1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Constant Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGObjCRuntime.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/APValue.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "clang/Basic/Builtins.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/GlobalVariable.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 //===----------------------------------------------------------------------===//
32 //                            ConstStructBuilder
33 //===----------------------------------------------------------------------===//
34 
35 namespace {
36 class ConstStructBuilder {
37   CodeGenModule &CGM;
38   CodeGenFunction *CGF;
39 
40   bool Packed;
41   CharUnits NextFieldOffsetInChars;
42   CharUnits LLVMStructAlignment;
43   SmallVector<llvm::Constant *, 32> Elements;
44 public:
45   static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF,
46                                      InitListExpr *ILE);
47   static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF,
48                                      const APValue &Value, QualType ValTy);
49 
50 private:
51   ConstStructBuilder(CodeGenModule &CGM, CodeGenFunction *CGF)
52     : CGM(CGM), CGF(CGF), Packed(false),
53     NextFieldOffsetInChars(CharUnits::Zero()),
54     LLVMStructAlignment(CharUnits::One()) { }
55 
56   void AppendVTablePointer(BaseSubobject Base, llvm::Constant *VTable,
57                            const CXXRecordDecl *VTableClass);
58 
59   void AppendField(const FieldDecl *Field, uint64_t FieldOffset,
60                    llvm::Constant *InitExpr);
61 
62   void AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst);
63 
64   void AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
65                       llvm::ConstantInt *InitExpr);
66 
67   void AppendPadding(CharUnits PadSize);
68 
69   void AppendTailPadding(CharUnits RecordSize);
70 
71   void ConvertStructToPacked();
72 
73   bool Build(InitListExpr *ILE);
74   void Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
75              llvm::Constant *VTable, const CXXRecordDecl *VTableClass,
76              CharUnits BaseOffset);
77   llvm::Constant *Finalize(QualType Ty);
78 
79   CharUnits getAlignment(const llvm::Constant *C) const {
80     if (Packed)  return CharUnits::One();
81     return CharUnits::fromQuantity(
82         CGM.getDataLayout().getABITypeAlignment(C->getType()));
83   }
84 
85   CharUnits getSizeInChars(const llvm::Constant *C) const {
86     return CharUnits::fromQuantity(
87         CGM.getDataLayout().getTypeAllocSize(C->getType()));
88   }
89 };
90 
91 void ConstStructBuilder::AppendVTablePointer(BaseSubobject Base,
92                                              llvm::Constant *VTable,
93                                              const CXXRecordDecl *VTableClass) {
94   // Find the appropriate vtable within the vtable group.
95   uint64_t AddressPoint =
96     CGM.getVTableContext().getVTableLayout(VTableClass).getAddressPoint(Base);
97   llvm::Value *Indices[] = {
98     llvm::ConstantInt::get(CGM.Int64Ty, 0),
99     llvm::ConstantInt::get(CGM.Int64Ty, AddressPoint)
100   };
101   llvm::Constant *VTableAddressPoint =
102     llvm::ConstantExpr::getInBoundsGetElementPtr(VTable, Indices);
103 
104   // Add the vtable at the start of the object.
105   AppendBytes(Base.getBaseOffset(), VTableAddressPoint);
106 }
107 
108 void ConstStructBuilder::
109 AppendField(const FieldDecl *Field, uint64_t FieldOffset,
110             llvm::Constant *InitCst) {
111   const ASTContext &Context = CGM.getContext();
112 
113   CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
114 
115   AppendBytes(FieldOffsetInChars, InitCst);
116 }
117 
118 void ConstStructBuilder::
119 AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst) {
120 
121   assert(NextFieldOffsetInChars <= FieldOffsetInChars
122          && "Field offset mismatch!");
123 
124   CharUnits FieldAlignment = getAlignment(InitCst);
125 
126   // Round up the field offset to the alignment of the field type.
127   CharUnits AlignedNextFieldOffsetInChars =
128     NextFieldOffsetInChars.RoundUpToAlignment(FieldAlignment);
129 
130   if (AlignedNextFieldOffsetInChars > FieldOffsetInChars) {
131     assert(!Packed && "Alignment is wrong even with a packed struct!");
132 
133     // Convert the struct to a packed struct.
134     ConvertStructToPacked();
135 
136     AlignedNextFieldOffsetInChars = NextFieldOffsetInChars;
137   }
138 
139   if (AlignedNextFieldOffsetInChars < FieldOffsetInChars) {
140     // We need to append padding.
141     AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars);
142 
143     assert(NextFieldOffsetInChars == FieldOffsetInChars &&
144            "Did not add enough padding!");
145 
146     AlignedNextFieldOffsetInChars = NextFieldOffsetInChars;
147   }
148 
149   // Add the field.
150   Elements.push_back(InitCst);
151   NextFieldOffsetInChars = AlignedNextFieldOffsetInChars +
152                            getSizeInChars(InitCst);
153 
154   if (Packed)
155     assert(LLVMStructAlignment == CharUnits::One() &&
156            "Packed struct not byte-aligned!");
157   else
158     LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment);
159 }
160 
161 void ConstStructBuilder::AppendBitField(const FieldDecl *Field,
162                                         uint64_t FieldOffset,
163                                         llvm::ConstantInt *CI) {
164   const ASTContext &Context = CGM.getContext();
165   const uint64_t CharWidth = Context.getCharWidth();
166   uint64_t NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
167   if (FieldOffset > NextFieldOffsetInBits) {
168     // We need to add padding.
169     CharUnits PadSize = Context.toCharUnitsFromBits(
170       llvm::RoundUpToAlignment(FieldOffset - NextFieldOffsetInBits,
171                                Context.getTargetInfo().getCharAlign()));
172 
173     AppendPadding(PadSize);
174   }
175 
176   uint64_t FieldSize = Field->getBitWidthValue(Context);
177 
178   llvm::APInt FieldValue = CI->getValue();
179 
180   // Promote the size of FieldValue if necessary
181   // FIXME: This should never occur, but currently it can because initializer
182   // constants are cast to bool, and because clang is not enforcing bitfield
183   // width limits.
184   if (FieldSize > FieldValue.getBitWidth())
185     FieldValue = FieldValue.zext(FieldSize);
186 
187   // Truncate the size of FieldValue to the bit field size.
188   if (FieldSize < FieldValue.getBitWidth())
189     FieldValue = FieldValue.trunc(FieldSize);
190 
191   NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
192   if (FieldOffset < NextFieldOffsetInBits) {
193     // Either part of the field or the entire field can go into the previous
194     // byte.
195     assert(!Elements.empty() && "Elements can't be empty!");
196 
197     unsigned BitsInPreviousByte = NextFieldOffsetInBits - FieldOffset;
198 
199     bool FitsCompletelyInPreviousByte =
200       BitsInPreviousByte >= FieldValue.getBitWidth();
201 
202     llvm::APInt Tmp = FieldValue;
203 
204     if (!FitsCompletelyInPreviousByte) {
205       unsigned NewFieldWidth = FieldSize - BitsInPreviousByte;
206 
207       if (CGM.getDataLayout().isBigEndian()) {
208         Tmp = Tmp.lshr(NewFieldWidth);
209         Tmp = Tmp.trunc(BitsInPreviousByte);
210 
211         // We want the remaining high bits.
212         FieldValue = FieldValue.trunc(NewFieldWidth);
213       } else {
214         Tmp = Tmp.trunc(BitsInPreviousByte);
215 
216         // We want the remaining low bits.
217         FieldValue = FieldValue.lshr(BitsInPreviousByte);
218         FieldValue = FieldValue.trunc(NewFieldWidth);
219       }
220     }
221 
222     Tmp = Tmp.zext(CharWidth);
223     if (CGM.getDataLayout().isBigEndian()) {
224       if (FitsCompletelyInPreviousByte)
225         Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth());
226     } else {
227       Tmp = Tmp.shl(CharWidth - BitsInPreviousByte);
228     }
229 
230     // 'or' in the bits that go into the previous byte.
231     llvm::Value *LastElt = Elements.back();
232     if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(LastElt))
233       Tmp |= Val->getValue();
234     else {
235       assert(isa<llvm::UndefValue>(LastElt));
236       // If there is an undef field that we're adding to, it can either be a
237       // scalar undef (in which case, we just replace it with our field) or it
238       // is an array.  If it is an array, we have to pull one byte off the
239       // array so that the other undef bytes stay around.
240       if (!isa<llvm::IntegerType>(LastElt->getType())) {
241         // The undef padding will be a multibyte array, create a new smaller
242         // padding and then an hole for our i8 to get plopped into.
243         assert(isa<llvm::ArrayType>(LastElt->getType()) &&
244                "Expected array padding of undefs");
245         llvm::ArrayType *AT = cast<llvm::ArrayType>(LastElt->getType());
246         assert(AT->getElementType()->isIntegerTy(CharWidth) &&
247                AT->getNumElements() != 0 &&
248                "Expected non-empty array padding of undefs");
249 
250         // Remove the padding array.
251         NextFieldOffsetInChars -= CharUnits::fromQuantity(AT->getNumElements());
252         Elements.pop_back();
253 
254         // Add the padding back in two chunks.
255         AppendPadding(CharUnits::fromQuantity(AT->getNumElements()-1));
256         AppendPadding(CharUnits::One());
257         assert(isa<llvm::UndefValue>(Elements.back()) &&
258                Elements.back()->getType()->isIntegerTy(CharWidth) &&
259                "Padding addition didn't work right");
260       }
261     }
262 
263     Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp);
264 
265     if (FitsCompletelyInPreviousByte)
266       return;
267   }
268 
269   while (FieldValue.getBitWidth() > CharWidth) {
270     llvm::APInt Tmp;
271 
272     if (CGM.getDataLayout().isBigEndian()) {
273       // We want the high bits.
274       Tmp =
275         FieldValue.lshr(FieldValue.getBitWidth() - CharWidth).trunc(CharWidth);
276     } else {
277       // We want the low bits.
278       Tmp = FieldValue.trunc(CharWidth);
279 
280       FieldValue = FieldValue.lshr(CharWidth);
281     }
282 
283     Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp));
284     ++NextFieldOffsetInChars;
285 
286     FieldValue = FieldValue.trunc(FieldValue.getBitWidth() - CharWidth);
287   }
288 
289   assert(FieldValue.getBitWidth() > 0 &&
290          "Should have at least one bit left!");
291   assert(FieldValue.getBitWidth() <= CharWidth &&
292          "Should not have more than a byte left!");
293 
294   if (FieldValue.getBitWidth() < CharWidth) {
295     if (CGM.getDataLayout().isBigEndian()) {
296       unsigned BitWidth = FieldValue.getBitWidth();
297 
298       FieldValue = FieldValue.zext(CharWidth) << (CharWidth - BitWidth);
299     } else
300       FieldValue = FieldValue.zext(CharWidth);
301   }
302 
303   // Append the last element.
304   Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(),
305                                             FieldValue));
306   ++NextFieldOffsetInChars;
307 }
308 
309 void ConstStructBuilder::AppendPadding(CharUnits PadSize) {
310   if (PadSize.isZero())
311     return;
312 
313   llvm::Type *Ty = CGM.Int8Ty;
314   if (PadSize > CharUnits::One())
315     Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
316 
317   llvm::Constant *C = llvm::UndefValue::get(Ty);
318   Elements.push_back(C);
319   assert(getAlignment(C) == CharUnits::One() &&
320          "Padding must have 1 byte alignment!");
321 
322   NextFieldOffsetInChars += getSizeInChars(C);
323 }
324 
325 void ConstStructBuilder::AppendTailPadding(CharUnits RecordSize) {
326   assert(NextFieldOffsetInChars <= RecordSize &&
327          "Size mismatch!");
328 
329   AppendPadding(RecordSize - NextFieldOffsetInChars);
330 }
331 
332 void ConstStructBuilder::ConvertStructToPacked() {
333   SmallVector<llvm::Constant *, 16> PackedElements;
334   CharUnits ElementOffsetInChars = CharUnits::Zero();
335 
336   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
337     llvm::Constant *C = Elements[i];
338 
339     CharUnits ElementAlign = CharUnits::fromQuantity(
340       CGM.getDataLayout().getABITypeAlignment(C->getType()));
341     CharUnits AlignedElementOffsetInChars =
342       ElementOffsetInChars.RoundUpToAlignment(ElementAlign);
343 
344     if (AlignedElementOffsetInChars > ElementOffsetInChars) {
345       // We need some padding.
346       CharUnits NumChars =
347         AlignedElementOffsetInChars - ElementOffsetInChars;
348 
349       llvm::Type *Ty = CGM.Int8Ty;
350       if (NumChars > CharUnits::One())
351         Ty = llvm::ArrayType::get(Ty, NumChars.getQuantity());
352 
353       llvm::Constant *Padding = llvm::UndefValue::get(Ty);
354       PackedElements.push_back(Padding);
355       ElementOffsetInChars += getSizeInChars(Padding);
356     }
357 
358     PackedElements.push_back(C);
359     ElementOffsetInChars += getSizeInChars(C);
360   }
361 
362   assert(ElementOffsetInChars == NextFieldOffsetInChars &&
363          "Packing the struct changed its size!");
364 
365   Elements.swap(PackedElements);
366   LLVMStructAlignment = CharUnits::One();
367   Packed = true;
368 }
369 
370 bool ConstStructBuilder::Build(InitListExpr *ILE) {
371   RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
372   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
373 
374   unsigned FieldNo = 0;
375   unsigned ElementNo = 0;
376 
377   for (RecordDecl::field_iterator Field = RD->field_begin(),
378        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
379     // If this is a union, skip all the fields that aren't being initialized.
380     if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field)
381       continue;
382 
383     // Don't emit anonymous bitfields, they just affect layout.
384     if (Field->isUnnamedBitfield())
385       continue;
386 
387     // Get the initializer.  A struct can include fields without initializers,
388     // we just use explicit null values for them.
389     llvm::Constant *EltInit;
390     if (ElementNo < ILE->getNumInits())
391       EltInit = CGM.EmitConstantExpr(ILE->getInit(ElementNo++),
392                                      Field->getType(), CGF);
393     else
394       EltInit = CGM.EmitNullConstant(Field->getType());
395 
396     if (!EltInit)
397       return false;
398 
399     if (!Field->isBitField()) {
400       // Handle non-bitfield members.
401       AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit);
402     } else {
403       // Otherwise we have a bitfield.
404       AppendBitField(*Field, Layout.getFieldOffset(FieldNo),
405                      cast<llvm::ConstantInt>(EltInit));
406     }
407   }
408 
409   return true;
410 }
411 
412 namespace {
413 struct BaseInfo {
414   BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
415     : Decl(Decl), Offset(Offset), Index(Index) {
416   }
417 
418   const CXXRecordDecl *Decl;
419   CharUnits Offset;
420   unsigned Index;
421 
422   bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
423 };
424 }
425 
426 void ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
427                                bool IsPrimaryBase, llvm::Constant *VTable,
428                                const CXXRecordDecl *VTableClass,
429                                CharUnits Offset) {
430   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
431 
432   if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
433     // Add a vtable pointer, if we need one and it hasn't already been added.
434     if (CD->isDynamicClass() && !IsPrimaryBase)
435       AppendVTablePointer(BaseSubobject(CD, Offset), VTable, VTableClass);
436 
437     // Accumulate and sort bases, in order to visit them in address order, which
438     // may not be the same as declaration order.
439     SmallVector<BaseInfo, 8> Bases;
440     Bases.reserve(CD->getNumBases());
441     unsigned BaseNo = 0;
442     for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
443          BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
444       assert(!Base->isVirtual() && "should not have virtual bases here");
445       const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
446       CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
447       Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
448     }
449     std::stable_sort(Bases.begin(), Bases.end());
450 
451     for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
452       BaseInfo &Base = Bases[I];
453 
454       bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
455       Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
456             VTable, VTableClass, Offset + Base.Offset);
457     }
458   }
459 
460   unsigned FieldNo = 0;
461   uint64_t OffsetBits = CGM.getContext().toBits(Offset);
462 
463   for (RecordDecl::field_iterator Field = RD->field_begin(),
464        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
465     // If this is a union, skip all the fields that aren't being initialized.
466     if (RD->isUnion() && Val.getUnionField() != *Field)
467       continue;
468 
469     // Don't emit anonymous bitfields, they just affect layout.
470     if (Field->isUnnamedBitfield())
471       continue;
472 
473     // Emit the value of the initializer.
474     const APValue &FieldValue =
475       RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
476     llvm::Constant *EltInit =
477       CGM.EmitConstantValueForMemory(FieldValue, Field->getType(), CGF);
478     assert(EltInit && "EmitConstantValue can't fail");
479 
480     if (!Field->isBitField()) {
481       // Handle non-bitfield members.
482       AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, EltInit);
483     } else {
484       // Otherwise we have a bitfield.
485       AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
486                      cast<llvm::ConstantInt>(EltInit));
487     }
488   }
489 }
490 
491 llvm::Constant *ConstStructBuilder::Finalize(QualType Ty) {
492   RecordDecl *RD = Ty->getAs<RecordType>()->getDecl();
493   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
494 
495   CharUnits LayoutSizeInChars = Layout.getSize();
496 
497   if (NextFieldOffsetInChars > LayoutSizeInChars) {
498     // If the struct is bigger than the size of the record type,
499     // we must have a flexible array member at the end.
500     assert(RD->hasFlexibleArrayMember() &&
501            "Must have flexible array member if struct is bigger than type!");
502 
503     // No tail padding is necessary.
504   } else {
505     // Append tail padding if necessary.
506     AppendTailPadding(LayoutSizeInChars);
507 
508     CharUnits LLVMSizeInChars =
509       NextFieldOffsetInChars.RoundUpToAlignment(LLVMStructAlignment);
510 
511     // Check if we need to convert the struct to a packed struct.
512     if (NextFieldOffsetInChars <= LayoutSizeInChars &&
513         LLVMSizeInChars > LayoutSizeInChars) {
514       assert(!Packed && "Size mismatch!");
515 
516       ConvertStructToPacked();
517       assert(NextFieldOffsetInChars <= LayoutSizeInChars &&
518              "Converting to packed did not help!");
519     }
520 
521     assert(LayoutSizeInChars == NextFieldOffsetInChars &&
522            "Tail padding mismatch!");
523   }
524 
525   // Pick the type to use.  If the type is layout identical to the ConvertType
526   // type then use it, otherwise use whatever the builder produced for us.
527   llvm::StructType *STy =
528       llvm::ConstantStruct::getTypeForElements(CGM.getLLVMContext(),
529                                                Elements, Packed);
530   llvm::Type *ValTy = CGM.getTypes().ConvertType(Ty);
531   if (llvm::StructType *ValSTy = dyn_cast<llvm::StructType>(ValTy)) {
532     if (ValSTy->isLayoutIdentical(STy))
533       STy = ValSTy;
534   }
535 
536   llvm::Constant *Result = llvm::ConstantStruct::get(STy, Elements);
537 
538   assert(NextFieldOffsetInChars.RoundUpToAlignment(getAlignment(Result)) ==
539          getSizeInChars(Result) && "Size mismatch!");
540 
541   return Result;
542 }
543 
544 llvm::Constant *ConstStructBuilder::BuildStruct(CodeGenModule &CGM,
545                                                 CodeGenFunction *CGF,
546                                                 InitListExpr *ILE) {
547   ConstStructBuilder Builder(CGM, CGF);
548 
549   if (!Builder.Build(ILE))
550     return 0;
551 
552   return Builder.Finalize(ILE->getType());
553 }
554 
555 llvm::Constant *ConstStructBuilder::BuildStruct(CodeGenModule &CGM,
556                                                 CodeGenFunction *CGF,
557                                                 const APValue &Val,
558                                                 QualType ValTy) {
559   ConstStructBuilder Builder(CGM, CGF);
560 
561   const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
562   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
563   llvm::Constant *VTable = 0;
564   if (CD && CD->isDynamicClass())
565     VTable = CGM.getVTables().GetAddrOfVTable(CD);
566 
567   Builder.Build(Val, RD, false, VTable, CD, CharUnits::Zero());
568 
569   return Builder.Finalize(ValTy);
570 }
571 
572 
573 //===----------------------------------------------------------------------===//
574 //                             ConstExprEmitter
575 //===----------------------------------------------------------------------===//
576 
577 /// This class only needs to handle two cases:
578 /// 1) Literals (this is used by APValue emission to emit literals).
579 /// 2) Arrays, structs and unions (outside C++11 mode, we don't currently
580 ///    constant fold these types).
581 class ConstExprEmitter :
582   public StmtVisitor<ConstExprEmitter, llvm::Constant*> {
583   CodeGenModule &CGM;
584   CodeGenFunction *CGF;
585   llvm::LLVMContext &VMContext;
586 public:
587   ConstExprEmitter(CodeGenModule &cgm, CodeGenFunction *cgf)
588     : CGM(cgm), CGF(cgf), VMContext(cgm.getLLVMContext()) {
589   }
590 
591   //===--------------------------------------------------------------------===//
592   //                            Visitor Methods
593   //===--------------------------------------------------------------------===//
594 
595   llvm::Constant *VisitStmt(Stmt *S) {
596     return 0;
597   }
598 
599   llvm::Constant *VisitParenExpr(ParenExpr *PE) {
600     return Visit(PE->getSubExpr());
601   }
602 
603   llvm::Constant *
604   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
605     return Visit(PE->getReplacement());
606   }
607 
608   llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
609     return Visit(GE->getResultExpr());
610   }
611 
612   llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
613     return Visit(E->getInitializer());
614   }
615 
616   llvm::Constant *VisitCastExpr(CastExpr* E) {
617     Expr *subExpr = E->getSubExpr();
618     llvm::Constant *C = CGM.EmitConstantExpr(subExpr, subExpr->getType(), CGF);
619     if (!C) return 0;
620 
621     llvm::Type *destType = ConvertType(E->getType());
622 
623     switch (E->getCastKind()) {
624     case CK_ToUnion: {
625       // GCC cast to union extension
626       assert(E->getType()->isUnionType() &&
627              "Destination type is not union type!");
628 
629       // Build a struct with the union sub-element as the first member,
630       // and padded to the appropriate size
631       SmallVector<llvm::Constant*, 2> Elts;
632       SmallVector<llvm::Type*, 2> Types;
633       Elts.push_back(C);
634       Types.push_back(C->getType());
635       unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
636       unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destType);
637 
638       assert(CurSize <= TotalSize && "Union size mismatch!");
639       if (unsigned NumPadBytes = TotalSize - CurSize) {
640         llvm::Type *Ty = CGM.Int8Ty;
641         if (NumPadBytes > 1)
642           Ty = llvm::ArrayType::get(Ty, NumPadBytes);
643 
644         Elts.push_back(llvm::UndefValue::get(Ty));
645         Types.push_back(Ty);
646       }
647 
648       llvm::StructType* STy =
649         llvm::StructType::get(C->getType()->getContext(), Types, false);
650       return llvm::ConstantStruct::get(STy, Elts);
651     }
652 
653     case CK_LValueToRValue:
654     case CK_AtomicToNonAtomic:
655     case CK_NonAtomicToAtomic:
656     case CK_NoOp:
657       return C;
658 
659     case CK_Dependent: llvm_unreachable("saw dependent cast!");
660 
661     case CK_BuiltinFnToFnPtr:
662       llvm_unreachable("builtin functions are handled elsewhere");
663 
664     case CK_ReinterpretMemberPointer:
665     case CK_DerivedToBaseMemberPointer:
666     case CK_BaseToDerivedMemberPointer:
667       return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
668 
669     // These will never be supported.
670     case CK_ObjCObjectLValueCast:
671     case CK_ARCProduceObject:
672     case CK_ARCConsumeObject:
673     case CK_ARCReclaimReturnedObject:
674     case CK_ARCExtendBlockObject:
675     case CK_CopyAndAutoreleaseBlockObject:
676       return 0;
677 
678     // These don't need to be handled here because Evaluate knows how to
679     // evaluate them in the cases where they can be folded.
680     case CK_BitCast:
681     case CK_ToVoid:
682     case CK_Dynamic:
683     case CK_LValueBitCast:
684     case CK_NullToMemberPointer:
685     case CK_UserDefinedConversion:
686     case CK_ConstructorConversion:
687     case CK_CPointerToObjCPointerCast:
688     case CK_BlockPointerToObjCPointerCast:
689     case CK_AnyPointerToBlockPointerCast:
690     case CK_ArrayToPointerDecay:
691     case CK_FunctionToPointerDecay:
692     case CK_BaseToDerived:
693     case CK_DerivedToBase:
694     case CK_UncheckedDerivedToBase:
695     case CK_MemberPointerToBoolean:
696     case CK_VectorSplat:
697     case CK_FloatingRealToComplex:
698     case CK_FloatingComplexToReal:
699     case CK_FloatingComplexToBoolean:
700     case CK_FloatingComplexCast:
701     case CK_FloatingComplexToIntegralComplex:
702     case CK_IntegralRealToComplex:
703     case CK_IntegralComplexToReal:
704     case CK_IntegralComplexToBoolean:
705     case CK_IntegralComplexCast:
706     case CK_IntegralComplexToFloatingComplex:
707     case CK_PointerToIntegral:
708     case CK_PointerToBoolean:
709     case CK_NullToPointer:
710     case CK_IntegralCast:
711     case CK_IntegralToPointer:
712     case CK_IntegralToBoolean:
713     case CK_IntegralToFloating:
714     case CK_FloatingToIntegral:
715     case CK_FloatingToBoolean:
716     case CK_FloatingCast:
717     case CK_ZeroToOCLEvent:
718       return 0;
719     }
720     llvm_unreachable("Invalid CastKind");
721   }
722 
723   llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
724     return Visit(DAE->getExpr());
725   }
726 
727   llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
728     // No need for a DefaultInitExprScope: we don't handle 'this' in a
729     // constant expression.
730     return Visit(DIE->getExpr());
731   }
732 
733   llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E) {
734     return Visit(E->GetTemporaryExpr());
735   }
736 
737   llvm::Constant *EmitArrayInitialization(InitListExpr *ILE) {
738     if (ILE->isStringLiteralInit())
739       return Visit(ILE->getInit(0));
740 
741     llvm::ArrayType *AType =
742         cast<llvm::ArrayType>(ConvertType(ILE->getType()));
743     llvm::Type *ElemTy = AType->getElementType();
744     unsigned NumInitElements = ILE->getNumInits();
745     unsigned NumElements = AType->getNumElements();
746 
747     // Initialising an array requires us to automatically
748     // initialise any elements that have not been initialised explicitly
749     unsigned NumInitableElts = std::min(NumInitElements, NumElements);
750 
751     // Copy initializer elements.
752     std::vector<llvm::Constant*> Elts;
753     Elts.reserve(NumInitableElts + NumElements);
754 
755     bool RewriteType = false;
756     for (unsigned i = 0; i < NumInitableElts; ++i) {
757       Expr *Init = ILE->getInit(i);
758       llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF);
759       if (!C)
760         return 0;
761       RewriteType |= (C->getType() != ElemTy);
762       Elts.push_back(C);
763     }
764 
765     // Initialize remaining array elements.
766     // FIXME: This doesn't handle member pointers correctly!
767     llvm::Constant *fillC;
768     if (Expr *filler = ILE->getArrayFiller())
769       fillC = CGM.EmitConstantExpr(filler, filler->getType(), CGF);
770     else
771       fillC = llvm::Constant::getNullValue(ElemTy);
772     if (!fillC)
773       return 0;
774     RewriteType |= (fillC->getType() != ElemTy);
775     Elts.resize(NumElements, fillC);
776 
777     if (RewriteType) {
778       // FIXME: Try to avoid packing the array
779       std::vector<llvm::Type*> Types;
780       Types.reserve(NumInitableElts + NumElements);
781       for (unsigned i = 0, e = Elts.size(); i < e; ++i)
782         Types.push_back(Elts[i]->getType());
783       llvm::StructType *SType = llvm::StructType::get(AType->getContext(),
784                                                             Types, true);
785       return llvm::ConstantStruct::get(SType, Elts);
786     }
787 
788     return llvm::ConstantArray::get(AType, Elts);
789   }
790 
791   llvm::Constant *EmitRecordInitialization(InitListExpr *ILE) {
792     return ConstStructBuilder::BuildStruct(CGM, CGF, ILE);
793   }
794 
795   llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E) {
796     return CGM.EmitNullConstant(E->getType());
797   }
798 
799   llvm::Constant *VisitInitListExpr(InitListExpr *ILE) {
800     if (ILE->getType()->isArrayType())
801       return EmitArrayInitialization(ILE);
802 
803     if (ILE->getType()->isRecordType())
804       return EmitRecordInitialization(ILE);
805 
806     return 0;
807   }
808 
809   llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E) {
810     if (!E->getConstructor()->isTrivial())
811       return 0;
812 
813     QualType Ty = E->getType();
814 
815     // FIXME: We should not have to call getBaseElementType here.
816     const RecordType *RT =
817       CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>();
818     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
819 
820     // If the class doesn't have a trivial destructor, we can't emit it as a
821     // constant expr.
822     if (!RD->hasTrivialDestructor())
823       return 0;
824 
825     // Only copy and default constructors can be trivial.
826 
827 
828     if (E->getNumArgs()) {
829       assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
830       assert(E->getConstructor()->isCopyOrMoveConstructor() &&
831              "trivial ctor has argument but isn't a copy/move ctor");
832 
833       Expr *Arg = E->getArg(0);
834       assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
835              "argument to copy ctor is of wrong type");
836 
837       return Visit(Arg);
838     }
839 
840     return CGM.EmitNullConstant(Ty);
841   }
842 
843   llvm::Constant *VisitStringLiteral(StringLiteral *E) {
844     return CGM.GetConstantArrayFromStringLiteral(E);
845   }
846 
847   llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E) {
848     // This must be an @encode initializing an array in a static initializer.
849     // Don't emit it as the address of the string, emit the string data itself
850     // as an inline array.
851     std::string Str;
852     CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
853     const ConstantArrayType *CAT = cast<ConstantArrayType>(E->getType());
854 
855     // Resize the string to the right size, adding zeros at the end, or
856     // truncating as needed.
857     Str.resize(CAT->getSize().getZExtValue(), '\0');
858     return llvm::ConstantDataArray::getString(VMContext, Str, false);
859   }
860 
861   llvm::Constant *VisitUnaryExtension(const UnaryOperator *E) {
862     return Visit(E->getSubExpr());
863   }
864 
865   // Utility methods
866   llvm::Type *ConvertType(QualType T) {
867     return CGM.getTypes().ConvertType(T);
868   }
869 
870 public:
871   llvm::Constant *EmitLValue(APValue::LValueBase LVBase) {
872     if (const ValueDecl *Decl = LVBase.dyn_cast<const ValueDecl*>()) {
873       if (Decl->hasAttr<WeakRefAttr>())
874         return CGM.GetWeakRefReference(Decl);
875       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
876         return CGM.GetAddrOfFunction(FD);
877       if (const VarDecl* VD = dyn_cast<VarDecl>(Decl)) {
878         // We can never refer to a variable with local storage.
879         if (!VD->hasLocalStorage()) {
880           if (VD->isFileVarDecl() || VD->hasExternalStorage())
881             return CGM.GetAddrOfGlobalVar(VD);
882           else if (VD->isLocalVarDecl())
883             return CGM.getStaticLocalDeclAddress(VD);
884         }
885       }
886       return 0;
887     }
888 
889     Expr *E = const_cast<Expr*>(LVBase.get<const Expr*>());
890     switch (E->getStmtClass()) {
891     default: break;
892     case Expr::CompoundLiteralExprClass: {
893       // Note that due to the nature of compound literals, this is guaranteed
894       // to be the only use of the variable, so we just generate it here.
895       CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
896       llvm::Constant* C = CGM.EmitConstantExpr(CLE->getInitializer(),
897                                                CLE->getType(), CGF);
898       // FIXME: "Leaked" on failure.
899       if (C)
900         C = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
901                                      E->getType().isConstant(CGM.getContext()),
902                                      llvm::GlobalValue::InternalLinkage,
903                                      C, ".compoundliteral", 0,
904                                      llvm::GlobalVariable::NotThreadLocal,
905                           CGM.getContext().getTargetAddressSpace(E->getType()));
906       return C;
907     }
908     case Expr::StringLiteralClass:
909       return CGM.GetAddrOfConstantStringFromLiteral(cast<StringLiteral>(E));
910     case Expr::ObjCEncodeExprClass:
911       return CGM.GetAddrOfConstantStringFromObjCEncode(cast<ObjCEncodeExpr>(E));
912     case Expr::ObjCStringLiteralClass: {
913       ObjCStringLiteral* SL = cast<ObjCStringLiteral>(E);
914       llvm::Constant *C =
915           CGM.getObjCRuntime().GenerateConstantString(SL->getString());
916       return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
917     }
918     case Expr::PredefinedExprClass: {
919       unsigned Type = cast<PredefinedExpr>(E)->getIdentType();
920       if (CGF) {
921         LValue Res = CGF->EmitPredefinedLValue(cast<PredefinedExpr>(E));
922         return cast<llvm::Constant>(Res.getAddress());
923       } else if (Type == PredefinedExpr::PrettyFunction) {
924         return CGM.GetAddrOfConstantCString("top level", ".tmp");
925       }
926 
927       return CGM.GetAddrOfConstantCString("", ".tmp");
928     }
929     case Expr::AddrLabelExprClass: {
930       assert(CGF && "Invalid address of label expression outside function.");
931       llvm::Constant *Ptr =
932         CGF->GetAddrOfLabel(cast<AddrLabelExpr>(E)->getLabel());
933       return llvm::ConstantExpr::getBitCast(Ptr, ConvertType(E->getType()));
934     }
935     case Expr::CallExprClass: {
936       CallExpr* CE = cast<CallExpr>(E);
937       unsigned builtin = CE->isBuiltinCall();
938       if (builtin !=
939             Builtin::BI__builtin___CFStringMakeConstantString &&
940           builtin !=
941             Builtin::BI__builtin___NSStringMakeConstantString)
942         break;
943       const Expr *Arg = CE->getArg(0)->IgnoreParenCasts();
944       const StringLiteral *Literal = cast<StringLiteral>(Arg);
945       if (builtin ==
946             Builtin::BI__builtin___NSStringMakeConstantString) {
947         return CGM.getObjCRuntime().GenerateConstantString(Literal);
948       }
949       // FIXME: need to deal with UCN conversion issues.
950       return CGM.GetAddrOfConstantCFString(Literal);
951     }
952     case Expr::BlockExprClass: {
953       std::string FunctionName;
954       if (CGF)
955         FunctionName = CGF->CurFn->getName();
956       else
957         FunctionName = "global";
958 
959       return CGM.GetAddrOfGlobalBlock(cast<BlockExpr>(E), FunctionName.c_str());
960     }
961     case Expr::CXXTypeidExprClass: {
962       CXXTypeidExpr *Typeid = cast<CXXTypeidExpr>(E);
963       QualType T;
964       if (Typeid->isTypeOperand())
965         T = Typeid->getTypeOperand();
966       else
967         T = Typeid->getExprOperand()->getType();
968       return CGM.GetAddrOfRTTIDescriptor(T);
969     }
970     case Expr::CXXUuidofExprClass: {
971       return CGM.GetAddrOfUuidDescriptor(cast<CXXUuidofExpr>(E));
972     }
973     case Expr::MaterializeTemporaryExprClass: {
974       MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
975       assert(MTE->getStorageDuration() == SD_Static);
976       SmallVector<const Expr *, 2> CommaLHSs;
977       SmallVector<SubobjectAdjustment, 2> Adjustments;
978       const Expr *Inner = MTE->GetTemporaryExpr()
979           ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
980       return CGM.GetAddrOfGlobalTemporary(MTE, Inner);
981     }
982     }
983 
984     return 0;
985   }
986 };
987 
988 }  // end anonymous namespace.
989 
990 llvm::Constant *CodeGenModule::EmitConstantInit(const VarDecl &D,
991                                                 CodeGenFunction *CGF) {
992   // Make a quick check if variable can be default NULL initialized
993   // and avoid going through rest of code which may do, for c++11,
994   // initialization of memory to all NULLs.
995   if (!D.hasLocalStorage()) {
996     QualType Ty = D.getType();
997     if (Ty->isArrayType())
998       Ty = Context.getBaseElementType(Ty);
999     if (Ty->isRecordType())
1000       if (const CXXConstructExpr *E =
1001           dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
1002         const CXXConstructorDecl *CD = E->getConstructor();
1003         if (CD->isTrivial() && CD->isDefaultConstructor())
1004           return EmitNullConstant(D.getType());
1005       }
1006   }
1007 
1008   if (const APValue *Value = D.evaluateValue())
1009     return EmitConstantValueForMemory(*Value, D.getType(), CGF);
1010 
1011   // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a
1012   // reference is a constant expression, and the reference binds to a temporary,
1013   // then constant initialization is performed. ConstExprEmitter will
1014   // incorrectly emit a prvalue constant in this case, and the calling code
1015   // interprets that as the (pointer) value of the reference, rather than the
1016   // desired value of the referee.
1017   if (D.getType()->isReferenceType())
1018     return 0;
1019 
1020   const Expr *E = D.getInit();
1021   assert(E && "No initializer to emit");
1022 
1023   llvm::Constant* C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E));
1024   if (C && C->getType()->isIntegerTy(1)) {
1025     llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType());
1026     C = llvm::ConstantExpr::getZExt(C, BoolTy);
1027   }
1028   return C;
1029 }
1030 
1031 llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E,
1032                                                 QualType DestType,
1033                                                 CodeGenFunction *CGF) {
1034   Expr::EvalResult Result;
1035 
1036   bool Success = false;
1037 
1038   if (DestType->isReferenceType())
1039     Success = E->EvaluateAsLValue(Result, Context);
1040   else
1041     Success = E->EvaluateAsRValue(Result, Context);
1042 
1043   llvm::Constant *C = 0;
1044   if (Success && !Result.HasSideEffects)
1045     C = EmitConstantValue(Result.Val, DestType, CGF);
1046   else
1047     C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E));
1048 
1049   if (C && C->getType()->isIntegerTy(1)) {
1050     llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType());
1051     C = llvm::ConstantExpr::getZExt(C, BoolTy);
1052   }
1053   return C;
1054 }
1055 
1056 llvm::Constant *CodeGenModule::EmitConstantValue(const APValue &Value,
1057                                                  QualType DestType,
1058                                                  CodeGenFunction *CGF) {
1059   switch (Value.getKind()) {
1060   case APValue::Uninitialized:
1061     llvm_unreachable("Constant expressions should be initialized.");
1062   case APValue::LValue: {
1063     llvm::Type *DestTy = getTypes().ConvertTypeForMem(DestType);
1064     llvm::Constant *Offset =
1065       llvm::ConstantInt::get(Int64Ty, Value.getLValueOffset().getQuantity());
1066 
1067     llvm::Constant *C;
1068     if (APValue::LValueBase LVBase = Value.getLValueBase()) {
1069       // An array can be represented as an lvalue referring to the base.
1070       if (isa<llvm::ArrayType>(DestTy)) {
1071         assert(Offset->isNullValue() && "offset on array initializer");
1072         return ConstExprEmitter(*this, CGF).Visit(
1073           const_cast<Expr*>(LVBase.get<const Expr*>()));
1074       }
1075 
1076       C = ConstExprEmitter(*this, CGF).EmitLValue(LVBase);
1077 
1078       // Apply offset if necessary.
1079       if (!Offset->isNullValue()) {
1080         llvm::Constant *Casted = llvm::ConstantExpr::getBitCast(C, Int8PtrTy);
1081         Casted = llvm::ConstantExpr::getGetElementPtr(Casted, Offset);
1082         C = llvm::ConstantExpr::getBitCast(Casted, C->getType());
1083       }
1084 
1085       // Convert to the appropriate type; this could be an lvalue for
1086       // an integer.
1087       if (isa<llvm::PointerType>(DestTy))
1088         return llvm::ConstantExpr::getBitCast(C, DestTy);
1089 
1090       return llvm::ConstantExpr::getPtrToInt(C, DestTy);
1091     } else {
1092       C = Offset;
1093 
1094       // Convert to the appropriate type; this could be an lvalue for
1095       // an integer.
1096       if (isa<llvm::PointerType>(DestTy))
1097         return llvm::ConstantExpr::getIntToPtr(C, DestTy);
1098 
1099       // If the types don't match this should only be a truncate.
1100       if (C->getType() != DestTy)
1101         return llvm::ConstantExpr::getTrunc(C, DestTy);
1102 
1103       return C;
1104     }
1105   }
1106   case APValue::Int:
1107     return llvm::ConstantInt::get(VMContext, Value.getInt());
1108   case APValue::ComplexInt: {
1109     llvm::Constant *Complex[2];
1110 
1111     Complex[0] = llvm::ConstantInt::get(VMContext,
1112                                         Value.getComplexIntReal());
1113     Complex[1] = llvm::ConstantInt::get(VMContext,
1114                                         Value.getComplexIntImag());
1115 
1116     // FIXME: the target may want to specify that this is packed.
1117     llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(),
1118                                                   Complex[1]->getType(),
1119                                                   NULL);
1120     return llvm::ConstantStruct::get(STy, Complex);
1121   }
1122   case APValue::Float: {
1123     const llvm::APFloat &Init = Value.getFloat();
1124     if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf &&
1125          !Context.getLangOpts().NativeHalfType)
1126       return llvm::ConstantInt::get(VMContext, Init.bitcastToAPInt());
1127     else
1128       return llvm::ConstantFP::get(VMContext, Init);
1129   }
1130   case APValue::ComplexFloat: {
1131     llvm::Constant *Complex[2];
1132 
1133     Complex[0] = llvm::ConstantFP::get(VMContext,
1134                                        Value.getComplexFloatReal());
1135     Complex[1] = llvm::ConstantFP::get(VMContext,
1136                                        Value.getComplexFloatImag());
1137 
1138     // FIXME: the target may want to specify that this is packed.
1139     llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(),
1140                                                   Complex[1]->getType(),
1141                                                   NULL);
1142     return llvm::ConstantStruct::get(STy, Complex);
1143   }
1144   case APValue::Vector: {
1145     SmallVector<llvm::Constant *, 4> Inits;
1146     unsigned NumElts = Value.getVectorLength();
1147 
1148     for (unsigned i = 0; i != NumElts; ++i) {
1149       const APValue &Elt = Value.getVectorElt(i);
1150       if (Elt.isInt())
1151         Inits.push_back(llvm::ConstantInt::get(VMContext, Elt.getInt()));
1152       else
1153         Inits.push_back(llvm::ConstantFP::get(VMContext, Elt.getFloat()));
1154     }
1155     return llvm::ConstantVector::get(Inits);
1156   }
1157   case APValue::AddrLabelDiff: {
1158     const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
1159     const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
1160     llvm::Constant *LHS = EmitConstantExpr(LHSExpr, LHSExpr->getType(), CGF);
1161     llvm::Constant *RHS = EmitConstantExpr(RHSExpr, RHSExpr->getType(), CGF);
1162 
1163     // Compute difference
1164     llvm::Type *ResultType = getTypes().ConvertType(DestType);
1165     LHS = llvm::ConstantExpr::getPtrToInt(LHS, IntPtrTy);
1166     RHS = llvm::ConstantExpr::getPtrToInt(RHS, IntPtrTy);
1167     llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
1168 
1169     // LLVM is a bit sensitive about the exact format of the
1170     // address-of-label difference; make sure to truncate after
1171     // the subtraction.
1172     return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
1173   }
1174   case APValue::Struct:
1175   case APValue::Union:
1176     return ConstStructBuilder::BuildStruct(*this, CGF, Value, DestType);
1177   case APValue::Array: {
1178     const ArrayType *CAT = Context.getAsArrayType(DestType);
1179     unsigned NumElements = Value.getArraySize();
1180     unsigned NumInitElts = Value.getArrayInitializedElts();
1181 
1182     std::vector<llvm::Constant*> Elts;
1183     Elts.reserve(NumElements);
1184 
1185     // Emit array filler, if there is one.
1186     llvm::Constant *Filler = 0;
1187     if (Value.hasArrayFiller())
1188       Filler = EmitConstantValueForMemory(Value.getArrayFiller(),
1189                                           CAT->getElementType(), CGF);
1190 
1191     // Emit initializer elements.
1192     llvm::Type *CommonElementType = 0;
1193     for (unsigned I = 0; I < NumElements; ++I) {
1194       llvm::Constant *C = Filler;
1195       if (I < NumInitElts)
1196         C = EmitConstantValueForMemory(Value.getArrayInitializedElt(I),
1197                                        CAT->getElementType(), CGF);
1198       else
1199         assert(Filler && "Missing filler for implicit elements of initializer");
1200       if (I == 0)
1201         CommonElementType = C->getType();
1202       else if (C->getType() != CommonElementType)
1203         CommonElementType = 0;
1204       Elts.push_back(C);
1205     }
1206 
1207     if (!CommonElementType) {
1208       // FIXME: Try to avoid packing the array
1209       std::vector<llvm::Type*> Types;
1210       Types.reserve(NumElements);
1211       for (unsigned i = 0, e = Elts.size(); i < e; ++i)
1212         Types.push_back(Elts[i]->getType());
1213       llvm::StructType *SType = llvm::StructType::get(VMContext, Types, true);
1214       return llvm::ConstantStruct::get(SType, Elts);
1215     }
1216 
1217     llvm::ArrayType *AType =
1218       llvm::ArrayType::get(CommonElementType, NumElements);
1219     return llvm::ConstantArray::get(AType, Elts);
1220   }
1221   case APValue::MemberPointer:
1222     return getCXXABI().EmitMemberPointer(Value, DestType);
1223   }
1224   llvm_unreachable("Unknown APValue kind");
1225 }
1226 
1227 llvm::Constant *
1228 CodeGenModule::EmitConstantValueForMemory(const APValue &Value,
1229                                           QualType DestType,
1230                                           CodeGenFunction *CGF) {
1231   llvm::Constant *C = EmitConstantValue(Value, DestType, CGF);
1232   if (C->getType()->isIntegerTy(1)) {
1233     llvm::Type *BoolTy = getTypes().ConvertTypeForMem(DestType);
1234     C = llvm::ConstantExpr::getZExt(C, BoolTy);
1235   }
1236   return C;
1237 }
1238 
1239 llvm::Constant *
1240 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
1241   assert(E->isFileScope() && "not a file-scope compound literal expr");
1242   return ConstExprEmitter(*this, 0).EmitLValue(E);
1243 }
1244 
1245 llvm::Constant *
1246 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
1247   // Member pointer constants always have a very particular form.
1248   const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
1249   const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
1250 
1251   // A member function pointer.
1252   if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
1253     return getCXXABI().EmitMemberPointer(method);
1254 
1255   // Otherwise, a member data pointer.
1256   uint64_t fieldOffset = getContext().getFieldOffset(decl);
1257   CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
1258   return getCXXABI().EmitMemberDataPointer(type, chars);
1259 }
1260 
1261 static void
1262 FillInNullDataMemberPointers(CodeGenModule &CGM, QualType T,
1263                              SmallVectorImpl<llvm::Constant *> &Elements,
1264                              uint64_t StartOffset) {
1265   assert(StartOffset % CGM.getContext().getCharWidth() == 0 &&
1266          "StartOffset not byte aligned!");
1267 
1268   if (CGM.getTypes().isZeroInitializable(T))
1269     return;
1270 
1271   if (const ConstantArrayType *CAT =
1272         CGM.getContext().getAsConstantArrayType(T)) {
1273     QualType ElementTy = CAT->getElementType();
1274     uint64_t ElementSize = CGM.getContext().getTypeSize(ElementTy);
1275 
1276     for (uint64_t I = 0, E = CAT->getSize().getZExtValue(); I != E; ++I) {
1277       FillInNullDataMemberPointers(CGM, ElementTy, Elements,
1278                                    StartOffset + I * ElementSize);
1279     }
1280   } else if (const RecordType *RT = T->getAs<RecordType>()) {
1281     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1282     const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
1283 
1284     // Go through all bases and fill in any null pointer to data members.
1285     for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1286          E = RD->bases_end(); I != E; ++I) {
1287       if (I->isVirtual()) {
1288         // Ignore virtual bases.
1289         continue;
1290       }
1291 
1292       const CXXRecordDecl *BaseDecl =
1293       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
1294 
1295       // Ignore empty bases.
1296       if (BaseDecl->isEmpty())
1297         continue;
1298 
1299       // Ignore bases that don't have any pointer to data members.
1300       if (CGM.getTypes().isZeroInitializable(BaseDecl))
1301         continue;
1302 
1303       uint64_t BaseOffset =
1304         CGM.getContext().toBits(Layout.getBaseClassOffset(BaseDecl));
1305       FillInNullDataMemberPointers(CGM, I->getType(),
1306                                    Elements, StartOffset + BaseOffset);
1307     }
1308 
1309     // Visit all fields.
1310     unsigned FieldNo = 0;
1311     for (RecordDecl::field_iterator I = RD->field_begin(),
1312          E = RD->field_end(); I != E; ++I, ++FieldNo) {
1313       QualType FieldType = I->getType();
1314 
1315       if (CGM.getTypes().isZeroInitializable(FieldType))
1316         continue;
1317 
1318       uint64_t FieldOffset = StartOffset + Layout.getFieldOffset(FieldNo);
1319       FillInNullDataMemberPointers(CGM, FieldType, Elements, FieldOffset);
1320     }
1321   } else {
1322     assert(T->isMemberPointerType() && "Should only see member pointers here!");
1323     assert(!T->getAs<MemberPointerType>()->getPointeeType()->isFunctionType() &&
1324            "Should only see pointers to data members here!");
1325 
1326     CharUnits StartIndex = CGM.getContext().toCharUnitsFromBits(StartOffset);
1327     CharUnits EndIndex = StartIndex + CGM.getContext().getTypeSizeInChars(T);
1328 
1329     // FIXME: hardcodes Itanium member pointer representation!
1330     llvm::Constant *NegativeOne =
1331       llvm::ConstantInt::get(CGM.Int8Ty, -1ULL, /*isSigned*/true);
1332 
1333     // Fill in the null data member pointer.
1334     for (CharUnits I = StartIndex; I != EndIndex; ++I)
1335       Elements[I.getQuantity()] = NegativeOne;
1336   }
1337 }
1338 
1339 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
1340                                                llvm::Type *baseType,
1341                                                const CXXRecordDecl *base);
1342 
1343 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
1344                                         const CXXRecordDecl *record,
1345                                         bool asCompleteObject) {
1346   const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
1347   llvm::StructType *structure =
1348     (asCompleteObject ? layout.getLLVMType()
1349                       : layout.getBaseSubobjectLLVMType());
1350 
1351   unsigned numElements = structure->getNumElements();
1352   std::vector<llvm::Constant *> elements(numElements);
1353 
1354   // Fill in all the bases.
1355   for (CXXRecordDecl::base_class_const_iterator
1356          I = record->bases_begin(), E = record->bases_end(); I != E; ++I) {
1357     if (I->isVirtual()) {
1358       // Ignore virtual bases; if we're laying out for a complete
1359       // object, we'll lay these out later.
1360       continue;
1361     }
1362 
1363     const CXXRecordDecl *base =
1364       cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1365 
1366     // Ignore empty bases.
1367     if (base->isEmpty())
1368       continue;
1369 
1370     unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
1371     llvm::Type *baseType = structure->getElementType(fieldIndex);
1372     elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
1373   }
1374 
1375   // Fill in all the fields.
1376   for (RecordDecl::field_iterator I = record->field_begin(),
1377          E = record->field_end(); I != E; ++I) {
1378     const FieldDecl *field = *I;
1379 
1380     // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
1381     // will fill in later.)
1382     if (!field->isBitField()) {
1383       unsigned fieldIndex = layout.getLLVMFieldNo(field);
1384       elements[fieldIndex] = CGM.EmitNullConstant(field->getType());
1385     }
1386 
1387     // For unions, stop after the first named field.
1388     if (record->isUnion() && field->getDeclName())
1389       break;
1390   }
1391 
1392   // Fill in the virtual bases, if we're working with the complete object.
1393   if (asCompleteObject) {
1394     for (CXXRecordDecl::base_class_const_iterator
1395            I = record->vbases_begin(), E = record->vbases_end(); I != E; ++I) {
1396       const CXXRecordDecl *base =
1397         cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1398 
1399       // Ignore empty bases.
1400       if (base->isEmpty())
1401         continue;
1402 
1403       unsigned fieldIndex = layout.getVirtualBaseIndex(base);
1404 
1405       // We might have already laid this field out.
1406       if (elements[fieldIndex]) continue;
1407 
1408       llvm::Type *baseType = structure->getElementType(fieldIndex);
1409       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
1410     }
1411   }
1412 
1413   // Now go through all other fields and zero them out.
1414   for (unsigned i = 0; i != numElements; ++i) {
1415     if (!elements[i])
1416       elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
1417   }
1418 
1419   return llvm::ConstantStruct::get(structure, elements);
1420 }
1421 
1422 /// Emit the null constant for a base subobject.
1423 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
1424                                                llvm::Type *baseType,
1425                                                const CXXRecordDecl *base) {
1426   const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
1427 
1428   // Just zero out bases that don't have any pointer to data members.
1429   if (baseLayout.isZeroInitializableAsBase())
1430     return llvm::Constant::getNullValue(baseType);
1431 
1432   // If the base type is a struct, we can just use its null constant.
1433   if (isa<llvm::StructType>(baseType)) {
1434     return EmitNullConstant(CGM, base, /*complete*/ false);
1435   }
1436 
1437   // Otherwise, some bases are represented as arrays of i8 if the size
1438   // of the base is smaller than its corresponding LLVM type.  Figure
1439   // out how many elements this base array has.
1440   llvm::ArrayType *baseArrayType = cast<llvm::ArrayType>(baseType);
1441   unsigned numBaseElements = baseArrayType->getNumElements();
1442 
1443   // Fill in null data member pointers.
1444   SmallVector<llvm::Constant *, 16> baseElements(numBaseElements);
1445   FillInNullDataMemberPointers(CGM, CGM.getContext().getTypeDeclType(base),
1446                                baseElements, 0);
1447 
1448   // Now go through all other elements and zero them out.
1449   if (numBaseElements) {
1450     llvm::Constant *i8_zero = llvm::Constant::getNullValue(CGM.Int8Ty);
1451     for (unsigned i = 0; i != numBaseElements; ++i) {
1452       if (!baseElements[i])
1453         baseElements[i] = i8_zero;
1454     }
1455   }
1456 
1457   return llvm::ConstantArray::get(baseArrayType, baseElements);
1458 }
1459 
1460 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
1461   if (getTypes().isZeroInitializable(T))
1462     return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
1463 
1464   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
1465     llvm::ArrayType *ATy =
1466       cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
1467 
1468     QualType ElementTy = CAT->getElementType();
1469 
1470     llvm::Constant *Element = EmitNullConstant(ElementTy);
1471     unsigned NumElements = CAT->getSize().getZExtValue();
1472 
1473     if (Element->isNullValue())
1474       return llvm::ConstantAggregateZero::get(ATy);
1475 
1476     SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
1477     return llvm::ConstantArray::get(ATy, Array);
1478   }
1479 
1480   if (const RecordType *RT = T->getAs<RecordType>()) {
1481     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1482     return ::EmitNullConstant(*this, RD, /*complete object*/ true);
1483   }
1484 
1485   assert(T->isMemberPointerType() && "Should only see member pointers here!");
1486   assert(!T->getAs<MemberPointerType>()->getPointeeType()->isFunctionType() &&
1487          "Should only see pointers to data members here!");
1488 
1489   // Itanium C++ ABI 2.3:
1490   //   A NULL pointer is represented as -1.
1491   return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
1492 }
1493 
1494 llvm::Constant *
1495 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
1496   return ::EmitNullConstant(*this, Record, false);
1497 }
1498