1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CodeGenFunction.h"
18 #include "CodeGenModule.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/CodeGenOptions.h"
26 #include "clang/Basic/FixedPoint.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "llvm/ADT/Optional.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/Module.h"
37 #include <cstdarg>
38 
39 using namespace clang;
40 using namespace CodeGen;
41 using llvm::Value;
42 
43 //===----------------------------------------------------------------------===//
44 //                         Scalar Expression Emitter
45 //===----------------------------------------------------------------------===//
46 
47 namespace {
48 
49 /// Determine whether the given binary operation may overflow.
50 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
51 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
52 /// the returned overflow check is precise. The returned value is 'true' for
53 /// all other opcodes, to be conservative.
54 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
55                              BinaryOperator::Opcode Opcode, bool Signed,
56                              llvm::APInt &Result) {
57   // Assume overflow is possible, unless we can prove otherwise.
58   bool Overflow = true;
59   const auto &LHSAP = LHS->getValue();
60   const auto &RHSAP = RHS->getValue();
61   if (Opcode == BO_Add) {
62     if (Signed)
63       Result = LHSAP.sadd_ov(RHSAP, Overflow);
64     else
65       Result = LHSAP.uadd_ov(RHSAP, Overflow);
66   } else if (Opcode == BO_Sub) {
67     if (Signed)
68       Result = LHSAP.ssub_ov(RHSAP, Overflow);
69     else
70       Result = LHSAP.usub_ov(RHSAP, Overflow);
71   } else if (Opcode == BO_Mul) {
72     if (Signed)
73       Result = LHSAP.smul_ov(RHSAP, Overflow);
74     else
75       Result = LHSAP.umul_ov(RHSAP, Overflow);
76   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
77     if (Signed && !RHS->isZero())
78       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
79     else
80       return false;
81   }
82   return Overflow;
83 }
84 
85 struct BinOpInfo {
86   Value *LHS;
87   Value *RHS;
88   QualType Ty;  // Computation Type.
89   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
90   FPOptions FPFeatures;
91   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
92 
93   /// Check if the binop can result in integer overflow.
94   bool mayHaveIntegerOverflow() const {
95     // Without constant input, we can't rule out overflow.
96     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
97     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
98     if (!LHSCI || !RHSCI)
99       return true;
100 
101     llvm::APInt Result;
102     return ::mayHaveIntegerOverflow(
103         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
104   }
105 
106   /// Check if the binop computes a division or a remainder.
107   bool isDivremOp() const {
108     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
109            Opcode == BO_RemAssign;
110   }
111 
112   /// Check if the binop can result in an integer division by zero.
113   bool mayHaveIntegerDivisionByZero() const {
114     if (isDivremOp())
115       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
116         return CI->isZero();
117     return true;
118   }
119 
120   /// Check if the binop can result in a float division by zero.
121   bool mayHaveFloatDivisionByZero() const {
122     if (isDivremOp())
123       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
124         return CFP->isZero();
125     return true;
126   }
127 
128   /// Check if either operand is a fixed point type or integer type, with at
129   /// least one being a fixed point type. In any case, this
130   /// operation did not follow usual arithmetic conversion and both operands may
131   /// not be the same.
132   bool isFixedPointBinOp() const {
133     // We cannot simply check the result type since comparison operations return
134     // an int.
135     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
136       QualType LHSType = BinOp->getLHS()->getType();
137       QualType RHSType = BinOp->getRHS()->getType();
138       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
139     }
140     return false;
141   }
142 };
143 
144 static bool MustVisitNullValue(const Expr *E) {
145   // If a null pointer expression's type is the C++0x nullptr_t, then
146   // it's not necessarily a simple constant and it must be evaluated
147   // for its potential side effects.
148   return E->getType()->isNullPtrType();
149 }
150 
151 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
152 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
153                                                         const Expr *E) {
154   const Expr *Base = E->IgnoreImpCasts();
155   if (E == Base)
156     return llvm::None;
157 
158   QualType BaseTy = Base->getType();
159   if (!BaseTy->isPromotableIntegerType() ||
160       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
161     return llvm::None;
162 
163   return BaseTy;
164 }
165 
166 /// Check if \p E is a widened promoted integer.
167 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
168   return getUnwidenedIntegerType(Ctx, E).hasValue();
169 }
170 
171 /// Check if we can skip the overflow check for \p Op.
172 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
173   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
174          "Expected a unary or binary operator");
175 
176   // If the binop has constant inputs and we can prove there is no overflow,
177   // we can elide the overflow check.
178   if (!Op.mayHaveIntegerOverflow())
179     return true;
180 
181   // If a unary op has a widened operand, the op cannot overflow.
182   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
183     return !UO->canOverflow();
184 
185   // We usually don't need overflow checks for binops with widened operands.
186   // Multiplication with promoted unsigned operands is a special case.
187   const auto *BO = cast<BinaryOperator>(Op.E);
188   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
189   if (!OptionalLHSTy)
190     return false;
191 
192   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
193   if (!OptionalRHSTy)
194     return false;
195 
196   QualType LHSTy = *OptionalLHSTy;
197   QualType RHSTy = *OptionalRHSTy;
198 
199   // This is the simple case: binops without unsigned multiplication, and with
200   // widened operands. No overflow check is needed here.
201   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
202       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
203     return true;
204 
205   // For unsigned multiplication the overflow check can be elided if either one
206   // of the unpromoted types are less than half the size of the promoted type.
207   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
208   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
209          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
210 }
211 
212 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
213 static void updateFastMathFlags(llvm::FastMathFlags &FMF,
214                                 FPOptions FPFeatures) {
215   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
216 }
217 
218 /// Propagate fast-math flags from \p Op to the instruction in \p V.
219 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
220   if (auto *I = dyn_cast<llvm::Instruction>(V)) {
221     llvm::FastMathFlags FMF = I->getFastMathFlags();
222     updateFastMathFlags(FMF, Op.FPFeatures);
223     I->setFastMathFlags(FMF);
224   }
225   return V;
226 }
227 
228 class ScalarExprEmitter
229   : public StmtVisitor<ScalarExprEmitter, Value*> {
230   CodeGenFunction &CGF;
231   CGBuilderTy &Builder;
232   bool IgnoreResultAssign;
233   llvm::LLVMContext &VMContext;
234 public:
235 
236   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
237     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
238       VMContext(cgf.getLLVMContext()) {
239   }
240 
241   //===--------------------------------------------------------------------===//
242   //                               Utilities
243   //===--------------------------------------------------------------------===//
244 
245   bool TestAndClearIgnoreResultAssign() {
246     bool I = IgnoreResultAssign;
247     IgnoreResultAssign = false;
248     return I;
249   }
250 
251   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
252   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
253   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
254     return CGF.EmitCheckedLValue(E, TCK);
255   }
256 
257   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
258                       const BinOpInfo &Info);
259 
260   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
261     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
262   }
263 
264   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
265     const AlignValueAttr *AVAttr = nullptr;
266     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
267       const ValueDecl *VD = DRE->getDecl();
268 
269       if (VD->getType()->isReferenceType()) {
270         if (const auto *TTy =
271             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
272           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
273       } else {
274         // Assumptions for function parameters are emitted at the start of the
275         // function, so there is no need to repeat that here,
276         // unless the alignment-assumption sanitizer is enabled,
277         // then we prefer the assumption over alignment attribute
278         // on IR function param.
279         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
280           return;
281 
282         AVAttr = VD->getAttr<AlignValueAttr>();
283       }
284     }
285 
286     if (!AVAttr)
287       if (const auto *TTy =
288           dyn_cast<TypedefType>(E->getType()))
289         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
290 
291     if (!AVAttr)
292       return;
293 
294     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
295     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
296     CGF.EmitAlignmentAssumption(V, E, AVAttr->getLocation(),
297                                 AlignmentCI->getZExtValue());
298   }
299 
300   /// EmitLoadOfLValue - Given an expression with complex type that represents a
301   /// value l-value, this method emits the address of the l-value, then loads
302   /// and returns the result.
303   Value *EmitLoadOfLValue(const Expr *E) {
304     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
305                                 E->getExprLoc());
306 
307     EmitLValueAlignmentAssumption(E, V);
308     return V;
309   }
310 
311   /// EmitConversionToBool - Convert the specified expression value to a
312   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
313   Value *EmitConversionToBool(Value *Src, QualType DstTy);
314 
315   /// Emit a check that a conversion to or from a floating-point type does not
316   /// overflow.
317   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
318                                 Value *Src, QualType SrcType, QualType DstType,
319                                 llvm::Type *DstTy, SourceLocation Loc);
320 
321   /// Known implicit conversion check kinds.
322   /// Keep in sync with the enum of the same name in ubsan_handlers.h
323   enum ImplicitConversionCheckKind : unsigned char {
324     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
325     ICCK_UnsignedIntegerTruncation = 1,
326     ICCK_SignedIntegerTruncation = 2,
327     ICCK_IntegerSignChange = 3,
328     ICCK_SignedIntegerTruncationOrSignChange = 4,
329   };
330 
331   /// Emit a check that an [implicit] truncation of an integer  does not
332   /// discard any bits. It is not UB, so we use the value after truncation.
333   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
334                                   QualType DstType, SourceLocation Loc);
335 
336   /// Emit a check that an [implicit] conversion of an integer does not change
337   /// the sign of the value. It is not UB, so we use the value after conversion.
338   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
339   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
340                                   QualType DstType, SourceLocation Loc);
341 
342   /// Emit a conversion from the specified type to the specified destination
343   /// type, both of which are LLVM scalar types.
344   struct ScalarConversionOpts {
345     bool TreatBooleanAsSigned;
346     bool EmitImplicitIntegerTruncationChecks;
347     bool EmitImplicitIntegerSignChangeChecks;
348 
349     ScalarConversionOpts()
350         : TreatBooleanAsSigned(false),
351           EmitImplicitIntegerTruncationChecks(false),
352           EmitImplicitIntegerSignChangeChecks(false) {}
353 
354     ScalarConversionOpts(clang::SanitizerSet SanOpts)
355         : TreatBooleanAsSigned(false),
356           EmitImplicitIntegerTruncationChecks(
357               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
358           EmitImplicitIntegerSignChangeChecks(
359               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
360   };
361   Value *
362   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
363                        SourceLocation Loc,
364                        ScalarConversionOpts Opts = ScalarConversionOpts());
365 
366   /// Convert between either a fixed point and other fixed point or fixed point
367   /// and an integer.
368   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
369                                   SourceLocation Loc);
370   Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema,
371                                   FixedPointSemantics &DstFixedSema,
372                                   SourceLocation Loc,
373                                   bool DstIsInteger = false);
374 
375   /// Emit a conversion from the specified complex type to the specified
376   /// destination type, where the destination type is an LLVM scalar type.
377   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
378                                        QualType SrcTy, QualType DstTy,
379                                        SourceLocation Loc);
380 
381   /// EmitNullValue - Emit a value that corresponds to null for the given type.
382   Value *EmitNullValue(QualType Ty);
383 
384   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
385   Value *EmitFloatToBoolConversion(Value *V) {
386     // Compare against 0.0 for fp scalars.
387     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
388     return Builder.CreateFCmpUNE(V, Zero, "tobool");
389   }
390 
391   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
392   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
393     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
394 
395     return Builder.CreateICmpNE(V, Zero, "tobool");
396   }
397 
398   Value *EmitIntToBoolConversion(Value *V) {
399     // Because of the type rules of C, we often end up computing a
400     // logical value, then zero extending it to int, then wanting it
401     // as a logical value again.  Optimize this common case.
402     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
403       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
404         Value *Result = ZI->getOperand(0);
405         // If there aren't any more uses, zap the instruction to save space.
406         // Note that there can be more uses, for example if this
407         // is the result of an assignment.
408         if (ZI->use_empty())
409           ZI->eraseFromParent();
410         return Result;
411       }
412     }
413 
414     return Builder.CreateIsNotNull(V, "tobool");
415   }
416 
417   //===--------------------------------------------------------------------===//
418   //                            Visitor Methods
419   //===--------------------------------------------------------------------===//
420 
421   Value *Visit(Expr *E) {
422     ApplyDebugLocation DL(CGF, E);
423     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
424   }
425 
426   Value *VisitStmt(Stmt *S) {
427     S->dump(CGF.getContext().getSourceManager());
428     llvm_unreachable("Stmt can't have complex result type!");
429   }
430   Value *VisitExpr(Expr *S);
431 
432   Value *VisitConstantExpr(ConstantExpr *E) {
433     return Visit(E->getSubExpr());
434   }
435   Value *VisitParenExpr(ParenExpr *PE) {
436     return Visit(PE->getSubExpr());
437   }
438   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
439     return Visit(E->getReplacement());
440   }
441   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
442     return Visit(GE->getResultExpr());
443   }
444   Value *VisitCoawaitExpr(CoawaitExpr *S) {
445     return CGF.EmitCoawaitExpr(*S).getScalarVal();
446   }
447   Value *VisitCoyieldExpr(CoyieldExpr *S) {
448     return CGF.EmitCoyieldExpr(*S).getScalarVal();
449   }
450   Value *VisitUnaryCoawait(const UnaryOperator *E) {
451     return Visit(E->getSubExpr());
452   }
453 
454   // Leaves.
455   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
456     return Builder.getInt(E->getValue());
457   }
458   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
459     return Builder.getInt(E->getValue());
460   }
461   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
462     return llvm::ConstantFP::get(VMContext, E->getValue());
463   }
464   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
465     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
466   }
467   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
468     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
469   }
470   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
471     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
472   }
473   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
474     return EmitNullValue(E->getType());
475   }
476   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
477     return EmitNullValue(E->getType());
478   }
479   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
480   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
481   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
482     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
483     return Builder.CreateBitCast(V, ConvertType(E->getType()));
484   }
485 
486   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
487     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
488   }
489 
490   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
491     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
492   }
493 
494   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
495     if (E->isGLValue())
496       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
497                               E->getExprLoc());
498 
499     // Otherwise, assume the mapping is the scalar directly.
500     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
501   }
502 
503   // l-values.
504   Value *VisitDeclRefExpr(DeclRefExpr *E) {
505     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
506       return CGF.emitScalarConstant(Constant, E);
507     return EmitLoadOfLValue(E);
508   }
509 
510   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
511     return CGF.EmitObjCSelectorExpr(E);
512   }
513   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
514     return CGF.EmitObjCProtocolExpr(E);
515   }
516   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
517     return EmitLoadOfLValue(E);
518   }
519   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
520     if (E->getMethodDecl() &&
521         E->getMethodDecl()->getReturnType()->isReferenceType())
522       return EmitLoadOfLValue(E);
523     return CGF.EmitObjCMessageExpr(E).getScalarVal();
524   }
525 
526   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
527     LValue LV = CGF.EmitObjCIsaExpr(E);
528     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
529     return V;
530   }
531 
532   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
533     VersionTuple Version = E->getVersion();
534 
535     // If we're checking for a platform older than our minimum deployment
536     // target, we can fold the check away.
537     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
538       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
539 
540     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
541     llvm::Value *Args[] = {
542         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
543         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
544         llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
545     };
546 
547     return CGF.EmitBuiltinAvailable(Args);
548   }
549 
550   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
551   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
552   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
553   Value *VisitMemberExpr(MemberExpr *E);
554   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
555   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
556     return EmitLoadOfLValue(E);
557   }
558 
559   Value *VisitInitListExpr(InitListExpr *E);
560 
561   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
562     assert(CGF.getArrayInitIndex() &&
563            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
564     return CGF.getArrayInitIndex();
565   }
566 
567   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
568     return EmitNullValue(E->getType());
569   }
570   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
571     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
572     return VisitCastExpr(E);
573   }
574   Value *VisitCastExpr(CastExpr *E);
575 
576   Value *VisitCallExpr(const CallExpr *E) {
577     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
578       return EmitLoadOfLValue(E);
579 
580     Value *V = CGF.EmitCallExpr(E).getScalarVal();
581 
582     EmitLValueAlignmentAssumption(E, V);
583     return V;
584   }
585 
586   Value *VisitStmtExpr(const StmtExpr *E);
587 
588   // Unary Operators.
589   Value *VisitUnaryPostDec(const UnaryOperator *E) {
590     LValue LV = EmitLValue(E->getSubExpr());
591     return EmitScalarPrePostIncDec(E, LV, false, false);
592   }
593   Value *VisitUnaryPostInc(const UnaryOperator *E) {
594     LValue LV = EmitLValue(E->getSubExpr());
595     return EmitScalarPrePostIncDec(E, LV, true, false);
596   }
597   Value *VisitUnaryPreDec(const UnaryOperator *E) {
598     LValue LV = EmitLValue(E->getSubExpr());
599     return EmitScalarPrePostIncDec(E, LV, false, true);
600   }
601   Value *VisitUnaryPreInc(const UnaryOperator *E) {
602     LValue LV = EmitLValue(E->getSubExpr());
603     return EmitScalarPrePostIncDec(E, LV, true, true);
604   }
605 
606   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
607                                                   llvm::Value *InVal,
608                                                   bool IsInc);
609 
610   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
611                                        bool isInc, bool isPre);
612 
613 
614   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
615     if (isa<MemberPointerType>(E->getType())) // never sugared
616       return CGF.CGM.getMemberPointerConstant(E);
617 
618     return EmitLValue(E->getSubExpr()).getPointer();
619   }
620   Value *VisitUnaryDeref(const UnaryOperator *E) {
621     if (E->getType()->isVoidType())
622       return Visit(E->getSubExpr()); // the actual value should be unused
623     return EmitLoadOfLValue(E);
624   }
625   Value *VisitUnaryPlus(const UnaryOperator *E) {
626     // This differs from gcc, though, most likely due to a bug in gcc.
627     TestAndClearIgnoreResultAssign();
628     return Visit(E->getSubExpr());
629   }
630   Value *VisitUnaryMinus    (const UnaryOperator *E);
631   Value *VisitUnaryNot      (const UnaryOperator *E);
632   Value *VisitUnaryLNot     (const UnaryOperator *E);
633   Value *VisitUnaryReal     (const UnaryOperator *E);
634   Value *VisitUnaryImag     (const UnaryOperator *E);
635   Value *VisitUnaryExtension(const UnaryOperator *E) {
636     return Visit(E->getSubExpr());
637   }
638 
639   // C++
640   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
641     return EmitLoadOfLValue(E);
642   }
643 
644   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
645     return Visit(DAE->getExpr());
646   }
647   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
648     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
649     return Visit(DIE->getExpr());
650   }
651   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
652     return CGF.LoadCXXThis();
653   }
654 
655   Value *VisitExprWithCleanups(ExprWithCleanups *E);
656   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
657     return CGF.EmitCXXNewExpr(E);
658   }
659   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
660     CGF.EmitCXXDeleteExpr(E);
661     return nullptr;
662   }
663 
664   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
665     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
666   }
667 
668   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
669     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
670   }
671 
672   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
673     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
674   }
675 
676   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
677     // C++ [expr.pseudo]p1:
678     //   The result shall only be used as the operand for the function call
679     //   operator (), and the result of such a call has type void. The only
680     //   effect is the evaluation of the postfix-expression before the dot or
681     //   arrow.
682     CGF.EmitScalarExpr(E->getBase());
683     return nullptr;
684   }
685 
686   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
687     return EmitNullValue(E->getType());
688   }
689 
690   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
691     CGF.EmitCXXThrowExpr(E);
692     return nullptr;
693   }
694 
695   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
696     return Builder.getInt1(E->getValue());
697   }
698 
699   // Binary Operators.
700   Value *EmitMul(const BinOpInfo &Ops) {
701     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
702       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
703       case LangOptions::SOB_Defined:
704         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
705       case LangOptions::SOB_Undefined:
706         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
707           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
708         LLVM_FALLTHROUGH;
709       case LangOptions::SOB_Trapping:
710         if (CanElideOverflowCheck(CGF.getContext(), Ops))
711           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
712         return EmitOverflowCheckedBinOp(Ops);
713       }
714     }
715 
716     if (Ops.Ty->isUnsignedIntegerType() &&
717         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
718         !CanElideOverflowCheck(CGF.getContext(), Ops))
719       return EmitOverflowCheckedBinOp(Ops);
720 
721     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
722       Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
723       return propagateFMFlags(V, Ops);
724     }
725     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
726   }
727   /// Create a binary op that checks for overflow.
728   /// Currently only supports +, - and *.
729   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
730 
731   // Check for undefined division and modulus behaviors.
732   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
733                                                   llvm::Value *Zero,bool isDiv);
734   // Common helper for getting how wide LHS of shift is.
735   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
736   Value *EmitDiv(const BinOpInfo &Ops);
737   Value *EmitRem(const BinOpInfo &Ops);
738   Value *EmitAdd(const BinOpInfo &Ops);
739   Value *EmitSub(const BinOpInfo &Ops);
740   Value *EmitShl(const BinOpInfo &Ops);
741   Value *EmitShr(const BinOpInfo &Ops);
742   Value *EmitAnd(const BinOpInfo &Ops) {
743     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
744   }
745   Value *EmitXor(const BinOpInfo &Ops) {
746     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
747   }
748   Value *EmitOr (const BinOpInfo &Ops) {
749     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
750   }
751 
752   // Helper functions for fixed point binary operations.
753   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
754 
755   BinOpInfo EmitBinOps(const BinaryOperator *E);
756   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
757                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
758                                   Value *&Result);
759 
760   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
761                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
762 
763   // Binary operators and binary compound assignment operators.
764 #define HANDLEBINOP(OP) \
765   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
766     return Emit ## OP(EmitBinOps(E));                                      \
767   }                                                                        \
768   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
769     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
770   }
771   HANDLEBINOP(Mul)
772   HANDLEBINOP(Div)
773   HANDLEBINOP(Rem)
774   HANDLEBINOP(Add)
775   HANDLEBINOP(Sub)
776   HANDLEBINOP(Shl)
777   HANDLEBINOP(Shr)
778   HANDLEBINOP(And)
779   HANDLEBINOP(Xor)
780   HANDLEBINOP(Or)
781 #undef HANDLEBINOP
782 
783   // Comparisons.
784   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
785                      llvm::CmpInst::Predicate SICmpOpc,
786                      llvm::CmpInst::Predicate FCmpOpc);
787 #define VISITCOMP(CODE, UI, SI, FP) \
788     Value *VisitBin##CODE(const BinaryOperator *E) { \
789       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
790                          llvm::FCmpInst::FP); }
791   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
792   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
793   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
794   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
795   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
796   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
797 #undef VISITCOMP
798 
799   Value *VisitBinAssign     (const BinaryOperator *E);
800 
801   Value *VisitBinLAnd       (const BinaryOperator *E);
802   Value *VisitBinLOr        (const BinaryOperator *E);
803   Value *VisitBinComma      (const BinaryOperator *E);
804 
805   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
806   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
807 
808   // Other Operators.
809   Value *VisitBlockExpr(const BlockExpr *BE);
810   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
811   Value *VisitChooseExpr(ChooseExpr *CE);
812   Value *VisitVAArgExpr(VAArgExpr *VE);
813   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
814     return CGF.EmitObjCStringLiteral(E);
815   }
816   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
817     return CGF.EmitObjCBoxedExpr(E);
818   }
819   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
820     return CGF.EmitObjCArrayLiteral(E);
821   }
822   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
823     return CGF.EmitObjCDictionaryLiteral(E);
824   }
825   Value *VisitAsTypeExpr(AsTypeExpr *CE);
826   Value *VisitAtomicExpr(AtomicExpr *AE);
827 };
828 }  // end anonymous namespace.
829 
830 //===----------------------------------------------------------------------===//
831 //                                Utilities
832 //===----------------------------------------------------------------------===//
833 
834 /// EmitConversionToBool - Convert the specified expression value to a
835 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
836 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
837   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
838 
839   if (SrcType->isRealFloatingType())
840     return EmitFloatToBoolConversion(Src);
841 
842   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
843     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
844 
845   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
846          "Unknown scalar type to convert");
847 
848   if (isa<llvm::IntegerType>(Src->getType()))
849     return EmitIntToBoolConversion(Src);
850 
851   assert(isa<llvm::PointerType>(Src->getType()));
852   return EmitPointerToBoolConversion(Src, SrcType);
853 }
854 
855 void ScalarExprEmitter::EmitFloatConversionCheck(
856     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
857     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
858   CodeGenFunction::SanitizerScope SanScope(&CGF);
859   using llvm::APFloat;
860   using llvm::APSInt;
861 
862   llvm::Type *SrcTy = Src->getType();
863 
864   llvm::Value *Check = nullptr;
865   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
866     // Integer to floating-point. This can fail for unsigned short -> __half
867     // or unsigned __int128 -> float.
868     assert(DstType->isFloatingType());
869     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
870 
871     APFloat LargestFloat =
872       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
873     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
874 
875     bool IsExact;
876     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
877                                       &IsExact) != APFloat::opOK)
878       // The range of representable values of this floating point type includes
879       // all values of this integer type. Don't need an overflow check.
880       return;
881 
882     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
883     if (SrcIsUnsigned)
884       Check = Builder.CreateICmpULE(Src, Max);
885     else {
886       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
887       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
888       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
889       Check = Builder.CreateAnd(GE, LE);
890     }
891   } else {
892     const llvm::fltSemantics &SrcSema =
893       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
894     if (isa<llvm::IntegerType>(DstTy)) {
895       // Floating-point to integer. This has undefined behavior if the source is
896       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
897       // to an integer).
898       unsigned Width = CGF.getContext().getIntWidth(DstType);
899       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
900 
901       APSInt Min = APSInt::getMinValue(Width, Unsigned);
902       APFloat MinSrc(SrcSema, APFloat::uninitialized);
903       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
904           APFloat::opOverflow)
905         // Don't need an overflow check for lower bound. Just check for
906         // -Inf/NaN.
907         MinSrc = APFloat::getInf(SrcSema, true);
908       else
909         // Find the largest value which is too small to represent (before
910         // truncation toward zero).
911         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
912 
913       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
914       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
915       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
916           APFloat::opOverflow)
917         // Don't need an overflow check for upper bound. Just check for
918         // +Inf/NaN.
919         MaxSrc = APFloat::getInf(SrcSema, false);
920       else
921         // Find the smallest value which is too large to represent (before
922         // truncation toward zero).
923         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
924 
925       // If we're converting from __half, convert the range to float to match
926       // the type of src.
927       if (OrigSrcType->isHalfType()) {
928         const llvm::fltSemantics &Sema =
929           CGF.getContext().getFloatTypeSemantics(SrcType);
930         bool IsInexact;
931         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
932         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
933       }
934 
935       llvm::Value *GE =
936         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
937       llvm::Value *LE =
938         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
939       Check = Builder.CreateAnd(GE, LE);
940     } else {
941       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
942       //
943       // Floating-point to floating-point. This has undefined behavior if the
944       // source is not in the range of representable values of the destination
945       // type. The C and C++ standards are spectacularly unclear here. We
946       // diagnose finite out-of-range conversions, but allow infinities and NaNs
947       // to convert to the corresponding value in the smaller type.
948       //
949       // C11 Annex F gives all such conversions defined behavior for IEC 60559
950       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
951       // does not.
952 
953       // Converting from a lower rank to a higher rank can never have
954       // undefined behavior, since higher-rank types must have a superset
955       // of values of lower-rank types.
956       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
957         return;
958 
959       assert(!OrigSrcType->isHalfType() &&
960              "should not check conversion from __half, it has the lowest rank");
961 
962       const llvm::fltSemantics &DstSema =
963         CGF.getContext().getFloatTypeSemantics(DstType);
964       APFloat MinBad = APFloat::getLargest(DstSema, false);
965       APFloat MaxBad = APFloat::getInf(DstSema, false);
966 
967       bool IsInexact;
968       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
969       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
970 
971       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
972         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
973       llvm::Value *GE =
974         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
975       llvm::Value *LE =
976         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
977       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
978     }
979   }
980 
981   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
982                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
983                                   CGF.EmitCheckTypeDescriptor(DstType)};
984   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
985                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
986 }
987 
988 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
989 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
990 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
991                  std::pair<llvm::Value *, SanitizerMask>>
992 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
993                                  QualType DstType, CGBuilderTy &Builder) {
994   llvm::Type *SrcTy = Src->getType();
995   llvm::Type *DstTy = Dst->getType();
996   (void)DstTy; // Only used in assert()
997 
998   // This should be truncation of integral types.
999   assert(Src != Dst);
1000   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
1001   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1002          "non-integer llvm type");
1003 
1004   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1005   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1006 
1007   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
1008   // Else, it is a signed truncation.
1009   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
1010   SanitizerMask Mask;
1011   if (!SrcSigned && !DstSigned) {
1012     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
1013     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
1014   } else {
1015     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
1016     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
1017   }
1018 
1019   llvm::Value *Check = nullptr;
1020   // 1. Extend the truncated value back to the same width as the Src.
1021   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
1022   // 2. Equality-compare with the original source value
1023   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1024   // If the comparison result is 'i1 false', then the truncation was lossy.
1025   return std::make_pair(Kind, std::make_pair(Check, Mask));
1026 }
1027 
1028 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1029                                                    Value *Dst, QualType DstType,
1030                                                    SourceLocation Loc) {
1031   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1032     return;
1033 
1034   // We only care about int->int conversions here.
1035   // We ignore conversions to/from pointer and/or bool.
1036   if (!(SrcType->isIntegerType() && DstType->isIntegerType()))
1037     return;
1038 
1039   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1040   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1041   // This must be truncation. Else we do not care.
1042   if (SrcBits <= DstBits)
1043     return;
1044 
1045   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1046 
1047   // If the integer sign change sanitizer is enabled,
1048   // and we are truncating from larger unsigned type to smaller signed type,
1049   // let that next sanitizer deal with it.
1050   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1051   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1052   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1053       (!SrcSigned && DstSigned))
1054     return;
1055 
1056   CodeGenFunction::SanitizerScope SanScope(&CGF);
1057 
1058   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1059             std::pair<llvm::Value *, SanitizerMask>>
1060       Check =
1061           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1062   // If the comparison result is 'i1 false', then the truncation was lossy.
1063 
1064   // Do we care about this type of truncation?
1065   if (!CGF.SanOpts.has(Check.second.second))
1066     return;
1067 
1068   llvm::Constant *StaticArgs[] = {
1069       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1070       CGF.EmitCheckTypeDescriptor(DstType),
1071       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1072   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1073                 {Src, Dst});
1074 }
1075 
1076 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1077 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1078 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1079                  std::pair<llvm::Value *, SanitizerMask>>
1080 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1081                                  QualType DstType, CGBuilderTy &Builder) {
1082   llvm::Type *SrcTy = Src->getType();
1083   llvm::Type *DstTy = Dst->getType();
1084 
1085   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1086          "non-integer llvm type");
1087 
1088   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1089   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1090   (void)SrcSigned; // Only used in assert()
1091   (void)DstSigned; // Only used in assert()
1092   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1093   unsigned DstBits = DstTy->getScalarSizeInBits();
1094   (void)SrcBits; // Only used in assert()
1095   (void)DstBits; // Only used in assert()
1096 
1097   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1098          "either the widths should be different, or the signednesses.");
1099 
1100   // NOTE: zero value is considered to be non-negative.
1101   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1102                                        const char *Name) -> Value * {
1103     // Is this value a signed type?
1104     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1105     llvm::Type *VTy = V->getType();
1106     if (!VSigned) {
1107       // If the value is unsigned, then it is never negative.
1108       // FIXME: can we encounter non-scalar VTy here?
1109       return llvm::ConstantInt::getFalse(VTy->getContext());
1110     }
1111     // Get the zero of the same type with which we will be comparing.
1112     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1113     // %V.isnegative = icmp slt %V, 0
1114     // I.e is %V *strictly* less than zero, does it have negative value?
1115     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1116                               llvm::Twine(Name) + "." + V->getName() +
1117                                   ".negativitycheck");
1118   };
1119 
1120   // 1. Was the old Value negative?
1121   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1122   // 2. Is the new Value negative?
1123   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1124   // 3. Now, was the 'negativity status' preserved during the conversion?
1125   //    NOTE: conversion from negative to zero is considered to change the sign.
1126   //    (We want to get 'false' when the conversion changed the sign)
1127   //    So we should just equality-compare the negativity statuses.
1128   llvm::Value *Check = nullptr;
1129   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1130   // If the comparison result is 'false', then the conversion changed the sign.
1131   return std::make_pair(
1132       ScalarExprEmitter::ICCK_IntegerSignChange,
1133       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1134 }
1135 
1136 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1137                                                    Value *Dst, QualType DstType,
1138                                                    SourceLocation Loc) {
1139   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1140     return;
1141 
1142   llvm::Type *SrcTy = Src->getType();
1143   llvm::Type *DstTy = Dst->getType();
1144 
1145   // We only care about int->int conversions here.
1146   // We ignore conversions to/from pointer and/or bool.
1147   if (!(SrcType->isIntegerType() && DstType->isIntegerType()))
1148     return;
1149 
1150   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1151   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1152   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1153   unsigned DstBits = DstTy->getScalarSizeInBits();
1154 
1155   // Now, we do not need to emit the check in *all* of the cases.
1156   // We can avoid emitting it in some obvious cases where it would have been
1157   // dropped by the opt passes (instcombine) always anyways.
1158   // If it's a cast between effectively the same type, no check.
1159   // NOTE: this is *not* equivalent to checking the canonical types.
1160   if (SrcSigned == DstSigned && SrcBits == DstBits)
1161     return;
1162   // At least one of the values needs to have signed type.
1163   // If both are unsigned, then obviously, neither of them can be negative.
1164   if (!SrcSigned && !DstSigned)
1165     return;
1166   // If the conversion is to *larger* *signed* type, then no check is needed.
1167   // Because either sign-extension happens (so the sign will remain),
1168   // or zero-extension will happen (the sign bit will be zero.)
1169   if ((DstBits > SrcBits) && DstSigned)
1170     return;
1171   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1172       (SrcBits > DstBits) && SrcSigned) {
1173     // If the signed integer truncation sanitizer is enabled,
1174     // and this is a truncation from signed type, then no check is needed.
1175     // Because here sign change check is interchangeable with truncation check.
1176     return;
1177   }
1178   // That's it. We can't rule out any more cases with the data we have.
1179 
1180   CodeGenFunction::SanitizerScope SanScope(&CGF);
1181 
1182   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1183             std::pair<llvm::Value *, SanitizerMask>>
1184       Check;
1185 
1186   // Each of these checks needs to return 'false' when an issue was detected.
1187   ImplicitConversionCheckKind CheckKind;
1188   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1189   // So we can 'and' all the checks together, and still get 'false',
1190   // if at least one of the checks detected an issue.
1191 
1192   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1193   CheckKind = Check.first;
1194   Checks.emplace_back(Check.second);
1195 
1196   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1197       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1198     // If the signed integer truncation sanitizer was enabled,
1199     // and we are truncating from larger unsigned type to smaller signed type,
1200     // let's handle the case we skipped in that check.
1201     Check =
1202         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1203     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1204     Checks.emplace_back(Check.second);
1205     // If the comparison result is 'i1 false', then the truncation was lossy.
1206   }
1207 
1208   llvm::Constant *StaticArgs[] = {
1209       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1210       CGF.EmitCheckTypeDescriptor(DstType),
1211       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1212   // EmitCheck() will 'and' all the checks together.
1213   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1214                 {Src, Dst});
1215 }
1216 
1217 /// Emit a conversion from the specified type to the specified destination type,
1218 /// both of which are LLVM scalar types.
1219 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1220                                                QualType DstType,
1221                                                SourceLocation Loc,
1222                                                ScalarConversionOpts Opts) {
1223   // All conversions involving fixed point types should be handled by the
1224   // EmitFixedPoint family functions. This is done to prevent bloating up this
1225   // function more, and although fixed point numbers are represented by
1226   // integers, we do not want to follow any logic that assumes they should be
1227   // treated as integers.
1228   // TODO(leonardchan): When necessary, add another if statement checking for
1229   // conversions to fixed point types from other types.
1230   if (SrcType->isFixedPointType()) {
1231     if (DstType->isBooleanType())
1232       // It is important that we check this before checking if the dest type is
1233       // an integer because booleans are technically integer types.
1234       // We do not need to check the padding bit on unsigned types if unsigned
1235       // padding is enabled because overflow into this bit is undefined
1236       // behavior.
1237       return Builder.CreateIsNotNull(Src, "tobool");
1238     if (DstType->isFixedPointType() || DstType->isIntegerType())
1239       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1240 
1241     llvm_unreachable(
1242         "Unhandled scalar conversion from a fixed point type to another type.");
1243   } else if (DstType->isFixedPointType()) {
1244     if (SrcType->isIntegerType())
1245       // This also includes converting booleans and enums to fixed point types.
1246       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1247 
1248     llvm_unreachable(
1249         "Unhandled scalar conversion to a fixed point type from another type.");
1250   }
1251 
1252   QualType NoncanonicalSrcType = SrcType;
1253   QualType NoncanonicalDstType = DstType;
1254 
1255   SrcType = CGF.getContext().getCanonicalType(SrcType);
1256   DstType = CGF.getContext().getCanonicalType(DstType);
1257   if (SrcType == DstType) return Src;
1258 
1259   if (DstType->isVoidType()) return nullptr;
1260 
1261   llvm::Value *OrigSrc = Src;
1262   QualType OrigSrcType = SrcType;
1263   llvm::Type *SrcTy = Src->getType();
1264 
1265   // Handle conversions to bool first, they are special: comparisons against 0.
1266   if (DstType->isBooleanType())
1267     return EmitConversionToBool(Src, SrcType);
1268 
1269   llvm::Type *DstTy = ConvertType(DstType);
1270 
1271   // Cast from half through float if half isn't a native type.
1272   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1273     // Cast to FP using the intrinsic if the half type itself isn't supported.
1274     if (DstTy->isFloatingPointTy()) {
1275       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1276         return Builder.CreateCall(
1277             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1278             Src);
1279     } else {
1280       // Cast to other types through float, using either the intrinsic or FPExt,
1281       // depending on whether the half type itself is supported
1282       // (as opposed to operations on half, available with NativeHalfType).
1283       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1284         Src = Builder.CreateCall(
1285             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1286                                  CGF.CGM.FloatTy),
1287             Src);
1288       } else {
1289         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1290       }
1291       SrcType = CGF.getContext().FloatTy;
1292       SrcTy = CGF.FloatTy;
1293     }
1294   }
1295 
1296   // Ignore conversions like int -> uint.
1297   if (SrcTy == DstTy) {
1298     if (Opts.EmitImplicitIntegerSignChangeChecks)
1299       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1300                                  NoncanonicalDstType, Loc);
1301 
1302     return Src;
1303   }
1304 
1305   // Handle pointer conversions next: pointers can only be converted to/from
1306   // other pointers and integers. Check for pointer types in terms of LLVM, as
1307   // some native types (like Obj-C id) may map to a pointer type.
1308   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1309     // The source value may be an integer, or a pointer.
1310     if (isa<llvm::PointerType>(SrcTy))
1311       return Builder.CreateBitCast(Src, DstTy, "conv");
1312 
1313     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1314     // First, convert to the correct width so that we control the kind of
1315     // extension.
1316     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1317     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1318     llvm::Value* IntResult =
1319         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1320     // Then, cast to pointer.
1321     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1322   }
1323 
1324   if (isa<llvm::PointerType>(SrcTy)) {
1325     // Must be an ptr to int cast.
1326     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1327     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1328   }
1329 
1330   // A scalar can be splatted to an extended vector of the same element type
1331   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1332     // Sema should add casts to make sure that the source expression's type is
1333     // the same as the vector's element type (sans qualifiers)
1334     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1335                SrcType.getTypePtr() &&
1336            "Splatted expr doesn't match with vector element type?");
1337 
1338     // Splat the element across to all elements
1339     unsigned NumElements = DstTy->getVectorNumElements();
1340     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1341   }
1342 
1343   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1344     // Allow bitcast from vector to integer/fp of the same size.
1345     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1346     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1347     if (SrcSize == DstSize)
1348       return Builder.CreateBitCast(Src, DstTy, "conv");
1349 
1350     // Conversions between vectors of different sizes are not allowed except
1351     // when vectors of half are involved. Operations on storage-only half
1352     // vectors require promoting half vector operands to float vectors and
1353     // truncating the result, which is either an int or float vector, to a
1354     // short or half vector.
1355 
1356     // Source and destination are both expected to be vectors.
1357     llvm::Type *SrcElementTy = SrcTy->getVectorElementType();
1358     llvm::Type *DstElementTy = DstTy->getVectorElementType();
1359     (void)DstElementTy;
1360 
1361     assert(((SrcElementTy->isIntegerTy() &&
1362              DstElementTy->isIntegerTy()) ||
1363             (SrcElementTy->isFloatingPointTy() &&
1364              DstElementTy->isFloatingPointTy())) &&
1365            "unexpected conversion between a floating-point vector and an "
1366            "integer vector");
1367 
1368     // Truncate an i32 vector to an i16 vector.
1369     if (SrcElementTy->isIntegerTy())
1370       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1371 
1372     // Truncate a float vector to a half vector.
1373     if (SrcSize > DstSize)
1374       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1375 
1376     // Promote a half vector to a float vector.
1377     return Builder.CreateFPExt(Src, DstTy, "conv");
1378   }
1379 
1380   // Finally, we have the arithmetic types: real int/float.
1381   Value *Res = nullptr;
1382   llvm::Type *ResTy = DstTy;
1383 
1384   // An overflowing conversion has undefined behavior if either the source type
1385   // or the destination type is a floating-point type.
1386   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1387       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
1388     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1389                              Loc);
1390 
1391   // Cast to half through float if half isn't a native type.
1392   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1393     // Make sure we cast in a single step if from another FP type.
1394     if (SrcTy->isFloatingPointTy()) {
1395       // Use the intrinsic if the half type itself isn't supported
1396       // (as opposed to operations on half, available with NativeHalfType).
1397       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1398         return Builder.CreateCall(
1399             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1400       // If the half type is supported, just use an fptrunc.
1401       return Builder.CreateFPTrunc(Src, DstTy);
1402     }
1403     DstTy = CGF.FloatTy;
1404   }
1405 
1406   if (isa<llvm::IntegerType>(SrcTy)) {
1407     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1408     if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1409       InputSigned = true;
1410     }
1411     if (isa<llvm::IntegerType>(DstTy))
1412       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1413     else if (InputSigned)
1414       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1415     else
1416       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1417   } else if (isa<llvm::IntegerType>(DstTy)) {
1418     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1419     if (DstType->isSignedIntegerOrEnumerationType())
1420       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1421     else
1422       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1423   } else {
1424     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1425            "Unknown real conversion");
1426     if (DstTy->getTypeID() < SrcTy->getTypeID())
1427       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1428     else
1429       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1430   }
1431 
1432   if (DstTy != ResTy) {
1433     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1434       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1435       Res = Builder.CreateCall(
1436         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1437         Res);
1438     } else {
1439       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1440     }
1441   }
1442 
1443   if (Opts.EmitImplicitIntegerTruncationChecks)
1444     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1445                                NoncanonicalDstType, Loc);
1446 
1447   if (Opts.EmitImplicitIntegerSignChangeChecks)
1448     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1449                                NoncanonicalDstType, Loc);
1450 
1451   return Res;
1452 }
1453 
1454 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1455                                                    QualType DstTy,
1456                                                    SourceLocation Loc) {
1457   FixedPointSemantics SrcFPSema =
1458       CGF.getContext().getFixedPointSemantics(SrcTy);
1459   FixedPointSemantics DstFPSema =
1460       CGF.getContext().getFixedPointSemantics(DstTy);
1461   return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc,
1462                                   DstTy->isIntegerType());
1463 }
1464 
1465 Value *ScalarExprEmitter::EmitFixedPointConversion(
1466     Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema,
1467     SourceLocation Loc, bool DstIsInteger) {
1468   using llvm::APInt;
1469   using llvm::ConstantInt;
1470   using llvm::Value;
1471 
1472   unsigned SrcWidth = SrcFPSema.getWidth();
1473   unsigned DstWidth = DstFPSema.getWidth();
1474   unsigned SrcScale = SrcFPSema.getScale();
1475   unsigned DstScale = DstFPSema.getScale();
1476   bool SrcIsSigned = SrcFPSema.isSigned();
1477   bool DstIsSigned = DstFPSema.isSigned();
1478 
1479   llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth);
1480 
1481   Value *Result = Src;
1482   unsigned ResultWidth = SrcWidth;
1483 
1484   // Downscale.
1485   if (DstScale < SrcScale) {
1486     // When converting to integers, we round towards zero. For negative numbers,
1487     // right shifting rounds towards negative infinity. In this case, we can
1488     // just round up before shifting.
1489     if (DstIsInteger && SrcIsSigned) {
1490       Value *Zero = llvm::Constant::getNullValue(Result->getType());
1491       Value *IsNegative = Builder.CreateICmpSLT(Result, Zero);
1492       Value *LowBits = ConstantInt::get(
1493           CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale));
1494       Value *Rounded = Builder.CreateAdd(Result, LowBits);
1495       Result = Builder.CreateSelect(IsNegative, Rounded, Result);
1496     }
1497 
1498     Result = SrcIsSigned
1499                  ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale")
1500                  : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale");
1501   }
1502 
1503   if (!DstFPSema.isSaturated()) {
1504     // Resize.
1505     Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1506 
1507     // Upscale.
1508     if (DstScale > SrcScale)
1509       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1510   } else {
1511     // Adjust the number of fractional bits.
1512     if (DstScale > SrcScale) {
1513       // Compare to DstWidth to prevent resizing twice.
1514       ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth);
1515       llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth);
1516       Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize");
1517       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1518     }
1519 
1520     // Handle saturation.
1521     bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits();
1522     if (LessIntBits) {
1523       Value *Max = ConstantInt::get(
1524           CGF.getLLVMContext(),
1525           APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth));
1526       Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max)
1527                                    : Builder.CreateICmpUGT(Result, Max);
1528       Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax");
1529     }
1530     // Cannot overflow min to dest type if src is unsigned since all fixed
1531     // point types can cover the unsigned min of 0.
1532     if (SrcIsSigned && (LessIntBits || !DstIsSigned)) {
1533       Value *Min = ConstantInt::get(
1534           CGF.getLLVMContext(),
1535           APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth));
1536       Value *TooLow = Builder.CreateICmpSLT(Result, Min);
1537       Result = Builder.CreateSelect(TooLow, Min, Result, "satmin");
1538     }
1539 
1540     // Resize the integer part to get the final destination size.
1541     if (ResultWidth != DstWidth)
1542       Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1543   }
1544   return Result;
1545 }
1546 
1547 /// Emit a conversion from the specified complex type to the specified
1548 /// destination type, where the destination type is an LLVM scalar type.
1549 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1550     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1551     SourceLocation Loc) {
1552   // Get the source element type.
1553   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1554 
1555   // Handle conversions to bool first, they are special: comparisons against 0.
1556   if (DstTy->isBooleanType()) {
1557     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1558     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1559     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1560     return Builder.CreateOr(Src.first, Src.second, "tobool");
1561   }
1562 
1563   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1564   // the imaginary part of the complex value is discarded and the value of the
1565   // real part is converted according to the conversion rules for the
1566   // corresponding real type.
1567   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1568 }
1569 
1570 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1571   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1572 }
1573 
1574 /// Emit a sanitization check for the given "binary" operation (which
1575 /// might actually be a unary increment which has been lowered to a binary
1576 /// operation). The check passes if all values in \p Checks (which are \c i1),
1577 /// are \c true.
1578 void ScalarExprEmitter::EmitBinOpCheck(
1579     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1580   assert(CGF.IsSanitizerScope);
1581   SanitizerHandler Check;
1582   SmallVector<llvm::Constant *, 4> StaticData;
1583   SmallVector<llvm::Value *, 2> DynamicData;
1584 
1585   BinaryOperatorKind Opcode = Info.Opcode;
1586   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1587     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1588 
1589   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1590   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1591   if (UO && UO->getOpcode() == UO_Minus) {
1592     Check = SanitizerHandler::NegateOverflow;
1593     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1594     DynamicData.push_back(Info.RHS);
1595   } else {
1596     if (BinaryOperator::isShiftOp(Opcode)) {
1597       // Shift LHS negative or too large, or RHS out of bounds.
1598       Check = SanitizerHandler::ShiftOutOfBounds;
1599       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1600       StaticData.push_back(
1601         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1602       StaticData.push_back(
1603         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1604     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1605       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1606       Check = SanitizerHandler::DivremOverflow;
1607       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1608     } else {
1609       // Arithmetic overflow (+, -, *).
1610       switch (Opcode) {
1611       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1612       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1613       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1614       default: llvm_unreachable("unexpected opcode for bin op check");
1615       }
1616       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1617     }
1618     DynamicData.push_back(Info.LHS);
1619     DynamicData.push_back(Info.RHS);
1620   }
1621 
1622   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1623 }
1624 
1625 //===----------------------------------------------------------------------===//
1626 //                            Visitor Methods
1627 //===----------------------------------------------------------------------===//
1628 
1629 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1630   CGF.ErrorUnsupported(E, "scalar expression");
1631   if (E->getType()->isVoidType())
1632     return nullptr;
1633   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1634 }
1635 
1636 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1637   // Vector Mask Case
1638   if (E->getNumSubExprs() == 2) {
1639     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1640     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1641     Value *Mask;
1642 
1643     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1644     unsigned LHSElts = LTy->getNumElements();
1645 
1646     Mask = RHS;
1647 
1648     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1649 
1650     // Mask off the high bits of each shuffle index.
1651     Value *MaskBits =
1652         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1653     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1654 
1655     // newv = undef
1656     // mask = mask & maskbits
1657     // for each elt
1658     //   n = extract mask i
1659     //   x = extract val n
1660     //   newv = insert newv, x, i
1661     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1662                                                   MTy->getNumElements());
1663     Value* NewV = llvm::UndefValue::get(RTy);
1664     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1665       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1666       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1667 
1668       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1669       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1670     }
1671     return NewV;
1672   }
1673 
1674   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1675   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1676 
1677   SmallVector<llvm::Constant*, 32> indices;
1678   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1679     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1680     // Check for -1 and output it as undef in the IR.
1681     if (Idx.isSigned() && Idx.isAllOnesValue())
1682       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1683     else
1684       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1685   }
1686 
1687   Value *SV = llvm::ConstantVector::get(indices);
1688   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1689 }
1690 
1691 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1692   QualType SrcType = E->getSrcExpr()->getType(),
1693            DstType = E->getType();
1694 
1695   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1696 
1697   SrcType = CGF.getContext().getCanonicalType(SrcType);
1698   DstType = CGF.getContext().getCanonicalType(DstType);
1699   if (SrcType == DstType) return Src;
1700 
1701   assert(SrcType->isVectorType() &&
1702          "ConvertVector source type must be a vector");
1703   assert(DstType->isVectorType() &&
1704          "ConvertVector destination type must be a vector");
1705 
1706   llvm::Type *SrcTy = Src->getType();
1707   llvm::Type *DstTy = ConvertType(DstType);
1708 
1709   // Ignore conversions like int -> uint.
1710   if (SrcTy == DstTy)
1711     return Src;
1712 
1713   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1714            DstEltType = DstType->getAs<VectorType>()->getElementType();
1715 
1716   assert(SrcTy->isVectorTy() &&
1717          "ConvertVector source IR type must be a vector");
1718   assert(DstTy->isVectorTy() &&
1719          "ConvertVector destination IR type must be a vector");
1720 
1721   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1722              *DstEltTy = DstTy->getVectorElementType();
1723 
1724   if (DstEltType->isBooleanType()) {
1725     assert((SrcEltTy->isFloatingPointTy() ||
1726             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1727 
1728     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1729     if (SrcEltTy->isFloatingPointTy()) {
1730       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1731     } else {
1732       return Builder.CreateICmpNE(Src, Zero, "tobool");
1733     }
1734   }
1735 
1736   // We have the arithmetic types: real int/float.
1737   Value *Res = nullptr;
1738 
1739   if (isa<llvm::IntegerType>(SrcEltTy)) {
1740     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1741     if (isa<llvm::IntegerType>(DstEltTy))
1742       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1743     else if (InputSigned)
1744       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1745     else
1746       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1747   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1748     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1749     if (DstEltType->isSignedIntegerOrEnumerationType())
1750       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1751     else
1752       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1753   } else {
1754     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1755            "Unknown real conversion");
1756     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1757       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1758     else
1759       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1760   }
1761 
1762   return Res;
1763 }
1764 
1765 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1766   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1767     CGF.EmitIgnoredExpr(E->getBase());
1768     return CGF.emitScalarConstant(Constant, E);
1769   } else {
1770     Expr::EvalResult Result;
1771     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1772       llvm::APSInt Value = Result.Val.getInt();
1773       CGF.EmitIgnoredExpr(E->getBase());
1774       return Builder.getInt(Value);
1775     }
1776   }
1777 
1778   return EmitLoadOfLValue(E);
1779 }
1780 
1781 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1782   TestAndClearIgnoreResultAssign();
1783 
1784   // Emit subscript expressions in rvalue context's.  For most cases, this just
1785   // loads the lvalue formed by the subscript expr.  However, we have to be
1786   // careful, because the base of a vector subscript is occasionally an rvalue,
1787   // so we can't get it as an lvalue.
1788   if (!E->getBase()->getType()->isVectorType())
1789     return EmitLoadOfLValue(E);
1790 
1791   // Handle the vector case.  The base must be a vector, the index must be an
1792   // integer value.
1793   Value *Base = Visit(E->getBase());
1794   Value *Idx  = Visit(E->getIdx());
1795   QualType IdxTy = E->getIdx()->getType();
1796 
1797   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1798     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1799 
1800   return Builder.CreateExtractElement(Base, Idx, "vecext");
1801 }
1802 
1803 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1804                                   unsigned Off, llvm::Type *I32Ty) {
1805   int MV = SVI->getMaskValue(Idx);
1806   if (MV == -1)
1807     return llvm::UndefValue::get(I32Ty);
1808   return llvm::ConstantInt::get(I32Ty, Off+MV);
1809 }
1810 
1811 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1812   if (C->getBitWidth() != 32) {
1813       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1814                                                     C->getZExtValue()) &&
1815              "Index operand too large for shufflevector mask!");
1816       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1817   }
1818   return C;
1819 }
1820 
1821 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1822   bool Ignore = TestAndClearIgnoreResultAssign();
1823   (void)Ignore;
1824   assert (Ignore == false && "init list ignored");
1825   unsigned NumInitElements = E->getNumInits();
1826 
1827   if (E->hadArrayRangeDesignator())
1828     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1829 
1830   llvm::VectorType *VType =
1831     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1832 
1833   if (!VType) {
1834     if (NumInitElements == 0) {
1835       // C++11 value-initialization for the scalar.
1836       return EmitNullValue(E->getType());
1837     }
1838     // We have a scalar in braces. Just use the first element.
1839     return Visit(E->getInit(0));
1840   }
1841 
1842   unsigned ResElts = VType->getNumElements();
1843 
1844   // Loop over initializers collecting the Value for each, and remembering
1845   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1846   // us to fold the shuffle for the swizzle into the shuffle for the vector
1847   // initializer, since LLVM optimizers generally do not want to touch
1848   // shuffles.
1849   unsigned CurIdx = 0;
1850   bool VIsUndefShuffle = false;
1851   llvm::Value *V = llvm::UndefValue::get(VType);
1852   for (unsigned i = 0; i != NumInitElements; ++i) {
1853     Expr *IE = E->getInit(i);
1854     Value *Init = Visit(IE);
1855     SmallVector<llvm::Constant*, 16> Args;
1856 
1857     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1858 
1859     // Handle scalar elements.  If the scalar initializer is actually one
1860     // element of a different vector of the same width, use shuffle instead of
1861     // extract+insert.
1862     if (!VVT) {
1863       if (isa<ExtVectorElementExpr>(IE)) {
1864         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1865 
1866         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1867           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1868           Value *LHS = nullptr, *RHS = nullptr;
1869           if (CurIdx == 0) {
1870             // insert into undef -> shuffle (src, undef)
1871             // shufflemask must use an i32
1872             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1873             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1874 
1875             LHS = EI->getVectorOperand();
1876             RHS = V;
1877             VIsUndefShuffle = true;
1878           } else if (VIsUndefShuffle) {
1879             // insert into undefshuffle && size match -> shuffle (v, src)
1880             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1881             for (unsigned j = 0; j != CurIdx; ++j)
1882               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1883             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1884             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1885 
1886             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1887             RHS = EI->getVectorOperand();
1888             VIsUndefShuffle = false;
1889           }
1890           if (!Args.empty()) {
1891             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1892             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1893             ++CurIdx;
1894             continue;
1895           }
1896         }
1897       }
1898       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1899                                       "vecinit");
1900       VIsUndefShuffle = false;
1901       ++CurIdx;
1902       continue;
1903     }
1904 
1905     unsigned InitElts = VVT->getNumElements();
1906 
1907     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1908     // input is the same width as the vector being constructed, generate an
1909     // optimized shuffle of the swizzle input into the result.
1910     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1911     if (isa<ExtVectorElementExpr>(IE)) {
1912       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1913       Value *SVOp = SVI->getOperand(0);
1914       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1915 
1916       if (OpTy->getNumElements() == ResElts) {
1917         for (unsigned j = 0; j != CurIdx; ++j) {
1918           // If the current vector initializer is a shuffle with undef, merge
1919           // this shuffle directly into it.
1920           if (VIsUndefShuffle) {
1921             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1922                                       CGF.Int32Ty));
1923           } else {
1924             Args.push_back(Builder.getInt32(j));
1925           }
1926         }
1927         for (unsigned j = 0, je = InitElts; j != je; ++j)
1928           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1929         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1930 
1931         if (VIsUndefShuffle)
1932           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1933 
1934         Init = SVOp;
1935       }
1936     }
1937 
1938     // Extend init to result vector length, and then shuffle its contribution
1939     // to the vector initializer into V.
1940     if (Args.empty()) {
1941       for (unsigned j = 0; j != InitElts; ++j)
1942         Args.push_back(Builder.getInt32(j));
1943       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1944       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1945       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1946                                          Mask, "vext");
1947 
1948       Args.clear();
1949       for (unsigned j = 0; j != CurIdx; ++j)
1950         Args.push_back(Builder.getInt32(j));
1951       for (unsigned j = 0; j != InitElts; ++j)
1952         Args.push_back(Builder.getInt32(j+Offset));
1953       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1954     }
1955 
1956     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1957     // merging subsequent shuffles into this one.
1958     if (CurIdx == 0)
1959       std::swap(V, Init);
1960     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1961     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1962     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1963     CurIdx += InitElts;
1964   }
1965 
1966   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1967   // Emit remaining default initializers.
1968   llvm::Type *EltTy = VType->getElementType();
1969 
1970   // Emit remaining default initializers
1971   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1972     Value *Idx = Builder.getInt32(CurIdx);
1973     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1974     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1975   }
1976   return V;
1977 }
1978 
1979 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1980   const Expr *E = CE->getSubExpr();
1981 
1982   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1983     return false;
1984 
1985   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1986     // We always assume that 'this' is never null.
1987     return false;
1988   }
1989 
1990   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1991     // And that glvalue casts are never null.
1992     if (ICE->getValueKind() != VK_RValue)
1993       return false;
1994   }
1995 
1996   return true;
1997 }
1998 
1999 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
2000 // have to handle a more broad range of conversions than explicit casts, as they
2001 // handle things like function to ptr-to-function decay etc.
2002 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
2003   Expr *E = CE->getSubExpr();
2004   QualType DestTy = CE->getType();
2005   CastKind Kind = CE->getCastKind();
2006 
2007   // These cases are generally not written to ignore the result of
2008   // evaluating their sub-expressions, so we clear this now.
2009   bool Ignored = TestAndClearIgnoreResultAssign();
2010 
2011   // Since almost all cast kinds apply to scalars, this switch doesn't have
2012   // a default case, so the compiler will warn on a missing case.  The cases
2013   // are in the same order as in the CastKind enum.
2014   switch (Kind) {
2015   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
2016   case CK_BuiltinFnToFnPtr:
2017     llvm_unreachable("builtin functions are handled elsewhere");
2018 
2019   case CK_LValueBitCast:
2020   case CK_ObjCObjectLValueCast: {
2021     Address Addr = EmitLValue(E).getAddress();
2022     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2023     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2024     return EmitLoadOfLValue(LV, CE->getExprLoc());
2025   }
2026 
2027   case CK_CPointerToObjCPointerCast:
2028   case CK_BlockPointerToObjCPointerCast:
2029   case CK_AnyPointerToBlockPointerCast:
2030   case CK_BitCast: {
2031     Value *Src = Visit(const_cast<Expr*>(E));
2032     llvm::Type *SrcTy = Src->getType();
2033     llvm::Type *DstTy = ConvertType(DestTy);
2034     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2035         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2036       llvm_unreachable("wrong cast for pointers in different address spaces"
2037                        "(must be an address space cast)!");
2038     }
2039 
2040     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2041       if (auto PT = DestTy->getAs<PointerType>())
2042         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
2043                                       /*MayBeNull=*/true,
2044                                       CodeGenFunction::CFITCK_UnrelatedCast,
2045                                       CE->getBeginLoc());
2046     }
2047 
2048     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2049       const QualType SrcType = E->getType();
2050 
2051       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2052         // Casting to pointer that could carry dynamic information (provided by
2053         // invariant.group) requires launder.
2054         Src = Builder.CreateLaunderInvariantGroup(Src);
2055       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2056         // Casting to pointer that does not carry dynamic information (provided
2057         // by invariant.group) requires stripping it.  Note that we don't do it
2058         // if the source could not be dynamic type and destination could be
2059         // dynamic because dynamic information is already laundered.  It is
2060         // because launder(strip(src)) == launder(src), so there is no need to
2061         // add extra strip before launder.
2062         Src = Builder.CreateStripInvariantGroup(Src);
2063       }
2064     }
2065 
2066     // Update heapallocsite metadata when there is an explicit cast.
2067     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src))
2068       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE))
2069           CGF.getDebugInfo()->
2070               addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc());
2071 
2072     return Builder.CreateBitCast(Src, DstTy);
2073   }
2074   case CK_AddressSpaceConversion: {
2075     Expr::EvalResult Result;
2076     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2077         Result.Val.isNullPointer()) {
2078       // If E has side effect, it is emitted even if its final result is a
2079       // null pointer. In that case, a DCE pass should be able to
2080       // eliminate the useless instructions emitted during translating E.
2081       if (Result.HasSideEffects)
2082         Visit(E);
2083       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2084           ConvertType(DestTy)), DestTy);
2085     }
2086     // Since target may map different address spaces in AST to the same address
2087     // space, an address space conversion may end up as a bitcast.
2088     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2089         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2090         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2091   }
2092   case CK_AtomicToNonAtomic:
2093   case CK_NonAtomicToAtomic:
2094   case CK_NoOp:
2095   case CK_UserDefinedConversion:
2096     return Visit(const_cast<Expr*>(E));
2097 
2098   case CK_BaseToDerived: {
2099     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2100     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2101 
2102     Address Base = CGF.EmitPointerWithAlignment(E);
2103     Address Derived =
2104       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2105                                    CE->path_begin(), CE->path_end(),
2106                                    CGF.ShouldNullCheckClassCastValue(CE));
2107 
2108     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2109     // performed and the object is not of the derived type.
2110     if (CGF.sanitizePerformTypeCheck())
2111       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2112                         Derived.getPointer(), DestTy->getPointeeType());
2113 
2114     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2115       CGF.EmitVTablePtrCheckForCast(
2116           DestTy->getPointeeType(), Derived.getPointer(),
2117           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2118           CE->getBeginLoc());
2119 
2120     return Derived.getPointer();
2121   }
2122   case CK_UncheckedDerivedToBase:
2123   case CK_DerivedToBase: {
2124     // The EmitPointerWithAlignment path does this fine; just discard
2125     // the alignment.
2126     return CGF.EmitPointerWithAlignment(CE).getPointer();
2127   }
2128 
2129   case CK_Dynamic: {
2130     Address V = CGF.EmitPointerWithAlignment(E);
2131     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2132     return CGF.EmitDynamicCast(V, DCE);
2133   }
2134 
2135   case CK_ArrayToPointerDecay:
2136     return CGF.EmitArrayToPointerDecay(E).getPointer();
2137   case CK_FunctionToPointerDecay:
2138     return EmitLValue(E).getPointer();
2139 
2140   case CK_NullToPointer:
2141     if (MustVisitNullValue(E))
2142       (void) Visit(E);
2143 
2144     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2145                               DestTy);
2146 
2147   case CK_NullToMemberPointer: {
2148     if (MustVisitNullValue(E))
2149       (void) Visit(E);
2150 
2151     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2152     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2153   }
2154 
2155   case CK_ReinterpretMemberPointer:
2156   case CK_BaseToDerivedMemberPointer:
2157   case CK_DerivedToBaseMemberPointer: {
2158     Value *Src = Visit(E);
2159 
2160     // Note that the AST doesn't distinguish between checked and
2161     // unchecked member pointer conversions, so we always have to
2162     // implement checked conversions here.  This is inefficient when
2163     // actual control flow may be required in order to perform the
2164     // check, which it is for data member pointers (but not member
2165     // function pointers on Itanium and ARM).
2166     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2167   }
2168 
2169   case CK_ARCProduceObject:
2170     return CGF.EmitARCRetainScalarExpr(E);
2171   case CK_ARCConsumeObject:
2172     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2173   case CK_ARCReclaimReturnedObject:
2174     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2175   case CK_ARCExtendBlockObject:
2176     return CGF.EmitARCExtendBlockObject(E);
2177 
2178   case CK_CopyAndAutoreleaseBlockObject:
2179     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2180 
2181   case CK_FloatingRealToComplex:
2182   case CK_FloatingComplexCast:
2183   case CK_IntegralRealToComplex:
2184   case CK_IntegralComplexCast:
2185   case CK_IntegralComplexToFloatingComplex:
2186   case CK_FloatingComplexToIntegralComplex:
2187   case CK_ConstructorConversion:
2188   case CK_ToUnion:
2189     llvm_unreachable("scalar cast to non-scalar value");
2190 
2191   case CK_LValueToRValue:
2192     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2193     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2194     return Visit(const_cast<Expr*>(E));
2195 
2196   case CK_IntegralToPointer: {
2197     Value *Src = Visit(const_cast<Expr*>(E));
2198 
2199     // First, convert to the correct width so that we control the kind of
2200     // extension.
2201     auto DestLLVMTy = ConvertType(DestTy);
2202     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2203     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2204     llvm::Value* IntResult =
2205       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2206 
2207     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2208 
2209     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2210       // Going from integer to pointer that could be dynamic requires reloading
2211       // dynamic information from invariant.group.
2212       if (DestTy.mayBeDynamicClass())
2213         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2214     }
2215     return IntToPtr;
2216   }
2217   case CK_PointerToIntegral: {
2218     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2219     auto *PtrExpr = Visit(E);
2220 
2221     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2222       const QualType SrcType = E->getType();
2223 
2224       // Casting to integer requires stripping dynamic information as it does
2225       // not carries it.
2226       if (SrcType.mayBeDynamicClass())
2227         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2228     }
2229 
2230     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2231   }
2232   case CK_ToVoid: {
2233     CGF.EmitIgnoredExpr(E);
2234     return nullptr;
2235   }
2236   case CK_VectorSplat: {
2237     llvm::Type *DstTy = ConvertType(DestTy);
2238     Value *Elt = Visit(const_cast<Expr*>(E));
2239     // Splat the element across to all elements
2240     unsigned NumElements = DstTy->getVectorNumElements();
2241     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2242   }
2243 
2244   case CK_FixedPointCast:
2245     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2246                                 CE->getExprLoc());
2247 
2248   case CK_FixedPointToBoolean:
2249     assert(E->getType()->isFixedPointType() &&
2250            "Expected src type to be fixed point type");
2251     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2252     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2253                                 CE->getExprLoc());
2254 
2255   case CK_FixedPointToIntegral:
2256     assert(E->getType()->isFixedPointType() &&
2257            "Expected src type to be fixed point type");
2258     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2259     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2260                                 CE->getExprLoc());
2261 
2262   case CK_IntegralToFixedPoint:
2263     assert(E->getType()->isIntegerType() &&
2264            "Expected src type to be an integer");
2265     assert(DestTy->isFixedPointType() &&
2266            "Expected dest type to be fixed point type");
2267     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2268                                 CE->getExprLoc());
2269 
2270   case CK_IntegralCast: {
2271     ScalarConversionOpts Opts;
2272     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2273       if (!ICE->isPartOfExplicitCast())
2274         Opts = ScalarConversionOpts(CGF.SanOpts);
2275     }
2276     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2277                                 CE->getExprLoc(), Opts);
2278   }
2279   case CK_IntegralToFloating:
2280   case CK_FloatingToIntegral:
2281   case CK_FloatingCast:
2282     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2283                                 CE->getExprLoc());
2284   case CK_BooleanToSignedIntegral: {
2285     ScalarConversionOpts Opts;
2286     Opts.TreatBooleanAsSigned = true;
2287     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2288                                 CE->getExprLoc(), Opts);
2289   }
2290   case CK_IntegralToBoolean:
2291     return EmitIntToBoolConversion(Visit(E));
2292   case CK_PointerToBoolean:
2293     return EmitPointerToBoolConversion(Visit(E), E->getType());
2294   case CK_FloatingToBoolean:
2295     return EmitFloatToBoolConversion(Visit(E));
2296   case CK_MemberPointerToBoolean: {
2297     llvm::Value *MemPtr = Visit(E);
2298     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2299     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2300   }
2301 
2302   case CK_FloatingComplexToReal:
2303   case CK_IntegralComplexToReal:
2304     return CGF.EmitComplexExpr(E, false, true).first;
2305 
2306   case CK_FloatingComplexToBoolean:
2307   case CK_IntegralComplexToBoolean: {
2308     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2309 
2310     // TODO: kill this function off, inline appropriate case here
2311     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2312                                          CE->getExprLoc());
2313   }
2314 
2315   case CK_ZeroToOCLOpaqueType: {
2316     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2317             DestTy->isOCLIntelSubgroupAVCType()) &&
2318            "CK_ZeroToOCLEvent cast on non-event type");
2319     return llvm::Constant::getNullValue(ConvertType(DestTy));
2320   }
2321 
2322   case CK_IntToOCLSampler:
2323     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2324 
2325   } // end of switch
2326 
2327   llvm_unreachable("unknown scalar cast");
2328 }
2329 
2330 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2331   CodeGenFunction::StmtExprEvaluation eval(CGF);
2332   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2333                                            !E->getType()->isVoidType());
2334   if (!RetAlloca.isValid())
2335     return nullptr;
2336   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2337                               E->getExprLoc());
2338 }
2339 
2340 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2341   CGF.enterFullExpression(E);
2342   CodeGenFunction::RunCleanupsScope Scope(CGF);
2343   Value *V = Visit(E->getSubExpr());
2344   // Defend against dominance problems caused by jumps out of expression
2345   // evaluation through the shared cleanup block.
2346   Scope.ForceCleanup({&V});
2347   return V;
2348 }
2349 
2350 //===----------------------------------------------------------------------===//
2351 //                             Unary Operators
2352 //===----------------------------------------------------------------------===//
2353 
2354 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2355                                            llvm::Value *InVal, bool IsInc) {
2356   BinOpInfo BinOp;
2357   BinOp.LHS = InVal;
2358   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2359   BinOp.Ty = E->getType();
2360   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2361   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2362   BinOp.E = E;
2363   return BinOp;
2364 }
2365 
2366 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2367     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2368   llvm::Value *Amount =
2369       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2370   StringRef Name = IsInc ? "inc" : "dec";
2371   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2372   case LangOptions::SOB_Defined:
2373     return Builder.CreateAdd(InVal, Amount, Name);
2374   case LangOptions::SOB_Undefined:
2375     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2376       return Builder.CreateNSWAdd(InVal, Amount, Name);
2377     LLVM_FALLTHROUGH;
2378   case LangOptions::SOB_Trapping:
2379     if (!E->canOverflow())
2380       return Builder.CreateNSWAdd(InVal, Amount, Name);
2381     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
2382   }
2383   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2384 }
2385 
2386 llvm::Value *
2387 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2388                                            bool isInc, bool isPre) {
2389 
2390   QualType type = E->getSubExpr()->getType();
2391   llvm::PHINode *atomicPHI = nullptr;
2392   llvm::Value *value;
2393   llvm::Value *input;
2394 
2395   int amount = (isInc ? 1 : -1);
2396   bool isSubtraction = !isInc;
2397 
2398   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2399     type = atomicTy->getValueType();
2400     if (isInc && type->isBooleanType()) {
2401       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2402       if (isPre) {
2403         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
2404           ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2405         return Builder.getTrue();
2406       }
2407       // For atomic bool increment, we just store true and return it for
2408       // preincrement, do an atomic swap with true for postincrement
2409       return Builder.CreateAtomicRMW(
2410           llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
2411           llvm::AtomicOrdering::SequentiallyConsistent);
2412     }
2413     // Special case for atomic increment / decrement on integers, emit
2414     // atomicrmw instructions.  We skip this if we want to be doing overflow
2415     // checking, and fall into the slow path with the atomic cmpxchg loop.
2416     if (!type->isBooleanType() && type->isIntegerType() &&
2417         !(type->isUnsignedIntegerType() &&
2418           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2419         CGF.getLangOpts().getSignedOverflowBehavior() !=
2420             LangOptions::SOB_Trapping) {
2421       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2422         llvm::AtomicRMWInst::Sub;
2423       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2424         llvm::Instruction::Sub;
2425       llvm::Value *amt = CGF.EmitToMemory(
2426           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2427       llvm::Value *old = Builder.CreateAtomicRMW(aop,
2428           LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
2429       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2430     }
2431     value = EmitLoadOfLValue(LV, E->getExprLoc());
2432     input = value;
2433     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2434     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2435     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2436     value = CGF.EmitToMemory(value, type);
2437     Builder.CreateBr(opBB);
2438     Builder.SetInsertPoint(opBB);
2439     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2440     atomicPHI->addIncoming(value, startBB);
2441     value = atomicPHI;
2442   } else {
2443     value = EmitLoadOfLValue(LV, E->getExprLoc());
2444     input = value;
2445   }
2446 
2447   // Special case of integer increment that we have to check first: bool++.
2448   // Due to promotion rules, we get:
2449   //   bool++ -> bool = bool + 1
2450   //          -> bool = (int)bool + 1
2451   //          -> bool = ((int)bool + 1 != 0)
2452   // An interesting aspect of this is that increment is always true.
2453   // Decrement does not have this property.
2454   if (isInc && type->isBooleanType()) {
2455     value = Builder.getTrue();
2456 
2457   // Most common case by far: integer increment.
2458   } else if (type->isIntegerType()) {
2459     // Note that signed integer inc/dec with width less than int can't
2460     // overflow because of promotion rules; we're just eliding a few steps here.
2461     if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2462       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2463     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2464                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2465       value =
2466           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
2467     } else {
2468       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2469       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2470     }
2471 
2472   // Next most common: pointer increment.
2473   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2474     QualType type = ptr->getPointeeType();
2475 
2476     // VLA types don't have constant size.
2477     if (const VariableArrayType *vla
2478           = CGF.getContext().getAsVariableArrayType(type)) {
2479       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2480       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2481       if (CGF.getLangOpts().isSignedOverflowDefined())
2482         value = Builder.CreateGEP(value, numElts, "vla.inc");
2483       else
2484         value = CGF.EmitCheckedInBoundsGEP(
2485             value, numElts, /*SignedIndices=*/false, isSubtraction,
2486             E->getExprLoc(), "vla.inc");
2487 
2488     // Arithmetic on function pointers (!) is just +-1.
2489     } else if (type->isFunctionType()) {
2490       llvm::Value *amt = Builder.getInt32(amount);
2491 
2492       value = CGF.EmitCastToVoidPtr(value);
2493       if (CGF.getLangOpts().isSignedOverflowDefined())
2494         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2495       else
2496         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2497                                            isSubtraction, E->getExprLoc(),
2498                                            "incdec.funcptr");
2499       value = Builder.CreateBitCast(value, input->getType());
2500 
2501     // For everything else, we can just do a simple increment.
2502     } else {
2503       llvm::Value *amt = Builder.getInt32(amount);
2504       if (CGF.getLangOpts().isSignedOverflowDefined())
2505         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2506       else
2507         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2508                                            isSubtraction, E->getExprLoc(),
2509                                            "incdec.ptr");
2510     }
2511 
2512   // Vector increment/decrement.
2513   } else if (type->isVectorType()) {
2514     if (type->hasIntegerRepresentation()) {
2515       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2516 
2517       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2518     } else {
2519       value = Builder.CreateFAdd(
2520                   value,
2521                   llvm::ConstantFP::get(value->getType(), amount),
2522                   isInc ? "inc" : "dec");
2523     }
2524 
2525   // Floating point.
2526   } else if (type->isRealFloatingType()) {
2527     // Add the inc/dec to the real part.
2528     llvm::Value *amt;
2529 
2530     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2531       // Another special case: half FP increment should be done via float
2532       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2533         value = Builder.CreateCall(
2534             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2535                                  CGF.CGM.FloatTy),
2536             input, "incdec.conv");
2537       } else {
2538         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2539       }
2540     }
2541 
2542     if (value->getType()->isFloatTy())
2543       amt = llvm::ConstantFP::get(VMContext,
2544                                   llvm::APFloat(static_cast<float>(amount)));
2545     else if (value->getType()->isDoubleTy())
2546       amt = llvm::ConstantFP::get(VMContext,
2547                                   llvm::APFloat(static_cast<double>(amount)));
2548     else {
2549       // Remaining types are Half, LongDouble or __float128. Convert from float.
2550       llvm::APFloat F(static_cast<float>(amount));
2551       bool ignored;
2552       const llvm::fltSemantics *FS;
2553       // Don't use getFloatTypeSemantics because Half isn't
2554       // necessarily represented using the "half" LLVM type.
2555       if (value->getType()->isFP128Ty())
2556         FS = &CGF.getTarget().getFloat128Format();
2557       else if (value->getType()->isHalfTy())
2558         FS = &CGF.getTarget().getHalfFormat();
2559       else
2560         FS = &CGF.getTarget().getLongDoubleFormat();
2561       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2562       amt = llvm::ConstantFP::get(VMContext, F);
2563     }
2564     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2565 
2566     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2567       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2568         value = Builder.CreateCall(
2569             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2570                                  CGF.CGM.FloatTy),
2571             value, "incdec.conv");
2572       } else {
2573         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2574       }
2575     }
2576 
2577   // Objective-C pointer types.
2578   } else {
2579     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2580     value = CGF.EmitCastToVoidPtr(value);
2581 
2582     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2583     if (!isInc) size = -size;
2584     llvm::Value *sizeValue =
2585       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2586 
2587     if (CGF.getLangOpts().isSignedOverflowDefined())
2588       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2589     else
2590       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2591                                          /*SignedIndices=*/false, isSubtraction,
2592                                          E->getExprLoc(), "incdec.objptr");
2593     value = Builder.CreateBitCast(value, input->getType());
2594   }
2595 
2596   if (atomicPHI) {
2597     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2598     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2599     auto Pair = CGF.EmitAtomicCompareExchange(
2600         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2601     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2602     llvm::Value *success = Pair.second;
2603     atomicPHI->addIncoming(old, curBlock);
2604     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2605     Builder.SetInsertPoint(contBB);
2606     return isPre ? value : input;
2607   }
2608 
2609   // Store the updated result through the lvalue.
2610   if (LV.isBitField())
2611     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2612   else
2613     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2614 
2615   // If this is a postinc, return the value read from memory, otherwise use the
2616   // updated value.
2617   return isPre ? value : input;
2618 }
2619 
2620 
2621 
2622 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2623   TestAndClearIgnoreResultAssign();
2624   // Emit unary minus with EmitSub so we handle overflow cases etc.
2625   BinOpInfo BinOp;
2626   BinOp.RHS = Visit(E->getSubExpr());
2627 
2628   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
2629     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
2630   else
2631     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2632   BinOp.Ty = E->getType();
2633   BinOp.Opcode = BO_Sub;
2634   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2635   BinOp.E = E;
2636   return EmitSub(BinOp);
2637 }
2638 
2639 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2640   TestAndClearIgnoreResultAssign();
2641   Value *Op = Visit(E->getSubExpr());
2642   return Builder.CreateNot(Op, "neg");
2643 }
2644 
2645 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2646   // Perform vector logical not on comparison with zero vector.
2647   if (E->getType()->isExtVectorType()) {
2648     Value *Oper = Visit(E->getSubExpr());
2649     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2650     Value *Result;
2651     if (Oper->getType()->isFPOrFPVectorTy())
2652       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2653     else
2654       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2655     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2656   }
2657 
2658   // Compare operand to zero.
2659   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2660 
2661   // Invert value.
2662   // TODO: Could dynamically modify easy computations here.  For example, if
2663   // the operand is an icmp ne, turn into icmp eq.
2664   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2665 
2666   // ZExt result to the expr type.
2667   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2668 }
2669 
2670 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2671   // Try folding the offsetof to a constant.
2672   Expr::EvalResult EVResult;
2673   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2674     llvm::APSInt Value = EVResult.Val.getInt();
2675     return Builder.getInt(Value);
2676   }
2677 
2678   // Loop over the components of the offsetof to compute the value.
2679   unsigned n = E->getNumComponents();
2680   llvm::Type* ResultType = ConvertType(E->getType());
2681   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2682   QualType CurrentType = E->getTypeSourceInfo()->getType();
2683   for (unsigned i = 0; i != n; ++i) {
2684     OffsetOfNode ON = E->getComponent(i);
2685     llvm::Value *Offset = nullptr;
2686     switch (ON.getKind()) {
2687     case OffsetOfNode::Array: {
2688       // Compute the index
2689       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2690       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2691       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2692       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2693 
2694       // Save the element type
2695       CurrentType =
2696           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2697 
2698       // Compute the element size
2699       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2700           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2701 
2702       // Multiply out to compute the result
2703       Offset = Builder.CreateMul(Idx, ElemSize);
2704       break;
2705     }
2706 
2707     case OffsetOfNode::Field: {
2708       FieldDecl *MemberDecl = ON.getField();
2709       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2710       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2711 
2712       // Compute the index of the field in its parent.
2713       unsigned i = 0;
2714       // FIXME: It would be nice if we didn't have to loop here!
2715       for (RecordDecl::field_iterator Field = RD->field_begin(),
2716                                       FieldEnd = RD->field_end();
2717            Field != FieldEnd; ++Field, ++i) {
2718         if (*Field == MemberDecl)
2719           break;
2720       }
2721       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2722 
2723       // Compute the offset to the field
2724       int64_t OffsetInt = RL.getFieldOffset(i) /
2725                           CGF.getContext().getCharWidth();
2726       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2727 
2728       // Save the element type.
2729       CurrentType = MemberDecl->getType();
2730       break;
2731     }
2732 
2733     case OffsetOfNode::Identifier:
2734       llvm_unreachable("dependent __builtin_offsetof");
2735 
2736     case OffsetOfNode::Base: {
2737       if (ON.getBase()->isVirtual()) {
2738         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2739         continue;
2740       }
2741 
2742       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2743       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2744 
2745       // Save the element type.
2746       CurrentType = ON.getBase()->getType();
2747 
2748       // Compute the offset to the base.
2749       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2750       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2751       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2752       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2753       break;
2754     }
2755     }
2756     Result = Builder.CreateAdd(Result, Offset);
2757   }
2758   return Result;
2759 }
2760 
2761 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2762 /// argument of the sizeof expression as an integer.
2763 Value *
2764 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2765                               const UnaryExprOrTypeTraitExpr *E) {
2766   QualType TypeToSize = E->getTypeOfArgument();
2767   if (E->getKind() == UETT_SizeOf) {
2768     if (const VariableArrayType *VAT =
2769           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2770       if (E->isArgumentType()) {
2771         // sizeof(type) - make sure to emit the VLA size.
2772         CGF.EmitVariablyModifiedType(TypeToSize);
2773       } else {
2774         // C99 6.5.3.4p2: If the argument is an expression of type
2775         // VLA, it is evaluated.
2776         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2777       }
2778 
2779       auto VlaSize = CGF.getVLASize(VAT);
2780       llvm::Value *size = VlaSize.NumElts;
2781 
2782       // Scale the number of non-VLA elements by the non-VLA element size.
2783       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2784       if (!eltSize.isOne())
2785         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2786 
2787       return size;
2788     }
2789   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2790     auto Alignment =
2791         CGF.getContext()
2792             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2793                 E->getTypeOfArgument()->getPointeeType()))
2794             .getQuantity();
2795     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2796   }
2797 
2798   // If this isn't sizeof(vla), the result must be constant; use the constant
2799   // folding logic so we don't have to duplicate it here.
2800   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2801 }
2802 
2803 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2804   Expr *Op = E->getSubExpr();
2805   if (Op->getType()->isAnyComplexType()) {
2806     // If it's an l-value, load through the appropriate subobject l-value.
2807     // Note that we have to ask E because Op might be an l-value that
2808     // this won't work for, e.g. an Obj-C property.
2809     if (E->isGLValue())
2810       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2811                                   E->getExprLoc()).getScalarVal();
2812 
2813     // Otherwise, calculate and project.
2814     return CGF.EmitComplexExpr(Op, false, true).first;
2815   }
2816 
2817   return Visit(Op);
2818 }
2819 
2820 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2821   Expr *Op = E->getSubExpr();
2822   if (Op->getType()->isAnyComplexType()) {
2823     // If it's an l-value, load through the appropriate subobject l-value.
2824     // Note that we have to ask E because Op might be an l-value that
2825     // this won't work for, e.g. an Obj-C property.
2826     if (Op->isGLValue())
2827       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2828                                   E->getExprLoc()).getScalarVal();
2829 
2830     // Otherwise, calculate and project.
2831     return CGF.EmitComplexExpr(Op, true, false).second;
2832   }
2833 
2834   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2835   // effects are evaluated, but not the actual value.
2836   if (Op->isGLValue())
2837     CGF.EmitLValue(Op);
2838   else
2839     CGF.EmitScalarExpr(Op, true);
2840   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2841 }
2842 
2843 //===----------------------------------------------------------------------===//
2844 //                           Binary Operators
2845 //===----------------------------------------------------------------------===//
2846 
2847 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2848   TestAndClearIgnoreResultAssign();
2849   BinOpInfo Result;
2850   Result.LHS = Visit(E->getLHS());
2851   Result.RHS = Visit(E->getRHS());
2852   Result.Ty  = E->getType();
2853   Result.Opcode = E->getOpcode();
2854   Result.FPFeatures = E->getFPFeatures();
2855   Result.E = E;
2856   return Result;
2857 }
2858 
2859 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2860                                               const CompoundAssignOperator *E,
2861                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2862                                                    Value *&Result) {
2863   QualType LHSTy = E->getLHS()->getType();
2864   BinOpInfo OpInfo;
2865 
2866   if (E->getComputationResultType()->isAnyComplexType())
2867     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2868 
2869   // Emit the RHS first.  __block variables need to have the rhs evaluated
2870   // first, plus this should improve codegen a little.
2871   OpInfo.RHS = Visit(E->getRHS());
2872   OpInfo.Ty = E->getComputationResultType();
2873   OpInfo.Opcode = E->getOpcode();
2874   OpInfo.FPFeatures = E->getFPFeatures();
2875   OpInfo.E = E;
2876   // Load/convert the LHS.
2877   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2878 
2879   llvm::PHINode *atomicPHI = nullptr;
2880   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2881     QualType type = atomicTy->getValueType();
2882     if (!type->isBooleanType() && type->isIntegerType() &&
2883         !(type->isUnsignedIntegerType() &&
2884           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2885         CGF.getLangOpts().getSignedOverflowBehavior() !=
2886             LangOptions::SOB_Trapping) {
2887       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2888       switch (OpInfo.Opcode) {
2889         // We don't have atomicrmw operands for *, %, /, <<, >>
2890         case BO_MulAssign: case BO_DivAssign:
2891         case BO_RemAssign:
2892         case BO_ShlAssign:
2893         case BO_ShrAssign:
2894           break;
2895         case BO_AddAssign:
2896           aop = llvm::AtomicRMWInst::Add;
2897           break;
2898         case BO_SubAssign:
2899           aop = llvm::AtomicRMWInst::Sub;
2900           break;
2901         case BO_AndAssign:
2902           aop = llvm::AtomicRMWInst::And;
2903           break;
2904         case BO_XorAssign:
2905           aop = llvm::AtomicRMWInst::Xor;
2906           break;
2907         case BO_OrAssign:
2908           aop = llvm::AtomicRMWInst::Or;
2909           break;
2910         default:
2911           llvm_unreachable("Invalid compound assignment type");
2912       }
2913       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2914         llvm::Value *amt = CGF.EmitToMemory(
2915             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2916                                  E->getExprLoc()),
2917             LHSTy);
2918         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2919             llvm::AtomicOrdering::SequentiallyConsistent);
2920         return LHSLV;
2921       }
2922     }
2923     // FIXME: For floating point types, we should be saving and restoring the
2924     // floating point environment in the loop.
2925     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2926     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2927     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2928     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2929     Builder.CreateBr(opBB);
2930     Builder.SetInsertPoint(opBB);
2931     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2932     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2933     OpInfo.LHS = atomicPHI;
2934   }
2935   else
2936     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2937 
2938   SourceLocation Loc = E->getExprLoc();
2939   OpInfo.LHS =
2940       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2941 
2942   // Expand the binary operator.
2943   Result = (this->*Func)(OpInfo);
2944 
2945   // Convert the result back to the LHS type,
2946   // potentially with Implicit Conversion sanitizer check.
2947   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
2948                                 Loc, ScalarConversionOpts(CGF.SanOpts));
2949 
2950   if (atomicPHI) {
2951     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2952     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2953     auto Pair = CGF.EmitAtomicCompareExchange(
2954         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2955     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2956     llvm::Value *success = Pair.second;
2957     atomicPHI->addIncoming(old, curBlock);
2958     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2959     Builder.SetInsertPoint(contBB);
2960     return LHSLV;
2961   }
2962 
2963   // Store the result value into the LHS lvalue. Bit-fields are handled
2964   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2965   // 'An assignment expression has the value of the left operand after the
2966   // assignment...'.
2967   if (LHSLV.isBitField())
2968     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2969   else
2970     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2971 
2972   return LHSLV;
2973 }
2974 
2975 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2976                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2977   bool Ignore = TestAndClearIgnoreResultAssign();
2978   Value *RHS;
2979   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2980 
2981   // If the result is clearly ignored, return now.
2982   if (Ignore)
2983     return nullptr;
2984 
2985   // The result of an assignment in C is the assigned r-value.
2986   if (!CGF.getLangOpts().CPlusPlus)
2987     return RHS;
2988 
2989   // If the lvalue is non-volatile, return the computed value of the assignment.
2990   if (!LHS.isVolatileQualified())
2991     return RHS;
2992 
2993   // Otherwise, reload the value.
2994   return EmitLoadOfLValue(LHS, E->getExprLoc());
2995 }
2996 
2997 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2998     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2999   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3000 
3001   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3002     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3003                                     SanitizerKind::IntegerDivideByZero));
3004   }
3005 
3006   const auto *BO = cast<BinaryOperator>(Ops.E);
3007   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3008       Ops.Ty->hasSignedIntegerRepresentation() &&
3009       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3010       Ops.mayHaveIntegerOverflow()) {
3011     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3012 
3013     llvm::Value *IntMin =
3014       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3015     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
3016 
3017     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3018     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3019     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3020     Checks.push_back(
3021         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3022   }
3023 
3024   if (Checks.size() > 0)
3025     EmitBinOpCheck(Checks, Ops);
3026 }
3027 
3028 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3029   {
3030     CodeGenFunction::SanitizerScope SanScope(&CGF);
3031     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3032          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3033         Ops.Ty->isIntegerType() &&
3034         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3035       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3036       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3037     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3038                Ops.Ty->isRealFloatingType() &&
3039                Ops.mayHaveFloatDivisionByZero()) {
3040       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3041       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3042       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3043                      Ops);
3044     }
3045   }
3046 
3047   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3048     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3049     if (CGF.getLangOpts().OpenCL &&
3050         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
3051       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3052       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3053       // build option allows an application to specify that single precision
3054       // floating-point divide (x/y and 1/x) and sqrt used in the program
3055       // source are correctly rounded.
3056       llvm::Type *ValTy = Val->getType();
3057       if (ValTy->isFloatTy() ||
3058           (isa<llvm::VectorType>(ValTy) &&
3059            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3060         CGF.SetFPAccuracy(Val, 2.5);
3061     }
3062     return Val;
3063   }
3064   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3065     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3066   else
3067     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3068 }
3069 
3070 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3071   // Rem in C can't be a floating point type: C99 6.5.5p2.
3072   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3073        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3074       Ops.Ty->isIntegerType() &&
3075       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3076     CodeGenFunction::SanitizerScope SanScope(&CGF);
3077     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3078     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3079   }
3080 
3081   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3082     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3083   else
3084     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3085 }
3086 
3087 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3088   unsigned IID;
3089   unsigned OpID = 0;
3090 
3091   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3092   switch (Ops.Opcode) {
3093   case BO_Add:
3094   case BO_AddAssign:
3095     OpID = 1;
3096     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3097                      llvm::Intrinsic::uadd_with_overflow;
3098     break;
3099   case BO_Sub:
3100   case BO_SubAssign:
3101     OpID = 2;
3102     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3103                      llvm::Intrinsic::usub_with_overflow;
3104     break;
3105   case BO_Mul:
3106   case BO_MulAssign:
3107     OpID = 3;
3108     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3109                      llvm::Intrinsic::umul_with_overflow;
3110     break;
3111   default:
3112     llvm_unreachable("Unsupported operation for overflow detection");
3113   }
3114   OpID <<= 1;
3115   if (isSigned)
3116     OpID |= 1;
3117 
3118   CodeGenFunction::SanitizerScope SanScope(&CGF);
3119   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3120 
3121   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3122 
3123   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3124   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3125   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3126 
3127   // Handle overflow with llvm.trap if no custom handler has been specified.
3128   const std::string *handlerName =
3129     &CGF.getLangOpts().OverflowHandler;
3130   if (handlerName->empty()) {
3131     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3132     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3133     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3134       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3135       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3136                               : SanitizerKind::UnsignedIntegerOverflow;
3137       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3138     } else
3139       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
3140     return result;
3141   }
3142 
3143   // Branch in case of overflow.
3144   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3145   llvm::BasicBlock *continueBB =
3146       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3147   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3148 
3149   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3150 
3151   // If an overflow handler is set, then we want to call it and then use its
3152   // result, if it returns.
3153   Builder.SetInsertPoint(overflowBB);
3154 
3155   // Get the overflow handler.
3156   llvm::Type *Int8Ty = CGF.Int8Ty;
3157   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3158   llvm::FunctionType *handlerTy =
3159       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3160   llvm::FunctionCallee handler =
3161       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3162 
3163   // Sign extend the args to 64-bit, so that we can use the same handler for
3164   // all types of overflow.
3165   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3166   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3167 
3168   // Call the handler with the two arguments, the operation, and the size of
3169   // the result.
3170   llvm::Value *handlerArgs[] = {
3171     lhs,
3172     rhs,
3173     Builder.getInt8(OpID),
3174     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3175   };
3176   llvm::Value *handlerResult =
3177     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3178 
3179   // Truncate the result back to the desired size.
3180   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3181   Builder.CreateBr(continueBB);
3182 
3183   Builder.SetInsertPoint(continueBB);
3184   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3185   phi->addIncoming(result, initialBB);
3186   phi->addIncoming(handlerResult, overflowBB);
3187 
3188   return phi;
3189 }
3190 
3191 /// Emit pointer + index arithmetic.
3192 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3193                                     const BinOpInfo &op,
3194                                     bool isSubtraction) {
3195   // Must have binary (not unary) expr here.  Unary pointer
3196   // increment/decrement doesn't use this path.
3197   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3198 
3199   Value *pointer = op.LHS;
3200   Expr *pointerOperand = expr->getLHS();
3201   Value *index = op.RHS;
3202   Expr *indexOperand = expr->getRHS();
3203 
3204   // In a subtraction, the LHS is always the pointer.
3205   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3206     std::swap(pointer, index);
3207     std::swap(pointerOperand, indexOperand);
3208   }
3209 
3210   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3211 
3212   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3213   auto &DL = CGF.CGM.getDataLayout();
3214   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3215 
3216   // Some versions of glibc and gcc use idioms (particularly in their malloc
3217   // routines) that add a pointer-sized integer (known to be a pointer value)
3218   // to a null pointer in order to cast the value back to an integer or as
3219   // part of a pointer alignment algorithm.  This is undefined behavior, but
3220   // we'd like to be able to compile programs that use it.
3221   //
3222   // Normally, we'd generate a GEP with a null-pointer base here in response
3223   // to that code, but it's also UB to dereference a pointer created that
3224   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3225   // generate a direct cast of the integer value to a pointer.
3226   //
3227   // The idiom (p = nullptr + N) is not met if any of the following are true:
3228   //
3229   //   The operation is subtraction.
3230   //   The index is not pointer-sized.
3231   //   The pointer type is not byte-sized.
3232   //
3233   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3234                                                        op.Opcode,
3235                                                        expr->getLHS(),
3236                                                        expr->getRHS()))
3237     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3238 
3239   if (width != DL.getTypeSizeInBits(PtrTy)) {
3240     // Zero-extend or sign-extend the pointer value according to
3241     // whether the index is signed or not.
3242     index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
3243                                       "idx.ext");
3244   }
3245 
3246   // If this is subtraction, negate the index.
3247   if (isSubtraction)
3248     index = CGF.Builder.CreateNeg(index, "idx.neg");
3249 
3250   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3251     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3252                         /*Accessed*/ false);
3253 
3254   const PointerType *pointerType
3255     = pointerOperand->getType()->getAs<PointerType>();
3256   if (!pointerType) {
3257     QualType objectType = pointerOperand->getType()
3258                                         ->castAs<ObjCObjectPointerType>()
3259                                         ->getPointeeType();
3260     llvm::Value *objectSize
3261       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3262 
3263     index = CGF.Builder.CreateMul(index, objectSize);
3264 
3265     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3266     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3267     return CGF.Builder.CreateBitCast(result, pointer->getType());
3268   }
3269 
3270   QualType elementType = pointerType->getPointeeType();
3271   if (const VariableArrayType *vla
3272         = CGF.getContext().getAsVariableArrayType(elementType)) {
3273     // The element count here is the total number of non-VLA elements.
3274     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3275 
3276     // Effectively, the multiply by the VLA size is part of the GEP.
3277     // GEP indexes are signed, and scaling an index isn't permitted to
3278     // signed-overflow, so we use the same semantics for our explicit
3279     // multiply.  We suppress this if overflow is not undefined behavior.
3280     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3281       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3282       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3283     } else {
3284       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3285       pointer =
3286           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3287                                      op.E->getExprLoc(), "add.ptr");
3288     }
3289     return pointer;
3290   }
3291 
3292   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3293   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3294   // future proof.
3295   if (elementType->isVoidType() || elementType->isFunctionType()) {
3296     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3297     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3298     return CGF.Builder.CreateBitCast(result, pointer->getType());
3299   }
3300 
3301   if (CGF.getLangOpts().isSignedOverflowDefined())
3302     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3303 
3304   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3305                                     op.E->getExprLoc(), "add.ptr");
3306 }
3307 
3308 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3309 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3310 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3311 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3312 // efficient operations.
3313 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
3314                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3315                            bool negMul, bool negAdd) {
3316   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3317 
3318   Value *MulOp0 = MulOp->getOperand(0);
3319   Value *MulOp1 = MulOp->getOperand(1);
3320   if (negMul) {
3321     MulOp0 =
3322       Builder.CreateFSub(
3323         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
3324         "neg");
3325   } else if (negAdd) {
3326     Addend =
3327       Builder.CreateFSub(
3328         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
3329         "neg");
3330   }
3331 
3332   Value *FMulAdd = Builder.CreateCall(
3333       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3334       {MulOp0, MulOp1, Addend});
3335    MulOp->eraseFromParent();
3336 
3337    return FMulAdd;
3338 }
3339 
3340 // Check whether it would be legal to emit an fmuladd intrinsic call to
3341 // represent op and if so, build the fmuladd.
3342 //
3343 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3344 // Does NOT check the type of the operation - it's assumed that this function
3345 // will be called from contexts where it's known that the type is contractable.
3346 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3347                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3348                          bool isSub=false) {
3349 
3350   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3351           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3352          "Only fadd/fsub can be the root of an fmuladd.");
3353 
3354   // Check whether this op is marked as fusable.
3355   if (!op.FPFeatures.allowFPContractWithinStatement())
3356     return nullptr;
3357 
3358   // We have a potentially fusable op. Look for a mul on one of the operands.
3359   // Also, make sure that the mul result isn't used directly. In that case,
3360   // there's no point creating a muladd operation.
3361   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3362     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3363         LHSBinOp->use_empty())
3364       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3365   }
3366   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3367     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3368         RHSBinOp->use_empty())
3369       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3370   }
3371 
3372   return nullptr;
3373 }
3374 
3375 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3376   if (op.LHS->getType()->isPointerTy() ||
3377       op.RHS->getType()->isPointerTy())
3378     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3379 
3380   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3381     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3382     case LangOptions::SOB_Defined:
3383       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3384     case LangOptions::SOB_Undefined:
3385       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3386         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3387       LLVM_FALLTHROUGH;
3388     case LangOptions::SOB_Trapping:
3389       if (CanElideOverflowCheck(CGF.getContext(), op))
3390         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3391       return EmitOverflowCheckedBinOp(op);
3392     }
3393   }
3394 
3395   if (op.Ty->isUnsignedIntegerType() &&
3396       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3397       !CanElideOverflowCheck(CGF.getContext(), op))
3398     return EmitOverflowCheckedBinOp(op);
3399 
3400   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3401     // Try to form an fmuladd.
3402     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3403       return FMulAdd;
3404 
3405     Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
3406     return propagateFMFlags(V, op);
3407   }
3408 
3409   if (op.isFixedPointBinOp())
3410     return EmitFixedPointBinOp(op);
3411 
3412   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3413 }
3414 
3415 /// The resulting value must be calculated with exact precision, so the operands
3416 /// may not be the same type.
3417 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3418   using llvm::APSInt;
3419   using llvm::ConstantInt;
3420 
3421   const auto *BinOp = cast<BinaryOperator>(op.E);
3422 
3423   // The result is a fixed point type and at least one of the operands is fixed
3424   // point while the other is either fixed point or an int. This resulting type
3425   // should be determined by Sema::handleFixedPointConversions().
3426   QualType ResultTy = op.Ty;
3427   QualType LHSTy = BinOp->getLHS()->getType();
3428   QualType RHSTy = BinOp->getRHS()->getType();
3429   ASTContext &Ctx = CGF.getContext();
3430   Value *LHS = op.LHS;
3431   Value *RHS = op.RHS;
3432 
3433   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3434   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3435   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3436   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3437 
3438   // Convert the operands to the full precision type.
3439   Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema,
3440                                             BinOp->getExprLoc());
3441   Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema,
3442                                             BinOp->getExprLoc());
3443 
3444   // Perform the actual addition.
3445   Value *Result;
3446   switch (BinOp->getOpcode()) {
3447   case BO_Add: {
3448     if (ResultFixedSema.isSaturated()) {
3449       llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3450                                     ? llvm::Intrinsic::sadd_sat
3451                                     : llvm::Intrinsic::uadd_sat;
3452       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3453     } else {
3454       Result = Builder.CreateAdd(FullLHS, FullRHS);
3455     }
3456     break;
3457   }
3458   case BO_Sub: {
3459     if (ResultFixedSema.isSaturated()) {
3460       llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3461                                     ? llvm::Intrinsic::ssub_sat
3462                                     : llvm::Intrinsic::usub_sat;
3463       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3464     } else {
3465       Result = Builder.CreateSub(FullLHS, FullRHS);
3466     }
3467     break;
3468   }
3469   case BO_LT:
3470     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS)
3471                                       : Builder.CreateICmpULT(FullLHS, FullRHS);
3472   case BO_GT:
3473     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS)
3474                                       : Builder.CreateICmpUGT(FullLHS, FullRHS);
3475   case BO_LE:
3476     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS)
3477                                       : Builder.CreateICmpULE(FullLHS, FullRHS);
3478   case BO_GE:
3479     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS)
3480                                       : Builder.CreateICmpUGE(FullLHS, FullRHS);
3481   case BO_EQ:
3482     // For equality operations, we assume any padding bits on unsigned types are
3483     // zero'd out. They could be overwritten through non-saturating operations
3484     // that cause overflow, but this leads to undefined behavior.
3485     return Builder.CreateICmpEQ(FullLHS, FullRHS);
3486   case BO_NE:
3487     return Builder.CreateICmpNE(FullLHS, FullRHS);
3488   case BO_Mul:
3489   case BO_Div:
3490   case BO_Shl:
3491   case BO_Shr:
3492   case BO_Cmp:
3493   case BO_LAnd:
3494   case BO_LOr:
3495   case BO_MulAssign:
3496   case BO_DivAssign:
3497   case BO_AddAssign:
3498   case BO_SubAssign:
3499   case BO_ShlAssign:
3500   case BO_ShrAssign:
3501     llvm_unreachable("Found unimplemented fixed point binary operation");
3502   case BO_PtrMemD:
3503   case BO_PtrMemI:
3504   case BO_Rem:
3505   case BO_Xor:
3506   case BO_And:
3507   case BO_Or:
3508   case BO_Assign:
3509   case BO_RemAssign:
3510   case BO_AndAssign:
3511   case BO_XorAssign:
3512   case BO_OrAssign:
3513   case BO_Comma:
3514     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3515   }
3516 
3517   // Convert to the result type.
3518   return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema,
3519                                   BinOp->getExprLoc());
3520 }
3521 
3522 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3523   // The LHS is always a pointer if either side is.
3524   if (!op.LHS->getType()->isPointerTy()) {
3525     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3526       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3527       case LangOptions::SOB_Defined:
3528         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3529       case LangOptions::SOB_Undefined:
3530         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3531           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3532         LLVM_FALLTHROUGH;
3533       case LangOptions::SOB_Trapping:
3534         if (CanElideOverflowCheck(CGF.getContext(), op))
3535           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3536         return EmitOverflowCheckedBinOp(op);
3537       }
3538     }
3539 
3540     if (op.Ty->isUnsignedIntegerType() &&
3541         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3542         !CanElideOverflowCheck(CGF.getContext(), op))
3543       return EmitOverflowCheckedBinOp(op);
3544 
3545     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3546       // Try to form an fmuladd.
3547       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3548         return FMulAdd;
3549       Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
3550       return propagateFMFlags(V, op);
3551     }
3552 
3553     if (op.isFixedPointBinOp())
3554       return EmitFixedPointBinOp(op);
3555 
3556     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3557   }
3558 
3559   // If the RHS is not a pointer, then we have normal pointer
3560   // arithmetic.
3561   if (!op.RHS->getType()->isPointerTy())
3562     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3563 
3564   // Otherwise, this is a pointer subtraction.
3565 
3566   // Do the raw subtraction part.
3567   llvm::Value *LHS
3568     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3569   llvm::Value *RHS
3570     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3571   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3572 
3573   // Okay, figure out the element size.
3574   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3575   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3576 
3577   llvm::Value *divisor = nullptr;
3578 
3579   // For a variable-length array, this is going to be non-constant.
3580   if (const VariableArrayType *vla
3581         = CGF.getContext().getAsVariableArrayType(elementType)) {
3582     auto VlaSize = CGF.getVLASize(vla);
3583     elementType = VlaSize.Type;
3584     divisor = VlaSize.NumElts;
3585 
3586     // Scale the number of non-VLA elements by the non-VLA element size.
3587     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3588     if (!eltSize.isOne())
3589       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3590 
3591   // For everything elese, we can just compute it, safe in the
3592   // assumption that Sema won't let anything through that we can't
3593   // safely compute the size of.
3594   } else {
3595     CharUnits elementSize;
3596     // Handle GCC extension for pointer arithmetic on void* and
3597     // function pointer types.
3598     if (elementType->isVoidType() || elementType->isFunctionType())
3599       elementSize = CharUnits::One();
3600     else
3601       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3602 
3603     // Don't even emit the divide for element size of 1.
3604     if (elementSize.isOne())
3605       return diffInChars;
3606 
3607     divisor = CGF.CGM.getSize(elementSize);
3608   }
3609 
3610   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3611   // pointer difference in C is only defined in the case where both operands
3612   // are pointing to elements of an array.
3613   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3614 }
3615 
3616 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3617   llvm::IntegerType *Ty;
3618   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3619     Ty = cast<llvm::IntegerType>(VT->getElementType());
3620   else
3621     Ty = cast<llvm::IntegerType>(LHS->getType());
3622   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3623 }
3624 
3625 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3626   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3627   // RHS to the same size as the LHS.
3628   Value *RHS = Ops.RHS;
3629   if (Ops.LHS->getType() != RHS->getType())
3630     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3631 
3632   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3633                       Ops.Ty->hasSignedIntegerRepresentation() &&
3634                       !CGF.getLangOpts().isSignedOverflowDefined();
3635   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3636   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3637   if (CGF.getLangOpts().OpenCL)
3638     RHS =
3639         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
3640   else if ((SanitizeBase || SanitizeExponent) &&
3641            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3642     CodeGenFunction::SanitizerScope SanScope(&CGF);
3643     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3644     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3645     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3646 
3647     if (SanitizeExponent) {
3648       Checks.push_back(
3649           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3650     }
3651 
3652     if (SanitizeBase) {
3653       // Check whether we are shifting any non-zero bits off the top of the
3654       // integer. We only emit this check if exponent is valid - otherwise
3655       // instructions below will have undefined behavior themselves.
3656       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3657       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3658       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3659       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3660       llvm::Value *PromotedWidthMinusOne =
3661           (RHS == Ops.RHS) ? WidthMinusOne
3662                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3663       CGF.EmitBlock(CheckShiftBase);
3664       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3665           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3666                                      /*NUW*/ true, /*NSW*/ true),
3667           "shl.check");
3668       if (CGF.getLangOpts().CPlusPlus) {
3669         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3670         // Under C++11's rules, shifting a 1 bit into the sign bit is
3671         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3672         // define signed left shifts, so we use the C99 and C++11 rules there).
3673         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3674         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3675       }
3676       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3677       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3678       CGF.EmitBlock(Cont);
3679       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3680       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3681       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3682       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3683     }
3684 
3685     assert(!Checks.empty());
3686     EmitBinOpCheck(Checks, Ops);
3687   }
3688 
3689   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3690 }
3691 
3692 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3693   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3694   // RHS to the same size as the LHS.
3695   Value *RHS = Ops.RHS;
3696   if (Ops.LHS->getType() != RHS->getType())
3697     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3698 
3699   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3700   if (CGF.getLangOpts().OpenCL)
3701     RHS =
3702         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
3703   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3704            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3705     CodeGenFunction::SanitizerScope SanScope(&CGF);
3706     llvm::Value *Valid =
3707         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3708     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3709   }
3710 
3711   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3712     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3713   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3714 }
3715 
3716 enum IntrinsicType { VCMPEQ, VCMPGT };
3717 // return corresponding comparison intrinsic for given vector type
3718 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3719                                         BuiltinType::Kind ElemKind) {
3720   switch (ElemKind) {
3721   default: llvm_unreachable("unexpected element type");
3722   case BuiltinType::Char_U:
3723   case BuiltinType::UChar:
3724     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3725                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3726   case BuiltinType::Char_S:
3727   case BuiltinType::SChar:
3728     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3729                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3730   case BuiltinType::UShort:
3731     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3732                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3733   case BuiltinType::Short:
3734     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3735                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3736   case BuiltinType::UInt:
3737     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3738                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3739   case BuiltinType::Int:
3740     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3741                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3742   case BuiltinType::ULong:
3743   case BuiltinType::ULongLong:
3744     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3745                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3746   case BuiltinType::Long:
3747   case BuiltinType::LongLong:
3748     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3749                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3750   case BuiltinType::Float:
3751     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3752                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3753   case BuiltinType::Double:
3754     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3755                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3756   }
3757 }
3758 
3759 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3760                                       llvm::CmpInst::Predicate UICmpOpc,
3761                                       llvm::CmpInst::Predicate SICmpOpc,
3762                                       llvm::CmpInst::Predicate FCmpOpc) {
3763   TestAndClearIgnoreResultAssign();
3764   Value *Result;
3765   QualType LHSTy = E->getLHS()->getType();
3766   QualType RHSTy = E->getRHS()->getType();
3767   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3768     assert(E->getOpcode() == BO_EQ ||
3769            E->getOpcode() == BO_NE);
3770     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3771     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3772     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3773                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3774   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3775     BinOpInfo BOInfo = EmitBinOps(E);
3776     Value *LHS = BOInfo.LHS;
3777     Value *RHS = BOInfo.RHS;
3778 
3779     // If AltiVec, the comparison results in a numeric type, so we use
3780     // intrinsics comparing vectors and giving 0 or 1 as a result
3781     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3782       // constants for mapping CR6 register bits to predicate result
3783       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3784 
3785       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3786 
3787       // in several cases vector arguments order will be reversed
3788       Value *FirstVecArg = LHS,
3789             *SecondVecArg = RHS;
3790 
3791       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
3792       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
3793       BuiltinType::Kind ElementKind = BTy->getKind();
3794 
3795       switch(E->getOpcode()) {
3796       default: llvm_unreachable("is not a comparison operation");
3797       case BO_EQ:
3798         CR6 = CR6_LT;
3799         ID = GetIntrinsic(VCMPEQ, ElementKind);
3800         break;
3801       case BO_NE:
3802         CR6 = CR6_EQ;
3803         ID = GetIntrinsic(VCMPEQ, ElementKind);
3804         break;
3805       case BO_LT:
3806         CR6 = CR6_LT;
3807         ID = GetIntrinsic(VCMPGT, ElementKind);
3808         std::swap(FirstVecArg, SecondVecArg);
3809         break;
3810       case BO_GT:
3811         CR6 = CR6_LT;
3812         ID = GetIntrinsic(VCMPGT, ElementKind);
3813         break;
3814       case BO_LE:
3815         if (ElementKind == BuiltinType::Float) {
3816           CR6 = CR6_LT;
3817           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3818           std::swap(FirstVecArg, SecondVecArg);
3819         }
3820         else {
3821           CR6 = CR6_EQ;
3822           ID = GetIntrinsic(VCMPGT, ElementKind);
3823         }
3824         break;
3825       case BO_GE:
3826         if (ElementKind == BuiltinType::Float) {
3827           CR6 = CR6_LT;
3828           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3829         }
3830         else {
3831           CR6 = CR6_EQ;
3832           ID = GetIntrinsic(VCMPGT, ElementKind);
3833           std::swap(FirstVecArg, SecondVecArg);
3834         }
3835         break;
3836       }
3837 
3838       Value *CR6Param = Builder.getInt32(CR6);
3839       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3840       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3841 
3842       // The result type of intrinsic may not be same as E->getType().
3843       // If E->getType() is not BoolTy, EmitScalarConversion will do the
3844       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3845       // do nothing, if ResultTy is not i1 at the same time, it will cause
3846       // crash later.
3847       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3848       if (ResultTy->getBitWidth() > 1 &&
3849           E->getType() == CGF.getContext().BoolTy)
3850         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3851       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3852                                   E->getExprLoc());
3853     }
3854 
3855     if (BOInfo.isFixedPointBinOp()) {
3856       Result = EmitFixedPointBinOp(BOInfo);
3857     } else if (LHS->getType()->isFPOrFPVectorTy()) {
3858       Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3859     } else if (LHSTy->hasSignedIntegerRepresentation()) {
3860       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3861     } else {
3862       // Unsigned integers and pointers.
3863 
3864       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
3865           !isa<llvm::ConstantPointerNull>(LHS) &&
3866           !isa<llvm::ConstantPointerNull>(RHS)) {
3867 
3868         // Dynamic information is required to be stripped for comparisons,
3869         // because it could leak the dynamic information.  Based on comparisons
3870         // of pointers to dynamic objects, the optimizer can replace one pointer
3871         // with another, which might be incorrect in presence of invariant
3872         // groups. Comparison with null is safe because null does not carry any
3873         // dynamic information.
3874         if (LHSTy.mayBeDynamicClass())
3875           LHS = Builder.CreateStripInvariantGroup(LHS);
3876         if (RHSTy.mayBeDynamicClass())
3877           RHS = Builder.CreateStripInvariantGroup(RHS);
3878       }
3879 
3880       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3881     }
3882 
3883     // If this is a vector comparison, sign extend the result to the appropriate
3884     // vector integer type and return it (don't convert to bool).
3885     if (LHSTy->isVectorType())
3886       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3887 
3888   } else {
3889     // Complex Comparison: can only be an equality comparison.
3890     CodeGenFunction::ComplexPairTy LHS, RHS;
3891     QualType CETy;
3892     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3893       LHS = CGF.EmitComplexExpr(E->getLHS());
3894       CETy = CTy->getElementType();
3895     } else {
3896       LHS.first = Visit(E->getLHS());
3897       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3898       CETy = LHSTy;
3899     }
3900     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3901       RHS = CGF.EmitComplexExpr(E->getRHS());
3902       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
3903                                                      CTy->getElementType()) &&
3904              "The element types must always match.");
3905       (void)CTy;
3906     } else {
3907       RHS.first = Visit(E->getRHS());
3908       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
3909       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
3910              "The element types must always match.");
3911     }
3912 
3913     Value *ResultR, *ResultI;
3914     if (CETy->isRealFloatingType()) {
3915       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
3916       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
3917     } else {
3918       // Complex comparisons can only be equality comparisons.  As such, signed
3919       // and unsigned opcodes are the same.
3920       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
3921       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
3922     }
3923 
3924     if (E->getOpcode() == BO_EQ) {
3925       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
3926     } else {
3927       assert(E->getOpcode() == BO_NE &&
3928              "Complex comparison other than == or != ?");
3929       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
3930     }
3931   }
3932 
3933   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3934                               E->getExprLoc());
3935 }
3936 
3937 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3938   bool Ignore = TestAndClearIgnoreResultAssign();
3939 
3940   Value *RHS;
3941   LValue LHS;
3942 
3943   switch (E->getLHS()->getType().getObjCLifetime()) {
3944   case Qualifiers::OCL_Strong:
3945     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3946     break;
3947 
3948   case Qualifiers::OCL_Autoreleasing:
3949     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3950     break;
3951 
3952   case Qualifiers::OCL_ExplicitNone:
3953     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3954     break;
3955 
3956   case Qualifiers::OCL_Weak:
3957     RHS = Visit(E->getRHS());
3958     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3959     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3960     break;
3961 
3962   case Qualifiers::OCL_None:
3963     // __block variables need to have the rhs evaluated first, plus
3964     // this should improve codegen just a little.
3965     RHS = Visit(E->getRHS());
3966     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3967 
3968     // Store the value into the LHS.  Bit-fields are handled specially
3969     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3970     // 'An assignment expression has the value of the left operand after
3971     // the assignment...'.
3972     if (LHS.isBitField()) {
3973       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3974     } else {
3975       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
3976       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3977     }
3978   }
3979 
3980   // If the result is clearly ignored, return now.
3981   if (Ignore)
3982     return nullptr;
3983 
3984   // The result of an assignment in C is the assigned r-value.
3985   if (!CGF.getLangOpts().CPlusPlus)
3986     return RHS;
3987 
3988   // If the lvalue is non-volatile, return the computed value of the assignment.
3989   if (!LHS.isVolatileQualified())
3990     return RHS;
3991 
3992   // Otherwise, reload the value.
3993   return EmitLoadOfLValue(LHS, E->getExprLoc());
3994 }
3995 
3996 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3997   // Perform vector logical and on comparisons with zero vectors.
3998   if (E->getType()->isVectorType()) {
3999     CGF.incrementProfileCounter(E);
4000 
4001     Value *LHS = Visit(E->getLHS());
4002     Value *RHS = Visit(E->getRHS());
4003     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4004     if (LHS->getType()->isFPOrFPVectorTy()) {
4005       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4006       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4007     } else {
4008       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4009       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4010     }
4011     Value *And = Builder.CreateAnd(LHS, RHS);
4012     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4013   }
4014 
4015   llvm::Type *ResTy = ConvertType(E->getType());
4016 
4017   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4018   // If we have 1 && X, just emit X without inserting the control flow.
4019   bool LHSCondVal;
4020   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4021     if (LHSCondVal) { // If we have 1 && X, just emit X.
4022       CGF.incrementProfileCounter(E);
4023 
4024       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4025       // ZExt result to int or bool.
4026       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4027     }
4028 
4029     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4030     if (!CGF.ContainsLabel(E->getRHS()))
4031       return llvm::Constant::getNullValue(ResTy);
4032   }
4033 
4034   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4035   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4036 
4037   CodeGenFunction::ConditionalEvaluation eval(CGF);
4038 
4039   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4040   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4041                            CGF.getProfileCount(E->getRHS()));
4042 
4043   // Any edges into the ContBlock are now from an (indeterminate number of)
4044   // edges from this first condition.  All of these values will be false.  Start
4045   // setting up the PHI node in the Cont Block for this.
4046   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4047                                             "", ContBlock);
4048   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4049        PI != PE; ++PI)
4050     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4051 
4052   eval.begin(CGF);
4053   CGF.EmitBlock(RHSBlock);
4054   CGF.incrementProfileCounter(E);
4055   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4056   eval.end(CGF);
4057 
4058   // Reaquire the RHS block, as there may be subblocks inserted.
4059   RHSBlock = Builder.GetInsertBlock();
4060 
4061   // Emit an unconditional branch from this block to ContBlock.
4062   {
4063     // There is no need to emit line number for unconditional branch.
4064     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4065     CGF.EmitBlock(ContBlock);
4066   }
4067   // Insert an entry into the phi node for the edge with the value of RHSCond.
4068   PN->addIncoming(RHSCond, RHSBlock);
4069 
4070   // Artificial location to preserve the scope information
4071   {
4072     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4073     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4074   }
4075 
4076   // ZExt result to int.
4077   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4078 }
4079 
4080 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4081   // Perform vector logical or on comparisons with zero vectors.
4082   if (E->getType()->isVectorType()) {
4083     CGF.incrementProfileCounter(E);
4084 
4085     Value *LHS = Visit(E->getLHS());
4086     Value *RHS = Visit(E->getRHS());
4087     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4088     if (LHS->getType()->isFPOrFPVectorTy()) {
4089       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4090       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4091     } else {
4092       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4093       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4094     }
4095     Value *Or = Builder.CreateOr(LHS, RHS);
4096     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4097   }
4098 
4099   llvm::Type *ResTy = ConvertType(E->getType());
4100 
4101   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4102   // If we have 0 || X, just emit X without inserting the control flow.
4103   bool LHSCondVal;
4104   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4105     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4106       CGF.incrementProfileCounter(E);
4107 
4108       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4109       // ZExt result to int or bool.
4110       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4111     }
4112 
4113     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4114     if (!CGF.ContainsLabel(E->getRHS()))
4115       return llvm::ConstantInt::get(ResTy, 1);
4116   }
4117 
4118   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4119   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4120 
4121   CodeGenFunction::ConditionalEvaluation eval(CGF);
4122 
4123   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4124   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4125                            CGF.getCurrentProfileCount() -
4126                                CGF.getProfileCount(E->getRHS()));
4127 
4128   // Any edges into the ContBlock are now from an (indeterminate number of)
4129   // edges from this first condition.  All of these values will be true.  Start
4130   // setting up the PHI node in the Cont Block for this.
4131   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4132                                             "", ContBlock);
4133   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4134        PI != PE; ++PI)
4135     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4136 
4137   eval.begin(CGF);
4138 
4139   // Emit the RHS condition as a bool value.
4140   CGF.EmitBlock(RHSBlock);
4141   CGF.incrementProfileCounter(E);
4142   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4143 
4144   eval.end(CGF);
4145 
4146   // Reaquire the RHS block, as there may be subblocks inserted.
4147   RHSBlock = Builder.GetInsertBlock();
4148 
4149   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4150   // into the phi node for the edge with the value of RHSCond.
4151   CGF.EmitBlock(ContBlock);
4152   PN->addIncoming(RHSCond, RHSBlock);
4153 
4154   // ZExt result to int.
4155   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4156 }
4157 
4158 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4159   CGF.EmitIgnoredExpr(E->getLHS());
4160   CGF.EnsureInsertPoint();
4161   return Visit(E->getRHS());
4162 }
4163 
4164 //===----------------------------------------------------------------------===//
4165 //                             Other Operators
4166 //===----------------------------------------------------------------------===//
4167 
4168 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4169 /// expression is cheap enough and side-effect-free enough to evaluate
4170 /// unconditionally instead of conditionally.  This is used to convert control
4171 /// flow into selects in some cases.
4172 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4173                                                    CodeGenFunction &CGF) {
4174   // Anything that is an integer or floating point constant is fine.
4175   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4176 
4177   // Even non-volatile automatic variables can't be evaluated unconditionally.
4178   // Referencing a thread_local may cause non-trivial initialization work to
4179   // occur. If we're inside a lambda and one of the variables is from the scope
4180   // outside the lambda, that function may have returned already. Reading its
4181   // locals is a bad idea. Also, these reads may introduce races there didn't
4182   // exist in the source-level program.
4183 }
4184 
4185 
4186 Value *ScalarExprEmitter::
4187 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4188   TestAndClearIgnoreResultAssign();
4189 
4190   // Bind the common expression if necessary.
4191   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4192 
4193   Expr *condExpr = E->getCond();
4194   Expr *lhsExpr = E->getTrueExpr();
4195   Expr *rhsExpr = E->getFalseExpr();
4196 
4197   // If the condition constant folds and can be elided, try to avoid emitting
4198   // the condition and the dead arm.
4199   bool CondExprBool;
4200   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4201     Expr *live = lhsExpr, *dead = rhsExpr;
4202     if (!CondExprBool) std::swap(live, dead);
4203 
4204     // If the dead side doesn't have labels we need, just emit the Live part.
4205     if (!CGF.ContainsLabel(dead)) {
4206       if (CondExprBool)
4207         CGF.incrementProfileCounter(E);
4208       Value *Result = Visit(live);
4209 
4210       // If the live part is a throw expression, it acts like it has a void
4211       // type, so evaluating it returns a null Value*.  However, a conditional
4212       // with non-void type must return a non-null Value*.
4213       if (!Result && !E->getType()->isVoidType())
4214         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4215 
4216       return Result;
4217     }
4218   }
4219 
4220   // OpenCL: If the condition is a vector, we can treat this condition like
4221   // the select function.
4222   if (CGF.getLangOpts().OpenCL
4223       && condExpr->getType()->isVectorType()) {
4224     CGF.incrementProfileCounter(E);
4225 
4226     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4227     llvm::Value *LHS = Visit(lhsExpr);
4228     llvm::Value *RHS = Visit(rhsExpr);
4229 
4230     llvm::Type *condType = ConvertType(condExpr->getType());
4231     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
4232 
4233     unsigned numElem = vecTy->getNumElements();
4234     llvm::Type *elemType = vecTy->getElementType();
4235 
4236     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4237     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4238     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
4239                                           llvm::VectorType::get(elemType,
4240                                                                 numElem),
4241                                           "sext");
4242     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4243 
4244     // Cast float to int to perform ANDs if necessary.
4245     llvm::Value *RHSTmp = RHS;
4246     llvm::Value *LHSTmp = LHS;
4247     bool wasCast = false;
4248     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4249     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4250       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4251       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4252       wasCast = true;
4253     }
4254 
4255     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4256     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4257     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4258     if (wasCast)
4259       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4260 
4261     return tmp5;
4262   }
4263 
4264   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4265   // select instead of as control flow.  We can only do this if it is cheap and
4266   // safe to evaluate the LHS and RHS unconditionally.
4267   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4268       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4269     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4270     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4271 
4272     CGF.incrementProfileCounter(E, StepV);
4273 
4274     llvm::Value *LHS = Visit(lhsExpr);
4275     llvm::Value *RHS = Visit(rhsExpr);
4276     if (!LHS) {
4277       // If the conditional has void type, make sure we return a null Value*.
4278       assert(!RHS && "LHS and RHS types must match");
4279       return nullptr;
4280     }
4281     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4282   }
4283 
4284   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4285   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4286   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4287 
4288   CodeGenFunction::ConditionalEvaluation eval(CGF);
4289   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4290                            CGF.getProfileCount(lhsExpr));
4291 
4292   CGF.EmitBlock(LHSBlock);
4293   CGF.incrementProfileCounter(E);
4294   eval.begin(CGF);
4295   Value *LHS = Visit(lhsExpr);
4296   eval.end(CGF);
4297 
4298   LHSBlock = Builder.GetInsertBlock();
4299   Builder.CreateBr(ContBlock);
4300 
4301   CGF.EmitBlock(RHSBlock);
4302   eval.begin(CGF);
4303   Value *RHS = Visit(rhsExpr);
4304   eval.end(CGF);
4305 
4306   RHSBlock = Builder.GetInsertBlock();
4307   CGF.EmitBlock(ContBlock);
4308 
4309   // If the LHS or RHS is a throw expression, it will be legitimately null.
4310   if (!LHS)
4311     return RHS;
4312   if (!RHS)
4313     return LHS;
4314 
4315   // Create a PHI node for the real part.
4316   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4317   PN->addIncoming(LHS, LHSBlock);
4318   PN->addIncoming(RHS, RHSBlock);
4319   return PN;
4320 }
4321 
4322 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4323   return Visit(E->getChosenSubExpr());
4324 }
4325 
4326 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4327   QualType Ty = VE->getType();
4328 
4329   if (Ty->isVariablyModifiedType())
4330     CGF.EmitVariablyModifiedType(Ty);
4331 
4332   Address ArgValue = Address::invalid();
4333   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4334 
4335   llvm::Type *ArgTy = ConvertType(VE->getType());
4336 
4337   // If EmitVAArg fails, emit an error.
4338   if (!ArgPtr.isValid()) {
4339     CGF.ErrorUnsupported(VE, "va_arg expression");
4340     return llvm::UndefValue::get(ArgTy);
4341   }
4342 
4343   // FIXME Volatility.
4344   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4345 
4346   // If EmitVAArg promoted the type, we must truncate it.
4347   if (ArgTy != Val->getType()) {
4348     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4349       Val = Builder.CreateIntToPtr(Val, ArgTy);
4350     else
4351       Val = Builder.CreateTrunc(Val, ArgTy);
4352   }
4353 
4354   return Val;
4355 }
4356 
4357 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4358   return CGF.EmitBlockLiteral(block);
4359 }
4360 
4361 // Convert a vec3 to vec4, or vice versa.
4362 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4363                                  Value *Src, unsigned NumElementsDst) {
4364   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
4365   SmallVector<llvm::Constant*, 4> Args;
4366   Args.push_back(Builder.getInt32(0));
4367   Args.push_back(Builder.getInt32(1));
4368   Args.push_back(Builder.getInt32(2));
4369   if (NumElementsDst == 4)
4370     Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
4371   llvm::Constant *Mask = llvm::ConstantVector::get(Args);
4372   return Builder.CreateShuffleVector(Src, UnV, Mask);
4373 }
4374 
4375 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4376 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4377 // but could be scalar or vectors of different lengths, and either can be
4378 // pointer.
4379 // There are 4 cases:
4380 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4381 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4382 // 3. pointer -> non-pointer
4383 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4384 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4385 // 4. non-pointer -> pointer
4386 //   a) intptr_t -> pointer       : needs 1 inttoptr
4387 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4388 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4389 // allow casting directly between pointer types and non-integer non-pointer
4390 // types.
4391 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4392                                            const llvm::DataLayout &DL,
4393                                            Value *Src, llvm::Type *DstTy,
4394                                            StringRef Name = "") {
4395   auto SrcTy = Src->getType();
4396 
4397   // Case 1.
4398   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4399     return Builder.CreateBitCast(Src, DstTy, Name);
4400 
4401   // Case 2.
4402   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4403     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4404 
4405   // Case 3.
4406   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4407     // Case 3b.
4408     if (!DstTy->isIntegerTy())
4409       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4410     // Cases 3a and 3b.
4411     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4412   }
4413 
4414   // Case 4b.
4415   if (!SrcTy->isIntegerTy())
4416     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4417   // Cases 4a and 4b.
4418   return Builder.CreateIntToPtr(Src, DstTy, Name);
4419 }
4420 
4421 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4422   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4423   llvm::Type *DstTy = ConvertType(E->getType());
4424 
4425   llvm::Type *SrcTy = Src->getType();
4426   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
4427     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
4428   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
4429     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
4430 
4431   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4432   // vector to get a vec4, then a bitcast if the target type is different.
4433   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4434     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4435 
4436     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4437       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4438                                          DstTy);
4439     }
4440 
4441     Src->setName("astype");
4442     return Src;
4443   }
4444 
4445   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4446   // to vec4 if the original type is not vec4, then a shuffle vector to
4447   // get a vec3.
4448   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4449     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4450       auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
4451       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4452                                          Vec4Ty);
4453     }
4454 
4455     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4456     Src->setName("astype");
4457     return Src;
4458   }
4459 
4460   return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4461                                             Src, DstTy, "astype");
4462 }
4463 
4464 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4465   return CGF.EmitAtomicExpr(E).getScalarVal();
4466 }
4467 
4468 //===----------------------------------------------------------------------===//
4469 //                         Entry Point into this File
4470 //===----------------------------------------------------------------------===//
4471 
4472 /// Emit the computation of the specified expression of scalar type, ignoring
4473 /// the result.
4474 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4475   assert(E && hasScalarEvaluationKind(E->getType()) &&
4476          "Invalid scalar expression to emit");
4477 
4478   return ScalarExprEmitter(*this, IgnoreResultAssign)
4479       .Visit(const_cast<Expr *>(E));
4480 }
4481 
4482 /// Emit a conversion from the specified type to the specified destination type,
4483 /// both of which are LLVM scalar types.
4484 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4485                                              QualType DstTy,
4486                                              SourceLocation Loc) {
4487   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4488          "Invalid scalar expression to emit");
4489   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4490 }
4491 
4492 /// Emit a conversion from the specified complex type to the specified
4493 /// destination type, where the destination type is an LLVM scalar type.
4494 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4495                                                       QualType SrcTy,
4496                                                       QualType DstTy,
4497                                                       SourceLocation Loc) {
4498   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4499          "Invalid complex -> scalar conversion");
4500   return ScalarExprEmitter(*this)
4501       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4502 }
4503 
4504 
4505 llvm::Value *CodeGenFunction::
4506 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4507                         bool isInc, bool isPre) {
4508   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4509 }
4510 
4511 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4512   // object->isa or (*object).isa
4513   // Generate code as for: *(Class*)object
4514 
4515   Expr *BaseExpr = E->getBase();
4516   Address Addr = Address::invalid();
4517   if (BaseExpr->isRValue()) {
4518     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4519   } else {
4520     Addr = EmitLValue(BaseExpr).getAddress();
4521   }
4522 
4523   // Cast the address to Class*.
4524   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4525   return MakeAddrLValue(Addr, E->getType());
4526 }
4527 
4528 
4529 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4530                                             const CompoundAssignOperator *E) {
4531   ScalarExprEmitter Scalar(*this);
4532   Value *Result = nullptr;
4533   switch (E->getOpcode()) {
4534 #define COMPOUND_OP(Op)                                                       \
4535     case BO_##Op##Assign:                                                     \
4536       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4537                                              Result)
4538   COMPOUND_OP(Mul);
4539   COMPOUND_OP(Div);
4540   COMPOUND_OP(Rem);
4541   COMPOUND_OP(Add);
4542   COMPOUND_OP(Sub);
4543   COMPOUND_OP(Shl);
4544   COMPOUND_OP(Shr);
4545   COMPOUND_OP(And);
4546   COMPOUND_OP(Xor);
4547   COMPOUND_OP(Or);
4548 #undef COMPOUND_OP
4549 
4550   case BO_PtrMemD:
4551   case BO_PtrMemI:
4552   case BO_Mul:
4553   case BO_Div:
4554   case BO_Rem:
4555   case BO_Add:
4556   case BO_Sub:
4557   case BO_Shl:
4558   case BO_Shr:
4559   case BO_LT:
4560   case BO_GT:
4561   case BO_LE:
4562   case BO_GE:
4563   case BO_EQ:
4564   case BO_NE:
4565   case BO_Cmp:
4566   case BO_And:
4567   case BO_Xor:
4568   case BO_Or:
4569   case BO_LAnd:
4570   case BO_LOr:
4571   case BO_Assign:
4572   case BO_Comma:
4573     llvm_unreachable("Not valid compound assignment operators");
4574   }
4575 
4576   llvm_unreachable("Unhandled compound assignment operator");
4577 }
4578 
4579 Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr,
4580                                                ArrayRef<Value *> IdxList,
4581                                                bool SignedIndices,
4582                                                bool IsSubtraction,
4583                                                SourceLocation Loc,
4584                                                const Twine &Name) {
4585   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4586 
4587   // If the pointer overflow sanitizer isn't enabled, do nothing.
4588   if (!SanOpts.has(SanitizerKind::PointerOverflow))
4589     return GEPVal;
4590 
4591   // If the GEP has already been reduced to a constant, leave it be.
4592   if (isa<llvm::Constant>(GEPVal))
4593     return GEPVal;
4594 
4595   // Only check for overflows in the default address space.
4596   if (GEPVal->getType()->getPointerAddressSpace())
4597     return GEPVal;
4598 
4599   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4600   assert(GEP->isInBounds() && "Expected inbounds GEP");
4601 
4602   SanitizerScope SanScope(this);
4603   auto &VMContext = getLLVMContext();
4604   const auto &DL = CGM.getDataLayout();
4605   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4606 
4607   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4608   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4609   auto *SAddIntrinsic =
4610       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4611   auto *SMulIntrinsic =
4612       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4613 
4614   // The total (signed) byte offset for the GEP.
4615   llvm::Value *TotalOffset = nullptr;
4616   // The offset overflow flag - true if the total offset overflows.
4617   llvm::Value *OffsetOverflows = Builder.getFalse();
4618 
4619   /// Return the result of the given binary operation.
4620   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4621                   llvm::Value *RHS) -> llvm::Value * {
4622     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4623 
4624     // If the operands are constants, return a constant result.
4625     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4626       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4627         llvm::APInt N;
4628         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4629                                                   /*Signed=*/true, N);
4630         if (HasOverflow)
4631           OffsetOverflows = Builder.getTrue();
4632         return llvm::ConstantInt::get(VMContext, N);
4633       }
4634     }
4635 
4636     // Otherwise, compute the result with checked arithmetic.
4637     auto *ResultAndOverflow = Builder.CreateCall(
4638         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4639     OffsetOverflows = Builder.CreateOr(
4640         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4641     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4642   };
4643 
4644   // Determine the total byte offset by looking at each GEP operand.
4645   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4646        GTI != GTE; ++GTI) {
4647     llvm::Value *LocalOffset;
4648     auto *Index = GTI.getOperand();
4649     // Compute the local offset contributed by this indexing step:
4650     if (auto *STy = GTI.getStructTypeOrNull()) {
4651       // For struct indexing, the local offset is the byte position of the
4652       // specified field.
4653       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4654       LocalOffset = llvm::ConstantInt::get(
4655           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4656     } else {
4657       // Otherwise this is array-like indexing. The local offset is the index
4658       // multiplied by the element size.
4659       auto *ElementSize = llvm::ConstantInt::get(
4660           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4661       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4662       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4663     }
4664 
4665     // If this is the first offset, set it as the total offset. Otherwise, add
4666     // the local offset into the running total.
4667     if (!TotalOffset || TotalOffset == Zero)
4668       TotalOffset = LocalOffset;
4669     else
4670       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4671   }
4672 
4673   // Common case: if the total offset is zero, don't emit a check.
4674   if (TotalOffset == Zero)
4675     return GEPVal;
4676 
4677   // Now that we've computed the total offset, add it to the base pointer (with
4678   // wrapping semantics).
4679   auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy);
4680   auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset);
4681 
4682   // The GEP is valid if:
4683   // 1) The total offset doesn't overflow, and
4684   // 2) The sign of the difference between the computed address and the base
4685   // pointer matches the sign of the total offset.
4686   llvm::Value *ValidGEP;
4687   auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows);
4688   if (SignedIndices) {
4689     auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4690     auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero);
4691     llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4692     ValidGEP = Builder.CreateAnd(
4693         Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid),
4694         NoOffsetOverflow);
4695   } else if (!SignedIndices && !IsSubtraction) {
4696     auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4697     ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow);
4698   } else {
4699     auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4700     ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow);
4701   }
4702 
4703   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4704   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4705   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4706   EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow),
4707             SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4708 
4709   return GEPVal;
4710 }
4711