1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Frontend/CodeGenOptions.h"
15 #include "CodeGenFunction.h"
16 #include "CGCXXABI.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "CGDebugInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "llvm/Constants.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Intrinsics.h"
29 #include "llvm/Module.h"
30 #include "llvm/Support/CFG.h"
31 #include "llvm/Target/TargetData.h"
32 #include <cstdarg>
33 
34 using namespace clang;
35 using namespace CodeGen;
36 using llvm::Value;
37 
38 //===----------------------------------------------------------------------===//
39 //                         Scalar Expression Emitter
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 struct BinOpInfo {
44   Value *LHS;
45   Value *RHS;
46   QualType Ty;  // Computation Type.
47   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
49 };
50 
51 static bool MustVisitNullValue(const Expr *E) {
52   // If a null pointer expression's type is the C++0x nullptr_t, then
53   // it's not necessarily a simple constant and it must be evaluated
54   // for its potential side effects.
55   return E->getType()->isNullPtrType();
56 }
57 
58 class ScalarExprEmitter
59   : public StmtVisitor<ScalarExprEmitter, Value*> {
60   CodeGenFunction &CGF;
61   CGBuilderTy &Builder;
62   bool IgnoreResultAssign;
63   llvm::LLVMContext &VMContext;
64 public:
65 
66   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68       VMContext(cgf.getLLVMContext()) {
69   }
70 
71   //===--------------------------------------------------------------------===//
72   //                               Utilities
73   //===--------------------------------------------------------------------===//
74 
75   bool TestAndClearIgnoreResultAssign() {
76     bool I = IgnoreResultAssign;
77     IgnoreResultAssign = false;
78     return I;
79   }
80 
81   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
82   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
83   LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84 
85   Value *EmitLoadOfLValue(LValue LV) {
86     return CGF.EmitLoadOfLValue(LV).getScalarVal();
87   }
88 
89   /// EmitLoadOfLValue - Given an expression with complex type that represents a
90   /// value l-value, this method emits the address of the l-value, then loads
91   /// and returns the result.
92   Value *EmitLoadOfLValue(const Expr *E) {
93     return EmitLoadOfLValue(EmitCheckedLValue(E));
94   }
95 
96   /// EmitConversionToBool - Convert the specified expression value to a
97   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
98   Value *EmitConversionToBool(Value *Src, QualType DstTy);
99 
100   /// EmitScalarConversion - Emit a conversion from the specified type to the
101   /// specified destination type, both of which are LLVM scalar types.
102   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103 
104   /// EmitComplexToScalarConversion - Emit a conversion from the specified
105   /// complex type to the specified destination type, where the destination type
106   /// is an LLVM scalar type.
107   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108                                        QualType SrcTy, QualType DstTy);
109 
110   /// EmitNullValue - Emit a value that corresponds to null for the given type.
111   Value *EmitNullValue(QualType Ty);
112 
113   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
114   Value *EmitFloatToBoolConversion(Value *V) {
115     // Compare against 0.0 for fp scalars.
116     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
117     return Builder.CreateFCmpUNE(V, Zero, "tobool");
118   }
119 
120   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
121   Value *EmitPointerToBoolConversion(Value *V) {
122     Value *Zero = llvm::ConstantPointerNull::get(
123                                       cast<llvm::PointerType>(V->getType()));
124     return Builder.CreateICmpNE(V, Zero, "tobool");
125   }
126 
127   Value *EmitIntToBoolConversion(Value *V) {
128     // Because of the type rules of C, we often end up computing a
129     // logical value, then zero extending it to int, then wanting it
130     // as a logical value again.  Optimize this common case.
131     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
132       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
133         Value *Result = ZI->getOperand(0);
134         // If there aren't any more uses, zap the instruction to save space.
135         // Note that there can be more uses, for example if this
136         // is the result of an assignment.
137         if (ZI->use_empty())
138           ZI->eraseFromParent();
139         return Result;
140       }
141     }
142 
143     return Builder.CreateIsNotNull(V, "tobool");
144   }
145 
146   //===--------------------------------------------------------------------===//
147   //                            Visitor Methods
148   //===--------------------------------------------------------------------===//
149 
150   Value *Visit(Expr *E) {
151     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
152   }
153 
154   Value *VisitStmt(Stmt *S) {
155     S->dump(CGF.getContext().getSourceManager());
156     llvm_unreachable("Stmt can't have complex result type!");
157   }
158   Value *VisitExpr(Expr *S);
159 
160   Value *VisitParenExpr(ParenExpr *PE) {
161     return Visit(PE->getSubExpr());
162   }
163   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
164     return Visit(E->getReplacement());
165   }
166   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
167     return Visit(GE->getResultExpr());
168   }
169 
170   // Leaves.
171   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
172     return Builder.getInt(E->getValue());
173   }
174   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
175     return llvm::ConstantFP::get(VMContext, E->getValue());
176   }
177   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
178     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
179   }
180   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
181     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
182   }
183   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
184     return EmitNullValue(E->getType());
185   }
186   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
187     return EmitNullValue(E->getType());
188   }
189   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
190   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
191   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
192     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
193     return Builder.CreateBitCast(V, ConvertType(E->getType()));
194   }
195 
196   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
197     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
198   }
199 
200   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
201     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
202   }
203 
204   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
205     if (E->isGLValue())
206       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
207 
208     // Otherwise, assume the mapping is the scalar directly.
209     return CGF.getOpaqueRValueMapping(E).getScalarVal();
210   }
211 
212   // l-values.
213   Value *VisitDeclRefExpr(DeclRefExpr *E) {
214     Expr::EvalResult Result;
215     if (!E->EvaluateAsRValue(Result, CGF.getContext()))
216       return EmitLoadOfLValue(E);
217 
218     assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
219 
220     llvm::Constant *C;
221     if (Result.Val.isInt())
222       C = Builder.getInt(Result.Val.getInt());
223     else if (Result.Val.isFloat())
224       C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
225     else
226       return EmitLoadOfLValue(E);
227 
228     // Make sure we emit a debug reference to the global variable.
229     if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
230       if (!CGF.getContext().DeclMustBeEmitted(VD))
231         CGF.EmitDeclRefExprDbgValue(E, C);
232     } else if (isa<EnumConstantDecl>(E->getDecl())) {
233       CGF.EmitDeclRefExprDbgValue(E, C);
234     }
235 
236     return C;
237   }
238   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
239     return CGF.EmitObjCSelectorExpr(E);
240   }
241   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
242     return CGF.EmitObjCProtocolExpr(E);
243   }
244   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
245     return EmitLoadOfLValue(E);
246   }
247   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
248     if (E->getMethodDecl() &&
249         E->getMethodDecl()->getResultType()->isReferenceType())
250       return EmitLoadOfLValue(E);
251     return CGF.EmitObjCMessageExpr(E).getScalarVal();
252   }
253 
254   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
255     LValue LV = CGF.EmitObjCIsaExpr(E);
256     Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
257     return V;
258   }
259 
260   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
261   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
262   Value *VisitMemberExpr(MemberExpr *E);
263   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
264   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
265     return EmitLoadOfLValue(E);
266   }
267 
268   Value *VisitInitListExpr(InitListExpr *E);
269 
270   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
271     return CGF.CGM.EmitNullConstant(E->getType());
272   }
273   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
274     if (E->getType()->isVariablyModifiedType())
275       CGF.EmitVariablyModifiedType(E->getType());
276     return VisitCastExpr(E);
277   }
278   Value *VisitCastExpr(CastExpr *E);
279 
280   Value *VisitCallExpr(const CallExpr *E) {
281     if (E->getCallReturnType()->isReferenceType())
282       return EmitLoadOfLValue(E);
283 
284     return CGF.EmitCallExpr(E).getScalarVal();
285   }
286 
287   Value *VisitStmtExpr(const StmtExpr *E);
288 
289   Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
290 
291   // Unary Operators.
292   Value *VisitUnaryPostDec(const UnaryOperator *E) {
293     LValue LV = EmitLValue(E->getSubExpr());
294     return EmitScalarPrePostIncDec(E, LV, false, false);
295   }
296   Value *VisitUnaryPostInc(const UnaryOperator *E) {
297     LValue LV = EmitLValue(E->getSubExpr());
298     return EmitScalarPrePostIncDec(E, LV, true, false);
299   }
300   Value *VisitUnaryPreDec(const UnaryOperator *E) {
301     LValue LV = EmitLValue(E->getSubExpr());
302     return EmitScalarPrePostIncDec(E, LV, false, true);
303   }
304   Value *VisitUnaryPreInc(const UnaryOperator *E) {
305     LValue LV = EmitLValue(E->getSubExpr());
306     return EmitScalarPrePostIncDec(E, LV, true, true);
307   }
308 
309   llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
310                                                llvm::Value *InVal,
311                                                llvm::Value *NextVal,
312                                                bool IsInc);
313 
314   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
315                                        bool isInc, bool isPre);
316 
317 
318   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
319     if (isa<MemberPointerType>(E->getType())) // never sugared
320       return CGF.CGM.getMemberPointerConstant(E);
321 
322     return EmitLValue(E->getSubExpr()).getAddress();
323   }
324   Value *VisitUnaryDeref(const UnaryOperator *E) {
325     if (E->getType()->isVoidType())
326       return Visit(E->getSubExpr()); // the actual value should be unused
327     return EmitLoadOfLValue(E);
328   }
329   Value *VisitUnaryPlus(const UnaryOperator *E) {
330     // This differs from gcc, though, most likely due to a bug in gcc.
331     TestAndClearIgnoreResultAssign();
332     return Visit(E->getSubExpr());
333   }
334   Value *VisitUnaryMinus    (const UnaryOperator *E);
335   Value *VisitUnaryNot      (const UnaryOperator *E);
336   Value *VisitUnaryLNot     (const UnaryOperator *E);
337   Value *VisitUnaryReal     (const UnaryOperator *E);
338   Value *VisitUnaryImag     (const UnaryOperator *E);
339   Value *VisitUnaryExtension(const UnaryOperator *E) {
340     return Visit(E->getSubExpr());
341   }
342 
343   // C++
344   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
345     return EmitLoadOfLValue(E);
346   }
347 
348   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
349     return Visit(DAE->getExpr());
350   }
351   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
352     return CGF.LoadCXXThis();
353   }
354 
355   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
356     CGF.enterFullExpression(E);
357     CodeGenFunction::RunCleanupsScope Scope(CGF);
358     return Visit(E->getSubExpr());
359   }
360   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
361     return CGF.EmitCXXNewExpr(E);
362   }
363   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
364     CGF.EmitCXXDeleteExpr(E);
365     return 0;
366   }
367   Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
368     return Builder.getInt1(E->getValue());
369   }
370 
371   Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
372     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
373   }
374 
375   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
376     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
377   }
378 
379   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
380     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
381   }
382 
383   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
384     // C++ [expr.pseudo]p1:
385     //   The result shall only be used as the operand for the function call
386     //   operator (), and the result of such a call has type void. The only
387     //   effect is the evaluation of the postfix-expression before the dot or
388     //   arrow.
389     CGF.EmitScalarExpr(E->getBase());
390     return 0;
391   }
392 
393   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
394     return EmitNullValue(E->getType());
395   }
396 
397   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
398     CGF.EmitCXXThrowExpr(E);
399     return 0;
400   }
401 
402   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
403     return Builder.getInt1(E->getValue());
404   }
405 
406   // Binary Operators.
407   Value *EmitMul(const BinOpInfo &Ops) {
408     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
409       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
410       case LangOptions::SOB_Undefined:
411         return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
412       case LangOptions::SOB_Defined:
413         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
414       case LangOptions::SOB_Trapping:
415         return EmitOverflowCheckedBinOp(Ops);
416       }
417     }
418 
419     if (Ops.LHS->getType()->isFPOrFPVectorTy())
420       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
421     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
422   }
423   bool isTrapvOverflowBehavior() {
424     return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
425                == LangOptions::SOB_Trapping;
426   }
427   /// Create a binary op that checks for overflow.
428   /// Currently only supports +, - and *.
429   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
430   // Emit the overflow BB when -ftrapv option is activated.
431   void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
432     Builder.SetInsertPoint(overflowBB);
433     llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
434     Builder.CreateCall(Trap);
435     Builder.CreateUnreachable();
436   }
437   // Check for undefined division and modulus behaviors.
438   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
439                                                   llvm::Value *Zero,bool isDiv);
440   Value *EmitDiv(const BinOpInfo &Ops);
441   Value *EmitRem(const BinOpInfo &Ops);
442   Value *EmitAdd(const BinOpInfo &Ops);
443   Value *EmitSub(const BinOpInfo &Ops);
444   Value *EmitShl(const BinOpInfo &Ops);
445   Value *EmitShr(const BinOpInfo &Ops);
446   Value *EmitAnd(const BinOpInfo &Ops) {
447     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
448   }
449   Value *EmitXor(const BinOpInfo &Ops) {
450     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
451   }
452   Value *EmitOr (const BinOpInfo &Ops) {
453     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
454   }
455 
456   BinOpInfo EmitBinOps(const BinaryOperator *E);
457   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
458                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
459                                   Value *&Result);
460 
461   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
462                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
463 
464   // Binary operators and binary compound assignment operators.
465 #define HANDLEBINOP(OP) \
466   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
467     return Emit ## OP(EmitBinOps(E));                                      \
468   }                                                                        \
469   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
470     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
471   }
472   HANDLEBINOP(Mul)
473   HANDLEBINOP(Div)
474   HANDLEBINOP(Rem)
475   HANDLEBINOP(Add)
476   HANDLEBINOP(Sub)
477   HANDLEBINOP(Shl)
478   HANDLEBINOP(Shr)
479   HANDLEBINOP(And)
480   HANDLEBINOP(Xor)
481   HANDLEBINOP(Or)
482 #undef HANDLEBINOP
483 
484   // Comparisons.
485   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
486                      unsigned SICmpOpc, unsigned FCmpOpc);
487 #define VISITCOMP(CODE, UI, SI, FP) \
488     Value *VisitBin##CODE(const BinaryOperator *E) { \
489       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
490                          llvm::FCmpInst::FP); }
491   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
492   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
493   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
494   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
495   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
496   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
497 #undef VISITCOMP
498 
499   Value *VisitBinAssign     (const BinaryOperator *E);
500 
501   Value *VisitBinLAnd       (const BinaryOperator *E);
502   Value *VisitBinLOr        (const BinaryOperator *E);
503   Value *VisitBinComma      (const BinaryOperator *E);
504 
505   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
506   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
507 
508   // Other Operators.
509   Value *VisitBlockExpr(const BlockExpr *BE);
510   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
511   Value *VisitChooseExpr(ChooseExpr *CE);
512   Value *VisitVAArgExpr(VAArgExpr *VE);
513   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
514     return CGF.EmitObjCStringLiteral(E);
515   }
516   Value *VisitAsTypeExpr(AsTypeExpr *CE);
517   Value *VisitAtomicExpr(AtomicExpr *AE);
518 };
519 }  // end anonymous namespace.
520 
521 //===----------------------------------------------------------------------===//
522 //                                Utilities
523 //===----------------------------------------------------------------------===//
524 
525 /// EmitConversionToBool - Convert the specified expression value to a
526 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
527 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
528   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
529 
530   if (SrcType->isRealFloatingType())
531     return EmitFloatToBoolConversion(Src);
532 
533   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
534     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
535 
536   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
537          "Unknown scalar type to convert");
538 
539   if (isa<llvm::IntegerType>(Src->getType()))
540     return EmitIntToBoolConversion(Src);
541 
542   assert(isa<llvm::PointerType>(Src->getType()));
543   return EmitPointerToBoolConversion(Src);
544 }
545 
546 /// EmitScalarConversion - Emit a conversion from the specified type to the
547 /// specified destination type, both of which are LLVM scalar types.
548 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
549                                                QualType DstType) {
550   SrcType = CGF.getContext().getCanonicalType(SrcType);
551   DstType = CGF.getContext().getCanonicalType(DstType);
552   if (SrcType == DstType) return Src;
553 
554   if (DstType->isVoidType()) return 0;
555 
556   llvm::Type *SrcTy = Src->getType();
557 
558   // Floating casts might be a bit special: if we're doing casts to / from half
559   // FP, we should go via special intrinsics.
560   if (SrcType->isHalfType()) {
561     Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src);
562     SrcType = CGF.getContext().FloatTy;
563     SrcTy = CGF.FloatTy;
564   }
565 
566   // Handle conversions to bool first, they are special: comparisons against 0.
567   if (DstType->isBooleanType())
568     return EmitConversionToBool(Src, SrcType);
569 
570   llvm::Type *DstTy = ConvertType(DstType);
571 
572   // Ignore conversions like int -> uint.
573   if (SrcTy == DstTy)
574     return Src;
575 
576   // Handle pointer conversions next: pointers can only be converted to/from
577   // other pointers and integers. Check for pointer types in terms of LLVM, as
578   // some native types (like Obj-C id) may map to a pointer type.
579   if (isa<llvm::PointerType>(DstTy)) {
580     // The source value may be an integer, or a pointer.
581     if (isa<llvm::PointerType>(SrcTy))
582       return Builder.CreateBitCast(Src, DstTy, "conv");
583 
584     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
585     // First, convert to the correct width so that we control the kind of
586     // extension.
587     llvm::Type *MiddleTy = CGF.IntPtrTy;
588     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
589     llvm::Value* IntResult =
590         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
591     // Then, cast to pointer.
592     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
593   }
594 
595   if (isa<llvm::PointerType>(SrcTy)) {
596     // Must be an ptr to int cast.
597     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
598     return Builder.CreatePtrToInt(Src, DstTy, "conv");
599   }
600 
601   // A scalar can be splatted to an extended vector of the same element type
602   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
603     // Cast the scalar to element type
604     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
605     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
606 
607     // Insert the element in element zero of an undef vector
608     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
609     llvm::Value *Idx = Builder.getInt32(0);
610     UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
611 
612     // Splat the element across to all elements
613     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
614     llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements,
615                                                           Builder.getInt32(0));
616     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
617     return Yay;
618   }
619 
620   // Allow bitcast from vector to integer/fp of the same size.
621   if (isa<llvm::VectorType>(SrcTy) ||
622       isa<llvm::VectorType>(DstTy))
623     return Builder.CreateBitCast(Src, DstTy, "conv");
624 
625   // Finally, we have the arithmetic types: real int/float.
626   Value *Res = NULL;
627   llvm::Type *ResTy = DstTy;
628 
629   // Cast to half via float
630   if (DstType->isHalfType())
631     DstTy = CGF.FloatTy;
632 
633   if (isa<llvm::IntegerType>(SrcTy)) {
634     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
635     if (isa<llvm::IntegerType>(DstTy))
636       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
637     else if (InputSigned)
638       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
639     else
640       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
641   } else if (isa<llvm::IntegerType>(DstTy)) {
642     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
643     if (DstType->isSignedIntegerOrEnumerationType())
644       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
645     else
646       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
647   } else {
648     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
649            "Unknown real conversion");
650     if (DstTy->getTypeID() < SrcTy->getTypeID())
651       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
652     else
653       Res = Builder.CreateFPExt(Src, DstTy, "conv");
654   }
655 
656   if (DstTy != ResTy) {
657     assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
658     Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res);
659   }
660 
661   return Res;
662 }
663 
664 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
665 /// type to the specified destination type, where the destination type is an
666 /// LLVM scalar type.
667 Value *ScalarExprEmitter::
668 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
669                               QualType SrcTy, QualType DstTy) {
670   // Get the source element type.
671   SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
672 
673   // Handle conversions to bool first, they are special: comparisons against 0.
674   if (DstTy->isBooleanType()) {
675     //  Complex != 0  -> (Real != 0) | (Imag != 0)
676     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
677     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
678     return Builder.CreateOr(Src.first, Src.second, "tobool");
679   }
680 
681   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
682   // the imaginary part of the complex value is discarded and the value of the
683   // real part is converted according to the conversion rules for the
684   // corresponding real type.
685   return EmitScalarConversion(Src.first, SrcTy, DstTy);
686 }
687 
688 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
689   if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
690     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
691 
692   return llvm::Constant::getNullValue(ConvertType(Ty));
693 }
694 
695 //===----------------------------------------------------------------------===//
696 //                            Visitor Methods
697 //===----------------------------------------------------------------------===//
698 
699 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
700   CGF.ErrorUnsupported(E, "scalar expression");
701   if (E->getType()->isVoidType())
702     return 0;
703   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
704 }
705 
706 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
707   // Vector Mask Case
708   if (E->getNumSubExprs() == 2 ||
709       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
710     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
711     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
712     Value *Mask;
713 
714     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
715     unsigned LHSElts = LTy->getNumElements();
716 
717     if (E->getNumSubExprs() == 3) {
718       Mask = CGF.EmitScalarExpr(E->getExpr(2));
719 
720       // Shuffle LHS & RHS into one input vector.
721       SmallVector<llvm::Constant*, 32> concat;
722       for (unsigned i = 0; i != LHSElts; ++i) {
723         concat.push_back(Builder.getInt32(2*i));
724         concat.push_back(Builder.getInt32(2*i+1));
725       }
726 
727       Value* CV = llvm::ConstantVector::get(concat);
728       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
729       LHSElts *= 2;
730     } else {
731       Mask = RHS;
732     }
733 
734     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
735     llvm::Constant* EltMask;
736 
737     // Treat vec3 like vec4.
738     if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
739       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
740                                        (1 << llvm::Log2_32(LHSElts+2))-1);
741     else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
742       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
743                                        (1 << llvm::Log2_32(LHSElts+1))-1);
744     else
745       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
746                                        (1 << llvm::Log2_32(LHSElts))-1);
747 
748     // Mask off the high bits of each shuffle index.
749     Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
750                                                      EltMask);
751     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
752 
753     // newv = undef
754     // mask = mask & maskbits
755     // for each elt
756     //   n = extract mask i
757     //   x = extract val n
758     //   newv = insert newv, x, i
759     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
760                                                         MTy->getNumElements());
761     Value* NewV = llvm::UndefValue::get(RTy);
762     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
763       Value *Indx = Builder.getInt32(i);
764       Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
765       Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
766 
767       // Handle vec3 special since the index will be off by one for the RHS.
768       if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
769         Value *cmpIndx, *newIndx;
770         cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
771                                         "cmp_shuf_idx");
772         newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
773         Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
774       }
775       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
776       NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
777     }
778     return NewV;
779   }
780 
781   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
782   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
783 
784   // Handle vec3 special since the index will be off by one for the RHS.
785   llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
786   SmallVector<llvm::Constant*, 32> indices;
787   for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
788     unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
789     if (VTy->getNumElements() == 3 && Idx > 3)
790       Idx -= 1;
791     indices.push_back(Builder.getInt32(Idx));
792   }
793 
794   Value *SV = llvm::ConstantVector::get(indices);
795   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
796 }
797 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
798   llvm::APSInt Value;
799   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
800     if (E->isArrow())
801       CGF.EmitScalarExpr(E->getBase());
802     else
803       EmitLValue(E->getBase());
804     return Builder.getInt(Value);
805   }
806 
807   // Emit debug info for aggregate now, if it was delayed to reduce
808   // debug info size.
809   CGDebugInfo *DI = CGF.getDebugInfo();
810   if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
811     QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
812     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
813       if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
814         DI->getOrCreateRecordType(PTy->getPointeeType(),
815                                   M->getParent()->getLocation());
816   }
817   return EmitLoadOfLValue(E);
818 }
819 
820 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
821   TestAndClearIgnoreResultAssign();
822 
823   // Emit subscript expressions in rvalue context's.  For most cases, this just
824   // loads the lvalue formed by the subscript expr.  However, we have to be
825   // careful, because the base of a vector subscript is occasionally an rvalue,
826   // so we can't get it as an lvalue.
827   if (!E->getBase()->getType()->isVectorType())
828     return EmitLoadOfLValue(E);
829 
830   // Handle the vector case.  The base must be a vector, the index must be an
831   // integer value.
832   Value *Base = Visit(E->getBase());
833   Value *Idx  = Visit(E->getIdx());
834   bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType();
835   Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
836   return Builder.CreateExtractElement(Base, Idx, "vecext");
837 }
838 
839 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
840                                   unsigned Off, llvm::Type *I32Ty) {
841   int MV = SVI->getMaskValue(Idx);
842   if (MV == -1)
843     return llvm::UndefValue::get(I32Ty);
844   return llvm::ConstantInt::get(I32Ty, Off+MV);
845 }
846 
847 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
848   bool Ignore = TestAndClearIgnoreResultAssign();
849   (void)Ignore;
850   assert (Ignore == false && "init list ignored");
851   unsigned NumInitElements = E->getNumInits();
852 
853   if (E->hadArrayRangeDesignator())
854     CGF.ErrorUnsupported(E, "GNU array range designator extension");
855 
856   llvm::VectorType *VType =
857     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
858 
859   if (!VType) {
860     if (NumInitElements == 0) {
861       // C++11 value-initialization for the scalar.
862       return EmitNullValue(E->getType());
863     }
864     // We have a scalar in braces. Just use the first element.
865     return Visit(E->getInit(0));
866   }
867 
868   unsigned ResElts = VType->getNumElements();
869 
870   // Loop over initializers collecting the Value for each, and remembering
871   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
872   // us to fold the shuffle for the swizzle into the shuffle for the vector
873   // initializer, since LLVM optimizers generally do not want to touch
874   // shuffles.
875   unsigned CurIdx = 0;
876   bool VIsUndefShuffle = false;
877   llvm::Value *V = llvm::UndefValue::get(VType);
878   for (unsigned i = 0; i != NumInitElements; ++i) {
879     Expr *IE = E->getInit(i);
880     Value *Init = Visit(IE);
881     SmallVector<llvm::Constant*, 16> Args;
882 
883     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
884 
885     // Handle scalar elements.  If the scalar initializer is actually one
886     // element of a different vector of the same width, use shuffle instead of
887     // extract+insert.
888     if (!VVT) {
889       if (isa<ExtVectorElementExpr>(IE)) {
890         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
891 
892         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
893           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
894           Value *LHS = 0, *RHS = 0;
895           if (CurIdx == 0) {
896             // insert into undef -> shuffle (src, undef)
897             Args.push_back(C);
898             for (unsigned j = 1; j != ResElts; ++j)
899               Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
900 
901             LHS = EI->getVectorOperand();
902             RHS = V;
903             VIsUndefShuffle = true;
904           } else if (VIsUndefShuffle) {
905             // insert into undefshuffle && size match -> shuffle (v, src)
906             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
907             for (unsigned j = 0; j != CurIdx; ++j)
908               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
909             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
910             for (unsigned j = CurIdx + 1; j != ResElts; ++j)
911               Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
912 
913             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
914             RHS = EI->getVectorOperand();
915             VIsUndefShuffle = false;
916           }
917           if (!Args.empty()) {
918             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
919             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
920             ++CurIdx;
921             continue;
922           }
923         }
924       }
925       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
926                                       "vecinit");
927       VIsUndefShuffle = false;
928       ++CurIdx;
929       continue;
930     }
931 
932     unsigned InitElts = VVT->getNumElements();
933 
934     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
935     // input is the same width as the vector being constructed, generate an
936     // optimized shuffle of the swizzle input into the result.
937     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
938     if (isa<ExtVectorElementExpr>(IE)) {
939       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
940       Value *SVOp = SVI->getOperand(0);
941       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
942 
943       if (OpTy->getNumElements() == ResElts) {
944         for (unsigned j = 0; j != CurIdx; ++j) {
945           // If the current vector initializer is a shuffle with undef, merge
946           // this shuffle directly into it.
947           if (VIsUndefShuffle) {
948             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
949                                       CGF.Int32Ty));
950           } else {
951             Args.push_back(Builder.getInt32(j));
952           }
953         }
954         for (unsigned j = 0, je = InitElts; j != je; ++j)
955           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
956         for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
957           Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
958 
959         if (VIsUndefShuffle)
960           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
961 
962         Init = SVOp;
963       }
964     }
965 
966     // Extend init to result vector length, and then shuffle its contribution
967     // to the vector initializer into V.
968     if (Args.empty()) {
969       for (unsigned j = 0; j != InitElts; ++j)
970         Args.push_back(Builder.getInt32(j));
971       for (unsigned j = InitElts; j != ResElts; ++j)
972         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
973       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
974       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
975                                          Mask, "vext");
976 
977       Args.clear();
978       for (unsigned j = 0; j != CurIdx; ++j)
979         Args.push_back(Builder.getInt32(j));
980       for (unsigned j = 0; j != InitElts; ++j)
981         Args.push_back(Builder.getInt32(j+Offset));
982       for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
983         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
984     }
985 
986     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
987     // merging subsequent shuffles into this one.
988     if (CurIdx == 0)
989       std::swap(V, Init);
990     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
991     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
992     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
993     CurIdx += InitElts;
994   }
995 
996   // FIXME: evaluate codegen vs. shuffling against constant null vector.
997   // Emit remaining default initializers.
998   llvm::Type *EltTy = VType->getElementType();
999 
1000   // Emit remaining default initializers
1001   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1002     Value *Idx = Builder.getInt32(CurIdx);
1003     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1004     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1005   }
1006   return V;
1007 }
1008 
1009 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1010   const Expr *E = CE->getSubExpr();
1011 
1012   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1013     return false;
1014 
1015   if (isa<CXXThisExpr>(E)) {
1016     // We always assume that 'this' is never null.
1017     return false;
1018   }
1019 
1020   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1021     // And that glvalue casts are never null.
1022     if (ICE->getValueKind() != VK_RValue)
1023       return false;
1024   }
1025 
1026   return true;
1027 }
1028 
1029 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1030 // have to handle a more broad range of conversions than explicit casts, as they
1031 // handle things like function to ptr-to-function decay etc.
1032 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1033   Expr *E = CE->getSubExpr();
1034   QualType DestTy = CE->getType();
1035   CastKind Kind = CE->getCastKind();
1036 
1037   if (!DestTy->isVoidType())
1038     TestAndClearIgnoreResultAssign();
1039 
1040   // Since almost all cast kinds apply to scalars, this switch doesn't have
1041   // a default case, so the compiler will warn on a missing case.  The cases
1042   // are in the same order as in the CastKind enum.
1043   switch (Kind) {
1044   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1045 
1046   case CK_LValueBitCast:
1047   case CK_ObjCObjectLValueCast: {
1048     Value *V = EmitLValue(E).getAddress();
1049     V = Builder.CreateBitCast(V,
1050                           ConvertType(CGF.getContext().getPointerType(DestTy)));
1051     return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy));
1052   }
1053 
1054   case CK_CPointerToObjCPointerCast:
1055   case CK_BlockPointerToObjCPointerCast:
1056   case CK_AnyPointerToBlockPointerCast:
1057   case CK_BitCast: {
1058     Value *Src = Visit(const_cast<Expr*>(E));
1059     return Builder.CreateBitCast(Src, ConvertType(DestTy));
1060   }
1061   case CK_AtomicToNonAtomic:
1062   case CK_NonAtomicToAtomic:
1063   case CK_NoOp:
1064   case CK_UserDefinedConversion:
1065     return Visit(const_cast<Expr*>(E));
1066 
1067   case CK_BaseToDerived: {
1068     const CXXRecordDecl *DerivedClassDecl =
1069       DestTy->getCXXRecordDeclForPointerType();
1070 
1071     return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1072                                         CE->path_begin(), CE->path_end(),
1073                                         ShouldNullCheckClassCastValue(CE));
1074   }
1075   case CK_UncheckedDerivedToBase:
1076   case CK_DerivedToBase: {
1077     const RecordType *DerivedClassTy =
1078       E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1079     CXXRecordDecl *DerivedClassDecl =
1080       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1081 
1082     return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1083                                      CE->path_begin(), CE->path_end(),
1084                                      ShouldNullCheckClassCastValue(CE));
1085   }
1086   case CK_Dynamic: {
1087     Value *V = Visit(const_cast<Expr*>(E));
1088     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1089     return CGF.EmitDynamicCast(V, DCE);
1090   }
1091 
1092   case CK_ArrayToPointerDecay: {
1093     assert(E->getType()->isArrayType() &&
1094            "Array to pointer decay must have array source type!");
1095 
1096     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1097 
1098     // Note that VLA pointers are always decayed, so we don't need to do
1099     // anything here.
1100     if (!E->getType()->isVariableArrayType()) {
1101       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1102       assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1103                                  ->getElementType()) &&
1104              "Expected pointer to array");
1105       V = Builder.CreateStructGEP(V, 0, "arraydecay");
1106     }
1107 
1108     // Make sure the array decay ends up being the right type.  This matters if
1109     // the array type was of an incomplete type.
1110     return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType()));
1111   }
1112   case CK_FunctionToPointerDecay:
1113     return EmitLValue(E).getAddress();
1114 
1115   case CK_NullToPointer:
1116     if (MustVisitNullValue(E))
1117       (void) Visit(E);
1118 
1119     return llvm::ConstantPointerNull::get(
1120                                cast<llvm::PointerType>(ConvertType(DestTy)));
1121 
1122   case CK_NullToMemberPointer: {
1123     if (MustVisitNullValue(E))
1124       (void) Visit(E);
1125 
1126     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1127     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1128   }
1129 
1130   case CK_BaseToDerivedMemberPointer:
1131   case CK_DerivedToBaseMemberPointer: {
1132     Value *Src = Visit(E);
1133 
1134     // Note that the AST doesn't distinguish between checked and
1135     // unchecked member pointer conversions, so we always have to
1136     // implement checked conversions here.  This is inefficient when
1137     // actual control flow may be required in order to perform the
1138     // check, which it is for data member pointers (but not member
1139     // function pointers on Itanium and ARM).
1140     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1141   }
1142 
1143   case CK_ARCProduceObject:
1144     return CGF.EmitARCRetainScalarExpr(E);
1145   case CK_ARCConsumeObject:
1146     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1147   case CK_ARCReclaimReturnedObject: {
1148     llvm::Value *value = Visit(E);
1149     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1150     return CGF.EmitObjCConsumeObject(E->getType(), value);
1151   }
1152   case CK_ARCExtendBlockObject:
1153     return CGF.EmitARCExtendBlockObject(E);
1154 
1155   case CK_FloatingRealToComplex:
1156   case CK_FloatingComplexCast:
1157   case CK_IntegralRealToComplex:
1158   case CK_IntegralComplexCast:
1159   case CK_IntegralComplexToFloatingComplex:
1160   case CK_FloatingComplexToIntegralComplex:
1161   case CK_ConstructorConversion:
1162   case CK_ToUnion:
1163     llvm_unreachable("scalar cast to non-scalar value");
1164 
1165   case CK_LValueToRValue:
1166     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1167     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1168     return Visit(const_cast<Expr*>(E));
1169 
1170   case CK_IntegralToPointer: {
1171     Value *Src = Visit(const_cast<Expr*>(E));
1172 
1173     // First, convert to the correct width so that we control the kind of
1174     // extension.
1175     llvm::Type *MiddleTy = CGF.IntPtrTy;
1176     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1177     llvm::Value* IntResult =
1178       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1179 
1180     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1181   }
1182   case CK_PointerToIntegral:
1183     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1184     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1185 
1186   case CK_ToVoid: {
1187     CGF.EmitIgnoredExpr(E);
1188     return 0;
1189   }
1190   case CK_VectorSplat: {
1191     llvm::Type *DstTy = ConvertType(DestTy);
1192     Value *Elt = Visit(const_cast<Expr*>(E));
1193     Elt = EmitScalarConversion(Elt, E->getType(),
1194                                DestTy->getAs<VectorType>()->getElementType());
1195 
1196     // Insert the element in element zero of an undef vector
1197     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1198     llvm::Value *Idx = Builder.getInt32(0);
1199     UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
1200 
1201     // Splat the element across to all elements
1202     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1203     llvm::Constant *Zero = Builder.getInt32(0);
1204     llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements, Zero);
1205     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1206     return Yay;
1207   }
1208 
1209   case CK_IntegralCast:
1210   case CK_IntegralToFloating:
1211   case CK_FloatingToIntegral:
1212   case CK_FloatingCast:
1213     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1214   case CK_IntegralToBoolean:
1215     return EmitIntToBoolConversion(Visit(E));
1216   case CK_PointerToBoolean:
1217     return EmitPointerToBoolConversion(Visit(E));
1218   case CK_FloatingToBoolean:
1219     return EmitFloatToBoolConversion(Visit(E));
1220   case CK_MemberPointerToBoolean: {
1221     llvm::Value *MemPtr = Visit(E);
1222     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1223     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1224   }
1225 
1226   case CK_FloatingComplexToReal:
1227   case CK_IntegralComplexToReal:
1228     return CGF.EmitComplexExpr(E, false, true).first;
1229 
1230   case CK_FloatingComplexToBoolean:
1231   case CK_IntegralComplexToBoolean: {
1232     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1233 
1234     // TODO: kill this function off, inline appropriate case here
1235     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1236   }
1237 
1238   }
1239 
1240   llvm_unreachable("unknown scalar cast");
1241 }
1242 
1243 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1244   CodeGenFunction::StmtExprEvaluation eval(CGF);
1245   return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1246     .getScalarVal();
1247 }
1248 
1249 Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1250   LValue LV = CGF.EmitBlockDeclRefLValue(E);
1251   return CGF.EmitLoadOfLValue(LV).getScalarVal();
1252 }
1253 
1254 //===----------------------------------------------------------------------===//
1255 //                             Unary Operators
1256 //===----------------------------------------------------------------------===//
1257 
1258 llvm::Value *ScalarExprEmitter::
1259 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1260                                 llvm::Value *InVal,
1261                                 llvm::Value *NextVal, bool IsInc) {
1262   switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1263   case LangOptions::SOB_Undefined:
1264     return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1265   case LangOptions::SOB_Defined:
1266     return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1267   case LangOptions::SOB_Trapping:
1268     BinOpInfo BinOp;
1269     BinOp.LHS = InVal;
1270     BinOp.RHS = NextVal;
1271     BinOp.Ty = E->getType();
1272     BinOp.Opcode = BO_Add;
1273     BinOp.E = E;
1274     return EmitOverflowCheckedBinOp(BinOp);
1275   }
1276   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1277 }
1278 
1279 llvm::Value *
1280 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1281                                            bool isInc, bool isPre) {
1282 
1283   QualType type = E->getSubExpr()->getType();
1284   llvm::Value *value = EmitLoadOfLValue(LV);
1285   llvm::Value *input = value;
1286   llvm::PHINode *atomicPHI = 0;
1287 
1288   int amount = (isInc ? 1 : -1);
1289 
1290   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1291     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1292     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1293     Builder.CreateBr(opBB);
1294     Builder.SetInsertPoint(opBB);
1295     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1296     atomicPHI->addIncoming(value, startBB);
1297     type = atomicTy->getValueType();
1298     value = atomicPHI;
1299   }
1300 
1301   // Special case of integer increment that we have to check first: bool++.
1302   // Due to promotion rules, we get:
1303   //   bool++ -> bool = bool + 1
1304   //          -> bool = (int)bool + 1
1305   //          -> bool = ((int)bool + 1 != 0)
1306   // An interesting aspect of this is that increment is always true.
1307   // Decrement does not have this property.
1308   if (isInc && type->isBooleanType()) {
1309     value = Builder.getTrue();
1310 
1311   // Most common case by far: integer increment.
1312   } else if (type->isIntegerType()) {
1313 
1314     llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1315 
1316     // Note that signed integer inc/dec with width less than int can't
1317     // overflow because of promotion rules; we're just eliding a few steps here.
1318     if (type->isSignedIntegerOrEnumerationType() &&
1319         value->getType()->getPrimitiveSizeInBits() >=
1320             CGF.IntTy->getBitWidth())
1321       value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1322     else
1323       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1324 
1325   // Next most common: pointer increment.
1326   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1327     QualType type = ptr->getPointeeType();
1328 
1329     // VLA types don't have constant size.
1330     if (const VariableArrayType *vla
1331           = CGF.getContext().getAsVariableArrayType(type)) {
1332       llvm::Value *numElts = CGF.getVLASize(vla).first;
1333       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1334       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1335         value = Builder.CreateGEP(value, numElts, "vla.inc");
1336       else
1337         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1338 
1339     // Arithmetic on function pointers (!) is just +-1.
1340     } else if (type->isFunctionType()) {
1341       llvm::Value *amt = Builder.getInt32(amount);
1342 
1343       value = CGF.EmitCastToVoidPtr(value);
1344       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1345         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1346       else
1347         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1348       value = Builder.CreateBitCast(value, input->getType());
1349 
1350     // For everything else, we can just do a simple increment.
1351     } else {
1352       llvm::Value *amt = Builder.getInt32(amount);
1353       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1354         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1355       else
1356         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1357     }
1358 
1359   // Vector increment/decrement.
1360   } else if (type->isVectorType()) {
1361     if (type->hasIntegerRepresentation()) {
1362       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1363 
1364       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1365     } else {
1366       value = Builder.CreateFAdd(
1367                   value,
1368                   llvm::ConstantFP::get(value->getType(), amount),
1369                   isInc ? "inc" : "dec");
1370     }
1371 
1372   // Floating point.
1373   } else if (type->isRealFloatingType()) {
1374     // Add the inc/dec to the real part.
1375     llvm::Value *amt;
1376 
1377     if (type->isHalfType()) {
1378       // Another special case: half FP increment should be done via float
1379       value =
1380     Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16),
1381                        input);
1382     }
1383 
1384     if (value->getType()->isFloatTy())
1385       amt = llvm::ConstantFP::get(VMContext,
1386                                   llvm::APFloat(static_cast<float>(amount)));
1387     else if (value->getType()->isDoubleTy())
1388       amt = llvm::ConstantFP::get(VMContext,
1389                                   llvm::APFloat(static_cast<double>(amount)));
1390     else {
1391       llvm::APFloat F(static_cast<float>(amount));
1392       bool ignored;
1393       F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1394                 &ignored);
1395       amt = llvm::ConstantFP::get(VMContext, F);
1396     }
1397     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1398 
1399     if (type->isHalfType())
1400       value =
1401        Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16),
1402                           value);
1403 
1404   // Objective-C pointer types.
1405   } else {
1406     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1407     value = CGF.EmitCastToVoidPtr(value);
1408 
1409     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1410     if (!isInc) size = -size;
1411     llvm::Value *sizeValue =
1412       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1413 
1414     if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1415       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1416     else
1417       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1418     value = Builder.CreateBitCast(value, input->getType());
1419   }
1420 
1421   if (atomicPHI) {
1422     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1423     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1424     llvm::Value *old = Builder.CreateAtomicCmpXchg(LV.getAddress(), atomicPHI,
1425         value, llvm::SequentiallyConsistent);
1426     atomicPHI->addIncoming(old, opBB);
1427     llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1428     Builder.CreateCondBr(success, contBB, opBB);
1429     Builder.SetInsertPoint(contBB);
1430     return isPre ? value : input;
1431   }
1432 
1433   // Store the updated result through the lvalue.
1434   if (LV.isBitField())
1435     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1436   else
1437     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1438 
1439   // If this is a postinc, return the value read from memory, otherwise use the
1440   // updated value.
1441   return isPre ? value : input;
1442 }
1443 
1444 
1445 
1446 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1447   TestAndClearIgnoreResultAssign();
1448   // Emit unary minus with EmitSub so we handle overflow cases etc.
1449   BinOpInfo BinOp;
1450   BinOp.RHS = Visit(E->getSubExpr());
1451 
1452   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1453     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1454   else
1455     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1456   BinOp.Ty = E->getType();
1457   BinOp.Opcode = BO_Sub;
1458   BinOp.E = E;
1459   return EmitSub(BinOp);
1460 }
1461 
1462 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1463   TestAndClearIgnoreResultAssign();
1464   Value *Op = Visit(E->getSubExpr());
1465   return Builder.CreateNot(Op, "neg");
1466 }
1467 
1468 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1469 
1470   // Perform vector logical not on comparison with zero vector.
1471   if (E->getType()->isExtVectorType()) {
1472     Value *Oper = Visit(E->getSubExpr());
1473     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1474     Value *Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1475     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1476   }
1477 
1478   // Compare operand to zero.
1479   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1480 
1481   // Invert value.
1482   // TODO: Could dynamically modify easy computations here.  For example, if
1483   // the operand is an icmp ne, turn into icmp eq.
1484   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1485 
1486   // ZExt result to the expr type.
1487   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1488 }
1489 
1490 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1491   // Try folding the offsetof to a constant.
1492   llvm::APSInt Value;
1493   if (E->EvaluateAsInt(Value, CGF.getContext()))
1494     return Builder.getInt(Value);
1495 
1496   // Loop over the components of the offsetof to compute the value.
1497   unsigned n = E->getNumComponents();
1498   llvm::Type* ResultType = ConvertType(E->getType());
1499   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1500   QualType CurrentType = E->getTypeSourceInfo()->getType();
1501   for (unsigned i = 0; i != n; ++i) {
1502     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1503     llvm::Value *Offset = 0;
1504     switch (ON.getKind()) {
1505     case OffsetOfExpr::OffsetOfNode::Array: {
1506       // Compute the index
1507       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1508       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1509       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1510       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1511 
1512       // Save the element type
1513       CurrentType =
1514           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1515 
1516       // Compute the element size
1517       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1518           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1519 
1520       // Multiply out to compute the result
1521       Offset = Builder.CreateMul(Idx, ElemSize);
1522       break;
1523     }
1524 
1525     case OffsetOfExpr::OffsetOfNode::Field: {
1526       FieldDecl *MemberDecl = ON.getField();
1527       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1528       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1529 
1530       // Compute the index of the field in its parent.
1531       unsigned i = 0;
1532       // FIXME: It would be nice if we didn't have to loop here!
1533       for (RecordDecl::field_iterator Field = RD->field_begin(),
1534                                       FieldEnd = RD->field_end();
1535            Field != FieldEnd; (void)++Field, ++i) {
1536         if (*Field == MemberDecl)
1537           break;
1538       }
1539       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1540 
1541       // Compute the offset to the field
1542       int64_t OffsetInt = RL.getFieldOffset(i) /
1543                           CGF.getContext().getCharWidth();
1544       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1545 
1546       // Save the element type.
1547       CurrentType = MemberDecl->getType();
1548       break;
1549     }
1550 
1551     case OffsetOfExpr::OffsetOfNode::Identifier:
1552       llvm_unreachable("dependent __builtin_offsetof");
1553 
1554     case OffsetOfExpr::OffsetOfNode::Base: {
1555       if (ON.getBase()->isVirtual()) {
1556         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1557         continue;
1558       }
1559 
1560       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1561       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1562 
1563       // Save the element type.
1564       CurrentType = ON.getBase()->getType();
1565 
1566       // Compute the offset to the base.
1567       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1568       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1569       int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1570                           CGF.getContext().getCharWidth();
1571       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1572       break;
1573     }
1574     }
1575     Result = Builder.CreateAdd(Result, Offset);
1576   }
1577   return Result;
1578 }
1579 
1580 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1581 /// argument of the sizeof expression as an integer.
1582 Value *
1583 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1584                               const UnaryExprOrTypeTraitExpr *E) {
1585   QualType TypeToSize = E->getTypeOfArgument();
1586   if (E->getKind() == UETT_SizeOf) {
1587     if (const VariableArrayType *VAT =
1588           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1589       if (E->isArgumentType()) {
1590         // sizeof(type) - make sure to emit the VLA size.
1591         CGF.EmitVariablyModifiedType(TypeToSize);
1592       } else {
1593         // C99 6.5.3.4p2: If the argument is an expression of type
1594         // VLA, it is evaluated.
1595         CGF.EmitIgnoredExpr(E->getArgumentExpr());
1596       }
1597 
1598       QualType eltType;
1599       llvm::Value *numElts;
1600       llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
1601 
1602       llvm::Value *size = numElts;
1603 
1604       // Scale the number of non-VLA elements by the non-VLA element size.
1605       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1606       if (!eltSize.isOne())
1607         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1608 
1609       return size;
1610     }
1611   }
1612 
1613   // If this isn't sizeof(vla), the result must be constant; use the constant
1614   // folding logic so we don't have to duplicate it here.
1615   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
1616 }
1617 
1618 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1619   Expr *Op = E->getSubExpr();
1620   if (Op->getType()->isAnyComplexType()) {
1621     // If it's an l-value, load through the appropriate subobject l-value.
1622     // Note that we have to ask E because Op might be an l-value that
1623     // this won't work for, e.g. an Obj-C property.
1624     if (E->isGLValue())
1625       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1626 
1627     // Otherwise, calculate and project.
1628     return CGF.EmitComplexExpr(Op, false, true).first;
1629   }
1630 
1631   return Visit(Op);
1632 }
1633 
1634 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1635   Expr *Op = E->getSubExpr();
1636   if (Op->getType()->isAnyComplexType()) {
1637     // If it's an l-value, load through the appropriate subobject l-value.
1638     // Note that we have to ask E because Op might be an l-value that
1639     // this won't work for, e.g. an Obj-C property.
1640     if (Op->isGLValue())
1641       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1642 
1643     // Otherwise, calculate and project.
1644     return CGF.EmitComplexExpr(Op, true, false).second;
1645   }
1646 
1647   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1648   // effects are evaluated, but not the actual value.
1649   CGF.EmitScalarExpr(Op, true);
1650   return llvm::Constant::getNullValue(ConvertType(E->getType()));
1651 }
1652 
1653 //===----------------------------------------------------------------------===//
1654 //                           Binary Operators
1655 //===----------------------------------------------------------------------===//
1656 
1657 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1658   TestAndClearIgnoreResultAssign();
1659   BinOpInfo Result;
1660   Result.LHS = Visit(E->getLHS());
1661   Result.RHS = Visit(E->getRHS());
1662   Result.Ty  = E->getType();
1663   Result.Opcode = E->getOpcode();
1664   Result.E = E;
1665   return Result;
1666 }
1667 
1668 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1669                                               const CompoundAssignOperator *E,
1670                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1671                                                    Value *&Result) {
1672   QualType LHSTy = E->getLHS()->getType();
1673   BinOpInfo OpInfo;
1674 
1675   if (E->getComputationResultType()->isAnyComplexType()) {
1676     // This needs to go through the complex expression emitter, but it's a tad
1677     // complicated to do that... I'm leaving it out for now.  (Note that we do
1678     // actually need the imaginary part of the RHS for multiplication and
1679     // division.)
1680     CGF.ErrorUnsupported(E, "complex compound assignment");
1681     Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1682     return LValue();
1683   }
1684 
1685   // Emit the RHS first.  __block variables need to have the rhs evaluated
1686   // first, plus this should improve codegen a little.
1687   OpInfo.RHS = Visit(E->getRHS());
1688   OpInfo.Ty = E->getComputationResultType();
1689   OpInfo.Opcode = E->getOpcode();
1690   OpInfo.E = E;
1691   // Load/convert the LHS.
1692   LValue LHSLV = EmitCheckedLValue(E->getLHS());
1693   OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1694   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1695                                     E->getComputationLHSType());
1696 
1697   llvm::PHINode *atomicPHI = 0;
1698   if (const AtomicType *atomicTy = OpInfo.Ty->getAs<AtomicType>()) {
1699     // FIXME: For floating point types, we should be saving and restoring the
1700     // floating point environment in the loop.
1701     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1702     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1703     Builder.CreateBr(opBB);
1704     Builder.SetInsertPoint(opBB);
1705     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
1706     atomicPHI->addIncoming(OpInfo.LHS, startBB);
1707     OpInfo.Ty = atomicTy->getValueType();
1708     OpInfo.LHS = atomicPHI;
1709   }
1710 
1711   // Expand the binary operator.
1712   Result = (this->*Func)(OpInfo);
1713 
1714   // Convert the result back to the LHS type.
1715   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1716 
1717   if (atomicPHI) {
1718     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1719     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1720     llvm::Value *old = Builder.CreateAtomicCmpXchg(LHSLV.getAddress(), atomicPHI,
1721         Result, llvm::SequentiallyConsistent);
1722     atomicPHI->addIncoming(old, opBB);
1723     llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1724     Builder.CreateCondBr(success, contBB, opBB);
1725     Builder.SetInsertPoint(contBB);
1726     return LHSLV;
1727   }
1728 
1729   // Store the result value into the LHS lvalue. Bit-fields are handled
1730   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1731   // 'An assignment expression has the value of the left operand after the
1732   // assignment...'.
1733   if (LHSLV.isBitField())
1734     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
1735   else
1736     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
1737 
1738   return LHSLV;
1739 }
1740 
1741 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1742                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1743   bool Ignore = TestAndClearIgnoreResultAssign();
1744   Value *RHS;
1745   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1746 
1747   // If the result is clearly ignored, return now.
1748   if (Ignore)
1749     return 0;
1750 
1751   // The result of an assignment in C is the assigned r-value.
1752   if (!CGF.getContext().getLangOptions().CPlusPlus)
1753     return RHS;
1754 
1755   // If the lvalue is non-volatile, return the computed value of the assignment.
1756   if (!LHS.isVolatileQualified())
1757     return RHS;
1758 
1759   // Otherwise, reload the value.
1760   return EmitLoadOfLValue(LHS);
1761 }
1762 
1763 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1764      					    const BinOpInfo &Ops,
1765 				     	    llvm::Value *Zero, bool isDiv) {
1766   llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1767   llvm::BasicBlock *contBB =
1768     CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn,
1769                          llvm::next(insertPt));
1770   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1771 
1772   llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1773 
1774   if (Ops.Ty->hasSignedIntegerRepresentation()) {
1775     llvm::Value *IntMin =
1776       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1777     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1778 
1779     llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1780     llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1781     llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1782     llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1783     Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1784                          overflowBB, contBB);
1785   } else {
1786     CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1787                              overflowBB, contBB);
1788   }
1789   EmitOverflowBB(overflowBB);
1790   Builder.SetInsertPoint(contBB);
1791 }
1792 
1793 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1794   if (isTrapvOverflowBehavior()) {
1795     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1796 
1797     if (Ops.Ty->isIntegerType())
1798       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1799     else if (Ops.Ty->isRealFloatingType()) {
1800       llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1801       llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn,
1802                                                        llvm::next(insertPt));
1803       llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1804                                                           CGF.CurFn);
1805       CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1806                                overflowBB, DivCont);
1807       EmitOverflowBB(overflowBB);
1808       Builder.SetInsertPoint(DivCont);
1809     }
1810   }
1811   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
1812     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1813     if (CGF.getContext().getLangOptions().OpenCL) {
1814       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
1815       llvm::Type *ValTy = Val->getType();
1816       if (ValTy->isFloatTy() ||
1817           (isa<llvm::VectorType>(ValTy) &&
1818            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
1819         CGF.SetFPAccuracy(Val, 5, 2);
1820     }
1821     return Val;
1822   }
1823   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1824     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1825   else
1826     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1827 }
1828 
1829 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1830   // Rem in C can't be a floating point type: C99 6.5.5p2.
1831   if (isTrapvOverflowBehavior()) {
1832     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1833 
1834     if (Ops.Ty->isIntegerType())
1835       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1836   }
1837 
1838   if (Ops.Ty->hasUnsignedIntegerRepresentation())
1839     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1840   else
1841     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1842 }
1843 
1844 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1845   unsigned IID;
1846   unsigned OpID = 0;
1847 
1848   switch (Ops.Opcode) {
1849   case BO_Add:
1850   case BO_AddAssign:
1851     OpID = 1;
1852     IID = llvm::Intrinsic::sadd_with_overflow;
1853     break;
1854   case BO_Sub:
1855   case BO_SubAssign:
1856     OpID = 2;
1857     IID = llvm::Intrinsic::ssub_with_overflow;
1858     break;
1859   case BO_Mul:
1860   case BO_MulAssign:
1861     OpID = 3;
1862     IID = llvm::Intrinsic::smul_with_overflow;
1863     break;
1864   default:
1865     llvm_unreachable("Unsupported operation for overflow detection");
1866   }
1867   OpID <<= 1;
1868   OpID |= 1;
1869 
1870   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1871 
1872   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
1873 
1874   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1875   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1876   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1877 
1878   // Branch in case of overflow.
1879   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1880   llvm::Function::iterator insertPt = initialBB;
1881   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
1882                                                       llvm::next(insertPt));
1883   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1884 
1885   Builder.CreateCondBr(overflow, overflowBB, continueBB);
1886 
1887   // Handle overflow with llvm.trap.
1888   const std::string *handlerName =
1889     &CGF.getContext().getLangOptions().OverflowHandler;
1890   if (handlerName->empty()) {
1891     EmitOverflowBB(overflowBB);
1892     Builder.SetInsertPoint(continueBB);
1893     return result;
1894   }
1895 
1896   // If an overflow handler is set, then we want to call it and then use its
1897   // result, if it returns.
1898   Builder.SetInsertPoint(overflowBB);
1899 
1900   // Get the overflow handler.
1901   llvm::Type *Int8Ty = CGF.Int8Ty;
1902   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
1903   llvm::FunctionType *handlerTy =
1904       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1905   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1906 
1907   // Sign extend the args to 64-bit, so that we can use the same handler for
1908   // all types of overflow.
1909   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1910   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1911 
1912   // Call the handler with the two arguments, the operation, and the size of
1913   // the result.
1914   llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1915       Builder.getInt8(OpID),
1916       Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1917 
1918   // Truncate the result back to the desired size.
1919   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1920   Builder.CreateBr(continueBB);
1921 
1922   Builder.SetInsertPoint(continueBB);
1923   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
1924   phi->addIncoming(result, initialBB);
1925   phi->addIncoming(handlerResult, overflowBB);
1926 
1927   return phi;
1928 }
1929 
1930 /// Emit pointer + index arithmetic.
1931 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
1932                                     const BinOpInfo &op,
1933                                     bool isSubtraction) {
1934   // Must have binary (not unary) expr here.  Unary pointer
1935   // increment/decrement doesn't use this path.
1936   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
1937 
1938   Value *pointer = op.LHS;
1939   Expr *pointerOperand = expr->getLHS();
1940   Value *index = op.RHS;
1941   Expr *indexOperand = expr->getRHS();
1942 
1943   // In a subtraction, the LHS is always the pointer.
1944   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
1945     std::swap(pointer, index);
1946     std::swap(pointerOperand, indexOperand);
1947   }
1948 
1949   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
1950   if (width != CGF.PointerWidthInBits) {
1951     // Zero-extend or sign-extend the pointer value according to
1952     // whether the index is signed or not.
1953     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
1954     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
1955                                       "idx.ext");
1956   }
1957 
1958   // If this is subtraction, negate the index.
1959   if (isSubtraction)
1960     index = CGF.Builder.CreateNeg(index, "idx.neg");
1961 
1962   const PointerType *pointerType
1963     = pointerOperand->getType()->getAs<PointerType>();
1964   if (!pointerType) {
1965     QualType objectType = pointerOperand->getType()
1966                                         ->castAs<ObjCObjectPointerType>()
1967                                         ->getPointeeType();
1968     llvm::Value *objectSize
1969       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
1970 
1971     index = CGF.Builder.CreateMul(index, objectSize);
1972 
1973     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1974     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1975     return CGF.Builder.CreateBitCast(result, pointer->getType());
1976   }
1977 
1978   QualType elementType = pointerType->getPointeeType();
1979   if (const VariableArrayType *vla
1980         = CGF.getContext().getAsVariableArrayType(elementType)) {
1981     // The element count here is the total number of non-VLA elements.
1982     llvm::Value *numElements = CGF.getVLASize(vla).first;
1983 
1984     // Effectively, the multiply by the VLA size is part of the GEP.
1985     // GEP indexes are signed, and scaling an index isn't permitted to
1986     // signed-overflow, so we use the same semantics for our explicit
1987     // multiply.  We suppress this if overflow is not undefined behavior.
1988     if (CGF.getLangOptions().isSignedOverflowDefined()) {
1989       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
1990       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
1991     } else {
1992       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
1993       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
1994     }
1995     return pointer;
1996   }
1997 
1998   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1999   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2000   // future proof.
2001   if (elementType->isVoidType() || elementType->isFunctionType()) {
2002     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2003     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2004     return CGF.Builder.CreateBitCast(result, pointer->getType());
2005   }
2006 
2007   if (CGF.getLangOptions().isSignedOverflowDefined())
2008     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2009 
2010   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2011 }
2012 
2013 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2014   if (op.LHS->getType()->isPointerTy() ||
2015       op.RHS->getType()->isPointerTy())
2016     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2017 
2018   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2019     switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
2020     case LangOptions::SOB_Undefined:
2021       return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2022     case LangOptions::SOB_Defined:
2023       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2024     case LangOptions::SOB_Trapping:
2025       return EmitOverflowCheckedBinOp(op);
2026     }
2027   }
2028 
2029   if (op.LHS->getType()->isFPOrFPVectorTy())
2030     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2031 
2032   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2033 }
2034 
2035 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2036   // The LHS is always a pointer if either side is.
2037   if (!op.LHS->getType()->isPointerTy()) {
2038     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2039       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
2040       case LangOptions::SOB_Undefined:
2041         return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2042       case LangOptions::SOB_Defined:
2043         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2044       case LangOptions::SOB_Trapping:
2045         return EmitOverflowCheckedBinOp(op);
2046       }
2047     }
2048 
2049     if (op.LHS->getType()->isFPOrFPVectorTy())
2050       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2051 
2052     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2053   }
2054 
2055   // If the RHS is not a pointer, then we have normal pointer
2056   // arithmetic.
2057   if (!op.RHS->getType()->isPointerTy())
2058     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2059 
2060   // Otherwise, this is a pointer subtraction.
2061 
2062   // Do the raw subtraction part.
2063   llvm::Value *LHS
2064     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2065   llvm::Value *RHS
2066     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2067   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2068 
2069   // Okay, figure out the element size.
2070   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2071   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2072 
2073   llvm::Value *divisor = 0;
2074 
2075   // For a variable-length array, this is going to be non-constant.
2076   if (const VariableArrayType *vla
2077         = CGF.getContext().getAsVariableArrayType(elementType)) {
2078     llvm::Value *numElements;
2079     llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
2080 
2081     divisor = numElements;
2082 
2083     // Scale the number of non-VLA elements by the non-VLA element size.
2084     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2085     if (!eltSize.isOne())
2086       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2087 
2088   // For everything elese, we can just compute it, safe in the
2089   // assumption that Sema won't let anything through that we can't
2090   // safely compute the size of.
2091   } else {
2092     CharUnits elementSize;
2093     // Handle GCC extension for pointer arithmetic on void* and
2094     // function pointer types.
2095     if (elementType->isVoidType() || elementType->isFunctionType())
2096       elementSize = CharUnits::One();
2097     else
2098       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2099 
2100     // Don't even emit the divide for element size of 1.
2101     if (elementSize.isOne())
2102       return diffInChars;
2103 
2104     divisor = CGF.CGM.getSize(elementSize);
2105   }
2106 
2107   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2108   // pointer difference in C is only defined in the case where both operands
2109   // are pointing to elements of an array.
2110   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2111 }
2112 
2113 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2114   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2115   // RHS to the same size as the LHS.
2116   Value *RHS = Ops.RHS;
2117   if (Ops.LHS->getType() != RHS->getType())
2118     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2119 
2120   if (CGF.CatchUndefined
2121       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2122     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2123     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2124     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2125                                  llvm::ConstantInt::get(RHS->getType(), Width)),
2126                              Cont, CGF.getTrapBB());
2127     CGF.EmitBlock(Cont);
2128   }
2129 
2130   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2131 }
2132 
2133 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2134   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2135   // RHS to the same size as the LHS.
2136   Value *RHS = Ops.RHS;
2137   if (Ops.LHS->getType() != RHS->getType())
2138     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2139 
2140   if (CGF.CatchUndefined
2141       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2142     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2143     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2144     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2145                                  llvm::ConstantInt::get(RHS->getType(), Width)),
2146                              Cont, CGF.getTrapBB());
2147     CGF.EmitBlock(Cont);
2148   }
2149 
2150   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2151     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2152   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2153 }
2154 
2155 enum IntrinsicType { VCMPEQ, VCMPGT };
2156 // return corresponding comparison intrinsic for given vector type
2157 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2158                                         BuiltinType::Kind ElemKind) {
2159   switch (ElemKind) {
2160   default: llvm_unreachable("unexpected element type");
2161   case BuiltinType::Char_U:
2162   case BuiltinType::UChar:
2163     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2164                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2165   case BuiltinType::Char_S:
2166   case BuiltinType::SChar:
2167     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2168                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2169   case BuiltinType::UShort:
2170     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2171                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2172   case BuiltinType::Short:
2173     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2174                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2175   case BuiltinType::UInt:
2176   case BuiltinType::ULong:
2177     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2178                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2179   case BuiltinType::Int:
2180   case BuiltinType::Long:
2181     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2182                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2183   case BuiltinType::Float:
2184     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2185                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2186   }
2187 }
2188 
2189 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2190                                       unsigned SICmpOpc, unsigned FCmpOpc) {
2191   TestAndClearIgnoreResultAssign();
2192   Value *Result;
2193   QualType LHSTy = E->getLHS()->getType();
2194   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2195     assert(E->getOpcode() == BO_EQ ||
2196            E->getOpcode() == BO_NE);
2197     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2198     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2199     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2200                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2201   } else if (!LHSTy->isAnyComplexType()) {
2202     Value *LHS = Visit(E->getLHS());
2203     Value *RHS = Visit(E->getRHS());
2204 
2205     // If AltiVec, the comparison results in a numeric type, so we use
2206     // intrinsics comparing vectors and giving 0 or 1 as a result
2207     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2208       // constants for mapping CR6 register bits to predicate result
2209       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2210 
2211       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2212 
2213       // in several cases vector arguments order will be reversed
2214       Value *FirstVecArg = LHS,
2215             *SecondVecArg = RHS;
2216 
2217       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2218       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2219       BuiltinType::Kind ElementKind = BTy->getKind();
2220 
2221       switch(E->getOpcode()) {
2222       default: llvm_unreachable("is not a comparison operation");
2223       case BO_EQ:
2224         CR6 = CR6_LT;
2225         ID = GetIntrinsic(VCMPEQ, ElementKind);
2226         break;
2227       case BO_NE:
2228         CR6 = CR6_EQ;
2229         ID = GetIntrinsic(VCMPEQ, ElementKind);
2230         break;
2231       case BO_LT:
2232         CR6 = CR6_LT;
2233         ID = GetIntrinsic(VCMPGT, ElementKind);
2234         std::swap(FirstVecArg, SecondVecArg);
2235         break;
2236       case BO_GT:
2237         CR6 = CR6_LT;
2238         ID = GetIntrinsic(VCMPGT, ElementKind);
2239         break;
2240       case BO_LE:
2241         if (ElementKind == BuiltinType::Float) {
2242           CR6 = CR6_LT;
2243           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2244           std::swap(FirstVecArg, SecondVecArg);
2245         }
2246         else {
2247           CR6 = CR6_EQ;
2248           ID = GetIntrinsic(VCMPGT, ElementKind);
2249         }
2250         break;
2251       case BO_GE:
2252         if (ElementKind == BuiltinType::Float) {
2253           CR6 = CR6_LT;
2254           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2255         }
2256         else {
2257           CR6 = CR6_EQ;
2258           ID = GetIntrinsic(VCMPGT, ElementKind);
2259           std::swap(FirstVecArg, SecondVecArg);
2260         }
2261         break;
2262       }
2263 
2264       Value *CR6Param = Builder.getInt32(CR6);
2265       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2266       Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2267       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2268     }
2269 
2270     if (LHS->getType()->isFPOrFPVectorTy()) {
2271       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2272                                   LHS, RHS, "cmp");
2273     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2274       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2275                                   LHS, RHS, "cmp");
2276     } else {
2277       // Unsigned integers and pointers.
2278       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2279                                   LHS, RHS, "cmp");
2280     }
2281 
2282     // If this is a vector comparison, sign extend the result to the appropriate
2283     // vector integer type and return it (don't convert to bool).
2284     if (LHSTy->isVectorType())
2285       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2286 
2287   } else {
2288     // Complex Comparison: can only be an equality comparison.
2289     CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2290     CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2291 
2292     QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2293 
2294     Value *ResultR, *ResultI;
2295     if (CETy->isRealFloatingType()) {
2296       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2297                                    LHS.first, RHS.first, "cmp.r");
2298       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2299                                    LHS.second, RHS.second, "cmp.i");
2300     } else {
2301       // Complex comparisons can only be equality comparisons.  As such, signed
2302       // and unsigned opcodes are the same.
2303       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2304                                    LHS.first, RHS.first, "cmp.r");
2305       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2306                                    LHS.second, RHS.second, "cmp.i");
2307     }
2308 
2309     if (E->getOpcode() == BO_EQ) {
2310       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2311     } else {
2312       assert(E->getOpcode() == BO_NE &&
2313              "Complex comparison other than == or != ?");
2314       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2315     }
2316   }
2317 
2318   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2319 }
2320 
2321 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2322   bool Ignore = TestAndClearIgnoreResultAssign();
2323 
2324   Value *RHS;
2325   LValue LHS;
2326 
2327   switch (E->getLHS()->getType().getObjCLifetime()) {
2328   case Qualifiers::OCL_Strong:
2329     llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2330     break;
2331 
2332   case Qualifiers::OCL_Autoreleasing:
2333     llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
2334     break;
2335 
2336   case Qualifiers::OCL_Weak:
2337     RHS = Visit(E->getRHS());
2338     LHS = EmitCheckedLValue(E->getLHS());
2339     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2340     break;
2341 
2342   // No reason to do any of these differently.
2343   case Qualifiers::OCL_None:
2344   case Qualifiers::OCL_ExplicitNone:
2345     // __block variables need to have the rhs evaluated first, plus
2346     // this should improve codegen just a little.
2347     RHS = Visit(E->getRHS());
2348     LHS = EmitCheckedLValue(E->getLHS());
2349 
2350     // Store the value into the LHS.  Bit-fields are handled specially
2351     // because the result is altered by the store, i.e., [C99 6.5.16p1]
2352     // 'An assignment expression has the value of the left operand after
2353     // the assignment...'.
2354     if (LHS.isBitField())
2355       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2356     else
2357       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2358   }
2359 
2360   // If the result is clearly ignored, return now.
2361   if (Ignore)
2362     return 0;
2363 
2364   // The result of an assignment in C is the assigned r-value.
2365   if (!CGF.getContext().getLangOptions().CPlusPlus)
2366     return RHS;
2367 
2368   // If the lvalue is non-volatile, return the computed value of the assignment.
2369   if (!LHS.isVolatileQualified())
2370     return RHS;
2371 
2372   // Otherwise, reload the value.
2373   return EmitLoadOfLValue(LHS);
2374 }
2375 
2376 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2377 
2378   // Perform vector logical and on comparisons with zero vectors.
2379   if (E->getType()->isVectorType()) {
2380     Value *LHS = Visit(E->getLHS());
2381     Value *RHS = Visit(E->getRHS());
2382     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2383     LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2384     RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2385     Value *And = Builder.CreateAnd(LHS, RHS);
2386     return Builder.CreateSExt(And, Zero->getType(), "sext");
2387   }
2388 
2389   llvm::Type *ResTy = ConvertType(E->getType());
2390 
2391   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2392   // If we have 1 && X, just emit X without inserting the control flow.
2393   bool LHSCondVal;
2394   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2395     if (LHSCondVal) { // If we have 1 && X, just emit X.
2396       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2397       // ZExt result to int or bool.
2398       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2399     }
2400 
2401     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2402     if (!CGF.ContainsLabel(E->getRHS()))
2403       return llvm::Constant::getNullValue(ResTy);
2404   }
2405 
2406   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2407   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2408 
2409   CodeGenFunction::ConditionalEvaluation eval(CGF);
2410 
2411   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2412   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2413 
2414   // Any edges into the ContBlock are now from an (indeterminate number of)
2415   // edges from this first condition.  All of these values will be false.  Start
2416   // setting up the PHI node in the Cont Block for this.
2417   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2418                                             "", ContBlock);
2419   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2420        PI != PE; ++PI)
2421     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2422 
2423   eval.begin(CGF);
2424   CGF.EmitBlock(RHSBlock);
2425   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2426   eval.end(CGF);
2427 
2428   // Reaquire the RHS block, as there may be subblocks inserted.
2429   RHSBlock = Builder.GetInsertBlock();
2430 
2431   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2432   // into the phi node for the edge with the value of RHSCond.
2433   if (CGF.getDebugInfo())
2434     // There is no need to emit line number for unconditional branch.
2435     Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2436   CGF.EmitBlock(ContBlock);
2437   PN->addIncoming(RHSCond, RHSBlock);
2438 
2439   // ZExt result to int.
2440   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2441 }
2442 
2443 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2444 
2445   // Perform vector logical or on comparisons with zero vectors.
2446   if (E->getType()->isVectorType()) {
2447     Value *LHS = Visit(E->getLHS());
2448     Value *RHS = Visit(E->getRHS());
2449     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2450     LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2451     RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2452     Value *Or = Builder.CreateOr(LHS, RHS);
2453     return Builder.CreateSExt(Or, Zero->getType(), "sext");
2454   }
2455 
2456   llvm::Type *ResTy = ConvertType(E->getType());
2457 
2458   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2459   // If we have 0 || X, just emit X without inserting the control flow.
2460   bool LHSCondVal;
2461   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2462     if (!LHSCondVal) { // If we have 0 || X, just emit X.
2463       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2464       // ZExt result to int or bool.
2465       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2466     }
2467 
2468     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2469     if (!CGF.ContainsLabel(E->getRHS()))
2470       return llvm::ConstantInt::get(ResTy, 1);
2471   }
2472 
2473   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2474   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2475 
2476   CodeGenFunction::ConditionalEvaluation eval(CGF);
2477 
2478   // Branch on the LHS first.  If it is true, go to the success (cont) block.
2479   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2480 
2481   // Any edges into the ContBlock are now from an (indeterminate number of)
2482   // edges from this first condition.  All of these values will be true.  Start
2483   // setting up the PHI node in the Cont Block for this.
2484   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2485                                             "", ContBlock);
2486   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2487        PI != PE; ++PI)
2488     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2489 
2490   eval.begin(CGF);
2491 
2492   // Emit the RHS condition as a bool value.
2493   CGF.EmitBlock(RHSBlock);
2494   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2495 
2496   eval.end(CGF);
2497 
2498   // Reaquire the RHS block, as there may be subblocks inserted.
2499   RHSBlock = Builder.GetInsertBlock();
2500 
2501   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2502   // into the phi node for the edge with the value of RHSCond.
2503   CGF.EmitBlock(ContBlock);
2504   PN->addIncoming(RHSCond, RHSBlock);
2505 
2506   // ZExt result to int.
2507   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2508 }
2509 
2510 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2511   CGF.EmitIgnoredExpr(E->getLHS());
2512   CGF.EnsureInsertPoint();
2513   return Visit(E->getRHS());
2514 }
2515 
2516 //===----------------------------------------------------------------------===//
2517 //                             Other Operators
2518 //===----------------------------------------------------------------------===//
2519 
2520 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2521 /// expression is cheap enough and side-effect-free enough to evaluate
2522 /// unconditionally instead of conditionally.  This is used to convert control
2523 /// flow into selects in some cases.
2524 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2525                                                    CodeGenFunction &CGF) {
2526   E = E->IgnoreParens();
2527 
2528   // Anything that is an integer or floating point constant is fine.
2529   if (E->isConstantInitializer(CGF.getContext(), false))
2530     return true;
2531 
2532   // Non-volatile automatic variables too, to get "cond ? X : Y" where
2533   // X and Y are local variables.
2534   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2535     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2536       if (VD->hasLocalStorage() && !(CGF.getContext()
2537                                      .getCanonicalType(VD->getType())
2538                                      .isVolatileQualified()))
2539         return true;
2540 
2541   return false;
2542 }
2543 
2544 
2545 Value *ScalarExprEmitter::
2546 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2547   TestAndClearIgnoreResultAssign();
2548 
2549   // Bind the common expression if necessary.
2550   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2551 
2552   Expr *condExpr = E->getCond();
2553   Expr *lhsExpr = E->getTrueExpr();
2554   Expr *rhsExpr = E->getFalseExpr();
2555 
2556   // If the condition constant folds and can be elided, try to avoid emitting
2557   // the condition and the dead arm.
2558   bool CondExprBool;
2559   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2560     Expr *live = lhsExpr, *dead = rhsExpr;
2561     if (!CondExprBool) std::swap(live, dead);
2562 
2563     // If the dead side doesn't have labels we need, just emit the Live part.
2564     if (!CGF.ContainsLabel(dead)) {
2565       Value *Result = Visit(live);
2566 
2567       // If the live part is a throw expression, it acts like it has a void
2568       // type, so evaluating it returns a null Value*.  However, a conditional
2569       // with non-void type must return a non-null Value*.
2570       if (!Result && !E->getType()->isVoidType())
2571         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
2572 
2573       return Result;
2574     }
2575   }
2576 
2577   // OpenCL: If the condition is a vector, we can treat this condition like
2578   // the select function.
2579   if (CGF.getContext().getLangOptions().OpenCL
2580       && condExpr->getType()->isVectorType()) {
2581     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2582     llvm::Value *LHS = Visit(lhsExpr);
2583     llvm::Value *RHS = Visit(rhsExpr);
2584 
2585     llvm::Type *condType = ConvertType(condExpr->getType());
2586     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2587 
2588     unsigned numElem = vecTy->getNumElements();
2589     llvm::Type *elemType = vecTy->getElementType();
2590 
2591     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
2592     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2593     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2594                                           llvm::VectorType::get(elemType,
2595                                                                 numElem),
2596                                           "sext");
2597     llvm::Value *tmp2 = Builder.CreateNot(tmp);
2598 
2599     // Cast float to int to perform ANDs if necessary.
2600     llvm::Value *RHSTmp = RHS;
2601     llvm::Value *LHSTmp = LHS;
2602     bool wasCast = false;
2603     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2604     if (rhsVTy->getElementType()->isFloatTy()) {
2605       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2606       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2607       wasCast = true;
2608     }
2609 
2610     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2611     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2612     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2613     if (wasCast)
2614       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2615 
2616     return tmp5;
2617   }
2618 
2619   // If this is a really simple expression (like x ? 4 : 5), emit this as a
2620   // select instead of as control flow.  We can only do this if it is cheap and
2621   // safe to evaluate the LHS and RHS unconditionally.
2622   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
2623       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
2624     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
2625     llvm::Value *LHS = Visit(lhsExpr);
2626     llvm::Value *RHS = Visit(rhsExpr);
2627     if (!LHS) {
2628       // If the conditional has void type, make sure we return a null Value*.
2629       assert(!RHS && "LHS and RHS types must match");
2630       return 0;
2631     }
2632     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2633   }
2634 
2635   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2636   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2637   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2638 
2639   CodeGenFunction::ConditionalEvaluation eval(CGF);
2640   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
2641 
2642   CGF.EmitBlock(LHSBlock);
2643   eval.begin(CGF);
2644   Value *LHS = Visit(lhsExpr);
2645   eval.end(CGF);
2646 
2647   LHSBlock = Builder.GetInsertBlock();
2648   Builder.CreateBr(ContBlock);
2649 
2650   CGF.EmitBlock(RHSBlock);
2651   eval.begin(CGF);
2652   Value *RHS = Visit(rhsExpr);
2653   eval.end(CGF);
2654 
2655   RHSBlock = Builder.GetInsertBlock();
2656   CGF.EmitBlock(ContBlock);
2657 
2658   // If the LHS or RHS is a throw expression, it will be legitimately null.
2659   if (!LHS)
2660     return RHS;
2661   if (!RHS)
2662     return LHS;
2663 
2664   // Create a PHI node for the real part.
2665   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
2666   PN->addIncoming(LHS, LHSBlock);
2667   PN->addIncoming(RHS, RHSBlock);
2668   return PN;
2669 }
2670 
2671 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2672   return Visit(E->getChosenSubExpr(CGF.getContext()));
2673 }
2674 
2675 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2676   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2677   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2678 
2679   // If EmitVAArg fails, we fall back to the LLVM instruction.
2680   if (!ArgPtr)
2681     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2682 
2683   // FIXME Volatility.
2684   return Builder.CreateLoad(ArgPtr);
2685 }
2686 
2687 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2688   return CGF.EmitBlockLiteral(block);
2689 }
2690 
2691 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
2692   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
2693   llvm::Type *DstTy = ConvertType(E->getType());
2694 
2695   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
2696   // a shuffle vector instead of a bitcast.
2697   llvm::Type *SrcTy = Src->getType();
2698   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
2699     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
2700     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
2701     if ((numElementsDst == 3 && numElementsSrc == 4)
2702         || (numElementsDst == 4 && numElementsSrc == 3)) {
2703 
2704 
2705       // In the case of going from int4->float3, a bitcast is needed before
2706       // doing a shuffle.
2707       llvm::Type *srcElemTy =
2708       cast<llvm::VectorType>(SrcTy)->getElementType();
2709       llvm::Type *dstElemTy =
2710       cast<llvm::VectorType>(DstTy)->getElementType();
2711 
2712       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
2713           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
2714         // Create a float type of the same size as the source or destination.
2715         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
2716                                                                  numElementsSrc);
2717 
2718         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
2719       }
2720 
2721       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
2722 
2723       SmallVector<llvm::Constant*, 3> Args;
2724       Args.push_back(Builder.getInt32(0));
2725       Args.push_back(Builder.getInt32(1));
2726       Args.push_back(Builder.getInt32(2));
2727 
2728       if (numElementsDst == 4)
2729         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
2730 
2731       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
2732 
2733       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
2734     }
2735   }
2736 
2737   return Builder.CreateBitCast(Src, DstTy, "astype");
2738 }
2739 
2740 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
2741   return CGF.EmitAtomicExpr(E).getScalarVal();
2742 }
2743 
2744 //===----------------------------------------------------------------------===//
2745 //                         Entry Point into this File
2746 //===----------------------------------------------------------------------===//
2747 
2748 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
2749 /// type, ignoring the result.
2750 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2751   assert(E && !hasAggregateLLVMType(E->getType()) &&
2752          "Invalid scalar expression to emit");
2753 
2754   if (isa<CXXDefaultArgExpr>(E))
2755     disableDebugInfo();
2756   Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
2757     .Visit(const_cast<Expr*>(E));
2758   if (isa<CXXDefaultArgExpr>(E))
2759     enableDebugInfo();
2760   return V;
2761 }
2762 
2763 /// EmitScalarConversion - Emit a conversion from the specified type to the
2764 /// specified destination type, both of which are LLVM scalar types.
2765 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2766                                              QualType DstTy) {
2767   assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2768          "Invalid scalar expression to emit");
2769   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2770 }
2771 
2772 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2773 /// type to the specified destination type, where the destination type is an
2774 /// LLVM scalar type.
2775 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2776                                                       QualType SrcTy,
2777                                                       QualType DstTy) {
2778   assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2779          "Invalid complex -> scalar conversion");
2780   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2781                                                                 DstTy);
2782 }
2783 
2784 
2785 llvm::Value *CodeGenFunction::
2786 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2787                         bool isInc, bool isPre) {
2788   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2789 }
2790 
2791 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2792   llvm::Value *V;
2793   // object->isa or (*object).isa
2794   // Generate code as for: *(Class*)object
2795   // build Class* type
2796   llvm::Type *ClassPtrTy = ConvertType(E->getType());
2797 
2798   Expr *BaseExpr = E->getBase();
2799   if (BaseExpr->isRValue()) {
2800     V = CreateMemTemp(E->getType(), "resval");
2801     llvm::Value *Src = EmitScalarExpr(BaseExpr);
2802     Builder.CreateStore(Src, V);
2803     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2804       MakeNaturalAlignAddrLValue(V, E->getType()));
2805   } else {
2806     if (E->isArrow())
2807       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2808     else
2809       V = EmitLValue(BaseExpr).getAddress();
2810   }
2811 
2812   // build Class* type
2813   ClassPtrTy = ClassPtrTy->getPointerTo();
2814   V = Builder.CreateBitCast(V, ClassPtrTy);
2815   return MakeNaturalAlignAddrLValue(V, E->getType());
2816 }
2817 
2818 
2819 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
2820                                             const CompoundAssignOperator *E) {
2821   ScalarExprEmitter Scalar(*this);
2822   Value *Result = 0;
2823   switch (E->getOpcode()) {
2824 #define COMPOUND_OP(Op)                                                       \
2825     case BO_##Op##Assign:                                                     \
2826       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2827                                              Result)
2828   COMPOUND_OP(Mul);
2829   COMPOUND_OP(Div);
2830   COMPOUND_OP(Rem);
2831   COMPOUND_OP(Add);
2832   COMPOUND_OP(Sub);
2833   COMPOUND_OP(Shl);
2834   COMPOUND_OP(Shr);
2835   COMPOUND_OP(And);
2836   COMPOUND_OP(Xor);
2837   COMPOUND_OP(Or);
2838 #undef COMPOUND_OP
2839 
2840   case BO_PtrMemD:
2841   case BO_PtrMemI:
2842   case BO_Mul:
2843   case BO_Div:
2844   case BO_Rem:
2845   case BO_Add:
2846   case BO_Sub:
2847   case BO_Shl:
2848   case BO_Shr:
2849   case BO_LT:
2850   case BO_GT:
2851   case BO_LE:
2852   case BO_GE:
2853   case BO_EQ:
2854   case BO_NE:
2855   case BO_And:
2856   case BO_Xor:
2857   case BO_Or:
2858   case BO_LAnd:
2859   case BO_LOr:
2860   case BO_Assign:
2861   case BO_Comma:
2862     llvm_unreachable("Not valid compound assignment operators");
2863   }
2864 
2865   llvm_unreachable("Unhandled compound assignment operator");
2866 }
2867