1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCleanup.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CodeGenFunction.h" 18 #include "CodeGenModule.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/CodeGenOptions.h" 26 #include "clang/Basic/FixedPoint.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "llvm/ADT/Optional.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/Module.h" 37 #include <cstdarg> 38 39 using namespace clang; 40 using namespace CodeGen; 41 using llvm::Value; 42 43 //===----------------------------------------------------------------------===// 44 // Scalar Expression Emitter 45 //===----------------------------------------------------------------------===// 46 47 namespace { 48 49 /// Determine whether the given binary operation may overflow. 50 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 51 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 52 /// the returned overflow check is precise. The returned value is 'true' for 53 /// all other opcodes, to be conservative. 54 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 55 BinaryOperator::Opcode Opcode, bool Signed, 56 llvm::APInt &Result) { 57 // Assume overflow is possible, unless we can prove otherwise. 58 bool Overflow = true; 59 const auto &LHSAP = LHS->getValue(); 60 const auto &RHSAP = RHS->getValue(); 61 if (Opcode == BO_Add) { 62 if (Signed) 63 Result = LHSAP.sadd_ov(RHSAP, Overflow); 64 else 65 Result = LHSAP.uadd_ov(RHSAP, Overflow); 66 } else if (Opcode == BO_Sub) { 67 if (Signed) 68 Result = LHSAP.ssub_ov(RHSAP, Overflow); 69 else 70 Result = LHSAP.usub_ov(RHSAP, Overflow); 71 } else if (Opcode == BO_Mul) { 72 if (Signed) 73 Result = LHSAP.smul_ov(RHSAP, Overflow); 74 else 75 Result = LHSAP.umul_ov(RHSAP, Overflow); 76 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 77 if (Signed && !RHS->isZero()) 78 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 79 else 80 return false; 81 } 82 return Overflow; 83 } 84 85 struct BinOpInfo { 86 Value *LHS; 87 Value *RHS; 88 QualType Ty; // Computation Type. 89 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 90 FPOptions FPFeatures; 91 const Expr *E; // Entire expr, for error unsupported. May not be binop. 92 93 /// Check if the binop can result in integer overflow. 94 bool mayHaveIntegerOverflow() const { 95 // Without constant input, we can't rule out overflow. 96 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 97 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 98 if (!LHSCI || !RHSCI) 99 return true; 100 101 llvm::APInt Result; 102 return ::mayHaveIntegerOverflow( 103 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 104 } 105 106 /// Check if the binop computes a division or a remainder. 107 bool isDivremOp() const { 108 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 109 Opcode == BO_RemAssign; 110 } 111 112 /// Check if the binop can result in an integer division by zero. 113 bool mayHaveIntegerDivisionByZero() const { 114 if (isDivremOp()) 115 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 116 return CI->isZero(); 117 return true; 118 } 119 120 /// Check if the binop can result in a float division by zero. 121 bool mayHaveFloatDivisionByZero() const { 122 if (isDivremOp()) 123 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 124 return CFP->isZero(); 125 return true; 126 } 127 128 /// Check if either operand is a fixed point type or integer type, with at 129 /// least one being a fixed point type. In any case, this 130 /// operation did not follow usual arithmetic conversion and both operands may 131 /// not be the same. 132 bool isFixedPointBinOp() const { 133 // We cannot simply check the result type since comparison operations return 134 // an int. 135 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { 136 QualType LHSType = BinOp->getLHS()->getType(); 137 QualType RHSType = BinOp->getRHS()->getType(); 138 return LHSType->isFixedPointType() || RHSType->isFixedPointType(); 139 } 140 return false; 141 } 142 }; 143 144 static bool MustVisitNullValue(const Expr *E) { 145 // If a null pointer expression's type is the C++0x nullptr_t, then 146 // it's not necessarily a simple constant and it must be evaluated 147 // for its potential side effects. 148 return E->getType()->isNullPtrType(); 149 } 150 151 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 152 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 153 const Expr *E) { 154 const Expr *Base = E->IgnoreImpCasts(); 155 if (E == Base) 156 return llvm::None; 157 158 QualType BaseTy = Base->getType(); 159 if (!BaseTy->isPromotableIntegerType() || 160 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 161 return llvm::None; 162 163 return BaseTy; 164 } 165 166 /// Check if \p E is a widened promoted integer. 167 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 168 return getUnwidenedIntegerType(Ctx, E).hasValue(); 169 } 170 171 /// Check if we can skip the overflow check for \p Op. 172 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 173 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 174 "Expected a unary or binary operator"); 175 176 // If the binop has constant inputs and we can prove there is no overflow, 177 // we can elide the overflow check. 178 if (!Op.mayHaveIntegerOverflow()) 179 return true; 180 181 // If a unary op has a widened operand, the op cannot overflow. 182 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 183 return !UO->canOverflow(); 184 185 // We usually don't need overflow checks for binops with widened operands. 186 // Multiplication with promoted unsigned operands is a special case. 187 const auto *BO = cast<BinaryOperator>(Op.E); 188 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 189 if (!OptionalLHSTy) 190 return false; 191 192 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 193 if (!OptionalRHSTy) 194 return false; 195 196 QualType LHSTy = *OptionalLHSTy; 197 QualType RHSTy = *OptionalRHSTy; 198 199 // This is the simple case: binops without unsigned multiplication, and with 200 // widened operands. No overflow check is needed here. 201 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 202 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 203 return true; 204 205 // For unsigned multiplication the overflow check can be elided if either one 206 // of the unpromoted types are less than half the size of the promoted type. 207 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 208 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 209 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 210 } 211 212 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions. 213 static void updateFastMathFlags(llvm::FastMathFlags &FMF, 214 FPOptions FPFeatures) { 215 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 216 } 217 218 /// Propagate fast-math flags from \p Op to the instruction in \p V. 219 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) { 220 if (auto *I = dyn_cast<llvm::Instruction>(V)) { 221 llvm::FastMathFlags FMF = I->getFastMathFlags(); 222 updateFastMathFlags(FMF, Op.FPFeatures); 223 I->setFastMathFlags(FMF); 224 } 225 return V; 226 } 227 228 class ScalarExprEmitter 229 : public StmtVisitor<ScalarExprEmitter, Value*> { 230 CodeGenFunction &CGF; 231 CGBuilderTy &Builder; 232 bool IgnoreResultAssign; 233 llvm::LLVMContext &VMContext; 234 public: 235 236 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 237 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 238 VMContext(cgf.getLLVMContext()) { 239 } 240 241 //===--------------------------------------------------------------------===// 242 // Utilities 243 //===--------------------------------------------------------------------===// 244 245 bool TestAndClearIgnoreResultAssign() { 246 bool I = IgnoreResultAssign; 247 IgnoreResultAssign = false; 248 return I; 249 } 250 251 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 252 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 253 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 254 return CGF.EmitCheckedLValue(E, TCK); 255 } 256 257 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 258 const BinOpInfo &Info); 259 260 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 261 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 262 } 263 264 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 265 const AlignValueAttr *AVAttr = nullptr; 266 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 267 const ValueDecl *VD = DRE->getDecl(); 268 269 if (VD->getType()->isReferenceType()) { 270 if (const auto *TTy = 271 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 272 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 273 } else { 274 // Assumptions for function parameters are emitted at the start of the 275 // function, so there is no need to repeat that here, 276 // unless the alignment-assumption sanitizer is enabled, 277 // then we prefer the assumption over alignment attribute 278 // on IR function param. 279 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) 280 return; 281 282 AVAttr = VD->getAttr<AlignValueAttr>(); 283 } 284 } 285 286 if (!AVAttr) 287 if (const auto *TTy = 288 dyn_cast<TypedefType>(E->getType())) 289 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 290 291 if (!AVAttr) 292 return; 293 294 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 295 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 296 CGF.EmitAlignmentAssumption(V, E, AVAttr->getLocation(), 297 AlignmentCI->getZExtValue()); 298 } 299 300 /// EmitLoadOfLValue - Given an expression with complex type that represents a 301 /// value l-value, this method emits the address of the l-value, then loads 302 /// and returns the result. 303 Value *EmitLoadOfLValue(const Expr *E) { 304 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 305 E->getExprLoc()); 306 307 EmitLValueAlignmentAssumption(E, V); 308 return V; 309 } 310 311 /// EmitConversionToBool - Convert the specified expression value to a 312 /// boolean (i1) truth value. This is equivalent to "Val != 0". 313 Value *EmitConversionToBool(Value *Src, QualType DstTy); 314 315 /// Emit a check that a conversion to or from a floating-point type does not 316 /// overflow. 317 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 318 Value *Src, QualType SrcType, QualType DstType, 319 llvm::Type *DstTy, SourceLocation Loc); 320 321 /// Known implicit conversion check kinds. 322 /// Keep in sync with the enum of the same name in ubsan_handlers.h 323 enum ImplicitConversionCheckKind : unsigned char { 324 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 325 ICCK_UnsignedIntegerTruncation = 1, 326 ICCK_SignedIntegerTruncation = 2, 327 ICCK_IntegerSignChange = 3, 328 ICCK_SignedIntegerTruncationOrSignChange = 4, 329 }; 330 331 /// Emit a check that an [implicit] truncation of an integer does not 332 /// discard any bits. It is not UB, so we use the value after truncation. 333 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 334 QualType DstType, SourceLocation Loc); 335 336 /// Emit a check that an [implicit] conversion of an integer does not change 337 /// the sign of the value. It is not UB, so we use the value after conversion. 338 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 339 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 340 QualType DstType, SourceLocation Loc); 341 342 /// Emit a conversion from the specified type to the specified destination 343 /// type, both of which are LLVM scalar types. 344 struct ScalarConversionOpts { 345 bool TreatBooleanAsSigned; 346 bool EmitImplicitIntegerTruncationChecks; 347 bool EmitImplicitIntegerSignChangeChecks; 348 349 ScalarConversionOpts() 350 : TreatBooleanAsSigned(false), 351 EmitImplicitIntegerTruncationChecks(false), 352 EmitImplicitIntegerSignChangeChecks(false) {} 353 354 ScalarConversionOpts(clang::SanitizerSet SanOpts) 355 : TreatBooleanAsSigned(false), 356 EmitImplicitIntegerTruncationChecks( 357 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 358 EmitImplicitIntegerSignChangeChecks( 359 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 360 }; 361 Value * 362 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 363 SourceLocation Loc, 364 ScalarConversionOpts Opts = ScalarConversionOpts()); 365 366 /// Convert between either a fixed point and other fixed point or fixed point 367 /// and an integer. 368 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 369 SourceLocation Loc); 370 Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema, 371 FixedPointSemantics &DstFixedSema, 372 SourceLocation Loc, 373 bool DstIsInteger = false); 374 375 /// Emit a conversion from the specified complex type to the specified 376 /// destination type, where the destination type is an LLVM scalar type. 377 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 378 QualType SrcTy, QualType DstTy, 379 SourceLocation Loc); 380 381 /// EmitNullValue - Emit a value that corresponds to null for the given type. 382 Value *EmitNullValue(QualType Ty); 383 384 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 385 Value *EmitFloatToBoolConversion(Value *V) { 386 // Compare against 0.0 for fp scalars. 387 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 388 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 389 } 390 391 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 392 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 393 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 394 395 return Builder.CreateICmpNE(V, Zero, "tobool"); 396 } 397 398 Value *EmitIntToBoolConversion(Value *V) { 399 // Because of the type rules of C, we often end up computing a 400 // logical value, then zero extending it to int, then wanting it 401 // as a logical value again. Optimize this common case. 402 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 403 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 404 Value *Result = ZI->getOperand(0); 405 // If there aren't any more uses, zap the instruction to save space. 406 // Note that there can be more uses, for example if this 407 // is the result of an assignment. 408 if (ZI->use_empty()) 409 ZI->eraseFromParent(); 410 return Result; 411 } 412 } 413 414 return Builder.CreateIsNotNull(V, "tobool"); 415 } 416 417 //===--------------------------------------------------------------------===// 418 // Visitor Methods 419 //===--------------------------------------------------------------------===// 420 421 Value *Visit(Expr *E) { 422 ApplyDebugLocation DL(CGF, E); 423 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 424 } 425 426 Value *VisitStmt(Stmt *S) { 427 S->dump(CGF.getContext().getSourceManager()); 428 llvm_unreachable("Stmt can't have complex result type!"); 429 } 430 Value *VisitExpr(Expr *S); 431 432 Value *VisitConstantExpr(ConstantExpr *E) { 433 return Visit(E->getSubExpr()); 434 } 435 Value *VisitParenExpr(ParenExpr *PE) { 436 return Visit(PE->getSubExpr()); 437 } 438 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 439 return Visit(E->getReplacement()); 440 } 441 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 442 return Visit(GE->getResultExpr()); 443 } 444 Value *VisitCoawaitExpr(CoawaitExpr *S) { 445 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 446 } 447 Value *VisitCoyieldExpr(CoyieldExpr *S) { 448 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 449 } 450 Value *VisitUnaryCoawait(const UnaryOperator *E) { 451 return Visit(E->getSubExpr()); 452 } 453 454 // Leaves. 455 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 456 return Builder.getInt(E->getValue()); 457 } 458 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 459 return Builder.getInt(E->getValue()); 460 } 461 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 462 return llvm::ConstantFP::get(VMContext, E->getValue()); 463 } 464 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 465 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 466 } 467 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 468 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 469 } 470 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 471 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 472 } 473 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 474 return EmitNullValue(E->getType()); 475 } 476 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 477 return EmitNullValue(E->getType()); 478 } 479 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 480 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 481 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 482 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 483 return Builder.CreateBitCast(V, ConvertType(E->getType())); 484 } 485 486 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 487 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 488 } 489 490 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 491 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 492 } 493 494 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 495 if (E->isGLValue()) 496 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 497 E->getExprLoc()); 498 499 // Otherwise, assume the mapping is the scalar directly. 500 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 501 } 502 503 // l-values. 504 Value *VisitDeclRefExpr(DeclRefExpr *E) { 505 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 506 return CGF.emitScalarConstant(Constant, E); 507 return EmitLoadOfLValue(E); 508 } 509 510 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 511 return CGF.EmitObjCSelectorExpr(E); 512 } 513 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 514 return CGF.EmitObjCProtocolExpr(E); 515 } 516 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 517 return EmitLoadOfLValue(E); 518 } 519 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 520 if (E->getMethodDecl() && 521 E->getMethodDecl()->getReturnType()->isReferenceType()) 522 return EmitLoadOfLValue(E); 523 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 524 } 525 526 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 527 LValue LV = CGF.EmitObjCIsaExpr(E); 528 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 529 return V; 530 } 531 532 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 533 VersionTuple Version = E->getVersion(); 534 535 // If we're checking for a platform older than our minimum deployment 536 // target, we can fold the check away. 537 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 538 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 539 540 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 541 llvm::Value *Args[] = { 542 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), 543 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), 544 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), 545 }; 546 547 return CGF.EmitBuiltinAvailable(Args); 548 } 549 550 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 551 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 552 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 553 Value *VisitMemberExpr(MemberExpr *E); 554 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 555 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 556 return EmitLoadOfLValue(E); 557 } 558 559 Value *VisitInitListExpr(InitListExpr *E); 560 561 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 562 assert(CGF.getArrayInitIndex() && 563 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 564 return CGF.getArrayInitIndex(); 565 } 566 567 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 568 return EmitNullValue(E->getType()); 569 } 570 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 571 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 572 return VisitCastExpr(E); 573 } 574 Value *VisitCastExpr(CastExpr *E); 575 576 Value *VisitCallExpr(const CallExpr *E) { 577 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 578 return EmitLoadOfLValue(E); 579 580 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 581 582 EmitLValueAlignmentAssumption(E, V); 583 return V; 584 } 585 586 Value *VisitStmtExpr(const StmtExpr *E); 587 588 // Unary Operators. 589 Value *VisitUnaryPostDec(const UnaryOperator *E) { 590 LValue LV = EmitLValue(E->getSubExpr()); 591 return EmitScalarPrePostIncDec(E, LV, false, false); 592 } 593 Value *VisitUnaryPostInc(const UnaryOperator *E) { 594 LValue LV = EmitLValue(E->getSubExpr()); 595 return EmitScalarPrePostIncDec(E, LV, true, false); 596 } 597 Value *VisitUnaryPreDec(const UnaryOperator *E) { 598 LValue LV = EmitLValue(E->getSubExpr()); 599 return EmitScalarPrePostIncDec(E, LV, false, true); 600 } 601 Value *VisitUnaryPreInc(const UnaryOperator *E) { 602 LValue LV = EmitLValue(E->getSubExpr()); 603 return EmitScalarPrePostIncDec(E, LV, true, true); 604 } 605 606 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 607 llvm::Value *InVal, 608 bool IsInc); 609 610 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 611 bool isInc, bool isPre); 612 613 614 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 615 if (isa<MemberPointerType>(E->getType())) // never sugared 616 return CGF.CGM.getMemberPointerConstant(E); 617 618 return EmitLValue(E->getSubExpr()).getPointer(); 619 } 620 Value *VisitUnaryDeref(const UnaryOperator *E) { 621 if (E->getType()->isVoidType()) 622 return Visit(E->getSubExpr()); // the actual value should be unused 623 return EmitLoadOfLValue(E); 624 } 625 Value *VisitUnaryPlus(const UnaryOperator *E) { 626 // This differs from gcc, though, most likely due to a bug in gcc. 627 TestAndClearIgnoreResultAssign(); 628 return Visit(E->getSubExpr()); 629 } 630 Value *VisitUnaryMinus (const UnaryOperator *E); 631 Value *VisitUnaryNot (const UnaryOperator *E); 632 Value *VisitUnaryLNot (const UnaryOperator *E); 633 Value *VisitUnaryReal (const UnaryOperator *E); 634 Value *VisitUnaryImag (const UnaryOperator *E); 635 Value *VisitUnaryExtension(const UnaryOperator *E) { 636 return Visit(E->getSubExpr()); 637 } 638 639 // C++ 640 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 641 return EmitLoadOfLValue(E); 642 } 643 644 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 645 return Visit(DAE->getExpr()); 646 } 647 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 648 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 649 return Visit(DIE->getExpr()); 650 } 651 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 652 return CGF.LoadCXXThis(); 653 } 654 655 Value *VisitExprWithCleanups(ExprWithCleanups *E); 656 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 657 return CGF.EmitCXXNewExpr(E); 658 } 659 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 660 CGF.EmitCXXDeleteExpr(E); 661 return nullptr; 662 } 663 664 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 665 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 666 } 667 668 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 669 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 670 } 671 672 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 673 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 674 } 675 676 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 677 // C++ [expr.pseudo]p1: 678 // The result shall only be used as the operand for the function call 679 // operator (), and the result of such a call has type void. The only 680 // effect is the evaluation of the postfix-expression before the dot or 681 // arrow. 682 CGF.EmitScalarExpr(E->getBase()); 683 return nullptr; 684 } 685 686 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 687 return EmitNullValue(E->getType()); 688 } 689 690 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 691 CGF.EmitCXXThrowExpr(E); 692 return nullptr; 693 } 694 695 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 696 return Builder.getInt1(E->getValue()); 697 } 698 699 // Binary Operators. 700 Value *EmitMul(const BinOpInfo &Ops) { 701 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 702 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 703 case LangOptions::SOB_Defined: 704 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 705 case LangOptions::SOB_Undefined: 706 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 707 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 708 LLVM_FALLTHROUGH; 709 case LangOptions::SOB_Trapping: 710 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 711 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 712 return EmitOverflowCheckedBinOp(Ops); 713 } 714 } 715 716 if (Ops.Ty->isUnsignedIntegerType() && 717 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 718 !CanElideOverflowCheck(CGF.getContext(), Ops)) 719 return EmitOverflowCheckedBinOp(Ops); 720 721 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 722 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 723 return propagateFMFlags(V, Ops); 724 } 725 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 726 } 727 /// Create a binary op that checks for overflow. 728 /// Currently only supports +, - and *. 729 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 730 731 // Check for undefined division and modulus behaviors. 732 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 733 llvm::Value *Zero,bool isDiv); 734 // Common helper for getting how wide LHS of shift is. 735 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 736 Value *EmitDiv(const BinOpInfo &Ops); 737 Value *EmitRem(const BinOpInfo &Ops); 738 Value *EmitAdd(const BinOpInfo &Ops); 739 Value *EmitSub(const BinOpInfo &Ops); 740 Value *EmitShl(const BinOpInfo &Ops); 741 Value *EmitShr(const BinOpInfo &Ops); 742 Value *EmitAnd(const BinOpInfo &Ops) { 743 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 744 } 745 Value *EmitXor(const BinOpInfo &Ops) { 746 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 747 } 748 Value *EmitOr (const BinOpInfo &Ops) { 749 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 750 } 751 752 // Helper functions for fixed point binary operations. 753 Value *EmitFixedPointBinOp(const BinOpInfo &Ops); 754 755 BinOpInfo EmitBinOps(const BinaryOperator *E); 756 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 757 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 758 Value *&Result); 759 760 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 761 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 762 763 // Binary operators and binary compound assignment operators. 764 #define HANDLEBINOP(OP) \ 765 Value *VisitBin ## OP(const BinaryOperator *E) { \ 766 return Emit ## OP(EmitBinOps(E)); \ 767 } \ 768 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 769 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 770 } 771 HANDLEBINOP(Mul) 772 HANDLEBINOP(Div) 773 HANDLEBINOP(Rem) 774 HANDLEBINOP(Add) 775 HANDLEBINOP(Sub) 776 HANDLEBINOP(Shl) 777 HANDLEBINOP(Shr) 778 HANDLEBINOP(And) 779 HANDLEBINOP(Xor) 780 HANDLEBINOP(Or) 781 #undef HANDLEBINOP 782 783 // Comparisons. 784 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 785 llvm::CmpInst::Predicate SICmpOpc, 786 llvm::CmpInst::Predicate FCmpOpc); 787 #define VISITCOMP(CODE, UI, SI, FP) \ 788 Value *VisitBin##CODE(const BinaryOperator *E) { \ 789 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 790 llvm::FCmpInst::FP); } 791 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 792 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 793 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 794 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 795 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 796 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 797 #undef VISITCOMP 798 799 Value *VisitBinAssign (const BinaryOperator *E); 800 801 Value *VisitBinLAnd (const BinaryOperator *E); 802 Value *VisitBinLOr (const BinaryOperator *E); 803 Value *VisitBinComma (const BinaryOperator *E); 804 805 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 806 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 807 808 // Other Operators. 809 Value *VisitBlockExpr(const BlockExpr *BE); 810 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 811 Value *VisitChooseExpr(ChooseExpr *CE); 812 Value *VisitVAArgExpr(VAArgExpr *VE); 813 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 814 return CGF.EmitObjCStringLiteral(E); 815 } 816 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 817 return CGF.EmitObjCBoxedExpr(E); 818 } 819 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 820 return CGF.EmitObjCArrayLiteral(E); 821 } 822 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 823 return CGF.EmitObjCDictionaryLiteral(E); 824 } 825 Value *VisitAsTypeExpr(AsTypeExpr *CE); 826 Value *VisitAtomicExpr(AtomicExpr *AE); 827 }; 828 } // end anonymous namespace. 829 830 //===----------------------------------------------------------------------===// 831 // Utilities 832 //===----------------------------------------------------------------------===// 833 834 /// EmitConversionToBool - Convert the specified expression value to a 835 /// boolean (i1) truth value. This is equivalent to "Val != 0". 836 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 837 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 838 839 if (SrcType->isRealFloatingType()) 840 return EmitFloatToBoolConversion(Src); 841 842 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 843 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 844 845 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 846 "Unknown scalar type to convert"); 847 848 if (isa<llvm::IntegerType>(Src->getType())) 849 return EmitIntToBoolConversion(Src); 850 851 assert(isa<llvm::PointerType>(Src->getType())); 852 return EmitPointerToBoolConversion(Src, SrcType); 853 } 854 855 void ScalarExprEmitter::EmitFloatConversionCheck( 856 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 857 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 858 CodeGenFunction::SanitizerScope SanScope(&CGF); 859 using llvm::APFloat; 860 using llvm::APSInt; 861 862 llvm::Type *SrcTy = Src->getType(); 863 864 llvm::Value *Check = nullptr; 865 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 866 // Integer to floating-point. This can fail for unsigned short -> __half 867 // or unsigned __int128 -> float. 868 assert(DstType->isFloatingType()); 869 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 870 871 APFloat LargestFloat = 872 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 873 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 874 875 bool IsExact; 876 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 877 &IsExact) != APFloat::opOK) 878 // The range of representable values of this floating point type includes 879 // all values of this integer type. Don't need an overflow check. 880 return; 881 882 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 883 if (SrcIsUnsigned) 884 Check = Builder.CreateICmpULE(Src, Max); 885 else { 886 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 887 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 888 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 889 Check = Builder.CreateAnd(GE, LE); 890 } 891 } else { 892 const llvm::fltSemantics &SrcSema = 893 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 894 if (isa<llvm::IntegerType>(DstTy)) { 895 // Floating-point to integer. This has undefined behavior if the source is 896 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 897 // to an integer). 898 unsigned Width = CGF.getContext().getIntWidth(DstType); 899 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 900 901 APSInt Min = APSInt::getMinValue(Width, Unsigned); 902 APFloat MinSrc(SrcSema, APFloat::uninitialized); 903 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 904 APFloat::opOverflow) 905 // Don't need an overflow check for lower bound. Just check for 906 // -Inf/NaN. 907 MinSrc = APFloat::getInf(SrcSema, true); 908 else 909 // Find the largest value which is too small to represent (before 910 // truncation toward zero). 911 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 912 913 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 914 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 915 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 916 APFloat::opOverflow) 917 // Don't need an overflow check for upper bound. Just check for 918 // +Inf/NaN. 919 MaxSrc = APFloat::getInf(SrcSema, false); 920 else 921 // Find the smallest value which is too large to represent (before 922 // truncation toward zero). 923 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 924 925 // If we're converting from __half, convert the range to float to match 926 // the type of src. 927 if (OrigSrcType->isHalfType()) { 928 const llvm::fltSemantics &Sema = 929 CGF.getContext().getFloatTypeSemantics(SrcType); 930 bool IsInexact; 931 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 932 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 933 } 934 935 llvm::Value *GE = 936 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 937 llvm::Value *LE = 938 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 939 Check = Builder.CreateAnd(GE, LE); 940 } else { 941 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 942 // 943 // Floating-point to floating-point. This has undefined behavior if the 944 // source is not in the range of representable values of the destination 945 // type. The C and C++ standards are spectacularly unclear here. We 946 // diagnose finite out-of-range conversions, but allow infinities and NaNs 947 // to convert to the corresponding value in the smaller type. 948 // 949 // C11 Annex F gives all such conversions defined behavior for IEC 60559 950 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 951 // does not. 952 953 // Converting from a lower rank to a higher rank can never have 954 // undefined behavior, since higher-rank types must have a superset 955 // of values of lower-rank types. 956 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 957 return; 958 959 assert(!OrigSrcType->isHalfType() && 960 "should not check conversion from __half, it has the lowest rank"); 961 962 const llvm::fltSemantics &DstSema = 963 CGF.getContext().getFloatTypeSemantics(DstType); 964 APFloat MinBad = APFloat::getLargest(DstSema, false); 965 APFloat MaxBad = APFloat::getInf(DstSema, false); 966 967 bool IsInexact; 968 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 969 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 970 971 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 972 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 973 llvm::Value *GE = 974 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 975 llvm::Value *LE = 976 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 977 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 978 } 979 } 980 981 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 982 CGF.EmitCheckTypeDescriptor(OrigSrcType), 983 CGF.EmitCheckTypeDescriptor(DstType)}; 984 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 985 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 986 } 987 988 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 989 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 990 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 991 std::pair<llvm::Value *, SanitizerMask>> 992 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 993 QualType DstType, CGBuilderTy &Builder) { 994 llvm::Type *SrcTy = Src->getType(); 995 llvm::Type *DstTy = Dst->getType(); 996 (void)DstTy; // Only used in assert() 997 998 // This should be truncation of integral types. 999 assert(Src != Dst); 1000 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 1001 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1002 "non-integer llvm type"); 1003 1004 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1005 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1006 1007 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 1008 // Else, it is a signed truncation. 1009 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 1010 SanitizerMask Mask; 1011 if (!SrcSigned && !DstSigned) { 1012 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 1013 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 1014 } else { 1015 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 1016 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 1017 } 1018 1019 llvm::Value *Check = nullptr; 1020 // 1. Extend the truncated value back to the same width as the Src. 1021 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 1022 // 2. Equality-compare with the original source value 1023 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 1024 // If the comparison result is 'i1 false', then the truncation was lossy. 1025 return std::make_pair(Kind, std::make_pair(Check, Mask)); 1026 } 1027 1028 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 1029 Value *Dst, QualType DstType, 1030 SourceLocation Loc) { 1031 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 1032 return; 1033 1034 // We only care about int->int conversions here. 1035 // We ignore conversions to/from pointer and/or bool. 1036 if (!(SrcType->isIntegerType() && DstType->isIntegerType())) 1037 return; 1038 1039 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 1040 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 1041 // This must be truncation. Else we do not care. 1042 if (SrcBits <= DstBits) 1043 return; 1044 1045 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 1046 1047 // If the integer sign change sanitizer is enabled, 1048 // and we are truncating from larger unsigned type to smaller signed type, 1049 // let that next sanitizer deal with it. 1050 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1051 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1052 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 1053 (!SrcSigned && DstSigned)) 1054 return; 1055 1056 CodeGenFunction::SanitizerScope SanScope(&CGF); 1057 1058 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1059 std::pair<llvm::Value *, SanitizerMask>> 1060 Check = 1061 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1062 // If the comparison result is 'i1 false', then the truncation was lossy. 1063 1064 // Do we care about this type of truncation? 1065 if (!CGF.SanOpts.has(Check.second.second)) 1066 return; 1067 1068 llvm::Constant *StaticArgs[] = { 1069 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1070 CGF.EmitCheckTypeDescriptor(DstType), 1071 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1072 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1073 {Src, Dst}); 1074 } 1075 1076 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1077 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1078 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1079 std::pair<llvm::Value *, SanitizerMask>> 1080 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1081 QualType DstType, CGBuilderTy &Builder) { 1082 llvm::Type *SrcTy = Src->getType(); 1083 llvm::Type *DstTy = Dst->getType(); 1084 1085 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1086 "non-integer llvm type"); 1087 1088 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1089 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1090 (void)SrcSigned; // Only used in assert() 1091 (void)DstSigned; // Only used in assert() 1092 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1093 unsigned DstBits = DstTy->getScalarSizeInBits(); 1094 (void)SrcBits; // Only used in assert() 1095 (void)DstBits; // Only used in assert() 1096 1097 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1098 "either the widths should be different, or the signednesses."); 1099 1100 // NOTE: zero value is considered to be non-negative. 1101 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1102 const char *Name) -> Value * { 1103 // Is this value a signed type? 1104 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1105 llvm::Type *VTy = V->getType(); 1106 if (!VSigned) { 1107 // If the value is unsigned, then it is never negative. 1108 // FIXME: can we encounter non-scalar VTy here? 1109 return llvm::ConstantInt::getFalse(VTy->getContext()); 1110 } 1111 // Get the zero of the same type with which we will be comparing. 1112 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1113 // %V.isnegative = icmp slt %V, 0 1114 // I.e is %V *strictly* less than zero, does it have negative value? 1115 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1116 llvm::Twine(Name) + "." + V->getName() + 1117 ".negativitycheck"); 1118 }; 1119 1120 // 1. Was the old Value negative? 1121 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1122 // 2. Is the new Value negative? 1123 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1124 // 3. Now, was the 'negativity status' preserved during the conversion? 1125 // NOTE: conversion from negative to zero is considered to change the sign. 1126 // (We want to get 'false' when the conversion changed the sign) 1127 // So we should just equality-compare the negativity statuses. 1128 llvm::Value *Check = nullptr; 1129 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1130 // If the comparison result is 'false', then the conversion changed the sign. 1131 return std::make_pair( 1132 ScalarExprEmitter::ICCK_IntegerSignChange, 1133 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1134 } 1135 1136 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1137 Value *Dst, QualType DstType, 1138 SourceLocation Loc) { 1139 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1140 return; 1141 1142 llvm::Type *SrcTy = Src->getType(); 1143 llvm::Type *DstTy = Dst->getType(); 1144 1145 // We only care about int->int conversions here. 1146 // We ignore conversions to/from pointer and/or bool. 1147 if (!(SrcType->isIntegerType() && DstType->isIntegerType())) 1148 return; 1149 1150 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1151 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1152 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1153 unsigned DstBits = DstTy->getScalarSizeInBits(); 1154 1155 // Now, we do not need to emit the check in *all* of the cases. 1156 // We can avoid emitting it in some obvious cases where it would have been 1157 // dropped by the opt passes (instcombine) always anyways. 1158 // If it's a cast between effectively the same type, no check. 1159 // NOTE: this is *not* equivalent to checking the canonical types. 1160 if (SrcSigned == DstSigned && SrcBits == DstBits) 1161 return; 1162 // At least one of the values needs to have signed type. 1163 // If both are unsigned, then obviously, neither of them can be negative. 1164 if (!SrcSigned && !DstSigned) 1165 return; 1166 // If the conversion is to *larger* *signed* type, then no check is needed. 1167 // Because either sign-extension happens (so the sign will remain), 1168 // or zero-extension will happen (the sign bit will be zero.) 1169 if ((DstBits > SrcBits) && DstSigned) 1170 return; 1171 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1172 (SrcBits > DstBits) && SrcSigned) { 1173 // If the signed integer truncation sanitizer is enabled, 1174 // and this is a truncation from signed type, then no check is needed. 1175 // Because here sign change check is interchangeable with truncation check. 1176 return; 1177 } 1178 // That's it. We can't rule out any more cases with the data we have. 1179 1180 CodeGenFunction::SanitizerScope SanScope(&CGF); 1181 1182 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1183 std::pair<llvm::Value *, SanitizerMask>> 1184 Check; 1185 1186 // Each of these checks needs to return 'false' when an issue was detected. 1187 ImplicitConversionCheckKind CheckKind; 1188 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1189 // So we can 'and' all the checks together, and still get 'false', 1190 // if at least one of the checks detected an issue. 1191 1192 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1193 CheckKind = Check.first; 1194 Checks.emplace_back(Check.second); 1195 1196 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1197 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1198 // If the signed integer truncation sanitizer was enabled, 1199 // and we are truncating from larger unsigned type to smaller signed type, 1200 // let's handle the case we skipped in that check. 1201 Check = 1202 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1203 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1204 Checks.emplace_back(Check.second); 1205 // If the comparison result is 'i1 false', then the truncation was lossy. 1206 } 1207 1208 llvm::Constant *StaticArgs[] = { 1209 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1210 CGF.EmitCheckTypeDescriptor(DstType), 1211 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1212 // EmitCheck() will 'and' all the checks together. 1213 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1214 {Src, Dst}); 1215 } 1216 1217 /// Emit a conversion from the specified type to the specified destination type, 1218 /// both of which are LLVM scalar types. 1219 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1220 QualType DstType, 1221 SourceLocation Loc, 1222 ScalarConversionOpts Opts) { 1223 // All conversions involving fixed point types should be handled by the 1224 // EmitFixedPoint family functions. This is done to prevent bloating up this 1225 // function more, and although fixed point numbers are represented by 1226 // integers, we do not want to follow any logic that assumes they should be 1227 // treated as integers. 1228 // TODO(leonardchan): When necessary, add another if statement checking for 1229 // conversions to fixed point types from other types. 1230 if (SrcType->isFixedPointType()) { 1231 if (DstType->isBooleanType()) 1232 // It is important that we check this before checking if the dest type is 1233 // an integer because booleans are technically integer types. 1234 // We do not need to check the padding bit on unsigned types if unsigned 1235 // padding is enabled because overflow into this bit is undefined 1236 // behavior. 1237 return Builder.CreateIsNotNull(Src, "tobool"); 1238 if (DstType->isFixedPointType() || DstType->isIntegerType()) 1239 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1240 1241 llvm_unreachable( 1242 "Unhandled scalar conversion from a fixed point type to another type."); 1243 } else if (DstType->isFixedPointType()) { 1244 if (SrcType->isIntegerType()) 1245 // This also includes converting booleans and enums to fixed point types. 1246 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1247 1248 llvm_unreachable( 1249 "Unhandled scalar conversion to a fixed point type from another type."); 1250 } 1251 1252 QualType NoncanonicalSrcType = SrcType; 1253 QualType NoncanonicalDstType = DstType; 1254 1255 SrcType = CGF.getContext().getCanonicalType(SrcType); 1256 DstType = CGF.getContext().getCanonicalType(DstType); 1257 if (SrcType == DstType) return Src; 1258 1259 if (DstType->isVoidType()) return nullptr; 1260 1261 llvm::Value *OrigSrc = Src; 1262 QualType OrigSrcType = SrcType; 1263 llvm::Type *SrcTy = Src->getType(); 1264 1265 // Handle conversions to bool first, they are special: comparisons against 0. 1266 if (DstType->isBooleanType()) 1267 return EmitConversionToBool(Src, SrcType); 1268 1269 llvm::Type *DstTy = ConvertType(DstType); 1270 1271 // Cast from half through float if half isn't a native type. 1272 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1273 // Cast to FP using the intrinsic if the half type itself isn't supported. 1274 if (DstTy->isFloatingPointTy()) { 1275 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1276 return Builder.CreateCall( 1277 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1278 Src); 1279 } else { 1280 // Cast to other types through float, using either the intrinsic or FPExt, 1281 // depending on whether the half type itself is supported 1282 // (as opposed to operations on half, available with NativeHalfType). 1283 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1284 Src = Builder.CreateCall( 1285 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1286 CGF.CGM.FloatTy), 1287 Src); 1288 } else { 1289 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1290 } 1291 SrcType = CGF.getContext().FloatTy; 1292 SrcTy = CGF.FloatTy; 1293 } 1294 } 1295 1296 // Ignore conversions like int -> uint. 1297 if (SrcTy == DstTy) { 1298 if (Opts.EmitImplicitIntegerSignChangeChecks) 1299 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1300 NoncanonicalDstType, Loc); 1301 1302 return Src; 1303 } 1304 1305 // Handle pointer conversions next: pointers can only be converted to/from 1306 // other pointers and integers. Check for pointer types in terms of LLVM, as 1307 // some native types (like Obj-C id) may map to a pointer type. 1308 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1309 // The source value may be an integer, or a pointer. 1310 if (isa<llvm::PointerType>(SrcTy)) 1311 return Builder.CreateBitCast(Src, DstTy, "conv"); 1312 1313 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1314 // First, convert to the correct width so that we control the kind of 1315 // extension. 1316 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1317 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1318 llvm::Value* IntResult = 1319 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1320 // Then, cast to pointer. 1321 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1322 } 1323 1324 if (isa<llvm::PointerType>(SrcTy)) { 1325 // Must be an ptr to int cast. 1326 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1327 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1328 } 1329 1330 // A scalar can be splatted to an extended vector of the same element type 1331 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1332 // Sema should add casts to make sure that the source expression's type is 1333 // the same as the vector's element type (sans qualifiers) 1334 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1335 SrcType.getTypePtr() && 1336 "Splatted expr doesn't match with vector element type?"); 1337 1338 // Splat the element across to all elements 1339 unsigned NumElements = DstTy->getVectorNumElements(); 1340 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1341 } 1342 1343 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1344 // Allow bitcast from vector to integer/fp of the same size. 1345 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1346 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1347 if (SrcSize == DstSize) 1348 return Builder.CreateBitCast(Src, DstTy, "conv"); 1349 1350 // Conversions between vectors of different sizes are not allowed except 1351 // when vectors of half are involved. Operations on storage-only half 1352 // vectors require promoting half vector operands to float vectors and 1353 // truncating the result, which is either an int or float vector, to a 1354 // short or half vector. 1355 1356 // Source and destination are both expected to be vectors. 1357 llvm::Type *SrcElementTy = SrcTy->getVectorElementType(); 1358 llvm::Type *DstElementTy = DstTy->getVectorElementType(); 1359 (void)DstElementTy; 1360 1361 assert(((SrcElementTy->isIntegerTy() && 1362 DstElementTy->isIntegerTy()) || 1363 (SrcElementTy->isFloatingPointTy() && 1364 DstElementTy->isFloatingPointTy())) && 1365 "unexpected conversion between a floating-point vector and an " 1366 "integer vector"); 1367 1368 // Truncate an i32 vector to an i16 vector. 1369 if (SrcElementTy->isIntegerTy()) 1370 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1371 1372 // Truncate a float vector to a half vector. 1373 if (SrcSize > DstSize) 1374 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1375 1376 // Promote a half vector to a float vector. 1377 return Builder.CreateFPExt(Src, DstTy, "conv"); 1378 } 1379 1380 // Finally, we have the arithmetic types: real int/float. 1381 Value *Res = nullptr; 1382 llvm::Type *ResTy = DstTy; 1383 1384 // An overflowing conversion has undefined behavior if either the source type 1385 // or the destination type is a floating-point type. 1386 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1387 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 1388 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1389 Loc); 1390 1391 // Cast to half through float if half isn't a native type. 1392 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1393 // Make sure we cast in a single step if from another FP type. 1394 if (SrcTy->isFloatingPointTy()) { 1395 // Use the intrinsic if the half type itself isn't supported 1396 // (as opposed to operations on half, available with NativeHalfType). 1397 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1398 return Builder.CreateCall( 1399 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1400 // If the half type is supported, just use an fptrunc. 1401 return Builder.CreateFPTrunc(Src, DstTy); 1402 } 1403 DstTy = CGF.FloatTy; 1404 } 1405 1406 if (isa<llvm::IntegerType>(SrcTy)) { 1407 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1408 if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1409 InputSigned = true; 1410 } 1411 if (isa<llvm::IntegerType>(DstTy)) 1412 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1413 else if (InputSigned) 1414 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1415 else 1416 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1417 } else if (isa<llvm::IntegerType>(DstTy)) { 1418 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1419 if (DstType->isSignedIntegerOrEnumerationType()) 1420 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1421 else 1422 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1423 } else { 1424 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1425 "Unknown real conversion"); 1426 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1427 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1428 else 1429 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1430 } 1431 1432 if (DstTy != ResTy) { 1433 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1434 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1435 Res = Builder.CreateCall( 1436 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1437 Res); 1438 } else { 1439 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1440 } 1441 } 1442 1443 if (Opts.EmitImplicitIntegerTruncationChecks) 1444 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1445 NoncanonicalDstType, Loc); 1446 1447 if (Opts.EmitImplicitIntegerSignChangeChecks) 1448 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1449 NoncanonicalDstType, Loc); 1450 1451 return Res; 1452 } 1453 1454 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1455 QualType DstTy, 1456 SourceLocation Loc) { 1457 FixedPointSemantics SrcFPSema = 1458 CGF.getContext().getFixedPointSemantics(SrcTy); 1459 FixedPointSemantics DstFPSema = 1460 CGF.getContext().getFixedPointSemantics(DstTy); 1461 return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc, 1462 DstTy->isIntegerType()); 1463 } 1464 1465 Value *ScalarExprEmitter::EmitFixedPointConversion( 1466 Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema, 1467 SourceLocation Loc, bool DstIsInteger) { 1468 using llvm::APInt; 1469 using llvm::ConstantInt; 1470 using llvm::Value; 1471 1472 unsigned SrcWidth = SrcFPSema.getWidth(); 1473 unsigned DstWidth = DstFPSema.getWidth(); 1474 unsigned SrcScale = SrcFPSema.getScale(); 1475 unsigned DstScale = DstFPSema.getScale(); 1476 bool SrcIsSigned = SrcFPSema.isSigned(); 1477 bool DstIsSigned = DstFPSema.isSigned(); 1478 1479 llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth); 1480 1481 Value *Result = Src; 1482 unsigned ResultWidth = SrcWidth; 1483 1484 // Downscale. 1485 if (DstScale < SrcScale) { 1486 // When converting to integers, we round towards zero. For negative numbers, 1487 // right shifting rounds towards negative infinity. In this case, we can 1488 // just round up before shifting. 1489 if (DstIsInteger && SrcIsSigned) { 1490 Value *Zero = llvm::Constant::getNullValue(Result->getType()); 1491 Value *IsNegative = Builder.CreateICmpSLT(Result, Zero); 1492 Value *LowBits = ConstantInt::get( 1493 CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale)); 1494 Value *Rounded = Builder.CreateAdd(Result, LowBits); 1495 Result = Builder.CreateSelect(IsNegative, Rounded, Result); 1496 } 1497 1498 Result = SrcIsSigned 1499 ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") 1500 : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale"); 1501 } 1502 1503 if (!DstFPSema.isSaturated()) { 1504 // Resize. 1505 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1506 1507 // Upscale. 1508 if (DstScale > SrcScale) 1509 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1510 } else { 1511 // Adjust the number of fractional bits. 1512 if (DstScale > SrcScale) { 1513 // Compare to DstWidth to prevent resizing twice. 1514 ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth); 1515 llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth); 1516 Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize"); 1517 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1518 } 1519 1520 // Handle saturation. 1521 bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits(); 1522 if (LessIntBits) { 1523 Value *Max = ConstantInt::get( 1524 CGF.getLLVMContext(), 1525 APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1526 Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max) 1527 : Builder.CreateICmpUGT(Result, Max); 1528 Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax"); 1529 } 1530 // Cannot overflow min to dest type if src is unsigned since all fixed 1531 // point types can cover the unsigned min of 0. 1532 if (SrcIsSigned && (LessIntBits || !DstIsSigned)) { 1533 Value *Min = ConstantInt::get( 1534 CGF.getLLVMContext(), 1535 APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1536 Value *TooLow = Builder.CreateICmpSLT(Result, Min); 1537 Result = Builder.CreateSelect(TooLow, Min, Result, "satmin"); 1538 } 1539 1540 // Resize the integer part to get the final destination size. 1541 if (ResultWidth != DstWidth) 1542 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1543 } 1544 return Result; 1545 } 1546 1547 /// Emit a conversion from the specified complex type to the specified 1548 /// destination type, where the destination type is an LLVM scalar type. 1549 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1550 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1551 SourceLocation Loc) { 1552 // Get the source element type. 1553 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1554 1555 // Handle conversions to bool first, they are special: comparisons against 0. 1556 if (DstTy->isBooleanType()) { 1557 // Complex != 0 -> (Real != 0) | (Imag != 0) 1558 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1559 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1560 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1561 } 1562 1563 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1564 // the imaginary part of the complex value is discarded and the value of the 1565 // real part is converted according to the conversion rules for the 1566 // corresponding real type. 1567 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1568 } 1569 1570 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1571 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1572 } 1573 1574 /// Emit a sanitization check for the given "binary" operation (which 1575 /// might actually be a unary increment which has been lowered to a binary 1576 /// operation). The check passes if all values in \p Checks (which are \c i1), 1577 /// are \c true. 1578 void ScalarExprEmitter::EmitBinOpCheck( 1579 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1580 assert(CGF.IsSanitizerScope); 1581 SanitizerHandler Check; 1582 SmallVector<llvm::Constant *, 4> StaticData; 1583 SmallVector<llvm::Value *, 2> DynamicData; 1584 1585 BinaryOperatorKind Opcode = Info.Opcode; 1586 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1587 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1588 1589 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1590 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1591 if (UO && UO->getOpcode() == UO_Minus) { 1592 Check = SanitizerHandler::NegateOverflow; 1593 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1594 DynamicData.push_back(Info.RHS); 1595 } else { 1596 if (BinaryOperator::isShiftOp(Opcode)) { 1597 // Shift LHS negative or too large, or RHS out of bounds. 1598 Check = SanitizerHandler::ShiftOutOfBounds; 1599 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1600 StaticData.push_back( 1601 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1602 StaticData.push_back( 1603 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1604 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1605 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1606 Check = SanitizerHandler::DivremOverflow; 1607 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1608 } else { 1609 // Arithmetic overflow (+, -, *). 1610 switch (Opcode) { 1611 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1612 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1613 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1614 default: llvm_unreachable("unexpected opcode for bin op check"); 1615 } 1616 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1617 } 1618 DynamicData.push_back(Info.LHS); 1619 DynamicData.push_back(Info.RHS); 1620 } 1621 1622 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1623 } 1624 1625 //===----------------------------------------------------------------------===// 1626 // Visitor Methods 1627 //===----------------------------------------------------------------------===// 1628 1629 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1630 CGF.ErrorUnsupported(E, "scalar expression"); 1631 if (E->getType()->isVoidType()) 1632 return nullptr; 1633 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1634 } 1635 1636 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1637 // Vector Mask Case 1638 if (E->getNumSubExprs() == 2) { 1639 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1640 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1641 Value *Mask; 1642 1643 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 1644 unsigned LHSElts = LTy->getNumElements(); 1645 1646 Mask = RHS; 1647 1648 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1649 1650 // Mask off the high bits of each shuffle index. 1651 Value *MaskBits = 1652 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1653 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1654 1655 // newv = undef 1656 // mask = mask & maskbits 1657 // for each elt 1658 // n = extract mask i 1659 // x = extract val n 1660 // newv = insert newv, x, i 1661 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1662 MTy->getNumElements()); 1663 Value* NewV = llvm::UndefValue::get(RTy); 1664 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1665 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1666 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1667 1668 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1669 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1670 } 1671 return NewV; 1672 } 1673 1674 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1675 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1676 1677 SmallVector<llvm::Constant*, 32> indices; 1678 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1679 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1680 // Check for -1 and output it as undef in the IR. 1681 if (Idx.isSigned() && Idx.isAllOnesValue()) 1682 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1683 else 1684 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1685 } 1686 1687 Value *SV = llvm::ConstantVector::get(indices); 1688 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1689 } 1690 1691 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1692 QualType SrcType = E->getSrcExpr()->getType(), 1693 DstType = E->getType(); 1694 1695 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1696 1697 SrcType = CGF.getContext().getCanonicalType(SrcType); 1698 DstType = CGF.getContext().getCanonicalType(DstType); 1699 if (SrcType == DstType) return Src; 1700 1701 assert(SrcType->isVectorType() && 1702 "ConvertVector source type must be a vector"); 1703 assert(DstType->isVectorType() && 1704 "ConvertVector destination type must be a vector"); 1705 1706 llvm::Type *SrcTy = Src->getType(); 1707 llvm::Type *DstTy = ConvertType(DstType); 1708 1709 // Ignore conversions like int -> uint. 1710 if (SrcTy == DstTy) 1711 return Src; 1712 1713 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1714 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1715 1716 assert(SrcTy->isVectorTy() && 1717 "ConvertVector source IR type must be a vector"); 1718 assert(DstTy->isVectorTy() && 1719 "ConvertVector destination IR type must be a vector"); 1720 1721 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1722 *DstEltTy = DstTy->getVectorElementType(); 1723 1724 if (DstEltType->isBooleanType()) { 1725 assert((SrcEltTy->isFloatingPointTy() || 1726 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1727 1728 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1729 if (SrcEltTy->isFloatingPointTy()) { 1730 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1731 } else { 1732 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1733 } 1734 } 1735 1736 // We have the arithmetic types: real int/float. 1737 Value *Res = nullptr; 1738 1739 if (isa<llvm::IntegerType>(SrcEltTy)) { 1740 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1741 if (isa<llvm::IntegerType>(DstEltTy)) 1742 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1743 else if (InputSigned) 1744 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1745 else 1746 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1747 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1748 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1749 if (DstEltType->isSignedIntegerOrEnumerationType()) 1750 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1751 else 1752 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1753 } else { 1754 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1755 "Unknown real conversion"); 1756 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1757 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1758 else 1759 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1760 } 1761 1762 return Res; 1763 } 1764 1765 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1766 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1767 CGF.EmitIgnoredExpr(E->getBase()); 1768 return CGF.emitScalarConstant(Constant, E); 1769 } else { 1770 Expr::EvalResult Result; 1771 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1772 llvm::APSInt Value = Result.Val.getInt(); 1773 CGF.EmitIgnoredExpr(E->getBase()); 1774 return Builder.getInt(Value); 1775 } 1776 } 1777 1778 return EmitLoadOfLValue(E); 1779 } 1780 1781 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1782 TestAndClearIgnoreResultAssign(); 1783 1784 // Emit subscript expressions in rvalue context's. For most cases, this just 1785 // loads the lvalue formed by the subscript expr. However, we have to be 1786 // careful, because the base of a vector subscript is occasionally an rvalue, 1787 // so we can't get it as an lvalue. 1788 if (!E->getBase()->getType()->isVectorType()) 1789 return EmitLoadOfLValue(E); 1790 1791 // Handle the vector case. The base must be a vector, the index must be an 1792 // integer value. 1793 Value *Base = Visit(E->getBase()); 1794 Value *Idx = Visit(E->getIdx()); 1795 QualType IdxTy = E->getIdx()->getType(); 1796 1797 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1798 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1799 1800 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1801 } 1802 1803 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1804 unsigned Off, llvm::Type *I32Ty) { 1805 int MV = SVI->getMaskValue(Idx); 1806 if (MV == -1) 1807 return llvm::UndefValue::get(I32Ty); 1808 return llvm::ConstantInt::get(I32Ty, Off+MV); 1809 } 1810 1811 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1812 if (C->getBitWidth() != 32) { 1813 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1814 C->getZExtValue()) && 1815 "Index operand too large for shufflevector mask!"); 1816 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1817 } 1818 return C; 1819 } 1820 1821 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1822 bool Ignore = TestAndClearIgnoreResultAssign(); 1823 (void)Ignore; 1824 assert (Ignore == false && "init list ignored"); 1825 unsigned NumInitElements = E->getNumInits(); 1826 1827 if (E->hadArrayRangeDesignator()) 1828 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1829 1830 llvm::VectorType *VType = 1831 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1832 1833 if (!VType) { 1834 if (NumInitElements == 0) { 1835 // C++11 value-initialization for the scalar. 1836 return EmitNullValue(E->getType()); 1837 } 1838 // We have a scalar in braces. Just use the first element. 1839 return Visit(E->getInit(0)); 1840 } 1841 1842 unsigned ResElts = VType->getNumElements(); 1843 1844 // Loop over initializers collecting the Value for each, and remembering 1845 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1846 // us to fold the shuffle for the swizzle into the shuffle for the vector 1847 // initializer, since LLVM optimizers generally do not want to touch 1848 // shuffles. 1849 unsigned CurIdx = 0; 1850 bool VIsUndefShuffle = false; 1851 llvm::Value *V = llvm::UndefValue::get(VType); 1852 for (unsigned i = 0; i != NumInitElements; ++i) { 1853 Expr *IE = E->getInit(i); 1854 Value *Init = Visit(IE); 1855 SmallVector<llvm::Constant*, 16> Args; 1856 1857 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1858 1859 // Handle scalar elements. If the scalar initializer is actually one 1860 // element of a different vector of the same width, use shuffle instead of 1861 // extract+insert. 1862 if (!VVT) { 1863 if (isa<ExtVectorElementExpr>(IE)) { 1864 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1865 1866 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1867 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1868 Value *LHS = nullptr, *RHS = nullptr; 1869 if (CurIdx == 0) { 1870 // insert into undef -> shuffle (src, undef) 1871 // shufflemask must use an i32 1872 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1873 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1874 1875 LHS = EI->getVectorOperand(); 1876 RHS = V; 1877 VIsUndefShuffle = true; 1878 } else if (VIsUndefShuffle) { 1879 // insert into undefshuffle && size match -> shuffle (v, src) 1880 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1881 for (unsigned j = 0; j != CurIdx; ++j) 1882 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1883 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1884 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1885 1886 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1887 RHS = EI->getVectorOperand(); 1888 VIsUndefShuffle = false; 1889 } 1890 if (!Args.empty()) { 1891 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1892 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1893 ++CurIdx; 1894 continue; 1895 } 1896 } 1897 } 1898 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1899 "vecinit"); 1900 VIsUndefShuffle = false; 1901 ++CurIdx; 1902 continue; 1903 } 1904 1905 unsigned InitElts = VVT->getNumElements(); 1906 1907 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1908 // input is the same width as the vector being constructed, generate an 1909 // optimized shuffle of the swizzle input into the result. 1910 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1911 if (isa<ExtVectorElementExpr>(IE)) { 1912 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1913 Value *SVOp = SVI->getOperand(0); 1914 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1915 1916 if (OpTy->getNumElements() == ResElts) { 1917 for (unsigned j = 0; j != CurIdx; ++j) { 1918 // If the current vector initializer is a shuffle with undef, merge 1919 // this shuffle directly into it. 1920 if (VIsUndefShuffle) { 1921 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1922 CGF.Int32Ty)); 1923 } else { 1924 Args.push_back(Builder.getInt32(j)); 1925 } 1926 } 1927 for (unsigned j = 0, je = InitElts; j != je; ++j) 1928 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1929 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1930 1931 if (VIsUndefShuffle) 1932 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1933 1934 Init = SVOp; 1935 } 1936 } 1937 1938 // Extend init to result vector length, and then shuffle its contribution 1939 // to the vector initializer into V. 1940 if (Args.empty()) { 1941 for (unsigned j = 0; j != InitElts; ++j) 1942 Args.push_back(Builder.getInt32(j)); 1943 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1944 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1945 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1946 Mask, "vext"); 1947 1948 Args.clear(); 1949 for (unsigned j = 0; j != CurIdx; ++j) 1950 Args.push_back(Builder.getInt32(j)); 1951 for (unsigned j = 0; j != InitElts; ++j) 1952 Args.push_back(Builder.getInt32(j+Offset)); 1953 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1954 } 1955 1956 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1957 // merging subsequent shuffles into this one. 1958 if (CurIdx == 0) 1959 std::swap(V, Init); 1960 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1961 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1962 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1963 CurIdx += InitElts; 1964 } 1965 1966 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1967 // Emit remaining default initializers. 1968 llvm::Type *EltTy = VType->getElementType(); 1969 1970 // Emit remaining default initializers 1971 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1972 Value *Idx = Builder.getInt32(CurIdx); 1973 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1974 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1975 } 1976 return V; 1977 } 1978 1979 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1980 const Expr *E = CE->getSubExpr(); 1981 1982 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1983 return false; 1984 1985 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1986 // We always assume that 'this' is never null. 1987 return false; 1988 } 1989 1990 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1991 // And that glvalue casts are never null. 1992 if (ICE->getValueKind() != VK_RValue) 1993 return false; 1994 } 1995 1996 return true; 1997 } 1998 1999 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 2000 // have to handle a more broad range of conversions than explicit casts, as they 2001 // handle things like function to ptr-to-function decay etc. 2002 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 2003 Expr *E = CE->getSubExpr(); 2004 QualType DestTy = CE->getType(); 2005 CastKind Kind = CE->getCastKind(); 2006 2007 // These cases are generally not written to ignore the result of 2008 // evaluating their sub-expressions, so we clear this now. 2009 bool Ignored = TestAndClearIgnoreResultAssign(); 2010 2011 // Since almost all cast kinds apply to scalars, this switch doesn't have 2012 // a default case, so the compiler will warn on a missing case. The cases 2013 // are in the same order as in the CastKind enum. 2014 switch (Kind) { 2015 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 2016 case CK_BuiltinFnToFnPtr: 2017 llvm_unreachable("builtin functions are handled elsewhere"); 2018 2019 case CK_LValueBitCast: 2020 case CK_ObjCObjectLValueCast: { 2021 Address Addr = EmitLValue(E).getAddress(); 2022 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 2023 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 2024 return EmitLoadOfLValue(LV, CE->getExprLoc()); 2025 } 2026 2027 case CK_CPointerToObjCPointerCast: 2028 case CK_BlockPointerToObjCPointerCast: 2029 case CK_AnyPointerToBlockPointerCast: 2030 case CK_BitCast: { 2031 Value *Src = Visit(const_cast<Expr*>(E)); 2032 llvm::Type *SrcTy = Src->getType(); 2033 llvm::Type *DstTy = ConvertType(DestTy); 2034 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 2035 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 2036 llvm_unreachable("wrong cast for pointers in different address spaces" 2037 "(must be an address space cast)!"); 2038 } 2039 2040 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 2041 if (auto PT = DestTy->getAs<PointerType>()) 2042 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 2043 /*MayBeNull=*/true, 2044 CodeGenFunction::CFITCK_UnrelatedCast, 2045 CE->getBeginLoc()); 2046 } 2047 2048 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2049 const QualType SrcType = E->getType(); 2050 2051 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 2052 // Casting to pointer that could carry dynamic information (provided by 2053 // invariant.group) requires launder. 2054 Src = Builder.CreateLaunderInvariantGroup(Src); 2055 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 2056 // Casting to pointer that does not carry dynamic information (provided 2057 // by invariant.group) requires stripping it. Note that we don't do it 2058 // if the source could not be dynamic type and destination could be 2059 // dynamic because dynamic information is already laundered. It is 2060 // because launder(strip(src)) == launder(src), so there is no need to 2061 // add extra strip before launder. 2062 Src = Builder.CreateStripInvariantGroup(Src); 2063 } 2064 } 2065 2066 // Update heapallocsite metadata when there is an explicit cast. 2067 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src)) 2068 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) 2069 CGF.getDebugInfo()-> 2070 addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc()); 2071 2072 return Builder.CreateBitCast(Src, DstTy); 2073 } 2074 case CK_AddressSpaceConversion: { 2075 Expr::EvalResult Result; 2076 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2077 Result.Val.isNullPointer()) { 2078 // If E has side effect, it is emitted even if its final result is a 2079 // null pointer. In that case, a DCE pass should be able to 2080 // eliminate the useless instructions emitted during translating E. 2081 if (Result.HasSideEffects) 2082 Visit(E); 2083 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2084 ConvertType(DestTy)), DestTy); 2085 } 2086 // Since target may map different address spaces in AST to the same address 2087 // space, an address space conversion may end up as a bitcast. 2088 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2089 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2090 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2091 } 2092 case CK_AtomicToNonAtomic: 2093 case CK_NonAtomicToAtomic: 2094 case CK_NoOp: 2095 case CK_UserDefinedConversion: 2096 return Visit(const_cast<Expr*>(E)); 2097 2098 case CK_BaseToDerived: { 2099 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2100 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2101 2102 Address Base = CGF.EmitPointerWithAlignment(E); 2103 Address Derived = 2104 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2105 CE->path_begin(), CE->path_end(), 2106 CGF.ShouldNullCheckClassCastValue(CE)); 2107 2108 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2109 // performed and the object is not of the derived type. 2110 if (CGF.sanitizePerformTypeCheck()) 2111 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2112 Derived.getPointer(), DestTy->getPointeeType()); 2113 2114 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2115 CGF.EmitVTablePtrCheckForCast( 2116 DestTy->getPointeeType(), Derived.getPointer(), 2117 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 2118 CE->getBeginLoc()); 2119 2120 return Derived.getPointer(); 2121 } 2122 case CK_UncheckedDerivedToBase: 2123 case CK_DerivedToBase: { 2124 // The EmitPointerWithAlignment path does this fine; just discard 2125 // the alignment. 2126 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2127 } 2128 2129 case CK_Dynamic: { 2130 Address V = CGF.EmitPointerWithAlignment(E); 2131 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2132 return CGF.EmitDynamicCast(V, DCE); 2133 } 2134 2135 case CK_ArrayToPointerDecay: 2136 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2137 case CK_FunctionToPointerDecay: 2138 return EmitLValue(E).getPointer(); 2139 2140 case CK_NullToPointer: 2141 if (MustVisitNullValue(E)) 2142 (void) Visit(E); 2143 2144 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2145 DestTy); 2146 2147 case CK_NullToMemberPointer: { 2148 if (MustVisitNullValue(E)) 2149 (void) Visit(E); 2150 2151 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2152 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2153 } 2154 2155 case CK_ReinterpretMemberPointer: 2156 case CK_BaseToDerivedMemberPointer: 2157 case CK_DerivedToBaseMemberPointer: { 2158 Value *Src = Visit(E); 2159 2160 // Note that the AST doesn't distinguish between checked and 2161 // unchecked member pointer conversions, so we always have to 2162 // implement checked conversions here. This is inefficient when 2163 // actual control flow may be required in order to perform the 2164 // check, which it is for data member pointers (but not member 2165 // function pointers on Itanium and ARM). 2166 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2167 } 2168 2169 case CK_ARCProduceObject: 2170 return CGF.EmitARCRetainScalarExpr(E); 2171 case CK_ARCConsumeObject: 2172 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2173 case CK_ARCReclaimReturnedObject: 2174 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2175 case CK_ARCExtendBlockObject: 2176 return CGF.EmitARCExtendBlockObject(E); 2177 2178 case CK_CopyAndAutoreleaseBlockObject: 2179 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2180 2181 case CK_FloatingRealToComplex: 2182 case CK_FloatingComplexCast: 2183 case CK_IntegralRealToComplex: 2184 case CK_IntegralComplexCast: 2185 case CK_IntegralComplexToFloatingComplex: 2186 case CK_FloatingComplexToIntegralComplex: 2187 case CK_ConstructorConversion: 2188 case CK_ToUnion: 2189 llvm_unreachable("scalar cast to non-scalar value"); 2190 2191 case CK_LValueToRValue: 2192 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2193 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2194 return Visit(const_cast<Expr*>(E)); 2195 2196 case CK_IntegralToPointer: { 2197 Value *Src = Visit(const_cast<Expr*>(E)); 2198 2199 // First, convert to the correct width so that we control the kind of 2200 // extension. 2201 auto DestLLVMTy = ConvertType(DestTy); 2202 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2203 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2204 llvm::Value* IntResult = 2205 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2206 2207 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2208 2209 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2210 // Going from integer to pointer that could be dynamic requires reloading 2211 // dynamic information from invariant.group. 2212 if (DestTy.mayBeDynamicClass()) 2213 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2214 } 2215 return IntToPtr; 2216 } 2217 case CK_PointerToIntegral: { 2218 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2219 auto *PtrExpr = Visit(E); 2220 2221 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2222 const QualType SrcType = E->getType(); 2223 2224 // Casting to integer requires stripping dynamic information as it does 2225 // not carries it. 2226 if (SrcType.mayBeDynamicClass()) 2227 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2228 } 2229 2230 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2231 } 2232 case CK_ToVoid: { 2233 CGF.EmitIgnoredExpr(E); 2234 return nullptr; 2235 } 2236 case CK_VectorSplat: { 2237 llvm::Type *DstTy = ConvertType(DestTy); 2238 Value *Elt = Visit(const_cast<Expr*>(E)); 2239 // Splat the element across to all elements 2240 unsigned NumElements = DstTy->getVectorNumElements(); 2241 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2242 } 2243 2244 case CK_FixedPointCast: 2245 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2246 CE->getExprLoc()); 2247 2248 case CK_FixedPointToBoolean: 2249 assert(E->getType()->isFixedPointType() && 2250 "Expected src type to be fixed point type"); 2251 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2252 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2253 CE->getExprLoc()); 2254 2255 case CK_FixedPointToIntegral: 2256 assert(E->getType()->isFixedPointType() && 2257 "Expected src type to be fixed point type"); 2258 assert(DestTy->isIntegerType() && "Expected dest type to be an integer"); 2259 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2260 CE->getExprLoc()); 2261 2262 case CK_IntegralToFixedPoint: 2263 assert(E->getType()->isIntegerType() && 2264 "Expected src type to be an integer"); 2265 assert(DestTy->isFixedPointType() && 2266 "Expected dest type to be fixed point type"); 2267 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2268 CE->getExprLoc()); 2269 2270 case CK_IntegralCast: { 2271 ScalarConversionOpts Opts; 2272 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2273 if (!ICE->isPartOfExplicitCast()) 2274 Opts = ScalarConversionOpts(CGF.SanOpts); 2275 } 2276 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2277 CE->getExprLoc(), Opts); 2278 } 2279 case CK_IntegralToFloating: 2280 case CK_FloatingToIntegral: 2281 case CK_FloatingCast: 2282 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2283 CE->getExprLoc()); 2284 case CK_BooleanToSignedIntegral: { 2285 ScalarConversionOpts Opts; 2286 Opts.TreatBooleanAsSigned = true; 2287 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2288 CE->getExprLoc(), Opts); 2289 } 2290 case CK_IntegralToBoolean: 2291 return EmitIntToBoolConversion(Visit(E)); 2292 case CK_PointerToBoolean: 2293 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2294 case CK_FloatingToBoolean: 2295 return EmitFloatToBoolConversion(Visit(E)); 2296 case CK_MemberPointerToBoolean: { 2297 llvm::Value *MemPtr = Visit(E); 2298 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2299 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2300 } 2301 2302 case CK_FloatingComplexToReal: 2303 case CK_IntegralComplexToReal: 2304 return CGF.EmitComplexExpr(E, false, true).first; 2305 2306 case CK_FloatingComplexToBoolean: 2307 case CK_IntegralComplexToBoolean: { 2308 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2309 2310 // TODO: kill this function off, inline appropriate case here 2311 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2312 CE->getExprLoc()); 2313 } 2314 2315 case CK_ZeroToOCLOpaqueType: { 2316 assert((DestTy->isEventT() || DestTy->isQueueT() || 2317 DestTy->isOCLIntelSubgroupAVCType()) && 2318 "CK_ZeroToOCLEvent cast on non-event type"); 2319 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2320 } 2321 2322 case CK_IntToOCLSampler: 2323 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2324 2325 } // end of switch 2326 2327 llvm_unreachable("unknown scalar cast"); 2328 } 2329 2330 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2331 CodeGenFunction::StmtExprEvaluation eval(CGF); 2332 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2333 !E->getType()->isVoidType()); 2334 if (!RetAlloca.isValid()) 2335 return nullptr; 2336 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2337 E->getExprLoc()); 2338 } 2339 2340 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2341 CGF.enterFullExpression(E); 2342 CodeGenFunction::RunCleanupsScope Scope(CGF); 2343 Value *V = Visit(E->getSubExpr()); 2344 // Defend against dominance problems caused by jumps out of expression 2345 // evaluation through the shared cleanup block. 2346 Scope.ForceCleanup({&V}); 2347 return V; 2348 } 2349 2350 //===----------------------------------------------------------------------===// 2351 // Unary Operators 2352 //===----------------------------------------------------------------------===// 2353 2354 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2355 llvm::Value *InVal, bool IsInc) { 2356 BinOpInfo BinOp; 2357 BinOp.LHS = InVal; 2358 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2359 BinOp.Ty = E->getType(); 2360 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2361 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2362 BinOp.E = E; 2363 return BinOp; 2364 } 2365 2366 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2367 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2368 llvm::Value *Amount = 2369 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2370 StringRef Name = IsInc ? "inc" : "dec"; 2371 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2372 case LangOptions::SOB_Defined: 2373 return Builder.CreateAdd(InVal, Amount, Name); 2374 case LangOptions::SOB_Undefined: 2375 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2376 return Builder.CreateNSWAdd(InVal, Amount, Name); 2377 LLVM_FALLTHROUGH; 2378 case LangOptions::SOB_Trapping: 2379 if (!E->canOverflow()) 2380 return Builder.CreateNSWAdd(InVal, Amount, Name); 2381 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 2382 } 2383 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2384 } 2385 2386 llvm::Value * 2387 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2388 bool isInc, bool isPre) { 2389 2390 QualType type = E->getSubExpr()->getType(); 2391 llvm::PHINode *atomicPHI = nullptr; 2392 llvm::Value *value; 2393 llvm::Value *input; 2394 2395 int amount = (isInc ? 1 : -1); 2396 bool isSubtraction = !isInc; 2397 2398 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2399 type = atomicTy->getValueType(); 2400 if (isInc && type->isBooleanType()) { 2401 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2402 if (isPre) { 2403 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 2404 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2405 return Builder.getTrue(); 2406 } 2407 // For atomic bool increment, we just store true and return it for 2408 // preincrement, do an atomic swap with true for postincrement 2409 return Builder.CreateAtomicRMW( 2410 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, 2411 llvm::AtomicOrdering::SequentiallyConsistent); 2412 } 2413 // Special case for atomic increment / decrement on integers, emit 2414 // atomicrmw instructions. We skip this if we want to be doing overflow 2415 // checking, and fall into the slow path with the atomic cmpxchg loop. 2416 if (!type->isBooleanType() && type->isIntegerType() && 2417 !(type->isUnsignedIntegerType() && 2418 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2419 CGF.getLangOpts().getSignedOverflowBehavior() != 2420 LangOptions::SOB_Trapping) { 2421 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2422 llvm::AtomicRMWInst::Sub; 2423 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2424 llvm::Instruction::Sub; 2425 llvm::Value *amt = CGF.EmitToMemory( 2426 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2427 llvm::Value *old = Builder.CreateAtomicRMW(aop, 2428 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); 2429 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2430 } 2431 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2432 input = value; 2433 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2434 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2435 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2436 value = CGF.EmitToMemory(value, type); 2437 Builder.CreateBr(opBB); 2438 Builder.SetInsertPoint(opBB); 2439 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2440 atomicPHI->addIncoming(value, startBB); 2441 value = atomicPHI; 2442 } else { 2443 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2444 input = value; 2445 } 2446 2447 // Special case of integer increment that we have to check first: bool++. 2448 // Due to promotion rules, we get: 2449 // bool++ -> bool = bool + 1 2450 // -> bool = (int)bool + 1 2451 // -> bool = ((int)bool + 1 != 0) 2452 // An interesting aspect of this is that increment is always true. 2453 // Decrement does not have this property. 2454 if (isInc && type->isBooleanType()) { 2455 value = Builder.getTrue(); 2456 2457 // Most common case by far: integer increment. 2458 } else if (type->isIntegerType()) { 2459 // Note that signed integer inc/dec with width less than int can't 2460 // overflow because of promotion rules; we're just eliding a few steps here. 2461 if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2462 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2463 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2464 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2465 value = 2466 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 2467 } else { 2468 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2469 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2470 } 2471 2472 // Next most common: pointer increment. 2473 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2474 QualType type = ptr->getPointeeType(); 2475 2476 // VLA types don't have constant size. 2477 if (const VariableArrayType *vla 2478 = CGF.getContext().getAsVariableArrayType(type)) { 2479 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2480 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2481 if (CGF.getLangOpts().isSignedOverflowDefined()) 2482 value = Builder.CreateGEP(value, numElts, "vla.inc"); 2483 else 2484 value = CGF.EmitCheckedInBoundsGEP( 2485 value, numElts, /*SignedIndices=*/false, isSubtraction, 2486 E->getExprLoc(), "vla.inc"); 2487 2488 // Arithmetic on function pointers (!) is just +-1. 2489 } else if (type->isFunctionType()) { 2490 llvm::Value *amt = Builder.getInt32(amount); 2491 2492 value = CGF.EmitCastToVoidPtr(value); 2493 if (CGF.getLangOpts().isSignedOverflowDefined()) 2494 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 2495 else 2496 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2497 isSubtraction, E->getExprLoc(), 2498 "incdec.funcptr"); 2499 value = Builder.CreateBitCast(value, input->getType()); 2500 2501 // For everything else, we can just do a simple increment. 2502 } else { 2503 llvm::Value *amt = Builder.getInt32(amount); 2504 if (CGF.getLangOpts().isSignedOverflowDefined()) 2505 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 2506 else 2507 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2508 isSubtraction, E->getExprLoc(), 2509 "incdec.ptr"); 2510 } 2511 2512 // Vector increment/decrement. 2513 } else if (type->isVectorType()) { 2514 if (type->hasIntegerRepresentation()) { 2515 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2516 2517 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2518 } else { 2519 value = Builder.CreateFAdd( 2520 value, 2521 llvm::ConstantFP::get(value->getType(), amount), 2522 isInc ? "inc" : "dec"); 2523 } 2524 2525 // Floating point. 2526 } else if (type->isRealFloatingType()) { 2527 // Add the inc/dec to the real part. 2528 llvm::Value *amt; 2529 2530 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2531 // Another special case: half FP increment should be done via float 2532 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2533 value = Builder.CreateCall( 2534 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2535 CGF.CGM.FloatTy), 2536 input, "incdec.conv"); 2537 } else { 2538 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2539 } 2540 } 2541 2542 if (value->getType()->isFloatTy()) 2543 amt = llvm::ConstantFP::get(VMContext, 2544 llvm::APFloat(static_cast<float>(amount))); 2545 else if (value->getType()->isDoubleTy()) 2546 amt = llvm::ConstantFP::get(VMContext, 2547 llvm::APFloat(static_cast<double>(amount))); 2548 else { 2549 // Remaining types are Half, LongDouble or __float128. Convert from float. 2550 llvm::APFloat F(static_cast<float>(amount)); 2551 bool ignored; 2552 const llvm::fltSemantics *FS; 2553 // Don't use getFloatTypeSemantics because Half isn't 2554 // necessarily represented using the "half" LLVM type. 2555 if (value->getType()->isFP128Ty()) 2556 FS = &CGF.getTarget().getFloat128Format(); 2557 else if (value->getType()->isHalfTy()) 2558 FS = &CGF.getTarget().getHalfFormat(); 2559 else 2560 FS = &CGF.getTarget().getLongDoubleFormat(); 2561 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2562 amt = llvm::ConstantFP::get(VMContext, F); 2563 } 2564 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2565 2566 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2567 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2568 value = Builder.CreateCall( 2569 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2570 CGF.CGM.FloatTy), 2571 value, "incdec.conv"); 2572 } else { 2573 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2574 } 2575 } 2576 2577 // Objective-C pointer types. 2578 } else { 2579 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2580 value = CGF.EmitCastToVoidPtr(value); 2581 2582 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2583 if (!isInc) size = -size; 2584 llvm::Value *sizeValue = 2585 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2586 2587 if (CGF.getLangOpts().isSignedOverflowDefined()) 2588 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2589 else 2590 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2591 /*SignedIndices=*/false, isSubtraction, 2592 E->getExprLoc(), "incdec.objptr"); 2593 value = Builder.CreateBitCast(value, input->getType()); 2594 } 2595 2596 if (atomicPHI) { 2597 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2598 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2599 auto Pair = CGF.EmitAtomicCompareExchange( 2600 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2601 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2602 llvm::Value *success = Pair.second; 2603 atomicPHI->addIncoming(old, curBlock); 2604 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2605 Builder.SetInsertPoint(contBB); 2606 return isPre ? value : input; 2607 } 2608 2609 // Store the updated result through the lvalue. 2610 if (LV.isBitField()) 2611 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2612 else 2613 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2614 2615 // If this is a postinc, return the value read from memory, otherwise use the 2616 // updated value. 2617 return isPre ? value : input; 2618 } 2619 2620 2621 2622 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2623 TestAndClearIgnoreResultAssign(); 2624 // Emit unary minus with EmitSub so we handle overflow cases etc. 2625 BinOpInfo BinOp; 2626 BinOp.RHS = Visit(E->getSubExpr()); 2627 2628 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 2629 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 2630 else 2631 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2632 BinOp.Ty = E->getType(); 2633 BinOp.Opcode = BO_Sub; 2634 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2635 BinOp.E = E; 2636 return EmitSub(BinOp); 2637 } 2638 2639 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2640 TestAndClearIgnoreResultAssign(); 2641 Value *Op = Visit(E->getSubExpr()); 2642 return Builder.CreateNot(Op, "neg"); 2643 } 2644 2645 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2646 // Perform vector logical not on comparison with zero vector. 2647 if (E->getType()->isExtVectorType()) { 2648 Value *Oper = Visit(E->getSubExpr()); 2649 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2650 Value *Result; 2651 if (Oper->getType()->isFPOrFPVectorTy()) 2652 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2653 else 2654 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2655 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2656 } 2657 2658 // Compare operand to zero. 2659 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2660 2661 // Invert value. 2662 // TODO: Could dynamically modify easy computations here. For example, if 2663 // the operand is an icmp ne, turn into icmp eq. 2664 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2665 2666 // ZExt result to the expr type. 2667 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2668 } 2669 2670 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2671 // Try folding the offsetof to a constant. 2672 Expr::EvalResult EVResult; 2673 if (E->EvaluateAsInt(EVResult, CGF.getContext())) { 2674 llvm::APSInt Value = EVResult.Val.getInt(); 2675 return Builder.getInt(Value); 2676 } 2677 2678 // Loop over the components of the offsetof to compute the value. 2679 unsigned n = E->getNumComponents(); 2680 llvm::Type* ResultType = ConvertType(E->getType()); 2681 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2682 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2683 for (unsigned i = 0; i != n; ++i) { 2684 OffsetOfNode ON = E->getComponent(i); 2685 llvm::Value *Offset = nullptr; 2686 switch (ON.getKind()) { 2687 case OffsetOfNode::Array: { 2688 // Compute the index 2689 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2690 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2691 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2692 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2693 2694 // Save the element type 2695 CurrentType = 2696 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2697 2698 // Compute the element size 2699 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2700 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2701 2702 // Multiply out to compute the result 2703 Offset = Builder.CreateMul(Idx, ElemSize); 2704 break; 2705 } 2706 2707 case OffsetOfNode::Field: { 2708 FieldDecl *MemberDecl = ON.getField(); 2709 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2710 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2711 2712 // Compute the index of the field in its parent. 2713 unsigned i = 0; 2714 // FIXME: It would be nice if we didn't have to loop here! 2715 for (RecordDecl::field_iterator Field = RD->field_begin(), 2716 FieldEnd = RD->field_end(); 2717 Field != FieldEnd; ++Field, ++i) { 2718 if (*Field == MemberDecl) 2719 break; 2720 } 2721 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2722 2723 // Compute the offset to the field 2724 int64_t OffsetInt = RL.getFieldOffset(i) / 2725 CGF.getContext().getCharWidth(); 2726 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2727 2728 // Save the element type. 2729 CurrentType = MemberDecl->getType(); 2730 break; 2731 } 2732 2733 case OffsetOfNode::Identifier: 2734 llvm_unreachable("dependent __builtin_offsetof"); 2735 2736 case OffsetOfNode::Base: { 2737 if (ON.getBase()->isVirtual()) { 2738 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2739 continue; 2740 } 2741 2742 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2743 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2744 2745 // Save the element type. 2746 CurrentType = ON.getBase()->getType(); 2747 2748 // Compute the offset to the base. 2749 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2750 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2751 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2752 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2753 break; 2754 } 2755 } 2756 Result = Builder.CreateAdd(Result, Offset); 2757 } 2758 return Result; 2759 } 2760 2761 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2762 /// argument of the sizeof expression as an integer. 2763 Value * 2764 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2765 const UnaryExprOrTypeTraitExpr *E) { 2766 QualType TypeToSize = E->getTypeOfArgument(); 2767 if (E->getKind() == UETT_SizeOf) { 2768 if (const VariableArrayType *VAT = 2769 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2770 if (E->isArgumentType()) { 2771 // sizeof(type) - make sure to emit the VLA size. 2772 CGF.EmitVariablyModifiedType(TypeToSize); 2773 } else { 2774 // C99 6.5.3.4p2: If the argument is an expression of type 2775 // VLA, it is evaluated. 2776 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2777 } 2778 2779 auto VlaSize = CGF.getVLASize(VAT); 2780 llvm::Value *size = VlaSize.NumElts; 2781 2782 // Scale the number of non-VLA elements by the non-VLA element size. 2783 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2784 if (!eltSize.isOne()) 2785 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2786 2787 return size; 2788 } 2789 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2790 auto Alignment = 2791 CGF.getContext() 2792 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2793 E->getTypeOfArgument()->getPointeeType())) 2794 .getQuantity(); 2795 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2796 } 2797 2798 // If this isn't sizeof(vla), the result must be constant; use the constant 2799 // folding logic so we don't have to duplicate it here. 2800 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2801 } 2802 2803 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2804 Expr *Op = E->getSubExpr(); 2805 if (Op->getType()->isAnyComplexType()) { 2806 // If it's an l-value, load through the appropriate subobject l-value. 2807 // Note that we have to ask E because Op might be an l-value that 2808 // this won't work for, e.g. an Obj-C property. 2809 if (E->isGLValue()) 2810 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2811 E->getExprLoc()).getScalarVal(); 2812 2813 // Otherwise, calculate and project. 2814 return CGF.EmitComplexExpr(Op, false, true).first; 2815 } 2816 2817 return Visit(Op); 2818 } 2819 2820 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2821 Expr *Op = E->getSubExpr(); 2822 if (Op->getType()->isAnyComplexType()) { 2823 // If it's an l-value, load through the appropriate subobject l-value. 2824 // Note that we have to ask E because Op might be an l-value that 2825 // this won't work for, e.g. an Obj-C property. 2826 if (Op->isGLValue()) 2827 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2828 E->getExprLoc()).getScalarVal(); 2829 2830 // Otherwise, calculate and project. 2831 return CGF.EmitComplexExpr(Op, true, false).second; 2832 } 2833 2834 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2835 // effects are evaluated, but not the actual value. 2836 if (Op->isGLValue()) 2837 CGF.EmitLValue(Op); 2838 else 2839 CGF.EmitScalarExpr(Op, true); 2840 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2841 } 2842 2843 //===----------------------------------------------------------------------===// 2844 // Binary Operators 2845 //===----------------------------------------------------------------------===// 2846 2847 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2848 TestAndClearIgnoreResultAssign(); 2849 BinOpInfo Result; 2850 Result.LHS = Visit(E->getLHS()); 2851 Result.RHS = Visit(E->getRHS()); 2852 Result.Ty = E->getType(); 2853 Result.Opcode = E->getOpcode(); 2854 Result.FPFeatures = E->getFPFeatures(); 2855 Result.E = E; 2856 return Result; 2857 } 2858 2859 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2860 const CompoundAssignOperator *E, 2861 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2862 Value *&Result) { 2863 QualType LHSTy = E->getLHS()->getType(); 2864 BinOpInfo OpInfo; 2865 2866 if (E->getComputationResultType()->isAnyComplexType()) 2867 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2868 2869 // Emit the RHS first. __block variables need to have the rhs evaluated 2870 // first, plus this should improve codegen a little. 2871 OpInfo.RHS = Visit(E->getRHS()); 2872 OpInfo.Ty = E->getComputationResultType(); 2873 OpInfo.Opcode = E->getOpcode(); 2874 OpInfo.FPFeatures = E->getFPFeatures(); 2875 OpInfo.E = E; 2876 // Load/convert the LHS. 2877 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2878 2879 llvm::PHINode *atomicPHI = nullptr; 2880 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2881 QualType type = atomicTy->getValueType(); 2882 if (!type->isBooleanType() && type->isIntegerType() && 2883 !(type->isUnsignedIntegerType() && 2884 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2885 CGF.getLangOpts().getSignedOverflowBehavior() != 2886 LangOptions::SOB_Trapping) { 2887 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2888 switch (OpInfo.Opcode) { 2889 // We don't have atomicrmw operands for *, %, /, <<, >> 2890 case BO_MulAssign: case BO_DivAssign: 2891 case BO_RemAssign: 2892 case BO_ShlAssign: 2893 case BO_ShrAssign: 2894 break; 2895 case BO_AddAssign: 2896 aop = llvm::AtomicRMWInst::Add; 2897 break; 2898 case BO_SubAssign: 2899 aop = llvm::AtomicRMWInst::Sub; 2900 break; 2901 case BO_AndAssign: 2902 aop = llvm::AtomicRMWInst::And; 2903 break; 2904 case BO_XorAssign: 2905 aop = llvm::AtomicRMWInst::Xor; 2906 break; 2907 case BO_OrAssign: 2908 aop = llvm::AtomicRMWInst::Or; 2909 break; 2910 default: 2911 llvm_unreachable("Invalid compound assignment type"); 2912 } 2913 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2914 llvm::Value *amt = CGF.EmitToMemory( 2915 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2916 E->getExprLoc()), 2917 LHSTy); 2918 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2919 llvm::AtomicOrdering::SequentiallyConsistent); 2920 return LHSLV; 2921 } 2922 } 2923 // FIXME: For floating point types, we should be saving and restoring the 2924 // floating point environment in the loop. 2925 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2926 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2927 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2928 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2929 Builder.CreateBr(opBB); 2930 Builder.SetInsertPoint(opBB); 2931 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2932 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2933 OpInfo.LHS = atomicPHI; 2934 } 2935 else 2936 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2937 2938 SourceLocation Loc = E->getExprLoc(); 2939 OpInfo.LHS = 2940 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2941 2942 // Expand the binary operator. 2943 Result = (this->*Func)(OpInfo); 2944 2945 // Convert the result back to the LHS type, 2946 // potentially with Implicit Conversion sanitizer check. 2947 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, 2948 Loc, ScalarConversionOpts(CGF.SanOpts)); 2949 2950 if (atomicPHI) { 2951 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2952 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2953 auto Pair = CGF.EmitAtomicCompareExchange( 2954 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2955 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2956 llvm::Value *success = Pair.second; 2957 atomicPHI->addIncoming(old, curBlock); 2958 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2959 Builder.SetInsertPoint(contBB); 2960 return LHSLV; 2961 } 2962 2963 // Store the result value into the LHS lvalue. Bit-fields are handled 2964 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2965 // 'An assignment expression has the value of the left operand after the 2966 // assignment...'. 2967 if (LHSLV.isBitField()) 2968 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2969 else 2970 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2971 2972 return LHSLV; 2973 } 2974 2975 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2976 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2977 bool Ignore = TestAndClearIgnoreResultAssign(); 2978 Value *RHS; 2979 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2980 2981 // If the result is clearly ignored, return now. 2982 if (Ignore) 2983 return nullptr; 2984 2985 // The result of an assignment in C is the assigned r-value. 2986 if (!CGF.getLangOpts().CPlusPlus) 2987 return RHS; 2988 2989 // If the lvalue is non-volatile, return the computed value of the assignment. 2990 if (!LHS.isVolatileQualified()) 2991 return RHS; 2992 2993 // Otherwise, reload the value. 2994 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2995 } 2996 2997 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2998 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2999 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 3000 3001 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 3002 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 3003 SanitizerKind::IntegerDivideByZero)); 3004 } 3005 3006 const auto *BO = cast<BinaryOperator>(Ops.E); 3007 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 3008 Ops.Ty->hasSignedIntegerRepresentation() && 3009 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 3010 Ops.mayHaveIntegerOverflow()) { 3011 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 3012 3013 llvm::Value *IntMin = 3014 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 3015 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 3016 3017 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 3018 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 3019 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 3020 Checks.push_back( 3021 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 3022 } 3023 3024 if (Checks.size() > 0) 3025 EmitBinOpCheck(Checks, Ops); 3026 } 3027 3028 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 3029 { 3030 CodeGenFunction::SanitizerScope SanScope(&CGF); 3031 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3032 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3033 Ops.Ty->isIntegerType() && 3034 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3035 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3036 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 3037 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 3038 Ops.Ty->isRealFloatingType() && 3039 Ops.mayHaveFloatDivisionByZero()) { 3040 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3041 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 3042 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 3043 Ops); 3044 } 3045 } 3046 3047 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 3048 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 3049 if (CGF.getLangOpts().OpenCL && 3050 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 3051 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 3052 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 3053 // build option allows an application to specify that single precision 3054 // floating-point divide (x/y and 1/x) and sqrt used in the program 3055 // source are correctly rounded. 3056 llvm::Type *ValTy = Val->getType(); 3057 if (ValTy->isFloatTy() || 3058 (isa<llvm::VectorType>(ValTy) && 3059 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 3060 CGF.SetFPAccuracy(Val, 2.5); 3061 } 3062 return Val; 3063 } 3064 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3065 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 3066 else 3067 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 3068 } 3069 3070 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 3071 // Rem in C can't be a floating point type: C99 6.5.5p2. 3072 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3073 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3074 Ops.Ty->isIntegerType() && 3075 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3076 CodeGenFunction::SanitizerScope SanScope(&CGF); 3077 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3078 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3079 } 3080 3081 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3082 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3083 else 3084 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3085 } 3086 3087 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3088 unsigned IID; 3089 unsigned OpID = 0; 3090 3091 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3092 switch (Ops.Opcode) { 3093 case BO_Add: 3094 case BO_AddAssign: 3095 OpID = 1; 3096 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3097 llvm::Intrinsic::uadd_with_overflow; 3098 break; 3099 case BO_Sub: 3100 case BO_SubAssign: 3101 OpID = 2; 3102 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3103 llvm::Intrinsic::usub_with_overflow; 3104 break; 3105 case BO_Mul: 3106 case BO_MulAssign: 3107 OpID = 3; 3108 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3109 llvm::Intrinsic::umul_with_overflow; 3110 break; 3111 default: 3112 llvm_unreachable("Unsupported operation for overflow detection"); 3113 } 3114 OpID <<= 1; 3115 if (isSigned) 3116 OpID |= 1; 3117 3118 CodeGenFunction::SanitizerScope SanScope(&CGF); 3119 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3120 3121 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3122 3123 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3124 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3125 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3126 3127 // Handle overflow with llvm.trap if no custom handler has been specified. 3128 const std::string *handlerName = 3129 &CGF.getLangOpts().OverflowHandler; 3130 if (handlerName->empty()) { 3131 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3132 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3133 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3134 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3135 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3136 : SanitizerKind::UnsignedIntegerOverflow; 3137 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3138 } else 3139 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 3140 return result; 3141 } 3142 3143 // Branch in case of overflow. 3144 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3145 llvm::BasicBlock *continueBB = 3146 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3147 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3148 3149 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3150 3151 // If an overflow handler is set, then we want to call it and then use its 3152 // result, if it returns. 3153 Builder.SetInsertPoint(overflowBB); 3154 3155 // Get the overflow handler. 3156 llvm::Type *Int8Ty = CGF.Int8Ty; 3157 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3158 llvm::FunctionType *handlerTy = 3159 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3160 llvm::FunctionCallee handler = 3161 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3162 3163 // Sign extend the args to 64-bit, so that we can use the same handler for 3164 // all types of overflow. 3165 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3166 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3167 3168 // Call the handler with the two arguments, the operation, and the size of 3169 // the result. 3170 llvm::Value *handlerArgs[] = { 3171 lhs, 3172 rhs, 3173 Builder.getInt8(OpID), 3174 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3175 }; 3176 llvm::Value *handlerResult = 3177 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3178 3179 // Truncate the result back to the desired size. 3180 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3181 Builder.CreateBr(continueBB); 3182 3183 Builder.SetInsertPoint(continueBB); 3184 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3185 phi->addIncoming(result, initialBB); 3186 phi->addIncoming(handlerResult, overflowBB); 3187 3188 return phi; 3189 } 3190 3191 /// Emit pointer + index arithmetic. 3192 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3193 const BinOpInfo &op, 3194 bool isSubtraction) { 3195 // Must have binary (not unary) expr here. Unary pointer 3196 // increment/decrement doesn't use this path. 3197 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3198 3199 Value *pointer = op.LHS; 3200 Expr *pointerOperand = expr->getLHS(); 3201 Value *index = op.RHS; 3202 Expr *indexOperand = expr->getRHS(); 3203 3204 // In a subtraction, the LHS is always the pointer. 3205 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3206 std::swap(pointer, index); 3207 std::swap(pointerOperand, indexOperand); 3208 } 3209 3210 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3211 3212 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3213 auto &DL = CGF.CGM.getDataLayout(); 3214 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3215 3216 // Some versions of glibc and gcc use idioms (particularly in their malloc 3217 // routines) that add a pointer-sized integer (known to be a pointer value) 3218 // to a null pointer in order to cast the value back to an integer or as 3219 // part of a pointer alignment algorithm. This is undefined behavior, but 3220 // we'd like to be able to compile programs that use it. 3221 // 3222 // Normally, we'd generate a GEP with a null-pointer base here in response 3223 // to that code, but it's also UB to dereference a pointer created that 3224 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3225 // generate a direct cast of the integer value to a pointer. 3226 // 3227 // The idiom (p = nullptr + N) is not met if any of the following are true: 3228 // 3229 // The operation is subtraction. 3230 // The index is not pointer-sized. 3231 // The pointer type is not byte-sized. 3232 // 3233 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3234 op.Opcode, 3235 expr->getLHS(), 3236 expr->getRHS())) 3237 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3238 3239 if (width != DL.getTypeSizeInBits(PtrTy)) { 3240 // Zero-extend or sign-extend the pointer value according to 3241 // whether the index is signed or not. 3242 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned, 3243 "idx.ext"); 3244 } 3245 3246 // If this is subtraction, negate the index. 3247 if (isSubtraction) 3248 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3249 3250 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3251 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3252 /*Accessed*/ false); 3253 3254 const PointerType *pointerType 3255 = pointerOperand->getType()->getAs<PointerType>(); 3256 if (!pointerType) { 3257 QualType objectType = pointerOperand->getType() 3258 ->castAs<ObjCObjectPointerType>() 3259 ->getPointeeType(); 3260 llvm::Value *objectSize 3261 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3262 3263 index = CGF.Builder.CreateMul(index, objectSize); 3264 3265 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3266 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3267 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3268 } 3269 3270 QualType elementType = pointerType->getPointeeType(); 3271 if (const VariableArrayType *vla 3272 = CGF.getContext().getAsVariableArrayType(elementType)) { 3273 // The element count here is the total number of non-VLA elements. 3274 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3275 3276 // Effectively, the multiply by the VLA size is part of the GEP. 3277 // GEP indexes are signed, and scaling an index isn't permitted to 3278 // signed-overflow, so we use the same semantics for our explicit 3279 // multiply. We suppress this if overflow is not undefined behavior. 3280 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3281 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3282 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3283 } else { 3284 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3285 pointer = 3286 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3287 op.E->getExprLoc(), "add.ptr"); 3288 } 3289 return pointer; 3290 } 3291 3292 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3293 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3294 // future proof. 3295 if (elementType->isVoidType() || elementType->isFunctionType()) { 3296 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3297 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3298 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3299 } 3300 3301 if (CGF.getLangOpts().isSignedOverflowDefined()) 3302 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3303 3304 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3305 op.E->getExprLoc(), "add.ptr"); 3306 } 3307 3308 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3309 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3310 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3311 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3312 // efficient operations. 3313 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 3314 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3315 bool negMul, bool negAdd) { 3316 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3317 3318 Value *MulOp0 = MulOp->getOperand(0); 3319 Value *MulOp1 = MulOp->getOperand(1); 3320 if (negMul) { 3321 MulOp0 = 3322 Builder.CreateFSub( 3323 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 3324 "neg"); 3325 } else if (negAdd) { 3326 Addend = 3327 Builder.CreateFSub( 3328 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 3329 "neg"); 3330 } 3331 3332 Value *FMulAdd = Builder.CreateCall( 3333 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3334 {MulOp0, MulOp1, Addend}); 3335 MulOp->eraseFromParent(); 3336 3337 return FMulAdd; 3338 } 3339 3340 // Check whether it would be legal to emit an fmuladd intrinsic call to 3341 // represent op and if so, build the fmuladd. 3342 // 3343 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3344 // Does NOT check the type of the operation - it's assumed that this function 3345 // will be called from contexts where it's known that the type is contractable. 3346 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3347 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3348 bool isSub=false) { 3349 3350 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3351 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3352 "Only fadd/fsub can be the root of an fmuladd."); 3353 3354 // Check whether this op is marked as fusable. 3355 if (!op.FPFeatures.allowFPContractWithinStatement()) 3356 return nullptr; 3357 3358 // We have a potentially fusable op. Look for a mul on one of the operands. 3359 // Also, make sure that the mul result isn't used directly. In that case, 3360 // there's no point creating a muladd operation. 3361 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3362 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3363 LHSBinOp->use_empty()) 3364 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3365 } 3366 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3367 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3368 RHSBinOp->use_empty()) 3369 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3370 } 3371 3372 return nullptr; 3373 } 3374 3375 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3376 if (op.LHS->getType()->isPointerTy() || 3377 op.RHS->getType()->isPointerTy()) 3378 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3379 3380 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3381 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3382 case LangOptions::SOB_Defined: 3383 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3384 case LangOptions::SOB_Undefined: 3385 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3386 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3387 LLVM_FALLTHROUGH; 3388 case LangOptions::SOB_Trapping: 3389 if (CanElideOverflowCheck(CGF.getContext(), op)) 3390 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3391 return EmitOverflowCheckedBinOp(op); 3392 } 3393 } 3394 3395 if (op.Ty->isUnsignedIntegerType() && 3396 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3397 !CanElideOverflowCheck(CGF.getContext(), op)) 3398 return EmitOverflowCheckedBinOp(op); 3399 3400 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3401 // Try to form an fmuladd. 3402 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3403 return FMulAdd; 3404 3405 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3406 return propagateFMFlags(V, op); 3407 } 3408 3409 if (op.isFixedPointBinOp()) 3410 return EmitFixedPointBinOp(op); 3411 3412 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3413 } 3414 3415 /// The resulting value must be calculated with exact precision, so the operands 3416 /// may not be the same type. 3417 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { 3418 using llvm::APSInt; 3419 using llvm::ConstantInt; 3420 3421 const auto *BinOp = cast<BinaryOperator>(op.E); 3422 3423 // The result is a fixed point type and at least one of the operands is fixed 3424 // point while the other is either fixed point or an int. This resulting type 3425 // should be determined by Sema::handleFixedPointConversions(). 3426 QualType ResultTy = op.Ty; 3427 QualType LHSTy = BinOp->getLHS()->getType(); 3428 QualType RHSTy = BinOp->getRHS()->getType(); 3429 ASTContext &Ctx = CGF.getContext(); 3430 Value *LHS = op.LHS; 3431 Value *RHS = op.RHS; 3432 3433 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); 3434 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); 3435 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); 3436 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); 3437 3438 // Convert the operands to the full precision type. 3439 Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema, 3440 BinOp->getExprLoc()); 3441 Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema, 3442 BinOp->getExprLoc()); 3443 3444 // Perform the actual addition. 3445 Value *Result; 3446 switch (BinOp->getOpcode()) { 3447 case BO_Add: { 3448 if (ResultFixedSema.isSaturated()) { 3449 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned() 3450 ? llvm::Intrinsic::sadd_sat 3451 : llvm::Intrinsic::uadd_sat; 3452 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3453 } else { 3454 Result = Builder.CreateAdd(FullLHS, FullRHS); 3455 } 3456 break; 3457 } 3458 case BO_Sub: { 3459 if (ResultFixedSema.isSaturated()) { 3460 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned() 3461 ? llvm::Intrinsic::ssub_sat 3462 : llvm::Intrinsic::usub_sat; 3463 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3464 } else { 3465 Result = Builder.CreateSub(FullLHS, FullRHS); 3466 } 3467 break; 3468 } 3469 case BO_LT: 3470 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS) 3471 : Builder.CreateICmpULT(FullLHS, FullRHS); 3472 case BO_GT: 3473 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS) 3474 : Builder.CreateICmpUGT(FullLHS, FullRHS); 3475 case BO_LE: 3476 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS) 3477 : Builder.CreateICmpULE(FullLHS, FullRHS); 3478 case BO_GE: 3479 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS) 3480 : Builder.CreateICmpUGE(FullLHS, FullRHS); 3481 case BO_EQ: 3482 // For equality operations, we assume any padding bits on unsigned types are 3483 // zero'd out. They could be overwritten through non-saturating operations 3484 // that cause overflow, but this leads to undefined behavior. 3485 return Builder.CreateICmpEQ(FullLHS, FullRHS); 3486 case BO_NE: 3487 return Builder.CreateICmpNE(FullLHS, FullRHS); 3488 case BO_Mul: 3489 case BO_Div: 3490 case BO_Shl: 3491 case BO_Shr: 3492 case BO_Cmp: 3493 case BO_LAnd: 3494 case BO_LOr: 3495 case BO_MulAssign: 3496 case BO_DivAssign: 3497 case BO_AddAssign: 3498 case BO_SubAssign: 3499 case BO_ShlAssign: 3500 case BO_ShrAssign: 3501 llvm_unreachable("Found unimplemented fixed point binary operation"); 3502 case BO_PtrMemD: 3503 case BO_PtrMemI: 3504 case BO_Rem: 3505 case BO_Xor: 3506 case BO_And: 3507 case BO_Or: 3508 case BO_Assign: 3509 case BO_RemAssign: 3510 case BO_AndAssign: 3511 case BO_XorAssign: 3512 case BO_OrAssign: 3513 case BO_Comma: 3514 llvm_unreachable("Found unsupported binary operation for fixed point types."); 3515 } 3516 3517 // Convert to the result type. 3518 return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema, 3519 BinOp->getExprLoc()); 3520 } 3521 3522 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3523 // The LHS is always a pointer if either side is. 3524 if (!op.LHS->getType()->isPointerTy()) { 3525 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3526 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3527 case LangOptions::SOB_Defined: 3528 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3529 case LangOptions::SOB_Undefined: 3530 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3531 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3532 LLVM_FALLTHROUGH; 3533 case LangOptions::SOB_Trapping: 3534 if (CanElideOverflowCheck(CGF.getContext(), op)) 3535 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3536 return EmitOverflowCheckedBinOp(op); 3537 } 3538 } 3539 3540 if (op.Ty->isUnsignedIntegerType() && 3541 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3542 !CanElideOverflowCheck(CGF.getContext(), op)) 3543 return EmitOverflowCheckedBinOp(op); 3544 3545 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3546 // Try to form an fmuladd. 3547 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3548 return FMulAdd; 3549 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3550 return propagateFMFlags(V, op); 3551 } 3552 3553 if (op.isFixedPointBinOp()) 3554 return EmitFixedPointBinOp(op); 3555 3556 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3557 } 3558 3559 // If the RHS is not a pointer, then we have normal pointer 3560 // arithmetic. 3561 if (!op.RHS->getType()->isPointerTy()) 3562 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3563 3564 // Otherwise, this is a pointer subtraction. 3565 3566 // Do the raw subtraction part. 3567 llvm::Value *LHS 3568 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3569 llvm::Value *RHS 3570 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3571 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3572 3573 // Okay, figure out the element size. 3574 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3575 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3576 3577 llvm::Value *divisor = nullptr; 3578 3579 // For a variable-length array, this is going to be non-constant. 3580 if (const VariableArrayType *vla 3581 = CGF.getContext().getAsVariableArrayType(elementType)) { 3582 auto VlaSize = CGF.getVLASize(vla); 3583 elementType = VlaSize.Type; 3584 divisor = VlaSize.NumElts; 3585 3586 // Scale the number of non-VLA elements by the non-VLA element size. 3587 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3588 if (!eltSize.isOne()) 3589 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3590 3591 // For everything elese, we can just compute it, safe in the 3592 // assumption that Sema won't let anything through that we can't 3593 // safely compute the size of. 3594 } else { 3595 CharUnits elementSize; 3596 // Handle GCC extension for pointer arithmetic on void* and 3597 // function pointer types. 3598 if (elementType->isVoidType() || elementType->isFunctionType()) 3599 elementSize = CharUnits::One(); 3600 else 3601 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3602 3603 // Don't even emit the divide for element size of 1. 3604 if (elementSize.isOne()) 3605 return diffInChars; 3606 3607 divisor = CGF.CGM.getSize(elementSize); 3608 } 3609 3610 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3611 // pointer difference in C is only defined in the case where both operands 3612 // are pointing to elements of an array. 3613 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3614 } 3615 3616 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3617 llvm::IntegerType *Ty; 3618 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3619 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3620 else 3621 Ty = cast<llvm::IntegerType>(LHS->getType()); 3622 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3623 } 3624 3625 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3626 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3627 // RHS to the same size as the LHS. 3628 Value *RHS = Ops.RHS; 3629 if (Ops.LHS->getType() != RHS->getType()) 3630 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3631 3632 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3633 Ops.Ty->hasSignedIntegerRepresentation() && 3634 !CGF.getLangOpts().isSignedOverflowDefined(); 3635 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3636 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3637 if (CGF.getLangOpts().OpenCL) 3638 RHS = 3639 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 3640 else if ((SanitizeBase || SanitizeExponent) && 3641 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3642 CodeGenFunction::SanitizerScope SanScope(&CGF); 3643 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3644 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3645 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3646 3647 if (SanitizeExponent) { 3648 Checks.push_back( 3649 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3650 } 3651 3652 if (SanitizeBase) { 3653 // Check whether we are shifting any non-zero bits off the top of the 3654 // integer. We only emit this check if exponent is valid - otherwise 3655 // instructions below will have undefined behavior themselves. 3656 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3657 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3658 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3659 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3660 llvm::Value *PromotedWidthMinusOne = 3661 (RHS == Ops.RHS) ? WidthMinusOne 3662 : GetWidthMinusOneValue(Ops.LHS, RHS); 3663 CGF.EmitBlock(CheckShiftBase); 3664 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3665 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3666 /*NUW*/ true, /*NSW*/ true), 3667 "shl.check"); 3668 if (CGF.getLangOpts().CPlusPlus) { 3669 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3670 // Under C++11's rules, shifting a 1 bit into the sign bit is 3671 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3672 // define signed left shifts, so we use the C99 and C++11 rules there). 3673 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3674 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3675 } 3676 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3677 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3678 CGF.EmitBlock(Cont); 3679 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3680 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3681 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3682 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 3683 } 3684 3685 assert(!Checks.empty()); 3686 EmitBinOpCheck(Checks, Ops); 3687 } 3688 3689 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3690 } 3691 3692 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3693 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3694 // RHS to the same size as the LHS. 3695 Value *RHS = Ops.RHS; 3696 if (Ops.LHS->getType() != RHS->getType()) 3697 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3698 3699 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3700 if (CGF.getLangOpts().OpenCL) 3701 RHS = 3702 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 3703 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3704 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3705 CodeGenFunction::SanitizerScope SanScope(&CGF); 3706 llvm::Value *Valid = 3707 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3708 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3709 } 3710 3711 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3712 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3713 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3714 } 3715 3716 enum IntrinsicType { VCMPEQ, VCMPGT }; 3717 // return corresponding comparison intrinsic for given vector type 3718 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3719 BuiltinType::Kind ElemKind) { 3720 switch (ElemKind) { 3721 default: llvm_unreachable("unexpected element type"); 3722 case BuiltinType::Char_U: 3723 case BuiltinType::UChar: 3724 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3725 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3726 case BuiltinType::Char_S: 3727 case BuiltinType::SChar: 3728 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3729 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3730 case BuiltinType::UShort: 3731 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3732 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3733 case BuiltinType::Short: 3734 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3735 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3736 case BuiltinType::UInt: 3737 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3738 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3739 case BuiltinType::Int: 3740 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3741 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3742 case BuiltinType::ULong: 3743 case BuiltinType::ULongLong: 3744 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3745 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 3746 case BuiltinType::Long: 3747 case BuiltinType::LongLong: 3748 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3749 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 3750 case BuiltinType::Float: 3751 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3752 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3753 case BuiltinType::Double: 3754 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 3755 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 3756 } 3757 } 3758 3759 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3760 llvm::CmpInst::Predicate UICmpOpc, 3761 llvm::CmpInst::Predicate SICmpOpc, 3762 llvm::CmpInst::Predicate FCmpOpc) { 3763 TestAndClearIgnoreResultAssign(); 3764 Value *Result; 3765 QualType LHSTy = E->getLHS()->getType(); 3766 QualType RHSTy = E->getRHS()->getType(); 3767 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3768 assert(E->getOpcode() == BO_EQ || 3769 E->getOpcode() == BO_NE); 3770 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3771 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3772 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3773 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3774 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3775 BinOpInfo BOInfo = EmitBinOps(E); 3776 Value *LHS = BOInfo.LHS; 3777 Value *RHS = BOInfo.RHS; 3778 3779 // If AltiVec, the comparison results in a numeric type, so we use 3780 // intrinsics comparing vectors and giving 0 or 1 as a result 3781 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3782 // constants for mapping CR6 register bits to predicate result 3783 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3784 3785 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3786 3787 // in several cases vector arguments order will be reversed 3788 Value *FirstVecArg = LHS, 3789 *SecondVecArg = RHS; 3790 3791 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 3792 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 3793 BuiltinType::Kind ElementKind = BTy->getKind(); 3794 3795 switch(E->getOpcode()) { 3796 default: llvm_unreachable("is not a comparison operation"); 3797 case BO_EQ: 3798 CR6 = CR6_LT; 3799 ID = GetIntrinsic(VCMPEQ, ElementKind); 3800 break; 3801 case BO_NE: 3802 CR6 = CR6_EQ; 3803 ID = GetIntrinsic(VCMPEQ, ElementKind); 3804 break; 3805 case BO_LT: 3806 CR6 = CR6_LT; 3807 ID = GetIntrinsic(VCMPGT, ElementKind); 3808 std::swap(FirstVecArg, SecondVecArg); 3809 break; 3810 case BO_GT: 3811 CR6 = CR6_LT; 3812 ID = GetIntrinsic(VCMPGT, ElementKind); 3813 break; 3814 case BO_LE: 3815 if (ElementKind == BuiltinType::Float) { 3816 CR6 = CR6_LT; 3817 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3818 std::swap(FirstVecArg, SecondVecArg); 3819 } 3820 else { 3821 CR6 = CR6_EQ; 3822 ID = GetIntrinsic(VCMPGT, ElementKind); 3823 } 3824 break; 3825 case BO_GE: 3826 if (ElementKind == BuiltinType::Float) { 3827 CR6 = CR6_LT; 3828 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3829 } 3830 else { 3831 CR6 = CR6_EQ; 3832 ID = GetIntrinsic(VCMPGT, ElementKind); 3833 std::swap(FirstVecArg, SecondVecArg); 3834 } 3835 break; 3836 } 3837 3838 Value *CR6Param = Builder.getInt32(CR6); 3839 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 3840 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 3841 3842 // The result type of intrinsic may not be same as E->getType(). 3843 // If E->getType() is not BoolTy, EmitScalarConversion will do the 3844 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 3845 // do nothing, if ResultTy is not i1 at the same time, it will cause 3846 // crash later. 3847 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 3848 if (ResultTy->getBitWidth() > 1 && 3849 E->getType() == CGF.getContext().BoolTy) 3850 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 3851 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3852 E->getExprLoc()); 3853 } 3854 3855 if (BOInfo.isFixedPointBinOp()) { 3856 Result = EmitFixedPointBinOp(BOInfo); 3857 } else if (LHS->getType()->isFPOrFPVectorTy()) { 3858 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 3859 } else if (LHSTy->hasSignedIntegerRepresentation()) { 3860 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 3861 } else { 3862 // Unsigned integers and pointers. 3863 3864 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 3865 !isa<llvm::ConstantPointerNull>(LHS) && 3866 !isa<llvm::ConstantPointerNull>(RHS)) { 3867 3868 // Dynamic information is required to be stripped for comparisons, 3869 // because it could leak the dynamic information. Based on comparisons 3870 // of pointers to dynamic objects, the optimizer can replace one pointer 3871 // with another, which might be incorrect in presence of invariant 3872 // groups. Comparison with null is safe because null does not carry any 3873 // dynamic information. 3874 if (LHSTy.mayBeDynamicClass()) 3875 LHS = Builder.CreateStripInvariantGroup(LHS); 3876 if (RHSTy.mayBeDynamicClass()) 3877 RHS = Builder.CreateStripInvariantGroup(RHS); 3878 } 3879 3880 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 3881 } 3882 3883 // If this is a vector comparison, sign extend the result to the appropriate 3884 // vector integer type and return it (don't convert to bool). 3885 if (LHSTy->isVectorType()) 3886 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 3887 3888 } else { 3889 // Complex Comparison: can only be an equality comparison. 3890 CodeGenFunction::ComplexPairTy LHS, RHS; 3891 QualType CETy; 3892 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 3893 LHS = CGF.EmitComplexExpr(E->getLHS()); 3894 CETy = CTy->getElementType(); 3895 } else { 3896 LHS.first = Visit(E->getLHS()); 3897 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 3898 CETy = LHSTy; 3899 } 3900 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 3901 RHS = CGF.EmitComplexExpr(E->getRHS()); 3902 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 3903 CTy->getElementType()) && 3904 "The element types must always match."); 3905 (void)CTy; 3906 } else { 3907 RHS.first = Visit(E->getRHS()); 3908 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 3909 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 3910 "The element types must always match."); 3911 } 3912 3913 Value *ResultR, *ResultI; 3914 if (CETy->isRealFloatingType()) { 3915 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 3916 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 3917 } else { 3918 // Complex comparisons can only be equality comparisons. As such, signed 3919 // and unsigned opcodes are the same. 3920 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 3921 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 3922 } 3923 3924 if (E->getOpcode() == BO_EQ) { 3925 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 3926 } else { 3927 assert(E->getOpcode() == BO_NE && 3928 "Complex comparison other than == or != ?"); 3929 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 3930 } 3931 } 3932 3933 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3934 E->getExprLoc()); 3935 } 3936 3937 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 3938 bool Ignore = TestAndClearIgnoreResultAssign(); 3939 3940 Value *RHS; 3941 LValue LHS; 3942 3943 switch (E->getLHS()->getType().getObjCLifetime()) { 3944 case Qualifiers::OCL_Strong: 3945 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 3946 break; 3947 3948 case Qualifiers::OCL_Autoreleasing: 3949 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3950 break; 3951 3952 case Qualifiers::OCL_ExplicitNone: 3953 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 3954 break; 3955 3956 case Qualifiers::OCL_Weak: 3957 RHS = Visit(E->getRHS()); 3958 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3959 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3960 break; 3961 3962 case Qualifiers::OCL_None: 3963 // __block variables need to have the rhs evaluated first, plus 3964 // this should improve codegen just a little. 3965 RHS = Visit(E->getRHS()); 3966 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3967 3968 // Store the value into the LHS. Bit-fields are handled specially 3969 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3970 // 'An assignment expression has the value of the left operand after 3971 // the assignment...'. 3972 if (LHS.isBitField()) { 3973 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3974 } else { 3975 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 3976 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3977 } 3978 } 3979 3980 // If the result is clearly ignored, return now. 3981 if (Ignore) 3982 return nullptr; 3983 3984 // The result of an assignment in C is the assigned r-value. 3985 if (!CGF.getLangOpts().CPlusPlus) 3986 return RHS; 3987 3988 // If the lvalue is non-volatile, return the computed value of the assignment. 3989 if (!LHS.isVolatileQualified()) 3990 return RHS; 3991 3992 // Otherwise, reload the value. 3993 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3994 } 3995 3996 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3997 // Perform vector logical and on comparisons with zero vectors. 3998 if (E->getType()->isVectorType()) { 3999 CGF.incrementProfileCounter(E); 4000 4001 Value *LHS = Visit(E->getLHS()); 4002 Value *RHS = Visit(E->getRHS()); 4003 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4004 if (LHS->getType()->isFPOrFPVectorTy()) { 4005 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4006 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4007 } else { 4008 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4009 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4010 } 4011 Value *And = Builder.CreateAnd(LHS, RHS); 4012 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 4013 } 4014 4015 llvm::Type *ResTy = ConvertType(E->getType()); 4016 4017 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 4018 // If we have 1 && X, just emit X without inserting the control flow. 4019 bool LHSCondVal; 4020 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4021 if (LHSCondVal) { // If we have 1 && X, just emit X. 4022 CGF.incrementProfileCounter(E); 4023 4024 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4025 // ZExt result to int or bool. 4026 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 4027 } 4028 4029 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 4030 if (!CGF.ContainsLabel(E->getRHS())) 4031 return llvm::Constant::getNullValue(ResTy); 4032 } 4033 4034 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 4035 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 4036 4037 CodeGenFunction::ConditionalEvaluation eval(CGF); 4038 4039 // Branch on the LHS first. If it is false, go to the failure (cont) block. 4040 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 4041 CGF.getProfileCount(E->getRHS())); 4042 4043 // Any edges into the ContBlock are now from an (indeterminate number of) 4044 // edges from this first condition. All of these values will be false. Start 4045 // setting up the PHI node in the Cont Block for this. 4046 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4047 "", ContBlock); 4048 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4049 PI != PE; ++PI) 4050 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 4051 4052 eval.begin(CGF); 4053 CGF.EmitBlock(RHSBlock); 4054 CGF.incrementProfileCounter(E); 4055 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4056 eval.end(CGF); 4057 4058 // Reaquire the RHS block, as there may be subblocks inserted. 4059 RHSBlock = Builder.GetInsertBlock(); 4060 4061 // Emit an unconditional branch from this block to ContBlock. 4062 { 4063 // There is no need to emit line number for unconditional branch. 4064 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4065 CGF.EmitBlock(ContBlock); 4066 } 4067 // Insert an entry into the phi node for the edge with the value of RHSCond. 4068 PN->addIncoming(RHSCond, RHSBlock); 4069 4070 // Artificial location to preserve the scope information 4071 { 4072 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 4073 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 4074 } 4075 4076 // ZExt result to int. 4077 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 4078 } 4079 4080 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 4081 // Perform vector logical or on comparisons with zero vectors. 4082 if (E->getType()->isVectorType()) { 4083 CGF.incrementProfileCounter(E); 4084 4085 Value *LHS = Visit(E->getLHS()); 4086 Value *RHS = Visit(E->getRHS()); 4087 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4088 if (LHS->getType()->isFPOrFPVectorTy()) { 4089 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4090 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4091 } else { 4092 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4093 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4094 } 4095 Value *Or = Builder.CreateOr(LHS, RHS); 4096 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 4097 } 4098 4099 llvm::Type *ResTy = ConvertType(E->getType()); 4100 4101 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 4102 // If we have 0 || X, just emit X without inserting the control flow. 4103 bool LHSCondVal; 4104 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4105 if (!LHSCondVal) { // If we have 0 || X, just emit X. 4106 CGF.incrementProfileCounter(E); 4107 4108 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4109 // ZExt result to int or bool. 4110 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 4111 } 4112 4113 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 4114 if (!CGF.ContainsLabel(E->getRHS())) 4115 return llvm::ConstantInt::get(ResTy, 1); 4116 } 4117 4118 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 4119 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 4120 4121 CodeGenFunction::ConditionalEvaluation eval(CGF); 4122 4123 // Branch on the LHS first. If it is true, go to the success (cont) block. 4124 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 4125 CGF.getCurrentProfileCount() - 4126 CGF.getProfileCount(E->getRHS())); 4127 4128 // Any edges into the ContBlock are now from an (indeterminate number of) 4129 // edges from this first condition. All of these values will be true. Start 4130 // setting up the PHI node in the Cont Block for this. 4131 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4132 "", ContBlock); 4133 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4134 PI != PE; ++PI) 4135 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 4136 4137 eval.begin(CGF); 4138 4139 // Emit the RHS condition as a bool value. 4140 CGF.EmitBlock(RHSBlock); 4141 CGF.incrementProfileCounter(E); 4142 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4143 4144 eval.end(CGF); 4145 4146 // Reaquire the RHS block, as there may be subblocks inserted. 4147 RHSBlock = Builder.GetInsertBlock(); 4148 4149 // Emit an unconditional branch from this block to ContBlock. Insert an entry 4150 // into the phi node for the edge with the value of RHSCond. 4151 CGF.EmitBlock(ContBlock); 4152 PN->addIncoming(RHSCond, RHSBlock); 4153 4154 // ZExt result to int. 4155 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 4156 } 4157 4158 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 4159 CGF.EmitIgnoredExpr(E->getLHS()); 4160 CGF.EnsureInsertPoint(); 4161 return Visit(E->getRHS()); 4162 } 4163 4164 //===----------------------------------------------------------------------===// 4165 // Other Operators 4166 //===----------------------------------------------------------------------===// 4167 4168 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 4169 /// expression is cheap enough and side-effect-free enough to evaluate 4170 /// unconditionally instead of conditionally. This is used to convert control 4171 /// flow into selects in some cases. 4172 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 4173 CodeGenFunction &CGF) { 4174 // Anything that is an integer or floating point constant is fine. 4175 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 4176 4177 // Even non-volatile automatic variables can't be evaluated unconditionally. 4178 // Referencing a thread_local may cause non-trivial initialization work to 4179 // occur. If we're inside a lambda and one of the variables is from the scope 4180 // outside the lambda, that function may have returned already. Reading its 4181 // locals is a bad idea. Also, these reads may introduce races there didn't 4182 // exist in the source-level program. 4183 } 4184 4185 4186 Value *ScalarExprEmitter:: 4187 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 4188 TestAndClearIgnoreResultAssign(); 4189 4190 // Bind the common expression if necessary. 4191 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4192 4193 Expr *condExpr = E->getCond(); 4194 Expr *lhsExpr = E->getTrueExpr(); 4195 Expr *rhsExpr = E->getFalseExpr(); 4196 4197 // If the condition constant folds and can be elided, try to avoid emitting 4198 // the condition and the dead arm. 4199 bool CondExprBool; 4200 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4201 Expr *live = lhsExpr, *dead = rhsExpr; 4202 if (!CondExprBool) std::swap(live, dead); 4203 4204 // If the dead side doesn't have labels we need, just emit the Live part. 4205 if (!CGF.ContainsLabel(dead)) { 4206 if (CondExprBool) 4207 CGF.incrementProfileCounter(E); 4208 Value *Result = Visit(live); 4209 4210 // If the live part is a throw expression, it acts like it has a void 4211 // type, so evaluating it returns a null Value*. However, a conditional 4212 // with non-void type must return a non-null Value*. 4213 if (!Result && !E->getType()->isVoidType()) 4214 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4215 4216 return Result; 4217 } 4218 } 4219 4220 // OpenCL: If the condition is a vector, we can treat this condition like 4221 // the select function. 4222 if (CGF.getLangOpts().OpenCL 4223 && condExpr->getType()->isVectorType()) { 4224 CGF.incrementProfileCounter(E); 4225 4226 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4227 llvm::Value *LHS = Visit(lhsExpr); 4228 llvm::Value *RHS = Visit(rhsExpr); 4229 4230 llvm::Type *condType = ConvertType(condExpr->getType()); 4231 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 4232 4233 unsigned numElem = vecTy->getNumElements(); 4234 llvm::Type *elemType = vecTy->getElementType(); 4235 4236 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4237 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4238 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 4239 llvm::VectorType::get(elemType, 4240 numElem), 4241 "sext"); 4242 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4243 4244 // Cast float to int to perform ANDs if necessary. 4245 llvm::Value *RHSTmp = RHS; 4246 llvm::Value *LHSTmp = LHS; 4247 bool wasCast = false; 4248 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4249 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4250 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4251 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4252 wasCast = true; 4253 } 4254 4255 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4256 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4257 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4258 if (wasCast) 4259 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4260 4261 return tmp5; 4262 } 4263 4264 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4265 // select instead of as control flow. We can only do this if it is cheap and 4266 // safe to evaluate the LHS and RHS unconditionally. 4267 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4268 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4269 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4270 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4271 4272 CGF.incrementProfileCounter(E, StepV); 4273 4274 llvm::Value *LHS = Visit(lhsExpr); 4275 llvm::Value *RHS = Visit(rhsExpr); 4276 if (!LHS) { 4277 // If the conditional has void type, make sure we return a null Value*. 4278 assert(!RHS && "LHS and RHS types must match"); 4279 return nullptr; 4280 } 4281 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4282 } 4283 4284 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4285 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4286 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4287 4288 CodeGenFunction::ConditionalEvaluation eval(CGF); 4289 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4290 CGF.getProfileCount(lhsExpr)); 4291 4292 CGF.EmitBlock(LHSBlock); 4293 CGF.incrementProfileCounter(E); 4294 eval.begin(CGF); 4295 Value *LHS = Visit(lhsExpr); 4296 eval.end(CGF); 4297 4298 LHSBlock = Builder.GetInsertBlock(); 4299 Builder.CreateBr(ContBlock); 4300 4301 CGF.EmitBlock(RHSBlock); 4302 eval.begin(CGF); 4303 Value *RHS = Visit(rhsExpr); 4304 eval.end(CGF); 4305 4306 RHSBlock = Builder.GetInsertBlock(); 4307 CGF.EmitBlock(ContBlock); 4308 4309 // If the LHS or RHS is a throw expression, it will be legitimately null. 4310 if (!LHS) 4311 return RHS; 4312 if (!RHS) 4313 return LHS; 4314 4315 // Create a PHI node for the real part. 4316 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4317 PN->addIncoming(LHS, LHSBlock); 4318 PN->addIncoming(RHS, RHSBlock); 4319 return PN; 4320 } 4321 4322 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4323 return Visit(E->getChosenSubExpr()); 4324 } 4325 4326 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4327 QualType Ty = VE->getType(); 4328 4329 if (Ty->isVariablyModifiedType()) 4330 CGF.EmitVariablyModifiedType(Ty); 4331 4332 Address ArgValue = Address::invalid(); 4333 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4334 4335 llvm::Type *ArgTy = ConvertType(VE->getType()); 4336 4337 // If EmitVAArg fails, emit an error. 4338 if (!ArgPtr.isValid()) { 4339 CGF.ErrorUnsupported(VE, "va_arg expression"); 4340 return llvm::UndefValue::get(ArgTy); 4341 } 4342 4343 // FIXME Volatility. 4344 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4345 4346 // If EmitVAArg promoted the type, we must truncate it. 4347 if (ArgTy != Val->getType()) { 4348 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4349 Val = Builder.CreateIntToPtr(Val, ArgTy); 4350 else 4351 Val = Builder.CreateTrunc(Val, ArgTy); 4352 } 4353 4354 return Val; 4355 } 4356 4357 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4358 return CGF.EmitBlockLiteral(block); 4359 } 4360 4361 // Convert a vec3 to vec4, or vice versa. 4362 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4363 Value *Src, unsigned NumElementsDst) { 4364 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 4365 SmallVector<llvm::Constant*, 4> Args; 4366 Args.push_back(Builder.getInt32(0)); 4367 Args.push_back(Builder.getInt32(1)); 4368 Args.push_back(Builder.getInt32(2)); 4369 if (NumElementsDst == 4) 4370 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 4371 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 4372 return Builder.CreateShuffleVector(Src, UnV, Mask); 4373 } 4374 4375 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4376 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4377 // but could be scalar or vectors of different lengths, and either can be 4378 // pointer. 4379 // There are 4 cases: 4380 // 1. non-pointer -> non-pointer : needs 1 bitcast 4381 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4382 // 3. pointer -> non-pointer 4383 // a) pointer -> intptr_t : needs 1 ptrtoint 4384 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4385 // 4. non-pointer -> pointer 4386 // a) intptr_t -> pointer : needs 1 inttoptr 4387 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4388 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4389 // allow casting directly between pointer types and non-integer non-pointer 4390 // types. 4391 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4392 const llvm::DataLayout &DL, 4393 Value *Src, llvm::Type *DstTy, 4394 StringRef Name = "") { 4395 auto SrcTy = Src->getType(); 4396 4397 // Case 1. 4398 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4399 return Builder.CreateBitCast(Src, DstTy, Name); 4400 4401 // Case 2. 4402 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4403 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4404 4405 // Case 3. 4406 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4407 // Case 3b. 4408 if (!DstTy->isIntegerTy()) 4409 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4410 // Cases 3a and 3b. 4411 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4412 } 4413 4414 // Case 4b. 4415 if (!SrcTy->isIntegerTy()) 4416 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4417 // Cases 4a and 4b. 4418 return Builder.CreateIntToPtr(Src, DstTy, Name); 4419 } 4420 4421 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4422 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4423 llvm::Type *DstTy = ConvertType(E->getType()); 4424 4425 llvm::Type *SrcTy = Src->getType(); 4426 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 4427 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 4428 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 4429 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 4430 4431 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4432 // vector to get a vec4, then a bitcast if the target type is different. 4433 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4434 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4435 4436 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4437 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4438 DstTy); 4439 } 4440 4441 Src->setName("astype"); 4442 return Src; 4443 } 4444 4445 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4446 // to vec4 if the original type is not vec4, then a shuffle vector to 4447 // get a vec3. 4448 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4449 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4450 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 4451 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4452 Vec4Ty); 4453 } 4454 4455 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4456 Src->setName("astype"); 4457 return Src; 4458 } 4459 4460 return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4461 Src, DstTy, "astype"); 4462 } 4463 4464 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4465 return CGF.EmitAtomicExpr(E).getScalarVal(); 4466 } 4467 4468 //===----------------------------------------------------------------------===// 4469 // Entry Point into this File 4470 //===----------------------------------------------------------------------===// 4471 4472 /// Emit the computation of the specified expression of scalar type, ignoring 4473 /// the result. 4474 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4475 assert(E && hasScalarEvaluationKind(E->getType()) && 4476 "Invalid scalar expression to emit"); 4477 4478 return ScalarExprEmitter(*this, IgnoreResultAssign) 4479 .Visit(const_cast<Expr *>(E)); 4480 } 4481 4482 /// Emit a conversion from the specified type to the specified destination type, 4483 /// both of which are LLVM scalar types. 4484 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4485 QualType DstTy, 4486 SourceLocation Loc) { 4487 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4488 "Invalid scalar expression to emit"); 4489 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4490 } 4491 4492 /// Emit a conversion from the specified complex type to the specified 4493 /// destination type, where the destination type is an LLVM scalar type. 4494 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4495 QualType SrcTy, 4496 QualType DstTy, 4497 SourceLocation Loc) { 4498 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4499 "Invalid complex -> scalar conversion"); 4500 return ScalarExprEmitter(*this) 4501 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4502 } 4503 4504 4505 llvm::Value *CodeGenFunction:: 4506 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4507 bool isInc, bool isPre) { 4508 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4509 } 4510 4511 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4512 // object->isa or (*object).isa 4513 // Generate code as for: *(Class*)object 4514 4515 Expr *BaseExpr = E->getBase(); 4516 Address Addr = Address::invalid(); 4517 if (BaseExpr->isRValue()) { 4518 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4519 } else { 4520 Addr = EmitLValue(BaseExpr).getAddress(); 4521 } 4522 4523 // Cast the address to Class*. 4524 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4525 return MakeAddrLValue(Addr, E->getType()); 4526 } 4527 4528 4529 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4530 const CompoundAssignOperator *E) { 4531 ScalarExprEmitter Scalar(*this); 4532 Value *Result = nullptr; 4533 switch (E->getOpcode()) { 4534 #define COMPOUND_OP(Op) \ 4535 case BO_##Op##Assign: \ 4536 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4537 Result) 4538 COMPOUND_OP(Mul); 4539 COMPOUND_OP(Div); 4540 COMPOUND_OP(Rem); 4541 COMPOUND_OP(Add); 4542 COMPOUND_OP(Sub); 4543 COMPOUND_OP(Shl); 4544 COMPOUND_OP(Shr); 4545 COMPOUND_OP(And); 4546 COMPOUND_OP(Xor); 4547 COMPOUND_OP(Or); 4548 #undef COMPOUND_OP 4549 4550 case BO_PtrMemD: 4551 case BO_PtrMemI: 4552 case BO_Mul: 4553 case BO_Div: 4554 case BO_Rem: 4555 case BO_Add: 4556 case BO_Sub: 4557 case BO_Shl: 4558 case BO_Shr: 4559 case BO_LT: 4560 case BO_GT: 4561 case BO_LE: 4562 case BO_GE: 4563 case BO_EQ: 4564 case BO_NE: 4565 case BO_Cmp: 4566 case BO_And: 4567 case BO_Xor: 4568 case BO_Or: 4569 case BO_LAnd: 4570 case BO_LOr: 4571 case BO_Assign: 4572 case BO_Comma: 4573 llvm_unreachable("Not valid compound assignment operators"); 4574 } 4575 4576 llvm_unreachable("Unhandled compound assignment operator"); 4577 } 4578 4579 Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, 4580 ArrayRef<Value *> IdxList, 4581 bool SignedIndices, 4582 bool IsSubtraction, 4583 SourceLocation Loc, 4584 const Twine &Name) { 4585 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 4586 4587 // If the pointer overflow sanitizer isn't enabled, do nothing. 4588 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 4589 return GEPVal; 4590 4591 // If the GEP has already been reduced to a constant, leave it be. 4592 if (isa<llvm::Constant>(GEPVal)) 4593 return GEPVal; 4594 4595 // Only check for overflows in the default address space. 4596 if (GEPVal->getType()->getPointerAddressSpace()) 4597 return GEPVal; 4598 4599 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4600 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4601 4602 SanitizerScope SanScope(this); 4603 auto &VMContext = getLLVMContext(); 4604 const auto &DL = CGM.getDataLayout(); 4605 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4606 4607 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4608 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4609 auto *SAddIntrinsic = 4610 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4611 auto *SMulIntrinsic = 4612 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4613 4614 // The total (signed) byte offset for the GEP. 4615 llvm::Value *TotalOffset = nullptr; 4616 // The offset overflow flag - true if the total offset overflows. 4617 llvm::Value *OffsetOverflows = Builder.getFalse(); 4618 4619 /// Return the result of the given binary operation. 4620 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 4621 llvm::Value *RHS) -> llvm::Value * { 4622 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 4623 4624 // If the operands are constants, return a constant result. 4625 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 4626 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 4627 llvm::APInt N; 4628 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 4629 /*Signed=*/true, N); 4630 if (HasOverflow) 4631 OffsetOverflows = Builder.getTrue(); 4632 return llvm::ConstantInt::get(VMContext, N); 4633 } 4634 } 4635 4636 // Otherwise, compute the result with checked arithmetic. 4637 auto *ResultAndOverflow = Builder.CreateCall( 4638 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 4639 OffsetOverflows = Builder.CreateOr( 4640 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 4641 return Builder.CreateExtractValue(ResultAndOverflow, 0); 4642 }; 4643 4644 // Determine the total byte offset by looking at each GEP operand. 4645 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 4646 GTI != GTE; ++GTI) { 4647 llvm::Value *LocalOffset; 4648 auto *Index = GTI.getOperand(); 4649 // Compute the local offset contributed by this indexing step: 4650 if (auto *STy = GTI.getStructTypeOrNull()) { 4651 // For struct indexing, the local offset is the byte position of the 4652 // specified field. 4653 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 4654 LocalOffset = llvm::ConstantInt::get( 4655 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 4656 } else { 4657 // Otherwise this is array-like indexing. The local offset is the index 4658 // multiplied by the element size. 4659 auto *ElementSize = llvm::ConstantInt::get( 4660 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 4661 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 4662 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 4663 } 4664 4665 // If this is the first offset, set it as the total offset. Otherwise, add 4666 // the local offset into the running total. 4667 if (!TotalOffset || TotalOffset == Zero) 4668 TotalOffset = LocalOffset; 4669 else 4670 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 4671 } 4672 4673 // Common case: if the total offset is zero, don't emit a check. 4674 if (TotalOffset == Zero) 4675 return GEPVal; 4676 4677 // Now that we've computed the total offset, add it to the base pointer (with 4678 // wrapping semantics). 4679 auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy); 4680 auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset); 4681 4682 // The GEP is valid if: 4683 // 1) The total offset doesn't overflow, and 4684 // 2) The sign of the difference between the computed address and the base 4685 // pointer matches the sign of the total offset. 4686 llvm::Value *ValidGEP; 4687 auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows); 4688 if (SignedIndices) { 4689 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4690 auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero); 4691 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 4692 ValidGEP = Builder.CreateAnd( 4693 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid), 4694 NoOffsetOverflow); 4695 } else if (!SignedIndices && !IsSubtraction) { 4696 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4697 ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow); 4698 } else { 4699 auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr); 4700 ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow); 4701 } 4702 4703 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 4704 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 4705 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 4706 EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow), 4707 SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 4708 4709 return GEPVal; 4710 } 4711