1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/APFixedPoint.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/FixedPointBuilder.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/IntrinsicsPowerPC.h"
41 #include "llvm/IR/MatrixBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include <cstdarg>
44 
45 using namespace clang;
46 using namespace CodeGen;
47 using llvm::Value;
48 
49 //===----------------------------------------------------------------------===//
50 //                         Scalar Expression Emitter
51 //===----------------------------------------------------------------------===//
52 
53 namespace {
54 
55 /// Determine whether the given binary operation may overflow.
56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
58 /// the returned overflow check is precise. The returned value is 'true' for
59 /// all other opcodes, to be conservative.
60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
61                              BinaryOperator::Opcode Opcode, bool Signed,
62                              llvm::APInt &Result) {
63   // Assume overflow is possible, unless we can prove otherwise.
64   bool Overflow = true;
65   const auto &LHSAP = LHS->getValue();
66   const auto &RHSAP = RHS->getValue();
67   if (Opcode == BO_Add) {
68     if (Signed)
69       Result = LHSAP.sadd_ov(RHSAP, Overflow);
70     else
71       Result = LHSAP.uadd_ov(RHSAP, Overflow);
72   } else if (Opcode == BO_Sub) {
73     if (Signed)
74       Result = LHSAP.ssub_ov(RHSAP, Overflow);
75     else
76       Result = LHSAP.usub_ov(RHSAP, Overflow);
77   } else if (Opcode == BO_Mul) {
78     if (Signed)
79       Result = LHSAP.smul_ov(RHSAP, Overflow);
80     else
81       Result = LHSAP.umul_ov(RHSAP, Overflow);
82   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
83     if (Signed && !RHS->isZero())
84       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
85     else
86       return false;
87   }
88   return Overflow;
89 }
90 
91 struct BinOpInfo {
92   Value *LHS;
93   Value *RHS;
94   QualType Ty;  // Computation Type.
95   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
96   FPOptions FPFeatures;
97   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
98 
99   /// Check if the binop can result in integer overflow.
100   bool mayHaveIntegerOverflow() const {
101     // Without constant input, we can't rule out overflow.
102     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
103     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
104     if (!LHSCI || !RHSCI)
105       return true;
106 
107     llvm::APInt Result;
108     return ::mayHaveIntegerOverflow(
109         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
110   }
111 
112   /// Check if the binop computes a division or a remainder.
113   bool isDivremOp() const {
114     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
115            Opcode == BO_RemAssign;
116   }
117 
118   /// Check if the binop can result in an integer division by zero.
119   bool mayHaveIntegerDivisionByZero() const {
120     if (isDivremOp())
121       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
122         return CI->isZero();
123     return true;
124   }
125 
126   /// Check if the binop can result in a float division by zero.
127   bool mayHaveFloatDivisionByZero() const {
128     if (isDivremOp())
129       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
130         return CFP->isZero();
131     return true;
132   }
133 
134   /// Check if at least one operand is a fixed point type. In such cases, this
135   /// operation did not follow usual arithmetic conversion and both operands
136   /// might not be of the same type.
137   bool isFixedPointOp() const {
138     // We cannot simply check the result type since comparison operations return
139     // an int.
140     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
141       QualType LHSType = BinOp->getLHS()->getType();
142       QualType RHSType = BinOp->getRHS()->getType();
143       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
144     }
145     if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
146       return UnOp->getSubExpr()->getType()->isFixedPointType();
147     return false;
148   }
149 };
150 
151 static bool MustVisitNullValue(const Expr *E) {
152   // If a null pointer expression's type is the C++0x nullptr_t, then
153   // it's not necessarily a simple constant and it must be evaluated
154   // for its potential side effects.
155   return E->getType()->isNullPtrType();
156 }
157 
158 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
159 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
160                                                         const Expr *E) {
161   const Expr *Base = E->IgnoreImpCasts();
162   if (E == Base)
163     return llvm::None;
164 
165   QualType BaseTy = Base->getType();
166   if (!BaseTy->isPromotableIntegerType() ||
167       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
168     return llvm::None;
169 
170   return BaseTy;
171 }
172 
173 /// Check if \p E is a widened promoted integer.
174 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
175   return getUnwidenedIntegerType(Ctx, E).hasValue();
176 }
177 
178 /// Check if we can skip the overflow check for \p Op.
179 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
180   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
181          "Expected a unary or binary operator");
182 
183   // If the binop has constant inputs and we can prove there is no overflow,
184   // we can elide the overflow check.
185   if (!Op.mayHaveIntegerOverflow())
186     return true;
187 
188   // If a unary op has a widened operand, the op cannot overflow.
189   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
190     return !UO->canOverflow();
191 
192   // We usually don't need overflow checks for binops with widened operands.
193   // Multiplication with promoted unsigned operands is a special case.
194   const auto *BO = cast<BinaryOperator>(Op.E);
195   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
196   if (!OptionalLHSTy)
197     return false;
198 
199   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
200   if (!OptionalRHSTy)
201     return false;
202 
203   QualType LHSTy = *OptionalLHSTy;
204   QualType RHSTy = *OptionalRHSTy;
205 
206   // This is the simple case: binops without unsigned multiplication, and with
207   // widened operands. No overflow check is needed here.
208   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
209       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
210     return true;
211 
212   // For unsigned multiplication the overflow check can be elided if either one
213   // of the unpromoted types are less than half the size of the promoted type.
214   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
215   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
216          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
217 }
218 
219 class ScalarExprEmitter
220   : public StmtVisitor<ScalarExprEmitter, Value*> {
221   CodeGenFunction &CGF;
222   CGBuilderTy &Builder;
223   bool IgnoreResultAssign;
224   llvm::LLVMContext &VMContext;
225 public:
226 
227   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
228     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
229       VMContext(cgf.getLLVMContext()) {
230   }
231 
232   //===--------------------------------------------------------------------===//
233   //                               Utilities
234   //===--------------------------------------------------------------------===//
235 
236   bool TestAndClearIgnoreResultAssign() {
237     bool I = IgnoreResultAssign;
238     IgnoreResultAssign = false;
239     return I;
240   }
241 
242   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
243   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
244   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
245     return CGF.EmitCheckedLValue(E, TCK);
246   }
247 
248   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
249                       const BinOpInfo &Info);
250 
251   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
252     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
253   }
254 
255   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
256     const AlignValueAttr *AVAttr = nullptr;
257     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
258       const ValueDecl *VD = DRE->getDecl();
259 
260       if (VD->getType()->isReferenceType()) {
261         if (const auto *TTy =
262             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
263           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
264       } else {
265         // Assumptions for function parameters are emitted at the start of the
266         // function, so there is no need to repeat that here,
267         // unless the alignment-assumption sanitizer is enabled,
268         // then we prefer the assumption over alignment attribute
269         // on IR function param.
270         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
271           return;
272 
273         AVAttr = VD->getAttr<AlignValueAttr>();
274       }
275     }
276 
277     if (!AVAttr)
278       if (const auto *TTy =
279           dyn_cast<TypedefType>(E->getType()))
280         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
281 
282     if (!AVAttr)
283       return;
284 
285     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
286     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
287     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
288   }
289 
290   /// EmitLoadOfLValue - Given an expression with complex type that represents a
291   /// value l-value, this method emits the address of the l-value, then loads
292   /// and returns the result.
293   Value *EmitLoadOfLValue(const Expr *E) {
294     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
295                                 E->getExprLoc());
296 
297     EmitLValueAlignmentAssumption(E, V);
298     return V;
299   }
300 
301   /// EmitConversionToBool - Convert the specified expression value to a
302   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
303   Value *EmitConversionToBool(Value *Src, QualType DstTy);
304 
305   /// Emit a check that a conversion from a floating-point type does not
306   /// overflow.
307   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
308                                 Value *Src, QualType SrcType, QualType DstType,
309                                 llvm::Type *DstTy, SourceLocation Loc);
310 
311   /// Known implicit conversion check kinds.
312   /// Keep in sync with the enum of the same name in ubsan_handlers.h
313   enum ImplicitConversionCheckKind : unsigned char {
314     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
315     ICCK_UnsignedIntegerTruncation = 1,
316     ICCK_SignedIntegerTruncation = 2,
317     ICCK_IntegerSignChange = 3,
318     ICCK_SignedIntegerTruncationOrSignChange = 4,
319   };
320 
321   /// Emit a check that an [implicit] truncation of an integer  does not
322   /// discard any bits. It is not UB, so we use the value after truncation.
323   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
324                                   QualType DstType, SourceLocation Loc);
325 
326   /// Emit a check that an [implicit] conversion of an integer does not change
327   /// the sign of the value. It is not UB, so we use the value after conversion.
328   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
329   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
330                                   QualType DstType, SourceLocation Loc);
331 
332   /// Emit a conversion from the specified type to the specified destination
333   /// type, both of which are LLVM scalar types.
334   struct ScalarConversionOpts {
335     bool TreatBooleanAsSigned;
336     bool EmitImplicitIntegerTruncationChecks;
337     bool EmitImplicitIntegerSignChangeChecks;
338 
339     ScalarConversionOpts()
340         : TreatBooleanAsSigned(false),
341           EmitImplicitIntegerTruncationChecks(false),
342           EmitImplicitIntegerSignChangeChecks(false) {}
343 
344     ScalarConversionOpts(clang::SanitizerSet SanOpts)
345         : TreatBooleanAsSigned(false),
346           EmitImplicitIntegerTruncationChecks(
347               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
348           EmitImplicitIntegerSignChangeChecks(
349               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
350   };
351   Value *
352   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
353                        SourceLocation Loc,
354                        ScalarConversionOpts Opts = ScalarConversionOpts());
355 
356   /// Convert between either a fixed point and other fixed point or fixed point
357   /// and an integer.
358   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
359                                   SourceLocation Loc);
360 
361   /// Emit a conversion from the specified complex type to the specified
362   /// destination type, where the destination type is an LLVM scalar type.
363   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
364                                        QualType SrcTy, QualType DstTy,
365                                        SourceLocation Loc);
366 
367   /// EmitNullValue - Emit a value that corresponds to null for the given type.
368   Value *EmitNullValue(QualType Ty);
369 
370   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
371   Value *EmitFloatToBoolConversion(Value *V) {
372     // Compare against 0.0 for fp scalars.
373     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
374     return Builder.CreateFCmpUNE(V, Zero, "tobool");
375   }
376 
377   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
378   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
379     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
380 
381     return Builder.CreateICmpNE(V, Zero, "tobool");
382   }
383 
384   Value *EmitIntToBoolConversion(Value *V) {
385     // Because of the type rules of C, we often end up computing a
386     // logical value, then zero extending it to int, then wanting it
387     // as a logical value again.  Optimize this common case.
388     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
389       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
390         Value *Result = ZI->getOperand(0);
391         // If there aren't any more uses, zap the instruction to save space.
392         // Note that there can be more uses, for example if this
393         // is the result of an assignment.
394         if (ZI->use_empty())
395           ZI->eraseFromParent();
396         return Result;
397       }
398     }
399 
400     return Builder.CreateIsNotNull(V, "tobool");
401   }
402 
403   //===--------------------------------------------------------------------===//
404   //                            Visitor Methods
405   //===--------------------------------------------------------------------===//
406 
407   Value *Visit(Expr *E) {
408     ApplyDebugLocation DL(CGF, E);
409     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
410   }
411 
412   Value *VisitStmt(Stmt *S) {
413     S->dump(llvm::errs(), CGF.getContext());
414     llvm_unreachable("Stmt can't have complex result type!");
415   }
416   Value *VisitExpr(Expr *S);
417 
418   Value *VisitConstantExpr(ConstantExpr *E) {
419     if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
420       if (E->isGLValue())
421         return CGF.Builder.CreateLoad(Address(
422             Result, CGF.getContext().getTypeAlignInChars(E->getType())));
423       return Result;
424     }
425     return Visit(E->getSubExpr());
426   }
427   Value *VisitParenExpr(ParenExpr *PE) {
428     return Visit(PE->getSubExpr());
429   }
430   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
431     return Visit(E->getReplacement());
432   }
433   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
434     return Visit(GE->getResultExpr());
435   }
436   Value *VisitCoawaitExpr(CoawaitExpr *S) {
437     return CGF.EmitCoawaitExpr(*S).getScalarVal();
438   }
439   Value *VisitCoyieldExpr(CoyieldExpr *S) {
440     return CGF.EmitCoyieldExpr(*S).getScalarVal();
441   }
442   Value *VisitUnaryCoawait(const UnaryOperator *E) {
443     return Visit(E->getSubExpr());
444   }
445 
446   // Leaves.
447   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
448     return Builder.getInt(E->getValue());
449   }
450   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
451     return Builder.getInt(E->getValue());
452   }
453   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
454     return llvm::ConstantFP::get(VMContext, E->getValue());
455   }
456   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
457     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
458   }
459   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
460     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
461   }
462   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
463     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
464   }
465   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
466     return EmitNullValue(E->getType());
467   }
468   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
469     return EmitNullValue(E->getType());
470   }
471   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
472   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
473   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
474     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
475     return Builder.CreateBitCast(V, ConvertType(E->getType()));
476   }
477 
478   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
479     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
480   }
481 
482   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
483     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
484   }
485 
486   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
487     if (E->isGLValue())
488       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
489                               E->getExprLoc());
490 
491     // Otherwise, assume the mapping is the scalar directly.
492     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
493   }
494 
495   // l-values.
496   Value *VisitDeclRefExpr(DeclRefExpr *E) {
497     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
498       return CGF.emitScalarConstant(Constant, E);
499     return EmitLoadOfLValue(E);
500   }
501 
502   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
503     return CGF.EmitObjCSelectorExpr(E);
504   }
505   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
506     return CGF.EmitObjCProtocolExpr(E);
507   }
508   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
509     return EmitLoadOfLValue(E);
510   }
511   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
512     if (E->getMethodDecl() &&
513         E->getMethodDecl()->getReturnType()->isReferenceType())
514       return EmitLoadOfLValue(E);
515     return CGF.EmitObjCMessageExpr(E).getScalarVal();
516   }
517 
518   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
519     LValue LV = CGF.EmitObjCIsaExpr(E);
520     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
521     return V;
522   }
523 
524   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
525     VersionTuple Version = E->getVersion();
526 
527     // If we're checking for a platform older than our minimum deployment
528     // target, we can fold the check away.
529     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
530       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
531 
532     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
533     llvm::Value *Args[] = {
534         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
535         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
536         llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
537     };
538 
539     return CGF.EmitBuiltinAvailable(Args);
540   }
541 
542   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
543   Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
544   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
545   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
546   Value *VisitMemberExpr(MemberExpr *E);
547   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
548   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
549     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
550     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
551     // literals aren't l-values in C++. We do so simply because that's the
552     // cleanest way to handle compound literals in C++.
553     // See the discussion here: https://reviews.llvm.org/D64464
554     return EmitLoadOfLValue(E);
555   }
556 
557   Value *VisitInitListExpr(InitListExpr *E);
558 
559   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
560     assert(CGF.getArrayInitIndex() &&
561            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
562     return CGF.getArrayInitIndex();
563   }
564 
565   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
566     return EmitNullValue(E->getType());
567   }
568   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
569     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
570     return VisitCastExpr(E);
571   }
572   Value *VisitCastExpr(CastExpr *E);
573 
574   Value *VisitCallExpr(const CallExpr *E) {
575     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
576       return EmitLoadOfLValue(E);
577 
578     Value *V = CGF.EmitCallExpr(E).getScalarVal();
579 
580     EmitLValueAlignmentAssumption(E, V);
581     return V;
582   }
583 
584   Value *VisitStmtExpr(const StmtExpr *E);
585 
586   // Unary Operators.
587   Value *VisitUnaryPostDec(const UnaryOperator *E) {
588     LValue LV = EmitLValue(E->getSubExpr());
589     return EmitScalarPrePostIncDec(E, LV, false, false);
590   }
591   Value *VisitUnaryPostInc(const UnaryOperator *E) {
592     LValue LV = EmitLValue(E->getSubExpr());
593     return EmitScalarPrePostIncDec(E, LV, true, false);
594   }
595   Value *VisitUnaryPreDec(const UnaryOperator *E) {
596     LValue LV = EmitLValue(E->getSubExpr());
597     return EmitScalarPrePostIncDec(E, LV, false, true);
598   }
599   Value *VisitUnaryPreInc(const UnaryOperator *E) {
600     LValue LV = EmitLValue(E->getSubExpr());
601     return EmitScalarPrePostIncDec(E, LV, true, true);
602   }
603 
604   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
605                                                   llvm::Value *InVal,
606                                                   bool IsInc);
607 
608   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
609                                        bool isInc, bool isPre);
610 
611 
612   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
613     if (isa<MemberPointerType>(E->getType())) // never sugared
614       return CGF.CGM.getMemberPointerConstant(E);
615 
616     return EmitLValue(E->getSubExpr()).getPointer(CGF);
617   }
618   Value *VisitUnaryDeref(const UnaryOperator *E) {
619     if (E->getType()->isVoidType())
620       return Visit(E->getSubExpr()); // the actual value should be unused
621     return EmitLoadOfLValue(E);
622   }
623   Value *VisitUnaryPlus(const UnaryOperator *E) {
624     // This differs from gcc, though, most likely due to a bug in gcc.
625     TestAndClearIgnoreResultAssign();
626     return Visit(E->getSubExpr());
627   }
628   Value *VisitUnaryMinus    (const UnaryOperator *E);
629   Value *VisitUnaryNot      (const UnaryOperator *E);
630   Value *VisitUnaryLNot     (const UnaryOperator *E);
631   Value *VisitUnaryReal     (const UnaryOperator *E);
632   Value *VisitUnaryImag     (const UnaryOperator *E);
633   Value *VisitUnaryExtension(const UnaryOperator *E) {
634     return Visit(E->getSubExpr());
635   }
636 
637   // C++
638   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
639     return EmitLoadOfLValue(E);
640   }
641   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
642     auto &Ctx = CGF.getContext();
643     APValue Evaluated =
644         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
645     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
646                                              SLE->getType());
647   }
648 
649   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
650     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
651     return Visit(DAE->getExpr());
652   }
653   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
654     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
655     return Visit(DIE->getExpr());
656   }
657   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
658     return CGF.LoadCXXThis();
659   }
660 
661   Value *VisitExprWithCleanups(ExprWithCleanups *E);
662   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
663     return CGF.EmitCXXNewExpr(E);
664   }
665   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
666     CGF.EmitCXXDeleteExpr(E);
667     return nullptr;
668   }
669 
670   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
671     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
672   }
673 
674   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
675     return Builder.getInt1(E->isSatisfied());
676   }
677 
678   Value *VisitRequiresExpr(const RequiresExpr *E) {
679     return Builder.getInt1(E->isSatisfied());
680   }
681 
682   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
683     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
684   }
685 
686   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
687     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
688   }
689 
690   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
691     // C++ [expr.pseudo]p1:
692     //   The result shall only be used as the operand for the function call
693     //   operator (), and the result of such a call has type void. The only
694     //   effect is the evaluation of the postfix-expression before the dot or
695     //   arrow.
696     CGF.EmitScalarExpr(E->getBase());
697     return nullptr;
698   }
699 
700   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
701     return EmitNullValue(E->getType());
702   }
703 
704   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
705     CGF.EmitCXXThrowExpr(E);
706     return nullptr;
707   }
708 
709   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
710     return Builder.getInt1(E->getValue());
711   }
712 
713   // Binary Operators.
714   Value *EmitMul(const BinOpInfo &Ops) {
715     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
716       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
717       case LangOptions::SOB_Defined:
718         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
719       case LangOptions::SOB_Undefined:
720         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
721           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
722         LLVM_FALLTHROUGH;
723       case LangOptions::SOB_Trapping:
724         if (CanElideOverflowCheck(CGF.getContext(), Ops))
725           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
726         return EmitOverflowCheckedBinOp(Ops);
727       }
728     }
729 
730     if (Ops.Ty->isConstantMatrixType()) {
731       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
732       // We need to check the types of the operands of the operator to get the
733       // correct matrix dimensions.
734       auto *BO = cast<BinaryOperator>(Ops.E);
735       auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
736           BO->getLHS()->getType().getCanonicalType());
737       auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
738           BO->getRHS()->getType().getCanonicalType());
739       if (LHSMatTy && RHSMatTy)
740         return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
741                                        LHSMatTy->getNumColumns(),
742                                        RHSMatTy->getNumColumns());
743       return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
744     }
745 
746     if (Ops.Ty->isUnsignedIntegerType() &&
747         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
748         !CanElideOverflowCheck(CGF.getContext(), Ops))
749       return EmitOverflowCheckedBinOp(Ops);
750 
751     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
752       //  Preserve the old values
753       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
754       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
755     }
756     if (Ops.isFixedPointOp())
757       return EmitFixedPointBinOp(Ops);
758     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
759   }
760   /// Create a binary op that checks for overflow.
761   /// Currently only supports +, - and *.
762   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
763 
764   // Check for undefined division and modulus behaviors.
765   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
766                                                   llvm::Value *Zero,bool isDiv);
767   // Common helper for getting how wide LHS of shift is.
768   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
769 
770   // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
771   // non powers of two.
772   Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
773 
774   Value *EmitDiv(const BinOpInfo &Ops);
775   Value *EmitRem(const BinOpInfo &Ops);
776   Value *EmitAdd(const BinOpInfo &Ops);
777   Value *EmitSub(const BinOpInfo &Ops);
778   Value *EmitShl(const BinOpInfo &Ops);
779   Value *EmitShr(const BinOpInfo &Ops);
780   Value *EmitAnd(const BinOpInfo &Ops) {
781     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
782   }
783   Value *EmitXor(const BinOpInfo &Ops) {
784     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
785   }
786   Value *EmitOr (const BinOpInfo &Ops) {
787     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
788   }
789 
790   // Helper functions for fixed point binary operations.
791   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
792 
793   BinOpInfo EmitBinOps(const BinaryOperator *E);
794   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
795                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
796                                   Value *&Result);
797 
798   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
799                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
800 
801   // Binary operators and binary compound assignment operators.
802 #define HANDLEBINOP(OP) \
803   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
804     return Emit ## OP(EmitBinOps(E));                                      \
805   }                                                                        \
806   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
807     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
808   }
809   HANDLEBINOP(Mul)
810   HANDLEBINOP(Div)
811   HANDLEBINOP(Rem)
812   HANDLEBINOP(Add)
813   HANDLEBINOP(Sub)
814   HANDLEBINOP(Shl)
815   HANDLEBINOP(Shr)
816   HANDLEBINOP(And)
817   HANDLEBINOP(Xor)
818   HANDLEBINOP(Or)
819 #undef HANDLEBINOP
820 
821   // Comparisons.
822   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
823                      llvm::CmpInst::Predicate SICmpOpc,
824                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
825 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
826     Value *VisitBin##CODE(const BinaryOperator *E) { \
827       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
828                          llvm::FCmpInst::FP, SIG); }
829   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
830   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
831   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
832   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
833   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
834   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
835 #undef VISITCOMP
836 
837   Value *VisitBinAssign     (const BinaryOperator *E);
838 
839   Value *VisitBinLAnd       (const BinaryOperator *E);
840   Value *VisitBinLOr        (const BinaryOperator *E);
841   Value *VisitBinComma      (const BinaryOperator *E);
842 
843   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
844   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
845 
846   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
847     return Visit(E->getSemanticForm());
848   }
849 
850   // Other Operators.
851   Value *VisitBlockExpr(const BlockExpr *BE);
852   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
853   Value *VisitChooseExpr(ChooseExpr *CE);
854   Value *VisitVAArgExpr(VAArgExpr *VE);
855   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
856     return CGF.EmitObjCStringLiteral(E);
857   }
858   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
859     return CGF.EmitObjCBoxedExpr(E);
860   }
861   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
862     return CGF.EmitObjCArrayLiteral(E);
863   }
864   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
865     return CGF.EmitObjCDictionaryLiteral(E);
866   }
867   Value *VisitAsTypeExpr(AsTypeExpr *CE);
868   Value *VisitAtomicExpr(AtomicExpr *AE);
869 };
870 }  // end anonymous namespace.
871 
872 //===----------------------------------------------------------------------===//
873 //                                Utilities
874 //===----------------------------------------------------------------------===//
875 
876 /// EmitConversionToBool - Convert the specified expression value to a
877 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
878 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
879   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
880 
881   if (SrcType->isRealFloatingType())
882     return EmitFloatToBoolConversion(Src);
883 
884   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
885     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
886 
887   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
888          "Unknown scalar type to convert");
889 
890   if (isa<llvm::IntegerType>(Src->getType()))
891     return EmitIntToBoolConversion(Src);
892 
893   assert(isa<llvm::PointerType>(Src->getType()));
894   return EmitPointerToBoolConversion(Src, SrcType);
895 }
896 
897 void ScalarExprEmitter::EmitFloatConversionCheck(
898     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
899     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
900   assert(SrcType->isFloatingType() && "not a conversion from floating point");
901   if (!isa<llvm::IntegerType>(DstTy))
902     return;
903 
904   CodeGenFunction::SanitizerScope SanScope(&CGF);
905   using llvm::APFloat;
906   using llvm::APSInt;
907 
908   llvm::Value *Check = nullptr;
909   const llvm::fltSemantics &SrcSema =
910     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
911 
912   // Floating-point to integer. This has undefined behavior if the source is
913   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
914   // to an integer).
915   unsigned Width = CGF.getContext().getIntWidth(DstType);
916   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
917 
918   APSInt Min = APSInt::getMinValue(Width, Unsigned);
919   APFloat MinSrc(SrcSema, APFloat::uninitialized);
920   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
921       APFloat::opOverflow)
922     // Don't need an overflow check for lower bound. Just check for
923     // -Inf/NaN.
924     MinSrc = APFloat::getInf(SrcSema, true);
925   else
926     // Find the largest value which is too small to represent (before
927     // truncation toward zero).
928     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
929 
930   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
931   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
932   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
933       APFloat::opOverflow)
934     // Don't need an overflow check for upper bound. Just check for
935     // +Inf/NaN.
936     MaxSrc = APFloat::getInf(SrcSema, false);
937   else
938     // Find the smallest value which is too large to represent (before
939     // truncation toward zero).
940     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
941 
942   // If we're converting from __half, convert the range to float to match
943   // the type of src.
944   if (OrigSrcType->isHalfType()) {
945     const llvm::fltSemantics &Sema =
946       CGF.getContext().getFloatTypeSemantics(SrcType);
947     bool IsInexact;
948     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
949     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
950   }
951 
952   llvm::Value *GE =
953     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
954   llvm::Value *LE =
955     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
956   Check = Builder.CreateAnd(GE, LE);
957 
958   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
959                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
960                                   CGF.EmitCheckTypeDescriptor(DstType)};
961   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
962                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
963 }
964 
965 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
966 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
967 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
968                  std::pair<llvm::Value *, SanitizerMask>>
969 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
970                                  QualType DstType, CGBuilderTy &Builder) {
971   llvm::Type *SrcTy = Src->getType();
972   llvm::Type *DstTy = Dst->getType();
973   (void)DstTy; // Only used in assert()
974 
975   // This should be truncation of integral types.
976   assert(Src != Dst);
977   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
978   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
979          "non-integer llvm type");
980 
981   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
982   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
983 
984   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
985   // Else, it is a signed truncation.
986   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
987   SanitizerMask Mask;
988   if (!SrcSigned && !DstSigned) {
989     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
990     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
991   } else {
992     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
993     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
994   }
995 
996   llvm::Value *Check = nullptr;
997   // 1. Extend the truncated value back to the same width as the Src.
998   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
999   // 2. Equality-compare with the original source value
1000   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1001   // If the comparison result is 'i1 false', then the truncation was lossy.
1002   return std::make_pair(Kind, std::make_pair(Check, Mask));
1003 }
1004 
1005 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1006     QualType SrcType, QualType DstType) {
1007   return SrcType->isIntegerType() && DstType->isIntegerType();
1008 }
1009 
1010 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1011                                                    Value *Dst, QualType DstType,
1012                                                    SourceLocation Loc) {
1013   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1014     return;
1015 
1016   // We only care about int->int conversions here.
1017   // We ignore conversions to/from pointer and/or bool.
1018   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1019                                                                        DstType))
1020     return;
1021 
1022   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1023   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1024   // This must be truncation. Else we do not care.
1025   if (SrcBits <= DstBits)
1026     return;
1027 
1028   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1029 
1030   // If the integer sign change sanitizer is enabled,
1031   // and we are truncating from larger unsigned type to smaller signed type,
1032   // let that next sanitizer deal with it.
1033   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1034   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1035   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1036       (!SrcSigned && DstSigned))
1037     return;
1038 
1039   CodeGenFunction::SanitizerScope SanScope(&CGF);
1040 
1041   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1042             std::pair<llvm::Value *, SanitizerMask>>
1043       Check =
1044           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1045   // If the comparison result is 'i1 false', then the truncation was lossy.
1046 
1047   // Do we care about this type of truncation?
1048   if (!CGF.SanOpts.has(Check.second.second))
1049     return;
1050 
1051   llvm::Constant *StaticArgs[] = {
1052       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1053       CGF.EmitCheckTypeDescriptor(DstType),
1054       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1055   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1056                 {Src, Dst});
1057 }
1058 
1059 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1060 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1061 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1062                  std::pair<llvm::Value *, SanitizerMask>>
1063 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1064                                  QualType DstType, CGBuilderTy &Builder) {
1065   llvm::Type *SrcTy = Src->getType();
1066   llvm::Type *DstTy = Dst->getType();
1067 
1068   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1069          "non-integer llvm type");
1070 
1071   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1072   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1073   (void)SrcSigned; // Only used in assert()
1074   (void)DstSigned; // Only used in assert()
1075   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1076   unsigned DstBits = DstTy->getScalarSizeInBits();
1077   (void)SrcBits; // Only used in assert()
1078   (void)DstBits; // Only used in assert()
1079 
1080   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1081          "either the widths should be different, or the signednesses.");
1082 
1083   // NOTE: zero value is considered to be non-negative.
1084   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1085                                        const char *Name) -> Value * {
1086     // Is this value a signed type?
1087     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1088     llvm::Type *VTy = V->getType();
1089     if (!VSigned) {
1090       // If the value is unsigned, then it is never negative.
1091       // FIXME: can we encounter non-scalar VTy here?
1092       return llvm::ConstantInt::getFalse(VTy->getContext());
1093     }
1094     // Get the zero of the same type with which we will be comparing.
1095     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1096     // %V.isnegative = icmp slt %V, 0
1097     // I.e is %V *strictly* less than zero, does it have negative value?
1098     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1099                               llvm::Twine(Name) + "." + V->getName() +
1100                                   ".negativitycheck");
1101   };
1102 
1103   // 1. Was the old Value negative?
1104   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1105   // 2. Is the new Value negative?
1106   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1107   // 3. Now, was the 'negativity status' preserved during the conversion?
1108   //    NOTE: conversion from negative to zero is considered to change the sign.
1109   //    (We want to get 'false' when the conversion changed the sign)
1110   //    So we should just equality-compare the negativity statuses.
1111   llvm::Value *Check = nullptr;
1112   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1113   // If the comparison result is 'false', then the conversion changed the sign.
1114   return std::make_pair(
1115       ScalarExprEmitter::ICCK_IntegerSignChange,
1116       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1117 }
1118 
1119 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1120                                                    Value *Dst, QualType DstType,
1121                                                    SourceLocation Loc) {
1122   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1123     return;
1124 
1125   llvm::Type *SrcTy = Src->getType();
1126   llvm::Type *DstTy = Dst->getType();
1127 
1128   // We only care about int->int conversions here.
1129   // We ignore conversions to/from pointer and/or bool.
1130   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1131                                                                        DstType))
1132     return;
1133 
1134   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1135   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1136   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1137   unsigned DstBits = DstTy->getScalarSizeInBits();
1138 
1139   // Now, we do not need to emit the check in *all* of the cases.
1140   // We can avoid emitting it in some obvious cases where it would have been
1141   // dropped by the opt passes (instcombine) always anyways.
1142   // If it's a cast between effectively the same type, no check.
1143   // NOTE: this is *not* equivalent to checking the canonical types.
1144   if (SrcSigned == DstSigned && SrcBits == DstBits)
1145     return;
1146   // At least one of the values needs to have signed type.
1147   // If both are unsigned, then obviously, neither of them can be negative.
1148   if (!SrcSigned && !DstSigned)
1149     return;
1150   // If the conversion is to *larger* *signed* type, then no check is needed.
1151   // Because either sign-extension happens (so the sign will remain),
1152   // or zero-extension will happen (the sign bit will be zero.)
1153   if ((DstBits > SrcBits) && DstSigned)
1154     return;
1155   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1156       (SrcBits > DstBits) && SrcSigned) {
1157     // If the signed integer truncation sanitizer is enabled,
1158     // and this is a truncation from signed type, then no check is needed.
1159     // Because here sign change check is interchangeable with truncation check.
1160     return;
1161   }
1162   // That's it. We can't rule out any more cases with the data we have.
1163 
1164   CodeGenFunction::SanitizerScope SanScope(&CGF);
1165 
1166   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1167             std::pair<llvm::Value *, SanitizerMask>>
1168       Check;
1169 
1170   // Each of these checks needs to return 'false' when an issue was detected.
1171   ImplicitConversionCheckKind CheckKind;
1172   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1173   // So we can 'and' all the checks together, and still get 'false',
1174   // if at least one of the checks detected an issue.
1175 
1176   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1177   CheckKind = Check.first;
1178   Checks.emplace_back(Check.second);
1179 
1180   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1181       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1182     // If the signed integer truncation sanitizer was enabled,
1183     // and we are truncating from larger unsigned type to smaller signed type,
1184     // let's handle the case we skipped in that check.
1185     Check =
1186         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1187     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1188     Checks.emplace_back(Check.second);
1189     // If the comparison result is 'i1 false', then the truncation was lossy.
1190   }
1191 
1192   llvm::Constant *StaticArgs[] = {
1193       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1194       CGF.EmitCheckTypeDescriptor(DstType),
1195       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1196   // EmitCheck() will 'and' all the checks together.
1197   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1198                 {Src, Dst});
1199 }
1200 
1201 /// Emit a conversion from the specified type to the specified destination type,
1202 /// both of which are LLVM scalar types.
1203 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1204                                                QualType DstType,
1205                                                SourceLocation Loc,
1206                                                ScalarConversionOpts Opts) {
1207   // All conversions involving fixed point types should be handled by the
1208   // EmitFixedPoint family functions. This is done to prevent bloating up this
1209   // function more, and although fixed point numbers are represented by
1210   // integers, we do not want to follow any logic that assumes they should be
1211   // treated as integers.
1212   // TODO(leonardchan): When necessary, add another if statement checking for
1213   // conversions to fixed point types from other types.
1214   if (SrcType->isFixedPointType()) {
1215     if (DstType->isBooleanType())
1216       // It is important that we check this before checking if the dest type is
1217       // an integer because booleans are technically integer types.
1218       // We do not need to check the padding bit on unsigned types if unsigned
1219       // padding is enabled because overflow into this bit is undefined
1220       // behavior.
1221       return Builder.CreateIsNotNull(Src, "tobool");
1222     if (DstType->isFixedPointType() || DstType->isIntegerType())
1223       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1224 
1225     llvm_unreachable(
1226         "Unhandled scalar conversion from a fixed point type to another type.");
1227   } else if (DstType->isFixedPointType()) {
1228     if (SrcType->isIntegerType())
1229       // This also includes converting booleans and enums to fixed point types.
1230       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1231 
1232     llvm_unreachable(
1233         "Unhandled scalar conversion to a fixed point type from another type.");
1234   }
1235 
1236   QualType NoncanonicalSrcType = SrcType;
1237   QualType NoncanonicalDstType = DstType;
1238 
1239   SrcType = CGF.getContext().getCanonicalType(SrcType);
1240   DstType = CGF.getContext().getCanonicalType(DstType);
1241   if (SrcType == DstType) return Src;
1242 
1243   if (DstType->isVoidType()) return nullptr;
1244 
1245   llvm::Value *OrigSrc = Src;
1246   QualType OrigSrcType = SrcType;
1247   llvm::Type *SrcTy = Src->getType();
1248 
1249   // Handle conversions to bool first, they are special: comparisons against 0.
1250   if (DstType->isBooleanType())
1251     return EmitConversionToBool(Src, SrcType);
1252 
1253   llvm::Type *DstTy = ConvertType(DstType);
1254 
1255   // Cast from half through float if half isn't a native type.
1256   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1257     // Cast to FP using the intrinsic if the half type itself isn't supported.
1258     if (DstTy->isFloatingPointTy()) {
1259       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1260         return Builder.CreateCall(
1261             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1262             Src);
1263     } else {
1264       // Cast to other types through float, using either the intrinsic or FPExt,
1265       // depending on whether the half type itself is supported
1266       // (as opposed to operations on half, available with NativeHalfType).
1267       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1268         Src = Builder.CreateCall(
1269             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1270                                  CGF.CGM.FloatTy),
1271             Src);
1272       } else {
1273         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1274       }
1275       SrcType = CGF.getContext().FloatTy;
1276       SrcTy = CGF.FloatTy;
1277     }
1278   }
1279 
1280   // Ignore conversions like int -> uint.
1281   if (SrcTy == DstTy) {
1282     if (Opts.EmitImplicitIntegerSignChangeChecks)
1283       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1284                                  NoncanonicalDstType, Loc);
1285 
1286     return Src;
1287   }
1288 
1289   // Handle pointer conversions next: pointers can only be converted to/from
1290   // other pointers and integers. Check for pointer types in terms of LLVM, as
1291   // some native types (like Obj-C id) may map to a pointer type.
1292   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1293     // The source value may be an integer, or a pointer.
1294     if (isa<llvm::PointerType>(SrcTy))
1295       return Builder.CreateBitCast(Src, DstTy, "conv");
1296 
1297     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1298     // First, convert to the correct width so that we control the kind of
1299     // extension.
1300     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1301     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1302     llvm::Value* IntResult =
1303         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1304     // Then, cast to pointer.
1305     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1306   }
1307 
1308   if (isa<llvm::PointerType>(SrcTy)) {
1309     // Must be an ptr to int cast.
1310     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1311     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1312   }
1313 
1314   // A scalar can be splatted to an extended vector of the same element type
1315   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1316     // Sema should add casts to make sure that the source expression's type is
1317     // the same as the vector's element type (sans qualifiers)
1318     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1319                SrcType.getTypePtr() &&
1320            "Splatted expr doesn't match with vector element type?");
1321 
1322     // Splat the element across to all elements
1323     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1324     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1325   }
1326 
1327   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1328     // Allow bitcast from vector to integer/fp of the same size.
1329     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1330     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1331     if (SrcSize == DstSize)
1332       return Builder.CreateBitCast(Src, DstTy, "conv");
1333 
1334     // Conversions between vectors of different sizes are not allowed except
1335     // when vectors of half are involved. Operations on storage-only half
1336     // vectors require promoting half vector operands to float vectors and
1337     // truncating the result, which is either an int or float vector, to a
1338     // short or half vector.
1339 
1340     // Source and destination are both expected to be vectors.
1341     llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1342     llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1343     (void)DstElementTy;
1344 
1345     assert(((SrcElementTy->isIntegerTy() &&
1346              DstElementTy->isIntegerTy()) ||
1347             (SrcElementTy->isFloatingPointTy() &&
1348              DstElementTy->isFloatingPointTy())) &&
1349            "unexpected conversion between a floating-point vector and an "
1350            "integer vector");
1351 
1352     // Truncate an i32 vector to an i16 vector.
1353     if (SrcElementTy->isIntegerTy())
1354       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1355 
1356     // Truncate a float vector to a half vector.
1357     if (SrcSize > DstSize)
1358       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1359 
1360     // Promote a half vector to a float vector.
1361     return Builder.CreateFPExt(Src, DstTy, "conv");
1362   }
1363 
1364   // Finally, we have the arithmetic types: real int/float.
1365   Value *Res = nullptr;
1366   llvm::Type *ResTy = DstTy;
1367 
1368   // An overflowing conversion has undefined behavior if either the source type
1369   // or the destination type is a floating-point type. However, we consider the
1370   // range of representable values for all floating-point types to be
1371   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1372   // floating-point type.
1373   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1374       OrigSrcType->isFloatingType())
1375     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1376                              Loc);
1377 
1378   // Cast to half through float if half isn't a native type.
1379   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1380     // Make sure we cast in a single step if from another FP type.
1381     if (SrcTy->isFloatingPointTy()) {
1382       // Use the intrinsic if the half type itself isn't supported
1383       // (as opposed to operations on half, available with NativeHalfType).
1384       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1385         return Builder.CreateCall(
1386             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1387       // If the half type is supported, just use an fptrunc.
1388       return Builder.CreateFPTrunc(Src, DstTy);
1389     }
1390     DstTy = CGF.FloatTy;
1391   }
1392 
1393   if (isa<llvm::IntegerType>(SrcTy)) {
1394     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1395     if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1396       InputSigned = true;
1397     }
1398     if (isa<llvm::IntegerType>(DstTy))
1399       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1400     else if (InputSigned)
1401       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1402     else
1403       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1404   } else if (isa<llvm::IntegerType>(DstTy)) {
1405     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1406     if (DstType->isSignedIntegerOrEnumerationType())
1407       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1408     else
1409       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1410   } else {
1411     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1412            "Unknown real conversion");
1413     if (DstTy->getTypeID() < SrcTy->getTypeID())
1414       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1415     else
1416       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1417   }
1418 
1419   if (DstTy != ResTy) {
1420     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1421       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1422       Res = Builder.CreateCall(
1423         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1424         Res);
1425     } else {
1426       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1427     }
1428   }
1429 
1430   if (Opts.EmitImplicitIntegerTruncationChecks)
1431     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1432                                NoncanonicalDstType, Loc);
1433 
1434   if (Opts.EmitImplicitIntegerSignChangeChecks)
1435     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1436                                NoncanonicalDstType, Loc);
1437 
1438   return Res;
1439 }
1440 
1441 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1442                                                    QualType DstTy,
1443                                                    SourceLocation Loc) {
1444   auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1445   auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1446   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1447   llvm::Value *Result;
1448   if (DstTy->isIntegerType())
1449     Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1450                                             DstFPSema.getWidth(),
1451                                             DstFPSema.isSigned());
1452   else if (SrcTy->isIntegerType())
1453     Result =  FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1454                                              DstFPSema);
1455   else
1456     Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1457   return Result;
1458 }
1459 
1460 /// Emit a conversion from the specified complex type to the specified
1461 /// destination type, where the destination type is an LLVM scalar type.
1462 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1463     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1464     SourceLocation Loc) {
1465   // Get the source element type.
1466   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1467 
1468   // Handle conversions to bool first, they are special: comparisons against 0.
1469   if (DstTy->isBooleanType()) {
1470     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1471     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1472     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1473     return Builder.CreateOr(Src.first, Src.second, "tobool");
1474   }
1475 
1476   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1477   // the imaginary part of the complex value is discarded and the value of the
1478   // real part is converted according to the conversion rules for the
1479   // corresponding real type.
1480   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1481 }
1482 
1483 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1484   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1485 }
1486 
1487 /// Emit a sanitization check for the given "binary" operation (which
1488 /// might actually be a unary increment which has been lowered to a binary
1489 /// operation). The check passes if all values in \p Checks (which are \c i1),
1490 /// are \c true.
1491 void ScalarExprEmitter::EmitBinOpCheck(
1492     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1493   assert(CGF.IsSanitizerScope);
1494   SanitizerHandler Check;
1495   SmallVector<llvm::Constant *, 4> StaticData;
1496   SmallVector<llvm::Value *, 2> DynamicData;
1497 
1498   BinaryOperatorKind Opcode = Info.Opcode;
1499   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1500     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1501 
1502   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1503   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1504   if (UO && UO->getOpcode() == UO_Minus) {
1505     Check = SanitizerHandler::NegateOverflow;
1506     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1507     DynamicData.push_back(Info.RHS);
1508   } else {
1509     if (BinaryOperator::isShiftOp(Opcode)) {
1510       // Shift LHS negative or too large, or RHS out of bounds.
1511       Check = SanitizerHandler::ShiftOutOfBounds;
1512       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1513       StaticData.push_back(
1514         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1515       StaticData.push_back(
1516         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1517     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1518       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1519       Check = SanitizerHandler::DivremOverflow;
1520       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1521     } else {
1522       // Arithmetic overflow (+, -, *).
1523       switch (Opcode) {
1524       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1525       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1526       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1527       default: llvm_unreachable("unexpected opcode for bin op check");
1528       }
1529       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1530     }
1531     DynamicData.push_back(Info.LHS);
1532     DynamicData.push_back(Info.RHS);
1533   }
1534 
1535   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1536 }
1537 
1538 //===----------------------------------------------------------------------===//
1539 //                            Visitor Methods
1540 //===----------------------------------------------------------------------===//
1541 
1542 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1543   CGF.ErrorUnsupported(E, "scalar expression");
1544   if (E->getType()->isVoidType())
1545     return nullptr;
1546   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1547 }
1548 
1549 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1550   // Vector Mask Case
1551   if (E->getNumSubExprs() == 2) {
1552     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1553     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1554     Value *Mask;
1555 
1556     auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1557     unsigned LHSElts = LTy->getNumElements();
1558 
1559     Mask = RHS;
1560 
1561     auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1562 
1563     // Mask off the high bits of each shuffle index.
1564     Value *MaskBits =
1565         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1566     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1567 
1568     // newv = undef
1569     // mask = mask & maskbits
1570     // for each elt
1571     //   n = extract mask i
1572     //   x = extract val n
1573     //   newv = insert newv, x, i
1574     auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1575                                            MTy->getNumElements());
1576     Value* NewV = llvm::UndefValue::get(RTy);
1577     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1578       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1579       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1580 
1581       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1582       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1583     }
1584     return NewV;
1585   }
1586 
1587   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1588   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1589 
1590   SmallVector<int, 32> Indices;
1591   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1592     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1593     // Check for -1 and output it as undef in the IR.
1594     if (Idx.isSigned() && Idx.isAllOnesValue())
1595       Indices.push_back(-1);
1596     else
1597       Indices.push_back(Idx.getZExtValue());
1598   }
1599 
1600   return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1601 }
1602 
1603 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1604   QualType SrcType = E->getSrcExpr()->getType(),
1605            DstType = E->getType();
1606 
1607   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1608 
1609   SrcType = CGF.getContext().getCanonicalType(SrcType);
1610   DstType = CGF.getContext().getCanonicalType(DstType);
1611   if (SrcType == DstType) return Src;
1612 
1613   assert(SrcType->isVectorType() &&
1614          "ConvertVector source type must be a vector");
1615   assert(DstType->isVectorType() &&
1616          "ConvertVector destination type must be a vector");
1617 
1618   llvm::Type *SrcTy = Src->getType();
1619   llvm::Type *DstTy = ConvertType(DstType);
1620 
1621   // Ignore conversions like int -> uint.
1622   if (SrcTy == DstTy)
1623     return Src;
1624 
1625   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1626            DstEltType = DstType->castAs<VectorType>()->getElementType();
1627 
1628   assert(SrcTy->isVectorTy() &&
1629          "ConvertVector source IR type must be a vector");
1630   assert(DstTy->isVectorTy() &&
1631          "ConvertVector destination IR type must be a vector");
1632 
1633   llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1634              *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1635 
1636   if (DstEltType->isBooleanType()) {
1637     assert((SrcEltTy->isFloatingPointTy() ||
1638             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1639 
1640     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1641     if (SrcEltTy->isFloatingPointTy()) {
1642       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1643     } else {
1644       return Builder.CreateICmpNE(Src, Zero, "tobool");
1645     }
1646   }
1647 
1648   // We have the arithmetic types: real int/float.
1649   Value *Res = nullptr;
1650 
1651   if (isa<llvm::IntegerType>(SrcEltTy)) {
1652     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1653     if (isa<llvm::IntegerType>(DstEltTy))
1654       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1655     else if (InputSigned)
1656       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1657     else
1658       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1659   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1660     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1661     if (DstEltType->isSignedIntegerOrEnumerationType())
1662       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1663     else
1664       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1665   } else {
1666     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1667            "Unknown real conversion");
1668     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1669       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1670     else
1671       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1672   }
1673 
1674   return Res;
1675 }
1676 
1677 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1678   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1679     CGF.EmitIgnoredExpr(E->getBase());
1680     return CGF.emitScalarConstant(Constant, E);
1681   } else {
1682     Expr::EvalResult Result;
1683     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1684       llvm::APSInt Value = Result.Val.getInt();
1685       CGF.EmitIgnoredExpr(E->getBase());
1686       return Builder.getInt(Value);
1687     }
1688   }
1689 
1690   return EmitLoadOfLValue(E);
1691 }
1692 
1693 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1694   TestAndClearIgnoreResultAssign();
1695 
1696   // Emit subscript expressions in rvalue context's.  For most cases, this just
1697   // loads the lvalue formed by the subscript expr.  However, we have to be
1698   // careful, because the base of a vector subscript is occasionally an rvalue,
1699   // so we can't get it as an lvalue.
1700   if (!E->getBase()->getType()->isVectorType())
1701     return EmitLoadOfLValue(E);
1702 
1703   // Handle the vector case.  The base must be a vector, the index must be an
1704   // integer value.
1705   Value *Base = Visit(E->getBase());
1706   Value *Idx  = Visit(E->getIdx());
1707   QualType IdxTy = E->getIdx()->getType();
1708 
1709   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1710     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1711 
1712   return Builder.CreateExtractElement(Base, Idx, "vecext");
1713 }
1714 
1715 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1716   TestAndClearIgnoreResultAssign();
1717 
1718   // Handle the vector case.  The base must be a vector, the index must be an
1719   // integer value.
1720   Value *RowIdx = Visit(E->getRowIdx());
1721   Value *ColumnIdx = Visit(E->getColumnIdx());
1722   Value *Matrix = Visit(E->getBase());
1723 
1724   // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1725   llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
1726   return MB.CreateExtractElement(
1727       Matrix, RowIdx, ColumnIdx,
1728       E->getBase()->getType()->getAs<ConstantMatrixType>()->getNumRows());
1729 }
1730 
1731 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1732                       unsigned Off) {
1733   int MV = SVI->getMaskValue(Idx);
1734   if (MV == -1)
1735     return -1;
1736   return Off + MV;
1737 }
1738 
1739 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1740   assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1741          "Index operand too large for shufflevector mask!");
1742   return C->getZExtValue();
1743 }
1744 
1745 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1746   bool Ignore = TestAndClearIgnoreResultAssign();
1747   (void)Ignore;
1748   assert (Ignore == false && "init list ignored");
1749   unsigned NumInitElements = E->getNumInits();
1750 
1751   if (E->hadArrayRangeDesignator())
1752     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1753 
1754   llvm::VectorType *VType =
1755     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1756 
1757   if (!VType) {
1758     if (NumInitElements == 0) {
1759       // C++11 value-initialization for the scalar.
1760       return EmitNullValue(E->getType());
1761     }
1762     // We have a scalar in braces. Just use the first element.
1763     return Visit(E->getInit(0));
1764   }
1765 
1766   unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
1767 
1768   // Loop over initializers collecting the Value for each, and remembering
1769   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1770   // us to fold the shuffle for the swizzle into the shuffle for the vector
1771   // initializer, since LLVM optimizers generally do not want to touch
1772   // shuffles.
1773   unsigned CurIdx = 0;
1774   bool VIsUndefShuffle = false;
1775   llvm::Value *V = llvm::UndefValue::get(VType);
1776   for (unsigned i = 0; i != NumInitElements; ++i) {
1777     Expr *IE = E->getInit(i);
1778     Value *Init = Visit(IE);
1779     SmallVector<int, 16> Args;
1780 
1781     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1782 
1783     // Handle scalar elements.  If the scalar initializer is actually one
1784     // element of a different vector of the same width, use shuffle instead of
1785     // extract+insert.
1786     if (!VVT) {
1787       if (isa<ExtVectorElementExpr>(IE)) {
1788         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1789 
1790         if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
1791                 ->getNumElements() == ResElts) {
1792           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1793           Value *LHS = nullptr, *RHS = nullptr;
1794           if (CurIdx == 0) {
1795             // insert into undef -> shuffle (src, undef)
1796             // shufflemask must use an i32
1797             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1798             Args.resize(ResElts, -1);
1799 
1800             LHS = EI->getVectorOperand();
1801             RHS = V;
1802             VIsUndefShuffle = true;
1803           } else if (VIsUndefShuffle) {
1804             // insert into undefshuffle && size match -> shuffle (v, src)
1805             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1806             for (unsigned j = 0; j != CurIdx; ++j)
1807               Args.push_back(getMaskElt(SVV, j, 0));
1808             Args.push_back(ResElts + C->getZExtValue());
1809             Args.resize(ResElts, -1);
1810 
1811             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1812             RHS = EI->getVectorOperand();
1813             VIsUndefShuffle = false;
1814           }
1815           if (!Args.empty()) {
1816             V = Builder.CreateShuffleVector(LHS, RHS, Args);
1817             ++CurIdx;
1818             continue;
1819           }
1820         }
1821       }
1822       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1823                                       "vecinit");
1824       VIsUndefShuffle = false;
1825       ++CurIdx;
1826       continue;
1827     }
1828 
1829     unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
1830 
1831     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1832     // input is the same width as the vector being constructed, generate an
1833     // optimized shuffle of the swizzle input into the result.
1834     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1835     if (isa<ExtVectorElementExpr>(IE)) {
1836       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1837       Value *SVOp = SVI->getOperand(0);
1838       auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
1839 
1840       if (OpTy->getNumElements() == ResElts) {
1841         for (unsigned j = 0; j != CurIdx; ++j) {
1842           // If the current vector initializer is a shuffle with undef, merge
1843           // this shuffle directly into it.
1844           if (VIsUndefShuffle) {
1845             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1846           } else {
1847             Args.push_back(j);
1848           }
1849         }
1850         for (unsigned j = 0, je = InitElts; j != je; ++j)
1851           Args.push_back(getMaskElt(SVI, j, Offset));
1852         Args.resize(ResElts, -1);
1853 
1854         if (VIsUndefShuffle)
1855           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1856 
1857         Init = SVOp;
1858       }
1859     }
1860 
1861     // Extend init to result vector length, and then shuffle its contribution
1862     // to the vector initializer into V.
1863     if (Args.empty()) {
1864       for (unsigned j = 0; j != InitElts; ++j)
1865         Args.push_back(j);
1866       Args.resize(ResElts, -1);
1867       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), Args,
1868                                          "vext");
1869 
1870       Args.clear();
1871       for (unsigned j = 0; j != CurIdx; ++j)
1872         Args.push_back(j);
1873       for (unsigned j = 0; j != InitElts; ++j)
1874         Args.push_back(j + Offset);
1875       Args.resize(ResElts, -1);
1876     }
1877 
1878     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1879     // merging subsequent shuffles into this one.
1880     if (CurIdx == 0)
1881       std::swap(V, Init);
1882     V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1883     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1884     CurIdx += InitElts;
1885   }
1886 
1887   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1888   // Emit remaining default initializers.
1889   llvm::Type *EltTy = VType->getElementType();
1890 
1891   // Emit remaining default initializers
1892   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1893     Value *Idx = Builder.getInt32(CurIdx);
1894     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1895     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1896   }
1897   return V;
1898 }
1899 
1900 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1901   const Expr *E = CE->getSubExpr();
1902 
1903   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1904     return false;
1905 
1906   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1907     // We always assume that 'this' is never null.
1908     return false;
1909   }
1910 
1911   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1912     // And that glvalue casts are never null.
1913     if (ICE->getValueKind() != VK_RValue)
1914       return false;
1915   }
1916 
1917   return true;
1918 }
1919 
1920 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1921 // have to handle a more broad range of conversions than explicit casts, as they
1922 // handle things like function to ptr-to-function decay etc.
1923 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1924   Expr *E = CE->getSubExpr();
1925   QualType DestTy = CE->getType();
1926   CastKind Kind = CE->getCastKind();
1927 
1928   // These cases are generally not written to ignore the result of
1929   // evaluating their sub-expressions, so we clear this now.
1930   bool Ignored = TestAndClearIgnoreResultAssign();
1931 
1932   // Since almost all cast kinds apply to scalars, this switch doesn't have
1933   // a default case, so the compiler will warn on a missing case.  The cases
1934   // are in the same order as in the CastKind enum.
1935   switch (Kind) {
1936   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1937   case CK_BuiltinFnToFnPtr:
1938     llvm_unreachable("builtin functions are handled elsewhere");
1939 
1940   case CK_LValueBitCast:
1941   case CK_ObjCObjectLValueCast: {
1942     Address Addr = EmitLValue(E).getAddress(CGF);
1943     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1944     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1945     return EmitLoadOfLValue(LV, CE->getExprLoc());
1946   }
1947 
1948   case CK_LValueToRValueBitCast: {
1949     LValue SourceLVal = CGF.EmitLValue(E);
1950     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
1951                                                 CGF.ConvertTypeForMem(DestTy));
1952     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
1953     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
1954     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
1955   }
1956 
1957   case CK_CPointerToObjCPointerCast:
1958   case CK_BlockPointerToObjCPointerCast:
1959   case CK_AnyPointerToBlockPointerCast:
1960   case CK_BitCast: {
1961     Value *Src = Visit(const_cast<Expr*>(E));
1962     llvm::Type *SrcTy = Src->getType();
1963     llvm::Type *DstTy = ConvertType(DestTy);
1964     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1965         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1966       llvm_unreachable("wrong cast for pointers in different address spaces"
1967                        "(must be an address space cast)!");
1968     }
1969 
1970     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1971       if (auto PT = DestTy->getAs<PointerType>())
1972         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1973                                       /*MayBeNull=*/true,
1974                                       CodeGenFunction::CFITCK_UnrelatedCast,
1975                                       CE->getBeginLoc());
1976     }
1977 
1978     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
1979       const QualType SrcType = E->getType();
1980 
1981       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
1982         // Casting to pointer that could carry dynamic information (provided by
1983         // invariant.group) requires launder.
1984         Src = Builder.CreateLaunderInvariantGroup(Src);
1985       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
1986         // Casting to pointer that does not carry dynamic information (provided
1987         // by invariant.group) requires stripping it.  Note that we don't do it
1988         // if the source could not be dynamic type and destination could be
1989         // dynamic because dynamic information is already laundered.  It is
1990         // because launder(strip(src)) == launder(src), so there is no need to
1991         // add extra strip before launder.
1992         Src = Builder.CreateStripInvariantGroup(Src);
1993       }
1994     }
1995 
1996     // Update heapallocsite metadata when there is an explicit pointer cast.
1997     if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
1998       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
1999         QualType PointeeType = DestTy->getPointeeType();
2000         if (!PointeeType.isNull())
2001           CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2002                                                        CE->getExprLoc());
2003       }
2004     }
2005 
2006     // Perform VLAT <-> VLST bitcast through memory.
2007     if ((isa<llvm::FixedVectorType>(SrcTy) &&
2008          isa<llvm::ScalableVectorType>(DstTy)) ||
2009         (isa<llvm::ScalableVectorType>(SrcTy) &&
2010          isa<llvm::FixedVectorType>(DstTy))) {
2011       if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
2012         // Call expressions can't have a scalar return unless the return type
2013         // is a reference type so an lvalue can't be emitted. Create a temp
2014         // alloca to store the call, bitcast the address then load.
2015         QualType RetTy = CE->getCallReturnType(CGF.getContext());
2016         Address Addr =
2017             CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-call-rvalue");
2018         LValue LV = CGF.MakeAddrLValue(Addr, RetTy);
2019         CGF.EmitStoreOfScalar(Src, LV);
2020         Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy),
2021                                             "castFixedSve");
2022         LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2023         DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2024         return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2025       }
2026 
2027       Address Addr = EmitLValue(E).getAddress(CGF);
2028       Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2029       LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2030       DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2031       return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2032     }
2033 
2034     return Builder.CreateBitCast(Src, DstTy);
2035   }
2036   case CK_AddressSpaceConversion: {
2037     Expr::EvalResult Result;
2038     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2039         Result.Val.isNullPointer()) {
2040       // If E has side effect, it is emitted even if its final result is a
2041       // null pointer. In that case, a DCE pass should be able to
2042       // eliminate the useless instructions emitted during translating E.
2043       if (Result.HasSideEffects)
2044         Visit(E);
2045       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2046           ConvertType(DestTy)), DestTy);
2047     }
2048     // Since target may map different address spaces in AST to the same address
2049     // space, an address space conversion may end up as a bitcast.
2050     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2051         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2052         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2053   }
2054   case CK_AtomicToNonAtomic:
2055   case CK_NonAtomicToAtomic:
2056   case CK_NoOp:
2057   case CK_UserDefinedConversion:
2058     return Visit(const_cast<Expr*>(E));
2059 
2060   case CK_BaseToDerived: {
2061     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2062     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2063 
2064     Address Base = CGF.EmitPointerWithAlignment(E);
2065     Address Derived =
2066       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2067                                    CE->path_begin(), CE->path_end(),
2068                                    CGF.ShouldNullCheckClassCastValue(CE));
2069 
2070     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2071     // performed and the object is not of the derived type.
2072     if (CGF.sanitizePerformTypeCheck())
2073       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2074                         Derived.getPointer(), DestTy->getPointeeType());
2075 
2076     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2077       CGF.EmitVTablePtrCheckForCast(
2078           DestTy->getPointeeType(), Derived.getPointer(),
2079           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2080           CE->getBeginLoc());
2081 
2082     return Derived.getPointer();
2083   }
2084   case CK_UncheckedDerivedToBase:
2085   case CK_DerivedToBase: {
2086     // The EmitPointerWithAlignment path does this fine; just discard
2087     // the alignment.
2088     return CGF.EmitPointerWithAlignment(CE).getPointer();
2089   }
2090 
2091   case CK_Dynamic: {
2092     Address V = CGF.EmitPointerWithAlignment(E);
2093     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2094     return CGF.EmitDynamicCast(V, DCE);
2095   }
2096 
2097   case CK_ArrayToPointerDecay:
2098     return CGF.EmitArrayToPointerDecay(E).getPointer();
2099   case CK_FunctionToPointerDecay:
2100     return EmitLValue(E).getPointer(CGF);
2101 
2102   case CK_NullToPointer:
2103     if (MustVisitNullValue(E))
2104       CGF.EmitIgnoredExpr(E);
2105 
2106     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2107                               DestTy);
2108 
2109   case CK_NullToMemberPointer: {
2110     if (MustVisitNullValue(E))
2111       CGF.EmitIgnoredExpr(E);
2112 
2113     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2114     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2115   }
2116 
2117   case CK_ReinterpretMemberPointer:
2118   case CK_BaseToDerivedMemberPointer:
2119   case CK_DerivedToBaseMemberPointer: {
2120     Value *Src = Visit(E);
2121 
2122     // Note that the AST doesn't distinguish between checked and
2123     // unchecked member pointer conversions, so we always have to
2124     // implement checked conversions here.  This is inefficient when
2125     // actual control flow may be required in order to perform the
2126     // check, which it is for data member pointers (but not member
2127     // function pointers on Itanium and ARM).
2128     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2129   }
2130 
2131   case CK_ARCProduceObject:
2132     return CGF.EmitARCRetainScalarExpr(E);
2133   case CK_ARCConsumeObject:
2134     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2135   case CK_ARCReclaimReturnedObject:
2136     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2137   case CK_ARCExtendBlockObject:
2138     return CGF.EmitARCExtendBlockObject(E);
2139 
2140   case CK_CopyAndAutoreleaseBlockObject:
2141     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2142 
2143   case CK_FloatingRealToComplex:
2144   case CK_FloatingComplexCast:
2145   case CK_IntegralRealToComplex:
2146   case CK_IntegralComplexCast:
2147   case CK_IntegralComplexToFloatingComplex:
2148   case CK_FloatingComplexToIntegralComplex:
2149   case CK_ConstructorConversion:
2150   case CK_ToUnion:
2151     llvm_unreachable("scalar cast to non-scalar value");
2152 
2153   case CK_LValueToRValue:
2154     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2155     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2156     return Visit(const_cast<Expr*>(E));
2157 
2158   case CK_IntegralToPointer: {
2159     Value *Src = Visit(const_cast<Expr*>(E));
2160 
2161     // First, convert to the correct width so that we control the kind of
2162     // extension.
2163     auto DestLLVMTy = ConvertType(DestTy);
2164     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2165     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2166     llvm::Value* IntResult =
2167       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2168 
2169     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2170 
2171     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2172       // Going from integer to pointer that could be dynamic requires reloading
2173       // dynamic information from invariant.group.
2174       if (DestTy.mayBeDynamicClass())
2175         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2176     }
2177     return IntToPtr;
2178   }
2179   case CK_PointerToIntegral: {
2180     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2181     auto *PtrExpr = Visit(E);
2182 
2183     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2184       const QualType SrcType = E->getType();
2185 
2186       // Casting to integer requires stripping dynamic information as it does
2187       // not carries it.
2188       if (SrcType.mayBeDynamicClass())
2189         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2190     }
2191 
2192     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2193   }
2194   case CK_ToVoid: {
2195     CGF.EmitIgnoredExpr(E);
2196     return nullptr;
2197   }
2198   case CK_VectorSplat: {
2199     llvm::Type *DstTy = ConvertType(DestTy);
2200     Value *Elt = Visit(const_cast<Expr*>(E));
2201     // Splat the element across to all elements
2202     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
2203     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2204   }
2205 
2206   case CK_FixedPointCast:
2207     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2208                                 CE->getExprLoc());
2209 
2210   case CK_FixedPointToBoolean:
2211     assert(E->getType()->isFixedPointType() &&
2212            "Expected src type to be fixed point type");
2213     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2214     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2215                                 CE->getExprLoc());
2216 
2217   case CK_FixedPointToIntegral:
2218     assert(E->getType()->isFixedPointType() &&
2219            "Expected src type to be fixed point type");
2220     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2221     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2222                                 CE->getExprLoc());
2223 
2224   case CK_IntegralToFixedPoint:
2225     assert(E->getType()->isIntegerType() &&
2226            "Expected src type to be an integer");
2227     assert(DestTy->isFixedPointType() &&
2228            "Expected dest type to be fixed point type");
2229     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2230                                 CE->getExprLoc());
2231 
2232   case CK_IntegralCast: {
2233     ScalarConversionOpts Opts;
2234     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2235       if (!ICE->isPartOfExplicitCast())
2236         Opts = ScalarConversionOpts(CGF.SanOpts);
2237     }
2238     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2239                                 CE->getExprLoc(), Opts);
2240   }
2241   case CK_IntegralToFloating:
2242   case CK_FloatingToIntegral:
2243   case CK_FloatingCast:
2244   case CK_FixedPointToFloating:
2245   case CK_FloatingToFixedPoint:
2246     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2247                                 CE->getExprLoc());
2248   case CK_BooleanToSignedIntegral: {
2249     ScalarConversionOpts Opts;
2250     Opts.TreatBooleanAsSigned = true;
2251     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2252                                 CE->getExprLoc(), Opts);
2253   }
2254   case CK_IntegralToBoolean:
2255     return EmitIntToBoolConversion(Visit(E));
2256   case CK_PointerToBoolean:
2257     return EmitPointerToBoolConversion(Visit(E), E->getType());
2258   case CK_FloatingToBoolean:
2259     return EmitFloatToBoolConversion(Visit(E));
2260   case CK_MemberPointerToBoolean: {
2261     llvm::Value *MemPtr = Visit(E);
2262     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2263     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2264   }
2265 
2266   case CK_FloatingComplexToReal:
2267   case CK_IntegralComplexToReal:
2268     return CGF.EmitComplexExpr(E, false, true).first;
2269 
2270   case CK_FloatingComplexToBoolean:
2271   case CK_IntegralComplexToBoolean: {
2272     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2273 
2274     // TODO: kill this function off, inline appropriate case here
2275     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2276                                          CE->getExprLoc());
2277   }
2278 
2279   case CK_ZeroToOCLOpaqueType: {
2280     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2281             DestTy->isOCLIntelSubgroupAVCType()) &&
2282            "CK_ZeroToOCLEvent cast on non-event type");
2283     return llvm::Constant::getNullValue(ConvertType(DestTy));
2284   }
2285 
2286   case CK_IntToOCLSampler:
2287     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2288 
2289   } // end of switch
2290 
2291   llvm_unreachable("unknown scalar cast");
2292 }
2293 
2294 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2295   CodeGenFunction::StmtExprEvaluation eval(CGF);
2296   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2297                                            !E->getType()->isVoidType());
2298   if (!RetAlloca.isValid())
2299     return nullptr;
2300   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2301                               E->getExprLoc());
2302 }
2303 
2304 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2305   CodeGenFunction::RunCleanupsScope Scope(CGF);
2306   Value *V = Visit(E->getSubExpr());
2307   // Defend against dominance problems caused by jumps out of expression
2308   // evaluation through the shared cleanup block.
2309   Scope.ForceCleanup({&V});
2310   return V;
2311 }
2312 
2313 //===----------------------------------------------------------------------===//
2314 //                             Unary Operators
2315 //===----------------------------------------------------------------------===//
2316 
2317 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2318                                            llvm::Value *InVal, bool IsInc,
2319                                            FPOptions FPFeatures) {
2320   BinOpInfo BinOp;
2321   BinOp.LHS = InVal;
2322   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2323   BinOp.Ty = E->getType();
2324   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2325   BinOp.FPFeatures = FPFeatures;
2326   BinOp.E = E;
2327   return BinOp;
2328 }
2329 
2330 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2331     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2332   llvm::Value *Amount =
2333       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2334   StringRef Name = IsInc ? "inc" : "dec";
2335   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2336   case LangOptions::SOB_Defined:
2337     return Builder.CreateAdd(InVal, Amount, Name);
2338   case LangOptions::SOB_Undefined:
2339     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2340       return Builder.CreateNSWAdd(InVal, Amount, Name);
2341     LLVM_FALLTHROUGH;
2342   case LangOptions::SOB_Trapping:
2343     if (!E->canOverflow())
2344       return Builder.CreateNSWAdd(InVal, Amount, Name);
2345     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2346         E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2347   }
2348   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2349 }
2350 
2351 namespace {
2352 /// Handles check and update for lastprivate conditional variables.
2353 class OMPLastprivateConditionalUpdateRAII {
2354 private:
2355   CodeGenFunction &CGF;
2356   const UnaryOperator *E;
2357 
2358 public:
2359   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2360                                       const UnaryOperator *E)
2361       : CGF(CGF), E(E) {}
2362   ~OMPLastprivateConditionalUpdateRAII() {
2363     if (CGF.getLangOpts().OpenMP)
2364       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2365           CGF, E->getSubExpr());
2366   }
2367 };
2368 } // namespace
2369 
2370 llvm::Value *
2371 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2372                                            bool isInc, bool isPre) {
2373   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2374   QualType type = E->getSubExpr()->getType();
2375   llvm::PHINode *atomicPHI = nullptr;
2376   llvm::Value *value;
2377   llvm::Value *input;
2378 
2379   int amount = (isInc ? 1 : -1);
2380   bool isSubtraction = !isInc;
2381 
2382   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2383     type = atomicTy->getValueType();
2384     if (isInc && type->isBooleanType()) {
2385       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2386       if (isPre) {
2387         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2388             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2389         return Builder.getTrue();
2390       }
2391       // For atomic bool increment, we just store true and return it for
2392       // preincrement, do an atomic swap with true for postincrement
2393       return Builder.CreateAtomicRMW(
2394           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2395           llvm::AtomicOrdering::SequentiallyConsistent);
2396     }
2397     // Special case for atomic increment / decrement on integers, emit
2398     // atomicrmw instructions.  We skip this if we want to be doing overflow
2399     // checking, and fall into the slow path with the atomic cmpxchg loop.
2400     if (!type->isBooleanType() && type->isIntegerType() &&
2401         !(type->isUnsignedIntegerType() &&
2402           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2403         CGF.getLangOpts().getSignedOverflowBehavior() !=
2404             LangOptions::SOB_Trapping) {
2405       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2406         llvm::AtomicRMWInst::Sub;
2407       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2408         llvm::Instruction::Sub;
2409       llvm::Value *amt = CGF.EmitToMemory(
2410           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2411       llvm::Value *old =
2412           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2413                                   llvm::AtomicOrdering::SequentiallyConsistent);
2414       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2415     }
2416     value = EmitLoadOfLValue(LV, E->getExprLoc());
2417     input = value;
2418     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2419     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2420     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2421     value = CGF.EmitToMemory(value, type);
2422     Builder.CreateBr(opBB);
2423     Builder.SetInsertPoint(opBB);
2424     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2425     atomicPHI->addIncoming(value, startBB);
2426     value = atomicPHI;
2427   } else {
2428     value = EmitLoadOfLValue(LV, E->getExprLoc());
2429     input = value;
2430   }
2431 
2432   // Special case of integer increment that we have to check first: bool++.
2433   // Due to promotion rules, we get:
2434   //   bool++ -> bool = bool + 1
2435   //          -> bool = (int)bool + 1
2436   //          -> bool = ((int)bool + 1 != 0)
2437   // An interesting aspect of this is that increment is always true.
2438   // Decrement does not have this property.
2439   if (isInc && type->isBooleanType()) {
2440     value = Builder.getTrue();
2441 
2442   // Most common case by far: integer increment.
2443   } else if (type->isIntegerType()) {
2444     QualType promotedType;
2445     bool canPerformLossyDemotionCheck = false;
2446     if (type->isPromotableIntegerType()) {
2447       promotedType = CGF.getContext().getPromotedIntegerType(type);
2448       assert(promotedType != type && "Shouldn't promote to the same type.");
2449       canPerformLossyDemotionCheck = true;
2450       canPerformLossyDemotionCheck &=
2451           CGF.getContext().getCanonicalType(type) !=
2452           CGF.getContext().getCanonicalType(promotedType);
2453       canPerformLossyDemotionCheck &=
2454           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2455               type, promotedType);
2456       assert((!canPerformLossyDemotionCheck ||
2457               type->isSignedIntegerOrEnumerationType() ||
2458               promotedType->isSignedIntegerOrEnumerationType() ||
2459               ConvertType(type)->getScalarSizeInBits() ==
2460                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2461              "The following check expects that if we do promotion to different "
2462              "underlying canonical type, at least one of the types (either "
2463              "base or promoted) will be signed, or the bitwidths will match.");
2464     }
2465     if (CGF.SanOpts.hasOneOf(
2466             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2467         canPerformLossyDemotionCheck) {
2468       // While `x += 1` (for `x` with width less than int) is modeled as
2469       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2470       // ease; inc/dec with width less than int can't overflow because of
2471       // promotion rules, so we omit promotion+demotion, which means that we can
2472       // not catch lossy "demotion". Because we still want to catch these cases
2473       // when the sanitizer is enabled, we perform the promotion, then perform
2474       // the increment/decrement in the wider type, and finally
2475       // perform the demotion. This will catch lossy demotions.
2476 
2477       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2478       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2479       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2480       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2481       // emitted.
2482       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2483                                    ScalarConversionOpts(CGF.SanOpts));
2484 
2485       // Note that signed integer inc/dec with width less than int can't
2486       // overflow because of promotion rules; we're just eliding a few steps
2487       // here.
2488     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2489       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2490     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2491                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2492       value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2493           E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2494     } else {
2495       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2496       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2497     }
2498 
2499   // Next most common: pointer increment.
2500   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2501     QualType type = ptr->getPointeeType();
2502 
2503     // VLA types don't have constant size.
2504     if (const VariableArrayType *vla
2505           = CGF.getContext().getAsVariableArrayType(type)) {
2506       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2507       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2508       if (CGF.getLangOpts().isSignedOverflowDefined())
2509         value = Builder.CreateGEP(value, numElts, "vla.inc");
2510       else
2511         value = CGF.EmitCheckedInBoundsGEP(
2512             value, numElts, /*SignedIndices=*/false, isSubtraction,
2513             E->getExprLoc(), "vla.inc");
2514 
2515     // Arithmetic on function pointers (!) is just +-1.
2516     } else if (type->isFunctionType()) {
2517       llvm::Value *amt = Builder.getInt32(amount);
2518 
2519       value = CGF.EmitCastToVoidPtr(value);
2520       if (CGF.getLangOpts().isSignedOverflowDefined())
2521         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2522       else
2523         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2524                                            isSubtraction, E->getExprLoc(),
2525                                            "incdec.funcptr");
2526       value = Builder.CreateBitCast(value, input->getType());
2527 
2528     // For everything else, we can just do a simple increment.
2529     } else {
2530       llvm::Value *amt = Builder.getInt32(amount);
2531       if (CGF.getLangOpts().isSignedOverflowDefined())
2532         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2533       else
2534         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2535                                            isSubtraction, E->getExprLoc(),
2536                                            "incdec.ptr");
2537     }
2538 
2539   // Vector increment/decrement.
2540   } else if (type->isVectorType()) {
2541     if (type->hasIntegerRepresentation()) {
2542       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2543 
2544       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2545     } else {
2546       value = Builder.CreateFAdd(
2547                   value,
2548                   llvm::ConstantFP::get(value->getType(), amount),
2549                   isInc ? "inc" : "dec");
2550     }
2551 
2552   // Floating point.
2553   } else if (type->isRealFloatingType()) {
2554     // Add the inc/dec to the real part.
2555     llvm::Value *amt;
2556 
2557     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2558       // Another special case: half FP increment should be done via float
2559       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2560         value = Builder.CreateCall(
2561             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2562                                  CGF.CGM.FloatTy),
2563             input, "incdec.conv");
2564       } else {
2565         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2566       }
2567     }
2568 
2569     if (value->getType()->isFloatTy())
2570       amt = llvm::ConstantFP::get(VMContext,
2571                                   llvm::APFloat(static_cast<float>(amount)));
2572     else if (value->getType()->isDoubleTy())
2573       amt = llvm::ConstantFP::get(VMContext,
2574                                   llvm::APFloat(static_cast<double>(amount)));
2575     else {
2576       // Remaining types are Half, LongDouble or __float128. Convert from float.
2577       llvm::APFloat F(static_cast<float>(amount));
2578       bool ignored;
2579       const llvm::fltSemantics *FS;
2580       // Don't use getFloatTypeSemantics because Half isn't
2581       // necessarily represented using the "half" LLVM type.
2582       if (value->getType()->isFP128Ty())
2583         FS = &CGF.getTarget().getFloat128Format();
2584       else if (value->getType()->isHalfTy())
2585         FS = &CGF.getTarget().getHalfFormat();
2586       else
2587         FS = &CGF.getTarget().getLongDoubleFormat();
2588       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2589       amt = llvm::ConstantFP::get(VMContext, F);
2590     }
2591     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2592 
2593     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2594       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2595         value = Builder.CreateCall(
2596             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2597                                  CGF.CGM.FloatTy),
2598             value, "incdec.conv");
2599       } else {
2600         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2601       }
2602     }
2603 
2604   // Fixed-point types.
2605   } else if (type->isFixedPointType()) {
2606     // Fixed-point types are tricky. In some cases, it isn't possible to
2607     // represent a 1 or a -1 in the type at all. Piggyback off of
2608     // EmitFixedPointBinOp to avoid having to reimplement saturation.
2609     BinOpInfo Info;
2610     Info.E = E;
2611     Info.Ty = E->getType();
2612     Info.Opcode = isInc ? BO_Add : BO_Sub;
2613     Info.LHS = value;
2614     Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2615     // If the type is signed, it's better to represent this as +(-1) or -(-1),
2616     // since -1 is guaranteed to be representable.
2617     if (type->isSignedFixedPointType()) {
2618       Info.Opcode = isInc ? BO_Sub : BO_Add;
2619       Info.RHS = Builder.CreateNeg(Info.RHS);
2620     }
2621     // Now, convert from our invented integer literal to the type of the unary
2622     // op. This will upscale and saturate if necessary. This value can become
2623     // undef in some cases.
2624     llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
2625     auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
2626     Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
2627     value = EmitFixedPointBinOp(Info);
2628 
2629   // Objective-C pointer types.
2630   } else {
2631     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2632     value = CGF.EmitCastToVoidPtr(value);
2633 
2634     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2635     if (!isInc) size = -size;
2636     llvm::Value *sizeValue =
2637       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2638 
2639     if (CGF.getLangOpts().isSignedOverflowDefined())
2640       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2641     else
2642       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2643                                          /*SignedIndices=*/false, isSubtraction,
2644                                          E->getExprLoc(), "incdec.objptr");
2645     value = Builder.CreateBitCast(value, input->getType());
2646   }
2647 
2648   if (atomicPHI) {
2649     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2650     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2651     auto Pair = CGF.EmitAtomicCompareExchange(
2652         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2653     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2654     llvm::Value *success = Pair.second;
2655     atomicPHI->addIncoming(old, curBlock);
2656     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2657     Builder.SetInsertPoint(contBB);
2658     return isPre ? value : input;
2659   }
2660 
2661   // Store the updated result through the lvalue.
2662   if (LV.isBitField())
2663     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2664   else
2665     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2666 
2667   // If this is a postinc, return the value read from memory, otherwise use the
2668   // updated value.
2669   return isPre ? value : input;
2670 }
2671 
2672 
2673 
2674 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2675   TestAndClearIgnoreResultAssign();
2676   Value *Op = Visit(E->getSubExpr());
2677 
2678   // Generate a unary FNeg for FP ops.
2679   if (Op->getType()->isFPOrFPVectorTy())
2680     return Builder.CreateFNeg(Op, "fneg");
2681 
2682   // Emit unary minus with EmitSub so we handle overflow cases etc.
2683   BinOpInfo BinOp;
2684   BinOp.RHS = Op;
2685   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2686   BinOp.Ty = E->getType();
2687   BinOp.Opcode = BO_Sub;
2688   BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2689   BinOp.E = E;
2690   return EmitSub(BinOp);
2691 }
2692 
2693 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2694   TestAndClearIgnoreResultAssign();
2695   Value *Op = Visit(E->getSubExpr());
2696   return Builder.CreateNot(Op, "neg");
2697 }
2698 
2699 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2700   // Perform vector logical not on comparison with zero vector.
2701   if (E->getType()->isVectorType() &&
2702       E->getType()->castAs<VectorType>()->getVectorKind() ==
2703           VectorType::GenericVector) {
2704     Value *Oper = Visit(E->getSubExpr());
2705     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2706     Value *Result;
2707     if (Oper->getType()->isFPOrFPVectorTy()) {
2708       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
2709           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2710       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2711     } else
2712       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2713     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2714   }
2715 
2716   // Compare operand to zero.
2717   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2718 
2719   // Invert value.
2720   // TODO: Could dynamically modify easy computations here.  For example, if
2721   // the operand is an icmp ne, turn into icmp eq.
2722   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2723 
2724   // ZExt result to the expr type.
2725   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2726 }
2727 
2728 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2729   // Try folding the offsetof to a constant.
2730   Expr::EvalResult EVResult;
2731   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2732     llvm::APSInt Value = EVResult.Val.getInt();
2733     return Builder.getInt(Value);
2734   }
2735 
2736   // Loop over the components of the offsetof to compute the value.
2737   unsigned n = E->getNumComponents();
2738   llvm::Type* ResultType = ConvertType(E->getType());
2739   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2740   QualType CurrentType = E->getTypeSourceInfo()->getType();
2741   for (unsigned i = 0; i != n; ++i) {
2742     OffsetOfNode ON = E->getComponent(i);
2743     llvm::Value *Offset = nullptr;
2744     switch (ON.getKind()) {
2745     case OffsetOfNode::Array: {
2746       // Compute the index
2747       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2748       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2749       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2750       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2751 
2752       // Save the element type
2753       CurrentType =
2754           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2755 
2756       // Compute the element size
2757       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2758           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2759 
2760       // Multiply out to compute the result
2761       Offset = Builder.CreateMul(Idx, ElemSize);
2762       break;
2763     }
2764 
2765     case OffsetOfNode::Field: {
2766       FieldDecl *MemberDecl = ON.getField();
2767       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2768       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2769 
2770       // Compute the index of the field in its parent.
2771       unsigned i = 0;
2772       // FIXME: It would be nice if we didn't have to loop here!
2773       for (RecordDecl::field_iterator Field = RD->field_begin(),
2774                                       FieldEnd = RD->field_end();
2775            Field != FieldEnd; ++Field, ++i) {
2776         if (*Field == MemberDecl)
2777           break;
2778       }
2779       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2780 
2781       // Compute the offset to the field
2782       int64_t OffsetInt = RL.getFieldOffset(i) /
2783                           CGF.getContext().getCharWidth();
2784       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2785 
2786       // Save the element type.
2787       CurrentType = MemberDecl->getType();
2788       break;
2789     }
2790 
2791     case OffsetOfNode::Identifier:
2792       llvm_unreachable("dependent __builtin_offsetof");
2793 
2794     case OffsetOfNode::Base: {
2795       if (ON.getBase()->isVirtual()) {
2796         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2797         continue;
2798       }
2799 
2800       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2801       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2802 
2803       // Save the element type.
2804       CurrentType = ON.getBase()->getType();
2805 
2806       // Compute the offset to the base.
2807       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2808       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2809       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2810       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2811       break;
2812     }
2813     }
2814     Result = Builder.CreateAdd(Result, Offset);
2815   }
2816   return Result;
2817 }
2818 
2819 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2820 /// argument of the sizeof expression as an integer.
2821 Value *
2822 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2823                               const UnaryExprOrTypeTraitExpr *E) {
2824   QualType TypeToSize = E->getTypeOfArgument();
2825   if (E->getKind() == UETT_SizeOf) {
2826     if (const VariableArrayType *VAT =
2827           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2828       if (E->isArgumentType()) {
2829         // sizeof(type) - make sure to emit the VLA size.
2830         CGF.EmitVariablyModifiedType(TypeToSize);
2831       } else {
2832         // C99 6.5.3.4p2: If the argument is an expression of type
2833         // VLA, it is evaluated.
2834         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2835       }
2836 
2837       auto VlaSize = CGF.getVLASize(VAT);
2838       llvm::Value *size = VlaSize.NumElts;
2839 
2840       // Scale the number of non-VLA elements by the non-VLA element size.
2841       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2842       if (!eltSize.isOne())
2843         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2844 
2845       return size;
2846     }
2847   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2848     auto Alignment =
2849         CGF.getContext()
2850             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2851                 E->getTypeOfArgument()->getPointeeType()))
2852             .getQuantity();
2853     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2854   }
2855 
2856   // If this isn't sizeof(vla), the result must be constant; use the constant
2857   // folding logic so we don't have to duplicate it here.
2858   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2859 }
2860 
2861 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2862   Expr *Op = E->getSubExpr();
2863   if (Op->getType()->isAnyComplexType()) {
2864     // If it's an l-value, load through the appropriate subobject l-value.
2865     // Note that we have to ask E because Op might be an l-value that
2866     // this won't work for, e.g. an Obj-C property.
2867     if (E->isGLValue())
2868       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2869                                   E->getExprLoc()).getScalarVal();
2870 
2871     // Otherwise, calculate and project.
2872     return CGF.EmitComplexExpr(Op, false, true).first;
2873   }
2874 
2875   return Visit(Op);
2876 }
2877 
2878 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2879   Expr *Op = E->getSubExpr();
2880   if (Op->getType()->isAnyComplexType()) {
2881     // If it's an l-value, load through the appropriate subobject l-value.
2882     // Note that we have to ask E because Op might be an l-value that
2883     // this won't work for, e.g. an Obj-C property.
2884     if (Op->isGLValue())
2885       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2886                                   E->getExprLoc()).getScalarVal();
2887 
2888     // Otherwise, calculate and project.
2889     return CGF.EmitComplexExpr(Op, true, false).second;
2890   }
2891 
2892   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2893   // effects are evaluated, but not the actual value.
2894   if (Op->isGLValue())
2895     CGF.EmitLValue(Op);
2896   else
2897     CGF.EmitScalarExpr(Op, true);
2898   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2899 }
2900 
2901 //===----------------------------------------------------------------------===//
2902 //                           Binary Operators
2903 //===----------------------------------------------------------------------===//
2904 
2905 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2906   TestAndClearIgnoreResultAssign();
2907   BinOpInfo Result;
2908   Result.LHS = Visit(E->getLHS());
2909   Result.RHS = Visit(E->getRHS());
2910   Result.Ty  = E->getType();
2911   Result.Opcode = E->getOpcode();
2912   Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2913   Result.E = E;
2914   return Result;
2915 }
2916 
2917 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2918                                               const CompoundAssignOperator *E,
2919                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2920                                                    Value *&Result) {
2921   QualType LHSTy = E->getLHS()->getType();
2922   BinOpInfo OpInfo;
2923 
2924   if (E->getComputationResultType()->isAnyComplexType())
2925     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2926 
2927   // Emit the RHS first.  __block variables need to have the rhs evaluated
2928   // first, plus this should improve codegen a little.
2929   OpInfo.RHS = Visit(E->getRHS());
2930   OpInfo.Ty = E->getComputationResultType();
2931   OpInfo.Opcode = E->getOpcode();
2932   OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2933   OpInfo.E = E;
2934   // Load/convert the LHS.
2935   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2936 
2937   llvm::PHINode *atomicPHI = nullptr;
2938   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2939     QualType type = atomicTy->getValueType();
2940     if (!type->isBooleanType() && type->isIntegerType() &&
2941         !(type->isUnsignedIntegerType() &&
2942           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2943         CGF.getLangOpts().getSignedOverflowBehavior() !=
2944             LangOptions::SOB_Trapping) {
2945       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
2946       llvm::Instruction::BinaryOps Op;
2947       switch (OpInfo.Opcode) {
2948         // We don't have atomicrmw operands for *, %, /, <<, >>
2949         case BO_MulAssign: case BO_DivAssign:
2950         case BO_RemAssign:
2951         case BO_ShlAssign:
2952         case BO_ShrAssign:
2953           break;
2954         case BO_AddAssign:
2955           AtomicOp = llvm::AtomicRMWInst::Add;
2956           Op = llvm::Instruction::Add;
2957           break;
2958         case BO_SubAssign:
2959           AtomicOp = llvm::AtomicRMWInst::Sub;
2960           Op = llvm::Instruction::Sub;
2961           break;
2962         case BO_AndAssign:
2963           AtomicOp = llvm::AtomicRMWInst::And;
2964           Op = llvm::Instruction::And;
2965           break;
2966         case BO_XorAssign:
2967           AtomicOp = llvm::AtomicRMWInst::Xor;
2968           Op = llvm::Instruction::Xor;
2969           break;
2970         case BO_OrAssign:
2971           AtomicOp = llvm::AtomicRMWInst::Or;
2972           Op = llvm::Instruction::Or;
2973           break;
2974         default:
2975           llvm_unreachable("Invalid compound assignment type");
2976       }
2977       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
2978         llvm::Value *Amt = CGF.EmitToMemory(
2979             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2980                                  E->getExprLoc()),
2981             LHSTy);
2982         Value *OldVal = Builder.CreateAtomicRMW(
2983             AtomicOp, LHSLV.getPointer(CGF), Amt,
2984             llvm::AtomicOrdering::SequentiallyConsistent);
2985 
2986         // Since operation is atomic, the result type is guaranteed to be the
2987         // same as the input in LLVM terms.
2988         Result = Builder.CreateBinOp(Op, OldVal, Amt);
2989         return LHSLV;
2990       }
2991     }
2992     // FIXME: For floating point types, we should be saving and restoring the
2993     // floating point environment in the loop.
2994     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2995     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2996     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2997     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2998     Builder.CreateBr(opBB);
2999     Builder.SetInsertPoint(opBB);
3000     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3001     atomicPHI->addIncoming(OpInfo.LHS, startBB);
3002     OpInfo.LHS = atomicPHI;
3003   }
3004   else
3005     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3006 
3007   SourceLocation Loc = E->getExprLoc();
3008   OpInfo.LHS =
3009       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
3010 
3011   // Expand the binary operator.
3012   Result = (this->*Func)(OpInfo);
3013 
3014   // Convert the result back to the LHS type,
3015   // potentially with Implicit Conversion sanitizer check.
3016   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
3017                                 Loc, ScalarConversionOpts(CGF.SanOpts));
3018 
3019   if (atomicPHI) {
3020     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3021     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3022     auto Pair = CGF.EmitAtomicCompareExchange(
3023         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3024     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3025     llvm::Value *success = Pair.second;
3026     atomicPHI->addIncoming(old, curBlock);
3027     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3028     Builder.SetInsertPoint(contBB);
3029     return LHSLV;
3030   }
3031 
3032   // Store the result value into the LHS lvalue. Bit-fields are handled
3033   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3034   // 'An assignment expression has the value of the left operand after the
3035   // assignment...'.
3036   if (LHSLV.isBitField())
3037     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3038   else
3039     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3040 
3041   if (CGF.getLangOpts().OpenMP)
3042     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3043                                                                   E->getLHS());
3044   return LHSLV;
3045 }
3046 
3047 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3048                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3049   bool Ignore = TestAndClearIgnoreResultAssign();
3050   Value *RHS = nullptr;
3051   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3052 
3053   // If the result is clearly ignored, return now.
3054   if (Ignore)
3055     return nullptr;
3056 
3057   // The result of an assignment in C is the assigned r-value.
3058   if (!CGF.getLangOpts().CPlusPlus)
3059     return RHS;
3060 
3061   // If the lvalue is non-volatile, return the computed value of the assignment.
3062   if (!LHS.isVolatileQualified())
3063     return RHS;
3064 
3065   // Otherwise, reload the value.
3066   return EmitLoadOfLValue(LHS, E->getExprLoc());
3067 }
3068 
3069 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3070     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3071   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3072 
3073   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3074     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3075                                     SanitizerKind::IntegerDivideByZero));
3076   }
3077 
3078   const auto *BO = cast<BinaryOperator>(Ops.E);
3079   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3080       Ops.Ty->hasSignedIntegerRepresentation() &&
3081       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3082       Ops.mayHaveIntegerOverflow()) {
3083     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3084 
3085     llvm::Value *IntMin =
3086       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3087     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
3088 
3089     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3090     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3091     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3092     Checks.push_back(
3093         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3094   }
3095 
3096   if (Checks.size() > 0)
3097     EmitBinOpCheck(Checks, Ops);
3098 }
3099 
3100 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3101   {
3102     CodeGenFunction::SanitizerScope SanScope(&CGF);
3103     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3104          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3105         Ops.Ty->isIntegerType() &&
3106         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3107       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3108       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3109     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3110                Ops.Ty->isRealFloatingType() &&
3111                Ops.mayHaveFloatDivisionByZero()) {
3112       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3113       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3114       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3115                      Ops);
3116     }
3117   }
3118 
3119   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3120     llvm::Value *Val;
3121     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3122     Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3123     if (CGF.getLangOpts().OpenCL &&
3124         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
3125       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3126       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3127       // build option allows an application to specify that single precision
3128       // floating-point divide (x/y and 1/x) and sqrt used in the program
3129       // source are correctly rounded.
3130       llvm::Type *ValTy = Val->getType();
3131       if (ValTy->isFloatTy() ||
3132           (isa<llvm::VectorType>(ValTy) &&
3133            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3134         CGF.SetFPAccuracy(Val, 2.5);
3135     }
3136     return Val;
3137   }
3138   else if (Ops.isFixedPointOp())
3139     return EmitFixedPointBinOp(Ops);
3140   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3141     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3142   else
3143     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3144 }
3145 
3146 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3147   // Rem in C can't be a floating point type: C99 6.5.5p2.
3148   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3149        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3150       Ops.Ty->isIntegerType() &&
3151       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3152     CodeGenFunction::SanitizerScope SanScope(&CGF);
3153     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3154     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3155   }
3156 
3157   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3158     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3159   else
3160     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3161 }
3162 
3163 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3164   unsigned IID;
3165   unsigned OpID = 0;
3166 
3167   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3168   switch (Ops.Opcode) {
3169   case BO_Add:
3170   case BO_AddAssign:
3171     OpID = 1;
3172     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3173                      llvm::Intrinsic::uadd_with_overflow;
3174     break;
3175   case BO_Sub:
3176   case BO_SubAssign:
3177     OpID = 2;
3178     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3179                      llvm::Intrinsic::usub_with_overflow;
3180     break;
3181   case BO_Mul:
3182   case BO_MulAssign:
3183     OpID = 3;
3184     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3185                      llvm::Intrinsic::umul_with_overflow;
3186     break;
3187   default:
3188     llvm_unreachable("Unsupported operation for overflow detection");
3189   }
3190   OpID <<= 1;
3191   if (isSigned)
3192     OpID |= 1;
3193 
3194   CodeGenFunction::SanitizerScope SanScope(&CGF);
3195   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3196 
3197   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3198 
3199   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3200   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3201   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3202 
3203   // Handle overflow with llvm.trap if no custom handler has been specified.
3204   const std::string *handlerName =
3205     &CGF.getLangOpts().OverflowHandler;
3206   if (handlerName->empty()) {
3207     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3208     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3209     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3210       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3211       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3212                               : SanitizerKind::UnsignedIntegerOverflow;
3213       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3214     } else
3215       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
3216     return result;
3217   }
3218 
3219   // Branch in case of overflow.
3220   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3221   llvm::BasicBlock *continueBB =
3222       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3223   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3224 
3225   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3226 
3227   // If an overflow handler is set, then we want to call it and then use its
3228   // result, if it returns.
3229   Builder.SetInsertPoint(overflowBB);
3230 
3231   // Get the overflow handler.
3232   llvm::Type *Int8Ty = CGF.Int8Ty;
3233   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3234   llvm::FunctionType *handlerTy =
3235       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3236   llvm::FunctionCallee handler =
3237       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3238 
3239   // Sign extend the args to 64-bit, so that we can use the same handler for
3240   // all types of overflow.
3241   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3242   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3243 
3244   // Call the handler with the two arguments, the operation, and the size of
3245   // the result.
3246   llvm::Value *handlerArgs[] = {
3247     lhs,
3248     rhs,
3249     Builder.getInt8(OpID),
3250     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3251   };
3252   llvm::Value *handlerResult =
3253     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3254 
3255   // Truncate the result back to the desired size.
3256   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3257   Builder.CreateBr(continueBB);
3258 
3259   Builder.SetInsertPoint(continueBB);
3260   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3261   phi->addIncoming(result, initialBB);
3262   phi->addIncoming(handlerResult, overflowBB);
3263 
3264   return phi;
3265 }
3266 
3267 /// Emit pointer + index arithmetic.
3268 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3269                                     const BinOpInfo &op,
3270                                     bool isSubtraction) {
3271   // Must have binary (not unary) expr here.  Unary pointer
3272   // increment/decrement doesn't use this path.
3273   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3274 
3275   Value *pointer = op.LHS;
3276   Expr *pointerOperand = expr->getLHS();
3277   Value *index = op.RHS;
3278   Expr *indexOperand = expr->getRHS();
3279 
3280   // In a subtraction, the LHS is always the pointer.
3281   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3282     std::swap(pointer, index);
3283     std::swap(pointerOperand, indexOperand);
3284   }
3285 
3286   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3287 
3288   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3289   auto &DL = CGF.CGM.getDataLayout();
3290   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3291 
3292   // Some versions of glibc and gcc use idioms (particularly in their malloc
3293   // routines) that add a pointer-sized integer (known to be a pointer value)
3294   // to a null pointer in order to cast the value back to an integer or as
3295   // part of a pointer alignment algorithm.  This is undefined behavior, but
3296   // we'd like to be able to compile programs that use it.
3297   //
3298   // Normally, we'd generate a GEP with a null-pointer base here in response
3299   // to that code, but it's also UB to dereference a pointer created that
3300   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3301   // generate a direct cast of the integer value to a pointer.
3302   //
3303   // The idiom (p = nullptr + N) is not met if any of the following are true:
3304   //
3305   //   The operation is subtraction.
3306   //   The index is not pointer-sized.
3307   //   The pointer type is not byte-sized.
3308   //
3309   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3310                                                        op.Opcode,
3311                                                        expr->getLHS(),
3312                                                        expr->getRHS()))
3313     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3314 
3315   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3316     // Zero-extend or sign-extend the pointer value according to
3317     // whether the index is signed or not.
3318     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3319                                       "idx.ext");
3320   }
3321 
3322   // If this is subtraction, negate the index.
3323   if (isSubtraction)
3324     index = CGF.Builder.CreateNeg(index, "idx.neg");
3325 
3326   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3327     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3328                         /*Accessed*/ false);
3329 
3330   const PointerType *pointerType
3331     = pointerOperand->getType()->getAs<PointerType>();
3332   if (!pointerType) {
3333     QualType objectType = pointerOperand->getType()
3334                                         ->castAs<ObjCObjectPointerType>()
3335                                         ->getPointeeType();
3336     llvm::Value *objectSize
3337       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3338 
3339     index = CGF.Builder.CreateMul(index, objectSize);
3340 
3341     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3342     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3343     return CGF.Builder.CreateBitCast(result, pointer->getType());
3344   }
3345 
3346   QualType elementType = pointerType->getPointeeType();
3347   if (const VariableArrayType *vla
3348         = CGF.getContext().getAsVariableArrayType(elementType)) {
3349     // The element count here is the total number of non-VLA elements.
3350     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3351 
3352     // Effectively, the multiply by the VLA size is part of the GEP.
3353     // GEP indexes are signed, and scaling an index isn't permitted to
3354     // signed-overflow, so we use the same semantics for our explicit
3355     // multiply.  We suppress this if overflow is not undefined behavior.
3356     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3357       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3358       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3359     } else {
3360       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3361       pointer =
3362           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3363                                      op.E->getExprLoc(), "add.ptr");
3364     }
3365     return pointer;
3366   }
3367 
3368   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3369   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3370   // future proof.
3371   if (elementType->isVoidType() || elementType->isFunctionType()) {
3372     Value *result = CGF.EmitCastToVoidPtr(pointer);
3373     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3374     return CGF.Builder.CreateBitCast(result, pointer->getType());
3375   }
3376 
3377   if (CGF.getLangOpts().isSignedOverflowDefined())
3378     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3379 
3380   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3381                                     op.E->getExprLoc(), "add.ptr");
3382 }
3383 
3384 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3385 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3386 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3387 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3388 // efficient operations.
3389 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3390                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3391                            bool negMul, bool negAdd) {
3392   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3393 
3394   Value *MulOp0 = MulOp->getOperand(0);
3395   Value *MulOp1 = MulOp->getOperand(1);
3396   if (negMul)
3397     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3398   if (negAdd)
3399     Addend = Builder.CreateFNeg(Addend, "neg");
3400 
3401   Value *FMulAdd = nullptr;
3402   if (Builder.getIsFPConstrained()) {
3403     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3404            "Only constrained operation should be created when Builder is in FP "
3405            "constrained mode");
3406     FMulAdd = Builder.CreateConstrainedFPCall(
3407         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3408                              Addend->getType()),
3409         {MulOp0, MulOp1, Addend});
3410   } else {
3411     FMulAdd = Builder.CreateCall(
3412         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3413         {MulOp0, MulOp1, Addend});
3414   }
3415   MulOp->eraseFromParent();
3416 
3417   return FMulAdd;
3418 }
3419 
3420 // Check whether it would be legal to emit an fmuladd intrinsic call to
3421 // represent op and if so, build the fmuladd.
3422 //
3423 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3424 // Does NOT check the type of the operation - it's assumed that this function
3425 // will be called from contexts where it's known that the type is contractable.
3426 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3427                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3428                          bool isSub=false) {
3429 
3430   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3431           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3432          "Only fadd/fsub can be the root of an fmuladd.");
3433 
3434   // Check whether this op is marked as fusable.
3435   if (!op.FPFeatures.allowFPContractWithinStatement())
3436     return nullptr;
3437 
3438   // We have a potentially fusable op. Look for a mul on one of the operands.
3439   // Also, make sure that the mul result isn't used directly. In that case,
3440   // there's no point creating a muladd operation.
3441   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3442     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3443         LHSBinOp->use_empty())
3444       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3445   }
3446   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3447     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3448         RHSBinOp->use_empty())
3449       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3450   }
3451 
3452   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3453     if (LHSBinOp->getIntrinsicID() ==
3454             llvm::Intrinsic::experimental_constrained_fmul &&
3455         LHSBinOp->use_empty())
3456       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3457   }
3458   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3459     if (RHSBinOp->getIntrinsicID() ==
3460             llvm::Intrinsic::experimental_constrained_fmul &&
3461         RHSBinOp->use_empty())
3462       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3463   }
3464 
3465   return nullptr;
3466 }
3467 
3468 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3469   if (op.LHS->getType()->isPointerTy() ||
3470       op.RHS->getType()->isPointerTy())
3471     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3472 
3473   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3474     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3475     case LangOptions::SOB_Defined:
3476       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3477     case LangOptions::SOB_Undefined:
3478       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3479         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3480       LLVM_FALLTHROUGH;
3481     case LangOptions::SOB_Trapping:
3482       if (CanElideOverflowCheck(CGF.getContext(), op))
3483         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3484       return EmitOverflowCheckedBinOp(op);
3485     }
3486   }
3487 
3488   if (op.Ty->isConstantMatrixType()) {
3489     llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3490     return MB.CreateAdd(op.LHS, op.RHS);
3491   }
3492 
3493   if (op.Ty->isUnsignedIntegerType() &&
3494       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3495       !CanElideOverflowCheck(CGF.getContext(), op))
3496     return EmitOverflowCheckedBinOp(op);
3497 
3498   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3499     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3500     // Try to form an fmuladd.
3501     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3502       return FMulAdd;
3503 
3504     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3505   }
3506 
3507   if (op.isFixedPointOp())
3508     return EmitFixedPointBinOp(op);
3509 
3510   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3511 }
3512 
3513 /// The resulting value must be calculated with exact precision, so the operands
3514 /// may not be the same type.
3515 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3516   using llvm::APSInt;
3517   using llvm::ConstantInt;
3518 
3519   // This is either a binary operation where at least one of the operands is
3520   // a fixed-point type, or a unary operation where the operand is a fixed-point
3521   // type. The result type of a binary operation is determined by
3522   // Sema::handleFixedPointConversions().
3523   QualType ResultTy = op.Ty;
3524   QualType LHSTy, RHSTy;
3525   if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3526     RHSTy = BinOp->getRHS()->getType();
3527     if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3528       // For compound assignment, the effective type of the LHS at this point
3529       // is the computation LHS type, not the actual LHS type, and the final
3530       // result type is not the type of the expression but rather the
3531       // computation result type.
3532       LHSTy = CAO->getComputationLHSType();
3533       ResultTy = CAO->getComputationResultType();
3534     } else
3535       LHSTy = BinOp->getLHS()->getType();
3536   } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3537     LHSTy = UnOp->getSubExpr()->getType();
3538     RHSTy = UnOp->getSubExpr()->getType();
3539   }
3540   ASTContext &Ctx = CGF.getContext();
3541   Value *LHS = op.LHS;
3542   Value *RHS = op.RHS;
3543 
3544   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3545   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3546   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3547   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3548 
3549   // Perform the actual operation.
3550   Value *Result;
3551   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3552   switch (op.Opcode) {
3553   case BO_AddAssign:
3554   case BO_Add:
3555     Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
3556     break;
3557   case BO_SubAssign:
3558   case BO_Sub:
3559     Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
3560     break;
3561   case BO_MulAssign:
3562   case BO_Mul:
3563     Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
3564     break;
3565   case BO_DivAssign:
3566   case BO_Div:
3567     Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
3568     break;
3569   case BO_ShlAssign:
3570   case BO_Shl:
3571     Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
3572     break;
3573   case BO_ShrAssign:
3574   case BO_Shr:
3575     Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
3576     break;
3577   case BO_LT:
3578     return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3579   case BO_GT:
3580     return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3581   case BO_LE:
3582     return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3583   case BO_GE:
3584     return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3585   case BO_EQ:
3586     // For equality operations, we assume any padding bits on unsigned types are
3587     // zero'd out. They could be overwritten through non-saturating operations
3588     // that cause overflow, but this leads to undefined behavior.
3589     return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
3590   case BO_NE:
3591     return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3592   case BO_Cmp:
3593   case BO_LAnd:
3594   case BO_LOr:
3595     llvm_unreachable("Found unimplemented fixed point binary operation");
3596   case BO_PtrMemD:
3597   case BO_PtrMemI:
3598   case BO_Rem:
3599   case BO_Xor:
3600   case BO_And:
3601   case BO_Or:
3602   case BO_Assign:
3603   case BO_RemAssign:
3604   case BO_AndAssign:
3605   case BO_XorAssign:
3606   case BO_OrAssign:
3607   case BO_Comma:
3608     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3609   }
3610 
3611   bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
3612                  BinaryOperator::isShiftAssignOp(op.Opcode);
3613   // Convert to the result type.
3614   return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
3615                                                       : CommonFixedSema,
3616                                       ResultFixedSema);
3617 }
3618 
3619 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3620   // The LHS is always a pointer if either side is.
3621   if (!op.LHS->getType()->isPointerTy()) {
3622     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3623       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3624       case LangOptions::SOB_Defined:
3625         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3626       case LangOptions::SOB_Undefined:
3627         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3628           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3629         LLVM_FALLTHROUGH;
3630       case LangOptions::SOB_Trapping:
3631         if (CanElideOverflowCheck(CGF.getContext(), op))
3632           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3633         return EmitOverflowCheckedBinOp(op);
3634       }
3635     }
3636 
3637     if (op.Ty->isConstantMatrixType()) {
3638       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3639       return MB.CreateSub(op.LHS, op.RHS);
3640     }
3641 
3642     if (op.Ty->isUnsignedIntegerType() &&
3643         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3644         !CanElideOverflowCheck(CGF.getContext(), op))
3645       return EmitOverflowCheckedBinOp(op);
3646 
3647     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3648       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3649       // Try to form an fmuladd.
3650       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3651         return FMulAdd;
3652       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
3653     }
3654 
3655     if (op.isFixedPointOp())
3656       return EmitFixedPointBinOp(op);
3657 
3658     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3659   }
3660 
3661   // If the RHS is not a pointer, then we have normal pointer
3662   // arithmetic.
3663   if (!op.RHS->getType()->isPointerTy())
3664     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3665 
3666   // Otherwise, this is a pointer subtraction.
3667 
3668   // Do the raw subtraction part.
3669   llvm::Value *LHS
3670     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3671   llvm::Value *RHS
3672     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3673   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3674 
3675   // Okay, figure out the element size.
3676   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3677   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3678 
3679   llvm::Value *divisor = nullptr;
3680 
3681   // For a variable-length array, this is going to be non-constant.
3682   if (const VariableArrayType *vla
3683         = CGF.getContext().getAsVariableArrayType(elementType)) {
3684     auto VlaSize = CGF.getVLASize(vla);
3685     elementType = VlaSize.Type;
3686     divisor = VlaSize.NumElts;
3687 
3688     // Scale the number of non-VLA elements by the non-VLA element size.
3689     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3690     if (!eltSize.isOne())
3691       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3692 
3693   // For everything elese, we can just compute it, safe in the
3694   // assumption that Sema won't let anything through that we can't
3695   // safely compute the size of.
3696   } else {
3697     CharUnits elementSize;
3698     // Handle GCC extension for pointer arithmetic on void* and
3699     // function pointer types.
3700     if (elementType->isVoidType() || elementType->isFunctionType())
3701       elementSize = CharUnits::One();
3702     else
3703       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3704 
3705     // Don't even emit the divide for element size of 1.
3706     if (elementSize.isOne())
3707       return diffInChars;
3708 
3709     divisor = CGF.CGM.getSize(elementSize);
3710   }
3711 
3712   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3713   // pointer difference in C is only defined in the case where both operands
3714   // are pointing to elements of an array.
3715   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3716 }
3717 
3718 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3719   llvm::IntegerType *Ty;
3720   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3721     Ty = cast<llvm::IntegerType>(VT->getElementType());
3722   else
3723     Ty = cast<llvm::IntegerType>(LHS->getType());
3724   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3725 }
3726 
3727 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
3728                                               const Twine &Name) {
3729   llvm::IntegerType *Ty;
3730   if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3731     Ty = cast<llvm::IntegerType>(VT->getElementType());
3732   else
3733     Ty = cast<llvm::IntegerType>(LHS->getType());
3734 
3735   if (llvm::isPowerOf2_64(Ty->getBitWidth()))
3736         return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
3737 
3738   return Builder.CreateURem(
3739       RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
3740 }
3741 
3742 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3743   // TODO: This misses out on the sanitizer check below.
3744   if (Ops.isFixedPointOp())
3745     return EmitFixedPointBinOp(Ops);
3746 
3747   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3748   // RHS to the same size as the LHS.
3749   Value *RHS = Ops.RHS;
3750   if (Ops.LHS->getType() != RHS->getType())
3751     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3752 
3753   bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3754                             Ops.Ty->hasSignedIntegerRepresentation() &&
3755                             !CGF.getLangOpts().isSignedOverflowDefined() &&
3756                             !CGF.getLangOpts().CPlusPlus20;
3757   bool SanitizeUnsignedBase =
3758       CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
3759       Ops.Ty->hasUnsignedIntegerRepresentation();
3760   bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
3761   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3762   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3763   if (CGF.getLangOpts().OpenCL)
3764     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
3765   else if ((SanitizeBase || SanitizeExponent) &&
3766            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3767     CodeGenFunction::SanitizerScope SanScope(&CGF);
3768     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3769     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3770     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3771 
3772     if (SanitizeExponent) {
3773       Checks.push_back(
3774           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3775     }
3776 
3777     if (SanitizeBase) {
3778       // Check whether we are shifting any non-zero bits off the top of the
3779       // integer. We only emit this check if exponent is valid - otherwise
3780       // instructions below will have undefined behavior themselves.
3781       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3782       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3783       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3784       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3785       llvm::Value *PromotedWidthMinusOne =
3786           (RHS == Ops.RHS) ? WidthMinusOne
3787                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3788       CGF.EmitBlock(CheckShiftBase);
3789       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3790           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3791                                      /*NUW*/ true, /*NSW*/ true),
3792           "shl.check");
3793       if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
3794         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3795         // Under C++11's rules, shifting a 1 bit into the sign bit is
3796         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3797         // define signed left shifts, so we use the C99 and C++11 rules there).
3798         // Unsigned shifts can always shift into the top bit.
3799         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3800         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3801       }
3802       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3803       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3804       CGF.EmitBlock(Cont);
3805       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3806       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3807       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3808       Checks.push_back(std::make_pair(
3809           BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
3810                                         : SanitizerKind::UnsignedShiftBase));
3811     }
3812 
3813     assert(!Checks.empty());
3814     EmitBinOpCheck(Checks, Ops);
3815   }
3816 
3817   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3818 }
3819 
3820 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3821   // TODO: This misses out on the sanitizer check below.
3822   if (Ops.isFixedPointOp())
3823     return EmitFixedPointBinOp(Ops);
3824 
3825   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3826   // RHS to the same size as the LHS.
3827   Value *RHS = Ops.RHS;
3828   if (Ops.LHS->getType() != RHS->getType())
3829     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3830 
3831   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3832   if (CGF.getLangOpts().OpenCL)
3833     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
3834   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3835            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3836     CodeGenFunction::SanitizerScope SanScope(&CGF);
3837     llvm::Value *Valid =
3838         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3839     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3840   }
3841 
3842   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3843     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3844   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3845 }
3846 
3847 enum IntrinsicType { VCMPEQ, VCMPGT };
3848 // return corresponding comparison intrinsic for given vector type
3849 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3850                                         BuiltinType::Kind ElemKind) {
3851   switch (ElemKind) {
3852   default: llvm_unreachable("unexpected element type");
3853   case BuiltinType::Char_U:
3854   case BuiltinType::UChar:
3855     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3856                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3857   case BuiltinType::Char_S:
3858   case BuiltinType::SChar:
3859     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3860                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3861   case BuiltinType::UShort:
3862     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3863                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3864   case BuiltinType::Short:
3865     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3866                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3867   case BuiltinType::UInt:
3868     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3869                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3870   case BuiltinType::Int:
3871     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3872                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3873   case BuiltinType::ULong:
3874   case BuiltinType::ULongLong:
3875     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3876                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3877   case BuiltinType::Long:
3878   case BuiltinType::LongLong:
3879     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3880                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3881   case BuiltinType::Float:
3882     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3883                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3884   case BuiltinType::Double:
3885     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3886                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3887   case BuiltinType::UInt128:
3888     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
3889                           : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
3890   case BuiltinType::Int128:
3891     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
3892                           : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
3893   }
3894 }
3895 
3896 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3897                                       llvm::CmpInst::Predicate UICmpOpc,
3898                                       llvm::CmpInst::Predicate SICmpOpc,
3899                                       llvm::CmpInst::Predicate FCmpOpc,
3900                                       bool IsSignaling) {
3901   TestAndClearIgnoreResultAssign();
3902   Value *Result;
3903   QualType LHSTy = E->getLHS()->getType();
3904   QualType RHSTy = E->getRHS()->getType();
3905   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3906     assert(E->getOpcode() == BO_EQ ||
3907            E->getOpcode() == BO_NE);
3908     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3909     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3910     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3911                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3912   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3913     BinOpInfo BOInfo = EmitBinOps(E);
3914     Value *LHS = BOInfo.LHS;
3915     Value *RHS = BOInfo.RHS;
3916 
3917     // If AltiVec, the comparison results in a numeric type, so we use
3918     // intrinsics comparing vectors and giving 0 or 1 as a result
3919     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3920       // constants for mapping CR6 register bits to predicate result
3921       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3922 
3923       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3924 
3925       // in several cases vector arguments order will be reversed
3926       Value *FirstVecArg = LHS,
3927             *SecondVecArg = RHS;
3928 
3929       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
3930       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
3931 
3932       switch(E->getOpcode()) {
3933       default: llvm_unreachable("is not a comparison operation");
3934       case BO_EQ:
3935         CR6 = CR6_LT;
3936         ID = GetIntrinsic(VCMPEQ, ElementKind);
3937         break;
3938       case BO_NE:
3939         CR6 = CR6_EQ;
3940         ID = GetIntrinsic(VCMPEQ, ElementKind);
3941         break;
3942       case BO_LT:
3943         CR6 = CR6_LT;
3944         ID = GetIntrinsic(VCMPGT, ElementKind);
3945         std::swap(FirstVecArg, SecondVecArg);
3946         break;
3947       case BO_GT:
3948         CR6 = CR6_LT;
3949         ID = GetIntrinsic(VCMPGT, ElementKind);
3950         break;
3951       case BO_LE:
3952         if (ElementKind == BuiltinType::Float) {
3953           CR6 = CR6_LT;
3954           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3955           std::swap(FirstVecArg, SecondVecArg);
3956         }
3957         else {
3958           CR6 = CR6_EQ;
3959           ID = GetIntrinsic(VCMPGT, ElementKind);
3960         }
3961         break;
3962       case BO_GE:
3963         if (ElementKind == BuiltinType::Float) {
3964           CR6 = CR6_LT;
3965           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3966         }
3967         else {
3968           CR6 = CR6_EQ;
3969           ID = GetIntrinsic(VCMPGT, ElementKind);
3970           std::swap(FirstVecArg, SecondVecArg);
3971         }
3972         break;
3973       }
3974 
3975       Value *CR6Param = Builder.getInt32(CR6);
3976       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3977       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3978 
3979       // The result type of intrinsic may not be same as E->getType().
3980       // If E->getType() is not BoolTy, EmitScalarConversion will do the
3981       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3982       // do nothing, if ResultTy is not i1 at the same time, it will cause
3983       // crash later.
3984       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3985       if (ResultTy->getBitWidth() > 1 &&
3986           E->getType() == CGF.getContext().BoolTy)
3987         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3988       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3989                                   E->getExprLoc());
3990     }
3991 
3992     if (BOInfo.isFixedPointOp()) {
3993       Result = EmitFixedPointBinOp(BOInfo);
3994     } else if (LHS->getType()->isFPOrFPVectorTy()) {
3995       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
3996       if (!IsSignaling)
3997         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3998       else
3999         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4000     } else if (LHSTy->hasSignedIntegerRepresentation()) {
4001       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4002     } else {
4003       // Unsigned integers and pointers.
4004 
4005       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4006           !isa<llvm::ConstantPointerNull>(LHS) &&
4007           !isa<llvm::ConstantPointerNull>(RHS)) {
4008 
4009         // Dynamic information is required to be stripped for comparisons,
4010         // because it could leak the dynamic information.  Based on comparisons
4011         // of pointers to dynamic objects, the optimizer can replace one pointer
4012         // with another, which might be incorrect in presence of invariant
4013         // groups. Comparison with null is safe because null does not carry any
4014         // dynamic information.
4015         if (LHSTy.mayBeDynamicClass())
4016           LHS = Builder.CreateStripInvariantGroup(LHS);
4017         if (RHSTy.mayBeDynamicClass())
4018           RHS = Builder.CreateStripInvariantGroup(RHS);
4019       }
4020 
4021       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4022     }
4023 
4024     // If this is a vector comparison, sign extend the result to the appropriate
4025     // vector integer type and return it (don't convert to bool).
4026     if (LHSTy->isVectorType())
4027       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4028 
4029   } else {
4030     // Complex Comparison: can only be an equality comparison.
4031     CodeGenFunction::ComplexPairTy LHS, RHS;
4032     QualType CETy;
4033     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4034       LHS = CGF.EmitComplexExpr(E->getLHS());
4035       CETy = CTy->getElementType();
4036     } else {
4037       LHS.first = Visit(E->getLHS());
4038       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4039       CETy = LHSTy;
4040     }
4041     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4042       RHS = CGF.EmitComplexExpr(E->getRHS());
4043       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4044                                                      CTy->getElementType()) &&
4045              "The element types must always match.");
4046       (void)CTy;
4047     } else {
4048       RHS.first = Visit(E->getRHS());
4049       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4050       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4051              "The element types must always match.");
4052     }
4053 
4054     Value *ResultR, *ResultI;
4055     if (CETy->isRealFloatingType()) {
4056       // As complex comparisons can only be equality comparisons, they
4057       // are never signaling comparisons.
4058       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4059       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4060     } else {
4061       // Complex comparisons can only be equality comparisons.  As such, signed
4062       // and unsigned opcodes are the same.
4063       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4064       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4065     }
4066 
4067     if (E->getOpcode() == BO_EQ) {
4068       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4069     } else {
4070       assert(E->getOpcode() == BO_NE &&
4071              "Complex comparison other than == or != ?");
4072       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4073     }
4074   }
4075 
4076   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4077                               E->getExprLoc());
4078 }
4079 
4080 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4081   bool Ignore = TestAndClearIgnoreResultAssign();
4082 
4083   Value *RHS;
4084   LValue LHS;
4085 
4086   switch (E->getLHS()->getType().getObjCLifetime()) {
4087   case Qualifiers::OCL_Strong:
4088     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4089     break;
4090 
4091   case Qualifiers::OCL_Autoreleasing:
4092     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4093     break;
4094 
4095   case Qualifiers::OCL_ExplicitNone:
4096     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4097     break;
4098 
4099   case Qualifiers::OCL_Weak:
4100     RHS = Visit(E->getRHS());
4101     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4102     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4103     break;
4104 
4105   case Qualifiers::OCL_None:
4106     // __block variables need to have the rhs evaluated first, plus
4107     // this should improve codegen just a little.
4108     RHS = Visit(E->getRHS());
4109     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4110 
4111     // Store the value into the LHS.  Bit-fields are handled specially
4112     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4113     // 'An assignment expression has the value of the left operand after
4114     // the assignment...'.
4115     if (LHS.isBitField()) {
4116       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4117     } else {
4118       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4119       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4120     }
4121   }
4122 
4123   // If the result is clearly ignored, return now.
4124   if (Ignore)
4125     return nullptr;
4126 
4127   // The result of an assignment in C is the assigned r-value.
4128   if (!CGF.getLangOpts().CPlusPlus)
4129     return RHS;
4130 
4131   // If the lvalue is non-volatile, return the computed value of the assignment.
4132   if (!LHS.isVolatileQualified())
4133     return RHS;
4134 
4135   // Otherwise, reload the value.
4136   return EmitLoadOfLValue(LHS, E->getExprLoc());
4137 }
4138 
4139 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4140   // Perform vector logical and on comparisons with zero vectors.
4141   if (E->getType()->isVectorType()) {
4142     CGF.incrementProfileCounter(E);
4143 
4144     Value *LHS = Visit(E->getLHS());
4145     Value *RHS = Visit(E->getRHS());
4146     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4147     if (LHS->getType()->isFPOrFPVectorTy()) {
4148       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4149           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4150       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4151       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4152     } else {
4153       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4154       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4155     }
4156     Value *And = Builder.CreateAnd(LHS, RHS);
4157     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4158   }
4159 
4160   llvm::Type *ResTy = ConvertType(E->getType());
4161 
4162   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4163   // If we have 1 && X, just emit X without inserting the control flow.
4164   bool LHSCondVal;
4165   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4166     if (LHSCondVal) { // If we have 1 && X, just emit X.
4167       CGF.incrementProfileCounter(E);
4168 
4169       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4170       // ZExt result to int or bool.
4171       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4172     }
4173 
4174     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4175     if (!CGF.ContainsLabel(E->getRHS()))
4176       return llvm::Constant::getNullValue(ResTy);
4177   }
4178 
4179   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4180   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4181 
4182   CodeGenFunction::ConditionalEvaluation eval(CGF);
4183 
4184   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4185   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4186                            CGF.getProfileCount(E->getRHS()));
4187 
4188   // Any edges into the ContBlock are now from an (indeterminate number of)
4189   // edges from this first condition.  All of these values will be false.  Start
4190   // setting up the PHI node in the Cont Block for this.
4191   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4192                                             "", ContBlock);
4193   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4194        PI != PE; ++PI)
4195     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4196 
4197   eval.begin(CGF);
4198   CGF.EmitBlock(RHSBlock);
4199   CGF.incrementProfileCounter(E);
4200   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4201   eval.end(CGF);
4202 
4203   // Reaquire the RHS block, as there may be subblocks inserted.
4204   RHSBlock = Builder.GetInsertBlock();
4205 
4206   // Emit an unconditional branch from this block to ContBlock.
4207   {
4208     // There is no need to emit line number for unconditional branch.
4209     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4210     CGF.EmitBlock(ContBlock);
4211   }
4212   // Insert an entry into the phi node for the edge with the value of RHSCond.
4213   PN->addIncoming(RHSCond, RHSBlock);
4214 
4215   // Artificial location to preserve the scope information
4216   {
4217     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4218     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4219   }
4220 
4221   // ZExt result to int.
4222   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4223 }
4224 
4225 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4226   // Perform vector logical or on comparisons with zero vectors.
4227   if (E->getType()->isVectorType()) {
4228     CGF.incrementProfileCounter(E);
4229 
4230     Value *LHS = Visit(E->getLHS());
4231     Value *RHS = Visit(E->getRHS());
4232     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4233     if (LHS->getType()->isFPOrFPVectorTy()) {
4234       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4235           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4236       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4237       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4238     } else {
4239       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4240       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4241     }
4242     Value *Or = Builder.CreateOr(LHS, RHS);
4243     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4244   }
4245 
4246   llvm::Type *ResTy = ConvertType(E->getType());
4247 
4248   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4249   // If we have 0 || X, just emit X without inserting the control flow.
4250   bool LHSCondVal;
4251   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4252     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4253       CGF.incrementProfileCounter(E);
4254 
4255       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4256       // ZExt result to int or bool.
4257       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4258     }
4259 
4260     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4261     if (!CGF.ContainsLabel(E->getRHS()))
4262       return llvm::ConstantInt::get(ResTy, 1);
4263   }
4264 
4265   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4266   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4267 
4268   CodeGenFunction::ConditionalEvaluation eval(CGF);
4269 
4270   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4271   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4272                            CGF.getCurrentProfileCount() -
4273                                CGF.getProfileCount(E->getRHS()));
4274 
4275   // Any edges into the ContBlock are now from an (indeterminate number of)
4276   // edges from this first condition.  All of these values will be true.  Start
4277   // setting up the PHI node in the Cont Block for this.
4278   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4279                                             "", ContBlock);
4280   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4281        PI != PE; ++PI)
4282     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4283 
4284   eval.begin(CGF);
4285 
4286   // Emit the RHS condition as a bool value.
4287   CGF.EmitBlock(RHSBlock);
4288   CGF.incrementProfileCounter(E);
4289   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4290 
4291   eval.end(CGF);
4292 
4293   // Reaquire the RHS block, as there may be subblocks inserted.
4294   RHSBlock = Builder.GetInsertBlock();
4295 
4296   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4297   // into the phi node for the edge with the value of RHSCond.
4298   CGF.EmitBlock(ContBlock);
4299   PN->addIncoming(RHSCond, RHSBlock);
4300 
4301   // ZExt result to int.
4302   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4303 }
4304 
4305 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4306   CGF.EmitIgnoredExpr(E->getLHS());
4307   CGF.EnsureInsertPoint();
4308   return Visit(E->getRHS());
4309 }
4310 
4311 //===----------------------------------------------------------------------===//
4312 //                             Other Operators
4313 //===----------------------------------------------------------------------===//
4314 
4315 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4316 /// expression is cheap enough and side-effect-free enough to evaluate
4317 /// unconditionally instead of conditionally.  This is used to convert control
4318 /// flow into selects in some cases.
4319 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4320                                                    CodeGenFunction &CGF) {
4321   // Anything that is an integer or floating point constant is fine.
4322   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4323 
4324   // Even non-volatile automatic variables can't be evaluated unconditionally.
4325   // Referencing a thread_local may cause non-trivial initialization work to
4326   // occur. If we're inside a lambda and one of the variables is from the scope
4327   // outside the lambda, that function may have returned already. Reading its
4328   // locals is a bad idea. Also, these reads may introduce races there didn't
4329   // exist in the source-level program.
4330 }
4331 
4332 
4333 Value *ScalarExprEmitter::
4334 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4335   TestAndClearIgnoreResultAssign();
4336 
4337   // Bind the common expression if necessary.
4338   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4339 
4340   Expr *condExpr = E->getCond();
4341   Expr *lhsExpr = E->getTrueExpr();
4342   Expr *rhsExpr = E->getFalseExpr();
4343 
4344   // If the condition constant folds and can be elided, try to avoid emitting
4345   // the condition and the dead arm.
4346   bool CondExprBool;
4347   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4348     Expr *live = lhsExpr, *dead = rhsExpr;
4349     if (!CondExprBool) std::swap(live, dead);
4350 
4351     // If the dead side doesn't have labels we need, just emit the Live part.
4352     if (!CGF.ContainsLabel(dead)) {
4353       if (CondExprBool)
4354         CGF.incrementProfileCounter(E);
4355       Value *Result = Visit(live);
4356 
4357       // If the live part is a throw expression, it acts like it has a void
4358       // type, so evaluating it returns a null Value*.  However, a conditional
4359       // with non-void type must return a non-null Value*.
4360       if (!Result && !E->getType()->isVoidType())
4361         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4362 
4363       return Result;
4364     }
4365   }
4366 
4367   // OpenCL: If the condition is a vector, we can treat this condition like
4368   // the select function.
4369   if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4370       condExpr->getType()->isExtVectorType()) {
4371     CGF.incrementProfileCounter(E);
4372 
4373     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4374     llvm::Value *LHS = Visit(lhsExpr);
4375     llvm::Value *RHS = Visit(rhsExpr);
4376 
4377     llvm::Type *condType = ConvertType(condExpr->getType());
4378     auto *vecTy = cast<llvm::FixedVectorType>(condType);
4379 
4380     unsigned numElem = vecTy->getNumElements();
4381     llvm::Type *elemType = vecTy->getElementType();
4382 
4383     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4384     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4385     llvm::Value *tmp = Builder.CreateSExt(
4386         TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4387     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4388 
4389     // Cast float to int to perform ANDs if necessary.
4390     llvm::Value *RHSTmp = RHS;
4391     llvm::Value *LHSTmp = LHS;
4392     bool wasCast = false;
4393     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4394     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4395       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4396       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4397       wasCast = true;
4398     }
4399 
4400     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4401     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4402     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4403     if (wasCast)
4404       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4405 
4406     return tmp5;
4407   }
4408 
4409   if (condExpr->getType()->isVectorType()) {
4410     CGF.incrementProfileCounter(E);
4411 
4412     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4413     llvm::Value *LHS = Visit(lhsExpr);
4414     llvm::Value *RHS = Visit(rhsExpr);
4415 
4416     llvm::Type *CondType = ConvertType(condExpr->getType());
4417     auto *VecTy = cast<llvm::VectorType>(CondType);
4418     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4419 
4420     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4421     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4422   }
4423 
4424   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4425   // select instead of as control flow.  We can only do this if it is cheap and
4426   // safe to evaluate the LHS and RHS unconditionally.
4427   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4428       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4429     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4430     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4431 
4432     CGF.incrementProfileCounter(E, StepV);
4433 
4434     llvm::Value *LHS = Visit(lhsExpr);
4435     llvm::Value *RHS = Visit(rhsExpr);
4436     if (!LHS) {
4437       // If the conditional has void type, make sure we return a null Value*.
4438       assert(!RHS && "LHS and RHS types must match");
4439       return nullptr;
4440     }
4441     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4442   }
4443 
4444   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4445   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4446   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4447 
4448   CodeGenFunction::ConditionalEvaluation eval(CGF);
4449   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4450                            CGF.getProfileCount(lhsExpr));
4451 
4452   CGF.EmitBlock(LHSBlock);
4453   CGF.incrementProfileCounter(E);
4454   eval.begin(CGF);
4455   Value *LHS = Visit(lhsExpr);
4456   eval.end(CGF);
4457 
4458   LHSBlock = Builder.GetInsertBlock();
4459   Builder.CreateBr(ContBlock);
4460 
4461   CGF.EmitBlock(RHSBlock);
4462   eval.begin(CGF);
4463   Value *RHS = Visit(rhsExpr);
4464   eval.end(CGF);
4465 
4466   RHSBlock = Builder.GetInsertBlock();
4467   CGF.EmitBlock(ContBlock);
4468 
4469   // If the LHS or RHS is a throw expression, it will be legitimately null.
4470   if (!LHS)
4471     return RHS;
4472   if (!RHS)
4473     return LHS;
4474 
4475   // Create a PHI node for the real part.
4476   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4477   PN->addIncoming(LHS, LHSBlock);
4478   PN->addIncoming(RHS, RHSBlock);
4479   return PN;
4480 }
4481 
4482 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4483   return Visit(E->getChosenSubExpr());
4484 }
4485 
4486 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4487   QualType Ty = VE->getType();
4488 
4489   if (Ty->isVariablyModifiedType())
4490     CGF.EmitVariablyModifiedType(Ty);
4491 
4492   Address ArgValue = Address::invalid();
4493   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4494 
4495   llvm::Type *ArgTy = ConvertType(VE->getType());
4496 
4497   // If EmitVAArg fails, emit an error.
4498   if (!ArgPtr.isValid()) {
4499     CGF.ErrorUnsupported(VE, "va_arg expression");
4500     return llvm::UndefValue::get(ArgTy);
4501   }
4502 
4503   // FIXME Volatility.
4504   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4505 
4506   // If EmitVAArg promoted the type, we must truncate it.
4507   if (ArgTy != Val->getType()) {
4508     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4509       Val = Builder.CreateIntToPtr(Val, ArgTy);
4510     else
4511       Val = Builder.CreateTrunc(Val, ArgTy);
4512   }
4513 
4514   return Val;
4515 }
4516 
4517 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4518   return CGF.EmitBlockLiteral(block);
4519 }
4520 
4521 // Convert a vec3 to vec4, or vice versa.
4522 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4523                                  Value *Src, unsigned NumElementsDst) {
4524   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
4525   static constexpr int Mask[] = {0, 1, 2, -1};
4526   return Builder.CreateShuffleVector(Src, UnV,
4527                                      llvm::makeArrayRef(Mask, NumElementsDst));
4528 }
4529 
4530 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4531 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4532 // but could be scalar or vectors of different lengths, and either can be
4533 // pointer.
4534 // There are 4 cases:
4535 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4536 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4537 // 3. pointer -> non-pointer
4538 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4539 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4540 // 4. non-pointer -> pointer
4541 //   a) intptr_t -> pointer       : needs 1 inttoptr
4542 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4543 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4544 // allow casting directly between pointer types and non-integer non-pointer
4545 // types.
4546 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4547                                            const llvm::DataLayout &DL,
4548                                            Value *Src, llvm::Type *DstTy,
4549                                            StringRef Name = "") {
4550   auto SrcTy = Src->getType();
4551 
4552   // Case 1.
4553   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4554     return Builder.CreateBitCast(Src, DstTy, Name);
4555 
4556   // Case 2.
4557   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4558     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4559 
4560   // Case 3.
4561   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4562     // Case 3b.
4563     if (!DstTy->isIntegerTy())
4564       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4565     // Cases 3a and 3b.
4566     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4567   }
4568 
4569   // Case 4b.
4570   if (!SrcTy->isIntegerTy())
4571     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4572   // Cases 4a and 4b.
4573   return Builder.CreateIntToPtr(Src, DstTy, Name);
4574 }
4575 
4576 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4577   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4578   llvm::Type *DstTy = ConvertType(E->getType());
4579 
4580   llvm::Type *SrcTy = Src->getType();
4581   unsigned NumElementsSrc =
4582       isa<llvm::VectorType>(SrcTy)
4583           ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
4584           : 0;
4585   unsigned NumElementsDst =
4586       isa<llvm::VectorType>(DstTy)
4587           ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
4588           : 0;
4589 
4590   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4591   // vector to get a vec4, then a bitcast if the target type is different.
4592   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4593     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4594 
4595     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4596       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4597                                          DstTy);
4598     }
4599 
4600     Src->setName("astype");
4601     return Src;
4602   }
4603 
4604   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4605   // to vec4 if the original type is not vec4, then a shuffle vector to
4606   // get a vec3.
4607   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4608     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4609       auto *Vec4Ty = llvm::FixedVectorType::get(
4610           cast<llvm::VectorType>(DstTy)->getElementType(), 4);
4611       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4612                                          Vec4Ty);
4613     }
4614 
4615     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4616     Src->setName("astype");
4617     return Src;
4618   }
4619 
4620   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4621                                       Src, DstTy, "astype");
4622 }
4623 
4624 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4625   return CGF.EmitAtomicExpr(E).getScalarVal();
4626 }
4627 
4628 //===----------------------------------------------------------------------===//
4629 //                         Entry Point into this File
4630 //===----------------------------------------------------------------------===//
4631 
4632 /// Emit the computation of the specified expression of scalar type, ignoring
4633 /// the result.
4634 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4635   assert(E && hasScalarEvaluationKind(E->getType()) &&
4636          "Invalid scalar expression to emit");
4637 
4638   return ScalarExprEmitter(*this, IgnoreResultAssign)
4639       .Visit(const_cast<Expr *>(E));
4640 }
4641 
4642 /// Emit a conversion from the specified type to the specified destination type,
4643 /// both of which are LLVM scalar types.
4644 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4645                                              QualType DstTy,
4646                                              SourceLocation Loc) {
4647   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4648          "Invalid scalar expression to emit");
4649   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4650 }
4651 
4652 /// Emit a conversion from the specified complex type to the specified
4653 /// destination type, where the destination type is an LLVM scalar type.
4654 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4655                                                       QualType SrcTy,
4656                                                       QualType DstTy,
4657                                                       SourceLocation Loc) {
4658   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4659          "Invalid complex -> scalar conversion");
4660   return ScalarExprEmitter(*this)
4661       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4662 }
4663 
4664 
4665 llvm::Value *CodeGenFunction::
4666 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4667                         bool isInc, bool isPre) {
4668   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4669 }
4670 
4671 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4672   // object->isa or (*object).isa
4673   // Generate code as for: *(Class*)object
4674 
4675   Expr *BaseExpr = E->getBase();
4676   Address Addr = Address::invalid();
4677   if (BaseExpr->isRValue()) {
4678     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4679   } else {
4680     Addr = EmitLValue(BaseExpr).getAddress(*this);
4681   }
4682 
4683   // Cast the address to Class*.
4684   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4685   return MakeAddrLValue(Addr, E->getType());
4686 }
4687 
4688 
4689 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4690                                             const CompoundAssignOperator *E) {
4691   ScalarExprEmitter Scalar(*this);
4692   Value *Result = nullptr;
4693   switch (E->getOpcode()) {
4694 #define COMPOUND_OP(Op)                                                       \
4695     case BO_##Op##Assign:                                                     \
4696       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4697                                              Result)
4698   COMPOUND_OP(Mul);
4699   COMPOUND_OP(Div);
4700   COMPOUND_OP(Rem);
4701   COMPOUND_OP(Add);
4702   COMPOUND_OP(Sub);
4703   COMPOUND_OP(Shl);
4704   COMPOUND_OP(Shr);
4705   COMPOUND_OP(And);
4706   COMPOUND_OP(Xor);
4707   COMPOUND_OP(Or);
4708 #undef COMPOUND_OP
4709 
4710   case BO_PtrMemD:
4711   case BO_PtrMemI:
4712   case BO_Mul:
4713   case BO_Div:
4714   case BO_Rem:
4715   case BO_Add:
4716   case BO_Sub:
4717   case BO_Shl:
4718   case BO_Shr:
4719   case BO_LT:
4720   case BO_GT:
4721   case BO_LE:
4722   case BO_GE:
4723   case BO_EQ:
4724   case BO_NE:
4725   case BO_Cmp:
4726   case BO_And:
4727   case BO_Xor:
4728   case BO_Or:
4729   case BO_LAnd:
4730   case BO_LOr:
4731   case BO_Assign:
4732   case BO_Comma:
4733     llvm_unreachable("Not valid compound assignment operators");
4734   }
4735 
4736   llvm_unreachable("Unhandled compound assignment operator");
4737 }
4738 
4739 struct GEPOffsetAndOverflow {
4740   // The total (signed) byte offset for the GEP.
4741   llvm::Value *TotalOffset;
4742   // The offset overflow flag - true if the total offset overflows.
4743   llvm::Value *OffsetOverflows;
4744 };
4745 
4746 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4747 /// and compute the total offset it applies from it's base pointer BasePtr.
4748 /// Returns offset in bytes and a boolean flag whether an overflow happened
4749 /// during evaluation.
4750 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4751                                                  llvm::LLVMContext &VMContext,
4752                                                  CodeGenModule &CGM,
4753                                                  CGBuilderTy &Builder) {
4754   const auto &DL = CGM.getDataLayout();
4755 
4756   // The total (signed) byte offset for the GEP.
4757   llvm::Value *TotalOffset = nullptr;
4758 
4759   // Was the GEP already reduced to a constant?
4760   if (isa<llvm::Constant>(GEPVal)) {
4761     // Compute the offset by casting both pointers to integers and subtracting:
4762     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4763     Value *BasePtr_int =
4764         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4765     Value *GEPVal_int =
4766         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4767     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4768     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4769   }
4770 
4771   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4772   assert(GEP->getPointerOperand() == BasePtr &&
4773          "BasePtr must be the the base of the GEP.");
4774   assert(GEP->isInBounds() && "Expected inbounds GEP");
4775 
4776   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4777 
4778   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4779   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4780   auto *SAddIntrinsic =
4781       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4782   auto *SMulIntrinsic =
4783       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4784 
4785   // The offset overflow flag - true if the total offset overflows.
4786   llvm::Value *OffsetOverflows = Builder.getFalse();
4787 
4788   /// Return the result of the given binary operation.
4789   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4790                   llvm::Value *RHS) -> llvm::Value * {
4791     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4792 
4793     // If the operands are constants, return a constant result.
4794     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4795       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4796         llvm::APInt N;
4797         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4798                                                   /*Signed=*/true, N);
4799         if (HasOverflow)
4800           OffsetOverflows = Builder.getTrue();
4801         return llvm::ConstantInt::get(VMContext, N);
4802       }
4803     }
4804 
4805     // Otherwise, compute the result with checked arithmetic.
4806     auto *ResultAndOverflow = Builder.CreateCall(
4807         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4808     OffsetOverflows = Builder.CreateOr(
4809         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4810     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4811   };
4812 
4813   // Determine the total byte offset by looking at each GEP operand.
4814   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4815        GTI != GTE; ++GTI) {
4816     llvm::Value *LocalOffset;
4817     auto *Index = GTI.getOperand();
4818     // Compute the local offset contributed by this indexing step:
4819     if (auto *STy = GTI.getStructTypeOrNull()) {
4820       // For struct indexing, the local offset is the byte position of the
4821       // specified field.
4822       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4823       LocalOffset = llvm::ConstantInt::get(
4824           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4825     } else {
4826       // Otherwise this is array-like indexing. The local offset is the index
4827       // multiplied by the element size.
4828       auto *ElementSize = llvm::ConstantInt::get(
4829           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4830       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4831       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4832     }
4833 
4834     // If this is the first offset, set it as the total offset. Otherwise, add
4835     // the local offset into the running total.
4836     if (!TotalOffset || TotalOffset == Zero)
4837       TotalOffset = LocalOffset;
4838     else
4839       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4840   }
4841 
4842   return {TotalOffset, OffsetOverflows};
4843 }
4844 
4845 Value *
4846 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
4847                                         bool SignedIndices, bool IsSubtraction,
4848                                         SourceLocation Loc, const Twine &Name) {
4849   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4850 
4851   // If the pointer overflow sanitizer isn't enabled, do nothing.
4852   if (!SanOpts.has(SanitizerKind::PointerOverflow))
4853     return GEPVal;
4854 
4855   llvm::Type *PtrTy = Ptr->getType();
4856 
4857   // Perform nullptr-and-offset check unless the nullptr is defined.
4858   bool PerformNullCheck = !NullPointerIsDefined(
4859       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
4860   // Check for overflows unless the GEP got constant-folded,
4861   // and only in the default address space
4862   bool PerformOverflowCheck =
4863       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
4864 
4865   if (!(PerformNullCheck || PerformOverflowCheck))
4866     return GEPVal;
4867 
4868   const auto &DL = CGM.getDataLayout();
4869 
4870   SanitizerScope SanScope(this);
4871   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
4872 
4873   GEPOffsetAndOverflow EvaluatedGEP =
4874       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
4875 
4876   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
4877           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
4878          "If the offset got constant-folded, we don't expect that there was an "
4879          "overflow.");
4880 
4881   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4882 
4883   // Common case: if the total offset is zero, and we are using C++ semantics,
4884   // where nullptr+0 is defined, don't emit a check.
4885   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
4886     return GEPVal;
4887 
4888   // Now that we've computed the total offset, add it to the base pointer (with
4889   // wrapping semantics).
4890   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
4891   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
4892 
4893   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
4894 
4895   if (PerformNullCheck) {
4896     // In C++, if the base pointer evaluates to a null pointer value,
4897     // the only valid  pointer this inbounds GEP can produce is also
4898     // a null pointer, so the offset must also evaluate to zero.
4899     // Likewise, if we have non-zero base pointer, we can not get null pointer
4900     // as a result, so the offset can not be -intptr_t(BasePtr).
4901     // In other words, both pointers are either null, or both are non-null,
4902     // or the behaviour is undefined.
4903     //
4904     // C, however, is more strict in this regard, and gives more
4905     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
4906     // So both the input to the 'gep inbounds' AND the output must not be null.
4907     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
4908     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
4909     auto *Valid =
4910         CGM.getLangOpts().CPlusPlus
4911             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
4912             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
4913     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
4914   }
4915 
4916   if (PerformOverflowCheck) {
4917     // The GEP is valid if:
4918     // 1) The total offset doesn't overflow, and
4919     // 2) The sign of the difference between the computed address and the base
4920     // pointer matches the sign of the total offset.
4921     llvm::Value *ValidGEP;
4922     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
4923     if (SignedIndices) {
4924       // GEP is computed as `unsigned base + signed offset`, therefore:
4925       // * If offset was positive, then the computed pointer can not be
4926       //   [unsigned] less than the base pointer, unless it overflowed.
4927       // * If offset was negative, then the computed pointer can not be
4928       //   [unsigned] greater than the bas pointere, unless it overflowed.
4929       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4930       auto *PosOrZeroOffset =
4931           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
4932       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4933       ValidGEP =
4934           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
4935     } else if (!IsSubtraction) {
4936       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
4937       // computed pointer can not be [unsigned] less than base pointer,
4938       // unless there was an overflow.
4939       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
4940       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4941     } else {
4942       // GEP is computed as `unsigned base - unsigned offset`, therefore the
4943       // computed pointer can not be [unsigned] greater than base pointer,
4944       // unless there was an overflow.
4945       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
4946       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4947     }
4948     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
4949     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
4950   }
4951 
4952   assert(!Checks.empty() && "Should have produced some checks.");
4953 
4954   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4955   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4956   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4957   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4958 
4959   return GEPVal;
4960 }
4961