1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Constant Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CGRecordLayout.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "ConstantEmitter.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/APValue.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Attr.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/Builtins.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/Sequence.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalVariable.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 //===----------------------------------------------------------------------===//
36 //                            ConstantAggregateBuilder
37 //===----------------------------------------------------------------------===//
38 
39 namespace {
40 class ConstExprEmitter;
41 
42 struct ConstantAggregateBuilderUtils {
43   CodeGenModule &CGM;
44 
45   ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {}
46 
47   CharUnits getAlignment(const llvm::Constant *C) const {
48     return CharUnits::fromQuantity(
49         CGM.getDataLayout().getABITypeAlignment(C->getType()));
50   }
51 
52   CharUnits getSize(llvm::Type *Ty) const {
53     return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty));
54   }
55 
56   CharUnits getSize(const llvm::Constant *C) const {
57     return getSize(C->getType());
58   }
59 
60   llvm::Constant *getPadding(CharUnits PadSize) const {
61     llvm::Type *Ty = CGM.Int8Ty;
62     if (PadSize > CharUnits::One())
63       Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
64     return llvm::UndefValue::get(Ty);
65   }
66 
67   llvm::Constant *getZeroes(CharUnits ZeroSize) const {
68     llvm::Type *Ty = llvm::ArrayType::get(CGM.Int8Ty, ZeroSize.getQuantity());
69     return llvm::ConstantAggregateZero::get(Ty);
70   }
71 };
72 
73 /// Incremental builder for an llvm::Constant* holding a struct or array
74 /// constant.
75 class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils {
76   /// The elements of the constant. These two arrays must have the same size;
77   /// Offsets[i] describes the offset of Elems[i] within the constant. The
78   /// elements are kept in increasing offset order, and we ensure that there
79   /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]).
80   ///
81   /// This may contain explicit padding elements (in order to create a
82   /// natural layout), but need not. Gaps between elements are implicitly
83   /// considered to be filled with undef.
84   llvm::SmallVector<llvm::Constant*, 32> Elems;
85   llvm::SmallVector<CharUnits, 32> Offsets;
86 
87   /// The size of the constant (the maximum end offset of any added element).
88   /// May be larger than the end of Elems.back() if we split the last element
89   /// and removed some trailing undefs.
90   CharUnits Size = CharUnits::Zero();
91 
92   /// This is true only if laying out Elems in order as the elements of a
93   /// non-packed LLVM struct will give the correct layout.
94   bool NaturalLayout = true;
95 
96   bool split(size_t Index, CharUnits Hint);
97   Optional<size_t> splitAt(CharUnits Pos);
98 
99   static llvm::Constant *buildFrom(CodeGenModule &CGM,
100                                    ArrayRef<llvm::Constant *> Elems,
101                                    ArrayRef<CharUnits> Offsets,
102                                    CharUnits StartOffset, CharUnits Size,
103                                    bool NaturalLayout, llvm::Type *DesiredTy,
104                                    bool AllowOversized);
105 
106 public:
107   ConstantAggregateBuilder(CodeGenModule &CGM)
108       : ConstantAggregateBuilderUtils(CGM) {}
109 
110   /// Update or overwrite the value starting at \p Offset with \c C.
111   ///
112   /// \param AllowOverwrite If \c true, this constant might overwrite (part of)
113   ///        a constant that has already been added. This flag is only used to
114   ///        detect bugs.
115   bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite);
116 
117   /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits.
118   bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite);
119 
120   /// Attempt to condense the value starting at \p Offset to a constant of type
121   /// \p DesiredTy.
122   void condense(CharUnits Offset, llvm::Type *DesiredTy);
123 
124   /// Produce a constant representing the entire accumulated value, ideally of
125   /// the specified type. If \p AllowOversized, the constant might be larger
126   /// than implied by \p DesiredTy (eg, if there is a flexible array member).
127   /// Otherwise, the constant will be of exactly the same size as \p DesiredTy
128   /// even if we can't represent it as that type.
129   llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const {
130     return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size,
131                      NaturalLayout, DesiredTy, AllowOversized);
132   }
133 };
134 
135 template<typename Container, typename Range = std::initializer_list<
136                                  typename Container::value_type>>
137 static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) {
138   assert(BeginOff <= EndOff && "invalid replacement range");
139   llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals);
140 }
141 
142 bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset,
143                           bool AllowOverwrite) {
144   // Common case: appending to a layout.
145   if (Offset >= Size) {
146     CharUnits Align = getAlignment(C);
147     CharUnits AlignedSize = Size.alignTo(Align);
148     if (AlignedSize > Offset || Offset.alignTo(Align) != Offset)
149       NaturalLayout = false;
150     else if (AlignedSize < Offset) {
151       Elems.push_back(getPadding(Offset - Size));
152       Offsets.push_back(Size);
153     }
154     Elems.push_back(C);
155     Offsets.push_back(Offset);
156     Size = Offset + getSize(C);
157     return true;
158   }
159 
160   // Uncommon case: constant overlaps what we've already created.
161   llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
162   if (!FirstElemToReplace)
163     return false;
164 
165   CharUnits CSize = getSize(C);
166   llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + CSize);
167   if (!LastElemToReplace)
168     return false;
169 
170   assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) &&
171          "unexpectedly overwriting field");
172 
173   replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C});
174   replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset});
175   Size = std::max(Size, Offset + CSize);
176   NaturalLayout = false;
177   return true;
178 }
179 
180 bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits,
181                               bool AllowOverwrite) {
182   const ASTContext &Context = CGM.getContext();
183   const uint64_t CharWidth = CGM.getContext().getCharWidth();
184 
185   // Offset of where we want the first bit to go within the bits of the
186   // current char.
187   unsigned OffsetWithinChar = OffsetInBits % CharWidth;
188 
189   // We split bit-fields up into individual bytes. Walk over the bytes and
190   // update them.
191   for (CharUnits OffsetInChars =
192            Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar);
193        /**/; ++OffsetInChars) {
194     // Number of bits we want to fill in this char.
195     unsigned WantedBits =
196         std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar);
197 
198     // Get a char containing the bits we want in the right places. The other
199     // bits have unspecified values.
200     llvm::APInt BitsThisChar = Bits;
201     if (BitsThisChar.getBitWidth() < CharWidth)
202       BitsThisChar = BitsThisChar.zext(CharWidth);
203     if (CGM.getDataLayout().isBigEndian()) {
204       // Figure out how much to shift by. We may need to left-shift if we have
205       // less than one byte of Bits left.
206       int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar;
207       if (Shift > 0)
208         BitsThisChar.lshrInPlace(Shift);
209       else if (Shift < 0)
210         BitsThisChar = BitsThisChar.shl(-Shift);
211     } else {
212       BitsThisChar = BitsThisChar.shl(OffsetWithinChar);
213     }
214     if (BitsThisChar.getBitWidth() > CharWidth)
215       BitsThisChar = BitsThisChar.trunc(CharWidth);
216 
217     if (WantedBits == CharWidth) {
218       // Got a full byte: just add it directly.
219       add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
220           OffsetInChars, AllowOverwrite);
221     } else {
222       // Partial byte: update the existing integer if there is one. If we
223       // can't split out a 1-CharUnit range to update, then we can't add
224       // these bits and fail the entire constant emission.
225       llvm::Optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars);
226       if (!FirstElemToUpdate)
227         return false;
228       llvm::Optional<size_t> LastElemToUpdate =
229           splitAt(OffsetInChars + CharUnits::One());
230       if (!LastElemToUpdate)
231         return false;
232       assert(*LastElemToUpdate - *FirstElemToUpdate < 2 &&
233              "should have at most one element covering one byte");
234 
235       // Figure out which bits we want and discard the rest.
236       llvm::APInt UpdateMask(CharWidth, 0);
237       if (CGM.getDataLayout().isBigEndian())
238         UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits,
239                            CharWidth - OffsetWithinChar);
240       else
241         UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits);
242       BitsThisChar &= UpdateMask;
243 
244       if (*FirstElemToUpdate == *LastElemToUpdate ||
245           Elems[*FirstElemToUpdate]->isNullValue() ||
246           isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) {
247         // All existing bits are either zero or undef.
248         add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
249             OffsetInChars, /*AllowOverwrite*/ true);
250       } else {
251         llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate];
252         // In order to perform a partial update, we need the existing bitwise
253         // value, which we can only extract for a constant int.
254         auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate);
255         if (!CI)
256           return false;
257         // Because this is a 1-CharUnit range, the constant occupying it must
258         // be exactly one CharUnit wide.
259         assert(CI->getBitWidth() == CharWidth && "splitAt failed");
260         assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) &&
261                "unexpectedly overwriting bitfield");
262         BitsThisChar |= (CI->getValue() & ~UpdateMask);
263         ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar);
264       }
265     }
266 
267     // Stop if we've added all the bits.
268     if (WantedBits == Bits.getBitWidth())
269       break;
270 
271     // Remove the consumed bits from Bits.
272     if (!CGM.getDataLayout().isBigEndian())
273       Bits.lshrInPlace(WantedBits);
274     Bits = Bits.trunc(Bits.getBitWidth() - WantedBits);
275 
276     // The remanining bits go at the start of the following bytes.
277     OffsetWithinChar = 0;
278   }
279 
280   return true;
281 }
282 
283 /// Returns a position within Elems and Offsets such that all elements
284 /// before the returned index end before Pos and all elements at or after
285 /// the returned index begin at or after Pos. Splits elements as necessary
286 /// to ensure this. Returns None if we find something we can't split.
287 Optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) {
288   if (Pos >= Size)
289     return Offsets.size();
290 
291   while (true) {
292     auto FirstAfterPos = llvm::upper_bound(Offsets, Pos);
293     if (FirstAfterPos == Offsets.begin())
294       return 0;
295 
296     // If we already have an element starting at Pos, we're done.
297     size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1;
298     if (Offsets[LastAtOrBeforePosIndex] == Pos)
299       return LastAtOrBeforePosIndex;
300 
301     // We found an element starting before Pos. Check for overlap.
302     if (Offsets[LastAtOrBeforePosIndex] +
303         getSize(Elems[LastAtOrBeforePosIndex]) <= Pos)
304       return LastAtOrBeforePosIndex + 1;
305 
306     // Try to decompose it into smaller constants.
307     if (!split(LastAtOrBeforePosIndex, Pos))
308       return None;
309   }
310 }
311 
312 /// Split the constant at index Index, if possible. Return true if we did.
313 /// Hint indicates the location at which we'd like to split, but may be
314 /// ignored.
315 bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
316   NaturalLayout = false;
317   llvm::Constant *C = Elems[Index];
318   CharUnits Offset = Offsets[Index];
319 
320   if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) {
321     replace(Elems, Index, Index + 1,
322             llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
323                             [&](unsigned Op) { return CA->getOperand(Op); }));
324     if (auto *Seq = dyn_cast<llvm::SequentialType>(CA->getType())) {
325       // Array or vector.
326       CharUnits ElemSize = getSize(Seq->getElementType());
327       replace(
328           Offsets, Index, Index + 1,
329           llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
330                           [&](unsigned Op) { return Offset + Op * ElemSize; }));
331     } else {
332       // Must be a struct.
333       auto *ST = cast<llvm::StructType>(CA->getType());
334       const llvm::StructLayout *Layout =
335           CGM.getDataLayout().getStructLayout(ST);
336       replace(Offsets, Index, Index + 1,
337               llvm::map_range(
338                   llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) {
339                     return Offset + CharUnits::fromQuantity(
340                                         Layout->getElementOffset(Op));
341                   }));
342     }
343     return true;
344   }
345 
346   if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) {
347     // FIXME: If possible, split into two ConstantDataSequentials at Hint.
348     CharUnits ElemSize = getSize(CDS->getElementType());
349     replace(Elems, Index, Index + 1,
350             llvm::map_range(llvm::seq(0u, CDS->getNumElements()),
351                             [&](unsigned Elem) {
352                               return CDS->getElementAsConstant(Elem);
353                             }));
354     replace(Offsets, Index, Index + 1,
355             llvm::map_range(
356                 llvm::seq(0u, CDS->getNumElements()),
357                 [&](unsigned Elem) { return Offset + Elem * ElemSize; }));
358     return true;
359   }
360 
361   if (isa<llvm::ConstantAggregateZero>(C)) {
362     CharUnits ElemSize = getSize(C);
363     assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split");
364     replace(Elems, Index, Index + 1,
365             {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)});
366     replace(Offsets, Index, Index + 1, {Offset, Hint});
367     return true;
368   }
369 
370   if (isa<llvm::UndefValue>(C)) {
371     replace(Elems, Index, Index + 1, {});
372     replace(Offsets, Index, Index + 1, {});
373     return true;
374   }
375 
376   // FIXME: We could split a ConstantInt if the need ever arose.
377   // We don't need to do this to handle bit-fields because we always eagerly
378   // split them into 1-byte chunks.
379 
380   return false;
381 }
382 
383 static llvm::Constant *
384 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
385                   llvm::Type *CommonElementType, unsigned ArrayBound,
386                   SmallVectorImpl<llvm::Constant *> &Elements,
387                   llvm::Constant *Filler);
388 
389 llvm::Constant *ConstantAggregateBuilder::buildFrom(
390     CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems,
391     ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size,
392     bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) {
393   ConstantAggregateBuilderUtils Utils(CGM);
394 
395   if (Elems.empty())
396     return llvm::UndefValue::get(DesiredTy);
397 
398   auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; };
399 
400   // If we want an array type, see if all the elements are the same type and
401   // appropriately spaced.
402   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) {
403     assert(!AllowOversized && "oversized array emission not supported");
404 
405     bool CanEmitArray = true;
406     llvm::Type *CommonType = Elems[0]->getType();
407     llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType);
408     CharUnits ElemSize = Utils.getSize(ATy->getElementType());
409     SmallVector<llvm::Constant*, 32> ArrayElements;
410     for (size_t I = 0; I != Elems.size(); ++I) {
411       // Skip zeroes; we'll use a zero value as our array filler.
412       if (Elems[I]->isNullValue())
413         continue;
414 
415       // All remaining elements must be the same type.
416       if (Elems[I]->getType() != CommonType ||
417           Offset(I) % ElemSize != 0) {
418         CanEmitArray = false;
419         break;
420       }
421       ArrayElements.resize(Offset(I) / ElemSize + 1, Filler);
422       ArrayElements.back() = Elems[I];
423     }
424 
425     if (CanEmitArray) {
426       return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(),
427                                ArrayElements, Filler);
428     }
429 
430     // Can't emit as an array, carry on to emit as a struct.
431   }
432 
433   CharUnits DesiredSize = Utils.getSize(DesiredTy);
434   CharUnits Align = CharUnits::One();
435   for (llvm::Constant *C : Elems)
436     Align = std::max(Align, Utils.getAlignment(C));
437   CharUnits AlignedSize = Size.alignTo(Align);
438 
439   bool Packed = false;
440   ArrayRef<llvm::Constant*> UnpackedElems = Elems;
441   llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage;
442   if ((DesiredSize < AlignedSize && !AllowOversized) ||
443       DesiredSize.alignTo(Align) != DesiredSize) {
444     // The natural layout would be the wrong size; force use of a packed layout.
445     NaturalLayout = false;
446     Packed = true;
447   } else if (DesiredSize > AlignedSize) {
448     // The constant would be too small. Add padding to fix it.
449     UnpackedElemStorage.assign(Elems.begin(), Elems.end());
450     UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size));
451     UnpackedElems = UnpackedElemStorage;
452   }
453 
454   // If we don't have a natural layout, insert padding as necessary.
455   // As we go, double-check to see if we can actually just emit Elems
456   // as a non-packed struct and do so opportunistically if possible.
457   llvm::SmallVector<llvm::Constant*, 32> PackedElems;
458   if (!NaturalLayout) {
459     CharUnits SizeSoFar = CharUnits::Zero();
460     for (size_t I = 0; I != Elems.size(); ++I) {
461       CharUnits Align = Utils.getAlignment(Elems[I]);
462       CharUnits NaturalOffset = SizeSoFar.alignTo(Align);
463       CharUnits DesiredOffset = Offset(I);
464       assert(DesiredOffset >= SizeSoFar && "elements out of order");
465 
466       if (DesiredOffset != NaturalOffset)
467         Packed = true;
468       if (DesiredOffset != SizeSoFar)
469         PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar));
470       PackedElems.push_back(Elems[I]);
471       SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]);
472     }
473     // If we're using the packed layout, pad it out to the desired size if
474     // necessary.
475     if (Packed) {
476       assert((SizeSoFar <= DesiredSize || AllowOversized) &&
477              "requested size is too small for contents");
478       if (SizeSoFar < DesiredSize)
479         PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar));
480     }
481   }
482 
483   llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements(
484       CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed);
485 
486   // Pick the type to use.  If the type is layout identical to the desired
487   // type then use it, otherwise use whatever the builder produced for us.
488   if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) {
489     if (DesiredSTy->isLayoutIdentical(STy))
490       STy = DesiredSTy;
491   }
492 
493   return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems);
494 }
495 
496 void ConstantAggregateBuilder::condense(CharUnits Offset,
497                                         llvm::Type *DesiredTy) {
498   CharUnits Size = getSize(DesiredTy);
499 
500   llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
501   if (!FirstElemToReplace)
502     return;
503   size_t First = *FirstElemToReplace;
504 
505   llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + Size);
506   if (!LastElemToReplace)
507     return;
508   size_t Last = *LastElemToReplace;
509 
510   size_t Length = Last - First;
511   if (Length == 0)
512     return;
513 
514   if (Length == 1 && Offsets[First] == Offset &&
515       getSize(Elems[First]) == Size) {
516     // Re-wrap single element structs if necessary. Otherwise, leave any single
517     // element constant of the right size alone even if it has the wrong type.
518     auto *STy = dyn_cast<llvm::StructType>(DesiredTy);
519     if (STy && STy->getNumElements() == 1 &&
520         STy->getElementType(0) == Elems[First]->getType())
521       Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]);
522     return;
523   }
524 
525   llvm::Constant *Replacement = buildFrom(
526       CGM, makeArrayRef(Elems).slice(First, Length),
527       makeArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy),
528       /*known to have natural layout=*/false, DesiredTy, false);
529   replace(Elems, First, Last, {Replacement});
530   replace(Offsets, First, Last, {Offset});
531 }
532 
533 //===----------------------------------------------------------------------===//
534 //                            ConstStructBuilder
535 //===----------------------------------------------------------------------===//
536 
537 class ConstStructBuilder {
538   CodeGenModule &CGM;
539   ConstantEmitter &Emitter;
540   ConstantAggregateBuilder &Builder;
541   CharUnits StartOffset;
542 
543 public:
544   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
545                                      InitListExpr *ILE, QualType StructTy);
546   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
547                                      const APValue &Value, QualType ValTy);
548   static bool UpdateStruct(ConstantEmitter &Emitter,
549                            ConstantAggregateBuilder &Const, CharUnits Offset,
550                            InitListExpr *Updater);
551 
552 private:
553   ConstStructBuilder(ConstantEmitter &Emitter,
554                      ConstantAggregateBuilder &Builder, CharUnits StartOffset)
555       : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder),
556         StartOffset(StartOffset) {}
557 
558   bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
559                    llvm::Constant *InitExpr, bool AllowOverwrite = false);
560 
561   bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst,
562                    bool AllowOverwrite = false);
563 
564   bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
565                       llvm::ConstantInt *InitExpr, bool AllowOverwrite = false);
566 
567   bool Build(InitListExpr *ILE, bool AllowOverwrite);
568   bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
569              const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
570   llvm::Constant *Finalize(QualType Ty);
571 };
572 
573 bool ConstStructBuilder::AppendField(
574     const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst,
575     bool AllowOverwrite) {
576   const ASTContext &Context = CGM.getContext();
577 
578   CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
579 
580   return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite);
581 }
582 
583 bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars,
584                                      llvm::Constant *InitCst,
585                                      bool AllowOverwrite) {
586   return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite);
587 }
588 
589 bool ConstStructBuilder::AppendBitField(
590     const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI,
591     bool AllowOverwrite) {
592   const CGRecordLayout &RL =
593       CGM.getTypes().getCGRecordLayout(Field->getParent());
594   const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
595   llvm::APInt FieldValue = CI->getValue();
596 
597   // Promote the size of FieldValue if necessary
598   // FIXME: This should never occur, but currently it can because initializer
599   // constants are cast to bool, and because clang is not enforcing bitfield
600   // width limits.
601   if (Info.Size > FieldValue.getBitWidth())
602     FieldValue = FieldValue.zext(Info.Size);
603 
604   // Truncate the size of FieldValue to the bit field size.
605   if (Info.Size < FieldValue.getBitWidth())
606     FieldValue = FieldValue.trunc(Info.Size);
607 
608   return Builder.addBits(FieldValue,
609                          CGM.getContext().toBits(StartOffset) + FieldOffset,
610                          AllowOverwrite);
611 }
612 
613 static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter,
614                                       ConstantAggregateBuilder &Const,
615                                       CharUnits Offset, QualType Type,
616                                       InitListExpr *Updater) {
617   if (Type->isRecordType())
618     return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater);
619 
620   auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type);
621   if (!CAT)
622     return false;
623   QualType ElemType = CAT->getElementType();
624   CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType);
625   llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType);
626 
627   llvm::Constant *FillC = nullptr;
628   if (Expr *Filler = Updater->getArrayFiller()) {
629     if (!isa<NoInitExpr>(Filler)) {
630       FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType);
631       if (!FillC)
632         return false;
633     }
634   }
635 
636   unsigned NumElementsToUpdate =
637       FillC ? CAT->getSize().getZExtValue() : Updater->getNumInits();
638   for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) {
639     Expr *Init = nullptr;
640     if (I < Updater->getNumInits())
641       Init = Updater->getInit(I);
642 
643     if (!Init && FillC) {
644       if (!Const.add(FillC, Offset, true))
645         return false;
646     } else if (!Init || isa<NoInitExpr>(Init)) {
647       continue;
648     } else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) {
649       if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType,
650                                      ChildILE))
651         return false;
652       // Attempt to reduce the array element to a single constant if necessary.
653       Const.condense(Offset, ElemTy);
654     } else {
655       llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType);
656       if (!Const.add(Val, Offset, true))
657         return false;
658     }
659   }
660 
661   return true;
662 }
663 
664 bool ConstStructBuilder::Build(InitListExpr *ILE, bool AllowOverwrite) {
665   RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
666   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
667 
668   unsigned FieldNo = -1;
669   unsigned ElementNo = 0;
670 
671   // Bail out if we have base classes. We could support these, but they only
672   // arise in C++1z where we will have already constant folded most interesting
673   // cases. FIXME: There are still a few more cases we can handle this way.
674   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
675     if (CXXRD->getNumBases())
676       return false;
677 
678   for (FieldDecl *Field : RD->fields()) {
679     ++FieldNo;
680 
681     // If this is a union, skip all the fields that aren't being initialized.
682     if (RD->isUnion() &&
683         !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field))
684       continue;
685 
686     // Don't emit anonymous bitfields or zero-sized fields.
687     if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
688       continue;
689 
690     // Get the initializer.  A struct can include fields without initializers,
691     // we just use explicit null values for them.
692     Expr *Init = nullptr;
693     if (ElementNo < ILE->getNumInits())
694       Init = ILE->getInit(ElementNo++);
695     if (Init && isa<NoInitExpr>(Init))
696       continue;
697 
698     // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr
699     // represents additional overwriting of our current constant value, and not
700     // a new constant to emit independently.
701     if (AllowOverwrite &&
702         (Field->getType()->isArrayType() || Field->getType()->isRecordType())) {
703       if (auto *SubILE = dyn_cast<InitListExpr>(Init)) {
704         CharUnits Offset = CGM.getContext().toCharUnitsFromBits(
705             Layout.getFieldOffset(FieldNo));
706         if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset,
707                                        Field->getType(), SubILE))
708           return false;
709         // If we split apart the field's value, try to collapse it down to a
710         // single value now.
711         Builder.condense(StartOffset + Offset,
712                          CGM.getTypes().ConvertTypeForMem(Field->getType()));
713         continue;
714       }
715     }
716 
717     llvm::Constant *EltInit =
718         Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType())
719              : Emitter.emitNullForMemory(Field->getType());
720     if (!EltInit)
721       return false;
722 
723     if (!Field->isBitField()) {
724       // Handle non-bitfield members.
725       if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit,
726                        AllowOverwrite))
727         return false;
728       // After emitting a non-empty field with [[no_unique_address]], we may
729       // need to overwrite its tail padding.
730       if (Field->hasAttr<NoUniqueAddressAttr>())
731         AllowOverwrite = true;
732     } else {
733       // Otherwise we have a bitfield.
734       if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) {
735         if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI,
736                             AllowOverwrite))
737           return false;
738       } else {
739         // We are trying to initialize a bitfield with a non-trivial constant,
740         // this must require run-time code.
741         return false;
742       }
743     }
744   }
745 
746   return true;
747 }
748 
749 namespace {
750 struct BaseInfo {
751   BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
752     : Decl(Decl), Offset(Offset), Index(Index) {
753   }
754 
755   const CXXRecordDecl *Decl;
756   CharUnits Offset;
757   unsigned Index;
758 
759   bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
760 };
761 }
762 
763 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
764                                bool IsPrimaryBase,
765                                const CXXRecordDecl *VTableClass,
766                                CharUnits Offset) {
767   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
768 
769   if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
770     // Add a vtable pointer, if we need one and it hasn't already been added.
771     if (CD->isDynamicClass() && !IsPrimaryBase) {
772       llvm::Constant *VTableAddressPoint =
773           CGM.getCXXABI().getVTableAddressPointForConstExpr(
774               BaseSubobject(CD, Offset), VTableClass);
775       if (!AppendBytes(Offset, VTableAddressPoint))
776         return false;
777     }
778 
779     // Accumulate and sort bases, in order to visit them in address order, which
780     // may not be the same as declaration order.
781     SmallVector<BaseInfo, 8> Bases;
782     Bases.reserve(CD->getNumBases());
783     unsigned BaseNo = 0;
784     for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
785          BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
786       assert(!Base->isVirtual() && "should not have virtual bases here");
787       const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
788       CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
789       Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
790     }
791     llvm::stable_sort(Bases);
792 
793     for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
794       BaseInfo &Base = Bases[I];
795 
796       bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
797       Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
798             VTableClass, Offset + Base.Offset);
799     }
800   }
801 
802   unsigned FieldNo = 0;
803   uint64_t OffsetBits = CGM.getContext().toBits(Offset);
804 
805   bool AllowOverwrite = false;
806   for (RecordDecl::field_iterator Field = RD->field_begin(),
807        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
808     // If this is a union, skip all the fields that aren't being initialized.
809     if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field))
810       continue;
811 
812     // Don't emit anonymous bitfields or zero-sized fields.
813     if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
814       continue;
815 
816     // Emit the value of the initializer.
817     const APValue &FieldValue =
818       RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
819     llvm::Constant *EltInit =
820       Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
821     if (!EltInit)
822       return false;
823 
824     if (!Field->isBitField()) {
825       // Handle non-bitfield members.
826       if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
827                        EltInit, AllowOverwrite))
828         return false;
829       // After emitting a non-empty field with [[no_unique_address]], we may
830       // need to overwrite its tail padding.
831       if (Field->hasAttr<NoUniqueAddressAttr>())
832         AllowOverwrite = true;
833     } else {
834       // Otherwise we have a bitfield.
835       if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
836                           cast<llvm::ConstantInt>(EltInit), AllowOverwrite))
837         return false;
838     }
839   }
840 
841   return true;
842 }
843 
844 llvm::Constant *ConstStructBuilder::Finalize(QualType Type) {
845   RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
846   llvm::Type *ValTy = CGM.getTypes().ConvertType(Type);
847   return Builder.build(ValTy, RD->hasFlexibleArrayMember());
848 }
849 
850 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
851                                                 InitListExpr *ILE,
852                                                 QualType ValTy) {
853   ConstantAggregateBuilder Const(Emitter.CGM);
854   ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
855 
856   if (!Builder.Build(ILE, /*AllowOverwrite*/false))
857     return nullptr;
858 
859   return Builder.Finalize(ValTy);
860 }
861 
862 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
863                                                 const APValue &Val,
864                                                 QualType ValTy) {
865   ConstantAggregateBuilder Const(Emitter.CGM);
866   ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
867 
868   const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
869   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
870   if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero()))
871     return nullptr;
872 
873   return Builder.Finalize(ValTy);
874 }
875 
876 bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter,
877                                       ConstantAggregateBuilder &Const,
878                                       CharUnits Offset, InitListExpr *Updater) {
879   return ConstStructBuilder(Emitter, Const, Offset)
880       .Build(Updater, /*AllowOverwrite*/ true);
881 }
882 
883 //===----------------------------------------------------------------------===//
884 //                             ConstExprEmitter
885 //===----------------------------------------------------------------------===//
886 
887 static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM,
888                                                     CodeGenFunction *CGF,
889                                               const CompoundLiteralExpr *E) {
890   CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType());
891   if (llvm::GlobalVariable *Addr =
892           CGM.getAddrOfConstantCompoundLiteralIfEmitted(E))
893     return ConstantAddress(Addr, Align);
894 
895   LangAS addressSpace = E->getType().getAddressSpace();
896 
897   ConstantEmitter emitter(CGM, CGF);
898   llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
899                                                     addressSpace, E->getType());
900   if (!C) {
901     assert(!E->isFileScope() &&
902            "file-scope compound literal did not have constant initializer!");
903     return ConstantAddress::invalid();
904   }
905 
906   auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
907                                      CGM.isTypeConstant(E->getType(), true),
908                                      llvm::GlobalValue::InternalLinkage,
909                                      C, ".compoundliteral", nullptr,
910                                      llvm::GlobalVariable::NotThreadLocal,
911                     CGM.getContext().getTargetAddressSpace(addressSpace));
912   emitter.finalize(GV);
913   GV->setAlignment(Align.getAsAlign());
914   CGM.setAddrOfConstantCompoundLiteral(E, GV);
915   return ConstantAddress(GV, Align);
916 }
917 
918 static llvm::Constant *
919 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
920                   llvm::Type *CommonElementType, unsigned ArrayBound,
921                   SmallVectorImpl<llvm::Constant *> &Elements,
922                   llvm::Constant *Filler) {
923   // Figure out how long the initial prefix of non-zero elements is.
924   unsigned NonzeroLength = ArrayBound;
925   if (Elements.size() < NonzeroLength && Filler->isNullValue())
926     NonzeroLength = Elements.size();
927   if (NonzeroLength == Elements.size()) {
928     while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue())
929       --NonzeroLength;
930   }
931 
932   if (NonzeroLength == 0)
933     return llvm::ConstantAggregateZero::get(DesiredType);
934 
935   // Add a zeroinitializer array filler if we have lots of trailing zeroes.
936   unsigned TrailingZeroes = ArrayBound - NonzeroLength;
937   if (TrailingZeroes >= 8) {
938     assert(Elements.size() >= NonzeroLength &&
939            "missing initializer for non-zero element");
940 
941     // If all the elements had the same type up to the trailing zeroes, emit a
942     // struct of two arrays (the nonzero data and the zeroinitializer).
943     if (CommonElementType && NonzeroLength >= 8) {
944       llvm::Constant *Initial = llvm::ConstantArray::get(
945           llvm::ArrayType::get(CommonElementType, NonzeroLength),
946           makeArrayRef(Elements).take_front(NonzeroLength));
947       Elements.resize(2);
948       Elements[0] = Initial;
949     } else {
950       Elements.resize(NonzeroLength + 1);
951     }
952 
953     auto *FillerType =
954         CommonElementType ? CommonElementType : DesiredType->getElementType();
955     FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes);
956     Elements.back() = llvm::ConstantAggregateZero::get(FillerType);
957     CommonElementType = nullptr;
958   } else if (Elements.size() != ArrayBound) {
959     // Otherwise pad to the right size with the filler if necessary.
960     Elements.resize(ArrayBound, Filler);
961     if (Filler->getType() != CommonElementType)
962       CommonElementType = nullptr;
963   }
964 
965   // If all elements have the same type, just emit an array constant.
966   if (CommonElementType)
967     return llvm::ConstantArray::get(
968         llvm::ArrayType::get(CommonElementType, ArrayBound), Elements);
969 
970   // We have mixed types. Use a packed struct.
971   llvm::SmallVector<llvm::Type *, 16> Types;
972   Types.reserve(Elements.size());
973   for (llvm::Constant *Elt : Elements)
974     Types.push_back(Elt->getType());
975   llvm::StructType *SType =
976       llvm::StructType::get(CGM.getLLVMContext(), Types, true);
977   return llvm::ConstantStruct::get(SType, Elements);
978 }
979 
980 // This class only needs to handle arrays, structs and unions. Outside C++11
981 // mode, we don't currently constant fold those types.  All other types are
982 // handled by constant folding.
983 //
984 // Constant folding is currently missing support for a few features supported
985 // here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr.
986 class ConstExprEmitter :
987   public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> {
988   CodeGenModule &CGM;
989   ConstantEmitter &Emitter;
990   llvm::LLVMContext &VMContext;
991 public:
992   ConstExprEmitter(ConstantEmitter &emitter)
993     : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
994   }
995 
996   //===--------------------------------------------------------------------===//
997   //                            Visitor Methods
998   //===--------------------------------------------------------------------===//
999 
1000   llvm::Constant *VisitStmt(Stmt *S, QualType T) {
1001     return nullptr;
1002   }
1003 
1004   llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) {
1005     return Visit(CE->getSubExpr(), T);
1006   }
1007 
1008   llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) {
1009     return Visit(PE->getSubExpr(), T);
1010   }
1011 
1012   llvm::Constant *
1013   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE,
1014                                     QualType T) {
1015     return Visit(PE->getReplacement(), T);
1016   }
1017 
1018   llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE,
1019                                             QualType T) {
1020     return Visit(GE->getResultExpr(), T);
1021   }
1022 
1023   llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) {
1024     return Visit(CE->getChosenSubExpr(), T);
1025   }
1026 
1027   llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) {
1028     return Visit(E->getInitializer(), T);
1029   }
1030 
1031   llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) {
1032     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
1033       CGM.EmitExplicitCastExprType(ECE, Emitter.CGF);
1034     Expr *subExpr = E->getSubExpr();
1035 
1036     switch (E->getCastKind()) {
1037     case CK_ToUnion: {
1038       // GCC cast to union extension
1039       assert(E->getType()->isUnionType() &&
1040              "Destination type is not union type!");
1041 
1042       auto field = E->getTargetUnionField();
1043 
1044       auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
1045       if (!C) return nullptr;
1046 
1047       auto destTy = ConvertType(destType);
1048       if (C->getType() == destTy) return C;
1049 
1050       // Build a struct with the union sub-element as the first member,
1051       // and padded to the appropriate size.
1052       SmallVector<llvm::Constant*, 2> Elts;
1053       SmallVector<llvm::Type*, 2> Types;
1054       Elts.push_back(C);
1055       Types.push_back(C->getType());
1056       unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
1057       unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy);
1058 
1059       assert(CurSize <= TotalSize && "Union size mismatch!");
1060       if (unsigned NumPadBytes = TotalSize - CurSize) {
1061         llvm::Type *Ty = CGM.Int8Ty;
1062         if (NumPadBytes > 1)
1063           Ty = llvm::ArrayType::get(Ty, NumPadBytes);
1064 
1065         Elts.push_back(llvm::UndefValue::get(Ty));
1066         Types.push_back(Ty);
1067       }
1068 
1069       llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false);
1070       return llvm::ConstantStruct::get(STy, Elts);
1071     }
1072 
1073     case CK_AddressSpaceConversion: {
1074       auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1075       if (!C) return nullptr;
1076       LangAS destAS = E->getType()->getPointeeType().getAddressSpace();
1077       LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
1078       llvm::Type *destTy = ConvertType(E->getType());
1079       return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS,
1080                                                              destAS, destTy);
1081     }
1082 
1083     case CK_LValueToRValue:
1084     case CK_AtomicToNonAtomic:
1085     case CK_NonAtomicToAtomic:
1086     case CK_NoOp:
1087     case CK_ConstructorConversion:
1088       return Visit(subExpr, destType);
1089 
1090     case CK_IntToOCLSampler:
1091       llvm_unreachable("global sampler variables are not generated");
1092 
1093     case CK_Dependent: llvm_unreachable("saw dependent cast!");
1094 
1095     case CK_BuiltinFnToFnPtr:
1096       llvm_unreachable("builtin functions are handled elsewhere");
1097 
1098     case CK_ReinterpretMemberPointer:
1099     case CK_DerivedToBaseMemberPointer:
1100     case CK_BaseToDerivedMemberPointer: {
1101       auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1102       if (!C) return nullptr;
1103       return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
1104     }
1105 
1106     // These will never be supported.
1107     case CK_ObjCObjectLValueCast:
1108     case CK_ARCProduceObject:
1109     case CK_ARCConsumeObject:
1110     case CK_ARCReclaimReturnedObject:
1111     case CK_ARCExtendBlockObject:
1112     case CK_CopyAndAutoreleaseBlockObject:
1113       return nullptr;
1114 
1115     // These don't need to be handled here because Evaluate knows how to
1116     // evaluate them in the cases where they can be folded.
1117     case CK_BitCast:
1118     case CK_ToVoid:
1119     case CK_Dynamic:
1120     case CK_LValueBitCast:
1121     case CK_LValueToRValueBitCast:
1122     case CK_NullToMemberPointer:
1123     case CK_UserDefinedConversion:
1124     case CK_CPointerToObjCPointerCast:
1125     case CK_BlockPointerToObjCPointerCast:
1126     case CK_AnyPointerToBlockPointerCast:
1127     case CK_ArrayToPointerDecay:
1128     case CK_FunctionToPointerDecay:
1129     case CK_BaseToDerived:
1130     case CK_DerivedToBase:
1131     case CK_UncheckedDerivedToBase:
1132     case CK_MemberPointerToBoolean:
1133     case CK_VectorSplat:
1134     case CK_FloatingRealToComplex:
1135     case CK_FloatingComplexToReal:
1136     case CK_FloatingComplexToBoolean:
1137     case CK_FloatingComplexCast:
1138     case CK_FloatingComplexToIntegralComplex:
1139     case CK_IntegralRealToComplex:
1140     case CK_IntegralComplexToReal:
1141     case CK_IntegralComplexToBoolean:
1142     case CK_IntegralComplexCast:
1143     case CK_IntegralComplexToFloatingComplex:
1144     case CK_PointerToIntegral:
1145     case CK_PointerToBoolean:
1146     case CK_NullToPointer:
1147     case CK_IntegralCast:
1148     case CK_BooleanToSignedIntegral:
1149     case CK_IntegralToPointer:
1150     case CK_IntegralToBoolean:
1151     case CK_IntegralToFloating:
1152     case CK_FloatingToIntegral:
1153     case CK_FloatingToBoolean:
1154     case CK_FloatingCast:
1155     case CK_FixedPointCast:
1156     case CK_FixedPointToBoolean:
1157     case CK_FixedPointToIntegral:
1158     case CK_IntegralToFixedPoint:
1159     case CK_ZeroToOCLOpaqueType:
1160       return nullptr;
1161     }
1162     llvm_unreachable("Invalid CastKind");
1163   }
1164 
1165   llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) {
1166     // No need for a DefaultInitExprScope: we don't handle 'this' in a
1167     // constant expression.
1168     return Visit(DIE->getExpr(), T);
1169   }
1170 
1171   llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) {
1172     return Visit(E->getSubExpr(), T);
1173   }
1174 
1175   llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E,
1176                                                 QualType T) {
1177     return Visit(E->getSubExpr(), T);
1178   }
1179 
1180   llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) {
1181     auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType());
1182     assert(CAT && "can't emit array init for non-constant-bound array");
1183     unsigned NumInitElements = ILE->getNumInits();
1184     unsigned NumElements = CAT->getSize().getZExtValue();
1185 
1186     // Initialising an array requires us to automatically
1187     // initialise any elements that have not been initialised explicitly
1188     unsigned NumInitableElts = std::min(NumInitElements, NumElements);
1189 
1190     QualType EltType = CAT->getElementType();
1191 
1192     // Initialize remaining array elements.
1193     llvm::Constant *fillC = nullptr;
1194     if (Expr *filler = ILE->getArrayFiller()) {
1195       fillC = Emitter.tryEmitAbstractForMemory(filler, EltType);
1196       if (!fillC)
1197         return nullptr;
1198     }
1199 
1200     // Copy initializer elements.
1201     SmallVector<llvm::Constant*, 16> Elts;
1202     if (fillC && fillC->isNullValue())
1203       Elts.reserve(NumInitableElts + 1);
1204     else
1205       Elts.reserve(NumElements);
1206 
1207     llvm::Type *CommonElementType = nullptr;
1208     for (unsigned i = 0; i < NumInitableElts; ++i) {
1209       Expr *Init = ILE->getInit(i);
1210       llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType);
1211       if (!C)
1212         return nullptr;
1213       if (i == 0)
1214         CommonElementType = C->getType();
1215       else if (C->getType() != CommonElementType)
1216         CommonElementType = nullptr;
1217       Elts.push_back(C);
1218     }
1219 
1220     llvm::ArrayType *Desired =
1221         cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType()));
1222     return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
1223                              fillC);
1224   }
1225 
1226   llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) {
1227     return ConstStructBuilder::BuildStruct(Emitter, ILE, T);
1228   }
1229 
1230   llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E,
1231                                              QualType T) {
1232     return CGM.EmitNullConstant(T);
1233   }
1234 
1235   llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) {
1236     if (ILE->isTransparent())
1237       return Visit(ILE->getInit(0), T);
1238 
1239     if (ILE->getType()->isArrayType())
1240       return EmitArrayInitialization(ILE, T);
1241 
1242     if (ILE->getType()->isRecordType())
1243       return EmitRecordInitialization(ILE, T);
1244 
1245     return nullptr;
1246   }
1247 
1248   llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E,
1249                                                 QualType destType) {
1250     auto C = Visit(E->getBase(), destType);
1251     if (!C)
1252       return nullptr;
1253 
1254     ConstantAggregateBuilder Const(CGM);
1255     Const.add(C, CharUnits::Zero(), false);
1256 
1257     if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType,
1258                                    E->getUpdater()))
1259       return nullptr;
1260 
1261     llvm::Type *ValTy = CGM.getTypes().ConvertType(destType);
1262     bool HasFlexibleArray = false;
1263     if (auto *RT = destType->getAs<RecordType>())
1264       HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember();
1265     return Const.build(ValTy, HasFlexibleArray);
1266   }
1267 
1268   llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) {
1269     if (!E->getConstructor()->isTrivial())
1270       return nullptr;
1271 
1272     // Only default and copy/move constructors can be trivial.
1273     if (E->getNumArgs()) {
1274       assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
1275       assert(E->getConstructor()->isCopyOrMoveConstructor() &&
1276              "trivial ctor has argument but isn't a copy/move ctor");
1277 
1278       Expr *Arg = E->getArg(0);
1279       assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
1280              "argument to copy ctor is of wrong type");
1281 
1282       return Visit(Arg, Ty);
1283     }
1284 
1285     return CGM.EmitNullConstant(Ty);
1286   }
1287 
1288   llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) {
1289     // This is a string literal initializing an array in an initializer.
1290     return CGM.GetConstantArrayFromStringLiteral(E);
1291   }
1292 
1293   llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) {
1294     // This must be an @encode initializing an array in a static initializer.
1295     // Don't emit it as the address of the string, emit the string data itself
1296     // as an inline array.
1297     std::string Str;
1298     CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1299     const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T);
1300 
1301     // Resize the string to the right size, adding zeros at the end, or
1302     // truncating as needed.
1303     Str.resize(CAT->getSize().getZExtValue(), '\0');
1304     return llvm::ConstantDataArray::getString(VMContext, Str, false);
1305   }
1306 
1307   llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
1308     return Visit(E->getSubExpr(), T);
1309   }
1310 
1311   // Utility methods
1312   llvm::Type *ConvertType(QualType T) {
1313     return CGM.getTypes().ConvertType(T);
1314   }
1315 };
1316 
1317 }  // end anonymous namespace.
1318 
1319 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
1320                                                         AbstractState saved) {
1321   Abstract = saved.OldValue;
1322 
1323   assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
1324          "created a placeholder while doing an abstract emission?");
1325 
1326   // No validation necessary for now.
1327   // No cleanup to do for now.
1328   return C;
1329 }
1330 
1331 llvm::Constant *
1332 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) {
1333   auto state = pushAbstract();
1334   auto C = tryEmitPrivateForVarInit(D);
1335   return validateAndPopAbstract(C, state);
1336 }
1337 
1338 llvm::Constant *
1339 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) {
1340   auto state = pushAbstract();
1341   auto C = tryEmitPrivate(E, destType);
1342   return validateAndPopAbstract(C, state);
1343 }
1344 
1345 llvm::Constant *
1346 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) {
1347   auto state = pushAbstract();
1348   auto C = tryEmitPrivate(value, destType);
1349   return validateAndPopAbstract(C, state);
1350 }
1351 
1352 llvm::Constant *
1353 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) {
1354   auto state = pushAbstract();
1355   auto C = tryEmitPrivate(E, destType);
1356   C = validateAndPopAbstract(C, state);
1357   if (!C) {
1358     CGM.Error(E->getExprLoc(),
1359               "internal error: could not emit constant value \"abstractly\"");
1360     C = CGM.EmitNullConstant(destType);
1361   }
1362   return C;
1363 }
1364 
1365 llvm::Constant *
1366 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value,
1367                               QualType destType) {
1368   auto state = pushAbstract();
1369   auto C = tryEmitPrivate(value, destType);
1370   C = validateAndPopAbstract(C, state);
1371   if (!C) {
1372     CGM.Error(loc,
1373               "internal error: could not emit constant value \"abstractly\"");
1374     C = CGM.EmitNullConstant(destType);
1375   }
1376   return C;
1377 }
1378 
1379 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) {
1380   initializeNonAbstract(D.getType().getAddressSpace());
1381   return markIfFailed(tryEmitPrivateForVarInit(D));
1382 }
1383 
1384 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E,
1385                                                        LangAS destAddrSpace,
1386                                                        QualType destType) {
1387   initializeNonAbstract(destAddrSpace);
1388   return markIfFailed(tryEmitPrivateForMemory(E, destType));
1389 }
1390 
1391 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value,
1392                                                     LangAS destAddrSpace,
1393                                                     QualType destType) {
1394   initializeNonAbstract(destAddrSpace);
1395   auto C = tryEmitPrivateForMemory(value, destType);
1396   assert(C && "couldn't emit constant value non-abstractly?");
1397   return C;
1398 }
1399 
1400 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() {
1401   assert(!Abstract && "cannot get current address for abstract constant");
1402 
1403 
1404 
1405   // Make an obviously ill-formed global that should blow up compilation
1406   // if it survives.
1407   auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
1408                                          llvm::GlobalValue::PrivateLinkage,
1409                                          /*init*/ nullptr,
1410                                          /*name*/ "",
1411                                          /*before*/ nullptr,
1412                                          llvm::GlobalVariable::NotThreadLocal,
1413                                          CGM.getContext().getTargetAddressSpace(DestAddressSpace));
1414 
1415   PlaceholderAddresses.push_back(std::make_pair(nullptr, global));
1416 
1417   return global;
1418 }
1419 
1420 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal,
1421                                            llvm::GlobalValue *placeholder) {
1422   assert(!PlaceholderAddresses.empty());
1423   assert(PlaceholderAddresses.back().first == nullptr);
1424   assert(PlaceholderAddresses.back().second == placeholder);
1425   PlaceholderAddresses.back().first = signal;
1426 }
1427 
1428 namespace {
1429   struct ReplacePlaceholders {
1430     CodeGenModule &CGM;
1431 
1432     /// The base address of the global.
1433     llvm::Constant *Base;
1434     llvm::Type *BaseValueTy = nullptr;
1435 
1436     /// The placeholder addresses that were registered during emission.
1437     llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;
1438 
1439     /// The locations of the placeholder signals.
1440     llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;
1441 
1442     /// The current index stack.  We use a simple unsigned stack because
1443     /// we assume that placeholders will be relatively sparse in the
1444     /// initializer, but we cache the index values we find just in case.
1445     llvm::SmallVector<unsigned, 8> Indices;
1446     llvm::SmallVector<llvm::Constant*, 8> IndexValues;
1447 
1448     ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
1449                         ArrayRef<std::pair<llvm::Constant*,
1450                                            llvm::GlobalVariable*>> addresses)
1451         : CGM(CGM), Base(base),
1452           PlaceholderAddresses(addresses.begin(), addresses.end()) {
1453     }
1454 
1455     void replaceInInitializer(llvm::Constant *init) {
1456       // Remember the type of the top-most initializer.
1457       BaseValueTy = init->getType();
1458 
1459       // Initialize the stack.
1460       Indices.push_back(0);
1461       IndexValues.push_back(nullptr);
1462 
1463       // Recurse into the initializer.
1464       findLocations(init);
1465 
1466       // Check invariants.
1467       assert(IndexValues.size() == Indices.size() && "mismatch");
1468       assert(Indices.size() == 1 && "didn't pop all indices");
1469 
1470       // Do the replacement; this basically invalidates 'init'.
1471       assert(Locations.size() == PlaceholderAddresses.size() &&
1472              "missed a placeholder?");
1473 
1474       // We're iterating over a hashtable, so this would be a source of
1475       // non-determinism in compiler output *except* that we're just
1476       // messing around with llvm::Constant structures, which never itself
1477       // does anything that should be visible in compiler output.
1478       for (auto &entry : Locations) {
1479         assert(entry.first->getParent() == nullptr && "not a placeholder!");
1480         entry.first->replaceAllUsesWith(entry.second);
1481         entry.first->eraseFromParent();
1482       }
1483     }
1484 
1485   private:
1486     void findLocations(llvm::Constant *init) {
1487       // Recurse into aggregates.
1488       if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) {
1489         for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
1490           Indices.push_back(i);
1491           IndexValues.push_back(nullptr);
1492 
1493           findLocations(agg->getOperand(i));
1494 
1495           IndexValues.pop_back();
1496           Indices.pop_back();
1497         }
1498         return;
1499       }
1500 
1501       // Otherwise, check for registered constants.
1502       while (true) {
1503         auto it = PlaceholderAddresses.find(init);
1504         if (it != PlaceholderAddresses.end()) {
1505           setLocation(it->second);
1506           break;
1507         }
1508 
1509         // Look through bitcasts or other expressions.
1510         if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) {
1511           init = expr->getOperand(0);
1512         } else {
1513           break;
1514         }
1515       }
1516     }
1517 
1518     void setLocation(llvm::GlobalVariable *placeholder) {
1519       assert(Locations.find(placeholder) == Locations.end() &&
1520              "already found location for placeholder!");
1521 
1522       // Lazily fill in IndexValues with the values from Indices.
1523       // We do this in reverse because we should always have a strict
1524       // prefix of indices from the start.
1525       assert(Indices.size() == IndexValues.size());
1526       for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
1527         if (IndexValues[i]) {
1528 #ifndef NDEBUG
1529           for (size_t j = 0; j != i + 1; ++j) {
1530             assert(IndexValues[j] &&
1531                    isa<llvm::ConstantInt>(IndexValues[j]) &&
1532                    cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
1533                      == Indices[j]);
1534           }
1535 #endif
1536           break;
1537         }
1538 
1539         IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]);
1540       }
1541 
1542       // Form a GEP and then bitcast to the placeholder type so that the
1543       // replacement will succeed.
1544       llvm::Constant *location =
1545         llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy,
1546                                                      Base, IndexValues);
1547       location = llvm::ConstantExpr::getBitCast(location,
1548                                                 placeholder->getType());
1549 
1550       Locations.insert({placeholder, location});
1551     }
1552   };
1553 }
1554 
1555 void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
1556   assert(InitializedNonAbstract &&
1557          "finalizing emitter that was used for abstract emission?");
1558   assert(!Finalized && "finalizing emitter multiple times");
1559   assert(global->getInitializer());
1560 
1561   // Note that we might also be Failed.
1562   Finalized = true;
1563 
1564   if (!PlaceholderAddresses.empty()) {
1565     ReplacePlaceholders(CGM, global, PlaceholderAddresses)
1566       .replaceInInitializer(global->getInitializer());
1567     PlaceholderAddresses.clear(); // satisfy
1568   }
1569 }
1570 
1571 ConstantEmitter::~ConstantEmitter() {
1572   assert((!InitializedNonAbstract || Finalized || Failed) &&
1573          "not finalized after being initialized for non-abstract emission");
1574   assert(PlaceholderAddresses.empty() && "unhandled placeholders");
1575 }
1576 
1577 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) {
1578   if (auto AT = type->getAs<AtomicType>()) {
1579     return CGM.getContext().getQualifiedType(AT->getValueType(),
1580                                              type.getQualifiers());
1581   }
1582   return type;
1583 }
1584 
1585 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) {
1586   // Make a quick check if variable can be default NULL initialized
1587   // and avoid going through rest of code which may do, for c++11,
1588   // initialization of memory to all NULLs.
1589   if (!D.hasLocalStorage()) {
1590     QualType Ty = CGM.getContext().getBaseElementType(D.getType());
1591     if (Ty->isRecordType())
1592       if (const CXXConstructExpr *E =
1593           dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
1594         const CXXConstructorDecl *CD = E->getConstructor();
1595         if (CD->isTrivial() && CD->isDefaultConstructor())
1596           return CGM.EmitNullConstant(D.getType());
1597       }
1598     InConstantContext = true;
1599   }
1600 
1601   QualType destType = D.getType();
1602 
1603   // Try to emit the initializer.  Note that this can allow some things that
1604   // are not allowed by tryEmitPrivateForMemory alone.
1605   if (auto value = D.evaluateValue()) {
1606     return tryEmitPrivateForMemory(*value, destType);
1607   }
1608 
1609   // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a
1610   // reference is a constant expression, and the reference binds to a temporary,
1611   // then constant initialization is performed. ConstExprEmitter will
1612   // incorrectly emit a prvalue constant in this case, and the calling code
1613   // interprets that as the (pointer) value of the reference, rather than the
1614   // desired value of the referee.
1615   if (destType->isReferenceType())
1616     return nullptr;
1617 
1618   const Expr *E = D.getInit();
1619   assert(E && "No initializer to emit");
1620 
1621   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1622   auto C =
1623     ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType);
1624   return (C ? emitForMemory(C, destType) : nullptr);
1625 }
1626 
1627 llvm::Constant *
1628 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) {
1629   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1630   auto C = tryEmitAbstract(E, nonMemoryDestType);
1631   return (C ? emitForMemory(C, destType) : nullptr);
1632 }
1633 
1634 llvm::Constant *
1635 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value,
1636                                           QualType destType) {
1637   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1638   auto C = tryEmitAbstract(value, nonMemoryDestType);
1639   return (C ? emitForMemory(C, destType) : nullptr);
1640 }
1641 
1642 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E,
1643                                                          QualType destType) {
1644   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1645   llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType);
1646   return (C ? emitForMemory(C, destType) : nullptr);
1647 }
1648 
1649 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value,
1650                                                          QualType destType) {
1651   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1652   auto C = tryEmitPrivate(value, nonMemoryDestType);
1653   return (C ? emitForMemory(C, destType) : nullptr);
1654 }
1655 
1656 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM,
1657                                                llvm::Constant *C,
1658                                                QualType destType) {
1659   // For an _Atomic-qualified constant, we may need to add tail padding.
1660   if (auto AT = destType->getAs<AtomicType>()) {
1661     QualType destValueType = AT->getValueType();
1662     C = emitForMemory(CGM, C, destValueType);
1663 
1664     uint64_t innerSize = CGM.getContext().getTypeSize(destValueType);
1665     uint64_t outerSize = CGM.getContext().getTypeSize(destType);
1666     if (innerSize == outerSize)
1667       return C;
1668 
1669     assert(innerSize < outerSize && "emitted over-large constant for atomic");
1670     llvm::Constant *elts[] = {
1671       C,
1672       llvm::ConstantAggregateZero::get(
1673           llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8))
1674     };
1675     return llvm::ConstantStruct::getAnon(elts);
1676   }
1677 
1678   // Zero-extend bool.
1679   if (C->getType()->isIntegerTy(1)) {
1680     llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType);
1681     return llvm::ConstantExpr::getZExt(C, boolTy);
1682   }
1683 
1684   return C;
1685 }
1686 
1687 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E,
1688                                                 QualType destType) {
1689   Expr::EvalResult Result;
1690 
1691   bool Success = false;
1692 
1693   if (destType->isReferenceType())
1694     Success = E->EvaluateAsLValue(Result, CGM.getContext());
1695   else
1696     Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext);
1697 
1698   llvm::Constant *C;
1699   if (Success && !Result.HasSideEffects)
1700     C = tryEmitPrivate(Result.Val, destType);
1701   else
1702     C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType);
1703 
1704   return C;
1705 }
1706 
1707 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
1708   return getTargetCodeGenInfo().getNullPointer(*this, T, QT);
1709 }
1710 
1711 namespace {
1712 /// A struct which can be used to peephole certain kinds of finalization
1713 /// that normally happen during l-value emission.
1714 struct ConstantLValue {
1715   llvm::Constant *Value;
1716   bool HasOffsetApplied;
1717 
1718   /*implicit*/ ConstantLValue(llvm::Constant *value,
1719                               bool hasOffsetApplied = false)
1720     : Value(value), HasOffsetApplied(hasOffsetApplied) {}
1721 
1722   /*implicit*/ ConstantLValue(ConstantAddress address)
1723     : ConstantLValue(address.getPointer()) {}
1724 };
1725 
1726 /// A helper class for emitting constant l-values.
1727 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
1728                                                       ConstantLValue> {
1729   CodeGenModule &CGM;
1730   ConstantEmitter &Emitter;
1731   const APValue &Value;
1732   QualType DestType;
1733 
1734   // Befriend StmtVisitorBase so that we don't have to expose Visit*.
1735   friend StmtVisitorBase;
1736 
1737 public:
1738   ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
1739                         QualType destType)
1740     : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {}
1741 
1742   llvm::Constant *tryEmit();
1743 
1744 private:
1745   llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
1746   ConstantLValue tryEmitBase(const APValue::LValueBase &base);
1747 
1748   ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
1749   ConstantLValue VisitConstantExpr(const ConstantExpr *E);
1750   ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
1751   ConstantLValue VisitStringLiteral(const StringLiteral *E);
1752   ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E);
1753   ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
1754   ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
1755   ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
1756   ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
1757   ConstantLValue VisitCallExpr(const CallExpr *E);
1758   ConstantLValue VisitBlockExpr(const BlockExpr *E);
1759   ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
1760   ConstantLValue VisitCXXUuidofExpr(const CXXUuidofExpr *E);
1761   ConstantLValue VisitMaterializeTemporaryExpr(
1762                                          const MaterializeTemporaryExpr *E);
1763 
1764   bool hasNonZeroOffset() const {
1765     return !Value.getLValueOffset().isZero();
1766   }
1767 
1768   /// Return the value offset.
1769   llvm::Constant *getOffset() {
1770     return llvm::ConstantInt::get(CGM.Int64Ty,
1771                                   Value.getLValueOffset().getQuantity());
1772   }
1773 
1774   /// Apply the value offset to the given constant.
1775   llvm::Constant *applyOffset(llvm::Constant *C) {
1776     if (!hasNonZeroOffset())
1777       return C;
1778 
1779     llvm::Type *origPtrTy = C->getType();
1780     unsigned AS = origPtrTy->getPointerAddressSpace();
1781     llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS);
1782     C = llvm::ConstantExpr::getBitCast(C, charPtrTy);
1783     C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset());
1784     C = llvm::ConstantExpr::getPointerCast(C, origPtrTy);
1785     return C;
1786   }
1787 };
1788 
1789 }
1790 
1791 llvm::Constant *ConstantLValueEmitter::tryEmit() {
1792   const APValue::LValueBase &base = Value.getLValueBase();
1793 
1794   // The destination type should be a pointer or reference
1795   // type, but it might also be a cast thereof.
1796   //
1797   // FIXME: the chain of casts required should be reflected in the APValue.
1798   // We need this in order to correctly handle things like a ptrtoint of a
1799   // non-zero null pointer and addrspace casts that aren't trivially
1800   // represented in LLVM IR.
1801   auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
1802   assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));
1803 
1804   // If there's no base at all, this is a null or absolute pointer,
1805   // possibly cast back to an integer type.
1806   if (!base) {
1807     return tryEmitAbsolute(destTy);
1808   }
1809 
1810   // Otherwise, try to emit the base.
1811   ConstantLValue result = tryEmitBase(base);
1812 
1813   // If that failed, we're done.
1814   llvm::Constant *value = result.Value;
1815   if (!value) return nullptr;
1816 
1817   // Apply the offset if necessary and not already done.
1818   if (!result.HasOffsetApplied) {
1819     value = applyOffset(value);
1820   }
1821 
1822   // Convert to the appropriate type; this could be an lvalue for
1823   // an integer.  FIXME: performAddrSpaceCast
1824   if (isa<llvm::PointerType>(destTy))
1825     return llvm::ConstantExpr::getPointerCast(value, destTy);
1826 
1827   return llvm::ConstantExpr::getPtrToInt(value, destTy);
1828 }
1829 
1830 /// Try to emit an absolute l-value, such as a null pointer or an integer
1831 /// bitcast to pointer type.
1832 llvm::Constant *
1833 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
1834   // If we're producing a pointer, this is easy.
1835   auto destPtrTy = cast<llvm::PointerType>(destTy);
1836   if (Value.isNullPointer()) {
1837     // FIXME: integer offsets from non-zero null pointers.
1838     return CGM.getNullPointer(destPtrTy, DestType);
1839   }
1840 
1841   // Convert the integer to a pointer-sized integer before converting it
1842   // to a pointer.
1843   // FIXME: signedness depends on the original integer type.
1844   auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
1845   llvm::Constant *C;
1846   C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy,
1847                                          /*isSigned*/ false);
1848   C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy);
1849   return C;
1850 }
1851 
1852 ConstantLValue
1853 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
1854   // Handle values.
1855   if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
1856     if (D->hasAttr<WeakRefAttr>())
1857       return CGM.GetWeakRefReference(D).getPointer();
1858 
1859     if (auto FD = dyn_cast<FunctionDecl>(D))
1860       return CGM.GetAddrOfFunction(FD);
1861 
1862     if (auto VD = dyn_cast<VarDecl>(D)) {
1863       // We can never refer to a variable with local storage.
1864       if (!VD->hasLocalStorage()) {
1865         if (VD->isFileVarDecl() || VD->hasExternalStorage())
1866           return CGM.GetAddrOfGlobalVar(VD);
1867 
1868         if (VD->isLocalVarDecl()) {
1869           return CGM.getOrCreateStaticVarDecl(
1870               *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false));
1871         }
1872       }
1873     }
1874 
1875     return nullptr;
1876   }
1877 
1878   // Handle typeid(T).
1879   if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>()) {
1880     llvm::Type *StdTypeInfoPtrTy =
1881         CGM.getTypes().ConvertType(base.getTypeInfoType())->getPointerTo();
1882     llvm::Constant *TypeInfo =
1883         CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0));
1884     if (TypeInfo->getType() != StdTypeInfoPtrTy)
1885       TypeInfo = llvm::ConstantExpr::getBitCast(TypeInfo, StdTypeInfoPtrTy);
1886     return TypeInfo;
1887   }
1888 
1889   // Otherwise, it must be an expression.
1890   return Visit(base.get<const Expr*>());
1891 }
1892 
1893 ConstantLValue
1894 ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) {
1895   return Visit(E->getSubExpr());
1896 }
1897 
1898 ConstantLValue
1899 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
1900   return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E);
1901 }
1902 
1903 ConstantLValue
1904 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
1905   return CGM.GetAddrOfConstantStringFromLiteral(E);
1906 }
1907 
1908 ConstantLValue
1909 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
1910   return CGM.GetAddrOfConstantStringFromObjCEncode(E);
1911 }
1912 
1913 static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S,
1914                                                     QualType T,
1915                                                     CodeGenModule &CGM) {
1916   auto C = CGM.getObjCRuntime().GenerateConstantString(S);
1917   return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(T));
1918 }
1919 
1920 ConstantLValue
1921 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
1922   return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM);
1923 }
1924 
1925 ConstantLValue
1926 ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
1927   assert(E->isExpressibleAsConstantInitializer() &&
1928          "this boxed expression can't be emitted as a compile-time constant");
1929   auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts());
1930   return emitConstantObjCStringLiteral(SL, E->getType(), CGM);
1931 }
1932 
1933 ConstantLValue
1934 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
1935   return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName());
1936 }
1937 
1938 ConstantLValue
1939 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
1940   assert(Emitter.CGF && "Invalid address of label expression outside function");
1941   llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel());
1942   Ptr = llvm::ConstantExpr::getBitCast(Ptr,
1943                                    CGM.getTypes().ConvertType(E->getType()));
1944   return Ptr;
1945 }
1946 
1947 ConstantLValue
1948 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
1949   unsigned builtin = E->getBuiltinCallee();
1950   if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
1951       builtin != Builtin::BI__builtin___NSStringMakeConstantString)
1952     return nullptr;
1953 
1954   auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts());
1955   if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
1956     return CGM.getObjCRuntime().GenerateConstantString(literal);
1957   } else {
1958     // FIXME: need to deal with UCN conversion issues.
1959     return CGM.GetAddrOfConstantCFString(literal);
1960   }
1961 }
1962 
1963 ConstantLValue
1964 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
1965   StringRef functionName;
1966   if (auto CGF = Emitter.CGF)
1967     functionName = CGF->CurFn->getName();
1968   else
1969     functionName = "global";
1970 
1971   return CGM.GetAddrOfGlobalBlock(E, functionName);
1972 }
1973 
1974 ConstantLValue
1975 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
1976   QualType T;
1977   if (E->isTypeOperand())
1978     T = E->getTypeOperand(CGM.getContext());
1979   else
1980     T = E->getExprOperand()->getType();
1981   return CGM.GetAddrOfRTTIDescriptor(T);
1982 }
1983 
1984 ConstantLValue
1985 ConstantLValueEmitter::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
1986   return CGM.GetAddrOfUuidDescriptor(E);
1987 }
1988 
1989 ConstantLValue
1990 ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
1991                                             const MaterializeTemporaryExpr *E) {
1992   assert(E->getStorageDuration() == SD_Static);
1993   SmallVector<const Expr *, 2> CommaLHSs;
1994   SmallVector<SubobjectAdjustment, 2> Adjustments;
1995   const Expr *Inner =
1996       E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
1997   return CGM.GetAddrOfGlobalTemporary(E, Inner);
1998 }
1999 
2000 llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value,
2001                                                 QualType DestType) {
2002   switch (Value.getKind()) {
2003   case APValue::None:
2004   case APValue::Indeterminate:
2005     // Out-of-lifetime and indeterminate values can be modeled as 'undef'.
2006     return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType));
2007   case APValue::LValue:
2008     return ConstantLValueEmitter(*this, Value, DestType).tryEmit();
2009   case APValue::Int:
2010     return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt());
2011   case APValue::FixedPoint:
2012     return llvm::ConstantInt::get(CGM.getLLVMContext(),
2013                                   Value.getFixedPoint().getValue());
2014   case APValue::ComplexInt: {
2015     llvm::Constant *Complex[2];
2016 
2017     Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2018                                         Value.getComplexIntReal());
2019     Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2020                                         Value.getComplexIntImag());
2021 
2022     // FIXME: the target may want to specify that this is packed.
2023     llvm::StructType *STy =
2024         llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2025     return llvm::ConstantStruct::get(STy, Complex);
2026   }
2027   case APValue::Float: {
2028     const llvm::APFloat &Init = Value.getFloat();
2029     if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
2030         !CGM.getContext().getLangOpts().NativeHalfType &&
2031         CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics())
2032       return llvm::ConstantInt::get(CGM.getLLVMContext(),
2033                                     Init.bitcastToAPInt());
2034     else
2035       return llvm::ConstantFP::get(CGM.getLLVMContext(), Init);
2036   }
2037   case APValue::ComplexFloat: {
2038     llvm::Constant *Complex[2];
2039 
2040     Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2041                                        Value.getComplexFloatReal());
2042     Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2043                                        Value.getComplexFloatImag());
2044 
2045     // FIXME: the target may want to specify that this is packed.
2046     llvm::StructType *STy =
2047         llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2048     return llvm::ConstantStruct::get(STy, Complex);
2049   }
2050   case APValue::Vector: {
2051     unsigned NumElts = Value.getVectorLength();
2052     SmallVector<llvm::Constant *, 4> Inits(NumElts);
2053 
2054     for (unsigned I = 0; I != NumElts; ++I) {
2055       const APValue &Elt = Value.getVectorElt(I);
2056       if (Elt.isInt())
2057         Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt());
2058       else if (Elt.isFloat())
2059         Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat());
2060       else
2061         llvm_unreachable("unsupported vector element type");
2062     }
2063     return llvm::ConstantVector::get(Inits);
2064   }
2065   case APValue::AddrLabelDiff: {
2066     const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
2067     const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
2068     llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
2069     llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
2070     if (!LHS || !RHS) return nullptr;
2071 
2072     // Compute difference
2073     llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType);
2074     LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy);
2075     RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy);
2076     llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
2077 
2078     // LLVM is a bit sensitive about the exact format of the
2079     // address-of-label difference; make sure to truncate after
2080     // the subtraction.
2081     return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
2082   }
2083   case APValue::Struct:
2084   case APValue::Union:
2085     return ConstStructBuilder::BuildStruct(*this, Value, DestType);
2086   case APValue::Array: {
2087     const ConstantArrayType *CAT =
2088         CGM.getContext().getAsConstantArrayType(DestType);
2089     unsigned NumElements = Value.getArraySize();
2090     unsigned NumInitElts = Value.getArrayInitializedElts();
2091 
2092     // Emit array filler, if there is one.
2093     llvm::Constant *Filler = nullptr;
2094     if (Value.hasArrayFiller()) {
2095       Filler = tryEmitAbstractForMemory(Value.getArrayFiller(),
2096                                         CAT->getElementType());
2097       if (!Filler)
2098         return nullptr;
2099     }
2100 
2101     // Emit initializer elements.
2102     SmallVector<llvm::Constant*, 16> Elts;
2103     if (Filler && Filler->isNullValue())
2104       Elts.reserve(NumInitElts + 1);
2105     else
2106       Elts.reserve(NumElements);
2107 
2108     llvm::Type *CommonElementType = nullptr;
2109     for (unsigned I = 0; I < NumInitElts; ++I) {
2110       llvm::Constant *C = tryEmitPrivateForMemory(
2111           Value.getArrayInitializedElt(I), CAT->getElementType());
2112       if (!C) return nullptr;
2113 
2114       if (I == 0)
2115         CommonElementType = C->getType();
2116       else if (C->getType() != CommonElementType)
2117         CommonElementType = nullptr;
2118       Elts.push_back(C);
2119     }
2120 
2121     // This means that the array type is probably "IncompleteType" or some
2122     // type that is not ConstantArray.
2123     if (CAT == nullptr && CommonElementType == nullptr && !NumInitElts) {
2124       const ArrayType *AT = CGM.getContext().getAsArrayType(DestType);
2125       CommonElementType = CGM.getTypes().ConvertType(AT->getElementType());
2126       llvm::ArrayType *AType = llvm::ArrayType::get(CommonElementType,
2127                                                     NumElements);
2128       return llvm::ConstantAggregateZero::get(AType);
2129     }
2130 
2131     llvm::ArrayType *Desired =
2132         cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType));
2133     return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
2134                              Filler);
2135   }
2136   case APValue::MemberPointer:
2137     return CGM.getCXXABI().EmitMemberPointer(Value, DestType);
2138   }
2139   llvm_unreachable("Unknown APValue kind");
2140 }
2141 
2142 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted(
2143     const CompoundLiteralExpr *E) {
2144   return EmittedCompoundLiterals.lookup(E);
2145 }
2146 
2147 void CodeGenModule::setAddrOfConstantCompoundLiteral(
2148     const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
2149   bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second;
2150   (void)Ok;
2151   assert(Ok && "CLE has already been emitted!");
2152 }
2153 
2154 ConstantAddress
2155 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
2156   assert(E->isFileScope() && "not a file-scope compound literal expr");
2157   return tryEmitGlobalCompoundLiteral(*this, nullptr, E);
2158 }
2159 
2160 llvm::Constant *
2161 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
2162   // Member pointer constants always have a very particular form.
2163   const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
2164   const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
2165 
2166   // A member function pointer.
2167   if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
2168     return getCXXABI().EmitMemberFunctionPointer(method);
2169 
2170   // Otherwise, a member data pointer.
2171   uint64_t fieldOffset = getContext().getFieldOffset(decl);
2172   CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
2173   return getCXXABI().EmitMemberDataPointer(type, chars);
2174 }
2175 
2176 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2177                                                llvm::Type *baseType,
2178                                                const CXXRecordDecl *base);
2179 
2180 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
2181                                         const RecordDecl *record,
2182                                         bool asCompleteObject) {
2183   const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
2184   llvm::StructType *structure =
2185     (asCompleteObject ? layout.getLLVMType()
2186                       : layout.getBaseSubobjectLLVMType());
2187 
2188   unsigned numElements = structure->getNumElements();
2189   std::vector<llvm::Constant *> elements(numElements);
2190 
2191   auto CXXR = dyn_cast<CXXRecordDecl>(record);
2192   // Fill in all the bases.
2193   if (CXXR) {
2194     for (const auto &I : CXXR->bases()) {
2195       if (I.isVirtual()) {
2196         // Ignore virtual bases; if we're laying out for a complete
2197         // object, we'll lay these out later.
2198         continue;
2199       }
2200 
2201       const CXXRecordDecl *base =
2202         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2203 
2204       // Ignore empty bases.
2205       if (base->isEmpty() ||
2206           CGM.getContext().getASTRecordLayout(base).getNonVirtualSize()
2207               .isZero())
2208         continue;
2209 
2210       unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
2211       llvm::Type *baseType = structure->getElementType(fieldIndex);
2212       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2213     }
2214   }
2215 
2216   // Fill in all the fields.
2217   for (const auto *Field : record->fields()) {
2218     // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
2219     // will fill in later.)
2220     if (!Field->isBitField() && !Field->isZeroSize(CGM.getContext())) {
2221       unsigned fieldIndex = layout.getLLVMFieldNo(Field);
2222       elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
2223     }
2224 
2225     // For unions, stop after the first named field.
2226     if (record->isUnion()) {
2227       if (Field->getIdentifier())
2228         break;
2229       if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
2230         if (FieldRD->findFirstNamedDataMember())
2231           break;
2232     }
2233   }
2234 
2235   // Fill in the virtual bases, if we're working with the complete object.
2236   if (CXXR && asCompleteObject) {
2237     for (const auto &I : CXXR->vbases()) {
2238       const CXXRecordDecl *base =
2239         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2240 
2241       // Ignore empty bases.
2242       if (base->isEmpty())
2243         continue;
2244 
2245       unsigned fieldIndex = layout.getVirtualBaseIndex(base);
2246 
2247       // We might have already laid this field out.
2248       if (elements[fieldIndex]) continue;
2249 
2250       llvm::Type *baseType = structure->getElementType(fieldIndex);
2251       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2252     }
2253   }
2254 
2255   // Now go through all other fields and zero them out.
2256   for (unsigned i = 0; i != numElements; ++i) {
2257     if (!elements[i])
2258       elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
2259   }
2260 
2261   return llvm::ConstantStruct::get(structure, elements);
2262 }
2263 
2264 /// Emit the null constant for a base subobject.
2265 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2266                                                llvm::Type *baseType,
2267                                                const CXXRecordDecl *base) {
2268   const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
2269 
2270   // Just zero out bases that don't have any pointer to data members.
2271   if (baseLayout.isZeroInitializableAsBase())
2272     return llvm::Constant::getNullValue(baseType);
2273 
2274   // Otherwise, we can just use its null constant.
2275   return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
2276 }
2277 
2278 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM,
2279                                                    QualType T) {
2280   return emitForMemory(CGM, CGM.EmitNullConstant(T), T);
2281 }
2282 
2283 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
2284   if (T->getAs<PointerType>())
2285     return getNullPointer(
2286         cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T);
2287 
2288   if (getTypes().isZeroInitializable(T))
2289     return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
2290 
2291   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
2292     llvm::ArrayType *ATy =
2293       cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
2294 
2295     QualType ElementTy = CAT->getElementType();
2296 
2297     llvm::Constant *Element =
2298       ConstantEmitter::emitNullForMemory(*this, ElementTy);
2299     unsigned NumElements = CAT->getSize().getZExtValue();
2300     SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
2301     return llvm::ConstantArray::get(ATy, Array);
2302   }
2303 
2304   if (const RecordType *RT = T->getAs<RecordType>())
2305     return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true);
2306 
2307   assert(T->isMemberDataPointerType() &&
2308          "Should only see pointers to data members here!");
2309 
2310   return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
2311 }
2312 
2313 llvm::Constant *
2314 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
2315   return ::EmitNullConstant(*this, Record, false);
2316 }
2317