1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Constant Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGObjCRuntime.h" 15 #include "CGRecordLayout.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "ConstantEmitter.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/APValue.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Attr.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/Builtins.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/Sequence.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalVariable.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 //===----------------------------------------------------------------------===// 36 // ConstantAggregateBuilder 37 //===----------------------------------------------------------------------===// 38 39 namespace { 40 class ConstExprEmitter; 41 42 struct ConstantAggregateBuilderUtils { 43 CodeGenModule &CGM; 44 45 ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {} 46 47 CharUnits getAlignment(const llvm::Constant *C) const { 48 return CharUnits::fromQuantity( 49 CGM.getDataLayout().getABITypeAlignment(C->getType())); 50 } 51 52 CharUnits getSize(llvm::Type *Ty) const { 53 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty)); 54 } 55 56 CharUnits getSize(const llvm::Constant *C) const { 57 return getSize(C->getType()); 58 } 59 60 llvm::Constant *getPadding(CharUnits PadSize) const { 61 llvm::Type *Ty = CGM.Int8Ty; 62 if (PadSize > CharUnits::One()) 63 Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity()); 64 return llvm::UndefValue::get(Ty); 65 } 66 67 llvm::Constant *getZeroes(CharUnits ZeroSize) const { 68 llvm::Type *Ty = llvm::ArrayType::get(CGM.Int8Ty, ZeroSize.getQuantity()); 69 return llvm::ConstantAggregateZero::get(Ty); 70 } 71 }; 72 73 /// Incremental builder for an llvm::Constant* holding a struct or array 74 /// constant. 75 class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils { 76 /// The elements of the constant. These two arrays must have the same size; 77 /// Offsets[i] describes the offset of Elems[i] within the constant. The 78 /// elements are kept in increasing offset order, and we ensure that there 79 /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]). 80 /// 81 /// This may contain explicit padding elements (in order to create a 82 /// natural layout), but need not. Gaps between elements are implicitly 83 /// considered to be filled with undef. 84 llvm::SmallVector<llvm::Constant*, 32> Elems; 85 llvm::SmallVector<CharUnits, 32> Offsets; 86 87 /// The size of the constant (the maximum end offset of any added element). 88 /// May be larger than the end of Elems.back() if we split the last element 89 /// and removed some trailing undefs. 90 CharUnits Size = CharUnits::Zero(); 91 92 /// This is true only if laying out Elems in order as the elements of a 93 /// non-packed LLVM struct will give the correct layout. 94 bool NaturalLayout = true; 95 96 bool split(size_t Index, CharUnits Hint); 97 Optional<size_t> splitAt(CharUnits Pos); 98 99 static llvm::Constant *buildFrom(CodeGenModule &CGM, 100 ArrayRef<llvm::Constant *> Elems, 101 ArrayRef<CharUnits> Offsets, 102 CharUnits StartOffset, CharUnits Size, 103 bool NaturalLayout, llvm::Type *DesiredTy, 104 bool AllowOversized); 105 106 public: 107 ConstantAggregateBuilder(CodeGenModule &CGM) 108 : ConstantAggregateBuilderUtils(CGM) {} 109 110 /// Update or overwrite the value starting at \p Offset with \c C. 111 /// 112 /// \param AllowOverwrite If \c true, this constant might overwrite (part of) 113 /// a constant that has already been added. This flag is only used to 114 /// detect bugs. 115 bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite); 116 117 /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits. 118 bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite); 119 120 /// Attempt to condense the value starting at \p Offset to a constant of type 121 /// \p DesiredTy. 122 void condense(CharUnits Offset, llvm::Type *DesiredTy); 123 124 /// Produce a constant representing the entire accumulated value, ideally of 125 /// the specified type. If \p AllowOversized, the constant might be larger 126 /// than implied by \p DesiredTy (eg, if there is a flexible array member). 127 /// Otherwise, the constant will be of exactly the same size as \p DesiredTy 128 /// even if we can't represent it as that type. 129 llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const { 130 return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size, 131 NaturalLayout, DesiredTy, AllowOversized); 132 } 133 }; 134 135 template<typename Container, typename Range = std::initializer_list< 136 typename Container::value_type>> 137 static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) { 138 assert(BeginOff <= EndOff && "invalid replacement range"); 139 llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals); 140 } 141 142 bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset, 143 bool AllowOverwrite) { 144 // Common case: appending to a layout. 145 if (Offset >= Size) { 146 CharUnits Align = getAlignment(C); 147 CharUnits AlignedSize = Size.alignTo(Align); 148 if (AlignedSize > Offset || Offset.alignTo(Align) != Offset) 149 NaturalLayout = false; 150 else if (AlignedSize < Offset) { 151 Elems.push_back(getPadding(Offset - Size)); 152 Offsets.push_back(Size); 153 } 154 Elems.push_back(C); 155 Offsets.push_back(Offset); 156 Size = Offset + getSize(C); 157 return true; 158 } 159 160 // Uncommon case: constant overlaps what we've already created. 161 llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset); 162 if (!FirstElemToReplace) 163 return false; 164 165 CharUnits CSize = getSize(C); 166 llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + CSize); 167 if (!LastElemToReplace) 168 return false; 169 170 assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) && 171 "unexpectedly overwriting field"); 172 173 replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C}); 174 replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset}); 175 Size = std::max(Size, Offset + CSize); 176 NaturalLayout = false; 177 return true; 178 } 179 180 bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits, 181 bool AllowOverwrite) { 182 const ASTContext &Context = CGM.getContext(); 183 const uint64_t CharWidth = CGM.getContext().getCharWidth(); 184 185 // Offset of where we want the first bit to go within the bits of the 186 // current char. 187 unsigned OffsetWithinChar = OffsetInBits % CharWidth; 188 189 // We split bit-fields up into individual bytes. Walk over the bytes and 190 // update them. 191 for (CharUnits OffsetInChars = 192 Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar); 193 /**/; ++OffsetInChars) { 194 // Number of bits we want to fill in this char. 195 unsigned WantedBits = 196 std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar); 197 198 // Get a char containing the bits we want in the right places. The other 199 // bits have unspecified values. 200 llvm::APInt BitsThisChar = Bits; 201 if (BitsThisChar.getBitWidth() < CharWidth) 202 BitsThisChar = BitsThisChar.zext(CharWidth); 203 if (CGM.getDataLayout().isBigEndian()) { 204 // Figure out how much to shift by. We may need to left-shift if we have 205 // less than one byte of Bits left. 206 int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar; 207 if (Shift > 0) 208 BitsThisChar.lshrInPlace(Shift); 209 else if (Shift < 0) 210 BitsThisChar = BitsThisChar.shl(-Shift); 211 } else { 212 BitsThisChar = BitsThisChar.shl(OffsetWithinChar); 213 } 214 if (BitsThisChar.getBitWidth() > CharWidth) 215 BitsThisChar = BitsThisChar.trunc(CharWidth); 216 217 if (WantedBits == CharWidth) { 218 // Got a full byte: just add it directly. 219 add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar), 220 OffsetInChars, AllowOverwrite); 221 } else { 222 // Partial byte: update the existing integer if there is one. If we 223 // can't split out a 1-CharUnit range to update, then we can't add 224 // these bits and fail the entire constant emission. 225 llvm::Optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars); 226 if (!FirstElemToUpdate) 227 return false; 228 llvm::Optional<size_t> LastElemToUpdate = 229 splitAt(OffsetInChars + CharUnits::One()); 230 if (!LastElemToUpdate) 231 return false; 232 assert(*LastElemToUpdate - *FirstElemToUpdate < 2 && 233 "should have at most one element covering one byte"); 234 235 // Figure out which bits we want and discard the rest. 236 llvm::APInt UpdateMask(CharWidth, 0); 237 if (CGM.getDataLayout().isBigEndian()) 238 UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits, 239 CharWidth - OffsetWithinChar); 240 else 241 UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits); 242 BitsThisChar &= UpdateMask; 243 244 if (*FirstElemToUpdate == *LastElemToUpdate || 245 Elems[*FirstElemToUpdate]->isNullValue() || 246 isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) { 247 // All existing bits are either zero or undef. 248 add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar), 249 OffsetInChars, /*AllowOverwrite*/ true); 250 } else { 251 llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate]; 252 // In order to perform a partial update, we need the existing bitwise 253 // value, which we can only extract for a constant int. 254 auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate); 255 if (!CI) 256 return false; 257 // Because this is a 1-CharUnit range, the constant occupying it must 258 // be exactly one CharUnit wide. 259 assert(CI->getBitWidth() == CharWidth && "splitAt failed"); 260 assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) && 261 "unexpectedly overwriting bitfield"); 262 BitsThisChar |= (CI->getValue() & ~UpdateMask); 263 ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar); 264 } 265 } 266 267 // Stop if we've added all the bits. 268 if (WantedBits == Bits.getBitWidth()) 269 break; 270 271 // Remove the consumed bits from Bits. 272 if (!CGM.getDataLayout().isBigEndian()) 273 Bits.lshrInPlace(WantedBits); 274 Bits = Bits.trunc(Bits.getBitWidth() - WantedBits); 275 276 // The remanining bits go at the start of the following bytes. 277 OffsetWithinChar = 0; 278 } 279 280 return true; 281 } 282 283 /// Returns a position within Elems and Offsets such that all elements 284 /// before the returned index end before Pos and all elements at or after 285 /// the returned index begin at or after Pos. Splits elements as necessary 286 /// to ensure this. Returns None if we find something we can't split. 287 Optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) { 288 if (Pos >= Size) 289 return Offsets.size(); 290 291 while (true) { 292 auto FirstAfterPos = llvm::upper_bound(Offsets, Pos); 293 if (FirstAfterPos == Offsets.begin()) 294 return 0; 295 296 // If we already have an element starting at Pos, we're done. 297 size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1; 298 if (Offsets[LastAtOrBeforePosIndex] == Pos) 299 return LastAtOrBeforePosIndex; 300 301 // We found an element starting before Pos. Check for overlap. 302 if (Offsets[LastAtOrBeforePosIndex] + 303 getSize(Elems[LastAtOrBeforePosIndex]) <= Pos) 304 return LastAtOrBeforePosIndex + 1; 305 306 // Try to decompose it into smaller constants. 307 if (!split(LastAtOrBeforePosIndex, Pos)) 308 return None; 309 } 310 } 311 312 /// Split the constant at index Index, if possible. Return true if we did. 313 /// Hint indicates the location at which we'd like to split, but may be 314 /// ignored. 315 bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) { 316 NaturalLayout = false; 317 llvm::Constant *C = Elems[Index]; 318 CharUnits Offset = Offsets[Index]; 319 320 if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) { 321 replace(Elems, Index, Index + 1, 322 llvm::map_range(llvm::seq(0u, CA->getNumOperands()), 323 [&](unsigned Op) { return CA->getOperand(Op); })); 324 if (auto *Seq = dyn_cast<llvm::SequentialType>(CA->getType())) { 325 // Array or vector. 326 CharUnits ElemSize = getSize(Seq->getElementType()); 327 replace( 328 Offsets, Index, Index + 1, 329 llvm::map_range(llvm::seq(0u, CA->getNumOperands()), 330 [&](unsigned Op) { return Offset + Op * ElemSize; })); 331 } else { 332 // Must be a struct. 333 auto *ST = cast<llvm::StructType>(CA->getType()); 334 const llvm::StructLayout *Layout = 335 CGM.getDataLayout().getStructLayout(ST); 336 replace(Offsets, Index, Index + 1, 337 llvm::map_range( 338 llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) { 339 return Offset + CharUnits::fromQuantity( 340 Layout->getElementOffset(Op)); 341 })); 342 } 343 return true; 344 } 345 346 if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) { 347 // FIXME: If possible, split into two ConstantDataSequentials at Hint. 348 CharUnits ElemSize = getSize(CDS->getElementType()); 349 replace(Elems, Index, Index + 1, 350 llvm::map_range(llvm::seq(0u, CDS->getNumElements()), 351 [&](unsigned Elem) { 352 return CDS->getElementAsConstant(Elem); 353 })); 354 replace(Offsets, Index, Index + 1, 355 llvm::map_range( 356 llvm::seq(0u, CDS->getNumElements()), 357 [&](unsigned Elem) { return Offset + Elem * ElemSize; })); 358 return true; 359 } 360 361 if (isa<llvm::ConstantAggregateZero>(C)) { 362 CharUnits ElemSize = getSize(C); 363 assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split"); 364 replace(Elems, Index, Index + 1, 365 {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)}); 366 replace(Offsets, Index, Index + 1, {Offset, Hint}); 367 return true; 368 } 369 370 if (isa<llvm::UndefValue>(C)) { 371 replace(Elems, Index, Index + 1, {}); 372 replace(Offsets, Index, Index + 1, {}); 373 return true; 374 } 375 376 // FIXME: We could split a ConstantInt if the need ever arose. 377 // We don't need to do this to handle bit-fields because we always eagerly 378 // split them into 1-byte chunks. 379 380 return false; 381 } 382 383 static llvm::Constant * 384 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType, 385 llvm::Type *CommonElementType, unsigned ArrayBound, 386 SmallVectorImpl<llvm::Constant *> &Elements, 387 llvm::Constant *Filler); 388 389 llvm::Constant *ConstantAggregateBuilder::buildFrom( 390 CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems, 391 ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size, 392 bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) { 393 ConstantAggregateBuilderUtils Utils(CGM); 394 395 if (Elems.empty()) 396 return llvm::UndefValue::get(DesiredTy); 397 398 auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; }; 399 400 // If we want an array type, see if all the elements are the same type and 401 // appropriately spaced. 402 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) { 403 assert(!AllowOversized && "oversized array emission not supported"); 404 405 bool CanEmitArray = true; 406 llvm::Type *CommonType = Elems[0]->getType(); 407 llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType); 408 CharUnits ElemSize = Utils.getSize(ATy->getElementType()); 409 SmallVector<llvm::Constant*, 32> ArrayElements; 410 for (size_t I = 0; I != Elems.size(); ++I) { 411 // Skip zeroes; we'll use a zero value as our array filler. 412 if (Elems[I]->isNullValue()) 413 continue; 414 415 // All remaining elements must be the same type. 416 if (Elems[I]->getType() != CommonType || 417 Offset(I) % ElemSize != 0) { 418 CanEmitArray = false; 419 break; 420 } 421 ArrayElements.resize(Offset(I) / ElemSize + 1, Filler); 422 ArrayElements.back() = Elems[I]; 423 } 424 425 if (CanEmitArray) { 426 return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(), 427 ArrayElements, Filler); 428 } 429 430 // Can't emit as an array, carry on to emit as a struct. 431 } 432 433 CharUnits DesiredSize = Utils.getSize(DesiredTy); 434 CharUnits Align = CharUnits::One(); 435 for (llvm::Constant *C : Elems) 436 Align = std::max(Align, Utils.getAlignment(C)); 437 CharUnits AlignedSize = Size.alignTo(Align); 438 439 bool Packed = false; 440 ArrayRef<llvm::Constant*> UnpackedElems = Elems; 441 llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage; 442 if ((DesiredSize < AlignedSize && !AllowOversized) || 443 DesiredSize.alignTo(Align) != DesiredSize) { 444 // The natural layout would be the wrong size; force use of a packed layout. 445 NaturalLayout = false; 446 Packed = true; 447 } else if (DesiredSize > AlignedSize) { 448 // The constant would be too small. Add padding to fix it. 449 UnpackedElemStorage.assign(Elems.begin(), Elems.end()); 450 UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size)); 451 UnpackedElems = UnpackedElemStorage; 452 } 453 454 // If we don't have a natural layout, insert padding as necessary. 455 // As we go, double-check to see if we can actually just emit Elems 456 // as a non-packed struct and do so opportunistically if possible. 457 llvm::SmallVector<llvm::Constant*, 32> PackedElems; 458 if (!NaturalLayout) { 459 CharUnits SizeSoFar = CharUnits::Zero(); 460 for (size_t I = 0; I != Elems.size(); ++I) { 461 CharUnits Align = Utils.getAlignment(Elems[I]); 462 CharUnits NaturalOffset = SizeSoFar.alignTo(Align); 463 CharUnits DesiredOffset = Offset(I); 464 assert(DesiredOffset >= SizeSoFar && "elements out of order"); 465 466 if (DesiredOffset != NaturalOffset) 467 Packed = true; 468 if (DesiredOffset != SizeSoFar) 469 PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar)); 470 PackedElems.push_back(Elems[I]); 471 SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]); 472 } 473 // If we're using the packed layout, pad it out to the desired size if 474 // necessary. 475 if (Packed) { 476 assert((SizeSoFar <= DesiredSize || AllowOversized) && 477 "requested size is too small for contents"); 478 if (SizeSoFar < DesiredSize) 479 PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar)); 480 } 481 } 482 483 llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements( 484 CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed); 485 486 // Pick the type to use. If the type is layout identical to the desired 487 // type then use it, otherwise use whatever the builder produced for us. 488 if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) { 489 if (DesiredSTy->isLayoutIdentical(STy)) 490 STy = DesiredSTy; 491 } 492 493 return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems); 494 } 495 496 void ConstantAggregateBuilder::condense(CharUnits Offset, 497 llvm::Type *DesiredTy) { 498 CharUnits Size = getSize(DesiredTy); 499 500 llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset); 501 if (!FirstElemToReplace) 502 return; 503 size_t First = *FirstElemToReplace; 504 505 llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + Size); 506 if (!LastElemToReplace) 507 return; 508 size_t Last = *LastElemToReplace; 509 510 size_t Length = Last - First; 511 if (Length == 0) 512 return; 513 514 if (Length == 1 && Offsets[First] == Offset && 515 getSize(Elems[First]) == Size) { 516 // Re-wrap single element structs if necessary. Otherwise, leave any single 517 // element constant of the right size alone even if it has the wrong type. 518 auto *STy = dyn_cast<llvm::StructType>(DesiredTy); 519 if (STy && STy->getNumElements() == 1 && 520 STy->getElementType(0) == Elems[First]->getType()) 521 Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]); 522 return; 523 } 524 525 llvm::Constant *Replacement = buildFrom( 526 CGM, makeArrayRef(Elems).slice(First, Length), 527 makeArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy), 528 /*known to have natural layout=*/false, DesiredTy, false); 529 replace(Elems, First, Last, {Replacement}); 530 replace(Offsets, First, Last, {Offset}); 531 } 532 533 //===----------------------------------------------------------------------===// 534 // ConstStructBuilder 535 //===----------------------------------------------------------------------===// 536 537 class ConstStructBuilder { 538 CodeGenModule &CGM; 539 ConstantEmitter &Emitter; 540 ConstantAggregateBuilder &Builder; 541 CharUnits StartOffset; 542 543 public: 544 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 545 InitListExpr *ILE, QualType StructTy); 546 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 547 const APValue &Value, QualType ValTy); 548 static bool UpdateStruct(ConstantEmitter &Emitter, 549 ConstantAggregateBuilder &Const, CharUnits Offset, 550 InitListExpr *Updater); 551 552 private: 553 ConstStructBuilder(ConstantEmitter &Emitter, 554 ConstantAggregateBuilder &Builder, CharUnits StartOffset) 555 : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder), 556 StartOffset(StartOffset) {} 557 558 bool AppendField(const FieldDecl *Field, uint64_t FieldOffset, 559 llvm::Constant *InitExpr, bool AllowOverwrite = false); 560 561 bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst, 562 bool AllowOverwrite = false); 563 564 bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, 565 llvm::ConstantInt *InitExpr, bool AllowOverwrite = false); 566 567 bool Build(InitListExpr *ILE, bool AllowOverwrite); 568 bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase, 569 const CXXRecordDecl *VTableClass, CharUnits BaseOffset); 570 llvm::Constant *Finalize(QualType Ty); 571 }; 572 573 bool ConstStructBuilder::AppendField( 574 const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst, 575 bool AllowOverwrite) { 576 const ASTContext &Context = CGM.getContext(); 577 578 CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset); 579 580 return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite); 581 } 582 583 bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars, 584 llvm::Constant *InitCst, 585 bool AllowOverwrite) { 586 return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite); 587 } 588 589 bool ConstStructBuilder::AppendBitField( 590 const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI, 591 bool AllowOverwrite) { 592 uint64_t FieldSize = Field->getBitWidthValue(CGM.getContext()); 593 llvm::APInt FieldValue = CI->getValue(); 594 595 // Promote the size of FieldValue if necessary 596 // FIXME: This should never occur, but currently it can because initializer 597 // constants are cast to bool, and because clang is not enforcing bitfield 598 // width limits. 599 if (FieldSize > FieldValue.getBitWidth()) 600 FieldValue = FieldValue.zext(FieldSize); 601 602 // Truncate the size of FieldValue to the bit field size. 603 if (FieldSize < FieldValue.getBitWidth()) 604 FieldValue = FieldValue.trunc(FieldSize); 605 606 return Builder.addBits(FieldValue, 607 CGM.getContext().toBits(StartOffset) + FieldOffset, 608 AllowOverwrite); 609 } 610 611 static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter, 612 ConstantAggregateBuilder &Const, 613 CharUnits Offset, QualType Type, 614 InitListExpr *Updater) { 615 if (Type->isRecordType()) 616 return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater); 617 618 auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type); 619 if (!CAT) 620 return false; 621 QualType ElemType = CAT->getElementType(); 622 CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType); 623 llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType); 624 625 llvm::Constant *FillC = nullptr; 626 if (Expr *Filler = Updater->getArrayFiller()) { 627 if (!isa<NoInitExpr>(Filler)) { 628 FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType); 629 if (!FillC) 630 return false; 631 } 632 } 633 634 unsigned NumElementsToUpdate = 635 FillC ? CAT->getSize().getZExtValue() : Updater->getNumInits(); 636 for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) { 637 Expr *Init = nullptr; 638 if (I < Updater->getNumInits()) 639 Init = Updater->getInit(I); 640 641 if (!Init && FillC) { 642 if (!Const.add(FillC, Offset, true)) 643 return false; 644 } else if (!Init || isa<NoInitExpr>(Init)) { 645 continue; 646 } else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) { 647 if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType, 648 ChildILE)) 649 return false; 650 // Attempt to reduce the array element to a single constant if necessary. 651 Const.condense(Offset, ElemTy); 652 } else { 653 llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType); 654 if (!Const.add(Val, Offset, true)) 655 return false; 656 } 657 } 658 659 return true; 660 } 661 662 bool ConstStructBuilder::Build(InitListExpr *ILE, bool AllowOverwrite) { 663 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); 664 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 665 666 unsigned FieldNo = -1; 667 unsigned ElementNo = 0; 668 669 // Bail out if we have base classes. We could support these, but they only 670 // arise in C++1z where we will have already constant folded most interesting 671 // cases. FIXME: There are still a few more cases we can handle this way. 672 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 673 if (CXXRD->getNumBases()) 674 return false; 675 676 for (FieldDecl *Field : RD->fields()) { 677 ++FieldNo; 678 679 // If this is a union, skip all the fields that aren't being initialized. 680 if (RD->isUnion() && 681 !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field)) 682 continue; 683 684 // Don't emit anonymous bitfields or zero-sized fields. 685 if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext())) 686 continue; 687 688 // Get the initializer. A struct can include fields without initializers, 689 // we just use explicit null values for them. 690 Expr *Init = nullptr; 691 if (ElementNo < ILE->getNumInits()) 692 Init = ILE->getInit(ElementNo++); 693 if (Init && isa<NoInitExpr>(Init)) 694 continue; 695 696 // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr 697 // represents additional overwriting of our current constant value, and not 698 // a new constant to emit independently. 699 if (AllowOverwrite && 700 (Field->getType()->isArrayType() || Field->getType()->isRecordType())) { 701 if (auto *SubILE = dyn_cast<InitListExpr>(Init)) { 702 CharUnits Offset = CGM.getContext().toCharUnitsFromBits( 703 Layout.getFieldOffset(FieldNo)); 704 if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset, 705 Field->getType(), SubILE)) 706 return false; 707 // If we split apart the field's value, try to collapse it down to a 708 // single value now. 709 Builder.condense(StartOffset + Offset, 710 CGM.getTypes().ConvertTypeForMem(Field->getType())); 711 continue; 712 } 713 } 714 715 llvm::Constant *EltInit = 716 Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType()) 717 : Emitter.emitNullForMemory(Field->getType()); 718 if (!EltInit) 719 return false; 720 721 if (!Field->isBitField()) { 722 // Handle non-bitfield members. 723 if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit, 724 AllowOverwrite)) 725 return false; 726 // After emitting a non-empty field with [[no_unique_address]], we may 727 // need to overwrite its tail padding. 728 if (Field->hasAttr<NoUniqueAddressAttr>()) 729 AllowOverwrite = true; 730 } else { 731 // Otherwise we have a bitfield. 732 if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) { 733 if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI, 734 AllowOverwrite)) 735 return false; 736 } else { 737 // We are trying to initialize a bitfield with a non-trivial constant, 738 // this must require run-time code. 739 return false; 740 } 741 } 742 } 743 744 return true; 745 } 746 747 namespace { 748 struct BaseInfo { 749 BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index) 750 : Decl(Decl), Offset(Offset), Index(Index) { 751 } 752 753 const CXXRecordDecl *Decl; 754 CharUnits Offset; 755 unsigned Index; 756 757 bool operator<(const BaseInfo &O) const { return Offset < O.Offset; } 758 }; 759 } 760 761 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD, 762 bool IsPrimaryBase, 763 const CXXRecordDecl *VTableClass, 764 CharUnits Offset) { 765 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 766 767 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 768 // Add a vtable pointer, if we need one and it hasn't already been added. 769 if (CD->isDynamicClass() && !IsPrimaryBase) { 770 llvm::Constant *VTableAddressPoint = 771 CGM.getCXXABI().getVTableAddressPointForConstExpr( 772 BaseSubobject(CD, Offset), VTableClass); 773 if (!AppendBytes(Offset, VTableAddressPoint)) 774 return false; 775 } 776 777 // Accumulate and sort bases, in order to visit them in address order, which 778 // may not be the same as declaration order. 779 SmallVector<BaseInfo, 8> Bases; 780 Bases.reserve(CD->getNumBases()); 781 unsigned BaseNo = 0; 782 for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(), 783 BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) { 784 assert(!Base->isVirtual() && "should not have virtual bases here"); 785 const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl(); 786 CharUnits BaseOffset = Layout.getBaseClassOffset(BD); 787 Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo)); 788 } 789 llvm::stable_sort(Bases); 790 791 for (unsigned I = 0, N = Bases.size(); I != N; ++I) { 792 BaseInfo &Base = Bases[I]; 793 794 bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl; 795 Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase, 796 VTableClass, Offset + Base.Offset); 797 } 798 } 799 800 unsigned FieldNo = 0; 801 uint64_t OffsetBits = CGM.getContext().toBits(Offset); 802 803 bool AllowOverwrite = false; 804 for (RecordDecl::field_iterator Field = RD->field_begin(), 805 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 806 // If this is a union, skip all the fields that aren't being initialized. 807 if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field)) 808 continue; 809 810 // Don't emit anonymous bitfields or zero-sized fields. 811 if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext())) 812 continue; 813 814 // Emit the value of the initializer. 815 const APValue &FieldValue = 816 RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo); 817 llvm::Constant *EltInit = 818 Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType()); 819 if (!EltInit) 820 return false; 821 822 if (!Field->isBitField()) { 823 // Handle non-bitfield members. 824 if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 825 EltInit, AllowOverwrite)) 826 return false; 827 // After emitting a non-empty field with [[no_unique_address]], we may 828 // need to overwrite its tail padding. 829 if (Field->hasAttr<NoUniqueAddressAttr>()) 830 AllowOverwrite = true; 831 } else { 832 // Otherwise we have a bitfield. 833 if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 834 cast<llvm::ConstantInt>(EltInit), AllowOverwrite)) 835 return false; 836 } 837 } 838 839 return true; 840 } 841 842 llvm::Constant *ConstStructBuilder::Finalize(QualType Type) { 843 RecordDecl *RD = Type->castAs<RecordType>()->getDecl(); 844 llvm::Type *ValTy = CGM.getTypes().ConvertType(Type); 845 return Builder.build(ValTy, RD->hasFlexibleArrayMember()); 846 } 847 848 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 849 InitListExpr *ILE, 850 QualType ValTy) { 851 ConstantAggregateBuilder Const(Emitter.CGM); 852 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero()); 853 854 if (!Builder.Build(ILE, /*AllowOverwrite*/false)) 855 return nullptr; 856 857 return Builder.Finalize(ValTy); 858 } 859 860 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 861 const APValue &Val, 862 QualType ValTy) { 863 ConstantAggregateBuilder Const(Emitter.CGM); 864 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero()); 865 866 const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl(); 867 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); 868 if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero())) 869 return nullptr; 870 871 return Builder.Finalize(ValTy); 872 } 873 874 bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter, 875 ConstantAggregateBuilder &Const, 876 CharUnits Offset, InitListExpr *Updater) { 877 return ConstStructBuilder(Emitter, Const, Offset) 878 .Build(Updater, /*AllowOverwrite*/ true); 879 } 880 881 //===----------------------------------------------------------------------===// 882 // ConstExprEmitter 883 //===----------------------------------------------------------------------===// 884 885 static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM, 886 CodeGenFunction *CGF, 887 const CompoundLiteralExpr *E) { 888 CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType()); 889 if (llvm::GlobalVariable *Addr = 890 CGM.getAddrOfConstantCompoundLiteralIfEmitted(E)) 891 return ConstantAddress(Addr, Align); 892 893 LangAS addressSpace = E->getType().getAddressSpace(); 894 895 ConstantEmitter emitter(CGM, CGF); 896 llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(), 897 addressSpace, E->getType()); 898 if (!C) { 899 assert(!E->isFileScope() && 900 "file-scope compound literal did not have constant initializer!"); 901 return ConstantAddress::invalid(); 902 } 903 904 auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), 905 CGM.isTypeConstant(E->getType(), true), 906 llvm::GlobalValue::InternalLinkage, 907 C, ".compoundliteral", nullptr, 908 llvm::GlobalVariable::NotThreadLocal, 909 CGM.getContext().getTargetAddressSpace(addressSpace)); 910 emitter.finalize(GV); 911 GV->setAlignment(Align.getAsAlign()); 912 CGM.setAddrOfConstantCompoundLiteral(E, GV); 913 return ConstantAddress(GV, Align); 914 } 915 916 static llvm::Constant * 917 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType, 918 llvm::Type *CommonElementType, unsigned ArrayBound, 919 SmallVectorImpl<llvm::Constant *> &Elements, 920 llvm::Constant *Filler) { 921 // Figure out how long the initial prefix of non-zero elements is. 922 unsigned NonzeroLength = ArrayBound; 923 if (Elements.size() < NonzeroLength && Filler->isNullValue()) 924 NonzeroLength = Elements.size(); 925 if (NonzeroLength == Elements.size()) { 926 while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue()) 927 --NonzeroLength; 928 } 929 930 if (NonzeroLength == 0) 931 return llvm::ConstantAggregateZero::get(DesiredType); 932 933 // Add a zeroinitializer array filler if we have lots of trailing zeroes. 934 unsigned TrailingZeroes = ArrayBound - NonzeroLength; 935 if (TrailingZeroes >= 8) { 936 assert(Elements.size() >= NonzeroLength && 937 "missing initializer for non-zero element"); 938 939 // If all the elements had the same type up to the trailing zeroes, emit a 940 // struct of two arrays (the nonzero data and the zeroinitializer). 941 if (CommonElementType && NonzeroLength >= 8) { 942 llvm::Constant *Initial = llvm::ConstantArray::get( 943 llvm::ArrayType::get(CommonElementType, NonzeroLength), 944 makeArrayRef(Elements).take_front(NonzeroLength)); 945 Elements.resize(2); 946 Elements[0] = Initial; 947 } else { 948 Elements.resize(NonzeroLength + 1); 949 } 950 951 auto *FillerType = 952 CommonElementType ? CommonElementType : DesiredType->getElementType(); 953 FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes); 954 Elements.back() = llvm::ConstantAggregateZero::get(FillerType); 955 CommonElementType = nullptr; 956 } else if (Elements.size() != ArrayBound) { 957 // Otherwise pad to the right size with the filler if necessary. 958 Elements.resize(ArrayBound, Filler); 959 if (Filler->getType() != CommonElementType) 960 CommonElementType = nullptr; 961 } 962 963 // If all elements have the same type, just emit an array constant. 964 if (CommonElementType) 965 return llvm::ConstantArray::get( 966 llvm::ArrayType::get(CommonElementType, ArrayBound), Elements); 967 968 // We have mixed types. Use a packed struct. 969 llvm::SmallVector<llvm::Type *, 16> Types; 970 Types.reserve(Elements.size()); 971 for (llvm::Constant *Elt : Elements) 972 Types.push_back(Elt->getType()); 973 llvm::StructType *SType = 974 llvm::StructType::get(CGM.getLLVMContext(), Types, true); 975 return llvm::ConstantStruct::get(SType, Elements); 976 } 977 978 // This class only needs to handle arrays, structs and unions. Outside C++11 979 // mode, we don't currently constant fold those types. All other types are 980 // handled by constant folding. 981 // 982 // Constant folding is currently missing support for a few features supported 983 // here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr. 984 class ConstExprEmitter : 985 public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> { 986 CodeGenModule &CGM; 987 ConstantEmitter &Emitter; 988 llvm::LLVMContext &VMContext; 989 public: 990 ConstExprEmitter(ConstantEmitter &emitter) 991 : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) { 992 } 993 994 //===--------------------------------------------------------------------===// 995 // Visitor Methods 996 //===--------------------------------------------------------------------===// 997 998 llvm::Constant *VisitStmt(Stmt *S, QualType T) { 999 return nullptr; 1000 } 1001 1002 llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) { 1003 return Visit(CE->getSubExpr(), T); 1004 } 1005 1006 llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) { 1007 return Visit(PE->getSubExpr(), T); 1008 } 1009 1010 llvm::Constant * 1011 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE, 1012 QualType T) { 1013 return Visit(PE->getReplacement(), T); 1014 } 1015 1016 llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE, 1017 QualType T) { 1018 return Visit(GE->getResultExpr(), T); 1019 } 1020 1021 llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) { 1022 return Visit(CE->getChosenSubExpr(), T); 1023 } 1024 1025 llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) { 1026 return Visit(E->getInitializer(), T); 1027 } 1028 1029 llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) { 1030 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 1031 CGM.EmitExplicitCastExprType(ECE, Emitter.CGF); 1032 Expr *subExpr = E->getSubExpr(); 1033 1034 switch (E->getCastKind()) { 1035 case CK_ToUnion: { 1036 // GCC cast to union extension 1037 assert(E->getType()->isUnionType() && 1038 "Destination type is not union type!"); 1039 1040 auto field = E->getTargetUnionField(); 1041 1042 auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType()); 1043 if (!C) return nullptr; 1044 1045 auto destTy = ConvertType(destType); 1046 if (C->getType() == destTy) return C; 1047 1048 // Build a struct with the union sub-element as the first member, 1049 // and padded to the appropriate size. 1050 SmallVector<llvm::Constant*, 2> Elts; 1051 SmallVector<llvm::Type*, 2> Types; 1052 Elts.push_back(C); 1053 Types.push_back(C->getType()); 1054 unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType()); 1055 unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy); 1056 1057 assert(CurSize <= TotalSize && "Union size mismatch!"); 1058 if (unsigned NumPadBytes = TotalSize - CurSize) { 1059 llvm::Type *Ty = CGM.Int8Ty; 1060 if (NumPadBytes > 1) 1061 Ty = llvm::ArrayType::get(Ty, NumPadBytes); 1062 1063 Elts.push_back(llvm::UndefValue::get(Ty)); 1064 Types.push_back(Ty); 1065 } 1066 1067 llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false); 1068 return llvm::ConstantStruct::get(STy, Elts); 1069 } 1070 1071 case CK_AddressSpaceConversion: { 1072 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 1073 if (!C) return nullptr; 1074 LangAS destAS = E->getType()->getPointeeType().getAddressSpace(); 1075 LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace(); 1076 llvm::Type *destTy = ConvertType(E->getType()); 1077 return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS, 1078 destAS, destTy); 1079 } 1080 1081 case CK_LValueToRValue: 1082 case CK_AtomicToNonAtomic: 1083 case CK_NonAtomicToAtomic: 1084 case CK_NoOp: 1085 case CK_ConstructorConversion: 1086 return Visit(subExpr, destType); 1087 1088 case CK_IntToOCLSampler: 1089 llvm_unreachable("global sampler variables are not generated"); 1090 1091 case CK_Dependent: llvm_unreachable("saw dependent cast!"); 1092 1093 case CK_BuiltinFnToFnPtr: 1094 llvm_unreachable("builtin functions are handled elsewhere"); 1095 1096 case CK_ReinterpretMemberPointer: 1097 case CK_DerivedToBaseMemberPointer: 1098 case CK_BaseToDerivedMemberPointer: { 1099 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 1100 if (!C) return nullptr; 1101 return CGM.getCXXABI().EmitMemberPointerConversion(E, C); 1102 } 1103 1104 // These will never be supported. 1105 case CK_ObjCObjectLValueCast: 1106 case CK_ARCProduceObject: 1107 case CK_ARCConsumeObject: 1108 case CK_ARCReclaimReturnedObject: 1109 case CK_ARCExtendBlockObject: 1110 case CK_CopyAndAutoreleaseBlockObject: 1111 return nullptr; 1112 1113 // These don't need to be handled here because Evaluate knows how to 1114 // evaluate them in the cases where they can be folded. 1115 case CK_BitCast: 1116 case CK_ToVoid: 1117 case CK_Dynamic: 1118 case CK_LValueBitCast: 1119 case CK_LValueToRValueBitCast: 1120 case CK_NullToMemberPointer: 1121 case CK_UserDefinedConversion: 1122 case CK_CPointerToObjCPointerCast: 1123 case CK_BlockPointerToObjCPointerCast: 1124 case CK_AnyPointerToBlockPointerCast: 1125 case CK_ArrayToPointerDecay: 1126 case CK_FunctionToPointerDecay: 1127 case CK_BaseToDerived: 1128 case CK_DerivedToBase: 1129 case CK_UncheckedDerivedToBase: 1130 case CK_MemberPointerToBoolean: 1131 case CK_VectorSplat: 1132 case CK_FloatingRealToComplex: 1133 case CK_FloatingComplexToReal: 1134 case CK_FloatingComplexToBoolean: 1135 case CK_FloatingComplexCast: 1136 case CK_FloatingComplexToIntegralComplex: 1137 case CK_IntegralRealToComplex: 1138 case CK_IntegralComplexToReal: 1139 case CK_IntegralComplexToBoolean: 1140 case CK_IntegralComplexCast: 1141 case CK_IntegralComplexToFloatingComplex: 1142 case CK_PointerToIntegral: 1143 case CK_PointerToBoolean: 1144 case CK_NullToPointer: 1145 case CK_IntegralCast: 1146 case CK_BooleanToSignedIntegral: 1147 case CK_IntegralToPointer: 1148 case CK_IntegralToBoolean: 1149 case CK_IntegralToFloating: 1150 case CK_FloatingToIntegral: 1151 case CK_FloatingToBoolean: 1152 case CK_FloatingCast: 1153 case CK_FixedPointCast: 1154 case CK_FixedPointToBoolean: 1155 case CK_FixedPointToIntegral: 1156 case CK_IntegralToFixedPoint: 1157 case CK_ZeroToOCLOpaqueType: 1158 return nullptr; 1159 } 1160 llvm_unreachable("Invalid CastKind"); 1161 } 1162 1163 llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) { 1164 // No need for a DefaultInitExprScope: we don't handle 'this' in a 1165 // constant expression. 1166 return Visit(DIE->getExpr(), T); 1167 } 1168 1169 llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) { 1170 return Visit(E->getSubExpr(), T); 1171 } 1172 1173 llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E, 1174 QualType T) { 1175 return Visit(E->getSubExpr(), T); 1176 } 1177 1178 llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) { 1179 auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType()); 1180 assert(CAT && "can't emit array init for non-constant-bound array"); 1181 unsigned NumInitElements = ILE->getNumInits(); 1182 unsigned NumElements = CAT->getSize().getZExtValue(); 1183 1184 // Initialising an array requires us to automatically 1185 // initialise any elements that have not been initialised explicitly 1186 unsigned NumInitableElts = std::min(NumInitElements, NumElements); 1187 1188 QualType EltType = CAT->getElementType(); 1189 1190 // Initialize remaining array elements. 1191 llvm::Constant *fillC = nullptr; 1192 if (Expr *filler = ILE->getArrayFiller()) { 1193 fillC = Emitter.tryEmitAbstractForMemory(filler, EltType); 1194 if (!fillC) 1195 return nullptr; 1196 } 1197 1198 // Copy initializer elements. 1199 SmallVector<llvm::Constant*, 16> Elts; 1200 if (fillC && fillC->isNullValue()) 1201 Elts.reserve(NumInitableElts + 1); 1202 else 1203 Elts.reserve(NumElements); 1204 1205 llvm::Type *CommonElementType = nullptr; 1206 for (unsigned i = 0; i < NumInitableElts; ++i) { 1207 Expr *Init = ILE->getInit(i); 1208 llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType); 1209 if (!C) 1210 return nullptr; 1211 if (i == 0) 1212 CommonElementType = C->getType(); 1213 else if (C->getType() != CommonElementType) 1214 CommonElementType = nullptr; 1215 Elts.push_back(C); 1216 } 1217 1218 llvm::ArrayType *Desired = 1219 cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType())); 1220 return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts, 1221 fillC); 1222 } 1223 1224 llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) { 1225 return ConstStructBuilder::BuildStruct(Emitter, ILE, T); 1226 } 1227 1228 llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E, 1229 QualType T) { 1230 return CGM.EmitNullConstant(T); 1231 } 1232 1233 llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) { 1234 if (ILE->isTransparent()) 1235 return Visit(ILE->getInit(0), T); 1236 1237 if (ILE->getType()->isArrayType()) 1238 return EmitArrayInitialization(ILE, T); 1239 1240 if (ILE->getType()->isRecordType()) 1241 return EmitRecordInitialization(ILE, T); 1242 1243 return nullptr; 1244 } 1245 1246 llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E, 1247 QualType destType) { 1248 auto C = Visit(E->getBase(), destType); 1249 if (!C) 1250 return nullptr; 1251 1252 ConstantAggregateBuilder Const(CGM); 1253 Const.add(C, CharUnits::Zero(), false); 1254 1255 if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType, 1256 E->getUpdater())) 1257 return nullptr; 1258 1259 llvm::Type *ValTy = CGM.getTypes().ConvertType(destType); 1260 bool HasFlexibleArray = false; 1261 if (auto *RT = destType->getAs<RecordType>()) 1262 HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember(); 1263 return Const.build(ValTy, HasFlexibleArray); 1264 } 1265 1266 llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) { 1267 if (!E->getConstructor()->isTrivial()) 1268 return nullptr; 1269 1270 // Only default and copy/move constructors can be trivial. 1271 if (E->getNumArgs()) { 1272 assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 1273 assert(E->getConstructor()->isCopyOrMoveConstructor() && 1274 "trivial ctor has argument but isn't a copy/move ctor"); 1275 1276 Expr *Arg = E->getArg(0); 1277 assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) && 1278 "argument to copy ctor is of wrong type"); 1279 1280 return Visit(Arg, Ty); 1281 } 1282 1283 return CGM.EmitNullConstant(Ty); 1284 } 1285 1286 llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) { 1287 // This is a string literal initializing an array in an initializer. 1288 return CGM.GetConstantArrayFromStringLiteral(E); 1289 } 1290 1291 llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) { 1292 // This must be an @encode initializing an array in a static initializer. 1293 // Don't emit it as the address of the string, emit the string data itself 1294 // as an inline array. 1295 std::string Str; 1296 CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1297 const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T); 1298 1299 // Resize the string to the right size, adding zeros at the end, or 1300 // truncating as needed. 1301 Str.resize(CAT->getSize().getZExtValue(), '\0'); 1302 return llvm::ConstantDataArray::getString(VMContext, Str, false); 1303 } 1304 1305 llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) { 1306 return Visit(E->getSubExpr(), T); 1307 } 1308 1309 // Utility methods 1310 llvm::Type *ConvertType(QualType T) { 1311 return CGM.getTypes().ConvertType(T); 1312 } 1313 }; 1314 1315 } // end anonymous namespace. 1316 1317 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C, 1318 AbstractState saved) { 1319 Abstract = saved.OldValue; 1320 1321 assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() && 1322 "created a placeholder while doing an abstract emission?"); 1323 1324 // No validation necessary for now. 1325 // No cleanup to do for now. 1326 return C; 1327 } 1328 1329 llvm::Constant * 1330 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) { 1331 auto state = pushAbstract(); 1332 auto C = tryEmitPrivateForVarInit(D); 1333 return validateAndPopAbstract(C, state); 1334 } 1335 1336 llvm::Constant * 1337 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) { 1338 auto state = pushAbstract(); 1339 auto C = tryEmitPrivate(E, destType); 1340 return validateAndPopAbstract(C, state); 1341 } 1342 1343 llvm::Constant * 1344 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) { 1345 auto state = pushAbstract(); 1346 auto C = tryEmitPrivate(value, destType); 1347 return validateAndPopAbstract(C, state); 1348 } 1349 1350 llvm::Constant * 1351 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) { 1352 auto state = pushAbstract(); 1353 auto C = tryEmitPrivate(E, destType); 1354 C = validateAndPopAbstract(C, state); 1355 if (!C) { 1356 CGM.Error(E->getExprLoc(), 1357 "internal error: could not emit constant value \"abstractly\""); 1358 C = CGM.EmitNullConstant(destType); 1359 } 1360 return C; 1361 } 1362 1363 llvm::Constant * 1364 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value, 1365 QualType destType) { 1366 auto state = pushAbstract(); 1367 auto C = tryEmitPrivate(value, destType); 1368 C = validateAndPopAbstract(C, state); 1369 if (!C) { 1370 CGM.Error(loc, 1371 "internal error: could not emit constant value \"abstractly\""); 1372 C = CGM.EmitNullConstant(destType); 1373 } 1374 return C; 1375 } 1376 1377 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) { 1378 initializeNonAbstract(D.getType().getAddressSpace()); 1379 return markIfFailed(tryEmitPrivateForVarInit(D)); 1380 } 1381 1382 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E, 1383 LangAS destAddrSpace, 1384 QualType destType) { 1385 initializeNonAbstract(destAddrSpace); 1386 return markIfFailed(tryEmitPrivateForMemory(E, destType)); 1387 } 1388 1389 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value, 1390 LangAS destAddrSpace, 1391 QualType destType) { 1392 initializeNonAbstract(destAddrSpace); 1393 auto C = tryEmitPrivateForMemory(value, destType); 1394 assert(C && "couldn't emit constant value non-abstractly?"); 1395 return C; 1396 } 1397 1398 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() { 1399 assert(!Abstract && "cannot get current address for abstract constant"); 1400 1401 1402 1403 // Make an obviously ill-formed global that should blow up compilation 1404 // if it survives. 1405 auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true, 1406 llvm::GlobalValue::PrivateLinkage, 1407 /*init*/ nullptr, 1408 /*name*/ "", 1409 /*before*/ nullptr, 1410 llvm::GlobalVariable::NotThreadLocal, 1411 CGM.getContext().getTargetAddressSpace(DestAddressSpace)); 1412 1413 PlaceholderAddresses.push_back(std::make_pair(nullptr, global)); 1414 1415 return global; 1416 } 1417 1418 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal, 1419 llvm::GlobalValue *placeholder) { 1420 assert(!PlaceholderAddresses.empty()); 1421 assert(PlaceholderAddresses.back().first == nullptr); 1422 assert(PlaceholderAddresses.back().second == placeholder); 1423 PlaceholderAddresses.back().first = signal; 1424 } 1425 1426 namespace { 1427 struct ReplacePlaceholders { 1428 CodeGenModule &CGM; 1429 1430 /// The base address of the global. 1431 llvm::Constant *Base; 1432 llvm::Type *BaseValueTy = nullptr; 1433 1434 /// The placeholder addresses that were registered during emission. 1435 llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses; 1436 1437 /// The locations of the placeholder signals. 1438 llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations; 1439 1440 /// The current index stack. We use a simple unsigned stack because 1441 /// we assume that placeholders will be relatively sparse in the 1442 /// initializer, but we cache the index values we find just in case. 1443 llvm::SmallVector<unsigned, 8> Indices; 1444 llvm::SmallVector<llvm::Constant*, 8> IndexValues; 1445 1446 ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base, 1447 ArrayRef<std::pair<llvm::Constant*, 1448 llvm::GlobalVariable*>> addresses) 1449 : CGM(CGM), Base(base), 1450 PlaceholderAddresses(addresses.begin(), addresses.end()) { 1451 } 1452 1453 void replaceInInitializer(llvm::Constant *init) { 1454 // Remember the type of the top-most initializer. 1455 BaseValueTy = init->getType(); 1456 1457 // Initialize the stack. 1458 Indices.push_back(0); 1459 IndexValues.push_back(nullptr); 1460 1461 // Recurse into the initializer. 1462 findLocations(init); 1463 1464 // Check invariants. 1465 assert(IndexValues.size() == Indices.size() && "mismatch"); 1466 assert(Indices.size() == 1 && "didn't pop all indices"); 1467 1468 // Do the replacement; this basically invalidates 'init'. 1469 assert(Locations.size() == PlaceholderAddresses.size() && 1470 "missed a placeholder?"); 1471 1472 // We're iterating over a hashtable, so this would be a source of 1473 // non-determinism in compiler output *except* that we're just 1474 // messing around with llvm::Constant structures, which never itself 1475 // does anything that should be visible in compiler output. 1476 for (auto &entry : Locations) { 1477 assert(entry.first->getParent() == nullptr && "not a placeholder!"); 1478 entry.first->replaceAllUsesWith(entry.second); 1479 entry.first->eraseFromParent(); 1480 } 1481 } 1482 1483 private: 1484 void findLocations(llvm::Constant *init) { 1485 // Recurse into aggregates. 1486 if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) { 1487 for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) { 1488 Indices.push_back(i); 1489 IndexValues.push_back(nullptr); 1490 1491 findLocations(agg->getOperand(i)); 1492 1493 IndexValues.pop_back(); 1494 Indices.pop_back(); 1495 } 1496 return; 1497 } 1498 1499 // Otherwise, check for registered constants. 1500 while (true) { 1501 auto it = PlaceholderAddresses.find(init); 1502 if (it != PlaceholderAddresses.end()) { 1503 setLocation(it->second); 1504 break; 1505 } 1506 1507 // Look through bitcasts or other expressions. 1508 if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) { 1509 init = expr->getOperand(0); 1510 } else { 1511 break; 1512 } 1513 } 1514 } 1515 1516 void setLocation(llvm::GlobalVariable *placeholder) { 1517 assert(Locations.find(placeholder) == Locations.end() && 1518 "already found location for placeholder!"); 1519 1520 // Lazily fill in IndexValues with the values from Indices. 1521 // We do this in reverse because we should always have a strict 1522 // prefix of indices from the start. 1523 assert(Indices.size() == IndexValues.size()); 1524 for (size_t i = Indices.size() - 1; i != size_t(-1); --i) { 1525 if (IndexValues[i]) { 1526 #ifndef NDEBUG 1527 for (size_t j = 0; j != i + 1; ++j) { 1528 assert(IndexValues[j] && 1529 isa<llvm::ConstantInt>(IndexValues[j]) && 1530 cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue() 1531 == Indices[j]); 1532 } 1533 #endif 1534 break; 1535 } 1536 1537 IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]); 1538 } 1539 1540 // Form a GEP and then bitcast to the placeholder type so that the 1541 // replacement will succeed. 1542 llvm::Constant *location = 1543 llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy, 1544 Base, IndexValues); 1545 location = llvm::ConstantExpr::getBitCast(location, 1546 placeholder->getType()); 1547 1548 Locations.insert({placeholder, location}); 1549 } 1550 }; 1551 } 1552 1553 void ConstantEmitter::finalize(llvm::GlobalVariable *global) { 1554 assert(InitializedNonAbstract && 1555 "finalizing emitter that was used for abstract emission?"); 1556 assert(!Finalized && "finalizing emitter multiple times"); 1557 assert(global->getInitializer()); 1558 1559 // Note that we might also be Failed. 1560 Finalized = true; 1561 1562 if (!PlaceholderAddresses.empty()) { 1563 ReplacePlaceholders(CGM, global, PlaceholderAddresses) 1564 .replaceInInitializer(global->getInitializer()); 1565 PlaceholderAddresses.clear(); // satisfy 1566 } 1567 } 1568 1569 ConstantEmitter::~ConstantEmitter() { 1570 assert((!InitializedNonAbstract || Finalized || Failed) && 1571 "not finalized after being initialized for non-abstract emission"); 1572 assert(PlaceholderAddresses.empty() && "unhandled placeholders"); 1573 } 1574 1575 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) { 1576 if (auto AT = type->getAs<AtomicType>()) { 1577 return CGM.getContext().getQualifiedType(AT->getValueType(), 1578 type.getQualifiers()); 1579 } 1580 return type; 1581 } 1582 1583 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) { 1584 // Make a quick check if variable can be default NULL initialized 1585 // and avoid going through rest of code which may do, for c++11, 1586 // initialization of memory to all NULLs. 1587 if (!D.hasLocalStorage()) { 1588 QualType Ty = CGM.getContext().getBaseElementType(D.getType()); 1589 if (Ty->isRecordType()) 1590 if (const CXXConstructExpr *E = 1591 dyn_cast_or_null<CXXConstructExpr>(D.getInit())) { 1592 const CXXConstructorDecl *CD = E->getConstructor(); 1593 if (CD->isTrivial() && CD->isDefaultConstructor()) 1594 return CGM.EmitNullConstant(D.getType()); 1595 } 1596 InConstantContext = true; 1597 } 1598 1599 QualType destType = D.getType(); 1600 1601 // Try to emit the initializer. Note that this can allow some things that 1602 // are not allowed by tryEmitPrivateForMemory alone. 1603 if (auto value = D.evaluateValue()) { 1604 return tryEmitPrivateForMemory(*value, destType); 1605 } 1606 1607 // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a 1608 // reference is a constant expression, and the reference binds to a temporary, 1609 // then constant initialization is performed. ConstExprEmitter will 1610 // incorrectly emit a prvalue constant in this case, and the calling code 1611 // interprets that as the (pointer) value of the reference, rather than the 1612 // desired value of the referee. 1613 if (destType->isReferenceType()) 1614 return nullptr; 1615 1616 const Expr *E = D.getInit(); 1617 assert(E && "No initializer to emit"); 1618 1619 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1620 auto C = 1621 ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType); 1622 return (C ? emitForMemory(C, destType) : nullptr); 1623 } 1624 1625 llvm::Constant * 1626 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) { 1627 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1628 auto C = tryEmitAbstract(E, nonMemoryDestType); 1629 return (C ? emitForMemory(C, destType) : nullptr); 1630 } 1631 1632 llvm::Constant * 1633 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value, 1634 QualType destType) { 1635 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1636 auto C = tryEmitAbstract(value, nonMemoryDestType); 1637 return (C ? emitForMemory(C, destType) : nullptr); 1638 } 1639 1640 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E, 1641 QualType destType) { 1642 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1643 llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType); 1644 return (C ? emitForMemory(C, destType) : nullptr); 1645 } 1646 1647 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value, 1648 QualType destType) { 1649 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1650 auto C = tryEmitPrivate(value, nonMemoryDestType); 1651 return (C ? emitForMemory(C, destType) : nullptr); 1652 } 1653 1654 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM, 1655 llvm::Constant *C, 1656 QualType destType) { 1657 // For an _Atomic-qualified constant, we may need to add tail padding. 1658 if (auto AT = destType->getAs<AtomicType>()) { 1659 QualType destValueType = AT->getValueType(); 1660 C = emitForMemory(CGM, C, destValueType); 1661 1662 uint64_t innerSize = CGM.getContext().getTypeSize(destValueType); 1663 uint64_t outerSize = CGM.getContext().getTypeSize(destType); 1664 if (innerSize == outerSize) 1665 return C; 1666 1667 assert(innerSize < outerSize && "emitted over-large constant for atomic"); 1668 llvm::Constant *elts[] = { 1669 C, 1670 llvm::ConstantAggregateZero::get( 1671 llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8)) 1672 }; 1673 return llvm::ConstantStruct::getAnon(elts); 1674 } 1675 1676 // Zero-extend bool. 1677 if (C->getType()->isIntegerTy(1)) { 1678 llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType); 1679 return llvm::ConstantExpr::getZExt(C, boolTy); 1680 } 1681 1682 return C; 1683 } 1684 1685 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E, 1686 QualType destType) { 1687 Expr::EvalResult Result; 1688 1689 bool Success = false; 1690 1691 if (destType->isReferenceType()) 1692 Success = E->EvaluateAsLValue(Result, CGM.getContext()); 1693 else 1694 Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext); 1695 1696 llvm::Constant *C; 1697 if (Success && !Result.HasSideEffects) 1698 C = tryEmitPrivate(Result.Val, destType); 1699 else 1700 C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType); 1701 1702 return C; 1703 } 1704 1705 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) { 1706 return getTargetCodeGenInfo().getNullPointer(*this, T, QT); 1707 } 1708 1709 namespace { 1710 /// A struct which can be used to peephole certain kinds of finalization 1711 /// that normally happen during l-value emission. 1712 struct ConstantLValue { 1713 llvm::Constant *Value; 1714 bool HasOffsetApplied; 1715 1716 /*implicit*/ ConstantLValue(llvm::Constant *value, 1717 bool hasOffsetApplied = false) 1718 : Value(value), HasOffsetApplied(hasOffsetApplied) {} 1719 1720 /*implicit*/ ConstantLValue(ConstantAddress address) 1721 : ConstantLValue(address.getPointer()) {} 1722 }; 1723 1724 /// A helper class for emitting constant l-values. 1725 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter, 1726 ConstantLValue> { 1727 CodeGenModule &CGM; 1728 ConstantEmitter &Emitter; 1729 const APValue &Value; 1730 QualType DestType; 1731 1732 // Befriend StmtVisitorBase so that we don't have to expose Visit*. 1733 friend StmtVisitorBase; 1734 1735 public: 1736 ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value, 1737 QualType destType) 1738 : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {} 1739 1740 llvm::Constant *tryEmit(); 1741 1742 private: 1743 llvm::Constant *tryEmitAbsolute(llvm::Type *destTy); 1744 ConstantLValue tryEmitBase(const APValue::LValueBase &base); 1745 1746 ConstantLValue VisitStmt(const Stmt *S) { return nullptr; } 1747 ConstantLValue VisitConstantExpr(const ConstantExpr *E); 1748 ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); 1749 ConstantLValue VisitStringLiteral(const StringLiteral *E); 1750 ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E); 1751 ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E); 1752 ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E); 1753 ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E); 1754 ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E); 1755 ConstantLValue VisitCallExpr(const CallExpr *E); 1756 ConstantLValue VisitBlockExpr(const BlockExpr *E); 1757 ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E); 1758 ConstantLValue VisitCXXUuidofExpr(const CXXUuidofExpr *E); 1759 ConstantLValue VisitMaterializeTemporaryExpr( 1760 const MaterializeTemporaryExpr *E); 1761 1762 bool hasNonZeroOffset() const { 1763 return !Value.getLValueOffset().isZero(); 1764 } 1765 1766 /// Return the value offset. 1767 llvm::Constant *getOffset() { 1768 return llvm::ConstantInt::get(CGM.Int64Ty, 1769 Value.getLValueOffset().getQuantity()); 1770 } 1771 1772 /// Apply the value offset to the given constant. 1773 llvm::Constant *applyOffset(llvm::Constant *C) { 1774 if (!hasNonZeroOffset()) 1775 return C; 1776 1777 llvm::Type *origPtrTy = C->getType(); 1778 unsigned AS = origPtrTy->getPointerAddressSpace(); 1779 llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS); 1780 C = llvm::ConstantExpr::getBitCast(C, charPtrTy); 1781 C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset()); 1782 C = llvm::ConstantExpr::getPointerCast(C, origPtrTy); 1783 return C; 1784 } 1785 }; 1786 1787 } 1788 1789 llvm::Constant *ConstantLValueEmitter::tryEmit() { 1790 const APValue::LValueBase &base = Value.getLValueBase(); 1791 1792 // The destination type should be a pointer or reference 1793 // type, but it might also be a cast thereof. 1794 // 1795 // FIXME: the chain of casts required should be reflected in the APValue. 1796 // We need this in order to correctly handle things like a ptrtoint of a 1797 // non-zero null pointer and addrspace casts that aren't trivially 1798 // represented in LLVM IR. 1799 auto destTy = CGM.getTypes().ConvertTypeForMem(DestType); 1800 assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy)); 1801 1802 // If there's no base at all, this is a null or absolute pointer, 1803 // possibly cast back to an integer type. 1804 if (!base) { 1805 return tryEmitAbsolute(destTy); 1806 } 1807 1808 // Otherwise, try to emit the base. 1809 ConstantLValue result = tryEmitBase(base); 1810 1811 // If that failed, we're done. 1812 llvm::Constant *value = result.Value; 1813 if (!value) return nullptr; 1814 1815 // Apply the offset if necessary and not already done. 1816 if (!result.HasOffsetApplied) { 1817 value = applyOffset(value); 1818 } 1819 1820 // Convert to the appropriate type; this could be an lvalue for 1821 // an integer. FIXME: performAddrSpaceCast 1822 if (isa<llvm::PointerType>(destTy)) 1823 return llvm::ConstantExpr::getPointerCast(value, destTy); 1824 1825 return llvm::ConstantExpr::getPtrToInt(value, destTy); 1826 } 1827 1828 /// Try to emit an absolute l-value, such as a null pointer or an integer 1829 /// bitcast to pointer type. 1830 llvm::Constant * 1831 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) { 1832 // If we're producing a pointer, this is easy. 1833 auto destPtrTy = cast<llvm::PointerType>(destTy); 1834 if (Value.isNullPointer()) { 1835 // FIXME: integer offsets from non-zero null pointers. 1836 return CGM.getNullPointer(destPtrTy, DestType); 1837 } 1838 1839 // Convert the integer to a pointer-sized integer before converting it 1840 // to a pointer. 1841 // FIXME: signedness depends on the original integer type. 1842 auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy); 1843 llvm::Constant *C; 1844 C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy, 1845 /*isSigned*/ false); 1846 C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy); 1847 return C; 1848 } 1849 1850 ConstantLValue 1851 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) { 1852 // Handle values. 1853 if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) { 1854 if (D->hasAttr<WeakRefAttr>()) 1855 return CGM.GetWeakRefReference(D).getPointer(); 1856 1857 if (auto FD = dyn_cast<FunctionDecl>(D)) 1858 return CGM.GetAddrOfFunction(FD); 1859 1860 if (auto VD = dyn_cast<VarDecl>(D)) { 1861 // We can never refer to a variable with local storage. 1862 if (!VD->hasLocalStorage()) { 1863 if (VD->isFileVarDecl() || VD->hasExternalStorage()) 1864 return CGM.GetAddrOfGlobalVar(VD); 1865 1866 if (VD->isLocalVarDecl()) { 1867 return CGM.getOrCreateStaticVarDecl( 1868 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)); 1869 } 1870 } 1871 } 1872 1873 return nullptr; 1874 } 1875 1876 // Handle typeid(T). 1877 if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>()) { 1878 llvm::Type *StdTypeInfoPtrTy = 1879 CGM.getTypes().ConvertType(base.getTypeInfoType())->getPointerTo(); 1880 llvm::Constant *TypeInfo = 1881 CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0)); 1882 if (TypeInfo->getType() != StdTypeInfoPtrTy) 1883 TypeInfo = llvm::ConstantExpr::getBitCast(TypeInfo, StdTypeInfoPtrTy); 1884 return TypeInfo; 1885 } 1886 1887 // Otherwise, it must be an expression. 1888 return Visit(base.get<const Expr*>()); 1889 } 1890 1891 ConstantLValue 1892 ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) { 1893 return Visit(E->getSubExpr()); 1894 } 1895 1896 ConstantLValue 1897 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 1898 return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E); 1899 } 1900 1901 ConstantLValue 1902 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) { 1903 return CGM.GetAddrOfConstantStringFromLiteral(E); 1904 } 1905 1906 ConstantLValue 1907 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 1908 return CGM.GetAddrOfConstantStringFromObjCEncode(E); 1909 } 1910 1911 static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S, 1912 QualType T, 1913 CodeGenModule &CGM) { 1914 auto C = CGM.getObjCRuntime().GenerateConstantString(S); 1915 return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(T)); 1916 } 1917 1918 ConstantLValue 1919 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 1920 return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM); 1921 } 1922 1923 ConstantLValue 1924 ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 1925 assert(E->isExpressibleAsConstantInitializer() && 1926 "this boxed expression can't be emitted as a compile-time constant"); 1927 auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts()); 1928 return emitConstantObjCStringLiteral(SL, E->getType(), CGM); 1929 } 1930 1931 ConstantLValue 1932 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) { 1933 return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName()); 1934 } 1935 1936 ConstantLValue 1937 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) { 1938 assert(Emitter.CGF && "Invalid address of label expression outside function"); 1939 llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel()); 1940 Ptr = llvm::ConstantExpr::getBitCast(Ptr, 1941 CGM.getTypes().ConvertType(E->getType())); 1942 return Ptr; 1943 } 1944 1945 ConstantLValue 1946 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) { 1947 unsigned builtin = E->getBuiltinCallee(); 1948 if (builtin != Builtin::BI__builtin___CFStringMakeConstantString && 1949 builtin != Builtin::BI__builtin___NSStringMakeConstantString) 1950 return nullptr; 1951 1952 auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts()); 1953 if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) { 1954 return CGM.getObjCRuntime().GenerateConstantString(literal); 1955 } else { 1956 // FIXME: need to deal with UCN conversion issues. 1957 return CGM.GetAddrOfConstantCFString(literal); 1958 } 1959 } 1960 1961 ConstantLValue 1962 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) { 1963 StringRef functionName; 1964 if (auto CGF = Emitter.CGF) 1965 functionName = CGF->CurFn->getName(); 1966 else 1967 functionName = "global"; 1968 1969 return CGM.GetAddrOfGlobalBlock(E, functionName); 1970 } 1971 1972 ConstantLValue 1973 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { 1974 QualType T; 1975 if (E->isTypeOperand()) 1976 T = E->getTypeOperand(CGM.getContext()); 1977 else 1978 T = E->getExprOperand()->getType(); 1979 return CGM.GetAddrOfRTTIDescriptor(T); 1980 } 1981 1982 ConstantLValue 1983 ConstantLValueEmitter::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 1984 return CGM.GetAddrOfUuidDescriptor(E); 1985 } 1986 1987 ConstantLValue 1988 ConstantLValueEmitter::VisitMaterializeTemporaryExpr( 1989 const MaterializeTemporaryExpr *E) { 1990 assert(E->getStorageDuration() == SD_Static); 1991 SmallVector<const Expr *, 2> CommaLHSs; 1992 SmallVector<SubobjectAdjustment, 2> Adjustments; 1993 const Expr *Inner = 1994 E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 1995 return CGM.GetAddrOfGlobalTemporary(E, Inner); 1996 } 1997 1998 llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value, 1999 QualType DestType) { 2000 switch (Value.getKind()) { 2001 case APValue::None: 2002 case APValue::Indeterminate: 2003 // Out-of-lifetime and indeterminate values can be modeled as 'undef'. 2004 return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType)); 2005 case APValue::LValue: 2006 return ConstantLValueEmitter(*this, Value, DestType).tryEmit(); 2007 case APValue::Int: 2008 return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt()); 2009 case APValue::FixedPoint: 2010 return llvm::ConstantInt::get(CGM.getLLVMContext(), 2011 Value.getFixedPoint().getValue()); 2012 case APValue::ComplexInt: { 2013 llvm::Constant *Complex[2]; 2014 2015 Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(), 2016 Value.getComplexIntReal()); 2017 Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(), 2018 Value.getComplexIntImag()); 2019 2020 // FIXME: the target may want to specify that this is packed. 2021 llvm::StructType *STy = 2022 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 2023 return llvm::ConstantStruct::get(STy, Complex); 2024 } 2025 case APValue::Float: { 2026 const llvm::APFloat &Init = Value.getFloat(); 2027 if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() && 2028 !CGM.getContext().getLangOpts().NativeHalfType && 2029 CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 2030 return llvm::ConstantInt::get(CGM.getLLVMContext(), 2031 Init.bitcastToAPInt()); 2032 else 2033 return llvm::ConstantFP::get(CGM.getLLVMContext(), Init); 2034 } 2035 case APValue::ComplexFloat: { 2036 llvm::Constant *Complex[2]; 2037 2038 Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(), 2039 Value.getComplexFloatReal()); 2040 Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(), 2041 Value.getComplexFloatImag()); 2042 2043 // FIXME: the target may want to specify that this is packed. 2044 llvm::StructType *STy = 2045 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 2046 return llvm::ConstantStruct::get(STy, Complex); 2047 } 2048 case APValue::Vector: { 2049 unsigned NumElts = Value.getVectorLength(); 2050 SmallVector<llvm::Constant *, 4> Inits(NumElts); 2051 2052 for (unsigned I = 0; I != NumElts; ++I) { 2053 const APValue &Elt = Value.getVectorElt(I); 2054 if (Elt.isInt()) 2055 Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt()); 2056 else if (Elt.isFloat()) 2057 Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat()); 2058 else 2059 llvm_unreachable("unsupported vector element type"); 2060 } 2061 return llvm::ConstantVector::get(Inits); 2062 } 2063 case APValue::AddrLabelDiff: { 2064 const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS(); 2065 const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS(); 2066 llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType()); 2067 llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType()); 2068 if (!LHS || !RHS) return nullptr; 2069 2070 // Compute difference 2071 llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType); 2072 LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy); 2073 RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy); 2074 llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS); 2075 2076 // LLVM is a bit sensitive about the exact format of the 2077 // address-of-label difference; make sure to truncate after 2078 // the subtraction. 2079 return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType); 2080 } 2081 case APValue::Struct: 2082 case APValue::Union: 2083 return ConstStructBuilder::BuildStruct(*this, Value, DestType); 2084 case APValue::Array: { 2085 const ConstantArrayType *CAT = 2086 CGM.getContext().getAsConstantArrayType(DestType); 2087 unsigned NumElements = Value.getArraySize(); 2088 unsigned NumInitElts = Value.getArrayInitializedElts(); 2089 2090 // Emit array filler, if there is one. 2091 llvm::Constant *Filler = nullptr; 2092 if (Value.hasArrayFiller()) { 2093 Filler = tryEmitAbstractForMemory(Value.getArrayFiller(), 2094 CAT->getElementType()); 2095 if (!Filler) 2096 return nullptr; 2097 } 2098 2099 // Emit initializer elements. 2100 SmallVector<llvm::Constant*, 16> Elts; 2101 if (Filler && Filler->isNullValue()) 2102 Elts.reserve(NumInitElts + 1); 2103 else 2104 Elts.reserve(NumElements); 2105 2106 llvm::Type *CommonElementType = nullptr; 2107 for (unsigned I = 0; I < NumInitElts; ++I) { 2108 llvm::Constant *C = tryEmitPrivateForMemory( 2109 Value.getArrayInitializedElt(I), CAT->getElementType()); 2110 if (!C) return nullptr; 2111 2112 if (I == 0) 2113 CommonElementType = C->getType(); 2114 else if (C->getType() != CommonElementType) 2115 CommonElementType = nullptr; 2116 Elts.push_back(C); 2117 } 2118 2119 // This means that the array type is probably "IncompleteType" or some 2120 // type that is not ConstantArray. 2121 if (CAT == nullptr && CommonElementType == nullptr && !NumInitElts) { 2122 const ArrayType *AT = CGM.getContext().getAsArrayType(DestType); 2123 CommonElementType = CGM.getTypes().ConvertType(AT->getElementType()); 2124 llvm::ArrayType *AType = llvm::ArrayType::get(CommonElementType, 2125 NumElements); 2126 return llvm::ConstantAggregateZero::get(AType); 2127 } 2128 2129 llvm::ArrayType *Desired = 2130 cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType)); 2131 return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts, 2132 Filler); 2133 } 2134 case APValue::MemberPointer: 2135 return CGM.getCXXABI().EmitMemberPointer(Value, DestType); 2136 } 2137 llvm_unreachable("Unknown APValue kind"); 2138 } 2139 2140 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted( 2141 const CompoundLiteralExpr *E) { 2142 return EmittedCompoundLiterals.lookup(E); 2143 } 2144 2145 void CodeGenModule::setAddrOfConstantCompoundLiteral( 2146 const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) { 2147 bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second; 2148 (void)Ok; 2149 assert(Ok && "CLE has already been emitted!"); 2150 } 2151 2152 ConstantAddress 2153 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) { 2154 assert(E->isFileScope() && "not a file-scope compound literal expr"); 2155 return tryEmitGlobalCompoundLiteral(*this, nullptr, E); 2156 } 2157 2158 llvm::Constant * 2159 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) { 2160 // Member pointer constants always have a very particular form. 2161 const MemberPointerType *type = cast<MemberPointerType>(uo->getType()); 2162 const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl(); 2163 2164 // A member function pointer. 2165 if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl)) 2166 return getCXXABI().EmitMemberFunctionPointer(method); 2167 2168 // Otherwise, a member data pointer. 2169 uint64_t fieldOffset = getContext().getFieldOffset(decl); 2170 CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset); 2171 return getCXXABI().EmitMemberDataPointer(type, chars); 2172 } 2173 2174 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2175 llvm::Type *baseType, 2176 const CXXRecordDecl *base); 2177 2178 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM, 2179 const RecordDecl *record, 2180 bool asCompleteObject) { 2181 const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record); 2182 llvm::StructType *structure = 2183 (asCompleteObject ? layout.getLLVMType() 2184 : layout.getBaseSubobjectLLVMType()); 2185 2186 unsigned numElements = structure->getNumElements(); 2187 std::vector<llvm::Constant *> elements(numElements); 2188 2189 auto CXXR = dyn_cast<CXXRecordDecl>(record); 2190 // Fill in all the bases. 2191 if (CXXR) { 2192 for (const auto &I : CXXR->bases()) { 2193 if (I.isVirtual()) { 2194 // Ignore virtual bases; if we're laying out for a complete 2195 // object, we'll lay these out later. 2196 continue; 2197 } 2198 2199 const CXXRecordDecl *base = 2200 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2201 2202 // Ignore empty bases. 2203 if (base->isEmpty() || 2204 CGM.getContext().getASTRecordLayout(base).getNonVirtualSize() 2205 .isZero()) 2206 continue; 2207 2208 unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base); 2209 llvm::Type *baseType = structure->getElementType(fieldIndex); 2210 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2211 } 2212 } 2213 2214 // Fill in all the fields. 2215 for (const auto *Field : record->fields()) { 2216 // Fill in non-bitfields. (Bitfields always use a zero pattern, which we 2217 // will fill in later.) 2218 if (!Field->isBitField() && !Field->isZeroSize(CGM.getContext())) { 2219 unsigned fieldIndex = layout.getLLVMFieldNo(Field); 2220 elements[fieldIndex] = CGM.EmitNullConstant(Field->getType()); 2221 } 2222 2223 // For unions, stop after the first named field. 2224 if (record->isUnion()) { 2225 if (Field->getIdentifier()) 2226 break; 2227 if (const auto *FieldRD = Field->getType()->getAsRecordDecl()) 2228 if (FieldRD->findFirstNamedDataMember()) 2229 break; 2230 } 2231 } 2232 2233 // Fill in the virtual bases, if we're working with the complete object. 2234 if (CXXR && asCompleteObject) { 2235 for (const auto &I : CXXR->vbases()) { 2236 const CXXRecordDecl *base = 2237 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2238 2239 // Ignore empty bases. 2240 if (base->isEmpty()) 2241 continue; 2242 2243 unsigned fieldIndex = layout.getVirtualBaseIndex(base); 2244 2245 // We might have already laid this field out. 2246 if (elements[fieldIndex]) continue; 2247 2248 llvm::Type *baseType = structure->getElementType(fieldIndex); 2249 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2250 } 2251 } 2252 2253 // Now go through all other fields and zero them out. 2254 for (unsigned i = 0; i != numElements; ++i) { 2255 if (!elements[i]) 2256 elements[i] = llvm::Constant::getNullValue(structure->getElementType(i)); 2257 } 2258 2259 return llvm::ConstantStruct::get(structure, elements); 2260 } 2261 2262 /// Emit the null constant for a base subobject. 2263 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2264 llvm::Type *baseType, 2265 const CXXRecordDecl *base) { 2266 const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base); 2267 2268 // Just zero out bases that don't have any pointer to data members. 2269 if (baseLayout.isZeroInitializableAsBase()) 2270 return llvm::Constant::getNullValue(baseType); 2271 2272 // Otherwise, we can just use its null constant. 2273 return EmitNullConstant(CGM, base, /*asCompleteObject=*/false); 2274 } 2275 2276 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM, 2277 QualType T) { 2278 return emitForMemory(CGM, CGM.EmitNullConstant(T), T); 2279 } 2280 2281 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { 2282 if (T->getAs<PointerType>()) 2283 return getNullPointer( 2284 cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T); 2285 2286 if (getTypes().isZeroInitializable(T)) 2287 return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); 2288 2289 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { 2290 llvm::ArrayType *ATy = 2291 cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T)); 2292 2293 QualType ElementTy = CAT->getElementType(); 2294 2295 llvm::Constant *Element = 2296 ConstantEmitter::emitNullForMemory(*this, ElementTy); 2297 unsigned NumElements = CAT->getSize().getZExtValue(); 2298 SmallVector<llvm::Constant *, 8> Array(NumElements, Element); 2299 return llvm::ConstantArray::get(ATy, Array); 2300 } 2301 2302 if (const RecordType *RT = T->getAs<RecordType>()) 2303 return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true); 2304 2305 assert(T->isMemberDataPointerType() && 2306 "Should only see pointers to data members here!"); 2307 2308 return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>()); 2309 } 2310 2311 llvm::Constant * 2312 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) { 2313 return ::EmitNullConstant(*this, Record, false); 2314 } 2315