1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Constant Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCXXABI.h"
17 #include "CGObjCRuntime.h"
18 #include "CGRecordLayout.h"
19 #include "clang/AST/APValue.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "clang/Basic/Builtins.h"
24 #include "llvm/Constants.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/Target/TargetData.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 //===----------------------------------------------------------------------===//
32 //                            ConstStructBuilder
33 //===----------------------------------------------------------------------===//
34 
35 namespace {
36 class ConstStructBuilder {
37   CodeGenModule &CGM;
38   CodeGenFunction *CGF;
39 
40   bool Packed;
41   unsigned NextFieldOffsetInBytes;
42   unsigned LLVMStructAlignment;
43   std::vector<llvm::Constant *> Elements;
44 public:
45   static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF,
46                                      InitListExpr *ILE);
47 
48 private:
49   ConstStructBuilder(CodeGenModule &CGM, CodeGenFunction *CGF)
50     : CGM(CGM), CGF(CGF), Packed(false), NextFieldOffsetInBytes(0),
51     LLVMStructAlignment(1) { }
52 
53   bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
54                    llvm::Constant *InitExpr);
55 
56   void AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
57                       llvm::ConstantInt *InitExpr);
58 
59   void AppendPadding(uint64_t NumBytes);
60 
61   void AppendTailPadding(uint64_t RecordSize);
62 
63   void ConvertStructToPacked();
64 
65   bool Build(InitListExpr *ILE);
66 
67   unsigned getAlignment(const llvm::Constant *C) const {
68     if (Packed)  return 1;
69     return CGM.getTargetData().getABITypeAlignment(C->getType());
70   }
71 
72   uint64_t getSizeInBytes(const llvm::Constant *C) const {
73     return CGM.getTargetData().getTypeAllocSize(C->getType());
74   }
75 };
76 
77 bool ConstStructBuilder::
78 AppendField(const FieldDecl *Field, uint64_t FieldOffset,
79             llvm::Constant *InitCst) {
80   uint64_t FieldOffsetInBytes = FieldOffset / 8;
81 
82   assert(NextFieldOffsetInBytes <= FieldOffsetInBytes
83          && "Field offset mismatch!");
84 
85   unsigned FieldAlignment = getAlignment(InitCst);
86 
87   // Round up the field offset to the alignment of the field type.
88   uint64_t AlignedNextFieldOffsetInBytes =
89     llvm::RoundUpToAlignment(NextFieldOffsetInBytes, FieldAlignment);
90 
91   if (AlignedNextFieldOffsetInBytes > FieldOffsetInBytes) {
92     assert(!Packed && "Alignment is wrong even with a packed struct!");
93 
94     // Convert the struct to a packed struct.
95     ConvertStructToPacked();
96 
97     AlignedNextFieldOffsetInBytes = NextFieldOffsetInBytes;
98   }
99 
100   if (AlignedNextFieldOffsetInBytes < FieldOffsetInBytes) {
101     // We need to append padding.
102     AppendPadding(FieldOffsetInBytes - NextFieldOffsetInBytes);
103 
104     assert(NextFieldOffsetInBytes == FieldOffsetInBytes &&
105            "Did not add enough padding!");
106 
107     AlignedNextFieldOffsetInBytes = NextFieldOffsetInBytes;
108   }
109 
110   // Add the field.
111   Elements.push_back(InitCst);
112   NextFieldOffsetInBytes = AlignedNextFieldOffsetInBytes +
113                              getSizeInBytes(InitCst);
114 
115   if (Packed)
116     assert(LLVMStructAlignment == 1 && "Packed struct not byte-aligned!");
117   else
118     LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment);
119 
120   return true;
121 }
122 
123 void ConstStructBuilder::AppendBitField(const FieldDecl *Field,
124                                         uint64_t FieldOffset,
125                                         llvm::ConstantInt *CI) {
126   if (FieldOffset > NextFieldOffsetInBytes * 8) {
127     // We need to add padding.
128     uint64_t NumBytes =
129       llvm::RoundUpToAlignment(FieldOffset -
130                                NextFieldOffsetInBytes * 8, 8) / 8;
131 
132     AppendPadding(NumBytes);
133   }
134 
135   uint64_t FieldSize =
136     Field->getBitWidth()->EvaluateAsInt(CGM.getContext()).getZExtValue();
137 
138   llvm::APInt FieldValue = CI->getValue();
139 
140   // Promote the size of FieldValue if necessary
141   // FIXME: This should never occur, but currently it can because initializer
142   // constants are cast to bool, and because clang is not enforcing bitfield
143   // width limits.
144   if (FieldSize > FieldValue.getBitWidth())
145     FieldValue.zext(FieldSize);
146 
147   // Truncate the size of FieldValue to the bit field size.
148   if (FieldSize < FieldValue.getBitWidth())
149     FieldValue.trunc(FieldSize);
150 
151   if (FieldOffset < NextFieldOffsetInBytes * 8) {
152     // Either part of the field or the entire field can go into the previous
153     // byte.
154     assert(!Elements.empty() && "Elements can't be empty!");
155 
156     unsigned BitsInPreviousByte =
157       NextFieldOffsetInBytes * 8 - FieldOffset;
158 
159     bool FitsCompletelyInPreviousByte =
160       BitsInPreviousByte >= FieldValue.getBitWidth();
161 
162     llvm::APInt Tmp = FieldValue;
163 
164     if (!FitsCompletelyInPreviousByte) {
165       unsigned NewFieldWidth = FieldSize - BitsInPreviousByte;
166 
167       if (CGM.getTargetData().isBigEndian()) {
168         Tmp = Tmp.lshr(NewFieldWidth);
169         Tmp.trunc(BitsInPreviousByte);
170 
171         // We want the remaining high bits.
172         FieldValue.trunc(NewFieldWidth);
173       } else {
174         Tmp.trunc(BitsInPreviousByte);
175 
176         // We want the remaining low bits.
177         FieldValue = FieldValue.lshr(BitsInPreviousByte);
178         FieldValue.trunc(NewFieldWidth);
179       }
180     }
181 
182     Tmp.zext(8);
183     if (CGM.getTargetData().isBigEndian()) {
184       if (FitsCompletelyInPreviousByte)
185         Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth());
186     } else {
187       Tmp = Tmp.shl(8 - BitsInPreviousByte);
188     }
189 
190     // 'or' in the bits that go into the previous byte.
191     llvm::Value *LastElt = Elements.back();
192     if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(LastElt))
193       Tmp |= Val->getValue();
194     else {
195       assert(isa<llvm::UndefValue>(LastElt));
196       // If there is an undef field that we're adding to, it can either be a
197       // scalar undef (in which case, we just replace it with our field) or it
198       // is an array.  If it is an array, we have to pull one byte off the
199       // array so that the other undef bytes stay around.
200       if (!isa<llvm::IntegerType>(LastElt->getType())) {
201         // The undef padding will be a multibyte array, create a new smaller
202         // padding and then an hole for our i8 to get plopped into.
203         assert(isa<llvm::ArrayType>(LastElt->getType()) &&
204                "Expected array padding of undefs");
205         const llvm::ArrayType *AT = cast<llvm::ArrayType>(LastElt->getType());
206         assert(AT->getElementType()->isIntegerTy(8) &&
207                AT->getNumElements() != 0 &&
208                "Expected non-empty array padding of undefs");
209 
210         // Remove the padding array.
211         NextFieldOffsetInBytes -= AT->getNumElements();
212         Elements.pop_back();
213 
214         // Add the padding back in two chunks.
215         AppendPadding(AT->getNumElements()-1);
216         AppendPadding(1);
217         assert(isa<llvm::UndefValue>(Elements.back()) &&
218                Elements.back()->getType()->isIntegerTy(8) &&
219                "Padding addition didn't work right");
220       }
221     }
222 
223     Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp);
224 
225     if (FitsCompletelyInPreviousByte)
226       return;
227   }
228 
229   while (FieldValue.getBitWidth() > 8) {
230     llvm::APInt Tmp;
231 
232     if (CGM.getTargetData().isBigEndian()) {
233       // We want the high bits.
234       Tmp = FieldValue;
235       Tmp = Tmp.lshr(Tmp.getBitWidth() - 8);
236       Tmp.trunc(8);
237     } else {
238       // We want the low bits.
239       Tmp = FieldValue;
240       Tmp.trunc(8);
241 
242       FieldValue = FieldValue.lshr(8);
243     }
244 
245     Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp));
246     NextFieldOffsetInBytes++;
247 
248     FieldValue.trunc(FieldValue.getBitWidth() - 8);
249   }
250 
251   assert(FieldValue.getBitWidth() > 0 &&
252          "Should have at least one bit left!");
253   assert(FieldValue.getBitWidth() <= 8 &&
254          "Should not have more than a byte left!");
255 
256   if (FieldValue.getBitWidth() < 8) {
257     if (CGM.getTargetData().isBigEndian()) {
258       unsigned BitWidth = FieldValue.getBitWidth();
259 
260       FieldValue.zext(8);
261       FieldValue = FieldValue << (8 - BitWidth);
262     } else
263       FieldValue.zext(8);
264   }
265 
266   // Append the last element.
267   Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(),
268                                             FieldValue));
269   NextFieldOffsetInBytes++;
270 }
271 
272 void ConstStructBuilder::AppendPadding(uint64_t NumBytes) {
273   if (!NumBytes)
274     return;
275 
276   const llvm::Type *Ty = llvm::Type::getInt8Ty(CGM.getLLVMContext());
277   if (NumBytes > 1)
278     Ty = llvm::ArrayType::get(Ty, NumBytes);
279 
280   llvm::Constant *C = llvm::UndefValue::get(Ty);
281   Elements.push_back(C);
282   assert(getAlignment(C) == 1 && "Padding must have 1 byte alignment!");
283 
284   NextFieldOffsetInBytes += getSizeInBytes(C);
285 }
286 
287 void ConstStructBuilder::AppendTailPadding(uint64_t RecordSize) {
288   assert(RecordSize % 8 == 0 && "Invalid record size!");
289 
290   uint64_t RecordSizeInBytes = RecordSize / 8;
291   assert(NextFieldOffsetInBytes <= RecordSizeInBytes && "Size mismatch!");
292 
293   unsigned NumPadBytes = RecordSizeInBytes - NextFieldOffsetInBytes;
294   AppendPadding(NumPadBytes);
295 }
296 
297 void ConstStructBuilder::ConvertStructToPacked() {
298   std::vector<llvm::Constant *> PackedElements;
299   uint64_t ElementOffsetInBytes = 0;
300 
301   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
302     llvm::Constant *C = Elements[i];
303 
304     unsigned ElementAlign =
305       CGM.getTargetData().getABITypeAlignment(C->getType());
306     uint64_t AlignedElementOffsetInBytes =
307       llvm::RoundUpToAlignment(ElementOffsetInBytes, ElementAlign);
308 
309     if (AlignedElementOffsetInBytes > ElementOffsetInBytes) {
310       // We need some padding.
311       uint64_t NumBytes =
312         AlignedElementOffsetInBytes - ElementOffsetInBytes;
313 
314       const llvm::Type *Ty = llvm::Type::getInt8Ty(CGM.getLLVMContext());
315       if (NumBytes > 1)
316         Ty = llvm::ArrayType::get(Ty, NumBytes);
317 
318       llvm::Constant *Padding = llvm::UndefValue::get(Ty);
319       PackedElements.push_back(Padding);
320       ElementOffsetInBytes += getSizeInBytes(Padding);
321     }
322 
323     PackedElements.push_back(C);
324     ElementOffsetInBytes += getSizeInBytes(C);
325   }
326 
327   assert(ElementOffsetInBytes == NextFieldOffsetInBytes &&
328          "Packing the struct changed its size!");
329 
330   Elements = PackedElements;
331   LLVMStructAlignment = 1;
332   Packed = true;
333 }
334 
335 bool ConstStructBuilder::Build(InitListExpr *ILE) {
336   RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
337   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
338 
339   unsigned FieldNo = 0;
340   unsigned ElementNo = 0;
341   for (RecordDecl::field_iterator Field = RD->field_begin(),
342        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
343 
344     // If this is a union, skip all the fields that aren't being initialized.
345     if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field)
346       continue;
347 
348     // Don't emit anonymous bitfields, they just affect layout.
349     if (Field->isBitField() && !Field->getIdentifier())
350       continue;
351 
352     // Get the initializer.  A struct can include fields without initializers,
353     // we just use explicit null values for them.
354     llvm::Constant *EltInit;
355     if (ElementNo < ILE->getNumInits())
356       EltInit = CGM.EmitConstantExpr(ILE->getInit(ElementNo++),
357                                      Field->getType(), CGF);
358     else
359       EltInit = CGM.EmitNullConstant(Field->getType());
360 
361     if (!EltInit)
362       return false;
363 
364     if (!Field->isBitField()) {
365       // Handle non-bitfield members.
366       if (!AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit))
367         return false;
368     } else {
369       // Otherwise we have a bitfield.
370       AppendBitField(*Field, Layout.getFieldOffset(FieldNo),
371                      cast<llvm::ConstantInt>(EltInit));
372     }
373   }
374 
375   uint64_t LayoutSizeInBytes = Layout.getSize() / 8;
376 
377   if (NextFieldOffsetInBytes > LayoutSizeInBytes) {
378     // If the struct is bigger than the size of the record type,
379     // we must have a flexible array member at the end.
380     assert(RD->hasFlexibleArrayMember() &&
381            "Must have flexible array member if struct is bigger than type!");
382 
383     // No tail padding is necessary.
384     return true;
385   }
386 
387   uint64_t LLVMSizeInBytes = llvm::RoundUpToAlignment(NextFieldOffsetInBytes,
388                                                       LLVMStructAlignment);
389 
390   // Check if we need to convert the struct to a packed struct.
391   if (NextFieldOffsetInBytes <= LayoutSizeInBytes &&
392       LLVMSizeInBytes > LayoutSizeInBytes) {
393     assert(!Packed && "Size mismatch!");
394 
395     ConvertStructToPacked();
396     assert(NextFieldOffsetInBytes <= LayoutSizeInBytes &&
397            "Converting to packed did not help!");
398   }
399 
400   // Append tail padding if necessary.
401   AppendTailPadding(Layout.getSize());
402 
403   assert(Layout.getSize() / 8 == NextFieldOffsetInBytes &&
404          "Tail padding mismatch!");
405 
406   return true;
407 }
408 
409 llvm::Constant *ConstStructBuilder::
410   BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF, InitListExpr *ILE) {
411   ConstStructBuilder Builder(CGM, CGF);
412 
413   if (!Builder.Build(ILE))
414     return 0;
415 
416   llvm::Constant *Result =
417   llvm::ConstantStruct::get(CGM.getLLVMContext(),
418                             Builder.Elements, Builder.Packed);
419 
420   assert(llvm::RoundUpToAlignment(Builder.NextFieldOffsetInBytes,
421                                   Builder.getAlignment(Result)) ==
422          Builder.getSizeInBytes(Result) && "Size mismatch!");
423 
424   return Result;
425 }
426 
427 
428 //===----------------------------------------------------------------------===//
429 //                             ConstExprEmitter
430 //===----------------------------------------------------------------------===//
431 
432 class ConstExprEmitter :
433   public StmtVisitor<ConstExprEmitter, llvm::Constant*> {
434   CodeGenModule &CGM;
435   CodeGenFunction *CGF;
436   llvm::LLVMContext &VMContext;
437 public:
438   ConstExprEmitter(CodeGenModule &cgm, CodeGenFunction *cgf)
439     : CGM(cgm), CGF(cgf), VMContext(cgm.getLLVMContext()) {
440   }
441 
442   //===--------------------------------------------------------------------===//
443   //                            Visitor Methods
444   //===--------------------------------------------------------------------===//
445 
446   llvm::Constant *VisitStmt(Stmt *S) {
447     return 0;
448   }
449 
450   llvm::Constant *VisitParenExpr(ParenExpr *PE) {
451     return Visit(PE->getSubExpr());
452   }
453 
454   llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
455     return Visit(E->getInitializer());
456   }
457 
458   llvm::Constant *VisitUnaryAddrOf(UnaryOperator *E) {
459     if (const MemberPointerType *MPT =
460           E->getType()->getAs<MemberPointerType>()) {
461       DeclRefExpr *DRE = cast<DeclRefExpr>(E->getSubExpr());
462       NamedDecl *ND = DRE->getDecl();
463       if (MPT->isMemberFunctionPointer())
464         return CGM.getCXXABI().EmitMemberPointer(cast<CXXMethodDecl>(ND));
465       else
466         return CGM.getCXXABI().EmitMemberPointer(cast<FieldDecl>(ND));
467     }
468 
469     return 0;
470   }
471 
472   llvm::Constant *VisitBinSub(BinaryOperator *E) {
473     // This must be a pointer/pointer subtraction.  This only happens for
474     // address of label.
475     if (!isa<AddrLabelExpr>(E->getLHS()->IgnoreParenNoopCasts(CGM.getContext())) ||
476        !isa<AddrLabelExpr>(E->getRHS()->IgnoreParenNoopCasts(CGM.getContext())))
477       return 0;
478 
479     llvm::Constant *LHS = CGM.EmitConstantExpr(E->getLHS(),
480                                                E->getLHS()->getType(), CGF);
481     llvm::Constant *RHS = CGM.EmitConstantExpr(E->getRHS(),
482                                                E->getRHS()->getType(), CGF);
483 
484     const llvm::Type *ResultType = ConvertType(E->getType());
485     LHS = llvm::ConstantExpr::getPtrToInt(LHS, ResultType);
486     RHS = llvm::ConstantExpr::getPtrToInt(RHS, ResultType);
487 
488     // No need to divide by element size, since addr of label is always void*,
489     // which has size 1 in GNUish.
490     return llvm::ConstantExpr::getSub(LHS, RHS);
491   }
492 
493   llvm::Constant *VisitCastExpr(CastExpr* E) {
494     switch (E->getCastKind()) {
495     case CK_ToUnion: {
496       // GCC cast to union extension
497       assert(E->getType()->isUnionType() &&
498              "Destination type is not union type!");
499       const llvm::Type *Ty = ConvertType(E->getType());
500       Expr *SubExpr = E->getSubExpr();
501 
502       llvm::Constant *C =
503         CGM.EmitConstantExpr(SubExpr, SubExpr->getType(), CGF);
504       if (!C)
505         return 0;
506 
507       // Build a struct with the union sub-element as the first member,
508       // and padded to the appropriate size
509       std::vector<llvm::Constant*> Elts;
510       std::vector<const llvm::Type*> Types;
511       Elts.push_back(C);
512       Types.push_back(C->getType());
513       unsigned CurSize = CGM.getTargetData().getTypeAllocSize(C->getType());
514       unsigned TotalSize = CGM.getTargetData().getTypeAllocSize(Ty);
515 
516       assert(CurSize <= TotalSize && "Union size mismatch!");
517       if (unsigned NumPadBytes = TotalSize - CurSize) {
518         const llvm::Type *Ty = llvm::Type::getInt8Ty(VMContext);
519         if (NumPadBytes > 1)
520           Ty = llvm::ArrayType::get(Ty, NumPadBytes);
521 
522         Elts.push_back(llvm::UndefValue::get(Ty));
523         Types.push_back(Ty);
524       }
525 
526       llvm::StructType* STy =
527         llvm::StructType::get(C->getType()->getContext(), Types, false);
528       return llvm::ConstantStruct::get(STy, Elts);
529     }
530     case CK_NullToMemberPointer: {
531       const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
532       return CGM.getCXXABI().EmitNullMemberPointer(MPT);
533     }
534 
535     case CK_BaseToDerivedMemberPointer: {
536       Expr *SubExpr = E->getSubExpr();
537       llvm::Constant *C =
538         CGM.EmitConstantExpr(SubExpr, SubExpr->getType(), CGF);
539       if (!C) return 0;
540 
541       return CGM.getCXXABI().EmitMemberPointerConversion(C, E);
542     }
543 
544     case CK_BitCast:
545       // This must be a member function pointer cast.
546       return Visit(E->getSubExpr());
547 
548     default: {
549       // FIXME: This should be handled by the CK_NoOp cast kind.
550       // Explicit and implicit no-op casts
551       QualType Ty = E->getType(), SubTy = E->getSubExpr()->getType();
552       if (CGM.getContext().hasSameUnqualifiedType(Ty, SubTy))
553         return Visit(E->getSubExpr());
554 
555       // Handle integer->integer casts for address-of-label differences.
556       if (Ty->isIntegerType() && SubTy->isIntegerType() &&
557           CGF) {
558         llvm::Value *Src = Visit(E->getSubExpr());
559         if (Src == 0) return 0;
560 
561         // Use EmitScalarConversion to perform the conversion.
562         return cast<llvm::Constant>(CGF->EmitScalarConversion(Src, SubTy, Ty));
563       }
564 
565       return 0;
566     }
567     }
568   }
569 
570   llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
571     return Visit(DAE->getExpr());
572   }
573 
574   llvm::Constant *EmitArrayInitialization(InitListExpr *ILE) {
575     unsigned NumInitElements = ILE->getNumInits();
576     if (NumInitElements == 1 &&
577         (isa<StringLiteral>(ILE->getInit(0)) ||
578          isa<ObjCEncodeExpr>(ILE->getInit(0))))
579       return Visit(ILE->getInit(0));
580 
581     std::vector<llvm::Constant*> Elts;
582     const llvm::ArrayType *AType =
583         cast<llvm::ArrayType>(ConvertType(ILE->getType()));
584     const llvm::Type *ElemTy = AType->getElementType();
585     unsigned NumElements = AType->getNumElements();
586 
587     // Initialising an array requires us to automatically
588     // initialise any elements that have not been initialised explicitly
589     unsigned NumInitableElts = std::min(NumInitElements, NumElements);
590 
591     // Copy initializer elements.
592     unsigned i = 0;
593     bool RewriteType = false;
594     for (; i < NumInitableElts; ++i) {
595       Expr *Init = ILE->getInit(i);
596       llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF);
597       if (!C)
598         return 0;
599       RewriteType |= (C->getType() != ElemTy);
600       Elts.push_back(C);
601     }
602 
603     // Initialize remaining array elements.
604     // FIXME: This doesn't handle member pointers correctly!
605     for (; i < NumElements; ++i)
606       Elts.push_back(llvm::Constant::getNullValue(ElemTy));
607 
608     if (RewriteType) {
609       // FIXME: Try to avoid packing the array
610       std::vector<const llvm::Type*> Types;
611       for (unsigned i = 0; i < Elts.size(); ++i)
612         Types.push_back(Elts[i]->getType());
613       const llvm::StructType *SType = llvm::StructType::get(AType->getContext(),
614                                                             Types, true);
615       return llvm::ConstantStruct::get(SType, Elts);
616     }
617 
618     return llvm::ConstantArray::get(AType, Elts);
619   }
620 
621   llvm::Constant *EmitStructInitialization(InitListExpr *ILE) {
622     return ConstStructBuilder::BuildStruct(CGM, CGF, ILE);
623   }
624 
625   llvm::Constant *EmitUnionInitialization(InitListExpr *ILE) {
626     return ConstStructBuilder::BuildStruct(CGM, CGF, ILE);
627   }
628 
629   llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E) {
630     return CGM.EmitNullConstant(E->getType());
631   }
632 
633   llvm::Constant *VisitInitListExpr(InitListExpr *ILE) {
634     if (ILE->getType()->isScalarType()) {
635       // We have a scalar in braces. Just use the first element.
636       if (ILE->getNumInits() > 0) {
637         Expr *Init = ILE->getInit(0);
638         return CGM.EmitConstantExpr(Init, Init->getType(), CGF);
639       }
640       return CGM.EmitNullConstant(ILE->getType());
641     }
642 
643     if (ILE->getType()->isArrayType())
644       return EmitArrayInitialization(ILE);
645 
646     if (ILE->getType()->isRecordType())
647       return EmitStructInitialization(ILE);
648 
649     if (ILE->getType()->isUnionType())
650       return EmitUnionInitialization(ILE);
651 
652     // If ILE was a constant vector, we would have handled it already.
653     if (ILE->getType()->isVectorType())
654       return 0;
655 
656     assert(0 && "Unable to handle InitListExpr");
657     // Get rid of control reaches end of void function warning.
658     // Not reached.
659     return 0;
660   }
661 
662   llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E) {
663     if (!E->getConstructor()->isTrivial())
664       return 0;
665 
666     QualType Ty = E->getType();
667 
668     // FIXME: We should not have to call getBaseElementType here.
669     const RecordType *RT =
670       CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>();
671     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
672 
673     // If the class doesn't have a trivial destructor, we can't emit it as a
674     // constant expr.
675     if (!RD->hasTrivialDestructor())
676       return 0;
677 
678     // Only copy and default constructors can be trivial.
679 
680 
681     if (E->getNumArgs()) {
682       assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
683       assert(E->getConstructor()->isCopyConstructor() &&
684              "trivial ctor has argument but isn't a copy ctor");
685 
686       Expr *Arg = E->getArg(0);
687       assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
688              "argument to copy ctor is of wrong type");
689 
690       return Visit(Arg);
691     }
692 
693     return CGM.EmitNullConstant(Ty);
694   }
695 
696   llvm::Constant *VisitStringLiteral(StringLiteral *E) {
697     assert(!E->getType()->isPointerType() && "Strings are always arrays");
698 
699     // This must be a string initializing an array in a static initializer.
700     // Don't emit it as the address of the string, emit the string data itself
701     // as an inline array.
702     return llvm::ConstantArray::get(VMContext,
703                                     CGM.GetStringForStringLiteral(E), false);
704   }
705 
706   llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E) {
707     // This must be an @encode initializing an array in a static initializer.
708     // Don't emit it as the address of the string, emit the string data itself
709     // as an inline array.
710     std::string Str;
711     CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
712     const ConstantArrayType *CAT = cast<ConstantArrayType>(E->getType());
713 
714     // Resize the string to the right size, adding zeros at the end, or
715     // truncating as needed.
716     Str.resize(CAT->getSize().getZExtValue(), '\0');
717     return llvm::ConstantArray::get(VMContext, Str, false);
718   }
719 
720   llvm::Constant *VisitUnaryExtension(const UnaryOperator *E) {
721     return Visit(E->getSubExpr());
722   }
723 
724   // Utility methods
725   const llvm::Type *ConvertType(QualType T) {
726     return CGM.getTypes().ConvertType(T);
727   }
728 
729 public:
730   llvm::Constant *EmitLValue(Expr *E) {
731     switch (E->getStmtClass()) {
732     default: break;
733     case Expr::CompoundLiteralExprClass: {
734       // Note that due to the nature of compound literals, this is guaranteed
735       // to be the only use of the variable, so we just generate it here.
736       CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
737       llvm::Constant* C = Visit(CLE->getInitializer());
738       // FIXME: "Leaked" on failure.
739       if (C)
740         C = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
741                                      E->getType().isConstant(CGM.getContext()),
742                                      llvm::GlobalValue::InternalLinkage,
743                                      C, ".compoundliteral", 0, false,
744                                      E->getType().getAddressSpace());
745       return C;
746     }
747     case Expr::DeclRefExprClass: {
748       ValueDecl *Decl = cast<DeclRefExpr>(E)->getDecl();
749       if (Decl->hasAttr<WeakRefAttr>())
750         return CGM.GetWeakRefReference(Decl);
751       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
752         return CGM.GetAddrOfFunction(FD);
753       if (const VarDecl* VD = dyn_cast<VarDecl>(Decl)) {
754         // We can never refer to a variable with local storage.
755         if (!VD->hasLocalStorage()) {
756           if (VD->isFileVarDecl() || VD->hasExternalStorage())
757             return CGM.GetAddrOfGlobalVar(VD);
758           else if (VD->isLocalVarDecl()) {
759             assert(CGF && "Can't access static local vars without CGF");
760             return CGF->GetAddrOfStaticLocalVar(VD);
761           }
762         }
763       }
764       break;
765     }
766     case Expr::StringLiteralClass:
767       return CGM.GetAddrOfConstantStringFromLiteral(cast<StringLiteral>(E));
768     case Expr::ObjCEncodeExprClass:
769       return CGM.GetAddrOfConstantStringFromObjCEncode(cast<ObjCEncodeExpr>(E));
770     case Expr::ObjCStringLiteralClass: {
771       ObjCStringLiteral* SL = cast<ObjCStringLiteral>(E);
772       llvm::Constant *C =
773           CGM.getObjCRuntime().GenerateConstantString(SL->getString());
774       return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
775     }
776     case Expr::PredefinedExprClass: {
777       unsigned Type = cast<PredefinedExpr>(E)->getIdentType();
778       if (CGF) {
779         LValue Res = CGF->EmitPredefinedLValue(cast<PredefinedExpr>(E));
780         return cast<llvm::Constant>(Res.getAddress());
781       } else if (Type == PredefinedExpr::PrettyFunction) {
782         return CGM.GetAddrOfConstantCString("top level", ".tmp");
783       }
784 
785       return CGM.GetAddrOfConstantCString("", ".tmp");
786     }
787     case Expr::AddrLabelExprClass: {
788       assert(CGF && "Invalid address of label expression outside function.");
789       llvm::Constant *Ptr =
790         CGF->GetAddrOfLabel(cast<AddrLabelExpr>(E)->getLabel());
791       return llvm::ConstantExpr::getBitCast(Ptr, ConvertType(E->getType()));
792     }
793     case Expr::CallExprClass: {
794       CallExpr* CE = cast<CallExpr>(E);
795       unsigned builtin = CE->isBuiltinCall(CGM.getContext());
796       if (builtin !=
797             Builtin::BI__builtin___CFStringMakeConstantString &&
798           builtin !=
799             Builtin::BI__builtin___NSStringMakeConstantString)
800         break;
801       const Expr *Arg = CE->getArg(0)->IgnoreParenCasts();
802       const StringLiteral *Literal = cast<StringLiteral>(Arg);
803       if (builtin ==
804             Builtin::BI__builtin___NSStringMakeConstantString) {
805         return CGM.getObjCRuntime().GenerateConstantString(Literal);
806       }
807       // FIXME: need to deal with UCN conversion issues.
808       return CGM.GetAddrOfConstantCFString(Literal);
809     }
810     case Expr::BlockExprClass: {
811       std::string FunctionName;
812       if (CGF)
813         FunctionName = CGF->CurFn->getName();
814       else
815         FunctionName = "global";
816 
817       return CGM.GetAddrOfGlobalBlock(cast<BlockExpr>(E), FunctionName.c_str());
818     }
819     }
820 
821     return 0;
822   }
823 };
824 
825 }  // end anonymous namespace.
826 
827 llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E,
828                                                 QualType DestType,
829                                                 CodeGenFunction *CGF) {
830   Expr::EvalResult Result;
831 
832   bool Success = false;
833 
834   if (DestType->isReferenceType())
835     Success = E->EvaluateAsLValue(Result, Context);
836   else
837     Success = E->Evaluate(Result, Context);
838 
839   if (Success && !Result.HasSideEffects) {
840     switch (Result.Val.getKind()) {
841     case APValue::Uninitialized:
842       assert(0 && "Constant expressions should be initialized.");
843       return 0;
844     case APValue::LValue: {
845       const llvm::Type *DestTy = getTypes().ConvertTypeForMem(DestType);
846       llvm::Constant *Offset =
847         llvm::ConstantInt::get(llvm::Type::getInt64Ty(VMContext),
848                                Result.Val.getLValueOffset().getQuantity());
849 
850       llvm::Constant *C;
851       if (const Expr *LVBase = Result.Val.getLValueBase()) {
852         C = ConstExprEmitter(*this, CGF).EmitLValue(const_cast<Expr*>(LVBase));
853 
854         // Apply offset if necessary.
855         if (!Offset->isNullValue()) {
856           const llvm::Type *Type = llvm::Type::getInt8PtrTy(VMContext);
857           llvm::Constant *Casted = llvm::ConstantExpr::getBitCast(C, Type);
858           Casted = llvm::ConstantExpr::getGetElementPtr(Casted, &Offset, 1);
859           C = llvm::ConstantExpr::getBitCast(Casted, C->getType());
860         }
861 
862         // Convert to the appropriate type; this could be an lvalue for
863         // an integer.
864         if (isa<llvm::PointerType>(DestTy))
865           return llvm::ConstantExpr::getBitCast(C, DestTy);
866 
867         return llvm::ConstantExpr::getPtrToInt(C, DestTy);
868       } else {
869         C = Offset;
870 
871         // Convert to the appropriate type; this could be an lvalue for
872         // an integer.
873         if (isa<llvm::PointerType>(DestTy))
874           return llvm::ConstantExpr::getIntToPtr(C, DestTy);
875 
876         // If the types don't match this should only be a truncate.
877         if (C->getType() != DestTy)
878           return llvm::ConstantExpr::getTrunc(C, DestTy);
879 
880         return C;
881       }
882     }
883     case APValue::Int: {
884       llvm::Constant *C = llvm::ConstantInt::get(VMContext,
885                                                  Result.Val.getInt());
886 
887       if (C->getType()->isIntegerTy(1)) {
888         const llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType());
889         C = llvm::ConstantExpr::getZExt(C, BoolTy);
890       }
891       return C;
892     }
893     case APValue::ComplexInt: {
894       llvm::Constant *Complex[2];
895 
896       Complex[0] = llvm::ConstantInt::get(VMContext,
897                                           Result.Val.getComplexIntReal());
898       Complex[1] = llvm::ConstantInt::get(VMContext,
899                                           Result.Val.getComplexIntImag());
900 
901       // FIXME: the target may want to specify that this is packed.
902       return llvm::ConstantStruct::get(VMContext, Complex, 2, false);
903     }
904     case APValue::Float:
905       return llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
906     case APValue::ComplexFloat: {
907       llvm::Constant *Complex[2];
908 
909       Complex[0] = llvm::ConstantFP::get(VMContext,
910                                          Result.Val.getComplexFloatReal());
911       Complex[1] = llvm::ConstantFP::get(VMContext,
912                                          Result.Val.getComplexFloatImag());
913 
914       // FIXME: the target may want to specify that this is packed.
915       return llvm::ConstantStruct::get(VMContext, Complex, 2, false);
916     }
917     case APValue::Vector: {
918       llvm::SmallVector<llvm::Constant *, 4> Inits;
919       unsigned NumElts = Result.Val.getVectorLength();
920 
921       for (unsigned i = 0; i != NumElts; ++i) {
922         APValue &Elt = Result.Val.getVectorElt(i);
923         if (Elt.isInt())
924           Inits.push_back(llvm::ConstantInt::get(VMContext, Elt.getInt()));
925         else
926           Inits.push_back(llvm::ConstantFP::get(VMContext, Elt.getFloat()));
927       }
928       return llvm::ConstantVector::get(&Inits[0], Inits.size());
929     }
930     }
931   }
932 
933   llvm::Constant* C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E));
934   if (C && C->getType()->isIntegerTy(1)) {
935     const llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType());
936     C = llvm::ConstantExpr::getZExt(C, BoolTy);
937   }
938   return C;
939 }
940 
941 static void
942 FillInNullDataMemberPointers(CodeGenModule &CGM, QualType T,
943                              std::vector<llvm::Constant *> &Elements,
944                              uint64_t StartOffset) {
945   assert(StartOffset % 8 == 0 && "StartOffset not byte aligned!");
946 
947   if (CGM.getTypes().isZeroInitializable(T))
948     return;
949 
950   if (const ConstantArrayType *CAT =
951         CGM.getContext().getAsConstantArrayType(T)) {
952     QualType ElementTy = CAT->getElementType();
953     uint64_t ElementSize = CGM.getContext().getTypeSize(ElementTy);
954 
955     for (uint64_t I = 0, E = CAT->getSize().getZExtValue(); I != E; ++I) {
956       FillInNullDataMemberPointers(CGM, ElementTy, Elements,
957                                    StartOffset + I * ElementSize);
958     }
959   } else if (const RecordType *RT = T->getAs<RecordType>()) {
960     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
961     const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
962 
963     // Go through all bases and fill in any null pointer to data members.
964     for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
965          E = RD->bases_end(); I != E; ++I) {
966       if (I->isVirtual()) {
967         // FIXME: We should initialize null pointer to data members in virtual
968         // bases here.
969         continue;
970       }
971 
972       const CXXRecordDecl *BaseDecl =
973       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
974 
975       // Ignore empty bases.
976       if (BaseDecl->isEmpty())
977         continue;
978 
979       // Ignore bases that don't have any pointer to data members.
980       if (CGM.getTypes().isZeroInitializable(BaseDecl))
981         continue;
982 
983       uint64_t BaseOffset = Layout.getBaseClassOffset(BaseDecl);
984       FillInNullDataMemberPointers(CGM, I->getType(),
985                                    Elements, StartOffset + BaseOffset);
986     }
987 
988     // Visit all fields.
989     unsigned FieldNo = 0;
990     for (RecordDecl::field_iterator I = RD->field_begin(),
991          E = RD->field_end(); I != E; ++I, ++FieldNo) {
992       QualType FieldType = I->getType();
993 
994       if (CGM.getTypes().isZeroInitializable(FieldType))
995         continue;
996 
997       uint64_t FieldOffset = StartOffset + Layout.getFieldOffset(FieldNo);
998       FillInNullDataMemberPointers(CGM, FieldType, Elements, FieldOffset);
999     }
1000   } else {
1001     assert(T->isMemberPointerType() && "Should only see member pointers here!");
1002     assert(!T->getAs<MemberPointerType>()->getPointeeType()->isFunctionType() &&
1003            "Should only see pointers to data members here!");
1004 
1005     uint64_t StartIndex = StartOffset / 8;
1006     uint64_t EndIndex = StartIndex + CGM.getContext().getTypeSize(T) / 8;
1007 
1008     llvm::Constant *NegativeOne =
1009       llvm::ConstantInt::get(llvm::Type::getInt8Ty(CGM.getLLVMContext()),
1010                              -1ULL, /*isSigned=*/true);
1011 
1012     // Fill in the null data member pointer.
1013     for (uint64_t I = StartIndex; I != EndIndex; ++I)
1014       Elements[I] = NegativeOne;
1015   }
1016 }
1017 
1018 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
1019   if (getTypes().isZeroInitializable(T))
1020     return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
1021 
1022   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
1023 
1024     QualType ElementTy = CAT->getElementType();
1025 
1026     llvm::Constant *Element = EmitNullConstant(ElementTy);
1027     unsigned NumElements = CAT->getSize().getZExtValue();
1028     std::vector<llvm::Constant *> Array(NumElements);
1029     for (unsigned i = 0; i != NumElements; ++i)
1030       Array[i] = Element;
1031 
1032     const llvm::ArrayType *ATy =
1033       cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
1034     return llvm::ConstantArray::get(ATy, Array);
1035   }
1036 
1037   if (const RecordType *RT = T->getAs<RecordType>()) {
1038     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1039     const llvm::StructType *STy =
1040       cast<llvm::StructType>(getTypes().ConvertTypeForMem(T));
1041     unsigned NumElements = STy->getNumElements();
1042     std::vector<llvm::Constant *> Elements(NumElements);
1043 
1044     const CGRecordLayout &Layout = getTypes().getCGRecordLayout(RD);
1045 
1046     // Go through all bases and fill in any null pointer to data members.
1047     for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1048          E = RD->bases_end(); I != E; ++I) {
1049       if (I->isVirtual()) {
1050         // FIXME: We should initialize null pointer to data members in virtual
1051         // bases here.
1052         continue;
1053       }
1054 
1055       const CXXRecordDecl *BaseDecl =
1056         cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
1057 
1058       // Ignore empty bases.
1059       if (BaseDecl->isEmpty())
1060         continue;
1061 
1062       // Ignore bases that don't have any pointer to data members.
1063       if (getTypes().isZeroInitializable(BaseDecl))
1064         continue;
1065 
1066       // Currently, all bases are arrays of i8. Figure out how many elements
1067       // this base array has.
1068       unsigned BaseFieldNo = Layout.getNonVirtualBaseLLVMFieldNo(BaseDecl);
1069       const llvm::ArrayType *BaseArrayTy =
1070         cast<llvm::ArrayType>(STy->getElementType(BaseFieldNo));
1071 
1072       unsigned NumBaseElements = BaseArrayTy->getNumElements();
1073       std::vector<llvm::Constant *> BaseElements(NumBaseElements);
1074 
1075       // Now fill in null data member pointers.
1076       FillInNullDataMemberPointers(*this, I->getType(), BaseElements, 0);
1077 
1078       // Now go through all other elements and zero them out.
1079       if (NumBaseElements) {
1080         llvm::Constant *Zero =
1081           llvm::ConstantInt::get(llvm::Type::getInt8Ty(getLLVMContext()), 0);
1082 
1083         for (unsigned I = 0; I != NumBaseElements; ++I) {
1084           if (!BaseElements[I])
1085             BaseElements[I] = Zero;
1086         }
1087       }
1088 
1089       Elements[BaseFieldNo] = llvm::ConstantArray::get(BaseArrayTy,
1090                                                        BaseElements);
1091     }
1092 
1093     for (RecordDecl::field_iterator I = RD->field_begin(),
1094          E = RD->field_end(); I != E; ++I) {
1095       const FieldDecl *FD = *I;
1096 
1097       // Ignore bit fields.
1098       if (FD->isBitField())
1099         continue;
1100 
1101       unsigned FieldNo = Layout.getLLVMFieldNo(FD);
1102       Elements[FieldNo] = EmitNullConstant(FD->getType());
1103     }
1104 
1105     // Now go through all other fields and zero them out.
1106     for (unsigned i = 0; i != NumElements; ++i) {
1107       if (!Elements[i])
1108         Elements[i] = llvm::Constant::getNullValue(STy->getElementType(i));
1109     }
1110 
1111     return llvm::ConstantStruct::get(STy, Elements);
1112   }
1113 
1114   assert(T->isMemberPointerType() && "Should only see member pointers here!");
1115   assert(!T->getAs<MemberPointerType>()->getPointeeType()->isFunctionType() &&
1116          "Should only see pointers to data members here!");
1117 
1118   // Itanium C++ ABI 2.3:
1119   //   A NULL pointer is represented as -1.
1120   return llvm::ConstantInt::get(getTypes().ConvertTypeForMem(T), -1ULL,
1121                                 /*isSigned=*/true);
1122 }
1123