1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Constant Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CGRecordLayout.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "ConstantEmitter.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/APValue.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Attr.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/Builtins.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/Sequence.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalVariable.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 //===----------------------------------------------------------------------===//
36 //                            ConstantAggregateBuilder
37 //===----------------------------------------------------------------------===//
38 
39 namespace {
40 class ConstExprEmitter;
41 
42 struct ConstantAggregateBuilderUtils {
43   CodeGenModule &CGM;
44 
45   ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {}
46 
47   CharUnits getAlignment(const llvm::Constant *C) const {
48     return CharUnits::fromQuantity(
49         CGM.getDataLayout().getABITypeAlignment(C->getType()));
50   }
51 
52   CharUnits getSize(llvm::Type *Ty) const {
53     return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty));
54   }
55 
56   CharUnits getSize(const llvm::Constant *C) const {
57     return getSize(C->getType());
58   }
59 
60   llvm::Constant *getPadding(CharUnits PadSize) const {
61     llvm::Type *Ty = CGM.Int8Ty;
62     if (PadSize > CharUnits::One())
63       Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
64     return llvm::UndefValue::get(Ty);
65   }
66 
67   llvm::Constant *getZeroes(CharUnits ZeroSize) const {
68     llvm::Type *Ty = llvm::ArrayType::get(CGM.Int8Ty, ZeroSize.getQuantity());
69     return llvm::ConstantAggregateZero::get(Ty);
70   }
71 };
72 
73 /// Incremental builder for an llvm::Constant* holding a struct or array
74 /// constant.
75 class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils {
76   /// The elements of the constant. These two arrays must have the same size;
77   /// Offsets[i] describes the offset of Elems[i] within the constant. The
78   /// elements are kept in increasing offset order, and we ensure that there
79   /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]).
80   ///
81   /// This may contain explicit padding elements (in order to create a
82   /// natural layout), but need not. Gaps between elements are implicitly
83   /// considered to be filled with undef.
84   llvm::SmallVector<llvm::Constant*, 32> Elems;
85   llvm::SmallVector<CharUnits, 32> Offsets;
86 
87   /// The size of the constant (the maximum end offset of any added element).
88   /// May be larger than the end of Elems.back() if we split the last element
89   /// and removed some trailing undefs.
90   CharUnits Size = CharUnits::Zero();
91 
92   /// This is true only if laying out Elems in order as the elements of a
93   /// non-packed LLVM struct will give the correct layout.
94   bool NaturalLayout = true;
95 
96   bool split(size_t Index, CharUnits Hint);
97   Optional<size_t> splitAt(CharUnits Pos);
98 
99   static llvm::Constant *buildFrom(CodeGenModule &CGM,
100                                    ArrayRef<llvm::Constant *> Elems,
101                                    ArrayRef<CharUnits> Offsets,
102                                    CharUnits StartOffset, CharUnits Size,
103                                    bool NaturalLayout, llvm::Type *DesiredTy,
104                                    bool AllowOversized);
105 
106 public:
107   ConstantAggregateBuilder(CodeGenModule &CGM)
108       : ConstantAggregateBuilderUtils(CGM) {}
109 
110   /// Update or overwrite the value starting at \p Offset with \c C.
111   ///
112   /// \param AllowOverwrite If \c true, this constant might overwrite (part of)
113   ///        a constant that has already been added. This flag is only used to
114   ///        detect bugs.
115   bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite);
116 
117   /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits.
118   bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite);
119 
120   /// Attempt to condense the value starting at \p Offset to a constant of type
121   /// \p DesiredTy.
122   void condense(CharUnits Offset, llvm::Type *DesiredTy);
123 
124   /// Produce a constant representing the entire accumulated value, ideally of
125   /// the specified type. If \p AllowOversized, the constant might be larger
126   /// than implied by \p DesiredTy (eg, if there is a flexible array member).
127   /// Otherwise, the constant will be of exactly the same size as \p DesiredTy
128   /// even if we can't represent it as that type.
129   llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const {
130     return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size,
131                      NaturalLayout, DesiredTy, AllowOversized);
132   }
133 };
134 
135 template<typename Container, typename Range = std::initializer_list<
136                                  typename Container::value_type>>
137 static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) {
138   assert(BeginOff <= EndOff && "invalid replacement range");
139   llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals);
140 }
141 
142 bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset,
143                           bool AllowOverwrite) {
144   // Common case: appending to a layout.
145   if (Offset >= Size) {
146     CharUnits Align = getAlignment(C);
147     CharUnits AlignedSize = Size.alignTo(Align);
148     if (AlignedSize > Offset || Offset.alignTo(Align) != Offset)
149       NaturalLayout = false;
150     else if (AlignedSize < Offset) {
151       Elems.push_back(getPadding(Offset - Size));
152       Offsets.push_back(Size);
153     }
154     Elems.push_back(C);
155     Offsets.push_back(Offset);
156     Size = Offset + getSize(C);
157     return true;
158   }
159 
160   // Uncommon case: constant overlaps what we've already created.
161   llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
162   if (!FirstElemToReplace)
163     return false;
164 
165   CharUnits CSize = getSize(C);
166   llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + CSize);
167   if (!LastElemToReplace)
168     return false;
169 
170   assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) &&
171          "unexpectedly overwriting field");
172 
173   replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C});
174   replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset});
175   Size = std::max(Size, Offset + CSize);
176   NaturalLayout = false;
177   return true;
178 }
179 
180 bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits,
181                               bool AllowOverwrite) {
182   const ASTContext &Context = CGM.getContext();
183   const uint64_t CharWidth = CGM.getContext().getCharWidth();
184 
185   // Offset of where we want the first bit to go within the bits of the
186   // current char.
187   unsigned OffsetWithinChar = OffsetInBits % CharWidth;
188 
189   // We split bit-fields up into individual bytes. Walk over the bytes and
190   // update them.
191   for (CharUnits OffsetInChars =
192            Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar);
193        /**/; ++OffsetInChars) {
194     // Number of bits we want to fill in this char.
195     unsigned WantedBits =
196         std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar);
197 
198     // Get a char containing the bits we want in the right places. The other
199     // bits have unspecified values.
200     llvm::APInt BitsThisChar = Bits;
201     if (BitsThisChar.getBitWidth() < CharWidth)
202       BitsThisChar = BitsThisChar.zext(CharWidth);
203     if (CGM.getDataLayout().isBigEndian()) {
204       // Figure out how much to shift by. We may need to left-shift if we have
205       // less than one byte of Bits left.
206       int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar;
207       if (Shift > 0)
208         BitsThisChar.lshrInPlace(Shift);
209       else if (Shift < 0)
210         BitsThisChar = BitsThisChar.shl(-Shift);
211     } else {
212       BitsThisChar = BitsThisChar.shl(OffsetWithinChar);
213     }
214     if (BitsThisChar.getBitWidth() > CharWidth)
215       BitsThisChar = BitsThisChar.trunc(CharWidth);
216 
217     if (WantedBits == CharWidth) {
218       // Got a full byte: just add it directly.
219       add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
220           OffsetInChars, AllowOverwrite);
221     } else {
222       // Partial byte: update the existing integer if there is one. If we
223       // can't split out a 1-CharUnit range to update, then we can't add
224       // these bits and fail the entire constant emission.
225       llvm::Optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars);
226       if (!FirstElemToUpdate)
227         return false;
228       llvm::Optional<size_t> LastElemToUpdate =
229           splitAt(OffsetInChars + CharUnits::One());
230       if (!LastElemToUpdate)
231         return false;
232       assert(*LastElemToUpdate - *FirstElemToUpdate < 2 &&
233              "should have at most one element covering one byte");
234 
235       // Figure out which bits we want and discard the rest.
236       llvm::APInt UpdateMask(CharWidth, 0);
237       if (CGM.getDataLayout().isBigEndian())
238         UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits,
239                            CharWidth - OffsetWithinChar);
240       else
241         UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits);
242       BitsThisChar &= UpdateMask;
243 
244       if (*FirstElemToUpdate == *LastElemToUpdate ||
245           Elems[*FirstElemToUpdate]->isNullValue() ||
246           isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) {
247         // All existing bits are either zero or undef.
248         add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
249             OffsetInChars, /*AllowOverwrite*/ true);
250       } else {
251         llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate];
252         // In order to perform a partial update, we need the existing bitwise
253         // value, which we can only extract for a constant int.
254         auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate);
255         if (!CI)
256           return false;
257         // Because this is a 1-CharUnit range, the constant occupying it must
258         // be exactly one CharUnit wide.
259         assert(CI->getBitWidth() == CharWidth && "splitAt failed");
260         assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) &&
261                "unexpectedly overwriting bitfield");
262         BitsThisChar |= (CI->getValue() & ~UpdateMask);
263         ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar);
264       }
265     }
266 
267     // Stop if we've added all the bits.
268     if (WantedBits == Bits.getBitWidth())
269       break;
270 
271     // Remove the consumed bits from Bits.
272     if (!CGM.getDataLayout().isBigEndian())
273       Bits.lshrInPlace(WantedBits);
274     Bits = Bits.trunc(Bits.getBitWidth() - WantedBits);
275 
276     // The remanining bits go at the start of the following bytes.
277     OffsetWithinChar = 0;
278   }
279 
280   return true;
281 }
282 
283 /// Returns a position within Elems and Offsets such that all elements
284 /// before the returned index end before Pos and all elements at or after
285 /// the returned index begin at or after Pos. Splits elements as necessary
286 /// to ensure this. Returns None if we find something we can't split.
287 Optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) {
288   if (Pos >= Size)
289     return Offsets.size();
290 
291   while (true) {
292     auto FirstAfterPos = llvm::upper_bound(Offsets, Pos);
293     if (FirstAfterPos == Offsets.begin())
294       return 0;
295 
296     // If we already have an element starting at Pos, we're done.
297     size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1;
298     if (Offsets[LastAtOrBeforePosIndex] == Pos)
299       return LastAtOrBeforePosIndex;
300 
301     // We found an element starting before Pos. Check for overlap.
302     if (Offsets[LastAtOrBeforePosIndex] +
303         getSize(Elems[LastAtOrBeforePosIndex]) <= Pos)
304       return LastAtOrBeforePosIndex + 1;
305 
306     // Try to decompose it into smaller constants.
307     if (!split(LastAtOrBeforePosIndex, Pos))
308       return None;
309   }
310 }
311 
312 /// Split the constant at index Index, if possible. Return true if we did.
313 /// Hint indicates the location at which we'd like to split, but may be
314 /// ignored.
315 bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
316   NaturalLayout = false;
317   llvm::Constant *C = Elems[Index];
318   CharUnits Offset = Offsets[Index];
319 
320   if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) {
321     replace(Elems, Index, Index + 1,
322             llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
323                             [&](unsigned Op) { return CA->getOperand(Op); }));
324     if (auto *Seq = dyn_cast<llvm::SequentialType>(CA->getType())) {
325       // Array or vector.
326       CharUnits ElemSize = getSize(Seq->getElementType());
327       replace(
328           Offsets, Index, Index + 1,
329           llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
330                           [&](unsigned Op) { return Offset + Op * ElemSize; }));
331     } else {
332       // Must be a struct.
333       auto *ST = cast<llvm::StructType>(CA->getType());
334       const llvm::StructLayout *Layout =
335           CGM.getDataLayout().getStructLayout(ST);
336       replace(Offsets, Index, Index + 1,
337               llvm::map_range(
338                   llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) {
339                     return Offset + CharUnits::fromQuantity(
340                                         Layout->getElementOffset(Op));
341                   }));
342     }
343     return true;
344   }
345 
346   if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) {
347     // FIXME: If possible, split into two ConstantDataSequentials at Hint.
348     CharUnits ElemSize = getSize(CDS->getElementType());
349     replace(Elems, Index, Index + 1,
350             llvm::map_range(llvm::seq(0u, CDS->getNumElements()),
351                             [&](unsigned Elem) {
352                               return CDS->getElementAsConstant(Elem);
353                             }));
354     replace(Offsets, Index, Index + 1,
355             llvm::map_range(
356                 llvm::seq(0u, CDS->getNumElements()),
357                 [&](unsigned Elem) { return Offset + Elem * ElemSize; }));
358     return true;
359   }
360 
361   if (isa<llvm::ConstantAggregateZero>(C)) {
362     CharUnits ElemSize = getSize(C);
363     assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split");
364     replace(Elems, Index, Index + 1,
365             {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)});
366     replace(Offsets, Index, Index + 1, {Offset, Hint});
367     return true;
368   }
369 
370   if (isa<llvm::UndefValue>(C)) {
371     replace(Elems, Index, Index + 1, {});
372     replace(Offsets, Index, Index + 1, {});
373     return true;
374   }
375 
376   // FIXME: We could split a ConstantInt if the need ever arose.
377   // We don't need to do this to handle bit-fields because we always eagerly
378   // split them into 1-byte chunks.
379 
380   return false;
381 }
382 
383 static llvm::Constant *
384 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
385                   llvm::Type *CommonElementType, unsigned ArrayBound,
386                   SmallVectorImpl<llvm::Constant *> &Elements,
387                   llvm::Constant *Filler);
388 
389 llvm::Constant *ConstantAggregateBuilder::buildFrom(
390     CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems,
391     ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size,
392     bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) {
393   ConstantAggregateBuilderUtils Utils(CGM);
394 
395   if (Elems.empty())
396     return llvm::UndefValue::get(DesiredTy);
397 
398   auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; };
399 
400   // If we want an array type, see if all the elements are the same type and
401   // appropriately spaced.
402   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) {
403     assert(!AllowOversized && "oversized array emission not supported");
404 
405     bool CanEmitArray = true;
406     llvm::Type *CommonType = Elems[0]->getType();
407     llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType);
408     CharUnits ElemSize = Utils.getSize(ATy->getElementType());
409     SmallVector<llvm::Constant*, 32> ArrayElements;
410     for (size_t I = 0; I != Elems.size(); ++I) {
411       // Skip zeroes; we'll use a zero value as our array filler.
412       if (Elems[I]->isNullValue())
413         continue;
414 
415       // All remaining elements must be the same type.
416       if (Elems[I]->getType() != CommonType ||
417           Offset(I) % ElemSize != 0) {
418         CanEmitArray = false;
419         break;
420       }
421       ArrayElements.resize(Offset(I) / ElemSize + 1, Filler);
422       ArrayElements.back() = Elems[I];
423     }
424 
425     if (CanEmitArray) {
426       return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(),
427                                ArrayElements, Filler);
428     }
429 
430     // Can't emit as an array, carry on to emit as a struct.
431   }
432 
433   CharUnits DesiredSize = Utils.getSize(DesiredTy);
434   CharUnits Align = CharUnits::One();
435   for (llvm::Constant *C : Elems)
436     Align = std::max(Align, Utils.getAlignment(C));
437   CharUnits AlignedSize = Size.alignTo(Align);
438 
439   bool Packed = false;
440   ArrayRef<llvm::Constant*> UnpackedElems = Elems;
441   llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage;
442   if ((DesiredSize < AlignedSize && !AllowOversized) ||
443       DesiredSize.alignTo(Align) != DesiredSize) {
444     // The natural layout would be the wrong size; force use of a packed layout.
445     NaturalLayout = false;
446     Packed = true;
447   } else if (DesiredSize > AlignedSize) {
448     // The constant would be too small. Add padding to fix it.
449     UnpackedElemStorage.assign(Elems.begin(), Elems.end());
450     UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size));
451     UnpackedElems = UnpackedElemStorage;
452   }
453 
454   // If we don't have a natural layout, insert padding as necessary.
455   // As we go, double-check to see if we can actually just emit Elems
456   // as a non-packed struct and do so opportunistically if possible.
457   llvm::SmallVector<llvm::Constant*, 32> PackedElems;
458   if (!NaturalLayout) {
459     CharUnits SizeSoFar = CharUnits::Zero();
460     for (size_t I = 0; I != Elems.size(); ++I) {
461       CharUnits Align = Utils.getAlignment(Elems[I]);
462       CharUnits NaturalOffset = SizeSoFar.alignTo(Align);
463       CharUnits DesiredOffset = Offset(I);
464       assert(DesiredOffset >= SizeSoFar && "elements out of order");
465 
466       if (DesiredOffset != NaturalOffset)
467         Packed = true;
468       if (DesiredOffset != SizeSoFar)
469         PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar));
470       PackedElems.push_back(Elems[I]);
471       SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]);
472     }
473     // If we're using the packed layout, pad it out to the desired size if
474     // necessary.
475     if (Packed) {
476       assert((SizeSoFar <= DesiredSize || AllowOversized) &&
477              "requested size is too small for contents");
478       if (SizeSoFar < DesiredSize)
479         PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar));
480     }
481   }
482 
483   llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements(
484       CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed);
485 
486   // Pick the type to use.  If the type is layout identical to the desired
487   // type then use it, otherwise use whatever the builder produced for us.
488   if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) {
489     if (DesiredSTy->isLayoutIdentical(STy))
490       STy = DesiredSTy;
491   }
492 
493   return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems);
494 }
495 
496 void ConstantAggregateBuilder::condense(CharUnits Offset,
497                                         llvm::Type *DesiredTy) {
498   CharUnits Size = getSize(DesiredTy);
499 
500   llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
501   if (!FirstElemToReplace)
502     return;
503   size_t First = *FirstElemToReplace;
504 
505   llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + Size);
506   if (!LastElemToReplace)
507     return;
508   size_t Last = *LastElemToReplace;
509 
510   size_t Length = Last - First;
511   if (Length == 0)
512     return;
513 
514   if (Length == 1 && Offsets[First] == Offset &&
515       getSize(Elems[First]) == Size) {
516     // Re-wrap single element structs if necessary. Otherwise, leave any single
517     // element constant of the right size alone even if it has the wrong type.
518     auto *STy = dyn_cast<llvm::StructType>(DesiredTy);
519     if (STy && STy->getNumElements() == 1 &&
520         STy->getElementType(0) == Elems[First]->getType())
521       Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]);
522     return;
523   }
524 
525   llvm::Constant *Replacement = buildFrom(
526       CGM, makeArrayRef(Elems).slice(First, Length),
527       makeArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy),
528       /*known to have natural layout=*/false, DesiredTy, false);
529   replace(Elems, First, Last, {Replacement});
530   replace(Offsets, First, Last, {Offset});
531 }
532 
533 //===----------------------------------------------------------------------===//
534 //                            ConstStructBuilder
535 //===----------------------------------------------------------------------===//
536 
537 class ConstStructBuilder {
538   CodeGenModule &CGM;
539   ConstantEmitter &Emitter;
540   ConstantAggregateBuilder &Builder;
541   CharUnits StartOffset;
542 
543 public:
544   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
545                                      InitListExpr *ILE, QualType StructTy);
546   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
547                                      const APValue &Value, QualType ValTy);
548   static bool UpdateStruct(ConstantEmitter &Emitter,
549                            ConstantAggregateBuilder &Const, CharUnits Offset,
550                            InitListExpr *Updater);
551 
552 private:
553   ConstStructBuilder(ConstantEmitter &Emitter,
554                      ConstantAggregateBuilder &Builder, CharUnits StartOffset)
555       : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder),
556         StartOffset(StartOffset) {}
557 
558   bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
559                    llvm::Constant *InitExpr, bool AllowOverwrite = false);
560 
561   bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst,
562                    bool AllowOverwrite = false);
563 
564   bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
565                       llvm::ConstantInt *InitExpr, bool AllowOverwrite = false);
566 
567   bool Build(InitListExpr *ILE, bool AllowOverwrite);
568   bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
569              const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
570   llvm::Constant *Finalize(QualType Ty);
571 };
572 
573 bool ConstStructBuilder::AppendField(
574     const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst,
575     bool AllowOverwrite) {
576   const ASTContext &Context = CGM.getContext();
577 
578   CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
579 
580   return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite);
581 }
582 
583 bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars,
584                                      llvm::Constant *InitCst,
585                                      bool AllowOverwrite) {
586   return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite);
587 }
588 
589 bool ConstStructBuilder::AppendBitField(
590     const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI,
591     bool AllowOverwrite) {
592   uint64_t FieldSize = Field->getBitWidthValue(CGM.getContext());
593   llvm::APInt FieldValue = CI->getValue();
594 
595   // Promote the size of FieldValue if necessary
596   // FIXME: This should never occur, but currently it can because initializer
597   // constants are cast to bool, and because clang is not enforcing bitfield
598   // width limits.
599   if (FieldSize > FieldValue.getBitWidth())
600     FieldValue = FieldValue.zext(FieldSize);
601 
602   // Truncate the size of FieldValue to the bit field size.
603   if (FieldSize < FieldValue.getBitWidth())
604     FieldValue = FieldValue.trunc(FieldSize);
605 
606   return Builder.addBits(FieldValue,
607                          CGM.getContext().toBits(StartOffset) + FieldOffset,
608                          AllowOverwrite);
609 }
610 
611 static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter,
612                                       ConstantAggregateBuilder &Const,
613                                       CharUnits Offset, QualType Type,
614                                       InitListExpr *Updater) {
615   if (Type->isRecordType())
616     return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater);
617 
618   auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type);
619   if (!CAT)
620     return false;
621   QualType ElemType = CAT->getElementType();
622   CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType);
623   llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType);
624 
625   llvm::Constant *FillC = nullptr;
626   if (Expr *Filler = Updater->getArrayFiller()) {
627     if (!isa<NoInitExpr>(Filler)) {
628       FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType);
629       if (!FillC)
630         return false;
631     }
632   }
633 
634   unsigned NumElementsToUpdate =
635       FillC ? CAT->getSize().getZExtValue() : Updater->getNumInits();
636   for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) {
637     Expr *Init = nullptr;
638     if (I < Updater->getNumInits())
639       Init = Updater->getInit(I);
640 
641     if (!Init && FillC) {
642       if (!Const.add(FillC, Offset, true))
643         return false;
644     } else if (!Init || isa<NoInitExpr>(Init)) {
645       continue;
646     } else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) {
647       if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType,
648                                      ChildILE))
649         return false;
650       // Attempt to reduce the array element to a single constant if necessary.
651       Const.condense(Offset, ElemTy);
652     } else {
653       llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType);
654       if (!Const.add(Val, Offset, true))
655         return false;
656     }
657   }
658 
659   return true;
660 }
661 
662 bool ConstStructBuilder::Build(InitListExpr *ILE, bool AllowOverwrite) {
663   RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
664   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
665 
666   unsigned FieldNo = -1;
667   unsigned ElementNo = 0;
668 
669   // Bail out if we have base classes. We could support these, but they only
670   // arise in C++1z where we will have already constant folded most interesting
671   // cases. FIXME: There are still a few more cases we can handle this way.
672   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
673     if (CXXRD->getNumBases())
674       return false;
675 
676   for (FieldDecl *Field : RD->fields()) {
677     ++FieldNo;
678 
679     // If this is a union, skip all the fields that aren't being initialized.
680     if (RD->isUnion() &&
681         !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field))
682       continue;
683 
684     // Don't emit anonymous bitfields or zero-sized fields.
685     if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
686       continue;
687 
688     // Get the initializer.  A struct can include fields without initializers,
689     // we just use explicit null values for them.
690     Expr *Init = nullptr;
691     if (ElementNo < ILE->getNumInits())
692       Init = ILE->getInit(ElementNo++);
693     if (Init && isa<NoInitExpr>(Init))
694       continue;
695 
696     // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr
697     // represents additional overwriting of our current constant value, and not
698     // a new constant to emit independently.
699     if (AllowOverwrite &&
700         (Field->getType()->isArrayType() || Field->getType()->isRecordType())) {
701       if (auto *SubILE = dyn_cast<InitListExpr>(Init)) {
702         CharUnits Offset = CGM.getContext().toCharUnitsFromBits(
703             Layout.getFieldOffset(FieldNo));
704         if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset,
705                                        Field->getType(), SubILE))
706           return false;
707         // If we split apart the field's value, try to collapse it down to a
708         // single value now.
709         Builder.condense(StartOffset + Offset,
710                          CGM.getTypes().ConvertTypeForMem(Field->getType()));
711         continue;
712       }
713     }
714 
715     llvm::Constant *EltInit =
716         Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType())
717              : Emitter.emitNullForMemory(Field->getType());
718     if (!EltInit)
719       return false;
720 
721     if (!Field->isBitField()) {
722       // Handle non-bitfield members.
723       if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit,
724                        AllowOverwrite))
725         return false;
726       // After emitting a non-empty field with [[no_unique_address]], we may
727       // need to overwrite its tail padding.
728       if (Field->hasAttr<NoUniqueAddressAttr>())
729         AllowOverwrite = true;
730     } else {
731       // Otherwise we have a bitfield.
732       if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) {
733         if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI,
734                             AllowOverwrite))
735           return false;
736       } else {
737         // We are trying to initialize a bitfield with a non-trivial constant,
738         // this must require run-time code.
739         return false;
740       }
741     }
742   }
743 
744   return true;
745 }
746 
747 namespace {
748 struct BaseInfo {
749   BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
750     : Decl(Decl), Offset(Offset), Index(Index) {
751   }
752 
753   const CXXRecordDecl *Decl;
754   CharUnits Offset;
755   unsigned Index;
756 
757   bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
758 };
759 }
760 
761 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
762                                bool IsPrimaryBase,
763                                const CXXRecordDecl *VTableClass,
764                                CharUnits Offset) {
765   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
766 
767   if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
768     // Add a vtable pointer, if we need one and it hasn't already been added.
769     if (CD->isDynamicClass() && !IsPrimaryBase) {
770       llvm::Constant *VTableAddressPoint =
771           CGM.getCXXABI().getVTableAddressPointForConstExpr(
772               BaseSubobject(CD, Offset), VTableClass);
773       if (!AppendBytes(Offset, VTableAddressPoint))
774         return false;
775     }
776 
777     // Accumulate and sort bases, in order to visit them in address order, which
778     // may not be the same as declaration order.
779     SmallVector<BaseInfo, 8> Bases;
780     Bases.reserve(CD->getNumBases());
781     unsigned BaseNo = 0;
782     for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
783          BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
784       assert(!Base->isVirtual() && "should not have virtual bases here");
785       const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
786       CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
787       Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
788     }
789     llvm::stable_sort(Bases);
790 
791     for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
792       BaseInfo &Base = Bases[I];
793 
794       bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
795       Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
796             VTableClass, Offset + Base.Offset);
797     }
798   }
799 
800   unsigned FieldNo = 0;
801   uint64_t OffsetBits = CGM.getContext().toBits(Offset);
802 
803   bool AllowOverwrite = false;
804   for (RecordDecl::field_iterator Field = RD->field_begin(),
805        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
806     // If this is a union, skip all the fields that aren't being initialized.
807     if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field))
808       continue;
809 
810     // Don't emit anonymous bitfields or zero-sized fields.
811     if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
812       continue;
813 
814     // Emit the value of the initializer.
815     const APValue &FieldValue =
816       RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
817     llvm::Constant *EltInit =
818       Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
819     if (!EltInit)
820       return false;
821 
822     if (!Field->isBitField()) {
823       // Handle non-bitfield members.
824       if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
825                        EltInit, AllowOverwrite))
826         return false;
827       // After emitting a non-empty field with [[no_unique_address]], we may
828       // need to overwrite its tail padding.
829       if (Field->hasAttr<NoUniqueAddressAttr>())
830         AllowOverwrite = true;
831     } else {
832       // Otherwise we have a bitfield.
833       if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
834                           cast<llvm::ConstantInt>(EltInit), AllowOverwrite))
835         return false;
836     }
837   }
838 
839   return true;
840 }
841 
842 llvm::Constant *ConstStructBuilder::Finalize(QualType Type) {
843   RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
844   llvm::Type *ValTy = CGM.getTypes().ConvertType(Type);
845   return Builder.build(ValTy, RD->hasFlexibleArrayMember());
846 }
847 
848 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
849                                                 InitListExpr *ILE,
850                                                 QualType ValTy) {
851   ConstantAggregateBuilder Const(Emitter.CGM);
852   ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
853 
854   if (!Builder.Build(ILE, /*AllowOverwrite*/false))
855     return nullptr;
856 
857   return Builder.Finalize(ValTy);
858 }
859 
860 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
861                                                 const APValue &Val,
862                                                 QualType ValTy) {
863   ConstantAggregateBuilder Const(Emitter.CGM);
864   ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
865 
866   const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
867   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
868   if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero()))
869     return nullptr;
870 
871   return Builder.Finalize(ValTy);
872 }
873 
874 bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter,
875                                       ConstantAggregateBuilder &Const,
876                                       CharUnits Offset, InitListExpr *Updater) {
877   return ConstStructBuilder(Emitter, Const, Offset)
878       .Build(Updater, /*AllowOverwrite*/ true);
879 }
880 
881 //===----------------------------------------------------------------------===//
882 //                             ConstExprEmitter
883 //===----------------------------------------------------------------------===//
884 
885 static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM,
886                                                     CodeGenFunction *CGF,
887                                               const CompoundLiteralExpr *E) {
888   CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType());
889   if (llvm::GlobalVariable *Addr =
890           CGM.getAddrOfConstantCompoundLiteralIfEmitted(E))
891     return ConstantAddress(Addr, Align);
892 
893   LangAS addressSpace = E->getType().getAddressSpace();
894 
895   ConstantEmitter emitter(CGM, CGF);
896   llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
897                                                     addressSpace, E->getType());
898   if (!C) {
899     assert(!E->isFileScope() &&
900            "file-scope compound literal did not have constant initializer!");
901     return ConstantAddress::invalid();
902   }
903 
904   auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
905                                      CGM.isTypeConstant(E->getType(), true),
906                                      llvm::GlobalValue::InternalLinkage,
907                                      C, ".compoundliteral", nullptr,
908                                      llvm::GlobalVariable::NotThreadLocal,
909                     CGM.getContext().getTargetAddressSpace(addressSpace));
910   emitter.finalize(GV);
911   GV->setAlignment(Align.getAsAlign());
912   CGM.setAddrOfConstantCompoundLiteral(E, GV);
913   return ConstantAddress(GV, Align);
914 }
915 
916 static llvm::Constant *
917 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
918                   llvm::Type *CommonElementType, unsigned ArrayBound,
919                   SmallVectorImpl<llvm::Constant *> &Elements,
920                   llvm::Constant *Filler) {
921   // Figure out how long the initial prefix of non-zero elements is.
922   unsigned NonzeroLength = ArrayBound;
923   if (Elements.size() < NonzeroLength && Filler->isNullValue())
924     NonzeroLength = Elements.size();
925   if (NonzeroLength == Elements.size()) {
926     while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue())
927       --NonzeroLength;
928   }
929 
930   if (NonzeroLength == 0)
931     return llvm::ConstantAggregateZero::get(DesiredType);
932 
933   // Add a zeroinitializer array filler if we have lots of trailing zeroes.
934   unsigned TrailingZeroes = ArrayBound - NonzeroLength;
935   if (TrailingZeroes >= 8) {
936     assert(Elements.size() >= NonzeroLength &&
937            "missing initializer for non-zero element");
938 
939     // If all the elements had the same type up to the trailing zeroes, emit a
940     // struct of two arrays (the nonzero data and the zeroinitializer).
941     if (CommonElementType && NonzeroLength >= 8) {
942       llvm::Constant *Initial = llvm::ConstantArray::get(
943           llvm::ArrayType::get(CommonElementType, NonzeroLength),
944           makeArrayRef(Elements).take_front(NonzeroLength));
945       Elements.resize(2);
946       Elements[0] = Initial;
947     } else {
948       Elements.resize(NonzeroLength + 1);
949     }
950 
951     auto *FillerType =
952         CommonElementType ? CommonElementType : DesiredType->getElementType();
953     FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes);
954     Elements.back() = llvm::ConstantAggregateZero::get(FillerType);
955     CommonElementType = nullptr;
956   } else if (Elements.size() != ArrayBound) {
957     // Otherwise pad to the right size with the filler if necessary.
958     Elements.resize(ArrayBound, Filler);
959     if (Filler->getType() != CommonElementType)
960       CommonElementType = nullptr;
961   }
962 
963   // If all elements have the same type, just emit an array constant.
964   if (CommonElementType)
965     return llvm::ConstantArray::get(
966         llvm::ArrayType::get(CommonElementType, ArrayBound), Elements);
967 
968   // We have mixed types. Use a packed struct.
969   llvm::SmallVector<llvm::Type *, 16> Types;
970   Types.reserve(Elements.size());
971   for (llvm::Constant *Elt : Elements)
972     Types.push_back(Elt->getType());
973   llvm::StructType *SType =
974       llvm::StructType::get(CGM.getLLVMContext(), Types, true);
975   return llvm::ConstantStruct::get(SType, Elements);
976 }
977 
978 // This class only needs to handle arrays, structs and unions. Outside C++11
979 // mode, we don't currently constant fold those types.  All other types are
980 // handled by constant folding.
981 //
982 // Constant folding is currently missing support for a few features supported
983 // here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr.
984 class ConstExprEmitter :
985   public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> {
986   CodeGenModule &CGM;
987   ConstantEmitter &Emitter;
988   llvm::LLVMContext &VMContext;
989 public:
990   ConstExprEmitter(ConstantEmitter &emitter)
991     : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
992   }
993 
994   //===--------------------------------------------------------------------===//
995   //                            Visitor Methods
996   //===--------------------------------------------------------------------===//
997 
998   llvm::Constant *VisitStmt(Stmt *S, QualType T) {
999     return nullptr;
1000   }
1001 
1002   llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) {
1003     return Visit(CE->getSubExpr(), T);
1004   }
1005 
1006   llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) {
1007     return Visit(PE->getSubExpr(), T);
1008   }
1009 
1010   llvm::Constant *
1011   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE,
1012                                     QualType T) {
1013     return Visit(PE->getReplacement(), T);
1014   }
1015 
1016   llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE,
1017                                             QualType T) {
1018     return Visit(GE->getResultExpr(), T);
1019   }
1020 
1021   llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) {
1022     return Visit(CE->getChosenSubExpr(), T);
1023   }
1024 
1025   llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) {
1026     return Visit(E->getInitializer(), T);
1027   }
1028 
1029   llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) {
1030     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
1031       CGM.EmitExplicitCastExprType(ECE, Emitter.CGF);
1032     Expr *subExpr = E->getSubExpr();
1033 
1034     switch (E->getCastKind()) {
1035     case CK_ToUnion: {
1036       // GCC cast to union extension
1037       assert(E->getType()->isUnionType() &&
1038              "Destination type is not union type!");
1039 
1040       auto field = E->getTargetUnionField();
1041 
1042       auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
1043       if (!C) return nullptr;
1044 
1045       auto destTy = ConvertType(destType);
1046       if (C->getType() == destTy) return C;
1047 
1048       // Build a struct with the union sub-element as the first member,
1049       // and padded to the appropriate size.
1050       SmallVector<llvm::Constant*, 2> Elts;
1051       SmallVector<llvm::Type*, 2> Types;
1052       Elts.push_back(C);
1053       Types.push_back(C->getType());
1054       unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
1055       unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy);
1056 
1057       assert(CurSize <= TotalSize && "Union size mismatch!");
1058       if (unsigned NumPadBytes = TotalSize - CurSize) {
1059         llvm::Type *Ty = CGM.Int8Ty;
1060         if (NumPadBytes > 1)
1061           Ty = llvm::ArrayType::get(Ty, NumPadBytes);
1062 
1063         Elts.push_back(llvm::UndefValue::get(Ty));
1064         Types.push_back(Ty);
1065       }
1066 
1067       llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false);
1068       return llvm::ConstantStruct::get(STy, Elts);
1069     }
1070 
1071     case CK_AddressSpaceConversion: {
1072       auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1073       if (!C) return nullptr;
1074       LangAS destAS = E->getType()->getPointeeType().getAddressSpace();
1075       LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
1076       llvm::Type *destTy = ConvertType(E->getType());
1077       return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS,
1078                                                              destAS, destTy);
1079     }
1080 
1081     case CK_LValueToRValue:
1082     case CK_AtomicToNonAtomic:
1083     case CK_NonAtomicToAtomic:
1084     case CK_NoOp:
1085     case CK_ConstructorConversion:
1086       return Visit(subExpr, destType);
1087 
1088     case CK_IntToOCLSampler:
1089       llvm_unreachable("global sampler variables are not generated");
1090 
1091     case CK_Dependent: llvm_unreachable("saw dependent cast!");
1092 
1093     case CK_BuiltinFnToFnPtr:
1094       llvm_unreachable("builtin functions are handled elsewhere");
1095 
1096     case CK_ReinterpretMemberPointer:
1097     case CK_DerivedToBaseMemberPointer:
1098     case CK_BaseToDerivedMemberPointer: {
1099       auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1100       if (!C) return nullptr;
1101       return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
1102     }
1103 
1104     // These will never be supported.
1105     case CK_ObjCObjectLValueCast:
1106     case CK_ARCProduceObject:
1107     case CK_ARCConsumeObject:
1108     case CK_ARCReclaimReturnedObject:
1109     case CK_ARCExtendBlockObject:
1110     case CK_CopyAndAutoreleaseBlockObject:
1111       return nullptr;
1112 
1113     // These don't need to be handled here because Evaluate knows how to
1114     // evaluate them in the cases where they can be folded.
1115     case CK_BitCast:
1116     case CK_ToVoid:
1117     case CK_Dynamic:
1118     case CK_LValueBitCast:
1119     case CK_LValueToRValueBitCast:
1120     case CK_NullToMemberPointer:
1121     case CK_UserDefinedConversion:
1122     case CK_CPointerToObjCPointerCast:
1123     case CK_BlockPointerToObjCPointerCast:
1124     case CK_AnyPointerToBlockPointerCast:
1125     case CK_ArrayToPointerDecay:
1126     case CK_FunctionToPointerDecay:
1127     case CK_BaseToDerived:
1128     case CK_DerivedToBase:
1129     case CK_UncheckedDerivedToBase:
1130     case CK_MemberPointerToBoolean:
1131     case CK_VectorSplat:
1132     case CK_FloatingRealToComplex:
1133     case CK_FloatingComplexToReal:
1134     case CK_FloatingComplexToBoolean:
1135     case CK_FloatingComplexCast:
1136     case CK_FloatingComplexToIntegralComplex:
1137     case CK_IntegralRealToComplex:
1138     case CK_IntegralComplexToReal:
1139     case CK_IntegralComplexToBoolean:
1140     case CK_IntegralComplexCast:
1141     case CK_IntegralComplexToFloatingComplex:
1142     case CK_PointerToIntegral:
1143     case CK_PointerToBoolean:
1144     case CK_NullToPointer:
1145     case CK_IntegralCast:
1146     case CK_BooleanToSignedIntegral:
1147     case CK_IntegralToPointer:
1148     case CK_IntegralToBoolean:
1149     case CK_IntegralToFloating:
1150     case CK_FloatingToIntegral:
1151     case CK_FloatingToBoolean:
1152     case CK_FloatingCast:
1153     case CK_FixedPointCast:
1154     case CK_FixedPointToBoolean:
1155     case CK_FixedPointToIntegral:
1156     case CK_IntegralToFixedPoint:
1157     case CK_ZeroToOCLOpaqueType:
1158       return nullptr;
1159     }
1160     llvm_unreachable("Invalid CastKind");
1161   }
1162 
1163   llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) {
1164     // No need for a DefaultInitExprScope: we don't handle 'this' in a
1165     // constant expression.
1166     return Visit(DIE->getExpr(), T);
1167   }
1168 
1169   llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) {
1170     return Visit(E->getSubExpr(), T);
1171   }
1172 
1173   llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E,
1174                                                 QualType T) {
1175     return Visit(E->getSubExpr(), T);
1176   }
1177 
1178   llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) {
1179     auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType());
1180     assert(CAT && "can't emit array init for non-constant-bound array");
1181     unsigned NumInitElements = ILE->getNumInits();
1182     unsigned NumElements = CAT->getSize().getZExtValue();
1183 
1184     // Initialising an array requires us to automatically
1185     // initialise any elements that have not been initialised explicitly
1186     unsigned NumInitableElts = std::min(NumInitElements, NumElements);
1187 
1188     QualType EltType = CAT->getElementType();
1189 
1190     // Initialize remaining array elements.
1191     llvm::Constant *fillC = nullptr;
1192     if (Expr *filler = ILE->getArrayFiller()) {
1193       fillC = Emitter.tryEmitAbstractForMemory(filler, EltType);
1194       if (!fillC)
1195         return nullptr;
1196     }
1197 
1198     // Copy initializer elements.
1199     SmallVector<llvm::Constant*, 16> Elts;
1200     if (fillC && fillC->isNullValue())
1201       Elts.reserve(NumInitableElts + 1);
1202     else
1203       Elts.reserve(NumElements);
1204 
1205     llvm::Type *CommonElementType = nullptr;
1206     for (unsigned i = 0; i < NumInitableElts; ++i) {
1207       Expr *Init = ILE->getInit(i);
1208       llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType);
1209       if (!C)
1210         return nullptr;
1211       if (i == 0)
1212         CommonElementType = C->getType();
1213       else if (C->getType() != CommonElementType)
1214         CommonElementType = nullptr;
1215       Elts.push_back(C);
1216     }
1217 
1218     llvm::ArrayType *Desired =
1219         cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType()));
1220     return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
1221                              fillC);
1222   }
1223 
1224   llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) {
1225     return ConstStructBuilder::BuildStruct(Emitter, ILE, T);
1226   }
1227 
1228   llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E,
1229                                              QualType T) {
1230     return CGM.EmitNullConstant(T);
1231   }
1232 
1233   llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) {
1234     if (ILE->isTransparent())
1235       return Visit(ILE->getInit(0), T);
1236 
1237     if (ILE->getType()->isArrayType())
1238       return EmitArrayInitialization(ILE, T);
1239 
1240     if (ILE->getType()->isRecordType())
1241       return EmitRecordInitialization(ILE, T);
1242 
1243     return nullptr;
1244   }
1245 
1246   llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E,
1247                                                 QualType destType) {
1248     auto C = Visit(E->getBase(), destType);
1249     if (!C)
1250       return nullptr;
1251 
1252     ConstantAggregateBuilder Const(CGM);
1253     Const.add(C, CharUnits::Zero(), false);
1254 
1255     if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType,
1256                                    E->getUpdater()))
1257       return nullptr;
1258 
1259     llvm::Type *ValTy = CGM.getTypes().ConvertType(destType);
1260     bool HasFlexibleArray = false;
1261     if (auto *RT = destType->getAs<RecordType>())
1262       HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember();
1263     return Const.build(ValTy, HasFlexibleArray);
1264   }
1265 
1266   llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) {
1267     if (!E->getConstructor()->isTrivial())
1268       return nullptr;
1269 
1270     // Only default and copy/move constructors can be trivial.
1271     if (E->getNumArgs()) {
1272       assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
1273       assert(E->getConstructor()->isCopyOrMoveConstructor() &&
1274              "trivial ctor has argument but isn't a copy/move ctor");
1275 
1276       Expr *Arg = E->getArg(0);
1277       assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
1278              "argument to copy ctor is of wrong type");
1279 
1280       return Visit(Arg, Ty);
1281     }
1282 
1283     return CGM.EmitNullConstant(Ty);
1284   }
1285 
1286   llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) {
1287     // This is a string literal initializing an array in an initializer.
1288     return CGM.GetConstantArrayFromStringLiteral(E);
1289   }
1290 
1291   llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) {
1292     // This must be an @encode initializing an array in a static initializer.
1293     // Don't emit it as the address of the string, emit the string data itself
1294     // as an inline array.
1295     std::string Str;
1296     CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1297     const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T);
1298 
1299     // Resize the string to the right size, adding zeros at the end, or
1300     // truncating as needed.
1301     Str.resize(CAT->getSize().getZExtValue(), '\0');
1302     return llvm::ConstantDataArray::getString(VMContext, Str, false);
1303   }
1304 
1305   llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
1306     return Visit(E->getSubExpr(), T);
1307   }
1308 
1309   // Utility methods
1310   llvm::Type *ConvertType(QualType T) {
1311     return CGM.getTypes().ConvertType(T);
1312   }
1313 };
1314 
1315 }  // end anonymous namespace.
1316 
1317 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
1318                                                         AbstractState saved) {
1319   Abstract = saved.OldValue;
1320 
1321   assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
1322          "created a placeholder while doing an abstract emission?");
1323 
1324   // No validation necessary for now.
1325   // No cleanup to do for now.
1326   return C;
1327 }
1328 
1329 llvm::Constant *
1330 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) {
1331   auto state = pushAbstract();
1332   auto C = tryEmitPrivateForVarInit(D);
1333   return validateAndPopAbstract(C, state);
1334 }
1335 
1336 llvm::Constant *
1337 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) {
1338   auto state = pushAbstract();
1339   auto C = tryEmitPrivate(E, destType);
1340   return validateAndPopAbstract(C, state);
1341 }
1342 
1343 llvm::Constant *
1344 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) {
1345   auto state = pushAbstract();
1346   auto C = tryEmitPrivate(value, destType);
1347   return validateAndPopAbstract(C, state);
1348 }
1349 
1350 llvm::Constant *
1351 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) {
1352   auto state = pushAbstract();
1353   auto C = tryEmitPrivate(E, destType);
1354   C = validateAndPopAbstract(C, state);
1355   if (!C) {
1356     CGM.Error(E->getExprLoc(),
1357               "internal error: could not emit constant value \"abstractly\"");
1358     C = CGM.EmitNullConstant(destType);
1359   }
1360   return C;
1361 }
1362 
1363 llvm::Constant *
1364 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value,
1365                               QualType destType) {
1366   auto state = pushAbstract();
1367   auto C = tryEmitPrivate(value, destType);
1368   C = validateAndPopAbstract(C, state);
1369   if (!C) {
1370     CGM.Error(loc,
1371               "internal error: could not emit constant value \"abstractly\"");
1372     C = CGM.EmitNullConstant(destType);
1373   }
1374   return C;
1375 }
1376 
1377 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) {
1378   initializeNonAbstract(D.getType().getAddressSpace());
1379   return markIfFailed(tryEmitPrivateForVarInit(D));
1380 }
1381 
1382 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E,
1383                                                        LangAS destAddrSpace,
1384                                                        QualType destType) {
1385   initializeNonAbstract(destAddrSpace);
1386   return markIfFailed(tryEmitPrivateForMemory(E, destType));
1387 }
1388 
1389 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value,
1390                                                     LangAS destAddrSpace,
1391                                                     QualType destType) {
1392   initializeNonAbstract(destAddrSpace);
1393   auto C = tryEmitPrivateForMemory(value, destType);
1394   assert(C && "couldn't emit constant value non-abstractly?");
1395   return C;
1396 }
1397 
1398 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() {
1399   assert(!Abstract && "cannot get current address for abstract constant");
1400 
1401 
1402 
1403   // Make an obviously ill-formed global that should blow up compilation
1404   // if it survives.
1405   auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
1406                                          llvm::GlobalValue::PrivateLinkage,
1407                                          /*init*/ nullptr,
1408                                          /*name*/ "",
1409                                          /*before*/ nullptr,
1410                                          llvm::GlobalVariable::NotThreadLocal,
1411                                          CGM.getContext().getTargetAddressSpace(DestAddressSpace));
1412 
1413   PlaceholderAddresses.push_back(std::make_pair(nullptr, global));
1414 
1415   return global;
1416 }
1417 
1418 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal,
1419                                            llvm::GlobalValue *placeholder) {
1420   assert(!PlaceholderAddresses.empty());
1421   assert(PlaceholderAddresses.back().first == nullptr);
1422   assert(PlaceholderAddresses.back().second == placeholder);
1423   PlaceholderAddresses.back().first = signal;
1424 }
1425 
1426 namespace {
1427   struct ReplacePlaceholders {
1428     CodeGenModule &CGM;
1429 
1430     /// The base address of the global.
1431     llvm::Constant *Base;
1432     llvm::Type *BaseValueTy = nullptr;
1433 
1434     /// The placeholder addresses that were registered during emission.
1435     llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;
1436 
1437     /// The locations of the placeholder signals.
1438     llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;
1439 
1440     /// The current index stack.  We use a simple unsigned stack because
1441     /// we assume that placeholders will be relatively sparse in the
1442     /// initializer, but we cache the index values we find just in case.
1443     llvm::SmallVector<unsigned, 8> Indices;
1444     llvm::SmallVector<llvm::Constant*, 8> IndexValues;
1445 
1446     ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
1447                         ArrayRef<std::pair<llvm::Constant*,
1448                                            llvm::GlobalVariable*>> addresses)
1449         : CGM(CGM), Base(base),
1450           PlaceholderAddresses(addresses.begin(), addresses.end()) {
1451     }
1452 
1453     void replaceInInitializer(llvm::Constant *init) {
1454       // Remember the type of the top-most initializer.
1455       BaseValueTy = init->getType();
1456 
1457       // Initialize the stack.
1458       Indices.push_back(0);
1459       IndexValues.push_back(nullptr);
1460 
1461       // Recurse into the initializer.
1462       findLocations(init);
1463 
1464       // Check invariants.
1465       assert(IndexValues.size() == Indices.size() && "mismatch");
1466       assert(Indices.size() == 1 && "didn't pop all indices");
1467 
1468       // Do the replacement; this basically invalidates 'init'.
1469       assert(Locations.size() == PlaceholderAddresses.size() &&
1470              "missed a placeholder?");
1471 
1472       // We're iterating over a hashtable, so this would be a source of
1473       // non-determinism in compiler output *except* that we're just
1474       // messing around with llvm::Constant structures, which never itself
1475       // does anything that should be visible in compiler output.
1476       for (auto &entry : Locations) {
1477         assert(entry.first->getParent() == nullptr && "not a placeholder!");
1478         entry.first->replaceAllUsesWith(entry.second);
1479         entry.first->eraseFromParent();
1480       }
1481     }
1482 
1483   private:
1484     void findLocations(llvm::Constant *init) {
1485       // Recurse into aggregates.
1486       if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) {
1487         for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
1488           Indices.push_back(i);
1489           IndexValues.push_back(nullptr);
1490 
1491           findLocations(agg->getOperand(i));
1492 
1493           IndexValues.pop_back();
1494           Indices.pop_back();
1495         }
1496         return;
1497       }
1498 
1499       // Otherwise, check for registered constants.
1500       while (true) {
1501         auto it = PlaceholderAddresses.find(init);
1502         if (it != PlaceholderAddresses.end()) {
1503           setLocation(it->second);
1504           break;
1505         }
1506 
1507         // Look through bitcasts or other expressions.
1508         if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) {
1509           init = expr->getOperand(0);
1510         } else {
1511           break;
1512         }
1513       }
1514     }
1515 
1516     void setLocation(llvm::GlobalVariable *placeholder) {
1517       assert(Locations.find(placeholder) == Locations.end() &&
1518              "already found location for placeholder!");
1519 
1520       // Lazily fill in IndexValues with the values from Indices.
1521       // We do this in reverse because we should always have a strict
1522       // prefix of indices from the start.
1523       assert(Indices.size() == IndexValues.size());
1524       for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
1525         if (IndexValues[i]) {
1526 #ifndef NDEBUG
1527           for (size_t j = 0; j != i + 1; ++j) {
1528             assert(IndexValues[j] &&
1529                    isa<llvm::ConstantInt>(IndexValues[j]) &&
1530                    cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
1531                      == Indices[j]);
1532           }
1533 #endif
1534           break;
1535         }
1536 
1537         IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]);
1538       }
1539 
1540       // Form a GEP and then bitcast to the placeholder type so that the
1541       // replacement will succeed.
1542       llvm::Constant *location =
1543         llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy,
1544                                                      Base, IndexValues);
1545       location = llvm::ConstantExpr::getBitCast(location,
1546                                                 placeholder->getType());
1547 
1548       Locations.insert({placeholder, location});
1549     }
1550   };
1551 }
1552 
1553 void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
1554   assert(InitializedNonAbstract &&
1555          "finalizing emitter that was used for abstract emission?");
1556   assert(!Finalized && "finalizing emitter multiple times");
1557   assert(global->getInitializer());
1558 
1559   // Note that we might also be Failed.
1560   Finalized = true;
1561 
1562   if (!PlaceholderAddresses.empty()) {
1563     ReplacePlaceholders(CGM, global, PlaceholderAddresses)
1564       .replaceInInitializer(global->getInitializer());
1565     PlaceholderAddresses.clear(); // satisfy
1566   }
1567 }
1568 
1569 ConstantEmitter::~ConstantEmitter() {
1570   assert((!InitializedNonAbstract || Finalized || Failed) &&
1571          "not finalized after being initialized for non-abstract emission");
1572   assert(PlaceholderAddresses.empty() && "unhandled placeholders");
1573 }
1574 
1575 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) {
1576   if (auto AT = type->getAs<AtomicType>()) {
1577     return CGM.getContext().getQualifiedType(AT->getValueType(),
1578                                              type.getQualifiers());
1579   }
1580   return type;
1581 }
1582 
1583 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) {
1584   // Make a quick check if variable can be default NULL initialized
1585   // and avoid going through rest of code which may do, for c++11,
1586   // initialization of memory to all NULLs.
1587   if (!D.hasLocalStorage()) {
1588     QualType Ty = CGM.getContext().getBaseElementType(D.getType());
1589     if (Ty->isRecordType())
1590       if (const CXXConstructExpr *E =
1591           dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
1592         const CXXConstructorDecl *CD = E->getConstructor();
1593         if (CD->isTrivial() && CD->isDefaultConstructor())
1594           return CGM.EmitNullConstant(D.getType());
1595       }
1596     InConstantContext = true;
1597   }
1598 
1599   QualType destType = D.getType();
1600 
1601   // Try to emit the initializer.  Note that this can allow some things that
1602   // are not allowed by tryEmitPrivateForMemory alone.
1603   if (auto value = D.evaluateValue()) {
1604     return tryEmitPrivateForMemory(*value, destType);
1605   }
1606 
1607   // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a
1608   // reference is a constant expression, and the reference binds to a temporary,
1609   // then constant initialization is performed. ConstExprEmitter will
1610   // incorrectly emit a prvalue constant in this case, and the calling code
1611   // interprets that as the (pointer) value of the reference, rather than the
1612   // desired value of the referee.
1613   if (destType->isReferenceType())
1614     return nullptr;
1615 
1616   const Expr *E = D.getInit();
1617   assert(E && "No initializer to emit");
1618 
1619   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1620   auto C =
1621     ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType);
1622   return (C ? emitForMemory(C, destType) : nullptr);
1623 }
1624 
1625 llvm::Constant *
1626 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) {
1627   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1628   auto C = tryEmitAbstract(E, nonMemoryDestType);
1629   return (C ? emitForMemory(C, destType) : nullptr);
1630 }
1631 
1632 llvm::Constant *
1633 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value,
1634                                           QualType destType) {
1635   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1636   auto C = tryEmitAbstract(value, nonMemoryDestType);
1637   return (C ? emitForMemory(C, destType) : nullptr);
1638 }
1639 
1640 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E,
1641                                                          QualType destType) {
1642   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1643   llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType);
1644   return (C ? emitForMemory(C, destType) : nullptr);
1645 }
1646 
1647 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value,
1648                                                          QualType destType) {
1649   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1650   auto C = tryEmitPrivate(value, nonMemoryDestType);
1651   return (C ? emitForMemory(C, destType) : nullptr);
1652 }
1653 
1654 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM,
1655                                                llvm::Constant *C,
1656                                                QualType destType) {
1657   // For an _Atomic-qualified constant, we may need to add tail padding.
1658   if (auto AT = destType->getAs<AtomicType>()) {
1659     QualType destValueType = AT->getValueType();
1660     C = emitForMemory(CGM, C, destValueType);
1661 
1662     uint64_t innerSize = CGM.getContext().getTypeSize(destValueType);
1663     uint64_t outerSize = CGM.getContext().getTypeSize(destType);
1664     if (innerSize == outerSize)
1665       return C;
1666 
1667     assert(innerSize < outerSize && "emitted over-large constant for atomic");
1668     llvm::Constant *elts[] = {
1669       C,
1670       llvm::ConstantAggregateZero::get(
1671           llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8))
1672     };
1673     return llvm::ConstantStruct::getAnon(elts);
1674   }
1675 
1676   // Zero-extend bool.
1677   if (C->getType()->isIntegerTy(1)) {
1678     llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType);
1679     return llvm::ConstantExpr::getZExt(C, boolTy);
1680   }
1681 
1682   return C;
1683 }
1684 
1685 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E,
1686                                                 QualType destType) {
1687   Expr::EvalResult Result;
1688 
1689   bool Success = false;
1690 
1691   if (destType->isReferenceType())
1692     Success = E->EvaluateAsLValue(Result, CGM.getContext());
1693   else
1694     Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext);
1695 
1696   llvm::Constant *C;
1697   if (Success && !Result.HasSideEffects)
1698     C = tryEmitPrivate(Result.Val, destType);
1699   else
1700     C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType);
1701 
1702   return C;
1703 }
1704 
1705 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
1706   return getTargetCodeGenInfo().getNullPointer(*this, T, QT);
1707 }
1708 
1709 namespace {
1710 /// A struct which can be used to peephole certain kinds of finalization
1711 /// that normally happen during l-value emission.
1712 struct ConstantLValue {
1713   llvm::Constant *Value;
1714   bool HasOffsetApplied;
1715 
1716   /*implicit*/ ConstantLValue(llvm::Constant *value,
1717                               bool hasOffsetApplied = false)
1718     : Value(value), HasOffsetApplied(hasOffsetApplied) {}
1719 
1720   /*implicit*/ ConstantLValue(ConstantAddress address)
1721     : ConstantLValue(address.getPointer()) {}
1722 };
1723 
1724 /// A helper class for emitting constant l-values.
1725 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
1726                                                       ConstantLValue> {
1727   CodeGenModule &CGM;
1728   ConstantEmitter &Emitter;
1729   const APValue &Value;
1730   QualType DestType;
1731 
1732   // Befriend StmtVisitorBase so that we don't have to expose Visit*.
1733   friend StmtVisitorBase;
1734 
1735 public:
1736   ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
1737                         QualType destType)
1738     : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {}
1739 
1740   llvm::Constant *tryEmit();
1741 
1742 private:
1743   llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
1744   ConstantLValue tryEmitBase(const APValue::LValueBase &base);
1745 
1746   ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
1747   ConstantLValue VisitConstantExpr(const ConstantExpr *E);
1748   ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
1749   ConstantLValue VisitStringLiteral(const StringLiteral *E);
1750   ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E);
1751   ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
1752   ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
1753   ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
1754   ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
1755   ConstantLValue VisitCallExpr(const CallExpr *E);
1756   ConstantLValue VisitBlockExpr(const BlockExpr *E);
1757   ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
1758   ConstantLValue VisitCXXUuidofExpr(const CXXUuidofExpr *E);
1759   ConstantLValue VisitMaterializeTemporaryExpr(
1760                                          const MaterializeTemporaryExpr *E);
1761 
1762   bool hasNonZeroOffset() const {
1763     return !Value.getLValueOffset().isZero();
1764   }
1765 
1766   /// Return the value offset.
1767   llvm::Constant *getOffset() {
1768     return llvm::ConstantInt::get(CGM.Int64Ty,
1769                                   Value.getLValueOffset().getQuantity());
1770   }
1771 
1772   /// Apply the value offset to the given constant.
1773   llvm::Constant *applyOffset(llvm::Constant *C) {
1774     if (!hasNonZeroOffset())
1775       return C;
1776 
1777     llvm::Type *origPtrTy = C->getType();
1778     unsigned AS = origPtrTy->getPointerAddressSpace();
1779     llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS);
1780     C = llvm::ConstantExpr::getBitCast(C, charPtrTy);
1781     C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset());
1782     C = llvm::ConstantExpr::getPointerCast(C, origPtrTy);
1783     return C;
1784   }
1785 };
1786 
1787 }
1788 
1789 llvm::Constant *ConstantLValueEmitter::tryEmit() {
1790   const APValue::LValueBase &base = Value.getLValueBase();
1791 
1792   // The destination type should be a pointer or reference
1793   // type, but it might also be a cast thereof.
1794   //
1795   // FIXME: the chain of casts required should be reflected in the APValue.
1796   // We need this in order to correctly handle things like a ptrtoint of a
1797   // non-zero null pointer and addrspace casts that aren't trivially
1798   // represented in LLVM IR.
1799   auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
1800   assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));
1801 
1802   // If there's no base at all, this is a null or absolute pointer,
1803   // possibly cast back to an integer type.
1804   if (!base) {
1805     return tryEmitAbsolute(destTy);
1806   }
1807 
1808   // Otherwise, try to emit the base.
1809   ConstantLValue result = tryEmitBase(base);
1810 
1811   // If that failed, we're done.
1812   llvm::Constant *value = result.Value;
1813   if (!value) return nullptr;
1814 
1815   // Apply the offset if necessary and not already done.
1816   if (!result.HasOffsetApplied) {
1817     value = applyOffset(value);
1818   }
1819 
1820   // Convert to the appropriate type; this could be an lvalue for
1821   // an integer.  FIXME: performAddrSpaceCast
1822   if (isa<llvm::PointerType>(destTy))
1823     return llvm::ConstantExpr::getPointerCast(value, destTy);
1824 
1825   return llvm::ConstantExpr::getPtrToInt(value, destTy);
1826 }
1827 
1828 /// Try to emit an absolute l-value, such as a null pointer or an integer
1829 /// bitcast to pointer type.
1830 llvm::Constant *
1831 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
1832   // If we're producing a pointer, this is easy.
1833   auto destPtrTy = cast<llvm::PointerType>(destTy);
1834   if (Value.isNullPointer()) {
1835     // FIXME: integer offsets from non-zero null pointers.
1836     return CGM.getNullPointer(destPtrTy, DestType);
1837   }
1838 
1839   // Convert the integer to a pointer-sized integer before converting it
1840   // to a pointer.
1841   // FIXME: signedness depends on the original integer type.
1842   auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
1843   llvm::Constant *C;
1844   C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy,
1845                                          /*isSigned*/ false);
1846   C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy);
1847   return C;
1848 }
1849 
1850 ConstantLValue
1851 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
1852   // Handle values.
1853   if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
1854     if (D->hasAttr<WeakRefAttr>())
1855       return CGM.GetWeakRefReference(D).getPointer();
1856 
1857     if (auto FD = dyn_cast<FunctionDecl>(D))
1858       return CGM.GetAddrOfFunction(FD);
1859 
1860     if (auto VD = dyn_cast<VarDecl>(D)) {
1861       // We can never refer to a variable with local storage.
1862       if (!VD->hasLocalStorage()) {
1863         if (VD->isFileVarDecl() || VD->hasExternalStorage())
1864           return CGM.GetAddrOfGlobalVar(VD);
1865 
1866         if (VD->isLocalVarDecl()) {
1867           return CGM.getOrCreateStaticVarDecl(
1868               *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false));
1869         }
1870       }
1871     }
1872 
1873     return nullptr;
1874   }
1875 
1876   // Handle typeid(T).
1877   if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>()) {
1878     llvm::Type *StdTypeInfoPtrTy =
1879         CGM.getTypes().ConvertType(base.getTypeInfoType())->getPointerTo();
1880     llvm::Constant *TypeInfo =
1881         CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0));
1882     if (TypeInfo->getType() != StdTypeInfoPtrTy)
1883       TypeInfo = llvm::ConstantExpr::getBitCast(TypeInfo, StdTypeInfoPtrTy);
1884     return TypeInfo;
1885   }
1886 
1887   // Otherwise, it must be an expression.
1888   return Visit(base.get<const Expr*>());
1889 }
1890 
1891 ConstantLValue
1892 ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) {
1893   return Visit(E->getSubExpr());
1894 }
1895 
1896 ConstantLValue
1897 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
1898   return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E);
1899 }
1900 
1901 ConstantLValue
1902 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
1903   return CGM.GetAddrOfConstantStringFromLiteral(E);
1904 }
1905 
1906 ConstantLValue
1907 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
1908   return CGM.GetAddrOfConstantStringFromObjCEncode(E);
1909 }
1910 
1911 static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S,
1912                                                     QualType T,
1913                                                     CodeGenModule &CGM) {
1914   auto C = CGM.getObjCRuntime().GenerateConstantString(S);
1915   return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(T));
1916 }
1917 
1918 ConstantLValue
1919 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
1920   return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM);
1921 }
1922 
1923 ConstantLValue
1924 ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
1925   assert(E->isExpressibleAsConstantInitializer() &&
1926          "this boxed expression can't be emitted as a compile-time constant");
1927   auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts());
1928   return emitConstantObjCStringLiteral(SL, E->getType(), CGM);
1929 }
1930 
1931 ConstantLValue
1932 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
1933   return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName());
1934 }
1935 
1936 ConstantLValue
1937 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
1938   assert(Emitter.CGF && "Invalid address of label expression outside function");
1939   llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel());
1940   Ptr = llvm::ConstantExpr::getBitCast(Ptr,
1941                                    CGM.getTypes().ConvertType(E->getType()));
1942   return Ptr;
1943 }
1944 
1945 ConstantLValue
1946 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
1947   unsigned builtin = E->getBuiltinCallee();
1948   if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
1949       builtin != Builtin::BI__builtin___NSStringMakeConstantString)
1950     return nullptr;
1951 
1952   auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts());
1953   if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
1954     return CGM.getObjCRuntime().GenerateConstantString(literal);
1955   } else {
1956     // FIXME: need to deal with UCN conversion issues.
1957     return CGM.GetAddrOfConstantCFString(literal);
1958   }
1959 }
1960 
1961 ConstantLValue
1962 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
1963   StringRef functionName;
1964   if (auto CGF = Emitter.CGF)
1965     functionName = CGF->CurFn->getName();
1966   else
1967     functionName = "global";
1968 
1969   return CGM.GetAddrOfGlobalBlock(E, functionName);
1970 }
1971 
1972 ConstantLValue
1973 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
1974   QualType T;
1975   if (E->isTypeOperand())
1976     T = E->getTypeOperand(CGM.getContext());
1977   else
1978     T = E->getExprOperand()->getType();
1979   return CGM.GetAddrOfRTTIDescriptor(T);
1980 }
1981 
1982 ConstantLValue
1983 ConstantLValueEmitter::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
1984   return CGM.GetAddrOfUuidDescriptor(E);
1985 }
1986 
1987 ConstantLValue
1988 ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
1989                                             const MaterializeTemporaryExpr *E) {
1990   assert(E->getStorageDuration() == SD_Static);
1991   SmallVector<const Expr *, 2> CommaLHSs;
1992   SmallVector<SubobjectAdjustment, 2> Adjustments;
1993   const Expr *Inner =
1994       E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
1995   return CGM.GetAddrOfGlobalTemporary(E, Inner);
1996 }
1997 
1998 llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value,
1999                                                 QualType DestType) {
2000   switch (Value.getKind()) {
2001   case APValue::None:
2002   case APValue::Indeterminate:
2003     // Out-of-lifetime and indeterminate values can be modeled as 'undef'.
2004     return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType));
2005   case APValue::LValue:
2006     return ConstantLValueEmitter(*this, Value, DestType).tryEmit();
2007   case APValue::Int:
2008     return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt());
2009   case APValue::FixedPoint:
2010     return llvm::ConstantInt::get(CGM.getLLVMContext(),
2011                                   Value.getFixedPoint().getValue());
2012   case APValue::ComplexInt: {
2013     llvm::Constant *Complex[2];
2014 
2015     Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2016                                         Value.getComplexIntReal());
2017     Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2018                                         Value.getComplexIntImag());
2019 
2020     // FIXME: the target may want to specify that this is packed.
2021     llvm::StructType *STy =
2022         llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2023     return llvm::ConstantStruct::get(STy, Complex);
2024   }
2025   case APValue::Float: {
2026     const llvm::APFloat &Init = Value.getFloat();
2027     if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
2028         !CGM.getContext().getLangOpts().NativeHalfType &&
2029         CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics())
2030       return llvm::ConstantInt::get(CGM.getLLVMContext(),
2031                                     Init.bitcastToAPInt());
2032     else
2033       return llvm::ConstantFP::get(CGM.getLLVMContext(), Init);
2034   }
2035   case APValue::ComplexFloat: {
2036     llvm::Constant *Complex[2];
2037 
2038     Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2039                                        Value.getComplexFloatReal());
2040     Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2041                                        Value.getComplexFloatImag());
2042 
2043     // FIXME: the target may want to specify that this is packed.
2044     llvm::StructType *STy =
2045         llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2046     return llvm::ConstantStruct::get(STy, Complex);
2047   }
2048   case APValue::Vector: {
2049     unsigned NumElts = Value.getVectorLength();
2050     SmallVector<llvm::Constant *, 4> Inits(NumElts);
2051 
2052     for (unsigned I = 0; I != NumElts; ++I) {
2053       const APValue &Elt = Value.getVectorElt(I);
2054       if (Elt.isInt())
2055         Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt());
2056       else if (Elt.isFloat())
2057         Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat());
2058       else
2059         llvm_unreachable("unsupported vector element type");
2060     }
2061     return llvm::ConstantVector::get(Inits);
2062   }
2063   case APValue::AddrLabelDiff: {
2064     const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
2065     const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
2066     llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
2067     llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
2068     if (!LHS || !RHS) return nullptr;
2069 
2070     // Compute difference
2071     llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType);
2072     LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy);
2073     RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy);
2074     llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
2075 
2076     // LLVM is a bit sensitive about the exact format of the
2077     // address-of-label difference; make sure to truncate after
2078     // the subtraction.
2079     return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
2080   }
2081   case APValue::Struct:
2082   case APValue::Union:
2083     return ConstStructBuilder::BuildStruct(*this, Value, DestType);
2084   case APValue::Array: {
2085     const ConstantArrayType *CAT =
2086         CGM.getContext().getAsConstantArrayType(DestType);
2087     unsigned NumElements = Value.getArraySize();
2088     unsigned NumInitElts = Value.getArrayInitializedElts();
2089 
2090     // Emit array filler, if there is one.
2091     llvm::Constant *Filler = nullptr;
2092     if (Value.hasArrayFiller()) {
2093       Filler = tryEmitAbstractForMemory(Value.getArrayFiller(),
2094                                         CAT->getElementType());
2095       if (!Filler)
2096         return nullptr;
2097     }
2098 
2099     // Emit initializer elements.
2100     SmallVector<llvm::Constant*, 16> Elts;
2101     if (Filler && Filler->isNullValue())
2102       Elts.reserve(NumInitElts + 1);
2103     else
2104       Elts.reserve(NumElements);
2105 
2106     llvm::Type *CommonElementType = nullptr;
2107     for (unsigned I = 0; I < NumInitElts; ++I) {
2108       llvm::Constant *C = tryEmitPrivateForMemory(
2109           Value.getArrayInitializedElt(I), CAT->getElementType());
2110       if (!C) return nullptr;
2111 
2112       if (I == 0)
2113         CommonElementType = C->getType();
2114       else if (C->getType() != CommonElementType)
2115         CommonElementType = nullptr;
2116       Elts.push_back(C);
2117     }
2118 
2119     // This means that the array type is probably "IncompleteType" or some
2120     // type that is not ConstantArray.
2121     if (CAT == nullptr && CommonElementType == nullptr && !NumInitElts) {
2122       const ArrayType *AT = CGM.getContext().getAsArrayType(DestType);
2123       CommonElementType = CGM.getTypes().ConvertType(AT->getElementType());
2124       llvm::ArrayType *AType = llvm::ArrayType::get(CommonElementType,
2125                                                     NumElements);
2126       return llvm::ConstantAggregateZero::get(AType);
2127     }
2128 
2129     llvm::ArrayType *Desired =
2130         cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType));
2131     return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
2132                              Filler);
2133   }
2134   case APValue::MemberPointer:
2135     return CGM.getCXXABI().EmitMemberPointer(Value, DestType);
2136   }
2137   llvm_unreachable("Unknown APValue kind");
2138 }
2139 
2140 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted(
2141     const CompoundLiteralExpr *E) {
2142   return EmittedCompoundLiterals.lookup(E);
2143 }
2144 
2145 void CodeGenModule::setAddrOfConstantCompoundLiteral(
2146     const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
2147   bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second;
2148   (void)Ok;
2149   assert(Ok && "CLE has already been emitted!");
2150 }
2151 
2152 ConstantAddress
2153 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
2154   assert(E->isFileScope() && "not a file-scope compound literal expr");
2155   return tryEmitGlobalCompoundLiteral(*this, nullptr, E);
2156 }
2157 
2158 llvm::Constant *
2159 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
2160   // Member pointer constants always have a very particular form.
2161   const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
2162   const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
2163 
2164   // A member function pointer.
2165   if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
2166     return getCXXABI().EmitMemberFunctionPointer(method);
2167 
2168   // Otherwise, a member data pointer.
2169   uint64_t fieldOffset = getContext().getFieldOffset(decl);
2170   CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
2171   return getCXXABI().EmitMemberDataPointer(type, chars);
2172 }
2173 
2174 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2175                                                llvm::Type *baseType,
2176                                                const CXXRecordDecl *base);
2177 
2178 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
2179                                         const RecordDecl *record,
2180                                         bool asCompleteObject) {
2181   const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
2182   llvm::StructType *structure =
2183     (asCompleteObject ? layout.getLLVMType()
2184                       : layout.getBaseSubobjectLLVMType());
2185 
2186   unsigned numElements = structure->getNumElements();
2187   std::vector<llvm::Constant *> elements(numElements);
2188 
2189   auto CXXR = dyn_cast<CXXRecordDecl>(record);
2190   // Fill in all the bases.
2191   if (CXXR) {
2192     for (const auto &I : CXXR->bases()) {
2193       if (I.isVirtual()) {
2194         // Ignore virtual bases; if we're laying out for a complete
2195         // object, we'll lay these out later.
2196         continue;
2197       }
2198 
2199       const CXXRecordDecl *base =
2200         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2201 
2202       // Ignore empty bases.
2203       if (base->isEmpty() ||
2204           CGM.getContext().getASTRecordLayout(base).getNonVirtualSize()
2205               .isZero())
2206         continue;
2207 
2208       unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
2209       llvm::Type *baseType = structure->getElementType(fieldIndex);
2210       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2211     }
2212   }
2213 
2214   // Fill in all the fields.
2215   for (const auto *Field : record->fields()) {
2216     // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
2217     // will fill in later.)
2218     if (!Field->isBitField() && !Field->isZeroSize(CGM.getContext())) {
2219       unsigned fieldIndex = layout.getLLVMFieldNo(Field);
2220       elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
2221     }
2222 
2223     // For unions, stop after the first named field.
2224     if (record->isUnion()) {
2225       if (Field->getIdentifier())
2226         break;
2227       if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
2228         if (FieldRD->findFirstNamedDataMember())
2229           break;
2230     }
2231   }
2232 
2233   // Fill in the virtual bases, if we're working with the complete object.
2234   if (CXXR && asCompleteObject) {
2235     for (const auto &I : CXXR->vbases()) {
2236       const CXXRecordDecl *base =
2237         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2238 
2239       // Ignore empty bases.
2240       if (base->isEmpty())
2241         continue;
2242 
2243       unsigned fieldIndex = layout.getVirtualBaseIndex(base);
2244 
2245       // We might have already laid this field out.
2246       if (elements[fieldIndex]) continue;
2247 
2248       llvm::Type *baseType = structure->getElementType(fieldIndex);
2249       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2250     }
2251   }
2252 
2253   // Now go through all other fields and zero them out.
2254   for (unsigned i = 0; i != numElements; ++i) {
2255     if (!elements[i])
2256       elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
2257   }
2258 
2259   return llvm::ConstantStruct::get(structure, elements);
2260 }
2261 
2262 /// Emit the null constant for a base subobject.
2263 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2264                                                llvm::Type *baseType,
2265                                                const CXXRecordDecl *base) {
2266   const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
2267 
2268   // Just zero out bases that don't have any pointer to data members.
2269   if (baseLayout.isZeroInitializableAsBase())
2270     return llvm::Constant::getNullValue(baseType);
2271 
2272   // Otherwise, we can just use its null constant.
2273   return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
2274 }
2275 
2276 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM,
2277                                                    QualType T) {
2278   return emitForMemory(CGM, CGM.EmitNullConstant(T), T);
2279 }
2280 
2281 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
2282   if (T->getAs<PointerType>())
2283     return getNullPointer(
2284         cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T);
2285 
2286   if (getTypes().isZeroInitializable(T))
2287     return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
2288 
2289   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
2290     llvm::ArrayType *ATy =
2291       cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
2292 
2293     QualType ElementTy = CAT->getElementType();
2294 
2295     llvm::Constant *Element =
2296       ConstantEmitter::emitNullForMemory(*this, ElementTy);
2297     unsigned NumElements = CAT->getSize().getZExtValue();
2298     SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
2299     return llvm::ConstantArray::get(ATy, Array);
2300   }
2301 
2302   if (const RecordType *RT = T->getAs<RecordType>())
2303     return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true);
2304 
2305   assert(T->isMemberDataPointerType() &&
2306          "Should only see pointers to data members here!");
2307 
2308   return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
2309 }
2310 
2311 llvm::Constant *
2312 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
2313   return ::EmitNullConstant(*this, Record, false);
2314 }
2315