1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Constant Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGObjCRuntime.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/APValue.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "clang/Basic/Builtins.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/GlobalVariable.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 //===----------------------------------------------------------------------===//
32 //                            ConstStructBuilder
33 //===----------------------------------------------------------------------===//
34 
35 namespace {
36 class ConstStructBuilder {
37   CodeGenModule &CGM;
38   CodeGenFunction *CGF;
39 
40   bool Packed;
41   CharUnits NextFieldOffsetInChars;
42   CharUnits LLVMStructAlignment;
43   SmallVector<llvm::Constant *, 32> Elements;
44 public:
45   static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF,
46                                      InitListExpr *ILE);
47   static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF,
48                                      const APValue &Value, QualType ValTy);
49 
50 private:
51   ConstStructBuilder(CodeGenModule &CGM, CodeGenFunction *CGF)
52     : CGM(CGM), CGF(CGF), Packed(false),
53     NextFieldOffsetInChars(CharUnits::Zero()),
54     LLVMStructAlignment(CharUnits::One()) { }
55 
56   void AppendVTablePointer(BaseSubobject Base, llvm::Constant *VTable,
57                            const CXXRecordDecl *VTableClass);
58 
59   void AppendField(const FieldDecl *Field, uint64_t FieldOffset,
60                    llvm::Constant *InitExpr);
61 
62   void AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst);
63 
64   void AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
65                       llvm::ConstantInt *InitExpr);
66 
67   void AppendPadding(CharUnits PadSize);
68 
69   void AppendTailPadding(CharUnits RecordSize);
70 
71   void ConvertStructToPacked();
72 
73   bool Build(InitListExpr *ILE);
74   void Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
75              llvm::Constant *VTable, const CXXRecordDecl *VTableClass,
76              CharUnits BaseOffset);
77   llvm::Constant *Finalize(QualType Ty);
78 
79   CharUnits getAlignment(const llvm::Constant *C) const {
80     if (Packed)  return CharUnits::One();
81     return CharUnits::fromQuantity(
82         CGM.getDataLayout().getABITypeAlignment(C->getType()));
83   }
84 
85   CharUnits getSizeInChars(const llvm::Constant *C) const {
86     return CharUnits::fromQuantity(
87         CGM.getDataLayout().getTypeAllocSize(C->getType()));
88   }
89 };
90 
91 void ConstStructBuilder::AppendVTablePointer(BaseSubobject Base,
92                                              llvm::Constant *VTable,
93                                              const CXXRecordDecl *VTableClass) {
94   // Find the appropriate vtable within the vtable group.
95   uint64_t AddressPoint =
96     CGM.getVTableContext().getVTableLayout(VTableClass).getAddressPoint(Base);
97   llvm::Value *Indices[] = {
98     llvm::ConstantInt::get(CGM.Int64Ty, 0),
99     llvm::ConstantInt::get(CGM.Int64Ty, AddressPoint)
100   };
101   llvm::Constant *VTableAddressPoint =
102     llvm::ConstantExpr::getInBoundsGetElementPtr(VTable, Indices);
103 
104   // Add the vtable at the start of the object.
105   AppendBytes(Base.getBaseOffset(), VTableAddressPoint);
106 }
107 
108 void ConstStructBuilder::
109 AppendField(const FieldDecl *Field, uint64_t FieldOffset,
110             llvm::Constant *InitCst) {
111   const ASTContext &Context = CGM.getContext();
112 
113   CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
114 
115   AppendBytes(FieldOffsetInChars, InitCst);
116 }
117 
118 void ConstStructBuilder::
119 AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst) {
120 
121   assert(NextFieldOffsetInChars <= FieldOffsetInChars
122          && "Field offset mismatch!");
123 
124   CharUnits FieldAlignment = getAlignment(InitCst);
125 
126   // Round up the field offset to the alignment of the field type.
127   CharUnits AlignedNextFieldOffsetInChars =
128     NextFieldOffsetInChars.RoundUpToAlignment(FieldAlignment);
129 
130   if (AlignedNextFieldOffsetInChars > FieldOffsetInChars) {
131     assert(!Packed && "Alignment is wrong even with a packed struct!");
132 
133     // Convert the struct to a packed struct.
134     ConvertStructToPacked();
135 
136     AlignedNextFieldOffsetInChars = NextFieldOffsetInChars;
137   }
138 
139   if (AlignedNextFieldOffsetInChars < FieldOffsetInChars) {
140     // We need to append padding.
141     AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars);
142 
143     assert(NextFieldOffsetInChars == FieldOffsetInChars &&
144            "Did not add enough padding!");
145 
146     AlignedNextFieldOffsetInChars = NextFieldOffsetInChars;
147   }
148 
149   // Add the field.
150   Elements.push_back(InitCst);
151   NextFieldOffsetInChars = AlignedNextFieldOffsetInChars +
152                            getSizeInChars(InitCst);
153 
154   if (Packed)
155     assert(LLVMStructAlignment == CharUnits::One() &&
156            "Packed struct not byte-aligned!");
157   else
158     LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment);
159 }
160 
161 void ConstStructBuilder::AppendBitField(const FieldDecl *Field,
162                                         uint64_t FieldOffset,
163                                         llvm::ConstantInt *CI) {
164   const ASTContext &Context = CGM.getContext();
165   const uint64_t CharWidth = Context.getCharWidth();
166   uint64_t NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
167   if (FieldOffset > NextFieldOffsetInBits) {
168     // We need to add padding.
169     CharUnits PadSize = Context.toCharUnitsFromBits(
170       llvm::RoundUpToAlignment(FieldOffset - NextFieldOffsetInBits,
171                                Context.getTargetInfo().getCharAlign()));
172 
173     AppendPadding(PadSize);
174   }
175 
176   uint64_t FieldSize = Field->getBitWidthValue(Context);
177 
178   llvm::APInt FieldValue = CI->getValue();
179 
180   // Promote the size of FieldValue if necessary
181   // FIXME: This should never occur, but currently it can because initializer
182   // constants are cast to bool, and because clang is not enforcing bitfield
183   // width limits.
184   if (FieldSize > FieldValue.getBitWidth())
185     FieldValue = FieldValue.zext(FieldSize);
186 
187   // Truncate the size of FieldValue to the bit field size.
188   if (FieldSize < FieldValue.getBitWidth())
189     FieldValue = FieldValue.trunc(FieldSize);
190 
191   NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
192   if (FieldOffset < NextFieldOffsetInBits) {
193     // Either part of the field or the entire field can go into the previous
194     // byte.
195     assert(!Elements.empty() && "Elements can't be empty!");
196 
197     unsigned BitsInPreviousByte = NextFieldOffsetInBits - FieldOffset;
198 
199     bool FitsCompletelyInPreviousByte =
200       BitsInPreviousByte >= FieldValue.getBitWidth();
201 
202     llvm::APInt Tmp = FieldValue;
203 
204     if (!FitsCompletelyInPreviousByte) {
205       unsigned NewFieldWidth = FieldSize - BitsInPreviousByte;
206 
207       if (CGM.getDataLayout().isBigEndian()) {
208         Tmp = Tmp.lshr(NewFieldWidth);
209         Tmp = Tmp.trunc(BitsInPreviousByte);
210 
211         // We want the remaining high bits.
212         FieldValue = FieldValue.trunc(NewFieldWidth);
213       } else {
214         Tmp = Tmp.trunc(BitsInPreviousByte);
215 
216         // We want the remaining low bits.
217         FieldValue = FieldValue.lshr(BitsInPreviousByte);
218         FieldValue = FieldValue.trunc(NewFieldWidth);
219       }
220     }
221 
222     Tmp = Tmp.zext(CharWidth);
223     if (CGM.getDataLayout().isBigEndian()) {
224       if (FitsCompletelyInPreviousByte)
225         Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth());
226     } else {
227       Tmp = Tmp.shl(CharWidth - BitsInPreviousByte);
228     }
229 
230     // 'or' in the bits that go into the previous byte.
231     llvm::Value *LastElt = Elements.back();
232     if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(LastElt))
233       Tmp |= Val->getValue();
234     else {
235       assert(isa<llvm::UndefValue>(LastElt));
236       // If there is an undef field that we're adding to, it can either be a
237       // scalar undef (in which case, we just replace it with our field) or it
238       // is an array.  If it is an array, we have to pull one byte off the
239       // array so that the other undef bytes stay around.
240       if (!isa<llvm::IntegerType>(LastElt->getType())) {
241         // The undef padding will be a multibyte array, create a new smaller
242         // padding and then an hole for our i8 to get plopped into.
243         assert(isa<llvm::ArrayType>(LastElt->getType()) &&
244                "Expected array padding of undefs");
245         llvm::ArrayType *AT = cast<llvm::ArrayType>(LastElt->getType());
246         assert(AT->getElementType()->isIntegerTy(CharWidth) &&
247                AT->getNumElements() != 0 &&
248                "Expected non-empty array padding of undefs");
249 
250         // Remove the padding array.
251         NextFieldOffsetInChars -= CharUnits::fromQuantity(AT->getNumElements());
252         Elements.pop_back();
253 
254         // Add the padding back in two chunks.
255         AppendPadding(CharUnits::fromQuantity(AT->getNumElements()-1));
256         AppendPadding(CharUnits::One());
257         assert(isa<llvm::UndefValue>(Elements.back()) &&
258                Elements.back()->getType()->isIntegerTy(CharWidth) &&
259                "Padding addition didn't work right");
260       }
261     }
262 
263     Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp);
264 
265     if (FitsCompletelyInPreviousByte)
266       return;
267   }
268 
269   while (FieldValue.getBitWidth() > CharWidth) {
270     llvm::APInt Tmp;
271 
272     if (CGM.getDataLayout().isBigEndian()) {
273       // We want the high bits.
274       Tmp =
275         FieldValue.lshr(FieldValue.getBitWidth() - CharWidth).trunc(CharWidth);
276     } else {
277       // We want the low bits.
278       Tmp = FieldValue.trunc(CharWidth);
279 
280       FieldValue = FieldValue.lshr(CharWidth);
281     }
282 
283     Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp));
284     ++NextFieldOffsetInChars;
285 
286     FieldValue = FieldValue.trunc(FieldValue.getBitWidth() - CharWidth);
287   }
288 
289   assert(FieldValue.getBitWidth() > 0 &&
290          "Should have at least one bit left!");
291   assert(FieldValue.getBitWidth() <= CharWidth &&
292          "Should not have more than a byte left!");
293 
294   if (FieldValue.getBitWidth() < CharWidth) {
295     if (CGM.getDataLayout().isBigEndian()) {
296       unsigned BitWidth = FieldValue.getBitWidth();
297 
298       FieldValue = FieldValue.zext(CharWidth) << (CharWidth - BitWidth);
299     } else
300       FieldValue = FieldValue.zext(CharWidth);
301   }
302 
303   // Append the last element.
304   Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(),
305                                             FieldValue));
306   ++NextFieldOffsetInChars;
307 }
308 
309 void ConstStructBuilder::AppendPadding(CharUnits PadSize) {
310   if (PadSize.isZero())
311     return;
312 
313   llvm::Type *Ty = CGM.Int8Ty;
314   if (PadSize > CharUnits::One())
315     Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
316 
317   llvm::Constant *C = llvm::UndefValue::get(Ty);
318   Elements.push_back(C);
319   assert(getAlignment(C) == CharUnits::One() &&
320          "Padding must have 1 byte alignment!");
321 
322   NextFieldOffsetInChars += getSizeInChars(C);
323 }
324 
325 void ConstStructBuilder::AppendTailPadding(CharUnits RecordSize) {
326   assert(NextFieldOffsetInChars <= RecordSize &&
327          "Size mismatch!");
328 
329   AppendPadding(RecordSize - NextFieldOffsetInChars);
330 }
331 
332 void ConstStructBuilder::ConvertStructToPacked() {
333   SmallVector<llvm::Constant *, 16> PackedElements;
334   CharUnits ElementOffsetInChars = CharUnits::Zero();
335 
336   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
337     llvm::Constant *C = Elements[i];
338 
339     CharUnits ElementAlign = CharUnits::fromQuantity(
340       CGM.getDataLayout().getABITypeAlignment(C->getType()));
341     CharUnits AlignedElementOffsetInChars =
342       ElementOffsetInChars.RoundUpToAlignment(ElementAlign);
343 
344     if (AlignedElementOffsetInChars > ElementOffsetInChars) {
345       // We need some padding.
346       CharUnits NumChars =
347         AlignedElementOffsetInChars - ElementOffsetInChars;
348 
349       llvm::Type *Ty = CGM.Int8Ty;
350       if (NumChars > CharUnits::One())
351         Ty = llvm::ArrayType::get(Ty, NumChars.getQuantity());
352 
353       llvm::Constant *Padding = llvm::UndefValue::get(Ty);
354       PackedElements.push_back(Padding);
355       ElementOffsetInChars += getSizeInChars(Padding);
356     }
357 
358     PackedElements.push_back(C);
359     ElementOffsetInChars += getSizeInChars(C);
360   }
361 
362   assert(ElementOffsetInChars == NextFieldOffsetInChars &&
363          "Packing the struct changed its size!");
364 
365   Elements.swap(PackedElements);
366   LLVMStructAlignment = CharUnits::One();
367   Packed = true;
368 }
369 
370 bool ConstStructBuilder::Build(InitListExpr *ILE) {
371   RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
372   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
373 
374   unsigned FieldNo = 0;
375   unsigned ElementNo = 0;
376   const FieldDecl *LastFD = 0;
377   bool IsMsStruct = RD->isMsStruct(CGM.getContext());
378 
379   for (RecordDecl::field_iterator Field = RD->field_begin(),
380        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
381     if (IsMsStruct) {
382       // Zero-length bitfields following non-bitfield members are
383       // ignored:
384       if (CGM.getContext().ZeroBitfieldFollowsNonBitfield(*Field, LastFD)) {
385         --FieldNo;
386         continue;
387       }
388       LastFD = *Field;
389     }
390 
391     // If this is a union, skip all the fields that aren't being initialized.
392     if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field)
393       continue;
394 
395     // Don't emit anonymous bitfields, they just affect layout.
396     if (Field->isUnnamedBitfield()) {
397       LastFD = *Field;
398       continue;
399     }
400 
401     // Get the initializer.  A struct can include fields without initializers,
402     // we just use explicit null values for them.
403     llvm::Constant *EltInit;
404     if (ElementNo < ILE->getNumInits())
405       EltInit = CGM.EmitConstantExpr(ILE->getInit(ElementNo++),
406                                      Field->getType(), CGF);
407     else
408       EltInit = CGM.EmitNullConstant(Field->getType());
409 
410     if (!EltInit)
411       return false;
412 
413     if (!Field->isBitField()) {
414       // Handle non-bitfield members.
415       AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit);
416     } else {
417       // Otherwise we have a bitfield.
418       AppendBitField(*Field, Layout.getFieldOffset(FieldNo),
419                      cast<llvm::ConstantInt>(EltInit));
420     }
421   }
422 
423   return true;
424 }
425 
426 namespace {
427 struct BaseInfo {
428   BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
429     : Decl(Decl), Offset(Offset), Index(Index) {
430   }
431 
432   const CXXRecordDecl *Decl;
433   CharUnits Offset;
434   unsigned Index;
435 
436   bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
437 };
438 }
439 
440 void ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
441                                bool IsPrimaryBase, llvm::Constant *VTable,
442                                const CXXRecordDecl *VTableClass,
443                                CharUnits Offset) {
444   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
445 
446   if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
447     // Add a vtable pointer, if we need one and it hasn't already been added.
448     if (CD->isDynamicClass() && !IsPrimaryBase)
449       AppendVTablePointer(BaseSubobject(CD, Offset), VTable, VTableClass);
450 
451     // Accumulate and sort bases, in order to visit them in address order, which
452     // may not be the same as declaration order.
453     SmallVector<BaseInfo, 8> Bases;
454     Bases.reserve(CD->getNumBases());
455     unsigned BaseNo = 0;
456     for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
457          BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
458       assert(!Base->isVirtual() && "should not have virtual bases here");
459       const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
460       CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
461       Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
462     }
463     std::stable_sort(Bases.begin(), Bases.end());
464 
465     for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
466       BaseInfo &Base = Bases[I];
467 
468       bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
469       Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
470             VTable, VTableClass, Offset + Base.Offset);
471     }
472   }
473 
474   unsigned FieldNo = 0;
475   const FieldDecl *LastFD = 0;
476   bool IsMsStruct = RD->isMsStruct(CGM.getContext());
477   uint64_t OffsetBits = CGM.getContext().toBits(Offset);
478 
479   for (RecordDecl::field_iterator Field = RD->field_begin(),
480        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
481     if (IsMsStruct) {
482       // Zero-length bitfields following non-bitfield members are
483       // ignored:
484       if (CGM.getContext().ZeroBitfieldFollowsNonBitfield(*Field, LastFD)) {
485         --FieldNo;
486         continue;
487       }
488       LastFD = *Field;
489     }
490 
491     // If this is a union, skip all the fields that aren't being initialized.
492     if (RD->isUnion() && Val.getUnionField() != *Field)
493       continue;
494 
495     // Don't emit anonymous bitfields, they just affect layout.
496     if (Field->isUnnamedBitfield()) {
497       LastFD = *Field;
498       continue;
499     }
500 
501     // Emit the value of the initializer.
502     const APValue &FieldValue =
503       RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
504     llvm::Constant *EltInit =
505       CGM.EmitConstantValueForMemory(FieldValue, Field->getType(), CGF);
506     assert(EltInit && "EmitConstantValue can't fail");
507 
508     if (!Field->isBitField()) {
509       // Handle non-bitfield members.
510       AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, EltInit);
511     } else {
512       // Otherwise we have a bitfield.
513       AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
514                      cast<llvm::ConstantInt>(EltInit));
515     }
516   }
517 }
518 
519 llvm::Constant *ConstStructBuilder::Finalize(QualType Ty) {
520   RecordDecl *RD = Ty->getAs<RecordType>()->getDecl();
521   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
522 
523   CharUnits LayoutSizeInChars = Layout.getSize();
524 
525   if (NextFieldOffsetInChars > LayoutSizeInChars) {
526     // If the struct is bigger than the size of the record type,
527     // we must have a flexible array member at the end.
528     assert(RD->hasFlexibleArrayMember() &&
529            "Must have flexible array member if struct is bigger than type!");
530 
531     // No tail padding is necessary.
532   } else {
533     // Append tail padding if necessary.
534     AppendTailPadding(LayoutSizeInChars);
535 
536     CharUnits LLVMSizeInChars =
537       NextFieldOffsetInChars.RoundUpToAlignment(LLVMStructAlignment);
538 
539     // Check if we need to convert the struct to a packed struct.
540     if (NextFieldOffsetInChars <= LayoutSizeInChars &&
541         LLVMSizeInChars > LayoutSizeInChars) {
542       assert(!Packed && "Size mismatch!");
543 
544       ConvertStructToPacked();
545       assert(NextFieldOffsetInChars <= LayoutSizeInChars &&
546              "Converting to packed did not help!");
547     }
548 
549     assert(LayoutSizeInChars == NextFieldOffsetInChars &&
550            "Tail padding mismatch!");
551   }
552 
553   // Pick the type to use.  If the type is layout identical to the ConvertType
554   // type then use it, otherwise use whatever the builder produced for us.
555   llvm::StructType *STy =
556       llvm::ConstantStruct::getTypeForElements(CGM.getLLVMContext(),
557                                                Elements, Packed);
558   llvm::Type *ValTy = CGM.getTypes().ConvertType(Ty);
559   if (llvm::StructType *ValSTy = dyn_cast<llvm::StructType>(ValTy)) {
560     if (ValSTy->isLayoutIdentical(STy))
561       STy = ValSTy;
562   }
563 
564   llvm::Constant *Result = llvm::ConstantStruct::get(STy, Elements);
565 
566   assert(NextFieldOffsetInChars.RoundUpToAlignment(getAlignment(Result)) ==
567          getSizeInChars(Result) && "Size mismatch!");
568 
569   return Result;
570 }
571 
572 llvm::Constant *ConstStructBuilder::BuildStruct(CodeGenModule &CGM,
573                                                 CodeGenFunction *CGF,
574                                                 InitListExpr *ILE) {
575   ConstStructBuilder Builder(CGM, CGF);
576 
577   if (!Builder.Build(ILE))
578     return 0;
579 
580   return Builder.Finalize(ILE->getType());
581 }
582 
583 llvm::Constant *ConstStructBuilder::BuildStruct(CodeGenModule &CGM,
584                                                 CodeGenFunction *CGF,
585                                                 const APValue &Val,
586                                                 QualType ValTy) {
587   ConstStructBuilder Builder(CGM, CGF);
588 
589   const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
590   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
591   llvm::Constant *VTable = 0;
592   if (CD && CD->isDynamicClass())
593     VTable = CGM.getVTables().GetAddrOfVTable(CD);
594 
595   Builder.Build(Val, RD, false, VTable, CD, CharUnits::Zero());
596 
597   return Builder.Finalize(ValTy);
598 }
599 
600 
601 //===----------------------------------------------------------------------===//
602 //                             ConstExprEmitter
603 //===----------------------------------------------------------------------===//
604 
605 /// This class only needs to handle two cases:
606 /// 1) Literals (this is used by APValue emission to emit literals).
607 /// 2) Arrays, structs and unions (outside C++11 mode, we don't currently
608 ///    constant fold these types).
609 class ConstExprEmitter :
610   public StmtVisitor<ConstExprEmitter, llvm::Constant*> {
611   CodeGenModule &CGM;
612   CodeGenFunction *CGF;
613   llvm::LLVMContext &VMContext;
614 public:
615   ConstExprEmitter(CodeGenModule &cgm, CodeGenFunction *cgf)
616     : CGM(cgm), CGF(cgf), VMContext(cgm.getLLVMContext()) {
617   }
618 
619   //===--------------------------------------------------------------------===//
620   //                            Visitor Methods
621   //===--------------------------------------------------------------------===//
622 
623   llvm::Constant *VisitStmt(Stmt *S) {
624     return 0;
625   }
626 
627   llvm::Constant *VisitParenExpr(ParenExpr *PE) {
628     return Visit(PE->getSubExpr());
629   }
630 
631   llvm::Constant *
632   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
633     return Visit(PE->getReplacement());
634   }
635 
636   llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
637     return Visit(GE->getResultExpr());
638   }
639 
640   llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
641     return Visit(E->getInitializer());
642   }
643 
644   llvm::Constant *VisitCastExpr(CastExpr* E) {
645     Expr *subExpr = E->getSubExpr();
646     llvm::Constant *C = CGM.EmitConstantExpr(subExpr, subExpr->getType(), CGF);
647     if (!C) return 0;
648 
649     llvm::Type *destType = ConvertType(E->getType());
650 
651     switch (E->getCastKind()) {
652     case CK_ToUnion: {
653       // GCC cast to union extension
654       assert(E->getType()->isUnionType() &&
655              "Destination type is not union type!");
656 
657       // Build a struct with the union sub-element as the first member,
658       // and padded to the appropriate size
659       SmallVector<llvm::Constant*, 2> Elts;
660       SmallVector<llvm::Type*, 2> Types;
661       Elts.push_back(C);
662       Types.push_back(C->getType());
663       unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
664       unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destType);
665 
666       assert(CurSize <= TotalSize && "Union size mismatch!");
667       if (unsigned NumPadBytes = TotalSize - CurSize) {
668         llvm::Type *Ty = CGM.Int8Ty;
669         if (NumPadBytes > 1)
670           Ty = llvm::ArrayType::get(Ty, NumPadBytes);
671 
672         Elts.push_back(llvm::UndefValue::get(Ty));
673         Types.push_back(Ty);
674       }
675 
676       llvm::StructType* STy =
677         llvm::StructType::get(C->getType()->getContext(), Types, false);
678       return llvm::ConstantStruct::get(STy, Elts);
679     }
680 
681     case CK_LValueToRValue:
682     case CK_AtomicToNonAtomic:
683     case CK_NonAtomicToAtomic:
684     case CK_NoOp:
685       return C;
686 
687     case CK_Dependent: llvm_unreachable("saw dependent cast!");
688 
689     case CK_BuiltinFnToFnPtr:
690       llvm_unreachable("builtin functions are handled elsewhere");
691 
692     case CK_ReinterpretMemberPointer:
693     case CK_DerivedToBaseMemberPointer:
694     case CK_BaseToDerivedMemberPointer:
695       return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
696 
697     // These will never be supported.
698     case CK_ObjCObjectLValueCast:
699     case CK_ARCProduceObject:
700     case CK_ARCConsumeObject:
701     case CK_ARCReclaimReturnedObject:
702     case CK_ARCExtendBlockObject:
703     case CK_CopyAndAutoreleaseBlockObject:
704       return 0;
705 
706     // These don't need to be handled here because Evaluate knows how to
707     // evaluate them in the cases where they can be folded.
708     case CK_BitCast:
709     case CK_ToVoid:
710     case CK_Dynamic:
711     case CK_LValueBitCast:
712     case CK_NullToMemberPointer:
713     case CK_UserDefinedConversion:
714     case CK_ConstructorConversion:
715     case CK_CPointerToObjCPointerCast:
716     case CK_BlockPointerToObjCPointerCast:
717     case CK_AnyPointerToBlockPointerCast:
718     case CK_ArrayToPointerDecay:
719     case CK_FunctionToPointerDecay:
720     case CK_BaseToDerived:
721     case CK_DerivedToBase:
722     case CK_UncheckedDerivedToBase:
723     case CK_MemberPointerToBoolean:
724     case CK_VectorSplat:
725     case CK_FloatingRealToComplex:
726     case CK_FloatingComplexToReal:
727     case CK_FloatingComplexToBoolean:
728     case CK_FloatingComplexCast:
729     case CK_FloatingComplexToIntegralComplex:
730     case CK_IntegralRealToComplex:
731     case CK_IntegralComplexToReal:
732     case CK_IntegralComplexToBoolean:
733     case CK_IntegralComplexCast:
734     case CK_IntegralComplexToFloatingComplex:
735     case CK_PointerToIntegral:
736     case CK_PointerToBoolean:
737     case CK_NullToPointer:
738     case CK_IntegralCast:
739     case CK_IntegralToPointer:
740     case CK_IntegralToBoolean:
741     case CK_IntegralToFloating:
742     case CK_FloatingToIntegral:
743     case CK_FloatingToBoolean:
744     case CK_FloatingCast:
745     case CK_ZeroToOCLEvent:
746       return 0;
747     }
748     llvm_unreachable("Invalid CastKind");
749   }
750 
751   llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
752     return Visit(DAE->getExpr());
753   }
754 
755   llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
756     // No need for a DefaultInitExprScope: we don't handle 'this' in a
757     // constant expression.
758     return Visit(DIE->getExpr());
759   }
760 
761   llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E) {
762     return Visit(E->GetTemporaryExpr());
763   }
764 
765   llvm::Constant *EmitArrayInitialization(InitListExpr *ILE) {
766     if (ILE->isStringLiteralInit())
767       return Visit(ILE->getInit(0));
768 
769     llvm::ArrayType *AType =
770         cast<llvm::ArrayType>(ConvertType(ILE->getType()));
771     llvm::Type *ElemTy = AType->getElementType();
772     unsigned NumInitElements = ILE->getNumInits();
773     unsigned NumElements = AType->getNumElements();
774 
775     // Initialising an array requires us to automatically
776     // initialise any elements that have not been initialised explicitly
777     unsigned NumInitableElts = std::min(NumInitElements, NumElements);
778 
779     // Copy initializer elements.
780     std::vector<llvm::Constant*> Elts;
781     Elts.reserve(NumInitableElts + NumElements);
782 
783     bool RewriteType = false;
784     for (unsigned i = 0; i < NumInitableElts; ++i) {
785       Expr *Init = ILE->getInit(i);
786       llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF);
787       if (!C)
788         return 0;
789       RewriteType |= (C->getType() != ElemTy);
790       Elts.push_back(C);
791     }
792 
793     // Initialize remaining array elements.
794     // FIXME: This doesn't handle member pointers correctly!
795     llvm::Constant *fillC;
796     if (Expr *filler = ILE->getArrayFiller())
797       fillC = CGM.EmitConstantExpr(filler, filler->getType(), CGF);
798     else
799       fillC = llvm::Constant::getNullValue(ElemTy);
800     if (!fillC)
801       return 0;
802     RewriteType |= (fillC->getType() != ElemTy);
803     Elts.resize(NumElements, fillC);
804 
805     if (RewriteType) {
806       // FIXME: Try to avoid packing the array
807       std::vector<llvm::Type*> Types;
808       Types.reserve(NumInitableElts + NumElements);
809       for (unsigned i = 0, e = Elts.size(); i < e; ++i)
810         Types.push_back(Elts[i]->getType());
811       llvm::StructType *SType = llvm::StructType::get(AType->getContext(),
812                                                             Types, true);
813       return llvm::ConstantStruct::get(SType, Elts);
814     }
815 
816     return llvm::ConstantArray::get(AType, Elts);
817   }
818 
819   llvm::Constant *EmitRecordInitialization(InitListExpr *ILE) {
820     return ConstStructBuilder::BuildStruct(CGM, CGF, ILE);
821   }
822 
823   llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E) {
824     return CGM.EmitNullConstant(E->getType());
825   }
826 
827   llvm::Constant *VisitInitListExpr(InitListExpr *ILE) {
828     if (ILE->getType()->isArrayType())
829       return EmitArrayInitialization(ILE);
830 
831     if (ILE->getType()->isRecordType())
832       return EmitRecordInitialization(ILE);
833 
834     return 0;
835   }
836 
837   llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E) {
838     if (!E->getConstructor()->isTrivial())
839       return 0;
840 
841     QualType Ty = E->getType();
842 
843     // FIXME: We should not have to call getBaseElementType here.
844     const RecordType *RT =
845       CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>();
846     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
847 
848     // If the class doesn't have a trivial destructor, we can't emit it as a
849     // constant expr.
850     if (!RD->hasTrivialDestructor())
851       return 0;
852 
853     // Only copy and default constructors can be trivial.
854 
855 
856     if (E->getNumArgs()) {
857       assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
858       assert(E->getConstructor()->isCopyOrMoveConstructor() &&
859              "trivial ctor has argument but isn't a copy/move ctor");
860 
861       Expr *Arg = E->getArg(0);
862       assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
863              "argument to copy ctor is of wrong type");
864 
865       return Visit(Arg);
866     }
867 
868     return CGM.EmitNullConstant(Ty);
869   }
870 
871   llvm::Constant *VisitStringLiteral(StringLiteral *E) {
872     return CGM.GetConstantArrayFromStringLiteral(E);
873   }
874 
875   llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E) {
876     // This must be an @encode initializing an array in a static initializer.
877     // Don't emit it as the address of the string, emit the string data itself
878     // as an inline array.
879     std::string Str;
880     CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
881     const ConstantArrayType *CAT = cast<ConstantArrayType>(E->getType());
882 
883     // Resize the string to the right size, adding zeros at the end, or
884     // truncating as needed.
885     Str.resize(CAT->getSize().getZExtValue(), '\0');
886     return llvm::ConstantDataArray::getString(VMContext, Str, false);
887   }
888 
889   llvm::Constant *VisitUnaryExtension(const UnaryOperator *E) {
890     return Visit(E->getSubExpr());
891   }
892 
893   // Utility methods
894   llvm::Type *ConvertType(QualType T) {
895     return CGM.getTypes().ConvertType(T);
896   }
897 
898 public:
899   llvm::Constant *EmitLValue(APValue::LValueBase LVBase) {
900     if (const ValueDecl *Decl = LVBase.dyn_cast<const ValueDecl*>()) {
901       if (Decl->hasAttr<WeakRefAttr>())
902         return CGM.GetWeakRefReference(Decl);
903       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
904         return CGM.GetAddrOfFunction(FD);
905       if (const VarDecl* VD = dyn_cast<VarDecl>(Decl)) {
906         // We can never refer to a variable with local storage.
907         if (!VD->hasLocalStorage()) {
908           if (VD->isFileVarDecl() || VD->hasExternalStorage())
909             return CGM.GetAddrOfGlobalVar(VD);
910           else if (VD->isLocalVarDecl())
911             return CGM.getStaticLocalDeclAddress(VD);
912         }
913       }
914       return 0;
915     }
916 
917     Expr *E = const_cast<Expr*>(LVBase.get<const Expr*>());
918     switch (E->getStmtClass()) {
919     default: break;
920     case Expr::CompoundLiteralExprClass: {
921       // Note that due to the nature of compound literals, this is guaranteed
922       // to be the only use of the variable, so we just generate it here.
923       CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
924       llvm::Constant* C = CGM.EmitConstantExpr(CLE->getInitializer(),
925                                                CLE->getType(), CGF);
926       // FIXME: "Leaked" on failure.
927       if (C)
928         C = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
929                                      E->getType().isConstant(CGM.getContext()),
930                                      llvm::GlobalValue::InternalLinkage,
931                                      C, ".compoundliteral", 0,
932                                      llvm::GlobalVariable::NotThreadLocal,
933                           CGM.getContext().getTargetAddressSpace(E->getType()));
934       return C;
935     }
936     case Expr::StringLiteralClass:
937       return CGM.GetAddrOfConstantStringFromLiteral(cast<StringLiteral>(E));
938     case Expr::ObjCEncodeExprClass:
939       return CGM.GetAddrOfConstantStringFromObjCEncode(cast<ObjCEncodeExpr>(E));
940     case Expr::ObjCStringLiteralClass: {
941       ObjCStringLiteral* SL = cast<ObjCStringLiteral>(E);
942       llvm::Constant *C =
943           CGM.getObjCRuntime().GenerateConstantString(SL->getString());
944       return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
945     }
946     case Expr::PredefinedExprClass: {
947       unsigned Type = cast<PredefinedExpr>(E)->getIdentType();
948       if (CGF) {
949         LValue Res = CGF->EmitPredefinedLValue(cast<PredefinedExpr>(E));
950         return cast<llvm::Constant>(Res.getAddress());
951       } else if (Type == PredefinedExpr::PrettyFunction) {
952         return CGM.GetAddrOfConstantCString("top level", ".tmp");
953       }
954 
955       return CGM.GetAddrOfConstantCString("", ".tmp");
956     }
957     case Expr::AddrLabelExprClass: {
958       assert(CGF && "Invalid address of label expression outside function.");
959       llvm::Constant *Ptr =
960         CGF->GetAddrOfLabel(cast<AddrLabelExpr>(E)->getLabel());
961       return llvm::ConstantExpr::getBitCast(Ptr, ConvertType(E->getType()));
962     }
963     case Expr::CallExprClass: {
964       CallExpr* CE = cast<CallExpr>(E);
965       unsigned builtin = CE->isBuiltinCall();
966       if (builtin !=
967             Builtin::BI__builtin___CFStringMakeConstantString &&
968           builtin !=
969             Builtin::BI__builtin___NSStringMakeConstantString)
970         break;
971       const Expr *Arg = CE->getArg(0)->IgnoreParenCasts();
972       const StringLiteral *Literal = cast<StringLiteral>(Arg);
973       if (builtin ==
974             Builtin::BI__builtin___NSStringMakeConstantString) {
975         return CGM.getObjCRuntime().GenerateConstantString(Literal);
976       }
977       // FIXME: need to deal with UCN conversion issues.
978       return CGM.GetAddrOfConstantCFString(Literal);
979     }
980     case Expr::BlockExprClass: {
981       std::string FunctionName;
982       if (CGF)
983         FunctionName = CGF->CurFn->getName();
984       else
985         FunctionName = "global";
986 
987       return CGM.GetAddrOfGlobalBlock(cast<BlockExpr>(E), FunctionName.c_str());
988     }
989     case Expr::CXXTypeidExprClass: {
990       CXXTypeidExpr *Typeid = cast<CXXTypeidExpr>(E);
991       QualType T;
992       if (Typeid->isTypeOperand())
993         T = Typeid->getTypeOperand();
994       else
995         T = Typeid->getExprOperand()->getType();
996       return CGM.GetAddrOfRTTIDescriptor(T);
997     }
998     case Expr::CXXUuidofExprClass: {
999       return CGM.GetAddrOfUuidDescriptor(cast<CXXUuidofExpr>(E));
1000     }
1001     case Expr::MaterializeTemporaryExprClass: {
1002       MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
1003       assert(MTE->getStorageDuration() == SD_Static);
1004       SmallVector<const Expr *, 2> CommaLHSs;
1005       SmallVector<SubobjectAdjustment, 2> Adjustments;
1006       const Expr *Inner = MTE->GetTemporaryExpr()
1007           ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
1008       return CGM.GetAddrOfGlobalTemporary(MTE, Inner);
1009     }
1010     }
1011 
1012     return 0;
1013   }
1014 };
1015 
1016 }  // end anonymous namespace.
1017 
1018 llvm::Constant *CodeGenModule::EmitConstantInit(const VarDecl &D,
1019                                                 CodeGenFunction *CGF) {
1020   // Make a quick check if variable can be default NULL initialized
1021   // and avoid going through rest of code which may do, for c++11,
1022   // initialization of memory to all NULLs.
1023   if (!D.hasLocalStorage()) {
1024     QualType Ty = D.getType();
1025     if (Ty->isArrayType())
1026       Ty = Context.getBaseElementType(Ty);
1027     if (Ty->isRecordType())
1028       if (const CXXConstructExpr *E =
1029           dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
1030         const CXXConstructorDecl *CD = E->getConstructor();
1031         if (CD->isTrivial() && CD->isDefaultConstructor())
1032           return EmitNullConstant(D.getType());
1033       }
1034   }
1035 
1036   if (const APValue *Value = D.evaluateValue())
1037     return EmitConstantValueForMemory(*Value, D.getType(), CGF);
1038 
1039   // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a
1040   // reference is a constant expression, and the reference binds to a temporary,
1041   // then constant initialization is performed. ConstExprEmitter will
1042   // incorrectly emit a prvalue constant in this case, and the calling code
1043   // interprets that as the (pointer) value of the reference, rather than the
1044   // desired value of the referee.
1045   if (D.getType()->isReferenceType())
1046     return 0;
1047 
1048   const Expr *E = D.getInit();
1049   assert(E && "No initializer to emit");
1050 
1051   llvm::Constant* C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E));
1052   if (C && C->getType()->isIntegerTy(1)) {
1053     llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType());
1054     C = llvm::ConstantExpr::getZExt(C, BoolTy);
1055   }
1056   return C;
1057 }
1058 
1059 llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E,
1060                                                 QualType DestType,
1061                                                 CodeGenFunction *CGF) {
1062   Expr::EvalResult Result;
1063 
1064   bool Success = false;
1065 
1066   if (DestType->isReferenceType())
1067     Success = E->EvaluateAsLValue(Result, Context);
1068   else
1069     Success = E->EvaluateAsRValue(Result, Context);
1070 
1071   llvm::Constant *C = 0;
1072   if (Success && !Result.HasSideEffects)
1073     C = EmitConstantValue(Result.Val, DestType, CGF);
1074   else
1075     C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E));
1076 
1077   if (C && C->getType()->isIntegerTy(1)) {
1078     llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType());
1079     C = llvm::ConstantExpr::getZExt(C, BoolTy);
1080   }
1081   return C;
1082 }
1083 
1084 llvm::Constant *CodeGenModule::EmitConstantValue(const APValue &Value,
1085                                                  QualType DestType,
1086                                                  CodeGenFunction *CGF) {
1087   switch (Value.getKind()) {
1088   case APValue::Uninitialized:
1089     llvm_unreachable("Constant expressions should be initialized.");
1090   case APValue::LValue: {
1091     llvm::Type *DestTy = getTypes().ConvertTypeForMem(DestType);
1092     llvm::Constant *Offset =
1093       llvm::ConstantInt::get(Int64Ty, Value.getLValueOffset().getQuantity());
1094 
1095     llvm::Constant *C;
1096     if (APValue::LValueBase LVBase = Value.getLValueBase()) {
1097       // An array can be represented as an lvalue referring to the base.
1098       if (isa<llvm::ArrayType>(DestTy)) {
1099         assert(Offset->isNullValue() && "offset on array initializer");
1100         return ConstExprEmitter(*this, CGF).Visit(
1101           const_cast<Expr*>(LVBase.get<const Expr*>()));
1102       }
1103 
1104       C = ConstExprEmitter(*this, CGF).EmitLValue(LVBase);
1105 
1106       // Apply offset if necessary.
1107       if (!Offset->isNullValue()) {
1108         llvm::Constant *Casted = llvm::ConstantExpr::getBitCast(C, Int8PtrTy);
1109         Casted = llvm::ConstantExpr::getGetElementPtr(Casted, Offset);
1110         C = llvm::ConstantExpr::getBitCast(Casted, C->getType());
1111       }
1112 
1113       // Convert to the appropriate type; this could be an lvalue for
1114       // an integer.
1115       if (isa<llvm::PointerType>(DestTy))
1116         return llvm::ConstantExpr::getBitCast(C, DestTy);
1117 
1118       return llvm::ConstantExpr::getPtrToInt(C, DestTy);
1119     } else {
1120       C = Offset;
1121 
1122       // Convert to the appropriate type; this could be an lvalue for
1123       // an integer.
1124       if (isa<llvm::PointerType>(DestTy))
1125         return llvm::ConstantExpr::getIntToPtr(C, DestTy);
1126 
1127       // If the types don't match this should only be a truncate.
1128       if (C->getType() != DestTy)
1129         return llvm::ConstantExpr::getTrunc(C, DestTy);
1130 
1131       return C;
1132     }
1133   }
1134   case APValue::Int:
1135     return llvm::ConstantInt::get(VMContext, Value.getInt());
1136   case APValue::ComplexInt: {
1137     llvm::Constant *Complex[2];
1138 
1139     Complex[0] = llvm::ConstantInt::get(VMContext,
1140                                         Value.getComplexIntReal());
1141     Complex[1] = llvm::ConstantInt::get(VMContext,
1142                                         Value.getComplexIntImag());
1143 
1144     // FIXME: the target may want to specify that this is packed.
1145     llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(),
1146                                                   Complex[1]->getType(),
1147                                                   NULL);
1148     return llvm::ConstantStruct::get(STy, Complex);
1149   }
1150   case APValue::Float: {
1151     const llvm::APFloat &Init = Value.getFloat();
1152     if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf &&
1153          !Context.getLangOpts().NativeHalfType)
1154       return llvm::ConstantInt::get(VMContext, Init.bitcastToAPInt());
1155     else
1156       return llvm::ConstantFP::get(VMContext, Init);
1157   }
1158   case APValue::ComplexFloat: {
1159     llvm::Constant *Complex[2];
1160 
1161     Complex[0] = llvm::ConstantFP::get(VMContext,
1162                                        Value.getComplexFloatReal());
1163     Complex[1] = llvm::ConstantFP::get(VMContext,
1164                                        Value.getComplexFloatImag());
1165 
1166     // FIXME: the target may want to specify that this is packed.
1167     llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(),
1168                                                   Complex[1]->getType(),
1169                                                   NULL);
1170     return llvm::ConstantStruct::get(STy, Complex);
1171   }
1172   case APValue::Vector: {
1173     SmallVector<llvm::Constant *, 4> Inits;
1174     unsigned NumElts = Value.getVectorLength();
1175 
1176     for (unsigned i = 0; i != NumElts; ++i) {
1177       const APValue &Elt = Value.getVectorElt(i);
1178       if (Elt.isInt())
1179         Inits.push_back(llvm::ConstantInt::get(VMContext, Elt.getInt()));
1180       else
1181         Inits.push_back(llvm::ConstantFP::get(VMContext, Elt.getFloat()));
1182     }
1183     return llvm::ConstantVector::get(Inits);
1184   }
1185   case APValue::AddrLabelDiff: {
1186     const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
1187     const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
1188     llvm::Constant *LHS = EmitConstantExpr(LHSExpr, LHSExpr->getType(), CGF);
1189     llvm::Constant *RHS = EmitConstantExpr(RHSExpr, RHSExpr->getType(), CGF);
1190 
1191     // Compute difference
1192     llvm::Type *ResultType = getTypes().ConvertType(DestType);
1193     LHS = llvm::ConstantExpr::getPtrToInt(LHS, IntPtrTy);
1194     RHS = llvm::ConstantExpr::getPtrToInt(RHS, IntPtrTy);
1195     llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
1196 
1197     // LLVM is a bit sensitive about the exact format of the
1198     // address-of-label difference; make sure to truncate after
1199     // the subtraction.
1200     return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
1201   }
1202   case APValue::Struct:
1203   case APValue::Union:
1204     return ConstStructBuilder::BuildStruct(*this, CGF, Value, DestType);
1205   case APValue::Array: {
1206     const ArrayType *CAT = Context.getAsArrayType(DestType);
1207     unsigned NumElements = Value.getArraySize();
1208     unsigned NumInitElts = Value.getArrayInitializedElts();
1209 
1210     std::vector<llvm::Constant*> Elts;
1211     Elts.reserve(NumElements);
1212 
1213     // Emit array filler, if there is one.
1214     llvm::Constant *Filler = 0;
1215     if (Value.hasArrayFiller())
1216       Filler = EmitConstantValueForMemory(Value.getArrayFiller(),
1217                                           CAT->getElementType(), CGF);
1218 
1219     // Emit initializer elements.
1220     llvm::Type *CommonElementType = 0;
1221     for (unsigned I = 0; I < NumElements; ++I) {
1222       llvm::Constant *C = Filler;
1223       if (I < NumInitElts)
1224         C = EmitConstantValueForMemory(Value.getArrayInitializedElt(I),
1225                                        CAT->getElementType(), CGF);
1226       else
1227         assert(Filler && "Missing filler for implicit elements of initializer");
1228       if (I == 0)
1229         CommonElementType = C->getType();
1230       else if (C->getType() != CommonElementType)
1231         CommonElementType = 0;
1232       Elts.push_back(C);
1233     }
1234 
1235     if (!CommonElementType) {
1236       // FIXME: Try to avoid packing the array
1237       std::vector<llvm::Type*> Types;
1238       Types.reserve(NumElements);
1239       for (unsigned i = 0, e = Elts.size(); i < e; ++i)
1240         Types.push_back(Elts[i]->getType());
1241       llvm::StructType *SType = llvm::StructType::get(VMContext, Types, true);
1242       return llvm::ConstantStruct::get(SType, Elts);
1243     }
1244 
1245     llvm::ArrayType *AType =
1246       llvm::ArrayType::get(CommonElementType, NumElements);
1247     return llvm::ConstantArray::get(AType, Elts);
1248   }
1249   case APValue::MemberPointer:
1250     return getCXXABI().EmitMemberPointer(Value, DestType);
1251   }
1252   llvm_unreachable("Unknown APValue kind");
1253 }
1254 
1255 llvm::Constant *
1256 CodeGenModule::EmitConstantValueForMemory(const APValue &Value,
1257                                           QualType DestType,
1258                                           CodeGenFunction *CGF) {
1259   llvm::Constant *C = EmitConstantValue(Value, DestType, CGF);
1260   if (C->getType()->isIntegerTy(1)) {
1261     llvm::Type *BoolTy = getTypes().ConvertTypeForMem(DestType);
1262     C = llvm::ConstantExpr::getZExt(C, BoolTy);
1263   }
1264   return C;
1265 }
1266 
1267 llvm::Constant *
1268 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
1269   assert(E->isFileScope() && "not a file-scope compound literal expr");
1270   return ConstExprEmitter(*this, 0).EmitLValue(E);
1271 }
1272 
1273 llvm::Constant *
1274 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
1275   // Member pointer constants always have a very particular form.
1276   const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
1277   const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
1278 
1279   // A member function pointer.
1280   if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
1281     return getCXXABI().EmitMemberPointer(method);
1282 
1283   // Otherwise, a member data pointer.
1284   uint64_t fieldOffset = getContext().getFieldOffset(decl);
1285   CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
1286   return getCXXABI().EmitMemberDataPointer(type, chars);
1287 }
1288 
1289 static void
1290 FillInNullDataMemberPointers(CodeGenModule &CGM, QualType T,
1291                              SmallVectorImpl<llvm::Constant *> &Elements,
1292                              uint64_t StartOffset) {
1293   assert(StartOffset % CGM.getContext().getCharWidth() == 0 &&
1294          "StartOffset not byte aligned!");
1295 
1296   if (CGM.getTypes().isZeroInitializable(T))
1297     return;
1298 
1299   if (const ConstantArrayType *CAT =
1300         CGM.getContext().getAsConstantArrayType(T)) {
1301     QualType ElementTy = CAT->getElementType();
1302     uint64_t ElementSize = CGM.getContext().getTypeSize(ElementTy);
1303 
1304     for (uint64_t I = 0, E = CAT->getSize().getZExtValue(); I != E; ++I) {
1305       FillInNullDataMemberPointers(CGM, ElementTy, Elements,
1306                                    StartOffset + I * ElementSize);
1307     }
1308   } else if (const RecordType *RT = T->getAs<RecordType>()) {
1309     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1310     const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
1311 
1312     // Go through all bases and fill in any null pointer to data members.
1313     for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1314          E = RD->bases_end(); I != E; ++I) {
1315       if (I->isVirtual()) {
1316         // Ignore virtual bases.
1317         continue;
1318       }
1319 
1320       const CXXRecordDecl *BaseDecl =
1321       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
1322 
1323       // Ignore empty bases.
1324       if (BaseDecl->isEmpty())
1325         continue;
1326 
1327       // Ignore bases that don't have any pointer to data members.
1328       if (CGM.getTypes().isZeroInitializable(BaseDecl))
1329         continue;
1330 
1331       uint64_t BaseOffset =
1332         CGM.getContext().toBits(Layout.getBaseClassOffset(BaseDecl));
1333       FillInNullDataMemberPointers(CGM, I->getType(),
1334                                    Elements, StartOffset + BaseOffset);
1335     }
1336 
1337     // Visit all fields.
1338     unsigned FieldNo = 0;
1339     for (RecordDecl::field_iterator I = RD->field_begin(),
1340          E = RD->field_end(); I != E; ++I, ++FieldNo) {
1341       QualType FieldType = I->getType();
1342 
1343       if (CGM.getTypes().isZeroInitializable(FieldType))
1344         continue;
1345 
1346       uint64_t FieldOffset = StartOffset + Layout.getFieldOffset(FieldNo);
1347       FillInNullDataMemberPointers(CGM, FieldType, Elements, FieldOffset);
1348     }
1349   } else {
1350     assert(T->isMemberPointerType() && "Should only see member pointers here!");
1351     assert(!T->getAs<MemberPointerType>()->getPointeeType()->isFunctionType() &&
1352            "Should only see pointers to data members here!");
1353 
1354     CharUnits StartIndex = CGM.getContext().toCharUnitsFromBits(StartOffset);
1355     CharUnits EndIndex = StartIndex + CGM.getContext().getTypeSizeInChars(T);
1356 
1357     // FIXME: hardcodes Itanium member pointer representation!
1358     llvm::Constant *NegativeOne =
1359       llvm::ConstantInt::get(CGM.Int8Ty, -1ULL, /*isSigned*/true);
1360 
1361     // Fill in the null data member pointer.
1362     for (CharUnits I = StartIndex; I != EndIndex; ++I)
1363       Elements[I.getQuantity()] = NegativeOne;
1364   }
1365 }
1366 
1367 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
1368                                                llvm::Type *baseType,
1369                                                const CXXRecordDecl *base);
1370 
1371 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
1372                                         const CXXRecordDecl *record,
1373                                         bool asCompleteObject) {
1374   const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
1375   llvm::StructType *structure =
1376     (asCompleteObject ? layout.getLLVMType()
1377                       : layout.getBaseSubobjectLLVMType());
1378 
1379   unsigned numElements = structure->getNumElements();
1380   std::vector<llvm::Constant *> elements(numElements);
1381 
1382   // Fill in all the bases.
1383   for (CXXRecordDecl::base_class_const_iterator
1384          I = record->bases_begin(), E = record->bases_end(); I != E; ++I) {
1385     if (I->isVirtual()) {
1386       // Ignore virtual bases; if we're laying out for a complete
1387       // object, we'll lay these out later.
1388       continue;
1389     }
1390 
1391     const CXXRecordDecl *base =
1392       cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1393 
1394     // Ignore empty bases.
1395     if (base->isEmpty())
1396       continue;
1397 
1398     unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
1399     llvm::Type *baseType = structure->getElementType(fieldIndex);
1400     elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
1401   }
1402 
1403   // Fill in all the fields.
1404   for (RecordDecl::field_iterator I = record->field_begin(),
1405          E = record->field_end(); I != E; ++I) {
1406     const FieldDecl *field = *I;
1407 
1408     // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
1409     // will fill in later.)
1410     if (!field->isBitField()) {
1411       unsigned fieldIndex = layout.getLLVMFieldNo(field);
1412       elements[fieldIndex] = CGM.EmitNullConstant(field->getType());
1413     }
1414 
1415     // For unions, stop after the first named field.
1416     if (record->isUnion() && field->getDeclName())
1417       break;
1418   }
1419 
1420   // Fill in the virtual bases, if we're working with the complete object.
1421   if (asCompleteObject) {
1422     for (CXXRecordDecl::base_class_const_iterator
1423            I = record->vbases_begin(), E = record->vbases_end(); I != E; ++I) {
1424       const CXXRecordDecl *base =
1425         cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1426 
1427       // Ignore empty bases.
1428       if (base->isEmpty())
1429         continue;
1430 
1431       unsigned fieldIndex = layout.getVirtualBaseIndex(base);
1432 
1433       // We might have already laid this field out.
1434       if (elements[fieldIndex]) continue;
1435 
1436       llvm::Type *baseType = structure->getElementType(fieldIndex);
1437       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
1438     }
1439   }
1440 
1441   // Now go through all other fields and zero them out.
1442   for (unsigned i = 0; i != numElements; ++i) {
1443     if (!elements[i])
1444       elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
1445   }
1446 
1447   return llvm::ConstantStruct::get(structure, elements);
1448 }
1449 
1450 /// Emit the null constant for a base subobject.
1451 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
1452                                                llvm::Type *baseType,
1453                                                const CXXRecordDecl *base) {
1454   const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
1455 
1456   // Just zero out bases that don't have any pointer to data members.
1457   if (baseLayout.isZeroInitializableAsBase())
1458     return llvm::Constant::getNullValue(baseType);
1459 
1460   // If the base type is a struct, we can just use its null constant.
1461   if (isa<llvm::StructType>(baseType)) {
1462     return EmitNullConstant(CGM, base, /*complete*/ false);
1463   }
1464 
1465   // Otherwise, some bases are represented as arrays of i8 if the size
1466   // of the base is smaller than its corresponding LLVM type.  Figure
1467   // out how many elements this base array has.
1468   llvm::ArrayType *baseArrayType = cast<llvm::ArrayType>(baseType);
1469   unsigned numBaseElements = baseArrayType->getNumElements();
1470 
1471   // Fill in null data member pointers.
1472   SmallVector<llvm::Constant *, 16> baseElements(numBaseElements);
1473   FillInNullDataMemberPointers(CGM, CGM.getContext().getTypeDeclType(base),
1474                                baseElements, 0);
1475 
1476   // Now go through all other elements and zero them out.
1477   if (numBaseElements) {
1478     llvm::Constant *i8_zero = llvm::Constant::getNullValue(CGM.Int8Ty);
1479     for (unsigned i = 0; i != numBaseElements; ++i) {
1480       if (!baseElements[i])
1481         baseElements[i] = i8_zero;
1482     }
1483   }
1484 
1485   return llvm::ConstantArray::get(baseArrayType, baseElements);
1486 }
1487 
1488 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
1489   if (getTypes().isZeroInitializable(T))
1490     return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
1491 
1492   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
1493     llvm::ArrayType *ATy =
1494       cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
1495 
1496     QualType ElementTy = CAT->getElementType();
1497 
1498     llvm::Constant *Element = EmitNullConstant(ElementTy);
1499     unsigned NumElements = CAT->getSize().getZExtValue();
1500 
1501     if (Element->isNullValue())
1502       return llvm::ConstantAggregateZero::get(ATy);
1503 
1504     SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
1505     return llvm::ConstantArray::get(ATy, Array);
1506   }
1507 
1508   if (const RecordType *RT = T->getAs<RecordType>()) {
1509     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1510     return ::EmitNullConstant(*this, RD, /*complete object*/ true);
1511   }
1512 
1513   assert(T->isMemberPointerType() && "Should only see member pointers here!");
1514   assert(!T->getAs<MemberPointerType>()->getPointeeType()->isFunctionType() &&
1515          "Should only see pointers to data members here!");
1516 
1517   // Itanium C++ ABI 2.3:
1518   //   A NULL pointer is represented as -1.
1519   return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
1520 }
1521 
1522 llvm::Constant *
1523 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
1524   return ::EmitNullConstant(*this, Record, false);
1525 }
1526