1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Constant Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGObjCRuntime.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/APValue.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "clang/Basic/Builtins.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/GlobalVariable.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 //===----------------------------------------------------------------------===// 32 // ConstStructBuilder 33 //===----------------------------------------------------------------------===// 34 35 namespace { 36 class ConstExprEmitter; 37 class ConstStructBuilder { 38 CodeGenModule &CGM; 39 CodeGenFunction *CGF; 40 41 bool Packed; 42 CharUnits NextFieldOffsetInChars; 43 CharUnits LLVMStructAlignment; 44 SmallVector<llvm::Constant *, 32> Elements; 45 public: 46 static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CFG, 47 ConstExprEmitter *Emitter, 48 llvm::ConstantStruct *Base, 49 InitListExpr *Updater); 50 static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF, 51 InitListExpr *ILE); 52 static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF, 53 const APValue &Value, QualType ValTy); 54 55 private: 56 ConstStructBuilder(CodeGenModule &CGM, CodeGenFunction *CGF) 57 : CGM(CGM), CGF(CGF), Packed(false), 58 NextFieldOffsetInChars(CharUnits::Zero()), 59 LLVMStructAlignment(CharUnits::One()) { } 60 61 void AppendField(const FieldDecl *Field, uint64_t FieldOffset, 62 llvm::Constant *InitExpr); 63 64 void AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst); 65 66 void AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, 67 llvm::ConstantInt *InitExpr); 68 69 void AppendPadding(CharUnits PadSize); 70 71 void AppendTailPadding(CharUnits RecordSize); 72 73 void ConvertStructToPacked(); 74 75 bool Build(InitListExpr *ILE); 76 bool Build(ConstExprEmitter *Emitter, llvm::ConstantStruct *Base, 77 InitListExpr *Updater); 78 void Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase, 79 const CXXRecordDecl *VTableClass, CharUnits BaseOffset); 80 llvm::Constant *Finalize(QualType Ty); 81 82 CharUnits getAlignment(const llvm::Constant *C) const { 83 if (Packed) return CharUnits::One(); 84 return CharUnits::fromQuantity( 85 CGM.getDataLayout().getABITypeAlignment(C->getType())); 86 } 87 88 CharUnits getSizeInChars(const llvm::Constant *C) const { 89 return CharUnits::fromQuantity( 90 CGM.getDataLayout().getTypeAllocSize(C->getType())); 91 } 92 }; 93 94 void ConstStructBuilder:: 95 AppendField(const FieldDecl *Field, uint64_t FieldOffset, 96 llvm::Constant *InitCst) { 97 const ASTContext &Context = CGM.getContext(); 98 99 CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset); 100 101 AppendBytes(FieldOffsetInChars, InitCst); 102 } 103 104 void ConstStructBuilder:: 105 AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst) { 106 107 assert(NextFieldOffsetInChars <= FieldOffsetInChars 108 && "Field offset mismatch!"); 109 110 CharUnits FieldAlignment = getAlignment(InitCst); 111 112 // Round up the field offset to the alignment of the field type. 113 CharUnits AlignedNextFieldOffsetInChars = 114 NextFieldOffsetInChars.RoundUpToAlignment(FieldAlignment); 115 116 if (AlignedNextFieldOffsetInChars < FieldOffsetInChars) { 117 // We need to append padding. 118 AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars); 119 120 assert(NextFieldOffsetInChars == FieldOffsetInChars && 121 "Did not add enough padding!"); 122 123 AlignedNextFieldOffsetInChars = 124 NextFieldOffsetInChars.RoundUpToAlignment(FieldAlignment); 125 } 126 127 if (AlignedNextFieldOffsetInChars > FieldOffsetInChars) { 128 assert(!Packed && "Alignment is wrong even with a packed struct!"); 129 130 // Convert the struct to a packed struct. 131 ConvertStructToPacked(); 132 133 // After we pack the struct, we may need to insert padding. 134 if (NextFieldOffsetInChars < FieldOffsetInChars) { 135 // We need to append padding. 136 AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars); 137 138 assert(NextFieldOffsetInChars == FieldOffsetInChars && 139 "Did not add enough padding!"); 140 } 141 AlignedNextFieldOffsetInChars = NextFieldOffsetInChars; 142 } 143 144 // Add the field. 145 Elements.push_back(InitCst); 146 NextFieldOffsetInChars = AlignedNextFieldOffsetInChars + 147 getSizeInChars(InitCst); 148 149 if (Packed) 150 assert(LLVMStructAlignment == CharUnits::One() && 151 "Packed struct not byte-aligned!"); 152 else 153 LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment); 154 } 155 156 void ConstStructBuilder::AppendBitField(const FieldDecl *Field, 157 uint64_t FieldOffset, 158 llvm::ConstantInt *CI) { 159 const ASTContext &Context = CGM.getContext(); 160 const uint64_t CharWidth = Context.getCharWidth(); 161 uint64_t NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars); 162 if (FieldOffset > NextFieldOffsetInBits) { 163 // We need to add padding. 164 CharUnits PadSize = Context.toCharUnitsFromBits( 165 llvm::RoundUpToAlignment(FieldOffset - NextFieldOffsetInBits, 166 Context.getTargetInfo().getCharAlign())); 167 168 AppendPadding(PadSize); 169 } 170 171 uint64_t FieldSize = Field->getBitWidthValue(Context); 172 173 llvm::APInt FieldValue = CI->getValue(); 174 175 // Promote the size of FieldValue if necessary 176 // FIXME: This should never occur, but currently it can because initializer 177 // constants are cast to bool, and because clang is not enforcing bitfield 178 // width limits. 179 if (FieldSize > FieldValue.getBitWidth()) 180 FieldValue = FieldValue.zext(FieldSize); 181 182 // Truncate the size of FieldValue to the bit field size. 183 if (FieldSize < FieldValue.getBitWidth()) 184 FieldValue = FieldValue.trunc(FieldSize); 185 186 NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars); 187 if (FieldOffset < NextFieldOffsetInBits) { 188 // Either part of the field or the entire field can go into the previous 189 // byte. 190 assert(!Elements.empty() && "Elements can't be empty!"); 191 192 unsigned BitsInPreviousByte = NextFieldOffsetInBits - FieldOffset; 193 194 bool FitsCompletelyInPreviousByte = 195 BitsInPreviousByte >= FieldValue.getBitWidth(); 196 197 llvm::APInt Tmp = FieldValue; 198 199 if (!FitsCompletelyInPreviousByte) { 200 unsigned NewFieldWidth = FieldSize - BitsInPreviousByte; 201 202 if (CGM.getDataLayout().isBigEndian()) { 203 Tmp = Tmp.lshr(NewFieldWidth); 204 Tmp = Tmp.trunc(BitsInPreviousByte); 205 206 // We want the remaining high bits. 207 FieldValue = FieldValue.trunc(NewFieldWidth); 208 } else { 209 Tmp = Tmp.trunc(BitsInPreviousByte); 210 211 // We want the remaining low bits. 212 FieldValue = FieldValue.lshr(BitsInPreviousByte); 213 FieldValue = FieldValue.trunc(NewFieldWidth); 214 } 215 } 216 217 Tmp = Tmp.zext(CharWidth); 218 if (CGM.getDataLayout().isBigEndian()) { 219 if (FitsCompletelyInPreviousByte) 220 Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth()); 221 } else { 222 Tmp = Tmp.shl(CharWidth - BitsInPreviousByte); 223 } 224 225 // 'or' in the bits that go into the previous byte. 226 llvm::Value *LastElt = Elements.back(); 227 if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(LastElt)) 228 Tmp |= Val->getValue(); 229 else { 230 assert(isa<llvm::UndefValue>(LastElt)); 231 // If there is an undef field that we're adding to, it can either be a 232 // scalar undef (in which case, we just replace it with our field) or it 233 // is an array. If it is an array, we have to pull one byte off the 234 // array so that the other undef bytes stay around. 235 if (!isa<llvm::IntegerType>(LastElt->getType())) { 236 // The undef padding will be a multibyte array, create a new smaller 237 // padding and then an hole for our i8 to get plopped into. 238 assert(isa<llvm::ArrayType>(LastElt->getType()) && 239 "Expected array padding of undefs"); 240 llvm::ArrayType *AT = cast<llvm::ArrayType>(LastElt->getType()); 241 assert(AT->getElementType()->isIntegerTy(CharWidth) && 242 AT->getNumElements() != 0 && 243 "Expected non-empty array padding of undefs"); 244 245 // Remove the padding array. 246 NextFieldOffsetInChars -= CharUnits::fromQuantity(AT->getNumElements()); 247 Elements.pop_back(); 248 249 // Add the padding back in two chunks. 250 AppendPadding(CharUnits::fromQuantity(AT->getNumElements()-1)); 251 AppendPadding(CharUnits::One()); 252 assert(isa<llvm::UndefValue>(Elements.back()) && 253 Elements.back()->getType()->isIntegerTy(CharWidth) && 254 "Padding addition didn't work right"); 255 } 256 } 257 258 Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp); 259 260 if (FitsCompletelyInPreviousByte) 261 return; 262 } 263 264 while (FieldValue.getBitWidth() > CharWidth) { 265 llvm::APInt Tmp; 266 267 if (CGM.getDataLayout().isBigEndian()) { 268 // We want the high bits. 269 Tmp = 270 FieldValue.lshr(FieldValue.getBitWidth() - CharWidth).trunc(CharWidth); 271 } else { 272 // We want the low bits. 273 Tmp = FieldValue.trunc(CharWidth); 274 275 FieldValue = FieldValue.lshr(CharWidth); 276 } 277 278 Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp)); 279 ++NextFieldOffsetInChars; 280 281 FieldValue = FieldValue.trunc(FieldValue.getBitWidth() - CharWidth); 282 } 283 284 assert(FieldValue.getBitWidth() > 0 && 285 "Should have at least one bit left!"); 286 assert(FieldValue.getBitWidth() <= CharWidth && 287 "Should not have more than a byte left!"); 288 289 if (FieldValue.getBitWidth() < CharWidth) { 290 if (CGM.getDataLayout().isBigEndian()) { 291 unsigned BitWidth = FieldValue.getBitWidth(); 292 293 FieldValue = FieldValue.zext(CharWidth) << (CharWidth - BitWidth); 294 } else 295 FieldValue = FieldValue.zext(CharWidth); 296 } 297 298 // Append the last element. 299 Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), 300 FieldValue)); 301 ++NextFieldOffsetInChars; 302 } 303 304 void ConstStructBuilder::AppendPadding(CharUnits PadSize) { 305 if (PadSize.isZero()) 306 return; 307 308 llvm::Type *Ty = CGM.Int8Ty; 309 if (PadSize > CharUnits::One()) 310 Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity()); 311 312 llvm::Constant *C = llvm::UndefValue::get(Ty); 313 Elements.push_back(C); 314 assert(getAlignment(C) == CharUnits::One() && 315 "Padding must have 1 byte alignment!"); 316 317 NextFieldOffsetInChars += getSizeInChars(C); 318 } 319 320 void ConstStructBuilder::AppendTailPadding(CharUnits RecordSize) { 321 assert(NextFieldOffsetInChars <= RecordSize && 322 "Size mismatch!"); 323 324 AppendPadding(RecordSize - NextFieldOffsetInChars); 325 } 326 327 void ConstStructBuilder::ConvertStructToPacked() { 328 SmallVector<llvm::Constant *, 16> PackedElements; 329 CharUnits ElementOffsetInChars = CharUnits::Zero(); 330 331 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 332 llvm::Constant *C = Elements[i]; 333 334 CharUnits ElementAlign = CharUnits::fromQuantity( 335 CGM.getDataLayout().getABITypeAlignment(C->getType())); 336 CharUnits AlignedElementOffsetInChars = 337 ElementOffsetInChars.RoundUpToAlignment(ElementAlign); 338 339 if (AlignedElementOffsetInChars > ElementOffsetInChars) { 340 // We need some padding. 341 CharUnits NumChars = 342 AlignedElementOffsetInChars - ElementOffsetInChars; 343 344 llvm::Type *Ty = CGM.Int8Ty; 345 if (NumChars > CharUnits::One()) 346 Ty = llvm::ArrayType::get(Ty, NumChars.getQuantity()); 347 348 llvm::Constant *Padding = llvm::UndefValue::get(Ty); 349 PackedElements.push_back(Padding); 350 ElementOffsetInChars += getSizeInChars(Padding); 351 } 352 353 PackedElements.push_back(C); 354 ElementOffsetInChars += getSizeInChars(C); 355 } 356 357 assert(ElementOffsetInChars == NextFieldOffsetInChars && 358 "Packing the struct changed its size!"); 359 360 Elements.swap(PackedElements); 361 LLVMStructAlignment = CharUnits::One(); 362 Packed = true; 363 } 364 365 bool ConstStructBuilder::Build(InitListExpr *ILE) { 366 RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl(); 367 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 368 369 unsigned FieldNo = 0; 370 unsigned ElementNo = 0; 371 372 for (RecordDecl::field_iterator Field = RD->field_begin(), 373 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 374 // If this is a union, skip all the fields that aren't being initialized. 375 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field) 376 continue; 377 378 // Don't emit anonymous bitfields, they just affect layout. 379 if (Field->isUnnamedBitfield()) 380 continue; 381 382 // Get the initializer. A struct can include fields without initializers, 383 // we just use explicit null values for them. 384 llvm::Constant *EltInit; 385 if (ElementNo < ILE->getNumInits()) 386 EltInit = CGM.EmitConstantExpr(ILE->getInit(ElementNo++), 387 Field->getType(), CGF); 388 else 389 EltInit = CGM.EmitNullConstant(Field->getType()); 390 391 if (!EltInit) 392 return false; 393 394 if (!Field->isBitField()) { 395 // Handle non-bitfield members. 396 AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit); 397 } else { 398 // Otherwise we have a bitfield. 399 if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) { 400 AppendBitField(*Field, Layout.getFieldOffset(FieldNo), CI); 401 } else { 402 // We are trying to initialize a bitfield with a non-trivial constant, 403 // this must require run-time code. 404 return false; 405 } 406 } 407 } 408 409 return true; 410 } 411 412 namespace { 413 struct BaseInfo { 414 BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index) 415 : Decl(Decl), Offset(Offset), Index(Index) { 416 } 417 418 const CXXRecordDecl *Decl; 419 CharUnits Offset; 420 unsigned Index; 421 422 bool operator<(const BaseInfo &O) const { return Offset < O.Offset; } 423 }; 424 } 425 426 void ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD, 427 bool IsPrimaryBase, 428 const CXXRecordDecl *VTableClass, 429 CharUnits Offset) { 430 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 431 432 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 433 // Add a vtable pointer, if we need one and it hasn't already been added. 434 if (CD->isDynamicClass() && !IsPrimaryBase) { 435 llvm::Constant *VTableAddressPoint = 436 CGM.getCXXABI().getVTableAddressPointForConstExpr( 437 BaseSubobject(CD, Offset), VTableClass); 438 AppendBytes(Offset, VTableAddressPoint); 439 } 440 441 // Accumulate and sort bases, in order to visit them in address order, which 442 // may not be the same as declaration order. 443 SmallVector<BaseInfo, 8> Bases; 444 Bases.reserve(CD->getNumBases()); 445 unsigned BaseNo = 0; 446 for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(), 447 BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) { 448 assert(!Base->isVirtual() && "should not have virtual bases here"); 449 const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl(); 450 CharUnits BaseOffset = Layout.getBaseClassOffset(BD); 451 Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo)); 452 } 453 std::stable_sort(Bases.begin(), Bases.end()); 454 455 for (unsigned I = 0, N = Bases.size(); I != N; ++I) { 456 BaseInfo &Base = Bases[I]; 457 458 bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl; 459 Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase, 460 VTableClass, Offset + Base.Offset); 461 } 462 } 463 464 unsigned FieldNo = 0; 465 uint64_t OffsetBits = CGM.getContext().toBits(Offset); 466 467 for (RecordDecl::field_iterator Field = RD->field_begin(), 468 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 469 // If this is a union, skip all the fields that aren't being initialized. 470 if (RD->isUnion() && Val.getUnionField() != *Field) 471 continue; 472 473 // Don't emit anonymous bitfields, they just affect layout. 474 if (Field->isUnnamedBitfield()) 475 continue; 476 477 // Emit the value of the initializer. 478 const APValue &FieldValue = 479 RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo); 480 llvm::Constant *EltInit = 481 CGM.EmitConstantValueForMemory(FieldValue, Field->getType(), CGF); 482 assert(EltInit && "EmitConstantValue can't fail"); 483 484 if (!Field->isBitField()) { 485 // Handle non-bitfield members. 486 AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, EltInit); 487 } else { 488 // Otherwise we have a bitfield. 489 AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 490 cast<llvm::ConstantInt>(EltInit)); 491 } 492 } 493 } 494 495 llvm::Constant *ConstStructBuilder::Finalize(QualType Ty) { 496 RecordDecl *RD = Ty->getAs<RecordType>()->getDecl(); 497 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 498 499 CharUnits LayoutSizeInChars = Layout.getSize(); 500 501 if (NextFieldOffsetInChars > LayoutSizeInChars) { 502 // If the struct is bigger than the size of the record type, 503 // we must have a flexible array member at the end. 504 assert(RD->hasFlexibleArrayMember() && 505 "Must have flexible array member if struct is bigger than type!"); 506 507 // No tail padding is necessary. 508 } else { 509 // Append tail padding if necessary. 510 CharUnits LLVMSizeInChars = 511 NextFieldOffsetInChars.RoundUpToAlignment(LLVMStructAlignment); 512 513 if (LLVMSizeInChars != LayoutSizeInChars) 514 AppendTailPadding(LayoutSizeInChars); 515 516 LLVMSizeInChars = 517 NextFieldOffsetInChars.RoundUpToAlignment(LLVMStructAlignment); 518 519 // Check if we need to convert the struct to a packed struct. 520 if (NextFieldOffsetInChars <= LayoutSizeInChars && 521 LLVMSizeInChars > LayoutSizeInChars) { 522 assert(!Packed && "Size mismatch!"); 523 524 ConvertStructToPacked(); 525 assert(NextFieldOffsetInChars <= LayoutSizeInChars && 526 "Converting to packed did not help!"); 527 } 528 529 LLVMSizeInChars = 530 NextFieldOffsetInChars.RoundUpToAlignment(LLVMStructAlignment); 531 532 assert(LayoutSizeInChars == LLVMSizeInChars && 533 "Tail padding mismatch!"); 534 } 535 536 // Pick the type to use. If the type is layout identical to the ConvertType 537 // type then use it, otherwise use whatever the builder produced for us. 538 llvm::StructType *STy = 539 llvm::ConstantStruct::getTypeForElements(CGM.getLLVMContext(), 540 Elements, Packed); 541 llvm::Type *ValTy = CGM.getTypes().ConvertType(Ty); 542 if (llvm::StructType *ValSTy = dyn_cast<llvm::StructType>(ValTy)) { 543 if (ValSTy->isLayoutIdentical(STy)) 544 STy = ValSTy; 545 } 546 547 llvm::Constant *Result = llvm::ConstantStruct::get(STy, Elements); 548 549 assert(NextFieldOffsetInChars.RoundUpToAlignment(getAlignment(Result)) == 550 getSizeInChars(Result) && "Size mismatch!"); 551 552 return Result; 553 } 554 555 llvm::Constant *ConstStructBuilder::BuildStruct(CodeGenModule &CGM, 556 CodeGenFunction *CGF, 557 ConstExprEmitter *Emitter, 558 llvm::ConstantStruct *Base, 559 InitListExpr *Updater) { 560 ConstStructBuilder Builder(CGM, CGF); 561 if (!Builder.Build(Emitter, Base, Updater)) 562 return nullptr; 563 return Builder.Finalize(Updater->getType()); 564 } 565 566 llvm::Constant *ConstStructBuilder::BuildStruct(CodeGenModule &CGM, 567 CodeGenFunction *CGF, 568 InitListExpr *ILE) { 569 ConstStructBuilder Builder(CGM, CGF); 570 571 if (!Builder.Build(ILE)) 572 return nullptr; 573 574 return Builder.Finalize(ILE->getType()); 575 } 576 577 llvm::Constant *ConstStructBuilder::BuildStruct(CodeGenModule &CGM, 578 CodeGenFunction *CGF, 579 const APValue &Val, 580 QualType ValTy) { 581 ConstStructBuilder Builder(CGM, CGF); 582 583 const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl(); 584 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); 585 Builder.Build(Val, RD, false, CD, CharUnits::Zero()); 586 587 return Builder.Finalize(ValTy); 588 } 589 590 591 //===----------------------------------------------------------------------===// 592 // ConstExprEmitter 593 //===----------------------------------------------------------------------===// 594 595 /// This class only needs to handle two cases: 596 /// 1) Literals (this is used by APValue emission to emit literals). 597 /// 2) Arrays, structs and unions (outside C++11 mode, we don't currently 598 /// constant fold these types). 599 class ConstExprEmitter : 600 public StmtVisitor<ConstExprEmitter, llvm::Constant*> { 601 CodeGenModule &CGM; 602 CodeGenFunction *CGF; 603 llvm::LLVMContext &VMContext; 604 public: 605 ConstExprEmitter(CodeGenModule &cgm, CodeGenFunction *cgf) 606 : CGM(cgm), CGF(cgf), VMContext(cgm.getLLVMContext()) { 607 } 608 609 //===--------------------------------------------------------------------===// 610 // Visitor Methods 611 //===--------------------------------------------------------------------===// 612 613 llvm::Constant *VisitStmt(Stmt *S) { 614 return nullptr; 615 } 616 617 llvm::Constant *VisitParenExpr(ParenExpr *PE) { 618 return Visit(PE->getSubExpr()); 619 } 620 621 llvm::Constant * 622 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 623 return Visit(PE->getReplacement()); 624 } 625 626 llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 627 return Visit(GE->getResultExpr()); 628 } 629 630 llvm::Constant *VisitChooseExpr(ChooseExpr *CE) { 631 return Visit(CE->getChosenSubExpr()); 632 } 633 634 llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 635 return Visit(E->getInitializer()); 636 } 637 638 llvm::Constant *VisitCastExpr(CastExpr* E) { 639 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 640 CGM.EmitExplicitCastExprType(ECE, CGF); 641 Expr *subExpr = E->getSubExpr(); 642 llvm::Constant *C = CGM.EmitConstantExpr(subExpr, subExpr->getType(), CGF); 643 if (!C) return nullptr; 644 645 llvm::Type *destType = ConvertType(E->getType()); 646 647 switch (E->getCastKind()) { 648 case CK_ToUnion: { 649 // GCC cast to union extension 650 assert(E->getType()->isUnionType() && 651 "Destination type is not union type!"); 652 653 // Build a struct with the union sub-element as the first member, 654 // and padded to the appropriate size 655 SmallVector<llvm::Constant*, 2> Elts; 656 SmallVector<llvm::Type*, 2> Types; 657 Elts.push_back(C); 658 Types.push_back(C->getType()); 659 unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType()); 660 unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destType); 661 662 assert(CurSize <= TotalSize && "Union size mismatch!"); 663 if (unsigned NumPadBytes = TotalSize - CurSize) { 664 llvm::Type *Ty = CGM.Int8Ty; 665 if (NumPadBytes > 1) 666 Ty = llvm::ArrayType::get(Ty, NumPadBytes); 667 668 Elts.push_back(llvm::UndefValue::get(Ty)); 669 Types.push_back(Ty); 670 } 671 672 llvm::StructType* STy = 673 llvm::StructType::get(C->getType()->getContext(), Types, false); 674 return llvm::ConstantStruct::get(STy, Elts); 675 } 676 677 case CK_AddressSpaceConversion: 678 return llvm::ConstantExpr::getAddrSpaceCast(C, destType); 679 680 case CK_LValueToRValue: 681 case CK_AtomicToNonAtomic: 682 case CK_NonAtomicToAtomic: 683 case CK_NoOp: 684 case CK_ConstructorConversion: 685 return C; 686 687 case CK_Dependent: llvm_unreachable("saw dependent cast!"); 688 689 case CK_BuiltinFnToFnPtr: 690 llvm_unreachable("builtin functions are handled elsewhere"); 691 692 case CK_ReinterpretMemberPointer: 693 case CK_DerivedToBaseMemberPointer: 694 case CK_BaseToDerivedMemberPointer: 695 return CGM.getCXXABI().EmitMemberPointerConversion(E, C); 696 697 // These will never be supported. 698 case CK_ObjCObjectLValueCast: 699 case CK_ARCProduceObject: 700 case CK_ARCConsumeObject: 701 case CK_ARCReclaimReturnedObject: 702 case CK_ARCExtendBlockObject: 703 case CK_CopyAndAutoreleaseBlockObject: 704 return nullptr; 705 706 // These don't need to be handled here because Evaluate knows how to 707 // evaluate them in the cases where they can be folded. 708 case CK_BitCast: 709 case CK_ToVoid: 710 case CK_Dynamic: 711 case CK_LValueBitCast: 712 case CK_NullToMemberPointer: 713 case CK_UserDefinedConversion: 714 case CK_CPointerToObjCPointerCast: 715 case CK_BlockPointerToObjCPointerCast: 716 case CK_AnyPointerToBlockPointerCast: 717 case CK_ArrayToPointerDecay: 718 case CK_FunctionToPointerDecay: 719 case CK_BaseToDerived: 720 case CK_DerivedToBase: 721 case CK_UncheckedDerivedToBase: 722 case CK_MemberPointerToBoolean: 723 case CK_VectorSplat: 724 case CK_FloatingRealToComplex: 725 case CK_FloatingComplexToReal: 726 case CK_FloatingComplexToBoolean: 727 case CK_FloatingComplexCast: 728 case CK_FloatingComplexToIntegralComplex: 729 case CK_IntegralRealToComplex: 730 case CK_IntegralComplexToReal: 731 case CK_IntegralComplexToBoolean: 732 case CK_IntegralComplexCast: 733 case CK_IntegralComplexToFloatingComplex: 734 case CK_PointerToIntegral: 735 case CK_PointerToBoolean: 736 case CK_NullToPointer: 737 case CK_IntegralCast: 738 case CK_IntegralToPointer: 739 case CK_IntegralToBoolean: 740 case CK_IntegralToFloating: 741 case CK_FloatingToIntegral: 742 case CK_FloatingToBoolean: 743 case CK_FloatingCast: 744 case CK_ZeroToOCLEvent: 745 return nullptr; 746 } 747 llvm_unreachable("Invalid CastKind"); 748 } 749 750 llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 751 return Visit(DAE->getExpr()); 752 } 753 754 llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 755 // No need for a DefaultInitExprScope: we don't handle 'this' in a 756 // constant expression. 757 return Visit(DIE->getExpr()); 758 } 759 760 llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E) { 761 return Visit(E->GetTemporaryExpr()); 762 } 763 764 llvm::Constant *EmitArrayInitialization(InitListExpr *ILE) { 765 if (ILE->isStringLiteralInit()) 766 return Visit(ILE->getInit(0)); 767 768 llvm::ArrayType *AType = 769 cast<llvm::ArrayType>(ConvertType(ILE->getType())); 770 llvm::Type *ElemTy = AType->getElementType(); 771 unsigned NumInitElements = ILE->getNumInits(); 772 unsigned NumElements = AType->getNumElements(); 773 774 // Initialising an array requires us to automatically 775 // initialise any elements that have not been initialised explicitly 776 unsigned NumInitableElts = std::min(NumInitElements, NumElements); 777 778 // Initialize remaining array elements. 779 // FIXME: This doesn't handle member pointers correctly! 780 llvm::Constant *fillC; 781 if (Expr *filler = ILE->getArrayFiller()) 782 fillC = CGM.EmitConstantExpr(filler, filler->getType(), CGF); 783 else 784 fillC = llvm::Constant::getNullValue(ElemTy); 785 if (!fillC) 786 return nullptr; 787 788 // Try to use a ConstantAggregateZero if we can. 789 if (fillC->isNullValue() && !NumInitableElts) 790 return llvm::ConstantAggregateZero::get(AType); 791 792 // Copy initializer elements. 793 std::vector<llvm::Constant*> Elts; 794 Elts.reserve(NumInitableElts + NumElements); 795 796 bool RewriteType = false; 797 for (unsigned i = 0; i < NumInitableElts; ++i) { 798 Expr *Init = ILE->getInit(i); 799 llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF); 800 if (!C) 801 return nullptr; 802 RewriteType |= (C->getType() != ElemTy); 803 Elts.push_back(C); 804 } 805 806 RewriteType |= (fillC->getType() != ElemTy); 807 Elts.resize(NumElements, fillC); 808 809 if (RewriteType) { 810 // FIXME: Try to avoid packing the array 811 std::vector<llvm::Type*> Types; 812 Types.reserve(NumInitableElts + NumElements); 813 for (unsigned i = 0, e = Elts.size(); i < e; ++i) 814 Types.push_back(Elts[i]->getType()); 815 llvm::StructType *SType = llvm::StructType::get(AType->getContext(), 816 Types, true); 817 return llvm::ConstantStruct::get(SType, Elts); 818 } 819 820 return llvm::ConstantArray::get(AType, Elts); 821 } 822 823 llvm::Constant *EmitRecordInitialization(InitListExpr *ILE) { 824 return ConstStructBuilder::BuildStruct(CGM, CGF, ILE); 825 } 826 827 llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E) { 828 return CGM.EmitNullConstant(E->getType()); 829 } 830 831 llvm::Constant *VisitInitListExpr(InitListExpr *ILE) { 832 if (ILE->getType()->isArrayType()) 833 return EmitArrayInitialization(ILE); 834 835 if (ILE->getType()->isRecordType()) 836 return EmitRecordInitialization(ILE); 837 838 return nullptr; 839 } 840 841 llvm::Constant *EmitDesignatedInitUpdater(llvm::Constant *Base, 842 InitListExpr *Updater) { 843 QualType ExprType = Updater->getType(); 844 845 if (ExprType->isArrayType()) { 846 llvm::ArrayType *AType = cast<llvm::ArrayType>(ConvertType(ExprType)); 847 llvm::Type *ElemType = AType->getElementType(); 848 849 unsigned NumInitElements = Updater->getNumInits(); 850 unsigned NumElements = AType->getNumElements(); 851 852 std::vector<llvm::Constant *> Elts; 853 Elts.reserve(NumElements); 854 855 if (llvm::ConstantDataArray *DataArray = 856 dyn_cast<llvm::ConstantDataArray>(Base)) 857 for (unsigned i = 0; i != NumElements; ++i) 858 Elts.push_back(DataArray->getElementAsConstant(i)); 859 else if (llvm::ConstantArray *Array = 860 dyn_cast<llvm::ConstantArray>(Base)) 861 for (unsigned i = 0; i != NumElements; ++i) 862 Elts.push_back(Array->getOperand(i)); 863 else 864 return nullptr; // FIXME: other array types not implemented 865 866 llvm::Constant *fillC = nullptr; 867 if (Expr *filler = Updater->getArrayFiller()) 868 if (!isa<NoInitExpr>(filler)) 869 fillC = CGM.EmitConstantExpr(filler, filler->getType(), CGF); 870 bool RewriteType = (fillC && fillC->getType() != ElemType); 871 872 for (unsigned i = 0; i != NumElements; ++i) { 873 Expr *Init = nullptr; 874 if (i < NumInitElements) 875 Init = Updater->getInit(i); 876 877 if (!Init && fillC) 878 Elts[i] = fillC; 879 else if (!Init || isa<NoInitExpr>(Init)) 880 ; // Do nothing. 881 else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) 882 Elts[i] = EmitDesignatedInitUpdater(Elts[i], ChildILE); 883 else 884 Elts[i] = CGM.EmitConstantExpr(Init, Init->getType(), CGF); 885 886 if (!Elts[i]) 887 return nullptr; 888 RewriteType |= (Elts[i]->getType() != ElemType); 889 } 890 891 if (RewriteType) { 892 std::vector<llvm::Type *> Types; 893 Types.reserve(NumElements); 894 for (unsigned i = 0; i != NumElements; ++i) 895 Types.push_back(Elts[i]->getType()); 896 llvm::StructType *SType = llvm::StructType::get(AType->getContext(), 897 Types, true); 898 return llvm::ConstantStruct::get(SType, Elts); 899 } 900 901 return llvm::ConstantArray::get(AType, Elts); 902 } 903 904 if (ExprType->isRecordType()) 905 return ConstStructBuilder::BuildStruct(CGM, CGF, this, 906 dyn_cast<llvm::ConstantStruct>(Base), Updater); 907 908 return nullptr; 909 } 910 911 llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 912 return EmitDesignatedInitUpdater( 913 CGM.EmitConstantExpr(E->getBase(), E->getType(), CGF), 914 E->getUpdater()); 915 } 916 917 llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E) { 918 if (!E->getConstructor()->isTrivial()) 919 return nullptr; 920 921 QualType Ty = E->getType(); 922 923 // FIXME: We should not have to call getBaseElementType here. 924 const RecordType *RT = 925 CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>(); 926 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 927 928 // If the class doesn't have a trivial destructor, we can't emit it as a 929 // constant expr. 930 if (!RD->hasTrivialDestructor()) 931 return nullptr; 932 933 // Only copy and default constructors can be trivial. 934 935 936 if (E->getNumArgs()) { 937 assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 938 assert(E->getConstructor()->isCopyOrMoveConstructor() && 939 "trivial ctor has argument but isn't a copy/move ctor"); 940 941 Expr *Arg = E->getArg(0); 942 assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) && 943 "argument to copy ctor is of wrong type"); 944 945 return Visit(Arg); 946 } 947 948 return CGM.EmitNullConstant(Ty); 949 } 950 951 llvm::Constant *VisitStringLiteral(StringLiteral *E) { 952 return CGM.GetConstantArrayFromStringLiteral(E); 953 } 954 955 llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E) { 956 // This must be an @encode initializing an array in a static initializer. 957 // Don't emit it as the address of the string, emit the string data itself 958 // as an inline array. 959 std::string Str; 960 CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); 961 QualType T = E->getType(); 962 if (T->getTypeClass() == Type::TypeOfExpr) 963 T = cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType(); 964 const ConstantArrayType *CAT = cast<ConstantArrayType>(T); 965 966 // Resize the string to the right size, adding zeros at the end, or 967 // truncating as needed. 968 Str.resize(CAT->getSize().getZExtValue(), '\0'); 969 return llvm::ConstantDataArray::getString(VMContext, Str, false); 970 } 971 972 llvm::Constant *VisitUnaryExtension(const UnaryOperator *E) { 973 return Visit(E->getSubExpr()); 974 } 975 976 // Utility methods 977 llvm::Type *ConvertType(QualType T) { 978 return CGM.getTypes().ConvertType(T); 979 } 980 981 public: 982 ConstantAddress EmitLValue(APValue::LValueBase LVBase) { 983 if (const ValueDecl *Decl = LVBase.dyn_cast<const ValueDecl*>()) { 984 if (Decl->hasAttr<WeakRefAttr>()) 985 return CGM.GetWeakRefReference(Decl); 986 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl)) 987 return ConstantAddress(CGM.GetAddrOfFunction(FD), CharUnits::One()); 988 if (const VarDecl* VD = dyn_cast<VarDecl>(Decl)) { 989 // We can never refer to a variable with local storage. 990 if (!VD->hasLocalStorage()) { 991 CharUnits Align = CGM.getContext().getDeclAlign(VD); 992 if (VD->isFileVarDecl() || VD->hasExternalStorage()) 993 return ConstantAddress(CGM.GetAddrOfGlobalVar(VD), Align); 994 else if (VD->isLocalVarDecl()) { 995 auto Ptr = CGM.getOrCreateStaticVarDecl( 996 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)); 997 return ConstantAddress(Ptr, Align); 998 } 999 } 1000 } 1001 return ConstantAddress::invalid(); 1002 } 1003 1004 Expr *E = const_cast<Expr*>(LVBase.get<const Expr*>()); 1005 switch (E->getStmtClass()) { 1006 default: break; 1007 case Expr::CompoundLiteralExprClass: { 1008 // Note that due to the nature of compound literals, this is guaranteed 1009 // to be the only use of the variable, so we just generate it here. 1010 CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E); 1011 llvm::Constant* C = CGM.EmitConstantExpr(CLE->getInitializer(), 1012 CLE->getType(), CGF); 1013 // FIXME: "Leaked" on failure. 1014 if (!C) return ConstantAddress::invalid(); 1015 1016 CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType()); 1017 1018 auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), 1019 E->getType().isConstant(CGM.getContext()), 1020 llvm::GlobalValue::InternalLinkage, 1021 C, ".compoundliteral", nullptr, 1022 llvm::GlobalVariable::NotThreadLocal, 1023 CGM.getContext().getTargetAddressSpace(E->getType())); 1024 GV->setAlignment(Align.getQuantity()); 1025 return ConstantAddress(GV, Align); 1026 } 1027 case Expr::StringLiteralClass: 1028 return CGM.GetAddrOfConstantStringFromLiteral(cast<StringLiteral>(E)); 1029 case Expr::ObjCEncodeExprClass: 1030 return CGM.GetAddrOfConstantStringFromObjCEncode(cast<ObjCEncodeExpr>(E)); 1031 case Expr::ObjCStringLiteralClass: { 1032 ObjCStringLiteral* SL = cast<ObjCStringLiteral>(E); 1033 ConstantAddress C = 1034 CGM.getObjCRuntime().GenerateConstantString(SL->getString()); 1035 return C.getElementBitCast(ConvertType(E->getType())); 1036 } 1037 case Expr::PredefinedExprClass: { 1038 unsigned Type = cast<PredefinedExpr>(E)->getIdentType(); 1039 if (CGF) { 1040 LValue Res = CGF->EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1041 return cast<ConstantAddress>(Res.getAddress()); 1042 } else if (Type == PredefinedExpr::PrettyFunction) { 1043 return CGM.GetAddrOfConstantCString("top level", ".tmp"); 1044 } 1045 1046 return CGM.GetAddrOfConstantCString("", ".tmp"); 1047 } 1048 case Expr::AddrLabelExprClass: { 1049 assert(CGF && "Invalid address of label expression outside function."); 1050 llvm::Constant *Ptr = 1051 CGF->GetAddrOfLabel(cast<AddrLabelExpr>(E)->getLabel()); 1052 Ptr = llvm::ConstantExpr::getBitCast(Ptr, ConvertType(E->getType())); 1053 return ConstantAddress(Ptr, CharUnits::One()); 1054 } 1055 case Expr::CallExprClass: { 1056 CallExpr* CE = cast<CallExpr>(E); 1057 unsigned builtin = CE->getBuiltinCallee(); 1058 if (builtin != 1059 Builtin::BI__builtin___CFStringMakeConstantString && 1060 builtin != 1061 Builtin::BI__builtin___NSStringMakeConstantString) 1062 break; 1063 const Expr *Arg = CE->getArg(0)->IgnoreParenCasts(); 1064 const StringLiteral *Literal = cast<StringLiteral>(Arg); 1065 if (builtin == 1066 Builtin::BI__builtin___NSStringMakeConstantString) { 1067 return CGM.getObjCRuntime().GenerateConstantString(Literal); 1068 } 1069 // FIXME: need to deal with UCN conversion issues. 1070 return CGM.GetAddrOfConstantCFString(Literal); 1071 } 1072 case Expr::BlockExprClass: { 1073 std::string FunctionName; 1074 if (CGF) 1075 FunctionName = CGF->CurFn->getName(); 1076 else 1077 FunctionName = "global"; 1078 1079 // This is not really an l-value. 1080 llvm::Constant *Ptr = 1081 CGM.GetAddrOfGlobalBlock(cast<BlockExpr>(E), FunctionName.c_str()); 1082 return ConstantAddress(Ptr, CGM.getPointerAlign()); 1083 } 1084 case Expr::CXXTypeidExprClass: { 1085 CXXTypeidExpr *Typeid = cast<CXXTypeidExpr>(E); 1086 QualType T; 1087 if (Typeid->isTypeOperand()) 1088 T = Typeid->getTypeOperand(CGM.getContext()); 1089 else 1090 T = Typeid->getExprOperand()->getType(); 1091 return ConstantAddress(CGM.GetAddrOfRTTIDescriptor(T), 1092 CGM.getPointerAlign()); 1093 } 1094 case Expr::CXXUuidofExprClass: { 1095 return CGM.GetAddrOfUuidDescriptor(cast<CXXUuidofExpr>(E)); 1096 } 1097 case Expr::MaterializeTemporaryExprClass: { 1098 MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E); 1099 assert(MTE->getStorageDuration() == SD_Static); 1100 SmallVector<const Expr *, 2> CommaLHSs; 1101 SmallVector<SubobjectAdjustment, 2> Adjustments; 1102 const Expr *Inner = MTE->GetTemporaryExpr() 1103 ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 1104 return CGM.GetAddrOfGlobalTemporary(MTE, Inner); 1105 } 1106 } 1107 1108 return ConstantAddress::invalid(); 1109 } 1110 }; 1111 1112 } // end anonymous namespace. 1113 1114 bool ConstStructBuilder::Build(ConstExprEmitter *Emitter, 1115 llvm::ConstantStruct *Base, 1116 InitListExpr *Updater) { 1117 assert(Base && "base expression should not be empty"); 1118 1119 QualType ExprType = Updater->getType(); 1120 RecordDecl *RD = ExprType->getAs<RecordType>()->getDecl(); 1121 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 1122 const llvm::StructLayout *BaseLayout = CGM.getDataLayout().getStructLayout( 1123 Base->getType()); 1124 unsigned FieldNo = -1; 1125 unsigned ElementNo = 0; 1126 1127 for (FieldDecl *Field : RD->fields()) { 1128 ++FieldNo; 1129 1130 if (RD->isUnion() && Updater->getInitializedFieldInUnion() != Field) 1131 continue; 1132 1133 // Skip anonymous bitfields. 1134 if (Field->isUnnamedBitfield()) 1135 continue; 1136 1137 llvm::Constant *EltInit = Base->getOperand(ElementNo); 1138 1139 // Bail out if the type of the ConstantStruct does not have the same layout 1140 // as the type of the InitListExpr. 1141 if (CGM.getTypes().ConvertType(Field->getType()) != EltInit->getType() || 1142 Layout.getFieldOffset(ElementNo) != 1143 BaseLayout->getElementOffsetInBits(ElementNo)) 1144 return false; 1145 1146 // Get the initializer. If we encounter an empty field or a NoInitExpr, 1147 // we use values from the base expression. 1148 Expr *Init = nullptr; 1149 if (ElementNo < Updater->getNumInits()) 1150 Init = Updater->getInit(ElementNo); 1151 1152 if (!Init || isa<NoInitExpr>(Init)) 1153 ; // Do nothing. 1154 else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) 1155 EltInit = Emitter->EmitDesignatedInitUpdater(EltInit, ChildILE); 1156 else 1157 EltInit = CGM.EmitConstantExpr(Init, Field->getType(), CGF); 1158 1159 ++ElementNo; 1160 1161 if (!EltInit) 1162 return false; 1163 1164 if (!Field->isBitField()) 1165 AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit); 1166 else if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(EltInit)) 1167 AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI); 1168 else 1169 // Initializing a bitfield with a non-trivial constant? 1170 return false; 1171 } 1172 1173 return true; 1174 } 1175 1176 llvm::Constant *CodeGenModule::EmitConstantInit(const VarDecl &D, 1177 CodeGenFunction *CGF) { 1178 // Make a quick check if variable can be default NULL initialized 1179 // and avoid going through rest of code which may do, for c++11, 1180 // initialization of memory to all NULLs. 1181 if (!D.hasLocalStorage()) { 1182 QualType Ty = D.getType(); 1183 if (Ty->isArrayType()) 1184 Ty = Context.getBaseElementType(Ty); 1185 if (Ty->isRecordType()) 1186 if (const CXXConstructExpr *E = 1187 dyn_cast_or_null<CXXConstructExpr>(D.getInit())) { 1188 const CXXConstructorDecl *CD = E->getConstructor(); 1189 if (CD->isTrivial() && CD->isDefaultConstructor()) 1190 return EmitNullConstant(D.getType()); 1191 } 1192 } 1193 1194 if (const APValue *Value = D.evaluateValue()) 1195 return EmitConstantValueForMemory(*Value, D.getType(), CGF); 1196 1197 // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a 1198 // reference is a constant expression, and the reference binds to a temporary, 1199 // then constant initialization is performed. ConstExprEmitter will 1200 // incorrectly emit a prvalue constant in this case, and the calling code 1201 // interprets that as the (pointer) value of the reference, rather than the 1202 // desired value of the referee. 1203 if (D.getType()->isReferenceType()) 1204 return nullptr; 1205 1206 const Expr *E = D.getInit(); 1207 assert(E && "No initializer to emit"); 1208 1209 llvm::Constant* C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E)); 1210 if (C && C->getType()->isIntegerTy(1)) { 1211 llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType()); 1212 C = llvm::ConstantExpr::getZExt(C, BoolTy); 1213 } 1214 return C; 1215 } 1216 1217 llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E, 1218 QualType DestType, 1219 CodeGenFunction *CGF) { 1220 Expr::EvalResult Result; 1221 1222 bool Success = false; 1223 1224 if (DestType->isReferenceType()) 1225 Success = E->EvaluateAsLValue(Result, Context); 1226 else 1227 Success = E->EvaluateAsRValue(Result, Context); 1228 1229 llvm::Constant *C = nullptr; 1230 if (Success && !Result.HasSideEffects) 1231 C = EmitConstantValue(Result.Val, DestType, CGF); 1232 else 1233 C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E)); 1234 1235 if (C && C->getType()->isIntegerTy(1)) { 1236 llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType()); 1237 C = llvm::ConstantExpr::getZExt(C, BoolTy); 1238 } 1239 return C; 1240 } 1241 1242 llvm::Constant *CodeGenModule::EmitConstantValue(const APValue &Value, 1243 QualType DestType, 1244 CodeGenFunction *CGF) { 1245 // For an _Atomic-qualified constant, we may need to add tail padding. 1246 if (auto *AT = DestType->getAs<AtomicType>()) { 1247 QualType InnerType = AT->getValueType(); 1248 auto *Inner = EmitConstantValue(Value, InnerType, CGF); 1249 1250 uint64_t InnerSize = Context.getTypeSize(InnerType); 1251 uint64_t OuterSize = Context.getTypeSize(DestType); 1252 if (InnerSize == OuterSize) 1253 return Inner; 1254 1255 assert(InnerSize < OuterSize && "emitted over-large constant for atomic"); 1256 llvm::Constant *Elts[] = { 1257 Inner, 1258 llvm::ConstantAggregateZero::get( 1259 llvm::ArrayType::get(Int8Ty, (OuterSize - InnerSize) / 8)) 1260 }; 1261 return llvm::ConstantStruct::getAnon(Elts); 1262 } 1263 1264 switch (Value.getKind()) { 1265 case APValue::Uninitialized: 1266 llvm_unreachable("Constant expressions should be initialized."); 1267 case APValue::LValue: { 1268 llvm::Type *DestTy = getTypes().ConvertTypeForMem(DestType); 1269 llvm::Constant *Offset = 1270 llvm::ConstantInt::get(Int64Ty, Value.getLValueOffset().getQuantity()); 1271 1272 llvm::Constant *C = nullptr; 1273 if (APValue::LValueBase LVBase = Value.getLValueBase()) { 1274 // An array can be represented as an lvalue referring to the base. 1275 if (isa<llvm::ArrayType>(DestTy)) { 1276 assert(Offset->isNullValue() && "offset on array initializer"); 1277 return ConstExprEmitter(*this, CGF).Visit( 1278 const_cast<Expr*>(LVBase.get<const Expr*>())); 1279 } 1280 1281 C = ConstExprEmitter(*this, CGF).EmitLValue(LVBase).getPointer(); 1282 1283 // Apply offset if necessary. 1284 if (!Offset->isNullValue()) { 1285 unsigned AS = C->getType()->getPointerAddressSpace(); 1286 llvm::Type *CharPtrTy = Int8Ty->getPointerTo(AS); 1287 llvm::Constant *Casted = llvm::ConstantExpr::getBitCast(C, CharPtrTy); 1288 Casted = llvm::ConstantExpr::getGetElementPtr(Int8Ty, Casted, Offset); 1289 C = llvm::ConstantExpr::getPointerCast(Casted, C->getType()); 1290 } 1291 1292 // Convert to the appropriate type; this could be an lvalue for 1293 // an integer. 1294 if (isa<llvm::PointerType>(DestTy)) 1295 return llvm::ConstantExpr::getPointerCast(C, DestTy); 1296 1297 return llvm::ConstantExpr::getPtrToInt(C, DestTy); 1298 } else { 1299 C = Offset; 1300 1301 // Convert to the appropriate type; this could be an lvalue for 1302 // an integer. 1303 if (isa<llvm::PointerType>(DestTy)) 1304 return llvm::ConstantExpr::getIntToPtr(C, DestTy); 1305 1306 // If the types don't match this should only be a truncate. 1307 if (C->getType() != DestTy) 1308 return llvm::ConstantExpr::getTrunc(C, DestTy); 1309 1310 return C; 1311 } 1312 } 1313 case APValue::Int: 1314 return llvm::ConstantInt::get(VMContext, Value.getInt()); 1315 case APValue::ComplexInt: { 1316 llvm::Constant *Complex[2]; 1317 1318 Complex[0] = llvm::ConstantInt::get(VMContext, 1319 Value.getComplexIntReal()); 1320 Complex[1] = llvm::ConstantInt::get(VMContext, 1321 Value.getComplexIntImag()); 1322 1323 // FIXME: the target may want to specify that this is packed. 1324 llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(), 1325 Complex[1]->getType(), 1326 nullptr); 1327 return llvm::ConstantStruct::get(STy, Complex); 1328 } 1329 case APValue::Float: { 1330 const llvm::APFloat &Init = Value.getFloat(); 1331 if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf && 1332 !Context.getLangOpts().NativeHalfType && 1333 !Context.getLangOpts().HalfArgsAndReturns) 1334 return llvm::ConstantInt::get(VMContext, Init.bitcastToAPInt()); 1335 else 1336 return llvm::ConstantFP::get(VMContext, Init); 1337 } 1338 case APValue::ComplexFloat: { 1339 llvm::Constant *Complex[2]; 1340 1341 Complex[0] = llvm::ConstantFP::get(VMContext, 1342 Value.getComplexFloatReal()); 1343 Complex[1] = llvm::ConstantFP::get(VMContext, 1344 Value.getComplexFloatImag()); 1345 1346 // FIXME: the target may want to specify that this is packed. 1347 llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(), 1348 Complex[1]->getType(), 1349 nullptr); 1350 return llvm::ConstantStruct::get(STy, Complex); 1351 } 1352 case APValue::Vector: { 1353 SmallVector<llvm::Constant *, 4> Inits; 1354 unsigned NumElts = Value.getVectorLength(); 1355 1356 for (unsigned i = 0; i != NumElts; ++i) { 1357 const APValue &Elt = Value.getVectorElt(i); 1358 if (Elt.isInt()) 1359 Inits.push_back(llvm::ConstantInt::get(VMContext, Elt.getInt())); 1360 else 1361 Inits.push_back(llvm::ConstantFP::get(VMContext, Elt.getFloat())); 1362 } 1363 return llvm::ConstantVector::get(Inits); 1364 } 1365 case APValue::AddrLabelDiff: { 1366 const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS(); 1367 const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS(); 1368 llvm::Constant *LHS = EmitConstantExpr(LHSExpr, LHSExpr->getType(), CGF); 1369 llvm::Constant *RHS = EmitConstantExpr(RHSExpr, RHSExpr->getType(), CGF); 1370 1371 // Compute difference 1372 llvm::Type *ResultType = getTypes().ConvertType(DestType); 1373 LHS = llvm::ConstantExpr::getPtrToInt(LHS, IntPtrTy); 1374 RHS = llvm::ConstantExpr::getPtrToInt(RHS, IntPtrTy); 1375 llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS); 1376 1377 // LLVM is a bit sensitive about the exact format of the 1378 // address-of-label difference; make sure to truncate after 1379 // the subtraction. 1380 return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType); 1381 } 1382 case APValue::Struct: 1383 case APValue::Union: 1384 return ConstStructBuilder::BuildStruct(*this, CGF, Value, DestType); 1385 case APValue::Array: { 1386 const ArrayType *CAT = Context.getAsArrayType(DestType); 1387 unsigned NumElements = Value.getArraySize(); 1388 unsigned NumInitElts = Value.getArrayInitializedElts(); 1389 1390 // Emit array filler, if there is one. 1391 llvm::Constant *Filler = nullptr; 1392 if (Value.hasArrayFiller()) 1393 Filler = EmitConstantValueForMemory(Value.getArrayFiller(), 1394 CAT->getElementType(), CGF); 1395 1396 // Emit initializer elements. 1397 llvm::Type *CommonElementType = 1398 getTypes().ConvertType(CAT->getElementType()); 1399 1400 // Try to use a ConstantAggregateZero if we can. 1401 if (Filler && Filler->isNullValue() && !NumInitElts) { 1402 llvm::ArrayType *AType = 1403 llvm::ArrayType::get(CommonElementType, NumElements); 1404 return llvm::ConstantAggregateZero::get(AType); 1405 } 1406 1407 std::vector<llvm::Constant*> Elts; 1408 Elts.reserve(NumElements); 1409 for (unsigned I = 0; I < NumElements; ++I) { 1410 llvm::Constant *C = Filler; 1411 if (I < NumInitElts) 1412 C = EmitConstantValueForMemory(Value.getArrayInitializedElt(I), 1413 CAT->getElementType(), CGF); 1414 else 1415 assert(Filler && "Missing filler for implicit elements of initializer"); 1416 if (I == 0) 1417 CommonElementType = C->getType(); 1418 else if (C->getType() != CommonElementType) 1419 CommonElementType = nullptr; 1420 Elts.push_back(C); 1421 } 1422 1423 if (!CommonElementType) { 1424 // FIXME: Try to avoid packing the array 1425 std::vector<llvm::Type*> Types; 1426 Types.reserve(NumElements); 1427 for (unsigned i = 0, e = Elts.size(); i < e; ++i) 1428 Types.push_back(Elts[i]->getType()); 1429 llvm::StructType *SType = llvm::StructType::get(VMContext, Types, true); 1430 return llvm::ConstantStruct::get(SType, Elts); 1431 } 1432 1433 llvm::ArrayType *AType = 1434 llvm::ArrayType::get(CommonElementType, NumElements); 1435 return llvm::ConstantArray::get(AType, Elts); 1436 } 1437 case APValue::MemberPointer: 1438 return getCXXABI().EmitMemberPointer(Value, DestType); 1439 } 1440 llvm_unreachable("Unknown APValue kind"); 1441 } 1442 1443 llvm::Constant * 1444 CodeGenModule::EmitConstantValueForMemory(const APValue &Value, 1445 QualType DestType, 1446 CodeGenFunction *CGF) { 1447 llvm::Constant *C = EmitConstantValue(Value, DestType, CGF); 1448 if (C->getType()->isIntegerTy(1)) { 1449 llvm::Type *BoolTy = getTypes().ConvertTypeForMem(DestType); 1450 C = llvm::ConstantExpr::getZExt(C, BoolTy); 1451 } 1452 return C; 1453 } 1454 1455 ConstantAddress 1456 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) { 1457 assert(E->isFileScope() && "not a file-scope compound literal expr"); 1458 return ConstExprEmitter(*this, nullptr).EmitLValue(E); 1459 } 1460 1461 llvm::Constant * 1462 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) { 1463 // Member pointer constants always have a very particular form. 1464 const MemberPointerType *type = cast<MemberPointerType>(uo->getType()); 1465 const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl(); 1466 1467 // A member function pointer. 1468 if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl)) 1469 return getCXXABI().EmitMemberFunctionPointer(method); 1470 1471 // Otherwise, a member data pointer. 1472 uint64_t fieldOffset = getContext().getFieldOffset(decl); 1473 CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset); 1474 return getCXXABI().EmitMemberDataPointer(type, chars); 1475 } 1476 1477 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 1478 llvm::Type *baseType, 1479 const CXXRecordDecl *base); 1480 1481 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM, 1482 const CXXRecordDecl *record, 1483 bool asCompleteObject) { 1484 const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record); 1485 llvm::StructType *structure = 1486 (asCompleteObject ? layout.getLLVMType() 1487 : layout.getBaseSubobjectLLVMType()); 1488 1489 unsigned numElements = structure->getNumElements(); 1490 std::vector<llvm::Constant *> elements(numElements); 1491 1492 // Fill in all the bases. 1493 for (const auto &I : record->bases()) { 1494 if (I.isVirtual()) { 1495 // Ignore virtual bases; if we're laying out for a complete 1496 // object, we'll lay these out later. 1497 continue; 1498 } 1499 1500 const CXXRecordDecl *base = 1501 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1502 1503 // Ignore empty bases. 1504 if (base->isEmpty()) 1505 continue; 1506 1507 unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base); 1508 llvm::Type *baseType = structure->getElementType(fieldIndex); 1509 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 1510 } 1511 1512 // Fill in all the fields. 1513 for (const auto *Field : record->fields()) { 1514 // Fill in non-bitfields. (Bitfields always use a zero pattern, which we 1515 // will fill in later.) 1516 if (!Field->isBitField()) { 1517 unsigned fieldIndex = layout.getLLVMFieldNo(Field); 1518 elements[fieldIndex] = CGM.EmitNullConstant(Field->getType()); 1519 } 1520 1521 // For unions, stop after the first named field. 1522 if (record->isUnion()) { 1523 if (Field->getIdentifier()) 1524 break; 1525 if (const auto *FieldRD = 1526 dyn_cast_or_null<RecordDecl>(Field->getType()->getAsTagDecl())) 1527 if (FieldRD->findFirstNamedDataMember()) 1528 break; 1529 } 1530 } 1531 1532 // Fill in the virtual bases, if we're working with the complete object. 1533 if (asCompleteObject) { 1534 for (const auto &I : record->vbases()) { 1535 const CXXRecordDecl *base = 1536 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1537 1538 // Ignore empty bases. 1539 if (base->isEmpty()) 1540 continue; 1541 1542 unsigned fieldIndex = layout.getVirtualBaseIndex(base); 1543 1544 // We might have already laid this field out. 1545 if (elements[fieldIndex]) continue; 1546 1547 llvm::Type *baseType = structure->getElementType(fieldIndex); 1548 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 1549 } 1550 } 1551 1552 // Now go through all other fields and zero them out. 1553 for (unsigned i = 0; i != numElements; ++i) { 1554 if (!elements[i]) 1555 elements[i] = llvm::Constant::getNullValue(structure->getElementType(i)); 1556 } 1557 1558 return llvm::ConstantStruct::get(structure, elements); 1559 } 1560 1561 /// Emit the null constant for a base subobject. 1562 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 1563 llvm::Type *baseType, 1564 const CXXRecordDecl *base) { 1565 const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base); 1566 1567 // Just zero out bases that don't have any pointer to data members. 1568 if (baseLayout.isZeroInitializableAsBase()) 1569 return llvm::Constant::getNullValue(baseType); 1570 1571 // Otherwise, we can just use its null constant. 1572 return EmitNullConstant(CGM, base, /*asCompleteObject=*/false); 1573 } 1574 1575 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { 1576 if (getTypes().isZeroInitializable(T)) 1577 return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); 1578 1579 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { 1580 llvm::ArrayType *ATy = 1581 cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T)); 1582 1583 QualType ElementTy = CAT->getElementType(); 1584 1585 llvm::Constant *Element = EmitNullConstant(ElementTy); 1586 unsigned NumElements = CAT->getSize().getZExtValue(); 1587 SmallVector<llvm::Constant *, 8> Array(NumElements, Element); 1588 return llvm::ConstantArray::get(ATy, Array); 1589 } 1590 1591 if (const RecordType *RT = T->getAs<RecordType>()) { 1592 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1593 return ::EmitNullConstant(*this, RD, /*complete object*/ true); 1594 } 1595 1596 assert(T->isMemberDataPointerType() && 1597 "Should only see pointers to data members here!"); 1598 1599 return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>()); 1600 } 1601 1602 llvm::Constant * 1603 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) { 1604 return ::EmitNullConstant(*this, Record, false); 1605 } 1606