1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Constant Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGObjCRuntime.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenModule.h"
19 #include "ConstantEmitter.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/APValue.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/Builtins.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GlobalVariable.h"
30 using namespace clang;
31 using namespace CodeGen;
32 
33 //===----------------------------------------------------------------------===//
34 //                            ConstStructBuilder
35 //===----------------------------------------------------------------------===//
36 
37 namespace {
38 class ConstExprEmitter;
39 class ConstStructBuilder {
40   CodeGenModule &CGM;
41   ConstantEmitter &Emitter;
42 
43   bool Packed;
44   CharUnits NextFieldOffsetInChars;
45   CharUnits LLVMStructAlignment;
46   SmallVector<llvm::Constant *, 32> Elements;
47 public:
48   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
49                                      ConstExprEmitter *ExprEmitter,
50                                      llvm::ConstantStruct *Base,
51                                      InitListExpr *Updater,
52                                      QualType ValTy);
53   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
54                                      InitListExpr *ILE, QualType StructTy);
55   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
56                                      const APValue &Value, QualType ValTy);
57 
58 private:
59   ConstStructBuilder(ConstantEmitter &emitter)
60     : CGM(emitter.CGM), Emitter(emitter), Packed(false),
61     NextFieldOffsetInChars(CharUnits::Zero()),
62     LLVMStructAlignment(CharUnits::One()) { }
63 
64   void AppendField(const FieldDecl *Field, uint64_t FieldOffset,
65                    llvm::Constant *InitExpr);
66 
67   void AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst);
68 
69   void AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
70                       llvm::ConstantInt *InitExpr);
71 
72   void AppendPadding(CharUnits PadSize);
73 
74   void AppendTailPadding(CharUnits RecordSize);
75 
76   void ConvertStructToPacked();
77 
78   bool Build(InitListExpr *ILE);
79   bool Build(ConstExprEmitter *Emitter, llvm::ConstantStruct *Base,
80              InitListExpr *Updater);
81   bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
82              const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
83   llvm::Constant *Finalize(QualType Ty);
84 
85   CharUnits getAlignment(const llvm::Constant *C) const {
86     if (Packed)  return CharUnits::One();
87     return CharUnits::fromQuantity(
88         CGM.getDataLayout().getABITypeAlignment(C->getType()));
89   }
90 
91   CharUnits getSizeInChars(const llvm::Constant *C) const {
92     return CharUnits::fromQuantity(
93         CGM.getDataLayout().getTypeAllocSize(C->getType()));
94   }
95 };
96 
97 void ConstStructBuilder::
98 AppendField(const FieldDecl *Field, uint64_t FieldOffset,
99             llvm::Constant *InitCst) {
100   const ASTContext &Context = CGM.getContext();
101 
102   CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
103 
104   AppendBytes(FieldOffsetInChars, InitCst);
105 }
106 
107 void ConstStructBuilder::
108 AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst) {
109 
110   assert(NextFieldOffsetInChars <= FieldOffsetInChars
111          && "Field offset mismatch!");
112 
113   CharUnits FieldAlignment = getAlignment(InitCst);
114 
115   // Round up the field offset to the alignment of the field type.
116   CharUnits AlignedNextFieldOffsetInChars =
117       NextFieldOffsetInChars.alignTo(FieldAlignment);
118 
119   if (AlignedNextFieldOffsetInChars < FieldOffsetInChars) {
120     // We need to append padding.
121     AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars);
122 
123     assert(NextFieldOffsetInChars == FieldOffsetInChars &&
124            "Did not add enough padding!");
125 
126     AlignedNextFieldOffsetInChars =
127         NextFieldOffsetInChars.alignTo(FieldAlignment);
128   }
129 
130   if (AlignedNextFieldOffsetInChars > FieldOffsetInChars) {
131     assert(!Packed && "Alignment is wrong even with a packed struct!");
132 
133     // Convert the struct to a packed struct.
134     ConvertStructToPacked();
135 
136     // After we pack the struct, we may need to insert padding.
137     if (NextFieldOffsetInChars < FieldOffsetInChars) {
138       // We need to append padding.
139       AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars);
140 
141       assert(NextFieldOffsetInChars == FieldOffsetInChars &&
142              "Did not add enough padding!");
143     }
144     AlignedNextFieldOffsetInChars = NextFieldOffsetInChars;
145   }
146 
147   // Add the field.
148   Elements.push_back(InitCst);
149   NextFieldOffsetInChars = AlignedNextFieldOffsetInChars +
150                            getSizeInChars(InitCst);
151 
152   if (Packed)
153     assert(LLVMStructAlignment == CharUnits::One() &&
154            "Packed struct not byte-aligned!");
155   else
156     LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment);
157 }
158 
159 void ConstStructBuilder::AppendBitField(const FieldDecl *Field,
160                                         uint64_t FieldOffset,
161                                         llvm::ConstantInt *CI) {
162   const ASTContext &Context = CGM.getContext();
163   const uint64_t CharWidth = Context.getCharWidth();
164   uint64_t NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
165   if (FieldOffset > NextFieldOffsetInBits) {
166     // We need to add padding.
167     CharUnits PadSize = Context.toCharUnitsFromBits(
168         llvm::alignTo(FieldOffset - NextFieldOffsetInBits,
169                       Context.getTargetInfo().getCharAlign()));
170 
171     AppendPadding(PadSize);
172   }
173 
174   uint64_t FieldSize = Field->getBitWidthValue(Context);
175 
176   llvm::APInt FieldValue = CI->getValue();
177 
178   // Promote the size of FieldValue if necessary
179   // FIXME: This should never occur, but currently it can because initializer
180   // constants are cast to bool, and because clang is not enforcing bitfield
181   // width limits.
182   if (FieldSize > FieldValue.getBitWidth())
183     FieldValue = FieldValue.zext(FieldSize);
184 
185   // Truncate the size of FieldValue to the bit field size.
186   if (FieldSize < FieldValue.getBitWidth())
187     FieldValue = FieldValue.trunc(FieldSize);
188 
189   NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
190   if (FieldOffset < NextFieldOffsetInBits) {
191     // Either part of the field or the entire field can go into the previous
192     // byte.
193     assert(!Elements.empty() && "Elements can't be empty!");
194 
195     unsigned BitsInPreviousByte = NextFieldOffsetInBits - FieldOffset;
196 
197     bool FitsCompletelyInPreviousByte =
198       BitsInPreviousByte >= FieldValue.getBitWidth();
199 
200     llvm::APInt Tmp = FieldValue;
201 
202     if (!FitsCompletelyInPreviousByte) {
203       unsigned NewFieldWidth = FieldSize - BitsInPreviousByte;
204 
205       if (CGM.getDataLayout().isBigEndian()) {
206         Tmp.lshrInPlace(NewFieldWidth);
207         Tmp = Tmp.trunc(BitsInPreviousByte);
208 
209         // We want the remaining high bits.
210         FieldValue = FieldValue.trunc(NewFieldWidth);
211       } else {
212         Tmp = Tmp.trunc(BitsInPreviousByte);
213 
214         // We want the remaining low bits.
215         FieldValue.lshrInPlace(BitsInPreviousByte);
216         FieldValue = FieldValue.trunc(NewFieldWidth);
217       }
218     }
219 
220     Tmp = Tmp.zext(CharWidth);
221     if (CGM.getDataLayout().isBigEndian()) {
222       if (FitsCompletelyInPreviousByte)
223         Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth());
224     } else {
225       Tmp = Tmp.shl(CharWidth - BitsInPreviousByte);
226     }
227 
228     // 'or' in the bits that go into the previous byte.
229     llvm::Value *LastElt = Elements.back();
230     if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(LastElt))
231       Tmp |= Val->getValue();
232     else {
233       assert(isa<llvm::UndefValue>(LastElt));
234       // If there is an undef field that we're adding to, it can either be a
235       // scalar undef (in which case, we just replace it with our field) or it
236       // is an array.  If it is an array, we have to pull one byte off the
237       // array so that the other undef bytes stay around.
238       if (!isa<llvm::IntegerType>(LastElt->getType())) {
239         // The undef padding will be a multibyte array, create a new smaller
240         // padding and then an hole for our i8 to get plopped into.
241         assert(isa<llvm::ArrayType>(LastElt->getType()) &&
242                "Expected array padding of undefs");
243         llvm::ArrayType *AT = cast<llvm::ArrayType>(LastElt->getType());
244         assert(AT->getElementType()->isIntegerTy(CharWidth) &&
245                AT->getNumElements() != 0 &&
246                "Expected non-empty array padding of undefs");
247 
248         // Remove the padding array.
249         NextFieldOffsetInChars -= CharUnits::fromQuantity(AT->getNumElements());
250         Elements.pop_back();
251 
252         // Add the padding back in two chunks.
253         AppendPadding(CharUnits::fromQuantity(AT->getNumElements()-1));
254         AppendPadding(CharUnits::One());
255         assert(isa<llvm::UndefValue>(Elements.back()) &&
256                Elements.back()->getType()->isIntegerTy(CharWidth) &&
257                "Padding addition didn't work right");
258       }
259     }
260 
261     Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp);
262 
263     if (FitsCompletelyInPreviousByte)
264       return;
265   }
266 
267   while (FieldValue.getBitWidth() > CharWidth) {
268     llvm::APInt Tmp;
269 
270     if (CGM.getDataLayout().isBigEndian()) {
271       // We want the high bits.
272       Tmp =
273         FieldValue.lshr(FieldValue.getBitWidth() - CharWidth).trunc(CharWidth);
274     } else {
275       // We want the low bits.
276       Tmp = FieldValue.trunc(CharWidth);
277 
278       FieldValue.lshrInPlace(CharWidth);
279     }
280 
281     Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp));
282     ++NextFieldOffsetInChars;
283 
284     FieldValue = FieldValue.trunc(FieldValue.getBitWidth() - CharWidth);
285   }
286 
287   assert(FieldValue.getBitWidth() > 0 &&
288          "Should have at least one bit left!");
289   assert(FieldValue.getBitWidth() <= CharWidth &&
290          "Should not have more than a byte left!");
291 
292   if (FieldValue.getBitWidth() < CharWidth) {
293     if (CGM.getDataLayout().isBigEndian()) {
294       unsigned BitWidth = FieldValue.getBitWidth();
295 
296       FieldValue = FieldValue.zext(CharWidth) << (CharWidth - BitWidth);
297     } else
298       FieldValue = FieldValue.zext(CharWidth);
299   }
300 
301   // Append the last element.
302   Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(),
303                                             FieldValue));
304   ++NextFieldOffsetInChars;
305 }
306 
307 void ConstStructBuilder::AppendPadding(CharUnits PadSize) {
308   if (PadSize.isZero())
309     return;
310 
311   llvm::Type *Ty = CGM.Int8Ty;
312   if (PadSize > CharUnits::One())
313     Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
314 
315   llvm::Constant *C = llvm::UndefValue::get(Ty);
316   Elements.push_back(C);
317   assert(getAlignment(C) == CharUnits::One() &&
318          "Padding must have 1 byte alignment!");
319 
320   NextFieldOffsetInChars += getSizeInChars(C);
321 }
322 
323 void ConstStructBuilder::AppendTailPadding(CharUnits RecordSize) {
324   assert(NextFieldOffsetInChars <= RecordSize &&
325          "Size mismatch!");
326 
327   AppendPadding(RecordSize - NextFieldOffsetInChars);
328 }
329 
330 void ConstStructBuilder::ConvertStructToPacked() {
331   SmallVector<llvm::Constant *, 16> PackedElements;
332   CharUnits ElementOffsetInChars = CharUnits::Zero();
333 
334   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
335     llvm::Constant *C = Elements[i];
336 
337     CharUnits ElementAlign = CharUnits::fromQuantity(
338       CGM.getDataLayout().getABITypeAlignment(C->getType()));
339     CharUnits AlignedElementOffsetInChars =
340         ElementOffsetInChars.alignTo(ElementAlign);
341 
342     if (AlignedElementOffsetInChars > ElementOffsetInChars) {
343       // We need some padding.
344       CharUnits NumChars =
345         AlignedElementOffsetInChars - ElementOffsetInChars;
346 
347       llvm::Type *Ty = CGM.Int8Ty;
348       if (NumChars > CharUnits::One())
349         Ty = llvm::ArrayType::get(Ty, NumChars.getQuantity());
350 
351       llvm::Constant *Padding = llvm::UndefValue::get(Ty);
352       PackedElements.push_back(Padding);
353       ElementOffsetInChars += getSizeInChars(Padding);
354     }
355 
356     PackedElements.push_back(C);
357     ElementOffsetInChars += getSizeInChars(C);
358   }
359 
360   assert(ElementOffsetInChars == NextFieldOffsetInChars &&
361          "Packing the struct changed its size!");
362 
363   Elements.swap(PackedElements);
364   LLVMStructAlignment = CharUnits::One();
365   Packed = true;
366 }
367 
368 bool ConstStructBuilder::Build(InitListExpr *ILE) {
369   RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
370   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
371 
372   unsigned FieldNo = 0;
373   unsigned ElementNo = 0;
374 
375   // Bail out if we have base classes. We could support these, but they only
376   // arise in C++1z where we will have already constant folded most interesting
377   // cases. FIXME: There are still a few more cases we can handle this way.
378   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
379     if (CXXRD->getNumBases())
380       return false;
381 
382   for (RecordDecl::field_iterator Field = RD->field_begin(),
383        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
384     // If this is a union, skip all the fields that aren't being initialized.
385     if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field)
386       continue;
387 
388     // Don't emit anonymous bitfields, they just affect layout.
389     if (Field->isUnnamedBitfield())
390       continue;
391 
392     // Get the initializer.  A struct can include fields without initializers,
393     // we just use explicit null values for them.
394     llvm::Constant *EltInit;
395     if (ElementNo < ILE->getNumInits())
396       EltInit = Emitter.tryEmitPrivateForMemory(ILE->getInit(ElementNo++),
397                                                 Field->getType());
398     else
399       EltInit = Emitter.emitNullForMemory(Field->getType());
400 
401     if (!EltInit)
402       return false;
403 
404     if (!Field->isBitField()) {
405       // Handle non-bitfield members.
406       AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit);
407     } else {
408       // Otherwise we have a bitfield.
409       if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) {
410         AppendBitField(*Field, Layout.getFieldOffset(FieldNo), CI);
411       } else {
412         // We are trying to initialize a bitfield with a non-trivial constant,
413         // this must require run-time code.
414         return false;
415       }
416     }
417   }
418 
419   return true;
420 }
421 
422 namespace {
423 struct BaseInfo {
424   BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
425     : Decl(Decl), Offset(Offset), Index(Index) {
426   }
427 
428   const CXXRecordDecl *Decl;
429   CharUnits Offset;
430   unsigned Index;
431 
432   bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
433 };
434 }
435 
436 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
437                                bool IsPrimaryBase,
438                                const CXXRecordDecl *VTableClass,
439                                CharUnits Offset) {
440   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
441 
442   if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
443     // Add a vtable pointer, if we need one and it hasn't already been added.
444     if (CD->isDynamicClass() && !IsPrimaryBase) {
445       llvm::Constant *VTableAddressPoint =
446           CGM.getCXXABI().getVTableAddressPointForConstExpr(
447               BaseSubobject(CD, Offset), VTableClass);
448       AppendBytes(Offset, VTableAddressPoint);
449     }
450 
451     // Accumulate and sort bases, in order to visit them in address order, which
452     // may not be the same as declaration order.
453     SmallVector<BaseInfo, 8> Bases;
454     Bases.reserve(CD->getNumBases());
455     unsigned BaseNo = 0;
456     for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
457          BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
458       assert(!Base->isVirtual() && "should not have virtual bases here");
459       const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
460       CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
461       Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
462     }
463     std::stable_sort(Bases.begin(), Bases.end());
464 
465     for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
466       BaseInfo &Base = Bases[I];
467 
468       bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
469       Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
470             VTableClass, Offset + Base.Offset);
471     }
472   }
473 
474   unsigned FieldNo = 0;
475   uint64_t OffsetBits = CGM.getContext().toBits(Offset);
476 
477   for (RecordDecl::field_iterator Field = RD->field_begin(),
478        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
479     // If this is a union, skip all the fields that aren't being initialized.
480     if (RD->isUnion() && Val.getUnionField() != *Field)
481       continue;
482 
483     // Don't emit anonymous bitfields, they just affect layout.
484     if (Field->isUnnamedBitfield())
485       continue;
486 
487     // Emit the value of the initializer.
488     const APValue &FieldValue =
489       RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
490     llvm::Constant *EltInit =
491       Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
492     if (!EltInit)
493       return false;
494 
495     if (!Field->isBitField()) {
496       // Handle non-bitfield members.
497       AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, EltInit);
498     } else {
499       // Otherwise we have a bitfield.
500       AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
501                      cast<llvm::ConstantInt>(EltInit));
502     }
503   }
504 
505   return true;
506 }
507 
508 llvm::Constant *ConstStructBuilder::Finalize(QualType Ty) {
509   RecordDecl *RD = Ty->getAs<RecordType>()->getDecl();
510   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
511 
512   CharUnits LayoutSizeInChars = Layout.getSize();
513 
514   if (NextFieldOffsetInChars > LayoutSizeInChars) {
515     // If the struct is bigger than the size of the record type,
516     // we must have a flexible array member at the end.
517     assert(RD->hasFlexibleArrayMember() &&
518            "Must have flexible array member if struct is bigger than type!");
519 
520     // No tail padding is necessary.
521   } else {
522     // Append tail padding if necessary.
523     CharUnits LLVMSizeInChars =
524         NextFieldOffsetInChars.alignTo(LLVMStructAlignment);
525 
526     if (LLVMSizeInChars != LayoutSizeInChars)
527       AppendTailPadding(LayoutSizeInChars);
528 
529     LLVMSizeInChars = NextFieldOffsetInChars.alignTo(LLVMStructAlignment);
530 
531     // Check if we need to convert the struct to a packed struct.
532     if (NextFieldOffsetInChars <= LayoutSizeInChars &&
533         LLVMSizeInChars > LayoutSizeInChars) {
534       assert(!Packed && "Size mismatch!");
535 
536       ConvertStructToPacked();
537       assert(NextFieldOffsetInChars <= LayoutSizeInChars &&
538              "Converting to packed did not help!");
539     }
540 
541     LLVMSizeInChars = NextFieldOffsetInChars.alignTo(LLVMStructAlignment);
542 
543     assert(LayoutSizeInChars == LLVMSizeInChars &&
544            "Tail padding mismatch!");
545   }
546 
547   // Pick the type to use.  If the type is layout identical to the ConvertType
548   // type then use it, otherwise use whatever the builder produced for us.
549   llvm::StructType *STy =
550       llvm::ConstantStruct::getTypeForElements(CGM.getLLVMContext(),
551                                                Elements, Packed);
552   llvm::Type *ValTy = CGM.getTypes().ConvertType(Ty);
553   if (llvm::StructType *ValSTy = dyn_cast<llvm::StructType>(ValTy)) {
554     if (ValSTy->isLayoutIdentical(STy))
555       STy = ValSTy;
556   }
557 
558   llvm::Constant *Result = llvm::ConstantStruct::get(STy, Elements);
559 
560   assert(NextFieldOffsetInChars.alignTo(getAlignment(Result)) ==
561              getSizeInChars(Result) &&
562          "Size mismatch!");
563 
564   return Result;
565 }
566 
567 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
568                                                 ConstExprEmitter *ExprEmitter,
569                                                 llvm::ConstantStruct *Base,
570                                                 InitListExpr *Updater,
571                                                 QualType ValTy) {
572   ConstStructBuilder Builder(Emitter);
573   if (!Builder.Build(ExprEmitter, Base, Updater))
574     return nullptr;
575   return Builder.Finalize(ValTy);
576 }
577 
578 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
579                                                 InitListExpr *ILE,
580                                                 QualType ValTy) {
581   ConstStructBuilder Builder(Emitter);
582 
583   if (!Builder.Build(ILE))
584     return nullptr;
585 
586   return Builder.Finalize(ValTy);
587 }
588 
589 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
590                                                 const APValue &Val,
591                                                 QualType ValTy) {
592   ConstStructBuilder Builder(Emitter);
593 
594   const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
595   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
596   if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero()))
597     return nullptr;
598 
599   return Builder.Finalize(ValTy);
600 }
601 
602 
603 //===----------------------------------------------------------------------===//
604 //                             ConstExprEmitter
605 //===----------------------------------------------------------------------===//
606 
607 static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM,
608                                                     CodeGenFunction *CGF,
609                                               const CompoundLiteralExpr *E) {
610   CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType());
611   if (llvm::GlobalVariable *Addr =
612           CGM.getAddrOfConstantCompoundLiteralIfEmitted(E))
613     return ConstantAddress(Addr, Align);
614 
615   LangAS addressSpace = E->getType().getAddressSpace();
616 
617   ConstantEmitter emitter(CGM, CGF);
618   llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
619                                                     addressSpace, E->getType());
620   if (!C) {
621     assert(!E->isFileScope() &&
622            "file-scope compound literal did not have constant initializer!");
623     return ConstantAddress::invalid();
624   }
625 
626   auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
627                                      CGM.isTypeConstant(E->getType(), true),
628                                      llvm::GlobalValue::InternalLinkage,
629                                      C, ".compoundliteral", nullptr,
630                                      llvm::GlobalVariable::NotThreadLocal,
631                     CGM.getContext().getTargetAddressSpace(addressSpace));
632   emitter.finalize(GV);
633   GV->setAlignment(Align.getQuantity());
634   CGM.setAddrOfConstantCompoundLiteral(E, GV);
635   return ConstantAddress(GV, Align);
636 }
637 
638 /// This class only needs to handle two cases:
639 /// 1) Literals (this is used by APValue emission to emit literals).
640 /// 2) Arrays, structs and unions (outside C++11 mode, we don't currently
641 ///    constant fold these types).
642 class ConstExprEmitter :
643   public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> {
644   CodeGenModule &CGM;
645   ConstantEmitter &Emitter;
646   llvm::LLVMContext &VMContext;
647 public:
648   ConstExprEmitter(ConstantEmitter &emitter)
649     : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
650   }
651 
652   //===--------------------------------------------------------------------===//
653   //                            Visitor Methods
654   //===--------------------------------------------------------------------===//
655 
656   llvm::Constant *VisitStmt(Stmt *S, QualType T) {
657     return nullptr;
658   }
659 
660   llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) {
661     return Visit(PE->getSubExpr(), T);
662   }
663 
664   llvm::Constant *
665   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE,
666                                     QualType T) {
667     return Visit(PE->getReplacement(), T);
668   }
669 
670   llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE,
671                                             QualType T) {
672     return Visit(GE->getResultExpr(), T);
673   }
674 
675   llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) {
676     return Visit(CE->getChosenSubExpr(), T);
677   }
678 
679   llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) {
680     return Visit(E->getInitializer(), T);
681   }
682 
683   llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) {
684     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
685       CGM.EmitExplicitCastExprType(ECE, Emitter.CGF);
686     Expr *subExpr = E->getSubExpr();
687 
688     switch (E->getCastKind()) {
689     case CK_ToUnion: {
690       // GCC cast to union extension
691       assert(E->getType()->isUnionType() &&
692              "Destination type is not union type!");
693 
694       auto field = E->getTargetUnionField();
695 
696       auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
697       if (!C) return nullptr;
698 
699       auto destTy = ConvertType(destType);
700       if (C->getType() == destTy) return C;
701 
702       // Build a struct with the union sub-element as the first member,
703       // and padded to the appropriate size.
704       SmallVector<llvm::Constant*, 2> Elts;
705       SmallVector<llvm::Type*, 2> Types;
706       Elts.push_back(C);
707       Types.push_back(C->getType());
708       unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
709       unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy);
710 
711       assert(CurSize <= TotalSize && "Union size mismatch!");
712       if (unsigned NumPadBytes = TotalSize - CurSize) {
713         llvm::Type *Ty = CGM.Int8Ty;
714         if (NumPadBytes > 1)
715           Ty = llvm::ArrayType::get(Ty, NumPadBytes);
716 
717         Elts.push_back(llvm::UndefValue::get(Ty));
718         Types.push_back(Ty);
719       }
720 
721       llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false);
722       return llvm::ConstantStruct::get(STy, Elts);
723     }
724 
725     case CK_AddressSpaceConversion: {
726       auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
727       if (!C) return nullptr;
728       LangAS destAS = E->getType()->getPointeeType().getAddressSpace();
729       LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
730       llvm::Type *destTy = ConvertType(E->getType());
731       return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS,
732                                                              destAS, destTy);
733     }
734 
735     case CK_LValueToRValue:
736     case CK_AtomicToNonAtomic:
737     case CK_NonAtomicToAtomic:
738     case CK_NoOp:
739     case CK_ConstructorConversion:
740       return Visit(subExpr, destType);
741 
742     case CK_IntToOCLSampler:
743       llvm_unreachable("global sampler variables are not generated");
744 
745     case CK_Dependent: llvm_unreachable("saw dependent cast!");
746 
747     case CK_BuiltinFnToFnPtr:
748       llvm_unreachable("builtin functions are handled elsewhere");
749 
750     case CK_ReinterpretMemberPointer:
751     case CK_DerivedToBaseMemberPointer:
752     case CK_BaseToDerivedMemberPointer: {
753       auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
754       if (!C) return nullptr;
755       return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
756     }
757 
758     // These will never be supported.
759     case CK_ObjCObjectLValueCast:
760     case CK_ARCProduceObject:
761     case CK_ARCConsumeObject:
762     case CK_ARCReclaimReturnedObject:
763     case CK_ARCExtendBlockObject:
764     case CK_CopyAndAutoreleaseBlockObject:
765       return nullptr;
766 
767     // These don't need to be handled here because Evaluate knows how to
768     // evaluate them in the cases where they can be folded.
769     case CK_BitCast:
770     case CK_ToVoid:
771     case CK_Dynamic:
772     case CK_LValueBitCast:
773     case CK_NullToMemberPointer:
774     case CK_UserDefinedConversion:
775     case CK_CPointerToObjCPointerCast:
776     case CK_BlockPointerToObjCPointerCast:
777     case CK_AnyPointerToBlockPointerCast:
778     case CK_ArrayToPointerDecay:
779     case CK_FunctionToPointerDecay:
780     case CK_BaseToDerived:
781     case CK_DerivedToBase:
782     case CK_UncheckedDerivedToBase:
783     case CK_MemberPointerToBoolean:
784     case CK_VectorSplat:
785     case CK_FloatingRealToComplex:
786     case CK_FloatingComplexToReal:
787     case CK_FloatingComplexToBoolean:
788     case CK_FloatingComplexCast:
789     case CK_FloatingComplexToIntegralComplex:
790     case CK_IntegralRealToComplex:
791     case CK_IntegralComplexToReal:
792     case CK_IntegralComplexToBoolean:
793     case CK_IntegralComplexCast:
794     case CK_IntegralComplexToFloatingComplex:
795     case CK_PointerToIntegral:
796     case CK_PointerToBoolean:
797     case CK_NullToPointer:
798     case CK_IntegralCast:
799     case CK_BooleanToSignedIntegral:
800     case CK_IntegralToPointer:
801     case CK_IntegralToBoolean:
802     case CK_IntegralToFloating:
803     case CK_FloatingToIntegral:
804     case CK_FloatingToBoolean:
805     case CK_FloatingCast:
806     case CK_ZeroToOCLEvent:
807     case CK_ZeroToOCLQueue:
808       return nullptr;
809     }
810     llvm_unreachable("Invalid CastKind");
811   }
812 
813   llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE, QualType T) {
814     return Visit(DAE->getExpr(), T);
815   }
816 
817   llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) {
818     // No need for a DefaultInitExprScope: we don't handle 'this' in a
819     // constant expression.
820     return Visit(DIE->getExpr(), T);
821   }
822 
823   llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) {
824     if (!E->cleanupsHaveSideEffects())
825       return Visit(E->getSubExpr(), T);
826     return nullptr;
827   }
828 
829   llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E,
830                                                 QualType T) {
831     return Visit(E->GetTemporaryExpr(), T);
832   }
833 
834   llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) {
835     llvm::ArrayType *AType =
836         cast<llvm::ArrayType>(ConvertType(ILE->getType()));
837     llvm::Type *ElemTy = AType->getElementType();
838     unsigned NumInitElements = ILE->getNumInits();
839     unsigned NumElements = AType->getNumElements();
840 
841     // Initialising an array requires us to automatically
842     // initialise any elements that have not been initialised explicitly
843     unsigned NumInitableElts = std::min(NumInitElements, NumElements);
844 
845     QualType EltType = CGM.getContext().getAsArrayType(T)->getElementType();
846 
847     // Initialize remaining array elements.
848     llvm::Constant *fillC;
849     if (Expr *filler = ILE->getArrayFiller())
850       fillC = Emitter.tryEmitAbstractForMemory(filler, EltType);
851     else
852       fillC = Emitter.emitNullForMemory(EltType);
853     if (!fillC)
854       return nullptr;
855 
856     // Try to use a ConstantAggregateZero if we can.
857     if (fillC->isNullValue() && !NumInitableElts)
858       return llvm::ConstantAggregateZero::get(AType);
859 
860     // Copy initializer elements.
861     SmallVector<llvm::Constant*, 16> Elts;
862     Elts.reserve(std::max(NumInitableElts, NumElements));
863 
864     bool RewriteType = false;
865     bool AllNullValues = true;
866     for (unsigned i = 0; i < NumInitableElts; ++i) {
867       Expr *Init = ILE->getInit(i);
868       llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType);
869       if (!C)
870         return nullptr;
871       RewriteType |= (C->getType() != ElemTy);
872       Elts.push_back(C);
873       if (AllNullValues && !C->isNullValue())
874         AllNullValues = false;
875     }
876 
877     // If all initializer elements are "zero," then avoid storing NumElements
878     // instances of the zero representation.
879     if (AllNullValues)
880       return llvm::ConstantAggregateZero::get(AType);
881 
882     RewriteType |= (fillC->getType() != ElemTy);
883     Elts.resize(NumElements, fillC);
884 
885     if (RewriteType) {
886       // FIXME: Try to avoid packing the array
887       std::vector<llvm::Type*> Types;
888       Types.reserve(Elts.size());
889       for (unsigned i = 0, e = Elts.size(); i < e; ++i)
890         Types.push_back(Elts[i]->getType());
891       llvm::StructType *SType = llvm::StructType::get(AType->getContext(),
892                                                             Types, true);
893       return llvm::ConstantStruct::get(SType, Elts);
894     }
895 
896     return llvm::ConstantArray::get(AType, Elts);
897   }
898 
899   llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) {
900     return ConstStructBuilder::BuildStruct(Emitter, ILE, T);
901   }
902 
903   llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E,
904                                              QualType T) {
905     return CGM.EmitNullConstant(T);
906   }
907 
908   llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) {
909     if (ILE->isTransparent())
910       return Visit(ILE->getInit(0), T);
911 
912     if (ILE->getType()->isArrayType())
913       return EmitArrayInitialization(ILE, T);
914 
915     if (ILE->getType()->isRecordType())
916       return EmitRecordInitialization(ILE, T);
917 
918     return nullptr;
919   }
920 
921   llvm::Constant *EmitDesignatedInitUpdater(llvm::Constant *Base,
922                                             InitListExpr *Updater,
923                                             QualType destType) {
924     if (auto destAT = CGM.getContext().getAsArrayType(destType)) {
925       llvm::ArrayType *AType = cast<llvm::ArrayType>(ConvertType(destType));
926       llvm::Type *ElemType = AType->getElementType();
927 
928       unsigned NumInitElements = Updater->getNumInits();
929       unsigned NumElements = AType->getNumElements();
930 
931       std::vector<llvm::Constant *> Elts;
932       Elts.reserve(NumElements);
933 
934       QualType destElemType = destAT->getElementType();
935 
936       if (auto DataArray = dyn_cast<llvm::ConstantDataArray>(Base))
937         for (unsigned i = 0; i != NumElements; ++i)
938           Elts.push_back(DataArray->getElementAsConstant(i));
939       else if (auto Array = dyn_cast<llvm::ConstantArray>(Base))
940         for (unsigned i = 0; i != NumElements; ++i)
941           Elts.push_back(Array->getOperand(i));
942       else
943         return nullptr; // FIXME: other array types not implemented
944 
945       llvm::Constant *fillC = nullptr;
946       if (Expr *filler = Updater->getArrayFiller())
947         if (!isa<NoInitExpr>(filler))
948           fillC = Emitter.tryEmitAbstractForMemory(filler, destElemType);
949       bool RewriteType = (fillC && fillC->getType() != ElemType);
950 
951       for (unsigned i = 0; i != NumElements; ++i) {
952         Expr *Init = nullptr;
953         if (i < NumInitElements)
954           Init = Updater->getInit(i);
955 
956         if (!Init && fillC)
957           Elts[i] = fillC;
958         else if (!Init || isa<NoInitExpr>(Init))
959           ; // Do nothing.
960         else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init))
961           Elts[i] = EmitDesignatedInitUpdater(Elts[i], ChildILE, destElemType);
962         else
963           Elts[i] = Emitter.tryEmitPrivateForMemory(Init, destElemType);
964 
965        if (!Elts[i])
966           return nullptr;
967         RewriteType |= (Elts[i]->getType() != ElemType);
968       }
969 
970       if (RewriteType) {
971         std::vector<llvm::Type *> Types;
972         Types.reserve(NumElements);
973         for (unsigned i = 0; i != NumElements; ++i)
974           Types.push_back(Elts[i]->getType());
975         llvm::StructType *SType = llvm::StructType::get(AType->getContext(),
976                                                         Types, true);
977         return llvm::ConstantStruct::get(SType, Elts);
978       }
979 
980       return llvm::ConstantArray::get(AType, Elts);
981     }
982 
983     if (destType->isRecordType())
984       return ConstStructBuilder::BuildStruct(Emitter, this,
985                  dyn_cast<llvm::ConstantStruct>(Base), Updater, destType);
986 
987     return nullptr;
988   }
989 
990   llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E,
991                                                 QualType destType) {
992     auto C = Visit(E->getBase(), destType);
993     if (!C) return nullptr;
994     return EmitDesignatedInitUpdater(C, E->getUpdater(), destType);
995   }
996 
997   llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) {
998     if (!E->getConstructor()->isTrivial())
999       return nullptr;
1000 
1001     // FIXME: We should not have to call getBaseElementType here.
1002     const RecordType *RT =
1003       CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>();
1004     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1005 
1006     // If the class doesn't have a trivial destructor, we can't emit it as a
1007     // constant expr.
1008     if (!RD->hasTrivialDestructor())
1009       return nullptr;
1010 
1011     // Only copy and default constructors can be trivial.
1012 
1013 
1014     if (E->getNumArgs()) {
1015       assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
1016       assert(E->getConstructor()->isCopyOrMoveConstructor() &&
1017              "trivial ctor has argument but isn't a copy/move ctor");
1018 
1019       Expr *Arg = E->getArg(0);
1020       assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
1021              "argument to copy ctor is of wrong type");
1022 
1023       return Visit(Arg, Ty);
1024     }
1025 
1026     return CGM.EmitNullConstant(Ty);
1027   }
1028 
1029   llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) {
1030     return CGM.GetConstantArrayFromStringLiteral(E);
1031   }
1032 
1033   llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) {
1034     // This must be an @encode initializing an array in a static initializer.
1035     // Don't emit it as the address of the string, emit the string data itself
1036     // as an inline array.
1037     std::string Str;
1038     CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1039     const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T);
1040 
1041     // Resize the string to the right size, adding zeros at the end, or
1042     // truncating as needed.
1043     Str.resize(CAT->getSize().getZExtValue(), '\0');
1044     return llvm::ConstantDataArray::getString(VMContext, Str, false);
1045   }
1046 
1047   llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
1048     return Visit(E->getSubExpr(), T);
1049   }
1050 
1051   // Utility methods
1052   llvm::Type *ConvertType(QualType T) {
1053     return CGM.getTypes().ConvertType(T);
1054   }
1055 };
1056 
1057 }  // end anonymous namespace.
1058 
1059 bool ConstStructBuilder::Build(ConstExprEmitter *ExprEmitter,
1060                                llvm::ConstantStruct *Base,
1061                                InitListExpr *Updater) {
1062   assert(Base && "base expression should not be empty");
1063 
1064   QualType ExprType = Updater->getType();
1065   RecordDecl *RD = ExprType->getAs<RecordType>()->getDecl();
1066   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
1067   const llvm::StructLayout *BaseLayout = CGM.getDataLayout().getStructLayout(
1068                                            Base->getType());
1069   unsigned FieldNo = -1;
1070   unsigned ElementNo = 0;
1071 
1072   // Bail out if we have base classes. We could support these, but they only
1073   // arise in C++1z where we will have already constant folded most interesting
1074   // cases. FIXME: There are still a few more cases we can handle this way.
1075   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1076     if (CXXRD->getNumBases())
1077       return false;
1078 
1079   for (FieldDecl *Field : RD->fields()) {
1080     ++FieldNo;
1081 
1082     if (RD->isUnion() && Updater->getInitializedFieldInUnion() != Field)
1083       continue;
1084 
1085     // Skip anonymous bitfields.
1086     if (Field->isUnnamedBitfield())
1087       continue;
1088 
1089     llvm::Constant *EltInit = Base->getOperand(ElementNo);
1090 
1091     // Bail out if the type of the ConstantStruct does not have the same layout
1092     // as the type of the InitListExpr.
1093     if (CGM.getTypes().ConvertType(Field->getType()) != EltInit->getType() ||
1094         Layout.getFieldOffset(ElementNo) !=
1095           BaseLayout->getElementOffsetInBits(ElementNo))
1096       return false;
1097 
1098     // Get the initializer. If we encounter an empty field or a NoInitExpr,
1099     // we use values from the base expression.
1100     Expr *Init = nullptr;
1101     if (ElementNo < Updater->getNumInits())
1102       Init = Updater->getInit(ElementNo);
1103 
1104     if (!Init || isa<NoInitExpr>(Init))
1105       ; // Do nothing.
1106     else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init))
1107       EltInit = ExprEmitter->EmitDesignatedInitUpdater(EltInit, ChildILE,
1108                                                        Field->getType());
1109     else
1110       EltInit = Emitter.tryEmitPrivateForMemory(Init, Field->getType());
1111 
1112     ++ElementNo;
1113 
1114     if (!EltInit)
1115       return false;
1116 
1117     if (!Field->isBitField())
1118       AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit);
1119     else if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(EltInit))
1120       AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI);
1121     else
1122       // Initializing a bitfield with a non-trivial constant?
1123       return false;
1124   }
1125 
1126   return true;
1127 }
1128 
1129 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
1130                                                         AbstractState saved) {
1131   Abstract = saved.OldValue;
1132 
1133   assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
1134          "created a placeholder while doing an abstract emission?");
1135 
1136   // No validation necessary for now.
1137   // No cleanup to do for now.
1138   return C;
1139 }
1140 
1141 llvm::Constant *
1142 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) {
1143   auto state = pushAbstract();
1144   auto C = tryEmitPrivateForVarInit(D);
1145   return validateAndPopAbstract(C, state);
1146 }
1147 
1148 llvm::Constant *
1149 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) {
1150   auto state = pushAbstract();
1151   auto C = tryEmitPrivate(E, destType);
1152   return validateAndPopAbstract(C, state);
1153 }
1154 
1155 llvm::Constant *
1156 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) {
1157   auto state = pushAbstract();
1158   auto C = tryEmitPrivate(value, destType);
1159   return validateAndPopAbstract(C, state);
1160 }
1161 
1162 llvm::Constant *
1163 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) {
1164   auto state = pushAbstract();
1165   auto C = tryEmitPrivate(E, destType);
1166   C = validateAndPopAbstract(C, state);
1167   if (!C) {
1168     CGM.Error(E->getExprLoc(),
1169               "internal error: could not emit constant value \"abstractly\"");
1170     C = CGM.EmitNullConstant(destType);
1171   }
1172   return C;
1173 }
1174 
1175 llvm::Constant *
1176 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value,
1177                               QualType destType) {
1178   auto state = pushAbstract();
1179   auto C = tryEmitPrivate(value, destType);
1180   C = validateAndPopAbstract(C, state);
1181   if (!C) {
1182     CGM.Error(loc,
1183               "internal error: could not emit constant value \"abstractly\"");
1184     C = CGM.EmitNullConstant(destType);
1185   }
1186   return C;
1187 }
1188 
1189 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) {
1190   initializeNonAbstract(D.getType().getAddressSpace());
1191   return markIfFailed(tryEmitPrivateForVarInit(D));
1192 }
1193 
1194 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E,
1195                                                        LangAS destAddrSpace,
1196                                                        QualType destType) {
1197   initializeNonAbstract(destAddrSpace);
1198   return markIfFailed(tryEmitPrivateForMemory(E, destType));
1199 }
1200 
1201 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value,
1202                                                     LangAS destAddrSpace,
1203                                                     QualType destType) {
1204   initializeNonAbstract(destAddrSpace);
1205   auto C = tryEmitPrivateForMemory(value, destType);
1206   assert(C && "couldn't emit constant value non-abstractly?");
1207   return C;
1208 }
1209 
1210 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() {
1211   assert(!Abstract && "cannot get current address for abstract constant");
1212 
1213 
1214 
1215   // Make an obviously ill-formed global that should blow up compilation
1216   // if it survives.
1217   auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
1218                                          llvm::GlobalValue::PrivateLinkage,
1219                                          /*init*/ nullptr,
1220                                          /*name*/ "",
1221                                          /*before*/ nullptr,
1222                                          llvm::GlobalVariable::NotThreadLocal,
1223                                          CGM.getContext().getTargetAddressSpace(DestAddressSpace));
1224 
1225   PlaceholderAddresses.push_back(std::make_pair(nullptr, global));
1226 
1227   return global;
1228 }
1229 
1230 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal,
1231                                            llvm::GlobalValue *placeholder) {
1232   assert(!PlaceholderAddresses.empty());
1233   assert(PlaceholderAddresses.back().first == nullptr);
1234   assert(PlaceholderAddresses.back().second == placeholder);
1235   PlaceholderAddresses.back().first = signal;
1236 }
1237 
1238 namespace {
1239   struct ReplacePlaceholders {
1240     CodeGenModule &CGM;
1241 
1242     /// The base address of the global.
1243     llvm::Constant *Base;
1244     llvm::Type *BaseValueTy = nullptr;
1245 
1246     /// The placeholder addresses that were registered during emission.
1247     llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;
1248 
1249     /// The locations of the placeholder signals.
1250     llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;
1251 
1252     /// The current index stack.  We use a simple unsigned stack because
1253     /// we assume that placeholders will be relatively sparse in the
1254     /// initializer, but we cache the index values we find just in case.
1255     llvm::SmallVector<unsigned, 8> Indices;
1256     llvm::SmallVector<llvm::Constant*, 8> IndexValues;
1257 
1258     ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
1259                         ArrayRef<std::pair<llvm::Constant*,
1260                                            llvm::GlobalVariable*>> addresses)
1261         : CGM(CGM), Base(base),
1262           PlaceholderAddresses(addresses.begin(), addresses.end()) {
1263     }
1264 
1265     void replaceInInitializer(llvm::Constant *init) {
1266       // Remember the type of the top-most initializer.
1267       BaseValueTy = init->getType();
1268 
1269       // Initialize the stack.
1270       Indices.push_back(0);
1271       IndexValues.push_back(nullptr);
1272 
1273       // Recurse into the initializer.
1274       findLocations(init);
1275 
1276       // Check invariants.
1277       assert(IndexValues.size() == Indices.size() && "mismatch");
1278       assert(Indices.size() == 1 && "didn't pop all indices");
1279 
1280       // Do the replacement; this basically invalidates 'init'.
1281       assert(Locations.size() == PlaceholderAddresses.size() &&
1282              "missed a placeholder?");
1283 
1284       // We're iterating over a hashtable, so this would be a source of
1285       // non-determinism in compiler output *except* that we're just
1286       // messing around with llvm::Constant structures, which never itself
1287       // does anything that should be visible in compiler output.
1288       for (auto &entry : Locations) {
1289         assert(entry.first->getParent() == nullptr && "not a placeholder!");
1290         entry.first->replaceAllUsesWith(entry.second);
1291         entry.first->eraseFromParent();
1292       }
1293     }
1294 
1295   private:
1296     void findLocations(llvm::Constant *init) {
1297       // Recurse into aggregates.
1298       if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) {
1299         for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
1300           Indices.push_back(i);
1301           IndexValues.push_back(nullptr);
1302 
1303           findLocations(agg->getOperand(i));
1304 
1305           IndexValues.pop_back();
1306           Indices.pop_back();
1307         }
1308         return;
1309       }
1310 
1311       // Otherwise, check for registered constants.
1312       while (true) {
1313         auto it = PlaceholderAddresses.find(init);
1314         if (it != PlaceholderAddresses.end()) {
1315           setLocation(it->second);
1316           break;
1317         }
1318 
1319         // Look through bitcasts or other expressions.
1320         if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) {
1321           init = expr->getOperand(0);
1322         } else {
1323           break;
1324         }
1325       }
1326     }
1327 
1328     void setLocation(llvm::GlobalVariable *placeholder) {
1329       assert(Locations.find(placeholder) == Locations.end() &&
1330              "already found location for placeholder!");
1331 
1332       // Lazily fill in IndexValues with the values from Indices.
1333       // We do this in reverse because we should always have a strict
1334       // prefix of indices from the start.
1335       assert(Indices.size() == IndexValues.size());
1336       for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
1337         if (IndexValues[i]) {
1338 #ifndef NDEBUG
1339           for (size_t j = 0; j != i + 1; ++j) {
1340             assert(IndexValues[j] &&
1341                    isa<llvm::ConstantInt>(IndexValues[j]) &&
1342                    cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
1343                      == Indices[j]);
1344           }
1345 #endif
1346           break;
1347         }
1348 
1349         IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]);
1350       }
1351 
1352       // Form a GEP and then bitcast to the placeholder type so that the
1353       // replacement will succeed.
1354       llvm::Constant *location =
1355         llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy,
1356                                                      Base, IndexValues);
1357       location = llvm::ConstantExpr::getBitCast(location,
1358                                                 placeholder->getType());
1359 
1360       Locations.insert({placeholder, location});
1361     }
1362   };
1363 }
1364 
1365 void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
1366   assert(InitializedNonAbstract &&
1367          "finalizing emitter that was used for abstract emission?");
1368   assert(!Finalized && "finalizing emitter multiple times");
1369   assert(global->getInitializer());
1370 
1371   // Note that we might also be Failed.
1372   Finalized = true;
1373 
1374   if (!PlaceholderAddresses.empty()) {
1375     ReplacePlaceholders(CGM, global, PlaceholderAddresses)
1376       .replaceInInitializer(global->getInitializer());
1377     PlaceholderAddresses.clear(); // satisfy
1378   }
1379 }
1380 
1381 ConstantEmitter::~ConstantEmitter() {
1382   assert((!InitializedNonAbstract || Finalized || Failed) &&
1383          "not finalized after being initialized for non-abstract emission");
1384   assert(PlaceholderAddresses.empty() && "unhandled placeholders");
1385 }
1386 
1387 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) {
1388   if (auto AT = type->getAs<AtomicType>()) {
1389     return CGM.getContext().getQualifiedType(AT->getValueType(),
1390                                              type.getQualifiers());
1391   }
1392   return type;
1393 }
1394 
1395 /// Checks if the specified initializer is equivalent to zero initialization.
1396 static bool isZeroInitializer(ConstantEmitter &CE, const Expr *Init) {
1397   if (auto *E = dyn_cast_or_null<CXXConstructExpr>(Init)) {
1398     CXXConstructorDecl *CD = E->getConstructor();
1399     return CD->isDefaultConstructor() && CD->isTrivial();
1400   }
1401 
1402   if (auto *IL = dyn_cast_or_null<InitListExpr>(Init)) {
1403     for (auto I : IL->inits())
1404       if (!isZeroInitializer(CE, I))
1405         return false;
1406     if (const Expr *Filler = IL->getArrayFiller())
1407       return isZeroInitializer(CE, Filler);
1408     return true;
1409   }
1410 
1411   QualType InitTy = Init->getType();
1412   if (InitTy->isIntegralOrEnumerationType() || InitTy->isPointerType()) {
1413     Expr::EvalResult Result;
1414     if (Init->EvaluateAsRValue(Result, CE.CGM.getContext()) &&
1415         !Result.hasUnacceptableSideEffect(Expr::SE_NoSideEffects))
1416       return (Result.Val.isInt() && Result.Val.getInt().isNullValue()) ||
1417              (Result.Val.isLValue() && Result.Val.isNullPointer());
1418   }
1419 
1420   return false;
1421 }
1422 
1423 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) {
1424   // Make a quick check if variable can be default NULL initialized
1425   // and avoid going through rest of code which may do, for c++11,
1426   // initialization of memory to all NULLs.
1427   if (!D.hasLocalStorage() && isZeroInitializer(*this, D.getInit()))
1428     return CGM.EmitNullConstant(D.getType());
1429 
1430   QualType destType = D.getType();
1431 
1432   // Try to emit the initializer.  Note that this can allow some things that
1433   // are not allowed by tryEmitPrivateForMemory alone.
1434   if (auto value = D.evaluateValue()) {
1435     return tryEmitPrivateForMemory(*value, destType);
1436   }
1437 
1438   // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a
1439   // reference is a constant expression, and the reference binds to a temporary,
1440   // then constant initialization is performed. ConstExprEmitter will
1441   // incorrectly emit a prvalue constant in this case, and the calling code
1442   // interprets that as the (pointer) value of the reference, rather than the
1443   // desired value of the referee.
1444   if (destType->isReferenceType())
1445     return nullptr;
1446 
1447   const Expr *E = D.getInit();
1448   assert(E && "No initializer to emit");
1449 
1450   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1451   auto C =
1452     ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType);
1453   return (C ? emitForMemory(C, destType) : nullptr);
1454 }
1455 
1456 llvm::Constant *
1457 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) {
1458   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1459   auto C = tryEmitAbstract(E, nonMemoryDestType);
1460   return (C ? emitForMemory(C, destType) : nullptr);
1461 }
1462 
1463 llvm::Constant *
1464 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value,
1465                                           QualType destType) {
1466   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1467   auto C = tryEmitAbstract(value, nonMemoryDestType);
1468   return (C ? emitForMemory(C, destType) : nullptr);
1469 }
1470 
1471 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E,
1472                                                          QualType destType) {
1473   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1474   llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType);
1475   return (C ? emitForMemory(C, destType) : nullptr);
1476 }
1477 
1478 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value,
1479                                                          QualType destType) {
1480   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1481   auto C = tryEmitPrivate(value, nonMemoryDestType);
1482   return (C ? emitForMemory(C, destType) : nullptr);
1483 }
1484 
1485 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM,
1486                                                llvm::Constant *C,
1487                                                QualType destType) {
1488   // For an _Atomic-qualified constant, we may need to add tail padding.
1489   if (auto AT = destType->getAs<AtomicType>()) {
1490     QualType destValueType = AT->getValueType();
1491     C = emitForMemory(CGM, C, destValueType);
1492 
1493     uint64_t innerSize = CGM.getContext().getTypeSize(destValueType);
1494     uint64_t outerSize = CGM.getContext().getTypeSize(destType);
1495     if (innerSize == outerSize)
1496       return C;
1497 
1498     assert(innerSize < outerSize && "emitted over-large constant for atomic");
1499     llvm::Constant *elts[] = {
1500       C,
1501       llvm::ConstantAggregateZero::get(
1502           llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8))
1503     };
1504     return llvm::ConstantStruct::getAnon(elts);
1505   }
1506 
1507   // Zero-extend bool.
1508   if (C->getType()->isIntegerTy(1)) {
1509     llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType);
1510     return llvm::ConstantExpr::getZExt(C, boolTy);
1511   }
1512 
1513   return C;
1514 }
1515 
1516 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E,
1517                                                 QualType destType) {
1518   Expr::EvalResult Result;
1519 
1520   bool Success = false;
1521 
1522   if (destType->isReferenceType())
1523     Success = E->EvaluateAsLValue(Result, CGM.getContext());
1524   else
1525     Success = E->EvaluateAsRValue(Result, CGM.getContext());
1526 
1527   llvm::Constant *C;
1528   if (Success && !Result.HasSideEffects)
1529     C = tryEmitPrivate(Result.Val, destType);
1530   else
1531     C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType);
1532 
1533   return C;
1534 }
1535 
1536 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
1537   return getTargetCodeGenInfo().getNullPointer(*this, T, QT);
1538 }
1539 
1540 namespace {
1541 /// A struct which can be used to peephole certain kinds of finalization
1542 /// that normally happen during l-value emission.
1543 struct ConstantLValue {
1544   llvm::Constant *Value;
1545   bool HasOffsetApplied;
1546 
1547   /*implicit*/ ConstantLValue(llvm::Constant *value,
1548                               bool hasOffsetApplied = false)
1549     : Value(value), HasOffsetApplied(false) {}
1550 
1551   /*implicit*/ ConstantLValue(ConstantAddress address)
1552     : ConstantLValue(address.getPointer()) {}
1553 };
1554 
1555 /// A helper class for emitting constant l-values.
1556 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
1557                                                       ConstantLValue> {
1558   CodeGenModule &CGM;
1559   ConstantEmitter &Emitter;
1560   const APValue &Value;
1561   QualType DestType;
1562 
1563   // Befriend StmtVisitorBase so that we don't have to expose Visit*.
1564   friend StmtVisitorBase;
1565 
1566 public:
1567   ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
1568                         QualType destType)
1569     : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {}
1570 
1571   llvm::Constant *tryEmit();
1572 
1573 private:
1574   llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
1575   ConstantLValue tryEmitBase(const APValue::LValueBase &base);
1576 
1577   ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
1578   ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
1579   ConstantLValue VisitStringLiteral(const StringLiteral *E);
1580   ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
1581   ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
1582   ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
1583   ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
1584   ConstantLValue VisitCallExpr(const CallExpr *E);
1585   ConstantLValue VisitBlockExpr(const BlockExpr *E);
1586   ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
1587   ConstantLValue VisitCXXUuidofExpr(const CXXUuidofExpr *E);
1588   ConstantLValue VisitMaterializeTemporaryExpr(
1589                                          const MaterializeTemporaryExpr *E);
1590 
1591   bool hasNonZeroOffset() const {
1592     return !Value.getLValueOffset().isZero();
1593   }
1594 
1595   /// Return the value offset.
1596   llvm::Constant *getOffset() {
1597     return llvm::ConstantInt::get(CGM.Int64Ty,
1598                                   Value.getLValueOffset().getQuantity());
1599   }
1600 
1601   /// Apply the value offset to the given constant.
1602   llvm::Constant *applyOffset(llvm::Constant *C) {
1603     if (!hasNonZeroOffset())
1604       return C;
1605 
1606     llvm::Type *origPtrTy = C->getType();
1607     unsigned AS = origPtrTy->getPointerAddressSpace();
1608     llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS);
1609     C = llvm::ConstantExpr::getBitCast(C, charPtrTy);
1610     C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset());
1611     C = llvm::ConstantExpr::getPointerCast(C, origPtrTy);
1612     return C;
1613   }
1614 };
1615 
1616 }
1617 
1618 llvm::Constant *ConstantLValueEmitter::tryEmit() {
1619   const APValue::LValueBase &base = Value.getLValueBase();
1620 
1621   // Certain special array initializers are represented in APValue
1622   // as l-values referring to the base expression which generates the
1623   // array.  This happens with e.g. string literals.  These should
1624   // probably just get their own representation kind in APValue.
1625   if (DestType->isArrayType()) {
1626     assert(!hasNonZeroOffset() && "offset on array initializer");
1627     auto expr = const_cast<Expr*>(base.get<const Expr*>());
1628     return ConstExprEmitter(Emitter).Visit(expr, DestType);
1629   }
1630 
1631   // Otherwise, the destination type should be a pointer or reference
1632   // type, but it might also be a cast thereof.
1633   //
1634   // FIXME: the chain of casts required should be reflected in the APValue.
1635   // We need this in order to correctly handle things like a ptrtoint of a
1636   // non-zero null pointer and addrspace casts that aren't trivially
1637   // represented in LLVM IR.
1638   auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
1639   assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));
1640 
1641   // If there's no base at all, this is a null or absolute pointer,
1642   // possibly cast back to an integer type.
1643   if (!base) {
1644     return tryEmitAbsolute(destTy);
1645   }
1646 
1647   // Otherwise, try to emit the base.
1648   ConstantLValue result = tryEmitBase(base);
1649 
1650   // If that failed, we're done.
1651   llvm::Constant *value = result.Value;
1652   if (!value) return nullptr;
1653 
1654   // Apply the offset if necessary and not already done.
1655   if (!result.HasOffsetApplied) {
1656     value = applyOffset(value);
1657   }
1658 
1659   // Convert to the appropriate type; this could be an lvalue for
1660   // an integer.  FIXME: performAddrSpaceCast
1661   if (isa<llvm::PointerType>(destTy))
1662     return llvm::ConstantExpr::getPointerCast(value, destTy);
1663 
1664   return llvm::ConstantExpr::getPtrToInt(value, destTy);
1665 }
1666 
1667 /// Try to emit an absolute l-value, such as a null pointer or an integer
1668 /// bitcast to pointer type.
1669 llvm::Constant *
1670 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
1671   auto offset = getOffset();
1672 
1673   // If we're producing a pointer, this is easy.
1674   if (auto destPtrTy = cast<llvm::PointerType>(destTy)) {
1675     if (Value.isNullPointer()) {
1676       // FIXME: integer offsets from non-zero null pointers.
1677       return CGM.getNullPointer(destPtrTy, DestType);
1678     }
1679 
1680     // Convert the integer to a pointer-sized integer before converting it
1681     // to a pointer.
1682     // FIXME: signedness depends on the original integer type.
1683     auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
1684     llvm::Constant *C = offset;
1685     C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy,
1686                                            /*isSigned*/ false);
1687     C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy);
1688     return C;
1689   }
1690 
1691   // Otherwise, we're basically returning an integer constant.
1692 
1693   // FIXME: this does the wrong thing with ptrtoint of a null pointer,
1694   // but since we don't know the original pointer type, there's not much
1695   // we can do about it.
1696 
1697   auto C = getOffset();
1698   C = llvm::ConstantExpr::getIntegerCast(C, destTy, /*isSigned*/ false);
1699   return C;
1700 }
1701 
1702 ConstantLValue
1703 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
1704   // Handle values.
1705   if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
1706     if (D->hasAttr<WeakRefAttr>())
1707       return CGM.GetWeakRefReference(D).getPointer();
1708 
1709     if (auto FD = dyn_cast<FunctionDecl>(D))
1710       return CGM.GetAddrOfFunction(FD);
1711 
1712     if (auto VD = dyn_cast<VarDecl>(D)) {
1713       // We can never refer to a variable with local storage.
1714       if (!VD->hasLocalStorage()) {
1715         if (VD->isFileVarDecl() || VD->hasExternalStorage())
1716           return CGM.GetAddrOfGlobalVar(VD);
1717 
1718         if (VD->isLocalVarDecl()) {
1719           return CGM.getOrCreateStaticVarDecl(
1720               *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false));
1721         }
1722       }
1723     }
1724 
1725     return nullptr;
1726   }
1727 
1728   // Otherwise, it must be an expression.
1729   return Visit(base.get<const Expr*>());
1730 }
1731 
1732 ConstantLValue
1733 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
1734   return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E);
1735 }
1736 
1737 ConstantLValue
1738 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
1739   return CGM.GetAddrOfConstantStringFromLiteral(E);
1740 }
1741 
1742 ConstantLValue
1743 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
1744   return CGM.GetAddrOfConstantStringFromObjCEncode(E);
1745 }
1746 
1747 ConstantLValue
1748 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
1749   auto C = CGM.getObjCRuntime().GenerateConstantString(E->getString());
1750   return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(E->getType()));
1751 }
1752 
1753 ConstantLValue
1754 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
1755   if (auto CGF = Emitter.CGF) {
1756     LValue Res = CGF->EmitPredefinedLValue(E);
1757     return cast<ConstantAddress>(Res.getAddress());
1758   }
1759 
1760   auto kind = E->getIdentType();
1761   if (kind == PredefinedExpr::PrettyFunction) {
1762     return CGM.GetAddrOfConstantCString("top level", ".tmp");
1763   }
1764 
1765   return CGM.GetAddrOfConstantCString("", ".tmp");
1766 }
1767 
1768 ConstantLValue
1769 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
1770   assert(Emitter.CGF && "Invalid address of label expression outside function");
1771   llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel());
1772   Ptr = llvm::ConstantExpr::getBitCast(Ptr,
1773                                    CGM.getTypes().ConvertType(E->getType()));
1774   return Ptr;
1775 }
1776 
1777 ConstantLValue
1778 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
1779   unsigned builtin = E->getBuiltinCallee();
1780   if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
1781       builtin != Builtin::BI__builtin___NSStringMakeConstantString)
1782     return nullptr;
1783 
1784   auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts());
1785   if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
1786     return CGM.getObjCRuntime().GenerateConstantString(literal);
1787   } else {
1788     // FIXME: need to deal with UCN conversion issues.
1789     return CGM.GetAddrOfConstantCFString(literal);
1790   }
1791 }
1792 
1793 ConstantLValue
1794 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
1795   StringRef functionName;
1796   if (auto CGF = Emitter.CGF)
1797     functionName = CGF->CurFn->getName();
1798   else
1799     functionName = "global";
1800 
1801   return CGM.GetAddrOfGlobalBlock(E, functionName);
1802 }
1803 
1804 ConstantLValue
1805 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
1806   QualType T;
1807   if (E->isTypeOperand())
1808     T = E->getTypeOperand(CGM.getContext());
1809   else
1810     T = E->getExprOperand()->getType();
1811   return CGM.GetAddrOfRTTIDescriptor(T);
1812 }
1813 
1814 ConstantLValue
1815 ConstantLValueEmitter::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
1816   return CGM.GetAddrOfUuidDescriptor(E);
1817 }
1818 
1819 ConstantLValue
1820 ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
1821                                             const MaterializeTemporaryExpr *E) {
1822   assert(E->getStorageDuration() == SD_Static);
1823   SmallVector<const Expr *, 2> CommaLHSs;
1824   SmallVector<SubobjectAdjustment, 2> Adjustments;
1825   const Expr *Inner = E->GetTemporaryExpr()
1826       ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
1827   return CGM.GetAddrOfGlobalTemporary(E, Inner);
1828 }
1829 
1830 llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value,
1831                                                 QualType DestType) {
1832   switch (Value.getKind()) {
1833   case APValue::Uninitialized:
1834     llvm_unreachable("Constant expressions should be initialized.");
1835   case APValue::LValue:
1836     return ConstantLValueEmitter(*this, Value, DestType).tryEmit();
1837   case APValue::Int:
1838     return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt());
1839   case APValue::ComplexInt: {
1840     llvm::Constant *Complex[2];
1841 
1842     Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(),
1843                                         Value.getComplexIntReal());
1844     Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(),
1845                                         Value.getComplexIntImag());
1846 
1847     // FIXME: the target may want to specify that this is packed.
1848     llvm::StructType *STy =
1849         llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
1850     return llvm::ConstantStruct::get(STy, Complex);
1851   }
1852   case APValue::Float: {
1853     const llvm::APFloat &Init = Value.getFloat();
1854     if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
1855         !CGM.getContext().getLangOpts().NativeHalfType &&
1856         CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1857       return llvm::ConstantInt::get(CGM.getLLVMContext(),
1858                                     Init.bitcastToAPInt());
1859     else
1860       return llvm::ConstantFP::get(CGM.getLLVMContext(), Init);
1861   }
1862   case APValue::ComplexFloat: {
1863     llvm::Constant *Complex[2];
1864 
1865     Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(),
1866                                        Value.getComplexFloatReal());
1867     Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(),
1868                                        Value.getComplexFloatImag());
1869 
1870     // FIXME: the target may want to specify that this is packed.
1871     llvm::StructType *STy =
1872         llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
1873     return llvm::ConstantStruct::get(STy, Complex);
1874   }
1875   case APValue::Vector: {
1876     unsigned NumElts = Value.getVectorLength();
1877     SmallVector<llvm::Constant *, 4> Inits(NumElts);
1878 
1879     for (unsigned I = 0; I != NumElts; ++I) {
1880       const APValue &Elt = Value.getVectorElt(I);
1881       if (Elt.isInt())
1882         Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt());
1883       else if (Elt.isFloat())
1884         Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat());
1885       else
1886         llvm_unreachable("unsupported vector element type");
1887     }
1888     return llvm::ConstantVector::get(Inits);
1889   }
1890   case APValue::AddrLabelDiff: {
1891     const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
1892     const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
1893     llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
1894     llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
1895     if (!LHS || !RHS) return nullptr;
1896 
1897     // Compute difference
1898     llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType);
1899     LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy);
1900     RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy);
1901     llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
1902 
1903     // LLVM is a bit sensitive about the exact format of the
1904     // address-of-label difference; make sure to truncate after
1905     // the subtraction.
1906     return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
1907   }
1908   case APValue::Struct:
1909   case APValue::Union:
1910     return ConstStructBuilder::BuildStruct(*this, Value, DestType);
1911   case APValue::Array: {
1912     const ArrayType *CAT = CGM.getContext().getAsArrayType(DestType);
1913     unsigned NumElements = Value.getArraySize();
1914     unsigned NumInitElts = Value.getArrayInitializedElts();
1915 
1916     // Emit array filler, if there is one.
1917     llvm::Constant *Filler = nullptr;
1918     if (Value.hasArrayFiller())
1919       Filler = tryEmitAbstractForMemory(Value.getArrayFiller(),
1920                                         CAT->getElementType());
1921 
1922     // Emit initializer elements.
1923     llvm::Type *CommonElementType =
1924         CGM.getTypes().ConvertType(CAT->getElementType());
1925 
1926     // Try to use a ConstantAggregateZero if we can.
1927     if (Filler && Filler->isNullValue() && !NumInitElts) {
1928       llvm::ArrayType *AType =
1929           llvm::ArrayType::get(CommonElementType, NumElements);
1930       return llvm::ConstantAggregateZero::get(AType);
1931     }
1932 
1933     SmallVector<llvm::Constant*, 16> Elts;
1934     Elts.reserve(NumElements);
1935     for (unsigned I = 0; I < NumElements; ++I) {
1936       llvm::Constant *C = Filler;
1937       if (I < NumInitElts) {
1938         C = tryEmitPrivateForMemory(Value.getArrayInitializedElt(I),
1939                                     CAT->getElementType());
1940       } else if (!Filler) {
1941         assert(Value.hasArrayFiller() &&
1942                "Missing filler for implicit elements of initializer");
1943         C = tryEmitPrivateForMemory(Value.getArrayFiller(),
1944                                     CAT->getElementType());
1945       }
1946       if (!C) return nullptr;
1947 
1948       if (I == 0)
1949         CommonElementType = C->getType();
1950       else if (C->getType() != CommonElementType)
1951         CommonElementType = nullptr;
1952       Elts.push_back(C);
1953     }
1954 
1955     if (!CommonElementType) {
1956       // FIXME: Try to avoid packing the array
1957       std::vector<llvm::Type*> Types;
1958       Types.reserve(NumElements);
1959       for (unsigned i = 0, e = Elts.size(); i < e; ++i)
1960         Types.push_back(Elts[i]->getType());
1961       llvm::StructType *SType =
1962         llvm::StructType::get(CGM.getLLVMContext(), Types, true);
1963       return llvm::ConstantStruct::get(SType, Elts);
1964     }
1965 
1966     llvm::ArrayType *AType =
1967       llvm::ArrayType::get(CommonElementType, NumElements);
1968     return llvm::ConstantArray::get(AType, Elts);
1969   }
1970   case APValue::MemberPointer:
1971     return CGM.getCXXABI().EmitMemberPointer(Value, DestType);
1972   }
1973   llvm_unreachable("Unknown APValue kind");
1974 }
1975 
1976 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted(
1977     const CompoundLiteralExpr *E) {
1978   return EmittedCompoundLiterals.lookup(E);
1979 }
1980 
1981 void CodeGenModule::setAddrOfConstantCompoundLiteral(
1982     const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
1983   bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second;
1984   (void)Ok;
1985   assert(Ok && "CLE has already been emitted!");
1986 }
1987 
1988 ConstantAddress
1989 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
1990   assert(E->isFileScope() && "not a file-scope compound literal expr");
1991   return tryEmitGlobalCompoundLiteral(*this, nullptr, E);
1992 }
1993 
1994 llvm::Constant *
1995 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
1996   // Member pointer constants always have a very particular form.
1997   const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
1998   const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
1999 
2000   // A member function pointer.
2001   if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
2002     return getCXXABI().EmitMemberFunctionPointer(method);
2003 
2004   // Otherwise, a member data pointer.
2005   uint64_t fieldOffset = getContext().getFieldOffset(decl);
2006   CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
2007   return getCXXABI().EmitMemberDataPointer(type, chars);
2008 }
2009 
2010 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2011                                                llvm::Type *baseType,
2012                                                const CXXRecordDecl *base);
2013 
2014 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
2015                                         const RecordDecl *record,
2016                                         bool asCompleteObject) {
2017   const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
2018   llvm::StructType *structure =
2019     (asCompleteObject ? layout.getLLVMType()
2020                       : layout.getBaseSubobjectLLVMType());
2021 
2022   unsigned numElements = structure->getNumElements();
2023   std::vector<llvm::Constant *> elements(numElements);
2024 
2025   auto CXXR = dyn_cast<CXXRecordDecl>(record);
2026   // Fill in all the bases.
2027   if (CXXR) {
2028     for (const auto &I : CXXR->bases()) {
2029       if (I.isVirtual()) {
2030         // Ignore virtual bases; if we're laying out for a complete
2031         // object, we'll lay these out later.
2032         continue;
2033       }
2034 
2035       const CXXRecordDecl *base =
2036         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2037 
2038       // Ignore empty bases.
2039       if (base->isEmpty() ||
2040           CGM.getContext().getASTRecordLayout(base).getNonVirtualSize()
2041               .isZero())
2042         continue;
2043 
2044       unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
2045       llvm::Type *baseType = structure->getElementType(fieldIndex);
2046       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2047     }
2048   }
2049 
2050   // Fill in all the fields.
2051   for (const auto *Field : record->fields()) {
2052     // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
2053     // will fill in later.)
2054     if (!Field->isBitField()) {
2055       unsigned fieldIndex = layout.getLLVMFieldNo(Field);
2056       elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
2057     }
2058 
2059     // For unions, stop after the first named field.
2060     if (record->isUnion()) {
2061       if (Field->getIdentifier())
2062         break;
2063       if (const auto *FieldRD =
2064               dyn_cast_or_null<RecordDecl>(Field->getType()->getAsTagDecl()))
2065         if (FieldRD->findFirstNamedDataMember())
2066           break;
2067     }
2068   }
2069 
2070   // Fill in the virtual bases, if we're working with the complete object.
2071   if (CXXR && asCompleteObject) {
2072     for (const auto &I : CXXR->vbases()) {
2073       const CXXRecordDecl *base =
2074         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2075 
2076       // Ignore empty bases.
2077       if (base->isEmpty())
2078         continue;
2079 
2080       unsigned fieldIndex = layout.getVirtualBaseIndex(base);
2081 
2082       // We might have already laid this field out.
2083       if (elements[fieldIndex]) continue;
2084 
2085       llvm::Type *baseType = structure->getElementType(fieldIndex);
2086       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2087     }
2088   }
2089 
2090   // Now go through all other fields and zero them out.
2091   for (unsigned i = 0; i != numElements; ++i) {
2092     if (!elements[i])
2093       elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
2094   }
2095 
2096   return llvm::ConstantStruct::get(structure, elements);
2097 }
2098 
2099 /// Emit the null constant for a base subobject.
2100 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2101                                                llvm::Type *baseType,
2102                                                const CXXRecordDecl *base) {
2103   const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
2104 
2105   // Just zero out bases that don't have any pointer to data members.
2106   if (baseLayout.isZeroInitializableAsBase())
2107     return llvm::Constant::getNullValue(baseType);
2108 
2109   // Otherwise, we can just use its null constant.
2110   return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
2111 }
2112 
2113 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM,
2114                                                    QualType T) {
2115   return emitForMemory(CGM, CGM.EmitNullConstant(T), T);
2116 }
2117 
2118 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
2119   if (T->getAs<PointerType>())
2120     return getNullPointer(
2121         cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T);
2122 
2123   if (getTypes().isZeroInitializable(T))
2124     return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
2125 
2126   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
2127     llvm::ArrayType *ATy =
2128       cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
2129 
2130     QualType ElementTy = CAT->getElementType();
2131 
2132     llvm::Constant *Element =
2133       ConstantEmitter::emitNullForMemory(*this, ElementTy);
2134     unsigned NumElements = CAT->getSize().getZExtValue();
2135     SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
2136     return llvm::ConstantArray::get(ATy, Array);
2137   }
2138 
2139   if (const RecordType *RT = T->getAs<RecordType>())
2140     return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true);
2141 
2142   assert(T->isMemberDataPointerType() &&
2143          "Should only see pointers to data members here!");
2144 
2145   return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
2146 }
2147 
2148 llvm::Constant *
2149 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
2150   return ::EmitNullConstant(*this, Record, false);
2151 }
2152