of the promoted type. 192 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 193 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 194 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 195 } 196 197 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions. 198 static void updateFastMathFlags(llvm::FastMathFlags &FMF, 199 FPOptions FPFeatures) { 200 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 201 } 202 203 /// Propagate fast-math flags from \p Op to the instruction in \p V. 204 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) { 205 if (auto *I = dyn_cast<llvm::Instruction>(V)) { 206 llvm::FastMathFlags FMF = I->getFastMathFlags(); 207 updateFastMathFlags(FMF, Op.FPFeatures); 208 I->setFastMathFlags(FMF); 209 } 210 return V; 211 } 212 213 class ScalarExprEmitter 214 : public StmtVisitor<ScalarExprEmitter, Value*> { 215 CodeGenFunction &CGF; 216 CGBuilderTy &Builder; 217 bool IgnoreResultAssign; 218 llvm::LLVMContext &VMContext; 219 public: 220 221 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 222 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 223 VMContext(cgf.getLLVMContext()) { 224 } 225 226 //===--------------------------------------------------------------------===// 227 // Utilities 228 //===--------------------------------------------------------------------===// 229 230 bool TestAndClearIgnoreResultAssign() { 231 bool I = IgnoreResultAssign; 232 IgnoreResultAssign = false; 233 return I; 234 } 235 236 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 237 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 238 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 239 return CGF.EmitCheckedLValue(E, TCK); 240 } 241 242 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 243 const BinOpInfo &Info); 244 245 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 246 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 247 } 248 249 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 250 const AlignValueAttr *AVAttr = nullptr; 251 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 252 const ValueDecl *VD = DRE->getDecl(); 253 254 if (VD->getType()->isReferenceType()) { 255 if (const auto *TTy = 256 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 257 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 258 } else { 259 // Assumptions for function parameters are emitted at the start of the 260 // function, so there is no need to repeat that here. 261 if (isa<ParmVarDecl>(VD)) 262 return; 263 264 AVAttr = VD->getAttr<AlignValueAttr>(); 265 } 266 } 267 268 if (!AVAttr) 269 if (const auto *TTy = 270 dyn_cast<TypedefType>(E->getType())) 271 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 272 273 if (!AVAttr) 274 return; 275 276 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 277 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 278 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); 279 } 280 281 /// EmitLoadOfLValue - Given an expression with complex type that represents a 282 /// value l-value, this method emits the address of the l-value, then loads 283 /// and returns the result. 284 Value *EmitLoadOfLValue(const Expr *E) { 285 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 286 E->getExprLoc()); 287 288 EmitLValueAlignmentAssumption(E, V); 289 return V; 290 } 291 292 /// EmitConversionToBool - Convert the specified expression value to a 293 /// boolean (i1) truth value. This is equivalent to "Val != 0". 294 Value *EmitConversionToBool(Value *Src, QualType DstTy); 295 296 /// Emit a check that a conversion to or from a floating-point type does not 297 /// overflow. 298 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 299 Value *Src, QualType SrcType, QualType DstType, 300 llvm::Type *DstTy, SourceLocation Loc); 301 302 /// Emit a conversion from the specified type to the specified destination 303 /// type, both of which are LLVM scalar types. 304 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 305 SourceLocation Loc); 306 307 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 308 SourceLocation Loc, bool TreatBooleanAsSigned); 309 310 /// Emit a conversion from the specified complex type to the specified 311 /// destination type, where the destination type is an LLVM scalar type. 312 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 313 QualType SrcTy, QualType DstTy, 314 SourceLocation Loc); 315 316 /// EmitNullValue - Emit a value that corresponds to null for the given type. 317 Value *EmitNullValue(QualType Ty); 318 319 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 320 Value *EmitFloatToBoolConversion(Value *V) { 321 // Compare against 0.0 for fp scalars. 322 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 323 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 324 } 325 326 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 327 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 328 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 329 330 return Builder.CreateICmpNE(V, Zero, "tobool"); 331 } 332 333 Value *EmitIntToBoolConversion(Value *V) { 334 // Because of the type rules of C, we often end up computing a 335 // logical value, then zero extending it to int, then wanting it 336 // as a logical value again. Optimize this common case. 337 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 338 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 339 Value *Result = ZI->getOperand(0); 340 // If there aren't any more uses, zap the instruction to save space. 341 // Note that there can be more uses, for example if this 342 // is the result of an assignment. 343 if (ZI->use_empty()) 344 ZI->eraseFromParent(); 345 return Result; 346 } 347 } 348 349 return Builder.CreateIsNotNull(V, "tobool"); 350 } 351 352 //===--------------------------------------------------------------------===// 353 // Visitor Methods 354 //===--------------------------------------------------------------------===// 355 356 Value *Visit(Expr *E) { 357 ApplyDebugLocation DL(CGF, E); 358 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 359 } 360 361 Value *VisitStmt(Stmt *S) { 362 S->dump(CGF.getContext().getSourceManager()); 363 llvm_unreachable("Stmt can't have complex result type!"); 364 } 365 Value *VisitExpr(Expr *S); 366 367 Value *VisitParenExpr(ParenExpr *PE) { 368 return Visit(PE->getSubExpr()); 369 } 370 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 371 return Visit(E->getReplacement()); 372 } 373 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 374 return Visit(GE->getResultExpr()); 375 } 376 Value *VisitCoawaitExpr(CoawaitExpr *S) { 377 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 378 } 379 Value *VisitCoyieldExpr(CoyieldExpr *S) { 380 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 381 } 382 Value *VisitUnaryCoawait(const UnaryOperator *E) { 383 return Visit(E->getSubExpr()); 384 } 385 386 // Leaves. 387 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 388 return Builder.getInt(E->getValue()); 389 } 390 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 391 return llvm::ConstantFP::get(VMContext, E->getValue()); 392 } 393 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 394 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 395 } 396 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 397 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 398 } 399 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 400 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 401 } 402 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 403 return EmitNullValue(E->getType()); 404 } 405 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 406 return EmitNullValue(E->getType()); 407 } 408 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 409 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 410 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 411 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 412 return Builder.CreateBitCast(V, ConvertType(E->getType())); 413 } 414 415 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 416 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 417 } 418 419 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 420 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 421 } 422 423 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 424 if (E->isGLValue()) 425 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 426 427 // Otherwise, assume the mapping is the scalar directly. 428 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 429 } 430 431 Value *emitConstant(const CodeGenFunction::ConstantEmission &Constant, 432 Expr *E) { 433 assert(Constant && "not a constant"); 434 if (Constant.isReference()) 435 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), 436 E->getExprLoc()); 437 return Constant.getValue(); 438 } 439 440 // l-values. 441 Value *VisitDeclRefExpr(DeclRefExpr *E) { 442 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 443 return emitConstant(Constant, E); 444 return EmitLoadOfLValue(E); 445 } 446 447 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 448 return CGF.EmitObjCSelectorExpr(E); 449 } 450 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 451 return CGF.EmitObjCProtocolExpr(E); 452 } 453 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 454 return EmitLoadOfLValue(E); 455 } 456 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 457 if (E->getMethodDecl() && 458 E->getMethodDecl()->getReturnType()->isReferenceType()) 459 return EmitLoadOfLValue(E); 460 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 461 } 462 463 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 464 LValue LV = CGF.EmitObjCIsaExpr(E); 465 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 466 return V; 467 } 468 469 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 470 VersionTuple Version = E->getVersion(); 471 472 // If we're checking for a platform older than our minimum deployment 473 // target, we can fold the check away. 474 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 475 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 476 477 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 478 llvm::Value *Args[] = { 479 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), 480 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), 481 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), 482 }; 483 484 return CGF.EmitBuiltinAvailable(Args); 485 } 486 487 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 488 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 489 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 490 Value *VisitMemberExpr(MemberExpr *E); 491 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 492 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 493 return EmitLoadOfLValue(E); 494 } 495 496 Value *VisitInitListExpr(InitListExpr *E); 497 498 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 499 assert(CGF.getArrayInitIndex() && 500 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 501 return CGF.getArrayInitIndex(); 502 } 503 504 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 505 return EmitNullValue(E->getType()); 506 } 507 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 508 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 509 return VisitCastExpr(E); 510 } 511 Value *VisitCastExpr(CastExpr *E); 512 513 Value *VisitCallExpr(const CallExpr *E) { 514 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 515 return EmitLoadOfLValue(E); 516 517 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 518 519 EmitLValueAlignmentAssumption(E, V); 520 return V; 521 } 522 523 Value *VisitStmtExpr(const StmtExpr *E); 524 525 // Unary Operators. 526 Value *VisitUnaryPostDec(const UnaryOperator *E) { 527 LValue LV = EmitLValue(E->getSubExpr()); 528 return EmitScalarPrePostIncDec(E, LV, false, false); 529 } 530 Value *VisitUnaryPostInc(const UnaryOperator *E) { 531 LValue LV = EmitLValue(E->getSubExpr()); 532 return EmitScalarPrePostIncDec(E, LV, true, false); 533 } 534 Value *VisitUnaryPreDec(const UnaryOperator *E) { 535 LValue LV = EmitLValue(E->getSubExpr()); 536 return EmitScalarPrePostIncDec(E, LV, false, true); 537 } 538 Value *VisitUnaryPreInc(const UnaryOperator *E) { 539 LValue LV = EmitLValue(E->getSubExpr()); 540 return EmitScalarPrePostIncDec(E, LV, true, true); 541 } 542 543 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 544 llvm::Value *InVal, 545 bool IsInc); 546 547 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 548 bool isInc, bool isPre); 549 550 551 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 552 if (isa<MemberPointerType>(E->getType())) // never sugared 553 return CGF.CGM.getMemberPointerConstant(E); 554 555 return EmitLValue(E->getSubExpr()).getPointer(); 556 } 557 Value *VisitUnaryDeref(const UnaryOperator *E) { 558 if (E->getType()->isVoidType()) 559 return Visit(E->getSubExpr()); // the actual value should be unused 560 return EmitLoadOfLValue(E); 561 } 562 Value *VisitUnaryPlus(const UnaryOperator *E) { 563 // This differs from gcc, though, most likely due to a bug in gcc. 564 TestAndClearIgnoreResultAssign(); 565 return Visit(E->getSubExpr()); 566 } 567 Value *VisitUnaryMinus (const UnaryOperator *E); 568 Value *VisitUnaryNot (const UnaryOperator *E); 569 Value *VisitUnaryLNot (const UnaryOperator *E); 570 Value *VisitUnaryReal (const UnaryOperator *E); 571 Value *VisitUnaryImag (const UnaryOperator *E); 572 Value *VisitUnaryExtension(const UnaryOperator *E) { 573 return Visit(E->getSubExpr()); 574 } 575 576 // C++ 577 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 578 return EmitLoadOfLValue(E); 579 } 580 581 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 582 return Visit(DAE->getExpr()); 583 } 584 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 585 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 586 return Visit(DIE->getExpr()); 587 } 588 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 589 return CGF.LoadCXXThis(); 590 } 591 592 Value *VisitExprWithCleanups(ExprWithCleanups *E); 593 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 594 return CGF.EmitCXXNewExpr(E); 595 } 596 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 597 CGF.EmitCXXDeleteExpr(E); 598 return nullptr; 599 } 600 601 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 602 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 603 } 604 605 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 606 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 607 } 608 609 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 610 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 611 } 612 613 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 614 // C++ [expr.pseudo]p1: 615 // The result shall only be used as the operand for the function call 616 // operator (), and the result of such a call has type void. The only 617 // effect is the evaluation of the postfix-expression before the dot or 618 // arrow. 619 CGF.EmitScalarExpr(E->getBase()); 620 return nullptr; 621 } 622 623 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 624 return EmitNullValue(E->getType()); 625 } 626 627 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 628 CGF.EmitCXXThrowExpr(E); 629 return nullptr; 630 } 631 632 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 633 return Builder.getInt1(E->getValue()); 634 } 635 636 // Binary Operators. 637 Value *EmitMul(const BinOpInfo &Ops) { 638 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 639 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 640 case LangOptions::SOB_Defined: 641 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 642 case LangOptions::SOB_Undefined: 643 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 644 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 645 // Fall through. 646 case LangOptions::SOB_Trapping: 647 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 648 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 649 return EmitOverflowCheckedBinOp(Ops); 650 } 651 } 652 653 if (Ops.Ty->isUnsignedIntegerType() && 654 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 655 !CanElideOverflowCheck(CGF.getContext(), Ops)) 656 return EmitOverflowCheckedBinOp(Ops); 657 658 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 659 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 660 return propagateFMFlags(V, Ops); 661 } 662 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 663 } 664 /// Create a binary op that checks for overflow. 665 /// Currently only supports +, - and *. 666 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 667 668 // Check for undefined division and modulus behaviors. 669 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 670 llvm::Value *Zero,bool isDiv); 671 // Common helper for getting how wide LHS of shift is. 672 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 673 Value *EmitDiv(const BinOpInfo &Ops); 674 Value *EmitRem(const BinOpInfo &Ops); 675 Value *EmitAdd(const BinOpInfo &Ops); 676 Value *EmitSub(const BinOpInfo &Ops); 677 Value *EmitShl(const BinOpInfo &Ops); 678 Value *EmitShr(const BinOpInfo &Ops); 679 Value *EmitAnd(const BinOpInfo &Ops) { 680 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 681 } 682 Value *EmitXor(const BinOpInfo &Ops) { 683 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 684 } 685 Value *EmitOr (const BinOpInfo &Ops) { 686 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 687 } 688 689 BinOpInfo EmitBinOps(const BinaryOperator *E); 690 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 691 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 692 Value *&Result); 693 694 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 695 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 696 697 // Binary operators and binary compound assignment operators. 698 #define HANDLEBINOP(OP) \ 699 Value *VisitBin ## OP(const BinaryOperator *E) { \ 700 return Emit ## OP(EmitBinOps(E)); \ 701 } \ 702 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 703 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 704 } 705 HANDLEBINOP(Mul) 706 HANDLEBINOP(Div) 707 HANDLEBINOP(Rem) 708 HANDLEBINOP(Add) 709 HANDLEBINOP(Sub) 710 HANDLEBINOP(Shl) 711 HANDLEBINOP(Shr) 712 HANDLEBINOP(And) 713 HANDLEBINOP(Xor) 714 HANDLEBINOP(Or) 715 #undef HANDLEBINOP 716 717 // Comparisons. 718 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 719 llvm::CmpInst::Predicate SICmpOpc, 720 llvm::CmpInst::Predicate FCmpOpc); 721 #define VISITCOMP(CODE, UI, SI, FP) \ 722 Value *VisitBin##CODE(const BinaryOperator *E) { \ 723 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 724 llvm::FCmpInst::FP); } 725 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 726 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 727 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 728 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 729 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 730 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 731 #undef VISITCOMP 732 733 Value *VisitBinAssign (const BinaryOperator *E); 734 735 Value *VisitBinLAnd (const BinaryOperator *E); 736 Value *VisitBinLOr (const BinaryOperator *E); 737 Value *VisitBinComma (const BinaryOperator *E); 738 739 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 740 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 741 742 // Other Operators. 743 Value *VisitBlockExpr(const BlockExpr *BE); 744 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 745 Value *VisitChooseExpr(ChooseExpr *CE); 746 Value *VisitVAArgExpr(VAArgExpr *VE); 747 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 748 return CGF.EmitObjCStringLiteral(E); 749 } 750 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 751 return CGF.EmitObjCBoxedExpr(E); 752 } 753 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 754 return CGF.EmitObjCArrayLiteral(E); 755 } 756 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 757 return CGF.EmitObjCDictionaryLiteral(E); 758 } 759 Value *VisitAsTypeExpr(AsTypeExpr *CE); 760 Value *VisitAtomicExpr(AtomicExpr *AE); 761 }; 762 } // end anonymous namespace. 763 764 //===----------------------------------------------------------------------===// 765 // Utilities 766 //===----------------------------------------------------------------------===// 767 768 /// EmitConversionToBool - Convert the specified expression value to a 769 /// boolean (i1) truth value. This is equivalent to "Val != 0". 770 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 771 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 772 773 if (SrcType->isRealFloatingType()) 774 return EmitFloatToBoolConversion(Src); 775 776 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 777 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 778 779 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 780 "Unknown scalar type to convert"); 781 782 if (isa<llvm::IntegerType>(Src->getType())) 783 return EmitIntToBoolConversion(Src); 784 785 assert(isa<llvm::PointerType>(Src->getType())); 786 return EmitPointerToBoolConversion(Src, SrcType); 787 } 788 789 void ScalarExprEmitter::EmitFloatConversionCheck( 790 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 791 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 792 CodeGenFunction::SanitizerScope SanScope(&CGF); 793 using llvm::APFloat; 794 using llvm::APSInt; 795 796 llvm::Type *SrcTy = Src->getType(); 797 798 llvm::Value *Check = nullptr; 799 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 800 // Integer to floating-point. This can fail for unsigned short -> __half 801 // or unsigned __int128 -> float. 802 assert(DstType->isFloatingType()); 803 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 804 805 APFloat LargestFloat = 806 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 807 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 808 809 bool IsExact; 810 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 811 &IsExact) != APFloat::opOK) 812 // The range of representable values of this floating point type includes 813 // all values of this integer type. Don't need an overflow check. 814 return; 815 816 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 817 if (SrcIsUnsigned) 818 Check = Builder.CreateICmpULE(Src, Max); 819 else { 820 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 821 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 822 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 823 Check = Builder.CreateAnd(GE, LE); 824 } 825 } else { 826 const llvm::fltSemantics &SrcSema = 827 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 828 if (isa<llvm::IntegerType>(DstTy)) { 829 // Floating-point to integer. This has undefined behavior if the source is 830 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 831 // to an integer). 832 unsigned Width = CGF.getContext().getIntWidth(DstType); 833 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 834 835 APSInt Min = APSInt::getMinValue(Width, Unsigned); 836 APFloat MinSrc(SrcSema, APFloat::uninitialized); 837 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 838 APFloat::opOverflow) 839 // Don't need an overflow check for lower bound. Just check for 840 // -Inf/NaN. 841 MinSrc = APFloat::getInf(SrcSema, true); 842 else 843 // Find the largest value which is too small to represent (before 844 // truncation toward zero). 845 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 846 847 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 848 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 849 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 850 APFloat::opOverflow) 851 // Don't need an overflow check for upper bound. Just check for 852 // +Inf/NaN. 853 MaxSrc = APFloat::getInf(SrcSema, false); 854 else 855 // Find the smallest value which is too large to represent (before 856 // truncation toward zero). 857 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 858 859 // If we're converting from __half, convert the range to float to match 860 // the type of src. 861 if (OrigSrcType->isHalfType()) { 862 const llvm::fltSemantics &Sema = 863 CGF.getContext().getFloatTypeSemantics(SrcType); 864 bool IsInexact; 865 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 866 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 867 } 868 869 llvm::Value *GE = 870 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 871 llvm::Value *LE = 872 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 873 Check = Builder.CreateAnd(GE, LE); 874 } else { 875 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 876 // 877 // Floating-point to floating-point. This has undefined behavior if the 878 // source is not in the range of representable values of the destination 879 // type. The C and C++ standards are spectacularly unclear here. We 880 // diagnose finite out-of-range conversions, but allow infinities and NaNs 881 // to convert to the corresponding value in the smaller type. 882 // 883 // C11 Annex F gives all such conversions defined behavior for IEC 60559 884 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 885 // does not. 886 887 // Converting from a lower rank to a higher rank can never have 888 // undefined behavior, since higher-rank types must have a superset 889 // of values of lower-rank types. 890 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 891 return; 892 893 assert(!OrigSrcType->isHalfType() && 894 "should not check conversion from __half, it has the lowest rank"); 895 896 const llvm::fltSemantics &DstSema = 897 CGF.getContext().getFloatTypeSemantics(DstType); 898 APFloat MinBad = APFloat::getLargest(DstSema, false); 899 APFloat MaxBad = APFloat::getInf(DstSema, false); 900 901 bool IsInexact; 902 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 903 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 904 905 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 906 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 907 llvm::Value *GE = 908 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 909 llvm::Value *LE = 910 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 911 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 912 } 913 } 914 915 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 916 CGF.EmitCheckTypeDescriptor(OrigSrcType), 917 CGF.EmitCheckTypeDescriptor(DstType)}; 918 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 919 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 920 } 921 922 /// Emit a conversion from the specified type to the specified destination type, 923 /// both of which are LLVM scalar types. 924 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 925 QualType DstType, 926 SourceLocation Loc) { 927 return EmitScalarConversion(Src, SrcType, DstType, Loc, false); 928 } 929 930 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 931 QualType DstType, 932 SourceLocation Loc, 933 bool TreatBooleanAsSigned) { 934 SrcType = CGF.getContext().getCanonicalType(SrcType); 935 DstType = CGF.getContext().getCanonicalType(DstType); 936 if (SrcType == DstType) return Src; 937 938 if (DstType->isVoidType()) return nullptr; 939 940 llvm::Value *OrigSrc = Src; 941 QualType OrigSrcType = SrcType; 942 llvm::Type *SrcTy = Src->getType(); 943 944 // Handle conversions to bool first, they are special: comparisons against 0. 945 if (DstType->isBooleanType()) 946 return EmitConversionToBool(Src, SrcType); 947 948 llvm::Type *DstTy = ConvertType(DstType); 949 950 // Cast from half through float if half isn't a native type. 951 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 952 // Cast to FP using the intrinsic if the half type itself isn't supported. 953 if (DstTy->isFloatingPointTy()) { 954 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 955 return Builder.CreateCall( 956 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 957 Src); 958 } else { 959 // Cast to other types through float, using either the intrinsic or FPExt, 960 // depending on whether the half type itself is supported 961 // (as opposed to operations on half, available with NativeHalfType). 962 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 963 Src = Builder.CreateCall( 964 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 965 CGF.CGM.FloatTy), 966 Src); 967 } else { 968 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 969 } 970 SrcType = CGF.getContext().FloatTy; 971 SrcTy = CGF.FloatTy; 972 } 973 } 974 975 // Ignore conversions like int -> uint. 976 if (SrcTy == DstTy) 977 return Src; 978 979 // Handle pointer conversions next: pointers can only be converted to/from 980 // other pointers and integers. Check for pointer types in terms of LLVM, as 981 // some native types (like Obj-C id) may map to a pointer type. 982 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 983 // The source value may be an integer, or a pointer. 984 if (isa<llvm::PointerType>(SrcTy)) 985 return Builder.CreateBitCast(Src, DstTy, "conv"); 986 987 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 988 // First, convert to the correct width so that we control the kind of 989 // extension. 990 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 991 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 992 llvm::Value* IntResult = 993 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 994 // Then, cast to pointer. 995 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 996 } 997 998 if (isa<llvm::PointerType>(SrcTy)) { 999 // Must be an ptr to int cast. 1000 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1001 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1002 } 1003 1004 // A scalar can be splatted to an extended vector of the same element type 1005 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1006 // Sema should add casts to make sure that the source expression's type is 1007 // the same as the vector's element type (sans qualifiers) 1008 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1009 SrcType.getTypePtr() && 1010 "Splatted expr doesn't match with vector element type?"); 1011 1012 // Splat the element across to all elements 1013 unsigned NumElements = DstTy->getVectorNumElements(); 1014 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1015 } 1016 1017 // Allow bitcast from vector to integer/fp of the same size. 1018 if (isa<llvm::VectorType>(SrcTy) || 1019 isa<llvm::VectorType>(DstTy)) 1020 return Builder.CreateBitCast(Src, DstTy, "conv"); 1021 1022 // Finally, we have the arithmetic types: real int/float. 1023 Value *Res = nullptr; 1024 llvm::Type *ResTy = DstTy; 1025 1026 // An overflowing conversion has undefined behavior if either the source type 1027 // or the destination type is a floating-point type. 1028 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1029 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 1030 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1031 Loc); 1032 1033 // Cast to half through float if half isn't a native type. 1034 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1035 // Make sure we cast in a single step if from another FP type. 1036 if (SrcTy->isFloatingPointTy()) { 1037 // Use the intrinsic if the half type itself isn't supported 1038 // (as opposed to operations on half, available with NativeHalfType). 1039 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 1040 return Builder.CreateCall( 1041 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1042 // If the half type is supported, just use an fptrunc. 1043 return Builder.CreateFPTrunc(Src, DstTy); 1044 } 1045 DstTy = CGF.FloatTy; 1046 } 1047 1048 if (isa<llvm::IntegerType>(SrcTy)) { 1049 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1050 if (SrcType->isBooleanType() && TreatBooleanAsSigned) { 1051 InputSigned = true; 1052 } 1053 if (isa<llvm::IntegerType>(DstTy)) 1054 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1055 else if (InputSigned) 1056 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1057 else 1058 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1059 } else if (isa<llvm::IntegerType>(DstTy)) { 1060 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1061 if (DstType->isSignedIntegerOrEnumerationType()) 1062 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1063 else 1064 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1065 } else { 1066 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1067 "Unknown real conversion"); 1068 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1069 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1070 else 1071 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1072 } 1073 1074 if (DstTy != ResTy) { 1075 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1076 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1077 Res = Builder.CreateCall( 1078 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1079 Res); 1080 } else { 1081 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1082 } 1083 } 1084 1085 return Res; 1086 } 1087 1088 /// Emit a conversion from the specified complex type to the specified 1089 /// destination type, where the destination type is an LLVM scalar type. 1090 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1091 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1092 SourceLocation Loc) { 1093 // Get the source element type. 1094 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1095 1096 // Handle conversions to bool first, they are special: comparisons against 0. 1097 if (DstTy->isBooleanType()) { 1098 // Complex != 0 -> (Real != 0) | (Imag != 0) 1099 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1100 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1101 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1102 } 1103 1104 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1105 // the imaginary part of the complex value is discarded and the value of the 1106 // real part is converted according to the conversion rules for the 1107 // corresponding real type. 1108 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1109 } 1110 1111 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1112 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1113 } 1114 1115 /// \brief Emit a sanitization check for the given "binary" operation (which 1116 /// might actually be a unary increment which has been lowered to a binary 1117 /// operation). The check passes if all values in \p Checks (which are \c i1), 1118 /// are \c true. 1119 void ScalarExprEmitter::EmitBinOpCheck( 1120 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1121 assert(CGF.IsSanitizerScope); 1122 SanitizerHandler Check; 1123 SmallVector<llvm::Constant *, 4> StaticData; 1124 SmallVector<llvm::Value *, 2> DynamicData; 1125 1126 BinaryOperatorKind Opcode = Info.Opcode; 1127 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1128 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1129 1130 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1131 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1132 if (UO && UO->getOpcode() == UO_Minus) { 1133 Check = SanitizerHandler::NegateOverflow; 1134 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1135 DynamicData.push_back(Info.RHS); 1136 } else { 1137 if (BinaryOperator::isShiftOp(Opcode)) { 1138 // Shift LHS negative or too large, or RHS out of bounds. 1139 Check = SanitizerHandler::ShiftOutOfBounds; 1140 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1141 StaticData.push_back( 1142 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1143 StaticData.push_back( 1144 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1145 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1146 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1147 Check = SanitizerHandler::DivremOverflow; 1148 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1149 } else { 1150 // Arithmetic overflow (+, -, *). 1151 switch (Opcode) { 1152 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1153 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1154 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1155 default: llvm_unreachable("unexpected opcode for bin op check"); 1156 } 1157 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1158 } 1159 DynamicData.push_back(Info.LHS); 1160 DynamicData.push_back(Info.RHS); 1161 } 1162 1163 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1164 } 1165 1166 //===----------------------------------------------------------------------===// 1167 // Visitor Methods 1168 //===----------------------------------------------------------------------===// 1169 1170 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1171 CGF.ErrorUnsupported(E, "scalar expression"); 1172 if (E->getType()->isVoidType()) 1173 return nullptr; 1174 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1175 } 1176 1177 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1178 // Vector Mask Case 1179 if (E->getNumSubExprs() == 2) { 1180 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1181 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1182 Value *Mask; 1183 1184 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 1185 unsigned LHSElts = LTy->getNumElements(); 1186 1187 Mask = RHS; 1188 1189 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1190 1191 // Mask off the high bits of each shuffle index. 1192 Value *MaskBits = 1193 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1194 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1195 1196 // newv = undef 1197 // mask = mask & maskbits 1198 // for each elt 1199 // n = extract mask i 1200 // x = extract val n 1201 // newv = insert newv, x, i 1202 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1203 MTy->getNumElements()); 1204 Value* NewV = llvm::UndefValue::get(RTy); 1205 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1206 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1207 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1208 1209 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1210 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1211 } 1212 return NewV; 1213 } 1214 1215 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1216 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1217 1218 SmallVector<llvm::Constant*, 32> indices; 1219 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1220 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1221 // Check for -1 and output it as undef in the IR. 1222 if (Idx.isSigned() && Idx.isAllOnesValue()) 1223 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1224 else 1225 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1226 } 1227 1228 Value *SV = llvm::ConstantVector::get(indices); 1229 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1230 } 1231 1232 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1233 QualType SrcType = E->getSrcExpr()->getType(), 1234 DstType = E->getType(); 1235 1236 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1237 1238 SrcType = CGF.getContext().getCanonicalType(SrcType); 1239 DstType = CGF.getContext().getCanonicalType(DstType); 1240 if (SrcType == DstType) return Src; 1241 1242 assert(SrcType->isVectorType() && 1243 "ConvertVector source type must be a vector"); 1244 assert(DstType->isVectorType() && 1245 "ConvertVector destination type must be a vector"); 1246 1247 llvm::Type *SrcTy = Src->getType(); 1248 llvm::Type *DstTy = ConvertType(DstType); 1249 1250 // Ignore conversions like int -> uint. 1251 if (SrcTy == DstTy) 1252 return Src; 1253 1254 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1255 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1256 1257 assert(SrcTy->isVectorTy() && 1258 "ConvertVector source IR type must be a vector"); 1259 assert(DstTy->isVectorTy() && 1260 "ConvertVector destination IR type must be a vector"); 1261 1262 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1263 *DstEltTy = DstTy->getVectorElementType(); 1264 1265 if (DstEltType->isBooleanType()) { 1266 assert((SrcEltTy->isFloatingPointTy() || 1267 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1268 1269 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1270 if (SrcEltTy->isFloatingPointTy()) { 1271 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1272 } else { 1273 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1274 } 1275 } 1276 1277 // We have the arithmetic types: real int/float. 1278 Value *Res = nullptr; 1279 1280 if (isa<llvm::IntegerType>(SrcEltTy)) { 1281 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1282 if (isa<llvm::IntegerType>(DstEltTy)) 1283 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1284 else if (InputSigned) 1285 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1286 else 1287 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1288 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1289 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1290 if (DstEltType->isSignedIntegerOrEnumerationType()) 1291 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1292 else 1293 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1294 } else { 1295 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1296 "Unknown real conversion"); 1297 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1298 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1299 else 1300 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1301 } 1302 1303 return Res; 1304 } 1305 1306 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1307 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1308 CGF.EmitIgnoredExpr(E->getBase()); 1309 return emitConstant(Constant, E); 1310 } else { 1311 llvm::APSInt Value; 1312 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1313 CGF.EmitIgnoredExpr(E->getBase()); 1314 return Builder.getInt(Value); 1315 } 1316 } 1317 1318 return EmitLoadOfLValue(E); 1319 } 1320 1321 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1322 TestAndClearIgnoreResultAssign(); 1323 1324 // Emit subscript expressions in rvalue context's. For most cases, this just 1325 // loads the lvalue formed by the subscript expr. However, we have to be 1326 // careful, because the base of a vector subscript is occasionally an rvalue, 1327 // so we can't get it as an lvalue. 1328 if (!E->getBase()->getType()->isVectorType()) 1329 return EmitLoadOfLValue(E); 1330 1331 // Handle the vector case. The base must be a vector, the index must be an 1332 // integer value. 1333 Value *Base = Visit(E->getBase()); 1334 Value *Idx = Visit(E->getIdx()); 1335 QualType IdxTy = E->getIdx()->getType(); 1336 1337 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1338 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1339 1340 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1341 } 1342 1343 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1344 unsigned Off, llvm::Type *I32Ty) { 1345 int MV = SVI->getMaskValue(Idx); 1346 if (MV == -1) 1347 return llvm::UndefValue::get(I32Ty); 1348 return llvm::ConstantInt::get(I32Ty, Off+MV); 1349 } 1350 1351 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1352 if (C->getBitWidth() != 32) { 1353 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1354 C->getZExtValue()) && 1355 "Index operand too large for shufflevector mask!"); 1356 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1357 } 1358 return C; 1359 } 1360 1361 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1362 bool Ignore = TestAndClearIgnoreResultAssign(); 1363 (void)Ignore; 1364 assert (Ignore == false && "init list ignored"); 1365 unsigned NumInitElements = E->getNumInits(); 1366 1367 if (E->hadArrayRangeDesignator()) 1368 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1369 1370 llvm::VectorType *VType = 1371 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1372 1373 if (!VType) { 1374 if (NumInitElements == 0) { 1375 // C++11 value-initialization for the scalar. 1376 return EmitNullValue(E->getType()); 1377 } 1378 // We have a scalar in braces. Just use the first element. 1379 return Visit(E->getInit(0)); 1380 } 1381 1382 unsigned ResElts = VType->getNumElements(); 1383 1384 // Loop over initializers collecting the Value for each, and remembering 1385 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1386 // us to fold the shuffle for the swizzle into the shuffle for the vector 1387 // initializer, since LLVM optimizers generally do not want to touch 1388 // shuffles. 1389 unsigned CurIdx = 0; 1390 bool VIsUndefShuffle = false; 1391 llvm::Value *V = llvm::UndefValue::get(VType); 1392 for (unsigned i = 0; i != NumInitElements; ++i) { 1393 Expr *IE = E->getInit(i); 1394 Value *Init = Visit(IE); 1395 SmallVector<llvm::Constant*, 16> Args; 1396 1397 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1398 1399 // Handle scalar elements. If the scalar initializer is actually one 1400 // element of a different vector of the same width, use shuffle instead of 1401 // extract+insert. 1402 if (!VVT) { 1403 if (isa<ExtVectorElementExpr>(IE)) { 1404 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1405 1406 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1407 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1408 Value *LHS = nullptr, *RHS = nullptr; 1409 if (CurIdx == 0) { 1410 // insert into undef -> shuffle (src, undef) 1411 // shufflemask must use an i32 1412 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1413 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1414 1415 LHS = EI->getVectorOperand(); 1416 RHS = V; 1417 VIsUndefShuffle = true; 1418 } else if (VIsUndefShuffle) { 1419 // insert into undefshuffle && size match -> shuffle (v, src) 1420 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1421 for (unsigned j = 0; j != CurIdx; ++j) 1422 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1423 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1424 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1425 1426 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1427 RHS = EI->getVectorOperand(); 1428 VIsUndefShuffle = false; 1429 } 1430 if (!Args.empty()) { 1431 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1432 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1433 ++CurIdx; 1434 continue; 1435 } 1436 } 1437 } 1438 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1439 "vecinit"); 1440 VIsUndefShuffle = false; 1441 ++CurIdx; 1442 continue; 1443 } 1444 1445 unsigned InitElts = VVT->getNumElements(); 1446 1447 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1448 // input is the same width as the vector being constructed, generate an 1449 // optimized shuffle of the swizzle input into the result. 1450 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1451 if (isa<ExtVectorElementExpr>(IE)) { 1452 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1453 Value *SVOp = SVI->getOperand(0); 1454 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1455 1456 if (OpTy->getNumElements() == ResElts) { 1457 for (unsigned j = 0; j != CurIdx; ++j) { 1458 // If the current vector initializer is a shuffle with undef, merge 1459 // this shuffle directly into it. 1460 if (VIsUndefShuffle) { 1461 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1462 CGF.Int32Ty)); 1463 } else { 1464 Args.push_back(Builder.getInt32(j)); 1465 } 1466 } 1467 for (unsigned j = 0, je = InitElts; j != je; ++j) 1468 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1469 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1470 1471 if (VIsUndefShuffle) 1472 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1473 1474 Init = SVOp; 1475 } 1476 } 1477 1478 // Extend init to result vector length, and then shuffle its contribution 1479 // to the vector initializer into V. 1480 if (Args.empty()) { 1481 for (unsigned j = 0; j != InitElts; ++j) 1482 Args.push_back(Builder.getInt32(j)); 1483 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1484 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1485 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1486 Mask, "vext"); 1487 1488 Args.clear(); 1489 for (unsigned j = 0; j != CurIdx; ++j) 1490 Args.push_back(Builder.getInt32(j)); 1491 for (unsigned j = 0; j != InitElts; ++j) 1492 Args.push_back(Builder.getInt32(j+Offset)); 1493 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1494 } 1495 1496 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1497 // merging subsequent shuffles into this one. 1498 if (CurIdx == 0) 1499 std::swap(V, Init); 1500 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1501 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1502 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1503 CurIdx += InitElts; 1504 } 1505 1506 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1507 // Emit remaining default initializers. 1508 llvm::Type *EltTy = VType->getElementType(); 1509 1510 // Emit remaining default initializers 1511 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1512 Value *Idx = Builder.getInt32(CurIdx); 1513 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1514 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1515 } 1516 return V; 1517 } 1518 1519 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1520 const Expr *E = CE->getSubExpr(); 1521 1522 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1523 return false; 1524 1525 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1526 // We always assume that 'this' is never null. 1527 return false; 1528 } 1529 1530 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1531 // And that glvalue casts are never null. 1532 if (ICE->getValueKind() != VK_RValue) 1533 return false; 1534 } 1535 1536 return true; 1537 } 1538 1539 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1540 // have to handle a more broad range of conversions than explicit casts, as they 1541 // handle things like function to ptr-to-function decay etc. 1542 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1543 Expr *E = CE->getSubExpr(); 1544 QualType DestTy = CE->getType(); 1545 CastKind Kind = CE->getCastKind(); 1546 1547 // These cases are generally not written to ignore the result of 1548 // evaluating their sub-expressions, so we clear this now. 1549 bool Ignored = TestAndClearIgnoreResultAssign(); 1550 1551 // Since almost all cast kinds apply to scalars, this switch doesn't have 1552 // a default case, so the compiler will warn on a missing case. The cases 1553 // are in the same order as in the CastKind enum. 1554 switch (Kind) { 1555 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1556 case CK_BuiltinFnToFnPtr: 1557 llvm_unreachable("builtin functions are handled elsewhere"); 1558 1559 case CK_LValueBitCast: 1560 case CK_ObjCObjectLValueCast: { 1561 Address Addr = EmitLValue(E).getAddress(); 1562 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1563 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1564 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1565 } 1566 1567 case CK_CPointerToObjCPointerCast: 1568 case CK_BlockPointerToObjCPointerCast: 1569 case CK_AnyPointerToBlockPointerCast: 1570 case CK_BitCast: { 1571 Value *Src = Visit(const_cast<Expr*>(E)); 1572 llvm::Type *SrcTy = Src->getType(); 1573 llvm::Type *DstTy = ConvertType(DestTy); 1574 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1575 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1576 llvm_unreachable("wrong cast for pointers in different address spaces" 1577 "(must be an address space cast)!"); 1578 } 1579 1580 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1581 if (auto PT = DestTy->getAs<PointerType>()) 1582 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1583 /*MayBeNull=*/true, 1584 CodeGenFunction::CFITCK_UnrelatedCast, 1585 CE->getLocStart()); 1586 } 1587 1588 return Builder.CreateBitCast(Src, DstTy); 1589 } 1590 case CK_AddressSpaceConversion: { 1591 Expr::EvalResult Result; 1592 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 1593 Result.Val.isNullPointer()) { 1594 // If E has side effect, it is emitted even if its final result is a 1595 // null pointer. In that case, a DCE pass should be able to 1596 // eliminate the useless instructions emitted during translating E. 1597 if (Result.HasSideEffects) 1598 Visit(E); 1599 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 1600 ConvertType(DestTy)), DestTy); 1601 } 1602 // Since target may map different address spaces in AST to the same address 1603 // space, an address space conversion may end up as a bitcast. 1604 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 1605 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 1606 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 1607 } 1608 case CK_AtomicToNonAtomic: 1609 case CK_NonAtomicToAtomic: 1610 case CK_NoOp: 1611 case CK_UserDefinedConversion: 1612 return Visit(const_cast<Expr*>(E)); 1613 1614 case CK_BaseToDerived: { 1615 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1616 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1617 1618 Address Base = CGF.EmitPointerWithAlignment(E); 1619 Address Derived = 1620 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 1621 CE->path_begin(), CE->path_end(), 1622 CGF.ShouldNullCheckClassCastValue(CE)); 1623 1624 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1625 // performed and the object is not of the derived type. 1626 if (CGF.sanitizePerformTypeCheck()) 1627 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1628 Derived.getPointer(), DestTy->getPointeeType()); 1629 1630 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 1631 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), 1632 Derived.getPointer(), 1633 /*MayBeNull=*/true, 1634 CodeGenFunction::CFITCK_DerivedCast, 1635 CE->getLocStart()); 1636 1637 return Derived.getPointer(); 1638 } 1639 case CK_UncheckedDerivedToBase: 1640 case CK_DerivedToBase: { 1641 // The EmitPointerWithAlignment path does this fine; just discard 1642 // the alignment. 1643 return CGF.EmitPointerWithAlignment(CE).getPointer(); 1644 } 1645 1646 case CK_Dynamic: { 1647 Address V = CGF.EmitPointerWithAlignment(E); 1648 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1649 return CGF.EmitDynamicCast(V, DCE); 1650 } 1651 1652 case CK_ArrayToPointerDecay: 1653 return CGF.EmitArrayToPointerDecay(E).getPointer(); 1654 case CK_FunctionToPointerDecay: 1655 return EmitLValue(E).getPointer(); 1656 1657 case CK_NullToPointer: 1658 if (MustVisitNullValue(E)) 1659 (void) Visit(E); 1660 1661 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 1662 DestTy); 1663 1664 case CK_NullToMemberPointer: { 1665 if (MustVisitNullValue(E)) 1666 (void) Visit(E); 1667 1668 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1669 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1670 } 1671 1672 case CK_ReinterpretMemberPointer: 1673 case CK_BaseToDerivedMemberPointer: 1674 case CK_DerivedToBaseMemberPointer: { 1675 Value *Src = Visit(E); 1676 1677 // Note that the AST doesn't distinguish between checked and 1678 // unchecked member pointer conversions, so we always have to 1679 // implement checked conversions here. This is inefficient when 1680 // actual control flow may be required in order to perform the 1681 // check, which it is for data member pointers (but not member 1682 // function pointers on Itanium and ARM). 1683 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1684 } 1685 1686 case CK_ARCProduceObject: 1687 return CGF.EmitARCRetainScalarExpr(E); 1688 case CK_ARCConsumeObject: 1689 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1690 case CK_ARCReclaimReturnedObject: 1691 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 1692 case CK_ARCExtendBlockObject: 1693 return CGF.EmitARCExtendBlockObject(E); 1694 1695 case CK_CopyAndAutoreleaseBlockObject: 1696 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1697 1698 case CK_FloatingRealToComplex: 1699 case CK_FloatingComplexCast: 1700 case CK_IntegralRealToComplex: 1701 case CK_IntegralComplexCast: 1702 case CK_IntegralComplexToFloatingComplex: 1703 case CK_FloatingComplexToIntegralComplex: 1704 case CK_ConstructorConversion: 1705 case CK_ToUnion: 1706 llvm_unreachable("scalar cast to non-scalar value"); 1707 1708 case CK_LValueToRValue: 1709 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1710 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1711 return Visit(const_cast<Expr*>(E)); 1712 1713 case CK_IntegralToPointer: { 1714 Value *Src = Visit(const_cast<Expr*>(E)); 1715 1716 // First, convert to the correct width so that we control the kind of 1717 // extension. 1718 auto DestLLVMTy = ConvertType(DestTy); 1719 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 1720 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1721 llvm::Value* IntResult = 1722 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1723 1724 return Builder.CreateIntToPtr(IntResult, DestLLVMTy); 1725 } 1726 case CK_PointerToIntegral: 1727 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1728 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1729 1730 case CK_ToVoid: { 1731 CGF.EmitIgnoredExpr(E); 1732 return nullptr; 1733 } 1734 case CK_VectorSplat: { 1735 llvm::Type *DstTy = ConvertType(DestTy); 1736 Value *Elt = Visit(const_cast<Expr*>(E)); 1737 // Splat the element across to all elements 1738 unsigned NumElements = DstTy->getVectorNumElements(); 1739 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 1740 } 1741 1742 case CK_IntegralCast: 1743 case CK_IntegralToFloating: 1744 case CK_FloatingToIntegral: 1745 case CK_FloatingCast: 1746 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1747 CE->getExprLoc()); 1748 case CK_BooleanToSignedIntegral: 1749 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1750 CE->getExprLoc(), 1751 /*TreatBooleanAsSigned=*/true); 1752 case CK_IntegralToBoolean: 1753 return EmitIntToBoolConversion(Visit(E)); 1754 case CK_PointerToBoolean: 1755 return EmitPointerToBoolConversion(Visit(E), E->getType()); 1756 case CK_FloatingToBoolean: 1757 return EmitFloatToBoolConversion(Visit(E)); 1758 case CK_MemberPointerToBoolean: { 1759 llvm::Value *MemPtr = Visit(E); 1760 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1761 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1762 } 1763 1764 case CK_FloatingComplexToReal: 1765 case CK_IntegralComplexToReal: 1766 return CGF.EmitComplexExpr(E, false, true).first; 1767 1768 case CK_FloatingComplexToBoolean: 1769 case CK_IntegralComplexToBoolean: { 1770 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1771 1772 // TODO: kill this function off, inline appropriate case here 1773 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 1774 CE->getExprLoc()); 1775 } 1776 1777 case CK_ZeroToOCLEvent: { 1778 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); 1779 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1780 } 1781 1782 case CK_ZeroToOCLQueue: { 1783 assert(DestTy->isQueueT() && "CK_ZeroToOCLQueue cast on non queue_t type"); 1784 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1785 } 1786 1787 case CK_IntToOCLSampler: 1788 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 1789 1790 } // end of switch 1791 1792 llvm_unreachable("unknown scalar cast"); 1793 } 1794 1795 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1796 CodeGenFunction::StmtExprEvaluation eval(CGF); 1797 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1798 !E->getType()->isVoidType()); 1799 if (!RetAlloca.isValid()) 1800 return nullptr; 1801 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 1802 E->getExprLoc()); 1803 } 1804 1805 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1806 CGF.enterFullExpression(E); 1807 CodeGenFunction::RunCleanupsScope Scope(CGF); 1808 Value *V = Visit(E->getSubExpr()); 1809 // Defend against dominance problems caused by jumps out of expression 1810 // evaluation through the shared cleanup block. 1811 Scope.ForceCleanup({&V}); 1812 return V; 1813 } 1814 1815 //===----------------------------------------------------------------------===// 1816 // Unary Operators 1817 //===----------------------------------------------------------------------===// 1818 1819 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 1820 llvm::Value *InVal, bool IsInc) { 1821 BinOpInfo BinOp; 1822 BinOp.LHS = InVal; 1823 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 1824 BinOp.Ty = E->getType(); 1825 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 1826 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 1827 BinOp.E = E; 1828 return BinOp; 1829 } 1830 1831 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 1832 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 1833 llvm::Value *Amount = 1834 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 1835 StringRef Name = IsInc ? "inc" : "dec"; 1836 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1837 case LangOptions::SOB_Defined: 1838 return Builder.CreateAdd(InVal, Amount, Name); 1839 case LangOptions::SOB_Undefined: 1840 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 1841 return Builder.CreateNSWAdd(InVal, Amount, Name); 1842 // Fall through. 1843 case LangOptions::SOB_Trapping: 1844 if (IsWidenedIntegerOp(CGF.getContext(), E->getSubExpr())) 1845 return Builder.CreateNSWAdd(InVal, Amount, Name); 1846 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 1847 } 1848 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1849 } 1850 1851 llvm::Value * 1852 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1853 bool isInc, bool isPre) { 1854 1855 QualType type = E->getSubExpr()->getType(); 1856 llvm::PHINode *atomicPHI = nullptr; 1857 llvm::Value *value; 1858 llvm::Value *input; 1859 1860 int amount = (isInc ? 1 : -1); 1861 bool isSubtraction = !isInc; 1862 1863 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1864 type = atomicTy->getValueType(); 1865 if (isInc && type->isBooleanType()) { 1866 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1867 if (isPre) { 1868 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 1869 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 1870 return Builder.getTrue(); 1871 } 1872 // For atomic bool increment, we just store true and return it for 1873 // preincrement, do an atomic swap with true for postincrement 1874 return Builder.CreateAtomicRMW( 1875 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, 1876 llvm::AtomicOrdering::SequentiallyConsistent); 1877 } 1878 // Special case for atomic increment / decrement on integers, emit 1879 // atomicrmw instructions. We skip this if we want to be doing overflow 1880 // checking, and fall into the slow path with the atomic cmpxchg loop. 1881 if (!type->isBooleanType() && type->isIntegerType() && 1882 !(type->isUnsignedIntegerType() && 1883 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 1884 CGF.getLangOpts().getSignedOverflowBehavior() != 1885 LangOptions::SOB_Trapping) { 1886 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1887 llvm::AtomicRMWInst::Sub; 1888 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1889 llvm::Instruction::Sub; 1890 llvm::Value *amt = CGF.EmitToMemory( 1891 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1892 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1893 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); 1894 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1895 } 1896 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1897 input = value; 1898 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1899 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1900 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1901 value = CGF.EmitToMemory(value, type); 1902 Builder.CreateBr(opBB); 1903 Builder.SetInsertPoint(opBB); 1904 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1905 atomicPHI->addIncoming(value, startBB); 1906 value = atomicPHI; 1907 } else { 1908 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1909 input = value; 1910 } 1911 1912 // Special case of integer increment that we have to check first: bool++. 1913 // Due to promotion rules, we get: 1914 // bool++ -> bool = bool + 1 1915 // -> bool = (int)bool + 1 1916 // -> bool = ((int)bool + 1 != 0) 1917 // An interesting aspect of this is that increment is always true. 1918 // Decrement does not have this property. 1919 if (isInc && type->isBooleanType()) { 1920 value = Builder.getTrue(); 1921 1922 // Most common case by far: integer increment. 1923 } else if (type->isIntegerType()) { 1924 // Note that signed integer inc/dec with width less than int can't 1925 // overflow because of promotion rules; we're just eliding a few steps here. 1926 bool CanOverflow = value->getType()->getIntegerBitWidth() >= 1927 CGF.IntTy->getIntegerBitWidth(); 1928 if (CanOverflow && type->isSignedIntegerOrEnumerationType()) { 1929 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 1930 } else if (CanOverflow && type->isUnsignedIntegerType() && 1931 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 1932 value = 1933 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 1934 } else { 1935 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1936 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1937 } 1938 1939 // Next most common: pointer increment. 1940 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1941 QualType type = ptr->getPointeeType(); 1942 1943 // VLA types don't have constant size. 1944 if (const VariableArrayType *vla 1945 = CGF.getContext().getAsVariableArrayType(type)) { 1946 llvm::Value *numElts = CGF.getVLASize(vla).first; 1947 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1948 if (CGF.getLangOpts().isSignedOverflowDefined()) 1949 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1950 else 1951 value = CGF.EmitCheckedInBoundsGEP( 1952 value, numElts, /*SignedIndices=*/false, isSubtraction, 1953 E->getExprLoc(), "vla.inc"); 1954 1955 // Arithmetic on function pointers (!) is just +-1. 1956 } else if (type->isFunctionType()) { 1957 llvm::Value *amt = Builder.getInt32(amount); 1958 1959 value = CGF.EmitCastToVoidPtr(value); 1960 if (CGF.getLangOpts().isSignedOverflowDefined()) 1961 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1962 else 1963 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 1964 isSubtraction, E->getExprLoc(), 1965 "incdec.funcptr"); 1966 value = Builder.CreateBitCast(value, input->getType()); 1967 1968 // For everything else, we can just do a simple increment. 1969 } else { 1970 llvm::Value *amt = Builder.getInt32(amount); 1971 if (CGF.getLangOpts().isSignedOverflowDefined()) 1972 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1973 else 1974 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 1975 isSubtraction, E->getExprLoc(), 1976 "incdec.ptr"); 1977 } 1978 1979 // Vector increment/decrement. 1980 } else if (type->isVectorType()) { 1981 if (type->hasIntegerRepresentation()) { 1982 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1983 1984 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1985 } else { 1986 value = Builder.CreateFAdd( 1987 value, 1988 llvm::ConstantFP::get(value->getType(), amount), 1989 isInc ? "inc" : "dec"); 1990 } 1991 1992 // Floating point. 1993 } else if (type->isRealFloatingType()) { 1994 // Add the inc/dec to the real part. 1995 llvm::Value *amt; 1996 1997 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1998 // Another special case: half FP increment should be done via float 1999 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 2000 value = Builder.CreateCall( 2001 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2002 CGF.CGM.FloatTy), 2003 input, "incdec.conv"); 2004 } else { 2005 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2006 } 2007 } 2008 2009 if (value->getType()->isFloatTy()) 2010 amt = llvm::ConstantFP::get(VMContext, 2011 llvm::APFloat(static_cast<float>(amount))); 2012 else if (value->getType()->isDoubleTy()) 2013 amt = llvm::ConstantFP::get(VMContext, 2014 llvm::APFloat(static_cast<double>(amount))); 2015 else { 2016 // Remaining types are Half, LongDouble or __float128. Convert from float. 2017 llvm::APFloat F(static_cast<float>(amount)); 2018 bool ignored; 2019 const llvm::fltSemantics *FS; 2020 // Don't use getFloatTypeSemantics because Half isn't 2021 // necessarily represented using the "half" LLVM type. 2022 if (value->getType()->isFP128Ty()) 2023 FS = &CGF.getTarget().getFloat128Format(); 2024 else if (value->getType()->isHalfTy()) 2025 FS = &CGF.getTarget().getHalfFormat(); 2026 else 2027 FS = &CGF.getTarget().getLongDoubleFormat(); 2028 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2029 amt = llvm::ConstantFP::get(VMContext, F); 2030 } 2031 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2032 2033 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2034 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 2035 value = Builder.CreateCall( 2036 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2037 CGF.CGM.FloatTy), 2038 value, "incdec.conv"); 2039 } else { 2040 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2041 } 2042 } 2043 2044 // Objective-C pointer types. 2045 } else { 2046 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2047 value = CGF.EmitCastToVoidPtr(value); 2048 2049 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2050 if (!isInc) size = -size; 2051 llvm::Value *sizeValue = 2052 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2053 2054 if (CGF.getLangOpts().isSignedOverflowDefined()) 2055 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2056 else 2057 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2058 /*SignedIndices=*/false, isSubtraction, 2059 E->getExprLoc(), "incdec.objptr"); 2060 value = Builder.CreateBitCast(value, input->getType()); 2061 } 2062 2063 if (atomicPHI) { 2064 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2065 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2066 auto Pair = CGF.EmitAtomicCompareExchange( 2067 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2068 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2069 llvm::Value *success = Pair.second; 2070 atomicPHI->addIncoming(old, opBB); 2071 Builder.CreateCondBr(success, contBB, opBB); 2072 Builder.SetInsertPoint(contBB); 2073 return isPre ? value : input; 2074 } 2075 2076 // Store the updated result through the lvalue. 2077 if (LV.isBitField()) 2078 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2079 else 2080 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2081 2082 // If this is a postinc, return the value read from memory, otherwise use the 2083 // updated value. 2084 return isPre ? value : input; 2085 } 2086 2087 2088 2089 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2090 TestAndClearIgnoreResultAssign(); 2091 // Emit unary minus with EmitSub so we handle overflow cases etc. 2092 BinOpInfo BinOp; 2093 BinOp.RHS = Visit(E->getSubExpr()); 2094 2095 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 2096 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 2097 else 2098 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2099 BinOp.Ty = E->getType(); 2100 BinOp.Opcode = BO_Sub; 2101 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2102 BinOp.E = E; 2103 return EmitSub(BinOp); 2104 } 2105 2106 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2107 TestAndClearIgnoreResultAssign(); 2108 Value *Op = Visit(E->getSubExpr()); 2109 return Builder.CreateNot(Op, "neg"); 2110 } 2111 2112 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2113 // Perform vector logical not on comparison with zero vector. 2114 if (E->getType()->isExtVectorType()) { 2115 Value *Oper = Visit(E->getSubExpr()); 2116 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2117 Value *Result; 2118 if (Oper->getType()->isFPOrFPVectorTy()) 2119 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2120 else 2121 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2122 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2123 } 2124 2125 // Compare operand to zero. 2126 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2127 2128 // Invert value. 2129 // TODO: Could dynamically modify easy computations here. For example, if 2130 // the operand is an icmp ne, turn into icmp eq. 2131 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2132 2133 // ZExt result to the expr type. 2134 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2135 } 2136 2137 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2138 // Try folding the offsetof to a constant. 2139 llvm::APSInt Value; 2140 if (E->EvaluateAsInt(Value, CGF.getContext())) 2141 return Builder.getInt(Value); 2142 2143 // Loop over the components of the offsetof to compute the value. 2144 unsigned n = E->getNumComponents(); 2145 llvm::Type* ResultType = ConvertType(E->getType()); 2146 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2147 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2148 for (unsigned i = 0; i != n; ++i) { 2149 OffsetOfNode ON = E->getComponent(i); 2150 llvm::Value *Offset = nullptr; 2151 switch (ON.getKind()) { 2152 case OffsetOfNode::Array: { 2153 // Compute the index 2154 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2155 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2156 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2157 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2158 2159 // Save the element type 2160 CurrentType = 2161 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2162 2163 // Compute the element size 2164 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2165 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2166 2167 // Multiply out to compute the result 2168 Offset = Builder.CreateMul(Idx, ElemSize); 2169 break; 2170 } 2171 2172 case OffsetOfNode::Field: { 2173 FieldDecl *MemberDecl = ON.getField(); 2174 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2175 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2176 2177 // Compute the index of the field in its parent. 2178 unsigned i = 0; 2179 // FIXME: It would be nice if we didn't have to loop here! 2180 for (RecordDecl::field_iterator Field = RD->field_begin(), 2181 FieldEnd = RD->field_end(); 2182 Field != FieldEnd; ++Field, ++i) { 2183 if (*Field == MemberDecl) 2184 break; 2185 } 2186 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2187 2188 // Compute the offset to the field 2189 int64_t OffsetInt = RL.getFieldOffset(i) / 2190 CGF.getContext().getCharWidth(); 2191 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2192 2193 // Save the element type. 2194 CurrentType = MemberDecl->getType(); 2195 break; 2196 } 2197 2198 case OffsetOfNode::Identifier: 2199 llvm_unreachable("dependent __builtin_offsetof"); 2200 2201 case OffsetOfNode::Base: { 2202 if (ON.getBase()->isVirtual()) { 2203 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2204 continue; 2205 } 2206 2207 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2208 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2209 2210 // Save the element type. 2211 CurrentType = ON.getBase()->getType(); 2212 2213 // Compute the offset to the base. 2214 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2215 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2216 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2217 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2218 break; 2219 } 2220 } 2221 Result = Builder.CreateAdd(Result, Offset); 2222 } 2223 return Result; 2224 } 2225 2226 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2227 /// argument of the sizeof expression as an integer. 2228 Value * 2229 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2230 const UnaryExprOrTypeTraitExpr *E) { 2231 QualType TypeToSize = E->getTypeOfArgument(); 2232 if (E->getKind() == UETT_SizeOf) { 2233 if (const VariableArrayType *VAT = 2234 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2235 if (E->isArgumentType()) { 2236 // sizeof(type) - make sure to emit the VLA size. 2237 CGF.EmitVariablyModifiedType(TypeToSize); 2238 } else { 2239 // C99 6.5.3.4p2: If the argument is an expression of type 2240 // VLA, it is evaluated. 2241 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2242 } 2243 2244 QualType eltType; 2245 llvm::Value *numElts; 2246 std::tie(numElts, eltType) = CGF.getVLASize(VAT); 2247 2248 llvm::Value *size = numElts; 2249 2250 // Scale the number of non-VLA elements by the non-VLA element size. 2251 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 2252 if (!eltSize.isOne()) 2253 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 2254 2255 return size; 2256 } 2257 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2258 auto Alignment = 2259 CGF.getContext() 2260 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2261 E->getTypeOfArgument()->getPointeeType())) 2262 .getQuantity(); 2263 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2264 } 2265 2266 // If this isn't sizeof(vla), the result must be constant; use the constant 2267 // folding logic so we don't have to duplicate it here. 2268 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2269 } 2270 2271 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2272 Expr *Op = E->getSubExpr(); 2273 if (Op->getType()->isAnyComplexType()) { 2274 // If it's an l-value, load through the appropriate subobject l-value. 2275 // Note that we have to ask E because Op might be an l-value that 2276 // this won't work for, e.g. an Obj-C property. 2277 if (E->isGLValue()) 2278 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2279 E->getExprLoc()).getScalarVal(); 2280 2281 // Otherwise, calculate and project. 2282 return CGF.EmitComplexExpr(Op, false, true).first; 2283 } 2284 2285 return Visit(Op); 2286 } 2287 2288 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2289 Expr *Op = E->getSubExpr(); 2290 if (Op->getType()->isAnyComplexType()) { 2291 // If it's an l-value, load through the appropriate subobject l-value. 2292 // Note that we have to ask E because Op might be an l-value that 2293 // this won't work for, e.g. an Obj-C property. 2294 if (Op->isGLValue()) 2295 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2296 E->getExprLoc()).getScalarVal(); 2297 2298 // Otherwise, calculate and project. 2299 return CGF.EmitComplexExpr(Op, true, false).second; 2300 } 2301 2302 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2303 // effects are evaluated, but not the actual value. 2304 if (Op->isGLValue()) 2305 CGF.EmitLValue(Op); 2306 else 2307 CGF.EmitScalarExpr(Op, true); 2308 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2309 } 2310 2311 //===----------------------------------------------------------------------===// 2312 // Binary Operators 2313 //===----------------------------------------------------------------------===// 2314 2315 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2316 TestAndClearIgnoreResultAssign(); 2317 BinOpInfo Result; 2318 Result.LHS = Visit(E->getLHS()); 2319 Result.RHS = Visit(E->getRHS()); 2320 Result.Ty = E->getType(); 2321 Result.Opcode = E->getOpcode(); 2322 Result.FPFeatures = E->getFPFeatures(); 2323 Result.E = E; 2324 return Result; 2325 } 2326 2327 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2328 const CompoundAssignOperator *E, 2329 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2330 Value *&Result) { 2331 QualType LHSTy = E->getLHS()->getType(); 2332 BinOpInfo OpInfo; 2333 2334 if (E->getComputationResultType()->isAnyComplexType()) 2335 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2336 2337 // Emit the RHS first. __block variables need to have the rhs evaluated 2338 // first, plus this should improve codegen a little. 2339 OpInfo.RHS = Visit(E->getRHS()); 2340 OpInfo.Ty = E->getComputationResultType(); 2341 OpInfo.Opcode = E->getOpcode(); 2342 OpInfo.FPFeatures = E->getFPFeatures(); 2343 OpInfo.E = E; 2344 // Load/convert the LHS. 2345 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2346 2347 llvm::PHINode *atomicPHI = nullptr; 2348 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2349 QualType type = atomicTy->getValueType(); 2350 if (!type->isBooleanType() && type->isIntegerType() && 2351 !(type->isUnsignedIntegerType() && 2352 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2353 CGF.getLangOpts().getSignedOverflowBehavior() != 2354 LangOptions::SOB_Trapping) { 2355 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2356 switch (OpInfo.Opcode) { 2357 // We don't have atomicrmw operands for *, %, /, <<, >> 2358 case BO_MulAssign: case BO_DivAssign: 2359 case BO_RemAssign: 2360 case BO_ShlAssign: 2361 case BO_ShrAssign: 2362 break; 2363 case BO_AddAssign: 2364 aop = llvm::AtomicRMWInst::Add; 2365 break; 2366 case BO_SubAssign: 2367 aop = llvm::AtomicRMWInst::Sub; 2368 break; 2369 case BO_AndAssign: 2370 aop = llvm::AtomicRMWInst::And; 2371 break; 2372 case BO_XorAssign: 2373 aop = llvm::AtomicRMWInst::Xor; 2374 break; 2375 case BO_OrAssign: 2376 aop = llvm::AtomicRMWInst::Or; 2377 break; 2378 default: 2379 llvm_unreachable("Invalid compound assignment type"); 2380 } 2381 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2382 llvm::Value *amt = CGF.EmitToMemory( 2383 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2384 E->getExprLoc()), 2385 LHSTy); 2386 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2387 llvm::AtomicOrdering::SequentiallyConsistent); 2388 return LHSLV; 2389 } 2390 } 2391 // FIXME: For floating point types, we should be saving and restoring the 2392 // floating point environment in the loop. 2393 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2394 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2395 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2396 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2397 Builder.CreateBr(opBB); 2398 Builder.SetInsertPoint(opBB); 2399 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2400 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2401 OpInfo.LHS = atomicPHI; 2402 } 2403 else 2404 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2405 2406 SourceLocation Loc = E->getExprLoc(); 2407 OpInfo.LHS = 2408 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2409 2410 // Expand the binary operator. 2411 Result = (this->*Func)(OpInfo); 2412 2413 // Convert the result back to the LHS type. 2414 Result = 2415 EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc); 2416 2417 if (atomicPHI) { 2418 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2419 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2420 auto Pair = CGF.EmitAtomicCompareExchange( 2421 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2422 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2423 llvm::Value *success = Pair.second; 2424 atomicPHI->addIncoming(old, opBB); 2425 Builder.CreateCondBr(success, contBB, opBB); 2426 Builder.SetInsertPoint(contBB); 2427 return LHSLV; 2428 } 2429 2430 // Store the result value into the LHS lvalue. Bit-fields are handled 2431 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2432 // 'An assignment expression has the value of the left operand after the 2433 // assignment...'. 2434 if (LHSLV.isBitField()) 2435 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2436 else 2437 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2438 2439 return LHSLV; 2440 } 2441 2442 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2443 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2444 bool Ignore = TestAndClearIgnoreResultAssign(); 2445 Value *RHS; 2446 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2447 2448 // If the result is clearly ignored, return now. 2449 if (Ignore) 2450 return nullptr; 2451 2452 // The result of an assignment in C is the assigned r-value. 2453 if (!CGF.getLangOpts().CPlusPlus) 2454 return RHS; 2455 2456 // If the lvalue is non-volatile, return the computed value of the assignment. 2457 if (!LHS.isVolatileQualified()) 2458 return RHS; 2459 2460 // Otherwise, reload the value. 2461 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2462 } 2463 2464 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2465 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2466 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2467 2468 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2469 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2470 SanitizerKind::IntegerDivideByZero)); 2471 } 2472 2473 const auto *BO = cast<BinaryOperator>(Ops.E); 2474 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2475 Ops.Ty->hasSignedIntegerRepresentation() && 2476 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 2477 Ops.mayHaveIntegerOverflow()) { 2478 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2479 2480 llvm::Value *IntMin = 2481 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2482 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2483 2484 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2485 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2486 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2487 Checks.push_back( 2488 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2489 } 2490 2491 if (Checks.size() > 0) 2492 EmitBinOpCheck(Checks, Ops); 2493 } 2494 2495 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2496 { 2497 CodeGenFunction::SanitizerScope SanScope(&CGF); 2498 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2499 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2500 Ops.Ty->isIntegerType() && 2501 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 2502 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2503 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2504 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2505 Ops.Ty->isRealFloatingType() && 2506 Ops.mayHaveFloatDivisionByZero()) { 2507 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2508 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2509 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2510 Ops); 2511 } 2512 } 2513 2514 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2515 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2516 if (CGF.getLangOpts().OpenCL && 2517 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 2518 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 2519 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 2520 // build option allows an application to specify that single precision 2521 // floating-point divide (x/y and 1/x) and sqrt used in the program 2522 // source are correctly rounded. 2523 llvm::Type *ValTy = Val->getType(); 2524 if (ValTy->isFloatTy() || 2525 (isa<llvm::VectorType>(ValTy) && 2526 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2527 CGF.SetFPAccuracy(Val, 2.5); 2528 } 2529 return Val; 2530 } 2531 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2532 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2533 else 2534 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2535 } 2536 2537 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2538 // Rem in C can't be a floating point type: C99 6.5.5p2. 2539 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2540 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2541 Ops.Ty->isIntegerType() && 2542 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 2543 CodeGenFunction::SanitizerScope SanScope(&CGF); 2544 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2545 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2546 } 2547 2548 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2549 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2550 else 2551 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2552 } 2553 2554 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2555 unsigned IID; 2556 unsigned OpID = 0; 2557 2558 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2559 switch (Ops.Opcode) { 2560 case BO_Add: 2561 case BO_AddAssign: 2562 OpID = 1; 2563 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2564 llvm::Intrinsic::uadd_with_overflow; 2565 break; 2566 case BO_Sub: 2567 case BO_SubAssign: 2568 OpID = 2; 2569 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2570 llvm::Intrinsic::usub_with_overflow; 2571 break; 2572 case BO_Mul: 2573 case BO_MulAssign: 2574 OpID = 3; 2575 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2576 llvm::Intrinsic::umul_with_overflow; 2577 break; 2578 default: 2579 llvm_unreachable("Unsupported operation for overflow detection"); 2580 } 2581 OpID <<= 1; 2582 if (isSigned) 2583 OpID |= 1; 2584 2585 CodeGenFunction::SanitizerScope SanScope(&CGF); 2586 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2587 2588 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2589 2590 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 2591 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2592 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2593 2594 // Handle overflow with llvm.trap if no custom handler has been specified. 2595 const std::string *handlerName = 2596 &CGF.getLangOpts().OverflowHandler; 2597 if (handlerName->empty()) { 2598 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2599 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2600 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 2601 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 2602 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 2603 : SanitizerKind::UnsignedIntegerOverflow; 2604 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 2605 } else 2606 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2607 return result; 2608 } 2609 2610 // Branch in case of overflow. 2611 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2612 llvm::BasicBlock *continueBB = 2613 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 2614 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2615 2616 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2617 2618 // If an overflow handler is set, then we want to call it and then use its 2619 // result, if it returns. 2620 Builder.SetInsertPoint(overflowBB); 2621 2622 // Get the overflow handler. 2623 llvm::Type *Int8Ty = CGF.Int8Ty; 2624 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2625 llvm::FunctionType *handlerTy = 2626 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2627 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2628 2629 // Sign extend the args to 64-bit, so that we can use the same handler for 2630 // all types of overflow. 2631 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2632 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2633 2634 // Call the handler with the two arguments, the operation, and the size of 2635 // the result. 2636 llvm::Value *handlerArgs[] = { 2637 lhs, 2638 rhs, 2639 Builder.getInt8(OpID), 2640 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2641 }; 2642 llvm::Value *handlerResult = 2643 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2644 2645 // Truncate the result back to the desired size. 2646 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2647 Builder.CreateBr(continueBB); 2648 2649 Builder.SetInsertPoint(continueBB); 2650 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2651 phi->addIncoming(result, initialBB); 2652 phi->addIncoming(handlerResult, overflowBB); 2653 2654 return phi; 2655 } 2656 2657 /// Emit pointer + index arithmetic. 2658 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2659 const BinOpInfo &op, 2660 bool isSubtraction) { 2661 // Must have binary (not unary) expr here. Unary pointer 2662 // increment/decrement doesn't use this path. 2663 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2664 2665 Value *pointer = op.LHS; 2666 Expr *pointerOperand = expr->getLHS(); 2667 Value *index = op.RHS; 2668 Expr *indexOperand = expr->getRHS(); 2669 2670 // In a subtraction, the LHS is always the pointer. 2671 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2672 std::swap(pointer, index); 2673 std::swap(pointerOperand, indexOperand); 2674 } 2675 2676 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2677 2678 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2679 auto &DL = CGF.CGM.getDataLayout(); 2680 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 2681 if (width != DL.getTypeSizeInBits(PtrTy)) { 2682 // Zero-extend or sign-extend the pointer value according to 2683 // whether the index is signed or not. 2684 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned, 2685 "idx.ext"); 2686 } 2687 2688 // If this is subtraction, negate the index. 2689 if (isSubtraction) 2690 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2691 2692 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 2693 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2694 /*Accessed*/ false); 2695 2696 const PointerType *pointerType 2697 = pointerOperand->getType()->getAs<PointerType>(); 2698 if (!pointerType) { 2699 QualType objectType = pointerOperand->getType() 2700 ->castAs<ObjCObjectPointerType>() 2701 ->getPointeeType(); 2702 llvm::Value *objectSize 2703 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2704 2705 index = CGF.Builder.CreateMul(index, objectSize); 2706 2707 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2708 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2709 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2710 } 2711 2712 QualType elementType = pointerType->getPointeeType(); 2713 if (const VariableArrayType *vla 2714 = CGF.getContext().getAsVariableArrayType(elementType)) { 2715 // The element count here is the total number of non-VLA elements. 2716 llvm::Value *numElements = CGF.getVLASize(vla).first; 2717 2718 // Effectively, the multiply by the VLA size is part of the GEP. 2719 // GEP indexes are signed, and scaling an index isn't permitted to 2720 // signed-overflow, so we use the same semantics for our explicit 2721 // multiply. We suppress this if overflow is not undefined behavior. 2722 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2723 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2724 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2725 } else { 2726 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2727 pointer = 2728 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 2729 op.E->getExprLoc(), "add.ptr"); 2730 } 2731 return pointer; 2732 } 2733 2734 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2735 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2736 // future proof. 2737 if (elementType->isVoidType() || elementType->isFunctionType()) { 2738 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2739 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2740 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2741 } 2742 2743 if (CGF.getLangOpts().isSignedOverflowDefined()) 2744 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2745 2746 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 2747 op.E->getExprLoc(), "add.ptr"); 2748 } 2749 2750 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2751 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2752 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2753 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2754 // efficient operations. 2755 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2756 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2757 bool negMul, bool negAdd) { 2758 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2759 2760 Value *MulOp0 = MulOp->getOperand(0); 2761 Value *MulOp1 = MulOp->getOperand(1); 2762 if (negMul) { 2763 MulOp0 = 2764 Builder.CreateFSub( 2765 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2766 "neg"); 2767 } else if (negAdd) { 2768 Addend = 2769 Builder.CreateFSub( 2770 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2771 "neg"); 2772 } 2773 2774 Value *FMulAdd = Builder.CreateCall( 2775 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2776 {MulOp0, MulOp1, Addend}); 2777 MulOp->eraseFromParent(); 2778 2779 return FMulAdd; 2780 } 2781 2782 // Check whether it would be legal to emit an fmuladd intrinsic call to 2783 // represent op and if so, build the fmuladd. 2784 // 2785 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2786 // Does NOT check the type of the operation - it's assumed that this function 2787 // will be called from contexts where it's known that the type is contractable. 2788 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2789 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2790 bool isSub=false) { 2791 2792 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2793 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2794 "Only fadd/fsub can be the root of an fmuladd."); 2795 2796 // Check whether this op is marked as fusable. 2797 if (!op.FPFeatures.allowFPContractWithinStatement()) 2798 return nullptr; 2799 2800 // We have a potentially fusable op. Look for a mul on one of the operands. 2801 // Also, make sure that the mul result isn't used directly. In that case, 2802 // there's no point creating a muladd operation. 2803 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2804 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 2805 LHSBinOp->use_empty()) 2806 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2807 } 2808 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2809 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 2810 RHSBinOp->use_empty()) 2811 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2812 } 2813 2814 return nullptr; 2815 } 2816 2817 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2818 if (op.LHS->getType()->isPointerTy() || 2819 op.RHS->getType()->isPointerTy()) 2820 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 2821 2822 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2823 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2824 case LangOptions::SOB_Defined: 2825 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2826 case LangOptions::SOB_Undefined: 2827 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2828 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2829 // Fall through. 2830 case LangOptions::SOB_Trapping: 2831 if (CanElideOverflowCheck(CGF.getContext(), op)) 2832 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2833 return EmitOverflowCheckedBinOp(op); 2834 } 2835 } 2836 2837 if (op.Ty->isUnsignedIntegerType() && 2838 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 2839 !CanElideOverflowCheck(CGF.getContext(), op)) 2840 return EmitOverflowCheckedBinOp(op); 2841 2842 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2843 // Try to form an fmuladd. 2844 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2845 return FMulAdd; 2846 2847 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2848 return propagateFMFlags(V, op); 2849 } 2850 2851 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2852 } 2853 2854 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2855 // The LHS is always a pointer if either side is. 2856 if (!op.LHS->getType()->isPointerTy()) { 2857 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2858 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2859 case LangOptions::SOB_Defined: 2860 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2861 case LangOptions::SOB_Undefined: 2862 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2863 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2864 // Fall through. 2865 case LangOptions::SOB_Trapping: 2866 if (CanElideOverflowCheck(CGF.getContext(), op)) 2867 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2868 return EmitOverflowCheckedBinOp(op); 2869 } 2870 } 2871 2872 if (op.Ty->isUnsignedIntegerType() && 2873 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 2874 !CanElideOverflowCheck(CGF.getContext(), op)) 2875 return EmitOverflowCheckedBinOp(op); 2876 2877 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2878 // Try to form an fmuladd. 2879 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2880 return FMulAdd; 2881 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2882 return propagateFMFlags(V, op); 2883 } 2884 2885 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2886 } 2887 2888 // If the RHS is not a pointer, then we have normal pointer 2889 // arithmetic. 2890 if (!op.RHS->getType()->isPointerTy()) 2891 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 2892 2893 // Otherwise, this is a pointer subtraction. 2894 2895 // Do the raw subtraction part. 2896 llvm::Value *LHS 2897 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2898 llvm::Value *RHS 2899 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2900 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2901 2902 // Okay, figure out the element size. 2903 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2904 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2905 2906 llvm::Value *divisor = nullptr; 2907 2908 // For a variable-length array, this is going to be non-constant. 2909 if (const VariableArrayType *vla 2910 = CGF.getContext().getAsVariableArrayType(elementType)) { 2911 llvm::Value *numElements; 2912 std::tie(numElements, elementType) = CGF.getVLASize(vla); 2913 2914 divisor = numElements; 2915 2916 // Scale the number of non-VLA elements by the non-VLA element size. 2917 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2918 if (!eltSize.isOne()) 2919 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2920 2921 // For everything elese, we can just compute it, safe in the 2922 // assumption that Sema won't let anything through that we can't 2923 // safely compute the size of. 2924 } else { 2925 CharUnits elementSize; 2926 // Handle GCC extension for pointer arithmetic on void* and 2927 // function pointer types. 2928 if (elementType->isVoidType() || elementType->isFunctionType()) 2929 elementSize = CharUnits::One(); 2930 else 2931 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2932 2933 // Don't even emit the divide for element size of 1. 2934 if (elementSize.isOne()) 2935 return diffInChars; 2936 2937 divisor = CGF.CGM.getSize(elementSize); 2938 } 2939 2940 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2941 // pointer difference in C is only defined in the case where both operands 2942 // are pointing to elements of an array. 2943 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2944 } 2945 2946 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2947 llvm::IntegerType *Ty; 2948 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 2949 Ty = cast<llvm::IntegerType>(VT->getElementType()); 2950 else 2951 Ty = cast<llvm::IntegerType>(LHS->getType()); 2952 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 2953 } 2954 2955 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2956 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2957 // RHS to the same size as the LHS. 2958 Value *RHS = Ops.RHS; 2959 if (Ops.LHS->getType() != RHS->getType()) 2960 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2961 2962 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 2963 Ops.Ty->hasSignedIntegerRepresentation() && 2964 !CGF.getLangOpts().isSignedOverflowDefined(); 2965 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 2966 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2967 if (CGF.getLangOpts().OpenCL) 2968 RHS = 2969 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 2970 else if ((SanitizeBase || SanitizeExponent) && 2971 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2972 CodeGenFunction::SanitizerScope SanScope(&CGF); 2973 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 2974 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 2975 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 2976 2977 if (SanitizeExponent) { 2978 Checks.push_back( 2979 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 2980 } 2981 2982 if (SanitizeBase) { 2983 // Check whether we are shifting any non-zero bits off the top of the 2984 // integer. We only emit this check if exponent is valid - otherwise 2985 // instructions below will have undefined behavior themselves. 2986 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 2987 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2988 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 2989 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 2990 llvm::Value *PromotedWidthMinusOne = 2991 (RHS == Ops.RHS) ? WidthMinusOne 2992 : GetWidthMinusOneValue(Ops.LHS, RHS); 2993 CGF.EmitBlock(CheckShiftBase); 2994 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 2995 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 2996 /*NUW*/ true, /*NSW*/ true), 2997 "shl.check"); 2998 if (CGF.getLangOpts().CPlusPlus) { 2999 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3000 // Under C++11's rules, shifting a 1 bit into the sign bit is 3001 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3002 // define signed left shifts, so we use the C99 and C++11 rules there). 3003 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3004 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3005 } 3006 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3007 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3008 CGF.EmitBlock(Cont); 3009 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3010 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3011 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3012 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 3013 } 3014 3015 assert(!Checks.empty()); 3016 EmitBinOpCheck(Checks, Ops); 3017 } 3018 3019 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3020 } 3021 3022 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3023 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3024 // RHS to the same size as the LHS. 3025 Value *RHS = Ops.RHS; 3026 if (Ops.LHS->getType() != RHS->getType()) 3027 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3028 3029 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3030 if (CGF.getLangOpts().OpenCL) 3031 RHS = 3032 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 3033 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3034 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3035 CodeGenFunction::SanitizerScope SanScope(&CGF); 3036 llvm::Value *Valid = 3037 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3038 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3039 } 3040 3041 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3042 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3043 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3044 } 3045 3046 enum IntrinsicType { VCMPEQ, VCMPGT }; 3047 // return corresponding comparison intrinsic for given vector type 3048 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3049 BuiltinType::Kind ElemKind) { 3050 switch (ElemKind) { 3051 default: llvm_unreachable("unexpected element type"); 3052 case BuiltinType::Char_U: 3053 case BuiltinType::UChar: 3054 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3055 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3056 case BuiltinType::Char_S: 3057 case BuiltinType::SChar: 3058 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3059 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3060 case BuiltinType::UShort: 3061 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3062 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3063 case BuiltinType::Short: 3064 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3065 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3066 case BuiltinType::UInt: 3067 case BuiltinType::ULong: 3068 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3069 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3070 case BuiltinType::Int: 3071 case BuiltinType::Long: 3072 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3073 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3074 case BuiltinType::Float: 3075 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3076 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3077 } 3078 } 3079 3080 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3081 llvm::CmpInst::Predicate UICmpOpc, 3082 llvm::CmpInst::Predicate SICmpOpc, 3083 llvm::CmpInst::Predicate FCmpOpc) { 3084 TestAndClearIgnoreResultAssign(); 3085 Value *Result; 3086 QualType LHSTy = E->getLHS()->getType(); 3087 QualType RHSTy = E->getRHS()->getType(); 3088 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3089 assert(E->getOpcode() == BO_EQ || 3090 E->getOpcode() == BO_NE); 3091 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3092 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3093 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3094 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3095 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3096 Value *LHS = Visit(E->getLHS()); 3097 Value *RHS = Visit(E->getRHS()); 3098 3099 // If AltiVec, the comparison results in a numeric type, so we use 3100 // intrinsics comparing vectors and giving 0 or 1 as a result 3101 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3102 // constants for mapping CR6 register bits to predicate result 3103 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3104 3105 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3106 3107 // in several cases vector arguments order will be reversed 3108 Value *FirstVecArg = LHS, 3109 *SecondVecArg = RHS; 3110 3111 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 3112 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 3113 BuiltinType::Kind ElementKind = BTy->getKind(); 3114 3115 switch(E->getOpcode()) { 3116 default: llvm_unreachable("is not a comparison operation"); 3117 case BO_EQ: 3118 CR6 = CR6_LT; 3119 ID = GetIntrinsic(VCMPEQ, ElementKind); 3120 break; 3121 case BO_NE: 3122 CR6 = CR6_EQ; 3123 ID = GetIntrinsic(VCMPEQ, ElementKind); 3124 break; 3125 case BO_LT: 3126 CR6 = CR6_LT; 3127 ID = GetIntrinsic(VCMPGT, ElementKind); 3128 std::swap(FirstVecArg, SecondVecArg); 3129 break; 3130 case BO_GT: 3131 CR6 = CR6_LT; 3132 ID = GetIntrinsic(VCMPGT, ElementKind); 3133 break; 3134 case BO_LE: 3135 if (ElementKind == BuiltinType::Float) { 3136 CR6 = CR6_LT; 3137 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3138 std::swap(FirstVecArg, SecondVecArg); 3139 } 3140 else { 3141 CR6 = CR6_EQ; 3142 ID = GetIntrinsic(VCMPGT, ElementKind); 3143 } 3144 break; 3145 case BO_GE: 3146 if (ElementKind == BuiltinType::Float) { 3147 CR6 = CR6_LT; 3148 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3149 } 3150 else { 3151 CR6 = CR6_EQ; 3152 ID = GetIntrinsic(VCMPGT, ElementKind); 3153 std::swap(FirstVecArg, SecondVecArg); 3154 } 3155 break; 3156 } 3157 3158 Value *CR6Param = Builder.getInt32(CR6); 3159 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 3160 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 3161 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3162 E->getExprLoc()); 3163 } 3164 3165 if (LHS->getType()->isFPOrFPVectorTy()) { 3166 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 3167 } else if (LHSTy->hasSignedIntegerRepresentation()) { 3168 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 3169 } else { 3170 // Unsigned integers and pointers. 3171 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 3172 } 3173 3174 // If this is a vector comparison, sign extend the result to the appropriate 3175 // vector integer type and return it (don't convert to bool). 3176 if (LHSTy->isVectorType()) 3177 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 3178 3179 } else { 3180 // Complex Comparison: can only be an equality comparison. 3181 CodeGenFunction::ComplexPairTy LHS, RHS; 3182 QualType CETy; 3183 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 3184 LHS = CGF.EmitComplexExpr(E->getLHS()); 3185 CETy = CTy->getElementType(); 3186 } else { 3187 LHS.first = Visit(E->getLHS()); 3188 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 3189 CETy = LHSTy; 3190 } 3191 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 3192 RHS = CGF.EmitComplexExpr(E->getRHS()); 3193 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 3194 CTy->getElementType()) && 3195 "The element types must always match."); 3196 (void)CTy; 3197 } else { 3198 RHS.first = Visit(E->getRHS()); 3199 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 3200 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 3201 "The element types must always match."); 3202 } 3203 3204 Value *ResultR, *ResultI; 3205 if (CETy->isRealFloatingType()) { 3206 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 3207 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 3208 } else { 3209 // Complex comparisons can only be equality comparisons. As such, signed 3210 // and unsigned opcodes are the same. 3211 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 3212 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 3213 } 3214 3215 if (E->getOpcode() == BO_EQ) { 3216 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 3217 } else { 3218 assert(E->getOpcode() == BO_NE && 3219 "Complex comparison other than == or != ?"); 3220 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 3221 } 3222 } 3223 3224 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3225 E->getExprLoc()); 3226 } 3227 3228 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 3229 bool Ignore = TestAndClearIgnoreResultAssign(); 3230 3231 Value *RHS; 3232 LValue LHS; 3233 3234 switch (E->getLHS()->getType().getObjCLifetime()) { 3235 case Qualifiers::OCL_Strong: 3236 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 3237 break; 3238 3239 case Qualifiers::OCL_Autoreleasing: 3240 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3241 break; 3242 3243 case Qualifiers::OCL_ExplicitNone: 3244 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 3245 break; 3246 3247 case Qualifiers::OCL_Weak: 3248 RHS = Visit(E->getRHS()); 3249 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3250 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3251 break; 3252 3253 case Qualifiers::OCL_None: 3254 // __block variables need to have the rhs evaluated first, plus 3255 // this should improve codegen just a little. 3256 RHS = Visit(E->getRHS()); 3257 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3258 3259 // Store the value into the LHS. Bit-fields are handled specially 3260 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3261 // 'An assignment expression has the value of the left operand after 3262 // the assignment...'. 3263 if (LHS.isBitField()) { 3264 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3265 } else { 3266 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 3267 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3268 } 3269 } 3270 3271 // If the result is clearly ignored, return now. 3272 if (Ignore) 3273 return nullptr; 3274 3275 // The result of an assignment in C is the assigned r-value. 3276 if (!CGF.getLangOpts().CPlusPlus) 3277 return RHS; 3278 3279 // If the lvalue is non-volatile, return the computed value of the assignment. 3280 if (!LHS.isVolatileQualified()) 3281 return RHS; 3282 3283 // Otherwise, reload the value. 3284 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3285 } 3286 3287 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3288 // Perform vector logical and on comparisons with zero vectors. 3289 if (E->getType()->isVectorType()) { 3290 CGF.incrementProfileCounter(E); 3291 3292 Value *LHS = Visit(E->getLHS()); 3293 Value *RHS = Visit(E->getRHS()); 3294 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3295 if (LHS->getType()->isFPOrFPVectorTy()) { 3296 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3297 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3298 } else { 3299 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3300 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3301 } 3302 Value *And = Builder.CreateAnd(LHS, RHS); 3303 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3304 } 3305 3306 llvm::Type *ResTy = ConvertType(E->getType()); 3307 3308 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3309 // If we have 1 && X, just emit X without inserting the control flow. 3310 bool LHSCondVal; 3311 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3312 if (LHSCondVal) { // If we have 1 && X, just emit X. 3313 CGF.incrementProfileCounter(E); 3314 3315 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3316 // ZExt result to int or bool. 3317 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3318 } 3319 3320 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3321 if (!CGF.ContainsLabel(E->getRHS())) 3322 return llvm::Constant::getNullValue(ResTy); 3323 } 3324 3325 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3326 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3327 3328 CodeGenFunction::ConditionalEvaluation eval(CGF); 3329 3330 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3331 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 3332 CGF.getProfileCount(E->getRHS())); 3333 3334 // Any edges into the ContBlock are now from an (indeterminate number of) 3335 // edges from this first condition. All of these values will be false. Start 3336 // setting up the PHI node in the Cont Block for this. 3337 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3338 "", ContBlock); 3339 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3340 PI != PE; ++PI) 3341 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3342 3343 eval.begin(CGF); 3344 CGF.EmitBlock(RHSBlock); 3345 CGF.incrementProfileCounter(E); 3346 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3347 eval.end(CGF); 3348 3349 // Reaquire the RHS block, as there may be subblocks inserted. 3350 RHSBlock = Builder.GetInsertBlock(); 3351 3352 // Emit an unconditional branch from this block to ContBlock. 3353 { 3354 // There is no need to emit line number for unconditional branch. 3355 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3356 CGF.EmitBlock(ContBlock); 3357 } 3358 // Insert an entry into the phi node for the edge with the value of RHSCond. 3359 PN->addIncoming(RHSCond, RHSBlock); 3360 3361 // ZExt result to int. 3362 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3363 } 3364 3365 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3366 // Perform vector logical or on comparisons with zero vectors. 3367 if (E->getType()->isVectorType()) { 3368 CGF.incrementProfileCounter(E); 3369 3370 Value *LHS = Visit(E->getLHS()); 3371 Value *RHS = Visit(E->getRHS()); 3372 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3373 if (LHS->getType()->isFPOrFPVectorTy()) { 3374 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3375 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3376 } else { 3377 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3378 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3379 } 3380 Value *Or = Builder.CreateOr(LHS, RHS); 3381 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3382 } 3383 3384 llvm::Type *ResTy = ConvertType(E->getType()); 3385 3386 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3387 // If we have 0 || X, just emit X without inserting the control flow. 3388 bool LHSCondVal; 3389 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3390 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3391 CGF.incrementProfileCounter(E); 3392 3393 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3394 // ZExt result to int or bool. 3395 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3396 } 3397 3398 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3399 if (!CGF.ContainsLabel(E->getRHS())) 3400 return llvm::ConstantInt::get(ResTy, 1); 3401 } 3402 3403 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3404 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3405 3406 CodeGenFunction::ConditionalEvaluation eval(CGF); 3407 3408 // Branch on the LHS first. If it is true, go to the success (cont) block. 3409 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3410 CGF.getCurrentProfileCount() - 3411 CGF.getProfileCount(E->getRHS())); 3412 3413 // Any edges into the ContBlock are now from an (indeterminate number of) 3414 // edges from this first condition. All of these values will be true. Start 3415 // setting up the PHI node in the Cont Block for this. 3416 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3417 "", ContBlock); 3418 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3419 PI != PE; ++PI) 3420 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3421 3422 eval.begin(CGF); 3423 3424 // Emit the RHS condition as a bool value. 3425 CGF.EmitBlock(RHSBlock); 3426 CGF.incrementProfileCounter(E); 3427 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3428 3429 eval.end(CGF); 3430 3431 // Reaquire the RHS block, as there may be subblocks inserted. 3432 RHSBlock = Builder.GetInsertBlock(); 3433 3434 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3435 // into the phi node for the edge with the value of RHSCond. 3436 CGF.EmitBlock(ContBlock); 3437 PN->addIncoming(RHSCond, RHSBlock); 3438 3439 // ZExt result to int. 3440 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3441 } 3442 3443 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3444 CGF.EmitIgnoredExpr(E->getLHS()); 3445 CGF.EnsureInsertPoint(); 3446 return Visit(E->getRHS()); 3447 } 3448 3449 //===----------------------------------------------------------------------===// 3450 // Other Operators 3451 //===----------------------------------------------------------------------===// 3452 3453 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3454 /// expression is cheap enough and side-effect-free enough to evaluate 3455 /// unconditionally instead of conditionally. This is used to convert control 3456 /// flow into selects in some cases. 3457 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3458 CodeGenFunction &CGF) { 3459 // Anything that is an integer or floating point constant is fine. 3460 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3461 3462 // Even non-volatile automatic variables can't be evaluated unconditionally. 3463 // Referencing a thread_local may cause non-trivial initialization work to 3464 // occur. If we're inside a lambda and one of the variables is from the scope 3465 // outside the lambda, that function may have returned already. Reading its 3466 // locals is a bad idea. Also, these reads may introduce races there didn't 3467 // exist in the source-level program. 3468 } 3469 3470 3471 Value *ScalarExprEmitter:: 3472 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3473 TestAndClearIgnoreResultAssign(); 3474 3475 // Bind the common expression if necessary. 3476 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3477 3478 Expr *condExpr = E->getCond(); 3479 Expr *lhsExpr = E->getTrueExpr(); 3480 Expr *rhsExpr = E->getFalseExpr(); 3481 3482 // If the condition constant folds and can be elided, try to avoid emitting 3483 // the condition and the dead arm. 3484 bool CondExprBool; 3485 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3486 Expr *live = lhsExpr, *dead = rhsExpr; 3487 if (!CondExprBool) std::swap(live, dead); 3488 3489 // If the dead side doesn't have labels we need, just emit the Live part. 3490 if (!CGF.ContainsLabel(dead)) { 3491 if (CondExprBool) 3492 CGF.incrementProfileCounter(E); 3493 Value *Result = Visit(live); 3494 3495 // If the live part is a throw expression, it acts like it has a void 3496 // type, so evaluating it returns a null Value*. However, a conditional 3497 // with non-void type must return a non-null Value*. 3498 if (!Result && !E->getType()->isVoidType()) 3499 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3500 3501 return Result; 3502 } 3503 } 3504 3505 // OpenCL: If the condition is a vector, we can treat this condition like 3506 // the select function. 3507 if (CGF.getLangOpts().OpenCL 3508 && condExpr->getType()->isVectorType()) { 3509 CGF.incrementProfileCounter(E); 3510 3511 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3512 llvm::Value *LHS = Visit(lhsExpr); 3513 llvm::Value *RHS = Visit(rhsExpr); 3514 3515 llvm::Type *condType = ConvertType(condExpr->getType()); 3516 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3517 3518 unsigned numElem = vecTy->getNumElements(); 3519 llvm::Type *elemType = vecTy->getElementType(); 3520 3521 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3522 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3523 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3524 llvm::VectorType::get(elemType, 3525 numElem), 3526 "sext"); 3527 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3528 3529 // Cast float to int to perform ANDs if necessary. 3530 llvm::Value *RHSTmp = RHS; 3531 llvm::Value *LHSTmp = LHS; 3532 bool wasCast = false; 3533 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3534 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3535 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3536 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3537 wasCast = true; 3538 } 3539 3540 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3541 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3542 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3543 if (wasCast) 3544 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3545 3546 return tmp5; 3547 } 3548 3549 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3550 // select instead of as control flow. We can only do this if it is cheap and 3551 // safe to evaluate the LHS and RHS unconditionally. 3552 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3553 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3554 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3555 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 3556 3557 CGF.incrementProfileCounter(E, StepV); 3558 3559 llvm::Value *LHS = Visit(lhsExpr); 3560 llvm::Value *RHS = Visit(rhsExpr); 3561 if (!LHS) { 3562 // If the conditional has void type, make sure we return a null Value*. 3563 assert(!RHS && "LHS and RHS types must match"); 3564 return nullptr; 3565 } 3566 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3567 } 3568 3569 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3570 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3571 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3572 3573 CodeGenFunction::ConditionalEvaluation eval(CGF); 3574 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 3575 CGF.getProfileCount(lhsExpr)); 3576 3577 CGF.EmitBlock(LHSBlock); 3578 CGF.incrementProfileCounter(E); 3579 eval.begin(CGF); 3580 Value *LHS = Visit(lhsExpr); 3581 eval.end(CGF); 3582 3583 LHSBlock = Builder.GetInsertBlock(); 3584 Builder.CreateBr(ContBlock); 3585 3586 CGF.EmitBlock(RHSBlock); 3587 eval.begin(CGF); 3588 Value *RHS = Visit(rhsExpr); 3589 eval.end(CGF); 3590 3591 RHSBlock = Builder.GetInsertBlock(); 3592 CGF.EmitBlock(ContBlock); 3593 3594 // If the LHS or RHS is a throw expression, it will be legitimately null. 3595 if (!LHS) 3596 return RHS; 3597 if (!RHS) 3598 return LHS; 3599 3600 // Create a PHI node for the real part. 3601 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3602 PN->addIncoming(LHS, LHSBlock); 3603 PN->addIncoming(RHS, RHSBlock); 3604 return PN; 3605 } 3606 3607 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3608 return Visit(E->getChosenSubExpr()); 3609 } 3610 3611 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3612 QualType Ty = VE->getType(); 3613 3614 if (Ty->isVariablyModifiedType()) 3615 CGF.EmitVariablyModifiedType(Ty); 3616 3617 Address ArgValue = Address::invalid(); 3618 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 3619 3620 llvm::Type *ArgTy = ConvertType(VE->getType()); 3621 3622 // If EmitVAArg fails, emit an error. 3623 if (!ArgPtr.isValid()) { 3624 CGF.ErrorUnsupported(VE, "va_arg expression"); 3625 return llvm::UndefValue::get(ArgTy); 3626 } 3627 3628 // FIXME Volatility. 3629 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 3630 3631 // If EmitVAArg promoted the type, we must truncate it. 3632 if (ArgTy != Val->getType()) { 3633 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 3634 Val = Builder.CreateIntToPtr(Val, ArgTy); 3635 else 3636 Val = Builder.CreateTrunc(Val, ArgTy); 3637 } 3638 3639 return Val; 3640 } 3641 3642 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3643 return CGF.EmitBlockLiteral(block); 3644 } 3645 3646 // Convert a vec3 to vec4, or vice versa. 3647 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 3648 Value *Src, unsigned NumElementsDst) { 3649 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3650 SmallVector<llvm::Constant*, 4> Args; 3651 Args.push_back(Builder.getInt32(0)); 3652 Args.push_back(Builder.getInt32(1)); 3653 Args.push_back(Builder.getInt32(2)); 3654 if (NumElementsDst == 4) 3655 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3656 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3657 return Builder.CreateShuffleVector(Src, UnV, Mask); 3658 } 3659 3660 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 3661 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 3662 // but could be scalar or vectors of different lengths, and either can be 3663 // pointer. 3664 // There are 4 cases: 3665 // 1. non-pointer -> non-pointer : needs 1 bitcast 3666 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 3667 // 3. pointer -> non-pointer 3668 // a) pointer -> intptr_t : needs 1 ptrtoint 3669 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 3670 // 4. non-pointer -> pointer 3671 // a) intptr_t -> pointer : needs 1 inttoptr 3672 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 3673 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 3674 // allow casting directly between pointer types and non-integer non-pointer 3675 // types. 3676 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 3677 const llvm::DataLayout &DL, 3678 Value *Src, llvm::Type *DstTy, 3679 StringRef Name = "") { 3680 auto SrcTy = Src->getType(); 3681 3682 // Case 1. 3683 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 3684 return Builder.CreateBitCast(Src, DstTy, Name); 3685 3686 // Case 2. 3687 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 3688 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 3689 3690 // Case 3. 3691 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 3692 // Case 3b. 3693 if (!DstTy->isIntegerTy()) 3694 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 3695 // Cases 3a and 3b. 3696 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 3697 } 3698 3699 // Case 4b. 3700 if (!SrcTy->isIntegerTy()) 3701 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 3702 // Cases 4a and 4b. 3703 return Builder.CreateIntToPtr(Src, DstTy, Name); 3704 } 3705 3706 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3707 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3708 llvm::Type *DstTy = ConvertType(E->getType()); 3709 3710 llvm::Type *SrcTy = Src->getType(); 3711 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 3712 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 3713 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 3714 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 3715 3716 // Going from vec3 to non-vec3 is a special case and requires a shuffle 3717 // vector to get a vec4, then a bitcast if the target type is different. 3718 if (NumElementsSrc == 3 && NumElementsDst != 3) { 3719 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 3720 3721 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 3722 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 3723 DstTy); 3724 } 3725 3726 Src->setName("astype"); 3727 return Src; 3728 } 3729 3730 // Going from non-vec3 to vec3 is a special case and requires a bitcast 3731 // to vec4 if the original type is not vec4, then a shuffle vector to 3732 // get a vec3. 3733 if (NumElementsSrc != 3 && NumElementsDst == 3) { 3734 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 3735 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 3736 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 3737 Vec4Ty); 3738 } 3739 3740 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 3741 Src->setName("astype"); 3742 return Src; 3743 } 3744 3745 return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 3746 Src, DstTy, "astype"); 3747 } 3748 3749 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3750 return CGF.EmitAtomicExpr(E).getScalarVal(); 3751 } 3752 3753 //===----------------------------------------------------------------------===// 3754 // Entry Point into this File 3755 //===----------------------------------------------------------------------===// 3756 3757 /// Emit the computation of the specified expression of scalar type, ignoring 3758 /// the result. 3759 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3760 assert(E && hasScalarEvaluationKind(E->getType()) && 3761 "Invalid scalar expression to emit"); 3762 3763 return ScalarExprEmitter(*this, IgnoreResultAssign) 3764 .Visit(const_cast<Expr *>(E)); 3765 } 3766 3767 /// Emit a conversion from the specified type to the specified destination type, 3768 /// both of which are LLVM scalar types. 3769 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3770 QualType DstTy, 3771 SourceLocation Loc) { 3772 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3773 "Invalid scalar expression to emit"); 3774 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 3775 } 3776 3777 /// Emit a conversion from the specified complex type to the specified 3778 /// destination type, where the destination type is an LLVM scalar type. 3779 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3780 QualType SrcTy, 3781 QualType DstTy, 3782 SourceLocation Loc) { 3783 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3784 "Invalid complex -> scalar conversion"); 3785 return ScalarExprEmitter(*this) 3786 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 3787 } 3788 3789 3790 llvm::Value *CodeGenFunction:: 3791 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3792 bool isInc, bool isPre) { 3793 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3794 } 3795 3796 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3797 // object->isa or (*object).isa 3798 // Generate code as for: *(Class*)object 3799 3800 Expr *BaseExpr = E->getBase(); 3801 Address Addr = Address::invalid(); 3802 if (BaseExpr->isRValue()) { 3803 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 3804 } else { 3805 Addr = EmitLValue(BaseExpr).getAddress(); 3806 } 3807 3808 // Cast the address to Class*. 3809 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 3810 return MakeAddrLValue(Addr, E->getType()); 3811 } 3812 3813 3814 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3815 const CompoundAssignOperator *E) { 3816 ScalarExprEmitter Scalar(*this); 3817 Value *Result = nullptr; 3818 switch (E->getOpcode()) { 3819 #define COMPOUND_OP(Op) \ 3820 case BO_##Op##Assign: \ 3821 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3822 Result) 3823 COMPOUND_OP(Mul); 3824 COMPOUND_OP(Div); 3825 COMPOUND_OP(Rem); 3826 COMPOUND_OP(Add); 3827 COMPOUND_OP(Sub); 3828 COMPOUND_OP(Shl); 3829 COMPOUND_OP(Shr); 3830 COMPOUND_OP(And); 3831 COMPOUND_OP(Xor); 3832 COMPOUND_OP(Or); 3833 #undef COMPOUND_OP 3834 3835 case BO_PtrMemD: 3836 case BO_PtrMemI: 3837 case BO_Mul: 3838 case BO_Div: 3839 case BO_Rem: 3840 case BO_Add: 3841 case BO_Sub: 3842 case BO_Shl: 3843 case BO_Shr: 3844 case BO_LT: 3845 case BO_GT: 3846 case BO_LE: 3847 case BO_GE: 3848 case BO_EQ: 3849 case BO_NE: 3850 case BO_And: 3851 case BO_Xor: 3852 case BO_Or: 3853 case BO_LAnd: 3854 case BO_LOr: 3855 case BO_Assign: 3856 case BO_Comma: 3857 llvm_unreachable("Not valid compound assignment operators"); 3858 } 3859 3860 llvm_unreachable("Unhandled compound assignment operator"); 3861 } 3862 3863 Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, 3864 ArrayRef<Value *> IdxList, 3865 bool SignedIndices, 3866 bool IsSubtraction, 3867 SourceLocation Loc, 3868 const Twine &Name) { 3869 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 3870 3871 // If the pointer overflow sanitizer isn't enabled, do nothing. 3872 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 3873 return GEPVal; 3874 3875 // If the GEP has already been reduced to a constant, leave it be. 3876 if (isa<llvm::Constant>(GEPVal)) 3877 return GEPVal; 3878 3879 // Only check for overflows in the default address space. 3880 if (GEPVal->getType()->getPointerAddressSpace()) 3881 return GEPVal; 3882 3883 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 3884 assert(GEP->isInBounds() && "Expected inbounds GEP"); 3885 3886 SanitizerScope SanScope(this); 3887 auto &VMContext = getLLVMContext(); 3888 const auto &DL = CGM.getDataLayout(); 3889 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 3890 3891 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 3892 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 3893 auto *SAddIntrinsic = 3894 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 3895 auto *SMulIntrinsic = 3896 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 3897 3898 // The total (signed) byte offset for the GEP. 3899 llvm::Value *TotalOffset = nullptr; 3900 // The offset overflow flag - true if the total offset overflows. 3901 llvm::Value *OffsetOverflows = Builder.getFalse(); 3902 3903 /// Return the result of the given binary operation. 3904 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 3905 llvm::Value *RHS) -> llvm::Value * { 3906 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 3907 3908 // If the operands are constants, return a constant result. 3909 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 3910 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 3911 llvm::APInt N; 3912 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 3913 /*Signed=*/true, N); 3914 if (HasOverflow) 3915 OffsetOverflows = Builder.getTrue(); 3916 return llvm::ConstantInt::get(VMContext, N); 3917 } 3918 } 3919 3920 // Otherwise, compute the result with checked arithmetic. 3921 auto *ResultAndOverflow = Builder.CreateCall( 3922 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 3923 OffsetOverflows = Builder.CreateOr( 3924 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 3925 return Builder.CreateExtractValue(ResultAndOverflow, 0); 3926 }; 3927 3928 // Determine the total byte offset by looking at each GEP operand. 3929 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 3930 GTI != GTE; ++GTI) { 3931 llvm::Value *LocalOffset; 3932 auto *Index = GTI.getOperand(); 3933 // Compute the local offset contributed by this indexing step: 3934 if (auto *STy = GTI.getStructTypeOrNull()) { 3935 // For struct indexing, the local offset is the byte position of the 3936 // specified field. 3937 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 3938 LocalOffset = llvm::ConstantInt::get( 3939 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 3940 } else { 3941 // Otherwise this is array-like indexing. The local offset is the index 3942 // multiplied by the element size. 3943 auto *ElementSize = llvm::ConstantInt::get( 3944 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 3945 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 3946 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 3947 } 3948 3949 // If this is the first offset, set it as the total offset. Otherwise, add 3950 // the local offset into the running total. 3951 if (!TotalOffset || TotalOffset == Zero) 3952 TotalOffset = LocalOffset; 3953 else 3954 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 3955 } 3956 3957 // Common case: if the total offset is zero, don't emit a check. 3958 if (TotalOffset == Zero) 3959 return GEPVal; 3960 3961 // Now that we've computed the total offset, add it to the base pointer (with 3962 // wrapping semantics). 3963 auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy); 3964 auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset); 3965 3966 // The GEP is valid if: 3967 // 1) The total offset doesn't overflow, and 3968 // 2) The sign of the difference between the computed address and the base 3969 // pointer matches the sign of the total offset. 3970 llvm::Value *ValidGEP; 3971 auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows); 3972 if (SignedIndices) { 3973 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 3974 auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero); 3975 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 3976 ValidGEP = Builder.CreateAnd( 3977 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid), 3978 NoOffsetOverflow); 3979 } else if (!SignedIndices && !IsSubtraction) { 3980 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 3981 ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow); 3982 } else { 3983 auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr); 3984 ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow); 3985 } 3986 3987 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 3988 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 3989 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 3990 EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow), 3991 SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 3992 3993 return GEPVal; 3994 } 3995