1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Constant Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGObjCRuntime.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenModule.h" 19 #include "ConstantEmitter.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/APValue.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/Builtins.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalVariable.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 //===----------------------------------------------------------------------===// 34 // ConstStructBuilder 35 //===----------------------------------------------------------------------===// 36 37 namespace { 38 class ConstExprEmitter; 39 class ConstStructBuilder { 40 CodeGenModule &CGM; 41 ConstantEmitter &Emitter; 42 43 bool Packed; 44 CharUnits NextFieldOffsetInChars; 45 CharUnits LLVMStructAlignment; 46 SmallVector<llvm::Constant *, 32> Elements; 47 public: 48 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 49 ConstExprEmitter *ExprEmitter, 50 llvm::ConstantStruct *Base, 51 InitListExpr *Updater, 52 QualType ValTy); 53 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 54 InitListExpr *ILE, QualType StructTy); 55 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 56 const APValue &Value, QualType ValTy); 57 58 private: 59 ConstStructBuilder(ConstantEmitter &emitter) 60 : CGM(emitter.CGM), Emitter(emitter), Packed(false), 61 NextFieldOffsetInChars(CharUnits::Zero()), 62 LLVMStructAlignment(CharUnits::One()) { } 63 64 void AppendField(const FieldDecl *Field, uint64_t FieldOffset, 65 llvm::Constant *InitExpr); 66 67 void AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst); 68 69 void AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, 70 llvm::ConstantInt *InitExpr); 71 72 void AppendPadding(CharUnits PadSize); 73 74 void AppendTailPadding(CharUnits RecordSize); 75 76 void ConvertStructToPacked(); 77 78 bool Build(InitListExpr *ILE); 79 bool Build(ConstExprEmitter *Emitter, llvm::ConstantStruct *Base, 80 InitListExpr *Updater); 81 bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase, 82 const CXXRecordDecl *VTableClass, CharUnits BaseOffset); 83 llvm::Constant *Finalize(QualType Ty); 84 85 CharUnits getAlignment(const llvm::Constant *C) const { 86 if (Packed) return CharUnits::One(); 87 return CharUnits::fromQuantity( 88 CGM.getDataLayout().getABITypeAlignment(C->getType())); 89 } 90 91 CharUnits getSizeInChars(const llvm::Constant *C) const { 92 return CharUnits::fromQuantity( 93 CGM.getDataLayout().getTypeAllocSize(C->getType())); 94 } 95 }; 96 97 void ConstStructBuilder:: 98 AppendField(const FieldDecl *Field, uint64_t FieldOffset, 99 llvm::Constant *InitCst) { 100 const ASTContext &Context = CGM.getContext(); 101 102 CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset); 103 104 AppendBytes(FieldOffsetInChars, InitCst); 105 } 106 107 void ConstStructBuilder:: 108 AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst) { 109 110 assert(NextFieldOffsetInChars <= FieldOffsetInChars 111 && "Field offset mismatch!"); 112 113 CharUnits FieldAlignment = getAlignment(InitCst); 114 115 // Round up the field offset to the alignment of the field type. 116 CharUnits AlignedNextFieldOffsetInChars = 117 NextFieldOffsetInChars.alignTo(FieldAlignment); 118 119 if (AlignedNextFieldOffsetInChars < FieldOffsetInChars) { 120 // We need to append padding. 121 AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars); 122 123 assert(NextFieldOffsetInChars == FieldOffsetInChars && 124 "Did not add enough padding!"); 125 126 AlignedNextFieldOffsetInChars = 127 NextFieldOffsetInChars.alignTo(FieldAlignment); 128 } 129 130 if (AlignedNextFieldOffsetInChars > FieldOffsetInChars) { 131 assert(!Packed && "Alignment is wrong even with a packed struct!"); 132 133 // Convert the struct to a packed struct. 134 ConvertStructToPacked(); 135 136 // After we pack the struct, we may need to insert padding. 137 if (NextFieldOffsetInChars < FieldOffsetInChars) { 138 // We need to append padding. 139 AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars); 140 141 assert(NextFieldOffsetInChars == FieldOffsetInChars && 142 "Did not add enough padding!"); 143 } 144 AlignedNextFieldOffsetInChars = NextFieldOffsetInChars; 145 } 146 147 // Add the field. 148 Elements.push_back(InitCst); 149 NextFieldOffsetInChars = AlignedNextFieldOffsetInChars + 150 getSizeInChars(InitCst); 151 152 if (Packed) 153 assert(LLVMStructAlignment == CharUnits::One() && 154 "Packed struct not byte-aligned!"); 155 else 156 LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment); 157 } 158 159 void ConstStructBuilder::AppendBitField(const FieldDecl *Field, 160 uint64_t FieldOffset, 161 llvm::ConstantInt *CI) { 162 const ASTContext &Context = CGM.getContext(); 163 const uint64_t CharWidth = Context.getCharWidth(); 164 uint64_t NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars); 165 if (FieldOffset > NextFieldOffsetInBits) { 166 // We need to add padding. 167 CharUnits PadSize = Context.toCharUnitsFromBits( 168 llvm::alignTo(FieldOffset - NextFieldOffsetInBits, 169 Context.getTargetInfo().getCharAlign())); 170 171 AppendPadding(PadSize); 172 } 173 174 uint64_t FieldSize = Field->getBitWidthValue(Context); 175 176 llvm::APInt FieldValue = CI->getValue(); 177 178 // Promote the size of FieldValue if necessary 179 // FIXME: This should never occur, but currently it can because initializer 180 // constants are cast to bool, and because clang is not enforcing bitfield 181 // width limits. 182 if (FieldSize > FieldValue.getBitWidth()) 183 FieldValue = FieldValue.zext(FieldSize); 184 185 // Truncate the size of FieldValue to the bit field size. 186 if (FieldSize < FieldValue.getBitWidth()) 187 FieldValue = FieldValue.trunc(FieldSize); 188 189 NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars); 190 if (FieldOffset < NextFieldOffsetInBits) { 191 // Either part of the field or the entire field can go into the previous 192 // byte. 193 assert(!Elements.empty() && "Elements can't be empty!"); 194 195 unsigned BitsInPreviousByte = NextFieldOffsetInBits - FieldOffset; 196 197 bool FitsCompletelyInPreviousByte = 198 BitsInPreviousByte >= FieldValue.getBitWidth(); 199 200 llvm::APInt Tmp = FieldValue; 201 202 if (!FitsCompletelyInPreviousByte) { 203 unsigned NewFieldWidth = FieldSize - BitsInPreviousByte; 204 205 if (CGM.getDataLayout().isBigEndian()) { 206 Tmp.lshrInPlace(NewFieldWidth); 207 Tmp = Tmp.trunc(BitsInPreviousByte); 208 209 // We want the remaining high bits. 210 FieldValue = FieldValue.trunc(NewFieldWidth); 211 } else { 212 Tmp = Tmp.trunc(BitsInPreviousByte); 213 214 // We want the remaining low bits. 215 FieldValue.lshrInPlace(BitsInPreviousByte); 216 FieldValue = FieldValue.trunc(NewFieldWidth); 217 } 218 } 219 220 Tmp = Tmp.zext(CharWidth); 221 if (CGM.getDataLayout().isBigEndian()) { 222 if (FitsCompletelyInPreviousByte) 223 Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth()); 224 } else { 225 Tmp = Tmp.shl(CharWidth - BitsInPreviousByte); 226 } 227 228 // 'or' in the bits that go into the previous byte. 229 llvm::Value *LastElt = Elements.back(); 230 if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(LastElt)) 231 Tmp |= Val->getValue(); 232 else { 233 assert(isa<llvm::UndefValue>(LastElt)); 234 // If there is an undef field that we're adding to, it can either be a 235 // scalar undef (in which case, we just replace it with our field) or it 236 // is an array. If it is an array, we have to pull one byte off the 237 // array so that the other undef bytes stay around. 238 if (!isa<llvm::IntegerType>(LastElt->getType())) { 239 // The undef padding will be a multibyte array, create a new smaller 240 // padding and then an hole for our i8 to get plopped into. 241 assert(isa<llvm::ArrayType>(LastElt->getType()) && 242 "Expected array padding of undefs"); 243 llvm::ArrayType *AT = cast<llvm::ArrayType>(LastElt->getType()); 244 assert(AT->getElementType()->isIntegerTy(CharWidth) && 245 AT->getNumElements() != 0 && 246 "Expected non-empty array padding of undefs"); 247 248 // Remove the padding array. 249 NextFieldOffsetInChars -= CharUnits::fromQuantity(AT->getNumElements()); 250 Elements.pop_back(); 251 252 // Add the padding back in two chunks. 253 AppendPadding(CharUnits::fromQuantity(AT->getNumElements()-1)); 254 AppendPadding(CharUnits::One()); 255 assert(isa<llvm::UndefValue>(Elements.back()) && 256 Elements.back()->getType()->isIntegerTy(CharWidth) && 257 "Padding addition didn't work right"); 258 } 259 } 260 261 Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp); 262 263 if (FitsCompletelyInPreviousByte) 264 return; 265 } 266 267 while (FieldValue.getBitWidth() > CharWidth) { 268 llvm::APInt Tmp; 269 270 if (CGM.getDataLayout().isBigEndian()) { 271 // We want the high bits. 272 Tmp = 273 FieldValue.lshr(FieldValue.getBitWidth() - CharWidth).trunc(CharWidth); 274 } else { 275 // We want the low bits. 276 Tmp = FieldValue.trunc(CharWidth); 277 278 FieldValue.lshrInPlace(CharWidth); 279 } 280 281 Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp)); 282 ++NextFieldOffsetInChars; 283 284 FieldValue = FieldValue.trunc(FieldValue.getBitWidth() - CharWidth); 285 } 286 287 assert(FieldValue.getBitWidth() > 0 && 288 "Should have at least one bit left!"); 289 assert(FieldValue.getBitWidth() <= CharWidth && 290 "Should not have more than a byte left!"); 291 292 if (FieldValue.getBitWidth() < CharWidth) { 293 if (CGM.getDataLayout().isBigEndian()) { 294 unsigned BitWidth = FieldValue.getBitWidth(); 295 296 FieldValue = FieldValue.zext(CharWidth) << (CharWidth - BitWidth); 297 } else 298 FieldValue = FieldValue.zext(CharWidth); 299 } 300 301 // Append the last element. 302 Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), 303 FieldValue)); 304 ++NextFieldOffsetInChars; 305 } 306 307 void ConstStructBuilder::AppendPadding(CharUnits PadSize) { 308 if (PadSize.isZero()) 309 return; 310 311 llvm::Type *Ty = CGM.Int8Ty; 312 if (PadSize > CharUnits::One()) 313 Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity()); 314 315 llvm::Constant *C = llvm::UndefValue::get(Ty); 316 Elements.push_back(C); 317 assert(getAlignment(C) == CharUnits::One() && 318 "Padding must have 1 byte alignment!"); 319 320 NextFieldOffsetInChars += getSizeInChars(C); 321 } 322 323 void ConstStructBuilder::AppendTailPadding(CharUnits RecordSize) { 324 assert(NextFieldOffsetInChars <= RecordSize && 325 "Size mismatch!"); 326 327 AppendPadding(RecordSize - NextFieldOffsetInChars); 328 } 329 330 void ConstStructBuilder::ConvertStructToPacked() { 331 SmallVector<llvm::Constant *, 16> PackedElements; 332 CharUnits ElementOffsetInChars = CharUnits::Zero(); 333 334 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 335 llvm::Constant *C = Elements[i]; 336 337 CharUnits ElementAlign = CharUnits::fromQuantity( 338 CGM.getDataLayout().getABITypeAlignment(C->getType())); 339 CharUnits AlignedElementOffsetInChars = 340 ElementOffsetInChars.alignTo(ElementAlign); 341 342 if (AlignedElementOffsetInChars > ElementOffsetInChars) { 343 // We need some padding. 344 CharUnits NumChars = 345 AlignedElementOffsetInChars - ElementOffsetInChars; 346 347 llvm::Type *Ty = CGM.Int8Ty; 348 if (NumChars > CharUnits::One()) 349 Ty = llvm::ArrayType::get(Ty, NumChars.getQuantity()); 350 351 llvm::Constant *Padding = llvm::UndefValue::get(Ty); 352 PackedElements.push_back(Padding); 353 ElementOffsetInChars += getSizeInChars(Padding); 354 } 355 356 PackedElements.push_back(C); 357 ElementOffsetInChars += getSizeInChars(C); 358 } 359 360 assert(ElementOffsetInChars == NextFieldOffsetInChars && 361 "Packing the struct changed its size!"); 362 363 Elements.swap(PackedElements); 364 LLVMStructAlignment = CharUnits::One(); 365 Packed = true; 366 } 367 368 bool ConstStructBuilder::Build(InitListExpr *ILE) { 369 RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl(); 370 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 371 372 unsigned FieldNo = 0; 373 unsigned ElementNo = 0; 374 375 // Bail out if we have base classes. We could support these, but they only 376 // arise in C++1z where we will have already constant folded most interesting 377 // cases. FIXME: There are still a few more cases we can handle this way. 378 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 379 if (CXXRD->getNumBases()) 380 return false; 381 382 for (RecordDecl::field_iterator Field = RD->field_begin(), 383 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 384 // If this is a union, skip all the fields that aren't being initialized. 385 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field) 386 continue; 387 388 // Don't emit anonymous bitfields, they just affect layout. 389 if (Field->isUnnamedBitfield()) 390 continue; 391 392 // Get the initializer. A struct can include fields without initializers, 393 // we just use explicit null values for them. 394 llvm::Constant *EltInit; 395 if (ElementNo < ILE->getNumInits()) 396 EltInit = Emitter.tryEmitPrivateForMemory(ILE->getInit(ElementNo++), 397 Field->getType()); 398 else 399 EltInit = Emitter.emitNullForMemory(Field->getType()); 400 401 if (!EltInit) 402 return false; 403 404 if (!Field->isBitField()) { 405 // Handle non-bitfield members. 406 AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit); 407 } else { 408 // Otherwise we have a bitfield. 409 if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) { 410 AppendBitField(*Field, Layout.getFieldOffset(FieldNo), CI); 411 } else { 412 // We are trying to initialize a bitfield with a non-trivial constant, 413 // this must require run-time code. 414 return false; 415 } 416 } 417 } 418 419 return true; 420 } 421 422 namespace { 423 struct BaseInfo { 424 BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index) 425 : Decl(Decl), Offset(Offset), Index(Index) { 426 } 427 428 const CXXRecordDecl *Decl; 429 CharUnits Offset; 430 unsigned Index; 431 432 bool operator<(const BaseInfo &O) const { return Offset < O.Offset; } 433 }; 434 } 435 436 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD, 437 bool IsPrimaryBase, 438 const CXXRecordDecl *VTableClass, 439 CharUnits Offset) { 440 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 441 442 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 443 // Add a vtable pointer, if we need one and it hasn't already been added. 444 if (CD->isDynamicClass() && !IsPrimaryBase) { 445 llvm::Constant *VTableAddressPoint = 446 CGM.getCXXABI().getVTableAddressPointForConstExpr( 447 BaseSubobject(CD, Offset), VTableClass); 448 AppendBytes(Offset, VTableAddressPoint); 449 } 450 451 // Accumulate and sort bases, in order to visit them in address order, which 452 // may not be the same as declaration order. 453 SmallVector<BaseInfo, 8> Bases; 454 Bases.reserve(CD->getNumBases()); 455 unsigned BaseNo = 0; 456 for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(), 457 BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) { 458 assert(!Base->isVirtual() && "should not have virtual bases here"); 459 const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl(); 460 CharUnits BaseOffset = Layout.getBaseClassOffset(BD); 461 Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo)); 462 } 463 std::stable_sort(Bases.begin(), Bases.end()); 464 465 for (unsigned I = 0, N = Bases.size(); I != N; ++I) { 466 BaseInfo &Base = Bases[I]; 467 468 bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl; 469 Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase, 470 VTableClass, Offset + Base.Offset); 471 } 472 } 473 474 unsigned FieldNo = 0; 475 uint64_t OffsetBits = CGM.getContext().toBits(Offset); 476 477 for (RecordDecl::field_iterator Field = RD->field_begin(), 478 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 479 // If this is a union, skip all the fields that aren't being initialized. 480 if (RD->isUnion() && Val.getUnionField() != *Field) 481 continue; 482 483 // Don't emit anonymous bitfields, they just affect layout. 484 if (Field->isUnnamedBitfield()) 485 continue; 486 487 // Emit the value of the initializer. 488 const APValue &FieldValue = 489 RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo); 490 llvm::Constant *EltInit = 491 Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType()); 492 if (!EltInit) 493 return false; 494 495 if (!Field->isBitField()) { 496 // Handle non-bitfield members. 497 AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, EltInit); 498 } else { 499 // Otherwise we have a bitfield. 500 AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 501 cast<llvm::ConstantInt>(EltInit)); 502 } 503 } 504 505 return true; 506 } 507 508 llvm::Constant *ConstStructBuilder::Finalize(QualType Ty) { 509 RecordDecl *RD = Ty->getAs<RecordType>()->getDecl(); 510 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 511 512 CharUnits LayoutSizeInChars = Layout.getSize(); 513 514 if (NextFieldOffsetInChars > LayoutSizeInChars) { 515 // If the struct is bigger than the size of the record type, 516 // we must have a flexible array member at the end. 517 assert(RD->hasFlexibleArrayMember() && 518 "Must have flexible array member if struct is bigger than type!"); 519 520 // No tail padding is necessary. 521 } else { 522 // Append tail padding if necessary. 523 CharUnits LLVMSizeInChars = 524 NextFieldOffsetInChars.alignTo(LLVMStructAlignment); 525 526 if (LLVMSizeInChars != LayoutSizeInChars) 527 AppendTailPadding(LayoutSizeInChars); 528 529 LLVMSizeInChars = NextFieldOffsetInChars.alignTo(LLVMStructAlignment); 530 531 // Check if we need to convert the struct to a packed struct. 532 if (NextFieldOffsetInChars <= LayoutSizeInChars && 533 LLVMSizeInChars > LayoutSizeInChars) { 534 assert(!Packed && "Size mismatch!"); 535 536 ConvertStructToPacked(); 537 assert(NextFieldOffsetInChars <= LayoutSizeInChars && 538 "Converting to packed did not help!"); 539 } 540 541 LLVMSizeInChars = NextFieldOffsetInChars.alignTo(LLVMStructAlignment); 542 543 assert(LayoutSizeInChars == LLVMSizeInChars && 544 "Tail padding mismatch!"); 545 } 546 547 // Pick the type to use. If the type is layout identical to the ConvertType 548 // type then use it, otherwise use whatever the builder produced for us. 549 llvm::StructType *STy = 550 llvm::ConstantStruct::getTypeForElements(CGM.getLLVMContext(), 551 Elements, Packed); 552 llvm::Type *ValTy = CGM.getTypes().ConvertType(Ty); 553 if (llvm::StructType *ValSTy = dyn_cast<llvm::StructType>(ValTy)) { 554 if (ValSTy->isLayoutIdentical(STy)) 555 STy = ValSTy; 556 } 557 558 llvm::Constant *Result = llvm::ConstantStruct::get(STy, Elements); 559 560 assert(NextFieldOffsetInChars.alignTo(getAlignment(Result)) == 561 getSizeInChars(Result) && 562 "Size mismatch!"); 563 564 return Result; 565 } 566 567 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 568 ConstExprEmitter *ExprEmitter, 569 llvm::ConstantStruct *Base, 570 InitListExpr *Updater, 571 QualType ValTy) { 572 ConstStructBuilder Builder(Emitter); 573 if (!Builder.Build(ExprEmitter, Base, Updater)) 574 return nullptr; 575 return Builder.Finalize(ValTy); 576 } 577 578 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 579 InitListExpr *ILE, 580 QualType ValTy) { 581 ConstStructBuilder Builder(Emitter); 582 583 if (!Builder.Build(ILE)) 584 return nullptr; 585 586 return Builder.Finalize(ValTy); 587 } 588 589 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 590 const APValue &Val, 591 QualType ValTy) { 592 ConstStructBuilder Builder(Emitter); 593 594 const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl(); 595 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); 596 if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero())) 597 return nullptr; 598 599 return Builder.Finalize(ValTy); 600 } 601 602 603 //===----------------------------------------------------------------------===// 604 // ConstExprEmitter 605 //===----------------------------------------------------------------------===// 606 607 static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM, 608 CodeGenFunction *CGF, 609 const CompoundLiteralExpr *E) { 610 CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType()); 611 if (llvm::GlobalVariable *Addr = 612 CGM.getAddrOfConstantCompoundLiteralIfEmitted(E)) 613 return ConstantAddress(Addr, Align); 614 615 unsigned addressSpace = E->getType().getAddressSpace(); 616 617 ConstantEmitter emitter(CGM, CGF); 618 llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(), 619 addressSpace, E->getType()); 620 if (!C) { 621 assert(!E->isFileScope() && 622 "file-scope compound literal did not have constant initializer!"); 623 return ConstantAddress::invalid(); 624 } 625 626 auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), 627 CGM.isTypeConstant(E->getType(), true), 628 llvm::GlobalValue::InternalLinkage, 629 C, ".compoundliteral", nullptr, 630 llvm::GlobalVariable::NotThreadLocal, 631 CGM.getContext().getTargetAddressSpace(addressSpace)); 632 emitter.finalize(GV); 633 GV->setAlignment(Align.getQuantity()); 634 CGM.setAddrOfConstantCompoundLiteral(E, GV); 635 return ConstantAddress(GV, Align); 636 } 637 638 /// This class only needs to handle two cases: 639 /// 1) Literals (this is used by APValue emission to emit literals). 640 /// 2) Arrays, structs and unions (outside C++11 mode, we don't currently 641 /// constant fold these types). 642 class ConstExprEmitter : 643 public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> { 644 CodeGenModule &CGM; 645 ConstantEmitter &Emitter; 646 llvm::LLVMContext &VMContext; 647 public: 648 ConstExprEmitter(ConstantEmitter &emitter) 649 : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) { 650 } 651 652 //===--------------------------------------------------------------------===// 653 // Visitor Methods 654 //===--------------------------------------------------------------------===// 655 656 llvm::Constant *VisitStmt(Stmt *S, QualType T) { 657 return nullptr; 658 } 659 660 llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) { 661 return Visit(PE->getSubExpr(), T); 662 } 663 664 llvm::Constant * 665 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE, 666 QualType T) { 667 return Visit(PE->getReplacement(), T); 668 } 669 670 llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE, 671 QualType T) { 672 return Visit(GE->getResultExpr(), T); 673 } 674 675 llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) { 676 return Visit(CE->getChosenSubExpr(), T); 677 } 678 679 llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) { 680 return Visit(E->getInitializer(), T); 681 } 682 683 llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) { 684 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 685 CGM.EmitExplicitCastExprType(ECE, Emitter.CGF); 686 Expr *subExpr = E->getSubExpr(); 687 688 switch (E->getCastKind()) { 689 case CK_ToUnion: { 690 // GCC cast to union extension 691 assert(E->getType()->isUnionType() && 692 "Destination type is not union type!"); 693 694 auto field = E->getTargetUnionField(); 695 696 auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType()); 697 if (!C) return nullptr; 698 699 auto destTy = ConvertType(destType); 700 if (C->getType() == destTy) return C; 701 702 // Build a struct with the union sub-element as the first member, 703 // and padded to the appropriate size. 704 SmallVector<llvm::Constant*, 2> Elts; 705 SmallVector<llvm::Type*, 2> Types; 706 Elts.push_back(C); 707 Types.push_back(C->getType()); 708 unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType()); 709 unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy); 710 711 assert(CurSize <= TotalSize && "Union size mismatch!"); 712 if (unsigned NumPadBytes = TotalSize - CurSize) { 713 llvm::Type *Ty = CGM.Int8Ty; 714 if (NumPadBytes > 1) 715 Ty = llvm::ArrayType::get(Ty, NumPadBytes); 716 717 Elts.push_back(llvm::UndefValue::get(Ty)); 718 Types.push_back(Ty); 719 } 720 721 llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false); 722 return llvm::ConstantStruct::get(STy, Elts); 723 } 724 725 case CK_AddressSpaceConversion: { 726 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 727 if (!C) return nullptr; 728 unsigned destAS = E->getType()->getPointeeType().getAddressSpace(); 729 unsigned srcAS = subExpr->getType()->getPointeeType().getAddressSpace(); 730 llvm::Type *destTy = ConvertType(E->getType()); 731 return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS, 732 destAS, destTy); 733 } 734 735 case CK_LValueToRValue: 736 case CK_AtomicToNonAtomic: 737 case CK_NonAtomicToAtomic: 738 case CK_NoOp: 739 case CK_ConstructorConversion: 740 return Visit(subExpr, destType); 741 742 case CK_IntToOCLSampler: 743 llvm_unreachable("global sampler variables are not generated"); 744 745 case CK_Dependent: llvm_unreachable("saw dependent cast!"); 746 747 case CK_BuiltinFnToFnPtr: 748 llvm_unreachable("builtin functions are handled elsewhere"); 749 750 case CK_ReinterpretMemberPointer: 751 case CK_DerivedToBaseMemberPointer: 752 case CK_BaseToDerivedMemberPointer: { 753 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 754 if (!C) return nullptr; 755 return CGM.getCXXABI().EmitMemberPointerConversion(E, C); 756 } 757 758 // These will never be supported. 759 case CK_ObjCObjectLValueCast: 760 case CK_ARCProduceObject: 761 case CK_ARCConsumeObject: 762 case CK_ARCReclaimReturnedObject: 763 case CK_ARCExtendBlockObject: 764 case CK_CopyAndAutoreleaseBlockObject: 765 return nullptr; 766 767 // These don't need to be handled here because Evaluate knows how to 768 // evaluate them in the cases where they can be folded. 769 case CK_BitCast: 770 case CK_ToVoid: 771 case CK_Dynamic: 772 case CK_LValueBitCast: 773 case CK_NullToMemberPointer: 774 case CK_UserDefinedConversion: 775 case CK_CPointerToObjCPointerCast: 776 case CK_BlockPointerToObjCPointerCast: 777 case CK_AnyPointerToBlockPointerCast: 778 case CK_ArrayToPointerDecay: 779 case CK_FunctionToPointerDecay: 780 case CK_BaseToDerived: 781 case CK_DerivedToBase: 782 case CK_UncheckedDerivedToBase: 783 case CK_MemberPointerToBoolean: 784 case CK_VectorSplat: 785 case CK_FloatingRealToComplex: 786 case CK_FloatingComplexToReal: 787 case CK_FloatingComplexToBoolean: 788 case CK_FloatingComplexCast: 789 case CK_FloatingComplexToIntegralComplex: 790 case CK_IntegralRealToComplex: 791 case CK_IntegralComplexToReal: 792 case CK_IntegralComplexToBoolean: 793 case CK_IntegralComplexCast: 794 case CK_IntegralComplexToFloatingComplex: 795 case CK_PointerToIntegral: 796 case CK_PointerToBoolean: 797 case CK_NullToPointer: 798 case CK_IntegralCast: 799 case CK_BooleanToSignedIntegral: 800 case CK_IntegralToPointer: 801 case CK_IntegralToBoolean: 802 case CK_IntegralToFloating: 803 case CK_FloatingToIntegral: 804 case CK_FloatingToBoolean: 805 case CK_FloatingCast: 806 case CK_ZeroToOCLEvent: 807 case CK_ZeroToOCLQueue: 808 return nullptr; 809 } 810 llvm_unreachable("Invalid CastKind"); 811 } 812 813 llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE, QualType T) { 814 return Visit(DAE->getExpr(), T); 815 } 816 817 llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) { 818 // No need for a DefaultInitExprScope: we don't handle 'this' in a 819 // constant expression. 820 return Visit(DIE->getExpr(), T); 821 } 822 823 llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) { 824 if (!E->cleanupsHaveSideEffects()) 825 return Visit(E->getSubExpr(), T); 826 return nullptr; 827 } 828 829 llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E, 830 QualType T) { 831 return Visit(E->GetTemporaryExpr(), T); 832 } 833 834 llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) { 835 llvm::ArrayType *AType = 836 cast<llvm::ArrayType>(ConvertType(ILE->getType())); 837 llvm::Type *ElemTy = AType->getElementType(); 838 unsigned NumInitElements = ILE->getNumInits(); 839 unsigned NumElements = AType->getNumElements(); 840 841 // Initialising an array requires us to automatically 842 // initialise any elements that have not been initialised explicitly 843 unsigned NumInitableElts = std::min(NumInitElements, NumElements); 844 845 QualType EltType = CGM.getContext().getAsArrayType(T)->getElementType(); 846 847 // Initialize remaining array elements. 848 llvm::Constant *fillC; 849 if (Expr *filler = ILE->getArrayFiller()) 850 fillC = Emitter.tryEmitAbstractForMemory(filler, EltType); 851 else 852 fillC = Emitter.emitNullForMemory(EltType); 853 if (!fillC) 854 return nullptr; 855 856 // Try to use a ConstantAggregateZero if we can. 857 if (fillC->isNullValue() && !NumInitableElts) 858 return llvm::ConstantAggregateZero::get(AType); 859 860 // Copy initializer elements. 861 SmallVector<llvm::Constant*, 16> Elts; 862 Elts.reserve(NumInitableElts + NumElements); 863 864 bool RewriteType = false; 865 for (unsigned i = 0; i < NumInitableElts; ++i) { 866 Expr *Init = ILE->getInit(i); 867 llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType); 868 if (!C) 869 return nullptr; 870 RewriteType |= (C->getType() != ElemTy); 871 Elts.push_back(C); 872 } 873 874 RewriteType |= (fillC->getType() != ElemTy); 875 Elts.resize(NumElements, fillC); 876 877 if (RewriteType) { 878 // FIXME: Try to avoid packing the array 879 std::vector<llvm::Type*> Types; 880 Types.reserve(NumInitableElts + NumElements); 881 for (unsigned i = 0, e = Elts.size(); i < e; ++i) 882 Types.push_back(Elts[i]->getType()); 883 llvm::StructType *SType = llvm::StructType::get(AType->getContext(), 884 Types, true); 885 return llvm::ConstantStruct::get(SType, Elts); 886 } 887 888 return llvm::ConstantArray::get(AType, Elts); 889 } 890 891 llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) { 892 return ConstStructBuilder::BuildStruct(Emitter, ILE, T); 893 } 894 895 llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E, 896 QualType T) { 897 return CGM.EmitNullConstant(T); 898 } 899 900 llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) { 901 if (ILE->isTransparent()) 902 return Visit(ILE->getInit(0), T); 903 904 if (ILE->getType()->isArrayType()) 905 return EmitArrayInitialization(ILE, T); 906 907 if (ILE->getType()->isRecordType()) 908 return EmitRecordInitialization(ILE, T); 909 910 return nullptr; 911 } 912 913 llvm::Constant *EmitDesignatedInitUpdater(llvm::Constant *Base, 914 InitListExpr *Updater, 915 QualType destType) { 916 if (auto destAT = CGM.getContext().getAsArrayType(destType)) { 917 llvm::ArrayType *AType = cast<llvm::ArrayType>(ConvertType(destType)); 918 llvm::Type *ElemType = AType->getElementType(); 919 920 unsigned NumInitElements = Updater->getNumInits(); 921 unsigned NumElements = AType->getNumElements(); 922 923 std::vector<llvm::Constant *> Elts; 924 Elts.reserve(NumElements); 925 926 QualType destElemType = destAT->getElementType(); 927 928 if (auto DataArray = dyn_cast<llvm::ConstantDataArray>(Base)) 929 for (unsigned i = 0; i != NumElements; ++i) 930 Elts.push_back(DataArray->getElementAsConstant(i)); 931 else if (auto Array = dyn_cast<llvm::ConstantArray>(Base)) 932 for (unsigned i = 0; i != NumElements; ++i) 933 Elts.push_back(Array->getOperand(i)); 934 else 935 return nullptr; // FIXME: other array types not implemented 936 937 llvm::Constant *fillC = nullptr; 938 if (Expr *filler = Updater->getArrayFiller()) 939 if (!isa<NoInitExpr>(filler)) 940 fillC = Emitter.tryEmitAbstractForMemory(filler, destElemType); 941 bool RewriteType = (fillC && fillC->getType() != ElemType); 942 943 for (unsigned i = 0; i != NumElements; ++i) { 944 Expr *Init = nullptr; 945 if (i < NumInitElements) 946 Init = Updater->getInit(i); 947 948 if (!Init && fillC) 949 Elts[i] = fillC; 950 else if (!Init || isa<NoInitExpr>(Init)) 951 ; // Do nothing. 952 else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) 953 Elts[i] = EmitDesignatedInitUpdater(Elts[i], ChildILE, destElemType); 954 else 955 Elts[i] = Emitter.tryEmitPrivateForMemory(Init, destElemType); 956 957 if (!Elts[i]) 958 return nullptr; 959 RewriteType |= (Elts[i]->getType() != ElemType); 960 } 961 962 if (RewriteType) { 963 std::vector<llvm::Type *> Types; 964 Types.reserve(NumElements); 965 for (unsigned i = 0; i != NumElements; ++i) 966 Types.push_back(Elts[i]->getType()); 967 llvm::StructType *SType = llvm::StructType::get(AType->getContext(), 968 Types, true); 969 return llvm::ConstantStruct::get(SType, Elts); 970 } 971 972 return llvm::ConstantArray::get(AType, Elts); 973 } 974 975 if (destType->isRecordType()) 976 return ConstStructBuilder::BuildStruct(Emitter, this, 977 dyn_cast<llvm::ConstantStruct>(Base), Updater, destType); 978 979 return nullptr; 980 } 981 982 llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E, 983 QualType destType) { 984 auto C = Visit(E->getBase(), destType); 985 if (!C) return nullptr; 986 return EmitDesignatedInitUpdater(C, E->getUpdater(), destType); 987 } 988 989 llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) { 990 if (!E->getConstructor()->isTrivial()) 991 return nullptr; 992 993 // FIXME: We should not have to call getBaseElementType here. 994 const RecordType *RT = 995 CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>(); 996 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 997 998 // If the class doesn't have a trivial destructor, we can't emit it as a 999 // constant expr. 1000 if (!RD->hasTrivialDestructor()) 1001 return nullptr; 1002 1003 // Only copy and default constructors can be trivial. 1004 1005 1006 if (E->getNumArgs()) { 1007 assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 1008 assert(E->getConstructor()->isCopyOrMoveConstructor() && 1009 "trivial ctor has argument but isn't a copy/move ctor"); 1010 1011 Expr *Arg = E->getArg(0); 1012 assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) && 1013 "argument to copy ctor is of wrong type"); 1014 1015 return Visit(Arg, Ty); 1016 } 1017 1018 return CGM.EmitNullConstant(Ty); 1019 } 1020 1021 llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) { 1022 return CGM.GetConstantArrayFromStringLiteral(E); 1023 } 1024 1025 llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) { 1026 // This must be an @encode initializing an array in a static initializer. 1027 // Don't emit it as the address of the string, emit the string data itself 1028 // as an inline array. 1029 std::string Str; 1030 CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1031 const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T); 1032 1033 // Resize the string to the right size, adding zeros at the end, or 1034 // truncating as needed. 1035 Str.resize(CAT->getSize().getZExtValue(), '\0'); 1036 return llvm::ConstantDataArray::getString(VMContext, Str, false); 1037 } 1038 1039 llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) { 1040 return Visit(E->getSubExpr(), T); 1041 } 1042 1043 // Utility methods 1044 llvm::Type *ConvertType(QualType T) { 1045 return CGM.getTypes().ConvertType(T); 1046 } 1047 1048 public: 1049 ConstantAddress EmitLValue(APValue::LValueBase LVBase) { 1050 if (const ValueDecl *Decl = LVBase.dyn_cast<const ValueDecl*>()) { 1051 if (Decl->hasAttr<WeakRefAttr>()) 1052 return CGM.GetWeakRefReference(Decl); 1053 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl)) 1054 return ConstantAddress(CGM.GetAddrOfFunction(FD), CharUnits::One()); 1055 if (const VarDecl* VD = dyn_cast<VarDecl>(Decl)) { 1056 // We can never refer to a variable with local storage. 1057 if (!VD->hasLocalStorage()) { 1058 CharUnits Align = CGM.getContext().getDeclAlign(VD); 1059 if (VD->isFileVarDecl() || VD->hasExternalStorage()) 1060 return ConstantAddress(CGM.GetAddrOfGlobalVar(VD), Align); 1061 else if (VD->isLocalVarDecl()) { 1062 auto Ptr = CGM.getOrCreateStaticVarDecl( 1063 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)); 1064 return ConstantAddress(Ptr, Align); 1065 } 1066 } 1067 } 1068 return ConstantAddress::invalid(); 1069 } 1070 1071 Expr *E = const_cast<Expr*>(LVBase.get<const Expr*>()); 1072 switch (E->getStmtClass()) { 1073 default: break; 1074 case Expr::CompoundLiteralExprClass: 1075 return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, 1076 cast<CompoundLiteralExpr>(E)); 1077 case Expr::StringLiteralClass: 1078 return CGM.GetAddrOfConstantStringFromLiteral(cast<StringLiteral>(E)); 1079 case Expr::ObjCEncodeExprClass: 1080 return CGM.GetAddrOfConstantStringFromObjCEncode(cast<ObjCEncodeExpr>(E)); 1081 case Expr::ObjCStringLiteralClass: { 1082 ObjCStringLiteral* SL = cast<ObjCStringLiteral>(E); 1083 ConstantAddress C = 1084 CGM.getObjCRuntime().GenerateConstantString(SL->getString()); 1085 return C.getElementBitCast(ConvertType(E->getType())); 1086 } 1087 case Expr::PredefinedExprClass: { 1088 unsigned Type = cast<PredefinedExpr>(E)->getIdentType(); 1089 if (auto CGF = Emitter.CGF) { 1090 LValue Res = CGF->EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1091 return cast<ConstantAddress>(Res.getAddress()); 1092 } else if (Type == PredefinedExpr::PrettyFunction) { 1093 return CGM.GetAddrOfConstantCString("top level", ".tmp"); 1094 } 1095 1096 return CGM.GetAddrOfConstantCString("", ".tmp"); 1097 } 1098 case Expr::AddrLabelExprClass: { 1099 assert(Emitter.CGF && 1100 "Invalid address of label expression outside function."); 1101 llvm::Constant *Ptr = 1102 Emitter.CGF->GetAddrOfLabel(cast<AddrLabelExpr>(E)->getLabel()); 1103 Ptr = llvm::ConstantExpr::getBitCast(Ptr, ConvertType(E->getType())); 1104 return ConstantAddress(Ptr, CharUnits::One()); 1105 } 1106 case Expr::CallExprClass: { 1107 CallExpr* CE = cast<CallExpr>(E); 1108 unsigned builtin = CE->getBuiltinCallee(); 1109 if (builtin != 1110 Builtin::BI__builtin___CFStringMakeConstantString && 1111 builtin != 1112 Builtin::BI__builtin___NSStringMakeConstantString) 1113 break; 1114 const Expr *Arg = CE->getArg(0)->IgnoreParenCasts(); 1115 const StringLiteral *Literal = cast<StringLiteral>(Arg); 1116 if (builtin == 1117 Builtin::BI__builtin___NSStringMakeConstantString) { 1118 return CGM.getObjCRuntime().GenerateConstantString(Literal); 1119 } 1120 // FIXME: need to deal with UCN conversion issues. 1121 return CGM.GetAddrOfConstantCFString(Literal); 1122 } 1123 case Expr::BlockExprClass: { 1124 StringRef FunctionName; 1125 if (auto CGF = Emitter.CGF) 1126 FunctionName = CGF->CurFn->getName(); 1127 else 1128 FunctionName = "global"; 1129 1130 // This is not really an l-value. 1131 llvm::Constant *Ptr = 1132 CGM.GetAddrOfGlobalBlock(cast<BlockExpr>(E), FunctionName); 1133 return ConstantAddress(Ptr, CGM.getPointerAlign()); 1134 } 1135 case Expr::CXXTypeidExprClass: { 1136 CXXTypeidExpr *Typeid = cast<CXXTypeidExpr>(E); 1137 QualType T; 1138 if (Typeid->isTypeOperand()) 1139 T = Typeid->getTypeOperand(CGM.getContext()); 1140 else 1141 T = Typeid->getExprOperand()->getType(); 1142 return ConstantAddress(CGM.GetAddrOfRTTIDescriptor(T), 1143 CGM.getPointerAlign()); 1144 } 1145 case Expr::CXXUuidofExprClass: { 1146 return CGM.GetAddrOfUuidDescriptor(cast<CXXUuidofExpr>(E)); 1147 } 1148 case Expr::MaterializeTemporaryExprClass: { 1149 MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E); 1150 assert(MTE->getStorageDuration() == SD_Static); 1151 SmallVector<const Expr *, 2> CommaLHSs; 1152 SmallVector<SubobjectAdjustment, 2> Adjustments; 1153 const Expr *Inner = MTE->GetTemporaryExpr() 1154 ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 1155 return CGM.GetAddrOfGlobalTemporary(MTE, Inner); 1156 } 1157 } 1158 1159 return ConstantAddress::invalid(); 1160 } 1161 }; 1162 1163 } // end anonymous namespace. 1164 1165 bool ConstStructBuilder::Build(ConstExprEmitter *ExprEmitter, 1166 llvm::ConstantStruct *Base, 1167 InitListExpr *Updater) { 1168 assert(Base && "base expression should not be empty"); 1169 1170 QualType ExprType = Updater->getType(); 1171 RecordDecl *RD = ExprType->getAs<RecordType>()->getDecl(); 1172 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 1173 const llvm::StructLayout *BaseLayout = CGM.getDataLayout().getStructLayout( 1174 Base->getType()); 1175 unsigned FieldNo = -1; 1176 unsigned ElementNo = 0; 1177 1178 // Bail out if we have base classes. We could support these, but they only 1179 // arise in C++1z where we will have already constant folded most interesting 1180 // cases. FIXME: There are still a few more cases we can handle this way. 1181 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1182 if (CXXRD->getNumBases()) 1183 return false; 1184 1185 for (FieldDecl *Field : RD->fields()) { 1186 ++FieldNo; 1187 1188 if (RD->isUnion() && Updater->getInitializedFieldInUnion() != Field) 1189 continue; 1190 1191 // Skip anonymous bitfields. 1192 if (Field->isUnnamedBitfield()) 1193 continue; 1194 1195 llvm::Constant *EltInit = Base->getOperand(ElementNo); 1196 1197 // Bail out if the type of the ConstantStruct does not have the same layout 1198 // as the type of the InitListExpr. 1199 if (CGM.getTypes().ConvertType(Field->getType()) != EltInit->getType() || 1200 Layout.getFieldOffset(ElementNo) != 1201 BaseLayout->getElementOffsetInBits(ElementNo)) 1202 return false; 1203 1204 // Get the initializer. If we encounter an empty field or a NoInitExpr, 1205 // we use values from the base expression. 1206 Expr *Init = nullptr; 1207 if (ElementNo < Updater->getNumInits()) 1208 Init = Updater->getInit(ElementNo); 1209 1210 if (!Init || isa<NoInitExpr>(Init)) 1211 ; // Do nothing. 1212 else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) 1213 EltInit = ExprEmitter->EmitDesignatedInitUpdater(EltInit, ChildILE, 1214 Field->getType()); 1215 else 1216 EltInit = Emitter.tryEmitPrivateForMemory(Init, Field->getType()); 1217 1218 ++ElementNo; 1219 1220 if (!EltInit) 1221 return false; 1222 1223 if (!Field->isBitField()) 1224 AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit); 1225 else if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(EltInit)) 1226 AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI); 1227 else 1228 // Initializing a bitfield with a non-trivial constant? 1229 return false; 1230 } 1231 1232 return true; 1233 } 1234 1235 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C, 1236 AbstractState saved) { 1237 Abstract = saved.OldValue; 1238 1239 assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() && 1240 "created a placeholder while doing an abstract emission?"); 1241 1242 // No validation necessary for now. 1243 // No cleanup to do for now. 1244 return C; 1245 } 1246 1247 llvm::Constant * 1248 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) { 1249 auto state = pushAbstract(); 1250 auto C = tryEmitPrivateForVarInit(D); 1251 return validateAndPopAbstract(C, state); 1252 } 1253 1254 llvm::Constant * 1255 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) { 1256 auto state = pushAbstract(); 1257 auto C = tryEmitPrivate(E, destType); 1258 return validateAndPopAbstract(C, state); 1259 } 1260 1261 llvm::Constant * 1262 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) { 1263 auto state = pushAbstract(); 1264 auto C = tryEmitPrivate(value, destType); 1265 return validateAndPopAbstract(C, state); 1266 } 1267 1268 llvm::Constant * 1269 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) { 1270 auto state = pushAbstract(); 1271 auto C = tryEmitPrivate(E, destType); 1272 C = validateAndPopAbstract(C, state); 1273 if (!C) { 1274 CGM.Error(E->getExprLoc(), 1275 "internal error: could not emit constant value \"abstractly\""); 1276 C = CGM.EmitNullConstant(destType); 1277 } 1278 return C; 1279 } 1280 1281 llvm::Constant * 1282 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value, 1283 QualType destType) { 1284 auto state = pushAbstract(); 1285 auto C = tryEmitPrivate(value, destType); 1286 C = validateAndPopAbstract(C, state); 1287 if (!C) { 1288 CGM.Error(loc, 1289 "internal error: could not emit constant value \"abstractly\""); 1290 C = CGM.EmitNullConstant(destType); 1291 } 1292 return C; 1293 } 1294 1295 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) { 1296 initializeNonAbstract(D.getType().getAddressSpace()); 1297 return markIfFailed(tryEmitPrivateForVarInit(D)); 1298 } 1299 1300 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E, 1301 unsigned destAddrSpace, 1302 QualType destType) { 1303 initializeNonAbstract(destAddrSpace); 1304 return markIfFailed(tryEmitPrivateForMemory(E, destType)); 1305 } 1306 1307 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value, 1308 unsigned destAddrSpace, 1309 QualType destType) { 1310 initializeNonAbstract(destAddrSpace); 1311 auto C = tryEmitPrivateForMemory(value, destType); 1312 assert(C && "couldn't emit constant value non-abstractly?"); 1313 return C; 1314 } 1315 1316 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() { 1317 assert(!Abstract && "cannot get current address for abstract constant"); 1318 1319 1320 1321 // Make an obviously ill-formed global that should blow up compilation 1322 // if it survives. 1323 auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true, 1324 llvm::GlobalValue::PrivateLinkage, 1325 /*init*/ nullptr, 1326 /*name*/ "", 1327 /*before*/ nullptr, 1328 llvm::GlobalVariable::NotThreadLocal, 1329 CGM.getContext().getTargetAddressSpace(DestAddressSpace)); 1330 1331 PlaceholderAddresses.push_back(std::make_pair(nullptr, global)); 1332 1333 return global; 1334 } 1335 1336 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal, 1337 llvm::GlobalValue *placeholder) { 1338 assert(!PlaceholderAddresses.empty()); 1339 assert(PlaceholderAddresses.back().first == nullptr); 1340 assert(PlaceholderAddresses.back().second == placeholder); 1341 PlaceholderAddresses.back().first = signal; 1342 } 1343 1344 namespace { 1345 struct ReplacePlaceholders { 1346 CodeGenModule &CGM; 1347 1348 /// The base address of the global. 1349 llvm::Constant *Base; 1350 llvm::Type *BaseValueTy = nullptr; 1351 1352 /// The placeholder addresses that were registered during emission. 1353 llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses; 1354 1355 /// The locations of the placeholder signals. 1356 llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations; 1357 1358 /// The current index stack. We use a simple unsigned stack because 1359 /// we assume that placeholders will be relatively sparse in the 1360 /// initializer, but we cache the index values we find just in case. 1361 llvm::SmallVector<unsigned, 8> Indices; 1362 llvm::SmallVector<llvm::Constant*, 8> IndexValues; 1363 1364 ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base, 1365 ArrayRef<std::pair<llvm::Constant*, 1366 llvm::GlobalVariable*>> addresses) 1367 : CGM(CGM), Base(base), 1368 PlaceholderAddresses(addresses.begin(), addresses.end()) { 1369 } 1370 1371 void replaceInInitializer(llvm::Constant *init) { 1372 // Remember the type of the top-most initializer. 1373 BaseValueTy = init->getType(); 1374 1375 // Initialize the stack. 1376 Indices.push_back(0); 1377 IndexValues.push_back(nullptr); 1378 1379 // Recurse into the initializer. 1380 findLocations(init); 1381 1382 // Check invariants. 1383 assert(IndexValues.size() == Indices.size() && "mismatch"); 1384 assert(Indices.size() == 1 && "didn't pop all indices"); 1385 1386 // Do the replacement; this basically invalidates 'init'. 1387 assert(Locations.size() == PlaceholderAddresses.size() && 1388 "missed a placeholder?"); 1389 1390 // We're iterating over a hashtable, so this would be a source of 1391 // non-determinism in compiler output *except* that we're just 1392 // messing around with llvm::Constant structures, which never itself 1393 // does anything that should be visible in compiler output. 1394 for (auto &entry : Locations) { 1395 assert(entry.first->getParent() == nullptr && "not a placeholder!"); 1396 entry.first->replaceAllUsesWith(entry.second); 1397 entry.first->eraseFromParent(); 1398 } 1399 } 1400 1401 private: 1402 void findLocations(llvm::Constant *init) { 1403 // Recurse into aggregates. 1404 if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) { 1405 for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) { 1406 Indices.push_back(i); 1407 IndexValues.push_back(nullptr); 1408 1409 findLocations(agg->getOperand(i)); 1410 1411 IndexValues.pop_back(); 1412 Indices.pop_back(); 1413 } 1414 return; 1415 } 1416 1417 // Otherwise, check for registered constants. 1418 while (true) { 1419 auto it = PlaceholderAddresses.find(init); 1420 if (it != PlaceholderAddresses.end()) { 1421 setLocation(it->second); 1422 break; 1423 } 1424 1425 // Look through bitcasts or other expressions. 1426 if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) { 1427 init = expr->getOperand(0); 1428 } else { 1429 break; 1430 } 1431 } 1432 } 1433 1434 void setLocation(llvm::GlobalVariable *placeholder) { 1435 assert(Locations.find(placeholder) == Locations.end() && 1436 "already found location for placeholder!"); 1437 1438 // Lazily fill in IndexValues with the values from Indices. 1439 // We do this in reverse because we should always have a strict 1440 // prefix of indices from the start. 1441 assert(Indices.size() == IndexValues.size()); 1442 for (size_t i = Indices.size() - 1; i != size_t(-1); --i) { 1443 if (IndexValues[i]) { 1444 #ifndef NDEBUG 1445 for (size_t j = 0; j != i + 1; ++j) { 1446 assert(IndexValues[j] && 1447 isa<llvm::ConstantInt>(IndexValues[j]) && 1448 cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue() 1449 == Indices[j]); 1450 } 1451 #endif 1452 break; 1453 } 1454 1455 IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]); 1456 } 1457 1458 // Form a GEP and then bitcast to the placeholder type so that the 1459 // replacement will succeed. 1460 llvm::Constant *location = 1461 llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy, 1462 Base, IndexValues); 1463 location = llvm::ConstantExpr::getBitCast(location, 1464 placeholder->getType()); 1465 1466 Locations.insert({placeholder, location}); 1467 } 1468 }; 1469 } 1470 1471 void ConstantEmitter::finalize(llvm::GlobalVariable *global) { 1472 assert(InitializedNonAbstract && 1473 "finalizing emitter that was used for abstract emission?"); 1474 assert(!Finalized && "finalizing emitter multiple times"); 1475 assert(global->getInitializer()); 1476 1477 // Note that we might also be Failed. 1478 Finalized = true; 1479 1480 if (!PlaceholderAddresses.empty()) { 1481 ReplacePlaceholders(CGM, global, PlaceholderAddresses) 1482 .replaceInInitializer(global->getInitializer()); 1483 PlaceholderAddresses.clear(); // satisfy 1484 } 1485 } 1486 1487 ConstantEmitter::~ConstantEmitter() { 1488 assert((!InitializedNonAbstract || Finalized || Failed) && 1489 "not finalized after being initialized for non-abstract emission"); 1490 assert(PlaceholderAddresses.empty() && "unhandled placeholders"); 1491 } 1492 1493 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) { 1494 if (auto AT = type->getAs<AtomicType>()) { 1495 return CGM.getContext().getQualifiedType(AT->getValueType(), 1496 type.getQualifiers()); 1497 } 1498 return type; 1499 } 1500 1501 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) { 1502 // Make a quick check if variable can be default NULL initialized 1503 // and avoid going through rest of code which may do, for c++11, 1504 // initialization of memory to all NULLs. 1505 if (!D.hasLocalStorage()) { 1506 QualType Ty = CGM.getContext().getBaseElementType(D.getType()); 1507 if (Ty->isRecordType()) 1508 if (const CXXConstructExpr *E = 1509 dyn_cast_or_null<CXXConstructExpr>(D.getInit())) { 1510 const CXXConstructorDecl *CD = E->getConstructor(); 1511 if (CD->isTrivial() && CD->isDefaultConstructor()) 1512 return CGM.EmitNullConstant(D.getType()); 1513 } 1514 } 1515 1516 QualType destType = D.getType(); 1517 1518 // Try to emit the initializer. Note that this can allow some things that 1519 // are not allowed by tryEmitPrivateForMemory alone. 1520 if (auto value = D.evaluateValue()) { 1521 return tryEmitPrivateForMemory(*value, destType); 1522 } 1523 1524 // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a 1525 // reference is a constant expression, and the reference binds to a temporary, 1526 // then constant initialization is performed. ConstExprEmitter will 1527 // incorrectly emit a prvalue constant in this case, and the calling code 1528 // interprets that as the (pointer) value of the reference, rather than the 1529 // desired value of the referee. 1530 if (destType->isReferenceType()) 1531 return nullptr; 1532 1533 const Expr *E = D.getInit(); 1534 assert(E && "No initializer to emit"); 1535 1536 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1537 auto C = 1538 ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType); 1539 return (C ? emitForMemory(C, destType) : nullptr); 1540 } 1541 1542 llvm::Constant * 1543 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) { 1544 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1545 auto C = tryEmitAbstract(E, nonMemoryDestType); 1546 return (C ? emitForMemory(C, destType) : nullptr); 1547 } 1548 1549 llvm::Constant * 1550 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value, 1551 QualType destType) { 1552 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1553 auto C = tryEmitAbstract(value, nonMemoryDestType); 1554 return (C ? emitForMemory(C, destType) : nullptr); 1555 } 1556 1557 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E, 1558 QualType destType) { 1559 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1560 llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType); 1561 return (C ? emitForMemory(C, destType) : nullptr); 1562 } 1563 1564 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value, 1565 QualType destType) { 1566 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1567 auto C = tryEmitPrivate(value, nonMemoryDestType); 1568 return (C ? emitForMemory(C, destType) : nullptr); 1569 } 1570 1571 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM, 1572 llvm::Constant *C, 1573 QualType destType) { 1574 // For an _Atomic-qualified constant, we may need to add tail padding. 1575 if (auto AT = destType->getAs<AtomicType>()) { 1576 QualType destValueType = AT->getValueType(); 1577 C = emitForMemory(CGM, C, destValueType); 1578 1579 uint64_t innerSize = CGM.getContext().getTypeSize(destValueType); 1580 uint64_t outerSize = CGM.getContext().getTypeSize(destType); 1581 if (innerSize == outerSize) 1582 return C; 1583 1584 assert(innerSize < outerSize && "emitted over-large constant for atomic"); 1585 llvm::Constant *elts[] = { 1586 C, 1587 llvm::ConstantAggregateZero::get( 1588 llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8)) 1589 }; 1590 return llvm::ConstantStruct::getAnon(elts); 1591 } 1592 1593 // Zero-extend bool. 1594 if (C->getType()->isIntegerTy(1)) { 1595 llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType); 1596 return llvm::ConstantExpr::getZExt(C, boolTy); 1597 } 1598 1599 return C; 1600 } 1601 1602 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E, 1603 QualType destType) { 1604 Expr::EvalResult Result; 1605 1606 bool Success = false; 1607 1608 if (destType->isReferenceType()) 1609 Success = E->EvaluateAsLValue(Result, CGM.getContext()); 1610 else 1611 Success = E->EvaluateAsRValue(Result, CGM.getContext()); 1612 1613 llvm::Constant *C; 1614 if (Success && !Result.HasSideEffects) 1615 C = tryEmitPrivate(Result.Val, destType); 1616 else 1617 C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType); 1618 1619 return C; 1620 } 1621 1622 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) { 1623 return getTargetCodeGenInfo().getNullPointer(*this, T, QT); 1624 } 1625 1626 llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value, 1627 QualType DestType) { 1628 switch (Value.getKind()) { 1629 case APValue::Uninitialized: 1630 llvm_unreachable("Constant expressions should be initialized."); 1631 case APValue::LValue: { 1632 llvm::Type *DestTy = CGM.getTypes().ConvertTypeForMem(DestType); 1633 llvm::Constant *Offset = 1634 llvm::ConstantInt::get(CGM.Int64Ty, 1635 Value.getLValueOffset().getQuantity()); 1636 1637 if (APValue::LValueBase LVBase = Value.getLValueBase()) { 1638 // An array can be represented as an lvalue referring to the base. 1639 if (isa<llvm::ArrayType>(DestTy)) { 1640 assert(Offset->isNullValue() && "offset on array initializer"); 1641 return ConstExprEmitter(*this).Visit( 1642 const_cast<Expr*>(LVBase.get<const Expr*>()), 1643 DestType); 1644 } 1645 1646 auto C = ConstExprEmitter(*this).EmitLValue(LVBase).getPointer(); 1647 1648 // Apply offset if necessary. 1649 if (!Offset->isNullValue()) { 1650 unsigned AS = C->getType()->getPointerAddressSpace(); 1651 llvm::Type *CharPtrTy = CGM.Int8Ty->getPointerTo(AS); 1652 llvm::Constant *Casted = llvm::ConstantExpr::getBitCast(C, CharPtrTy); 1653 Casted = 1654 llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, Casted, Offset); 1655 C = llvm::ConstantExpr::getPointerCast(Casted, C->getType()); 1656 } 1657 1658 // Convert to the appropriate type; this could be an lvalue for 1659 // an integer. FIXME: performAddrSpaceCast 1660 if (isa<llvm::PointerType>(DestTy)) 1661 return llvm::ConstantExpr::getPointerCast(C, DestTy); 1662 1663 return llvm::ConstantExpr::getPtrToInt(C, DestTy); 1664 } else { 1665 auto C = Offset; 1666 1667 // Convert to the appropriate type; this could be an lvalue for 1668 // an integer. 1669 if (auto PT = dyn_cast<llvm::PointerType>(DestTy)) { 1670 if (Value.isNullPointer()) 1671 return CGM.getNullPointer(PT, DestType); 1672 // Convert the integer to a pointer-sized integer before converting it 1673 // to a pointer. 1674 C = llvm::ConstantExpr::getIntegerCast( 1675 C, CGM.getDataLayout().getIntPtrType(DestTy), 1676 /*isSigned=*/false); 1677 return llvm::ConstantExpr::getIntToPtr(C, DestTy); 1678 } 1679 1680 // If the types don't match this should only be a truncate. 1681 if (C->getType() != DestTy) 1682 return llvm::ConstantExpr::getTrunc(C, DestTy); 1683 1684 return C; 1685 } 1686 } 1687 case APValue::Int: 1688 return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt()); 1689 case APValue::ComplexInt: { 1690 llvm::Constant *Complex[2]; 1691 1692 Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(), 1693 Value.getComplexIntReal()); 1694 Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(), 1695 Value.getComplexIntImag()); 1696 1697 // FIXME: the target may want to specify that this is packed. 1698 llvm::StructType *STy = 1699 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 1700 return llvm::ConstantStruct::get(STy, Complex); 1701 } 1702 case APValue::Float: { 1703 const llvm::APFloat &Init = Value.getFloat(); 1704 if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() && 1705 !CGM.getContext().getLangOpts().NativeHalfType && 1706 !CGM.getContext().getLangOpts().HalfArgsAndReturns) 1707 return llvm::ConstantInt::get(CGM.getLLVMContext(), 1708 Init.bitcastToAPInt()); 1709 else 1710 return llvm::ConstantFP::get(CGM.getLLVMContext(), Init); 1711 } 1712 case APValue::ComplexFloat: { 1713 llvm::Constant *Complex[2]; 1714 1715 Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(), 1716 Value.getComplexFloatReal()); 1717 Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(), 1718 Value.getComplexFloatImag()); 1719 1720 // FIXME: the target may want to specify that this is packed. 1721 llvm::StructType *STy = 1722 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 1723 return llvm::ConstantStruct::get(STy, Complex); 1724 } 1725 case APValue::Vector: { 1726 unsigned NumElts = Value.getVectorLength(); 1727 SmallVector<llvm::Constant *, 4> Inits(NumElts); 1728 1729 for (unsigned I = 0; I != NumElts; ++I) { 1730 const APValue &Elt = Value.getVectorElt(I); 1731 if (Elt.isInt()) 1732 Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt()); 1733 else if (Elt.isFloat()) 1734 Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat()); 1735 else 1736 llvm_unreachable("unsupported vector element type"); 1737 } 1738 return llvm::ConstantVector::get(Inits); 1739 } 1740 case APValue::AddrLabelDiff: { 1741 const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS(); 1742 const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS(); 1743 llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType()); 1744 llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType()); 1745 if (!LHS || !RHS) return nullptr; 1746 1747 // Compute difference 1748 llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType); 1749 LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy); 1750 RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy); 1751 llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS); 1752 1753 // LLVM is a bit sensitive about the exact format of the 1754 // address-of-label difference; make sure to truncate after 1755 // the subtraction. 1756 return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType); 1757 } 1758 case APValue::Struct: 1759 case APValue::Union: 1760 return ConstStructBuilder::BuildStruct(*this, Value, DestType); 1761 case APValue::Array: { 1762 const ArrayType *CAT = CGM.getContext().getAsArrayType(DestType); 1763 unsigned NumElements = Value.getArraySize(); 1764 unsigned NumInitElts = Value.getArrayInitializedElts(); 1765 1766 // Emit array filler, if there is one. 1767 llvm::Constant *Filler = nullptr; 1768 if (Value.hasArrayFiller()) 1769 Filler = tryEmitAbstractForMemory(Value.getArrayFiller(), 1770 CAT->getElementType()); 1771 1772 // Emit initializer elements. 1773 llvm::Type *CommonElementType = 1774 CGM.getTypes().ConvertType(CAT->getElementType()); 1775 1776 // Try to use a ConstantAggregateZero if we can. 1777 if (Filler && Filler->isNullValue() && !NumInitElts) { 1778 llvm::ArrayType *AType = 1779 llvm::ArrayType::get(CommonElementType, NumElements); 1780 return llvm::ConstantAggregateZero::get(AType); 1781 } 1782 1783 SmallVector<llvm::Constant*, 16> Elts; 1784 Elts.reserve(NumElements); 1785 for (unsigned I = 0; I < NumElements; ++I) { 1786 llvm::Constant *C = Filler; 1787 if (I < NumInitElts) { 1788 C = tryEmitPrivateForMemory(Value.getArrayInitializedElt(I), 1789 CAT->getElementType()); 1790 } else if (!Filler) { 1791 assert(Value.hasArrayFiller() && 1792 "Missing filler for implicit elements of initializer"); 1793 C = tryEmitPrivateForMemory(Value.getArrayFiller(), 1794 CAT->getElementType()); 1795 } 1796 if (!C) return nullptr; 1797 1798 if (I == 0) 1799 CommonElementType = C->getType(); 1800 else if (C->getType() != CommonElementType) 1801 CommonElementType = nullptr; 1802 Elts.push_back(C); 1803 } 1804 1805 if (!CommonElementType) { 1806 // FIXME: Try to avoid packing the array 1807 std::vector<llvm::Type*> Types; 1808 Types.reserve(NumElements); 1809 for (unsigned i = 0, e = Elts.size(); i < e; ++i) 1810 Types.push_back(Elts[i]->getType()); 1811 llvm::StructType *SType = 1812 llvm::StructType::get(CGM.getLLVMContext(), Types, true); 1813 return llvm::ConstantStruct::get(SType, Elts); 1814 } 1815 1816 llvm::ArrayType *AType = 1817 llvm::ArrayType::get(CommonElementType, NumElements); 1818 return llvm::ConstantArray::get(AType, Elts); 1819 } 1820 case APValue::MemberPointer: 1821 return CGM.getCXXABI().EmitMemberPointer(Value, DestType); 1822 } 1823 llvm_unreachable("Unknown APValue kind"); 1824 } 1825 1826 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted( 1827 const CompoundLiteralExpr *E) { 1828 return EmittedCompoundLiterals.lookup(E); 1829 } 1830 1831 void CodeGenModule::setAddrOfConstantCompoundLiteral( 1832 const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) { 1833 bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second; 1834 (void)Ok; 1835 assert(Ok && "CLE has already been emitted!"); 1836 } 1837 1838 ConstantAddress 1839 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) { 1840 assert(E->isFileScope() && "not a file-scope compound literal expr"); 1841 return tryEmitGlobalCompoundLiteral(*this, nullptr, E); 1842 } 1843 1844 llvm::Constant * 1845 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) { 1846 // Member pointer constants always have a very particular form. 1847 const MemberPointerType *type = cast<MemberPointerType>(uo->getType()); 1848 const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl(); 1849 1850 // A member function pointer. 1851 if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl)) 1852 return getCXXABI().EmitMemberFunctionPointer(method); 1853 1854 // Otherwise, a member data pointer. 1855 uint64_t fieldOffset = getContext().getFieldOffset(decl); 1856 CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset); 1857 return getCXXABI().EmitMemberDataPointer(type, chars); 1858 } 1859 1860 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 1861 llvm::Type *baseType, 1862 const CXXRecordDecl *base); 1863 1864 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM, 1865 const RecordDecl *record, 1866 bool asCompleteObject) { 1867 const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record); 1868 llvm::StructType *structure = 1869 (asCompleteObject ? layout.getLLVMType() 1870 : layout.getBaseSubobjectLLVMType()); 1871 1872 unsigned numElements = structure->getNumElements(); 1873 std::vector<llvm::Constant *> elements(numElements); 1874 1875 auto CXXR = dyn_cast<CXXRecordDecl>(record); 1876 // Fill in all the bases. 1877 if (CXXR) { 1878 for (const auto &I : CXXR->bases()) { 1879 if (I.isVirtual()) { 1880 // Ignore virtual bases; if we're laying out for a complete 1881 // object, we'll lay these out later. 1882 continue; 1883 } 1884 1885 const CXXRecordDecl *base = 1886 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1887 1888 // Ignore empty bases. 1889 if (base->isEmpty() || 1890 CGM.getContext().getASTRecordLayout(base).getNonVirtualSize() 1891 .isZero()) 1892 continue; 1893 1894 unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base); 1895 llvm::Type *baseType = structure->getElementType(fieldIndex); 1896 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 1897 } 1898 } 1899 1900 // Fill in all the fields. 1901 for (const auto *Field : record->fields()) { 1902 // Fill in non-bitfields. (Bitfields always use a zero pattern, which we 1903 // will fill in later.) 1904 if (!Field->isBitField()) { 1905 unsigned fieldIndex = layout.getLLVMFieldNo(Field); 1906 elements[fieldIndex] = CGM.EmitNullConstant(Field->getType()); 1907 } 1908 1909 // For unions, stop after the first named field. 1910 if (record->isUnion()) { 1911 if (Field->getIdentifier()) 1912 break; 1913 if (const auto *FieldRD = 1914 dyn_cast_or_null<RecordDecl>(Field->getType()->getAsTagDecl())) 1915 if (FieldRD->findFirstNamedDataMember()) 1916 break; 1917 } 1918 } 1919 1920 // Fill in the virtual bases, if we're working with the complete object. 1921 if (CXXR && asCompleteObject) { 1922 for (const auto &I : CXXR->vbases()) { 1923 const CXXRecordDecl *base = 1924 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1925 1926 // Ignore empty bases. 1927 if (base->isEmpty()) 1928 continue; 1929 1930 unsigned fieldIndex = layout.getVirtualBaseIndex(base); 1931 1932 // We might have already laid this field out. 1933 if (elements[fieldIndex]) continue; 1934 1935 llvm::Type *baseType = structure->getElementType(fieldIndex); 1936 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 1937 } 1938 } 1939 1940 // Now go through all other fields and zero them out. 1941 for (unsigned i = 0; i != numElements; ++i) { 1942 if (!elements[i]) 1943 elements[i] = llvm::Constant::getNullValue(structure->getElementType(i)); 1944 } 1945 1946 return llvm::ConstantStruct::get(structure, elements); 1947 } 1948 1949 /// Emit the null constant for a base subobject. 1950 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 1951 llvm::Type *baseType, 1952 const CXXRecordDecl *base) { 1953 const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base); 1954 1955 // Just zero out bases that don't have any pointer to data members. 1956 if (baseLayout.isZeroInitializableAsBase()) 1957 return llvm::Constant::getNullValue(baseType); 1958 1959 // Otherwise, we can just use its null constant. 1960 return EmitNullConstant(CGM, base, /*asCompleteObject=*/false); 1961 } 1962 1963 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM, 1964 QualType T) { 1965 return emitForMemory(CGM, CGM.EmitNullConstant(T), T); 1966 } 1967 1968 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { 1969 if (T->getAs<PointerType>()) 1970 return getNullPointer( 1971 cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T); 1972 1973 if (getTypes().isZeroInitializable(T)) 1974 return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); 1975 1976 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { 1977 llvm::ArrayType *ATy = 1978 cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T)); 1979 1980 QualType ElementTy = CAT->getElementType(); 1981 1982 llvm::Constant *Element = 1983 ConstantEmitter::emitNullForMemory(*this, ElementTy); 1984 unsigned NumElements = CAT->getSize().getZExtValue(); 1985 SmallVector<llvm::Constant *, 8> Array(NumElements, Element); 1986 return llvm::ConstantArray::get(ATy, Array); 1987 } 1988 1989 if (const RecordType *RT = T->getAs<RecordType>()) 1990 return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true); 1991 1992 assert(T->isMemberDataPointerType() && 1993 "Should only see pointers to data members here!"); 1994 1995 return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>()); 1996 } 1997 1998 llvm::Constant * 1999 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) { 2000 return ::EmitNullConstant(*this, Record, false); 2001 } 2002