1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Constant Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGObjCRuntime.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenModule.h" 19 #include "ConstantEmitter.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/APValue.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/Builtins.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalVariable.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 //===----------------------------------------------------------------------===// 34 // ConstStructBuilder 35 //===----------------------------------------------------------------------===// 36 37 namespace { 38 class ConstExprEmitter; 39 class ConstStructBuilder { 40 CodeGenModule &CGM; 41 ConstantEmitter &Emitter; 42 43 bool Packed; 44 CharUnits NextFieldOffsetInChars; 45 CharUnits LLVMStructAlignment; 46 SmallVector<llvm::Constant *, 32> Elements; 47 public: 48 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 49 ConstExprEmitter *ExprEmitter, 50 llvm::ConstantStruct *Base, 51 InitListExpr *Updater, 52 QualType ValTy); 53 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 54 InitListExpr *ILE, QualType StructTy); 55 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 56 const APValue &Value, QualType ValTy); 57 58 private: 59 ConstStructBuilder(ConstantEmitter &emitter) 60 : CGM(emitter.CGM), Emitter(emitter), Packed(false), 61 NextFieldOffsetInChars(CharUnits::Zero()), 62 LLVMStructAlignment(CharUnits::One()) { } 63 64 void AppendField(const FieldDecl *Field, uint64_t FieldOffset, 65 llvm::Constant *InitExpr); 66 67 void AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst); 68 69 void AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, 70 llvm::ConstantInt *InitExpr); 71 72 void AppendPadding(CharUnits PadSize); 73 74 void AppendTailPadding(CharUnits RecordSize); 75 76 void ConvertStructToPacked(); 77 78 bool Build(InitListExpr *ILE); 79 bool Build(ConstExprEmitter *Emitter, llvm::ConstantStruct *Base, 80 InitListExpr *Updater); 81 bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase, 82 const CXXRecordDecl *VTableClass, CharUnits BaseOffset); 83 llvm::Constant *Finalize(QualType Ty); 84 85 CharUnits getAlignment(const llvm::Constant *C) const { 86 if (Packed) return CharUnits::One(); 87 return CharUnits::fromQuantity( 88 CGM.getDataLayout().getABITypeAlignment(C->getType())); 89 } 90 91 CharUnits getSizeInChars(const llvm::Constant *C) const { 92 return CharUnits::fromQuantity( 93 CGM.getDataLayout().getTypeAllocSize(C->getType())); 94 } 95 }; 96 97 void ConstStructBuilder:: 98 AppendField(const FieldDecl *Field, uint64_t FieldOffset, 99 llvm::Constant *InitCst) { 100 const ASTContext &Context = CGM.getContext(); 101 102 CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset); 103 104 AppendBytes(FieldOffsetInChars, InitCst); 105 } 106 107 void ConstStructBuilder:: 108 AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst) { 109 110 assert(NextFieldOffsetInChars <= FieldOffsetInChars 111 && "Field offset mismatch!"); 112 113 CharUnits FieldAlignment = getAlignment(InitCst); 114 115 // Round up the field offset to the alignment of the field type. 116 CharUnits AlignedNextFieldOffsetInChars = 117 NextFieldOffsetInChars.alignTo(FieldAlignment); 118 119 if (AlignedNextFieldOffsetInChars < FieldOffsetInChars) { 120 // We need to append padding. 121 AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars); 122 123 assert(NextFieldOffsetInChars == FieldOffsetInChars && 124 "Did not add enough padding!"); 125 126 AlignedNextFieldOffsetInChars = 127 NextFieldOffsetInChars.alignTo(FieldAlignment); 128 } 129 130 if (AlignedNextFieldOffsetInChars > FieldOffsetInChars) { 131 assert(!Packed && "Alignment is wrong even with a packed struct!"); 132 133 // Convert the struct to a packed struct. 134 ConvertStructToPacked(); 135 136 // After we pack the struct, we may need to insert padding. 137 if (NextFieldOffsetInChars < FieldOffsetInChars) { 138 // We need to append padding. 139 AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars); 140 141 assert(NextFieldOffsetInChars == FieldOffsetInChars && 142 "Did not add enough padding!"); 143 } 144 AlignedNextFieldOffsetInChars = NextFieldOffsetInChars; 145 } 146 147 // Add the field. 148 Elements.push_back(InitCst); 149 NextFieldOffsetInChars = AlignedNextFieldOffsetInChars + 150 getSizeInChars(InitCst); 151 152 if (Packed) 153 assert(LLVMStructAlignment == CharUnits::One() && 154 "Packed struct not byte-aligned!"); 155 else 156 LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment); 157 } 158 159 void ConstStructBuilder::AppendBitField(const FieldDecl *Field, 160 uint64_t FieldOffset, 161 llvm::ConstantInt *CI) { 162 const ASTContext &Context = CGM.getContext(); 163 const uint64_t CharWidth = Context.getCharWidth(); 164 uint64_t NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars); 165 if (FieldOffset > NextFieldOffsetInBits) { 166 // We need to add padding. 167 CharUnits PadSize = Context.toCharUnitsFromBits( 168 llvm::alignTo(FieldOffset - NextFieldOffsetInBits, 169 Context.getTargetInfo().getCharAlign())); 170 171 AppendPadding(PadSize); 172 } 173 174 uint64_t FieldSize = Field->getBitWidthValue(Context); 175 176 llvm::APInt FieldValue = CI->getValue(); 177 178 // Promote the size of FieldValue if necessary 179 // FIXME: This should never occur, but currently it can because initializer 180 // constants are cast to bool, and because clang is not enforcing bitfield 181 // width limits. 182 if (FieldSize > FieldValue.getBitWidth()) 183 FieldValue = FieldValue.zext(FieldSize); 184 185 // Truncate the size of FieldValue to the bit field size. 186 if (FieldSize < FieldValue.getBitWidth()) 187 FieldValue = FieldValue.trunc(FieldSize); 188 189 NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars); 190 if (FieldOffset < NextFieldOffsetInBits) { 191 // Either part of the field or the entire field can go into the previous 192 // byte. 193 assert(!Elements.empty() && "Elements can't be empty!"); 194 195 unsigned BitsInPreviousByte = NextFieldOffsetInBits - FieldOffset; 196 197 bool FitsCompletelyInPreviousByte = 198 BitsInPreviousByte >= FieldValue.getBitWidth(); 199 200 llvm::APInt Tmp = FieldValue; 201 202 if (!FitsCompletelyInPreviousByte) { 203 unsigned NewFieldWidth = FieldSize - BitsInPreviousByte; 204 205 if (CGM.getDataLayout().isBigEndian()) { 206 Tmp.lshrInPlace(NewFieldWidth); 207 Tmp = Tmp.trunc(BitsInPreviousByte); 208 209 // We want the remaining high bits. 210 FieldValue = FieldValue.trunc(NewFieldWidth); 211 } else { 212 Tmp = Tmp.trunc(BitsInPreviousByte); 213 214 // We want the remaining low bits. 215 FieldValue.lshrInPlace(BitsInPreviousByte); 216 FieldValue = FieldValue.trunc(NewFieldWidth); 217 } 218 } 219 220 Tmp = Tmp.zext(CharWidth); 221 if (CGM.getDataLayout().isBigEndian()) { 222 if (FitsCompletelyInPreviousByte) 223 Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth()); 224 } else { 225 Tmp = Tmp.shl(CharWidth - BitsInPreviousByte); 226 } 227 228 // 'or' in the bits that go into the previous byte. 229 llvm::Value *LastElt = Elements.back(); 230 if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(LastElt)) 231 Tmp |= Val->getValue(); 232 else { 233 assert(isa<llvm::UndefValue>(LastElt)); 234 // If there is an undef field that we're adding to, it can either be a 235 // scalar undef (in which case, we just replace it with our field) or it 236 // is an array. If it is an array, we have to pull one byte off the 237 // array so that the other undef bytes stay around. 238 if (!isa<llvm::IntegerType>(LastElt->getType())) { 239 // The undef padding will be a multibyte array, create a new smaller 240 // padding and then an hole for our i8 to get plopped into. 241 assert(isa<llvm::ArrayType>(LastElt->getType()) && 242 "Expected array padding of undefs"); 243 llvm::ArrayType *AT = cast<llvm::ArrayType>(LastElt->getType()); 244 assert(AT->getElementType()->isIntegerTy(CharWidth) && 245 AT->getNumElements() != 0 && 246 "Expected non-empty array padding of undefs"); 247 248 // Remove the padding array. 249 NextFieldOffsetInChars -= CharUnits::fromQuantity(AT->getNumElements()); 250 Elements.pop_back(); 251 252 // Add the padding back in two chunks. 253 AppendPadding(CharUnits::fromQuantity(AT->getNumElements()-1)); 254 AppendPadding(CharUnits::One()); 255 assert(isa<llvm::UndefValue>(Elements.back()) && 256 Elements.back()->getType()->isIntegerTy(CharWidth) && 257 "Padding addition didn't work right"); 258 } 259 } 260 261 Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp); 262 263 if (FitsCompletelyInPreviousByte) 264 return; 265 } 266 267 while (FieldValue.getBitWidth() > CharWidth) { 268 llvm::APInt Tmp; 269 270 if (CGM.getDataLayout().isBigEndian()) { 271 // We want the high bits. 272 Tmp = 273 FieldValue.lshr(FieldValue.getBitWidth() - CharWidth).trunc(CharWidth); 274 } else { 275 // We want the low bits. 276 Tmp = FieldValue.trunc(CharWidth); 277 278 FieldValue.lshrInPlace(CharWidth); 279 } 280 281 Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp)); 282 ++NextFieldOffsetInChars; 283 284 FieldValue = FieldValue.trunc(FieldValue.getBitWidth() - CharWidth); 285 } 286 287 assert(FieldValue.getBitWidth() > 0 && 288 "Should have at least one bit left!"); 289 assert(FieldValue.getBitWidth() <= CharWidth && 290 "Should not have more than a byte left!"); 291 292 if (FieldValue.getBitWidth() < CharWidth) { 293 if (CGM.getDataLayout().isBigEndian()) { 294 unsigned BitWidth = FieldValue.getBitWidth(); 295 296 FieldValue = FieldValue.zext(CharWidth) << (CharWidth - BitWidth); 297 } else 298 FieldValue = FieldValue.zext(CharWidth); 299 } 300 301 // Append the last element. 302 Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), 303 FieldValue)); 304 ++NextFieldOffsetInChars; 305 } 306 307 void ConstStructBuilder::AppendPadding(CharUnits PadSize) { 308 if (PadSize.isZero()) 309 return; 310 311 llvm::Type *Ty = CGM.Int8Ty; 312 if (PadSize > CharUnits::One()) 313 Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity()); 314 315 llvm::Constant *C = llvm::UndefValue::get(Ty); 316 Elements.push_back(C); 317 assert(getAlignment(C) == CharUnits::One() && 318 "Padding must have 1 byte alignment!"); 319 320 NextFieldOffsetInChars += getSizeInChars(C); 321 } 322 323 void ConstStructBuilder::AppendTailPadding(CharUnits RecordSize) { 324 assert(NextFieldOffsetInChars <= RecordSize && 325 "Size mismatch!"); 326 327 AppendPadding(RecordSize - NextFieldOffsetInChars); 328 } 329 330 void ConstStructBuilder::ConvertStructToPacked() { 331 SmallVector<llvm::Constant *, 16> PackedElements; 332 CharUnits ElementOffsetInChars = CharUnits::Zero(); 333 334 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 335 llvm::Constant *C = Elements[i]; 336 337 CharUnits ElementAlign = CharUnits::fromQuantity( 338 CGM.getDataLayout().getABITypeAlignment(C->getType())); 339 CharUnits AlignedElementOffsetInChars = 340 ElementOffsetInChars.alignTo(ElementAlign); 341 342 if (AlignedElementOffsetInChars > ElementOffsetInChars) { 343 // We need some padding. 344 CharUnits NumChars = 345 AlignedElementOffsetInChars - ElementOffsetInChars; 346 347 llvm::Type *Ty = CGM.Int8Ty; 348 if (NumChars > CharUnits::One()) 349 Ty = llvm::ArrayType::get(Ty, NumChars.getQuantity()); 350 351 llvm::Constant *Padding = llvm::UndefValue::get(Ty); 352 PackedElements.push_back(Padding); 353 ElementOffsetInChars += getSizeInChars(Padding); 354 } 355 356 PackedElements.push_back(C); 357 ElementOffsetInChars += getSizeInChars(C); 358 } 359 360 assert(ElementOffsetInChars == NextFieldOffsetInChars && 361 "Packing the struct changed its size!"); 362 363 Elements.swap(PackedElements); 364 LLVMStructAlignment = CharUnits::One(); 365 Packed = true; 366 } 367 368 bool ConstStructBuilder::Build(InitListExpr *ILE) { 369 RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl(); 370 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 371 372 unsigned FieldNo = 0; 373 unsigned ElementNo = 0; 374 375 // Bail out if we have base classes. We could support these, but they only 376 // arise in C++1z where we will have already constant folded most interesting 377 // cases. FIXME: There are still a few more cases we can handle this way. 378 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 379 if (CXXRD->getNumBases()) 380 return false; 381 382 for (RecordDecl::field_iterator Field = RD->field_begin(), 383 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 384 // If this is a union, skip all the fields that aren't being initialized. 385 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field) 386 continue; 387 388 // Don't emit anonymous bitfields, they just affect layout. 389 if (Field->isUnnamedBitfield()) 390 continue; 391 392 // Get the initializer. A struct can include fields without initializers, 393 // we just use explicit null values for them. 394 llvm::Constant *EltInit; 395 if (ElementNo < ILE->getNumInits()) 396 EltInit = Emitter.tryEmitPrivateForMemory(ILE->getInit(ElementNo++), 397 Field->getType()); 398 else 399 EltInit = Emitter.emitNullForMemory(Field->getType()); 400 401 if (!EltInit) 402 return false; 403 404 if (!Field->isBitField()) { 405 // Handle non-bitfield members. 406 AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit); 407 } else { 408 // Otherwise we have a bitfield. 409 if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) { 410 AppendBitField(*Field, Layout.getFieldOffset(FieldNo), CI); 411 } else { 412 // We are trying to initialize a bitfield with a non-trivial constant, 413 // this must require run-time code. 414 return false; 415 } 416 } 417 } 418 419 return true; 420 } 421 422 namespace { 423 struct BaseInfo { 424 BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index) 425 : Decl(Decl), Offset(Offset), Index(Index) { 426 } 427 428 const CXXRecordDecl *Decl; 429 CharUnits Offset; 430 unsigned Index; 431 432 bool operator<(const BaseInfo &O) const { return Offset < O.Offset; } 433 }; 434 } 435 436 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD, 437 bool IsPrimaryBase, 438 const CXXRecordDecl *VTableClass, 439 CharUnits Offset) { 440 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 441 442 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 443 // Add a vtable pointer, if we need one and it hasn't already been added. 444 if (CD->isDynamicClass() && !IsPrimaryBase) { 445 llvm::Constant *VTableAddressPoint = 446 CGM.getCXXABI().getVTableAddressPointForConstExpr( 447 BaseSubobject(CD, Offset), VTableClass); 448 AppendBytes(Offset, VTableAddressPoint); 449 } 450 451 // Accumulate and sort bases, in order to visit them in address order, which 452 // may not be the same as declaration order. 453 SmallVector<BaseInfo, 8> Bases; 454 Bases.reserve(CD->getNumBases()); 455 unsigned BaseNo = 0; 456 for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(), 457 BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) { 458 assert(!Base->isVirtual() && "should not have virtual bases here"); 459 const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl(); 460 CharUnits BaseOffset = Layout.getBaseClassOffset(BD); 461 Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo)); 462 } 463 std::stable_sort(Bases.begin(), Bases.end()); 464 465 for (unsigned I = 0, N = Bases.size(); I != N; ++I) { 466 BaseInfo &Base = Bases[I]; 467 468 bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl; 469 Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase, 470 VTableClass, Offset + Base.Offset); 471 } 472 } 473 474 unsigned FieldNo = 0; 475 uint64_t OffsetBits = CGM.getContext().toBits(Offset); 476 477 for (RecordDecl::field_iterator Field = RD->field_begin(), 478 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 479 // If this is a union, skip all the fields that aren't being initialized. 480 if (RD->isUnion() && Val.getUnionField() != *Field) 481 continue; 482 483 // Don't emit anonymous bitfields, they just affect layout. 484 if (Field->isUnnamedBitfield()) 485 continue; 486 487 // Emit the value of the initializer. 488 const APValue &FieldValue = 489 RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo); 490 llvm::Constant *EltInit = 491 Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType()); 492 if (!EltInit) 493 return false; 494 495 if (!Field->isBitField()) { 496 // Handle non-bitfield members. 497 AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, EltInit); 498 } else { 499 // Otherwise we have a bitfield. 500 AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 501 cast<llvm::ConstantInt>(EltInit)); 502 } 503 } 504 505 return true; 506 } 507 508 llvm::Constant *ConstStructBuilder::Finalize(QualType Ty) { 509 RecordDecl *RD = Ty->getAs<RecordType>()->getDecl(); 510 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 511 512 CharUnits LayoutSizeInChars = Layout.getSize(); 513 514 if (NextFieldOffsetInChars > LayoutSizeInChars) { 515 // If the struct is bigger than the size of the record type, 516 // we must have a flexible array member at the end. 517 assert(RD->hasFlexibleArrayMember() && 518 "Must have flexible array member if struct is bigger than type!"); 519 520 // No tail padding is necessary. 521 } else { 522 // Append tail padding if necessary. 523 CharUnits LLVMSizeInChars = 524 NextFieldOffsetInChars.alignTo(LLVMStructAlignment); 525 526 if (LLVMSizeInChars != LayoutSizeInChars) 527 AppendTailPadding(LayoutSizeInChars); 528 529 LLVMSizeInChars = NextFieldOffsetInChars.alignTo(LLVMStructAlignment); 530 531 // Check if we need to convert the struct to a packed struct. 532 if (NextFieldOffsetInChars <= LayoutSizeInChars && 533 LLVMSizeInChars > LayoutSizeInChars) { 534 assert(!Packed && "Size mismatch!"); 535 536 ConvertStructToPacked(); 537 assert(NextFieldOffsetInChars <= LayoutSizeInChars && 538 "Converting to packed did not help!"); 539 } 540 541 LLVMSizeInChars = NextFieldOffsetInChars.alignTo(LLVMStructAlignment); 542 543 assert(LayoutSizeInChars == LLVMSizeInChars && 544 "Tail padding mismatch!"); 545 } 546 547 // Pick the type to use. If the type is layout identical to the ConvertType 548 // type then use it, otherwise use whatever the builder produced for us. 549 llvm::StructType *STy = 550 llvm::ConstantStruct::getTypeForElements(CGM.getLLVMContext(), 551 Elements, Packed); 552 llvm::Type *ValTy = CGM.getTypes().ConvertType(Ty); 553 if (llvm::StructType *ValSTy = dyn_cast<llvm::StructType>(ValTy)) { 554 if (ValSTy->isLayoutIdentical(STy)) 555 STy = ValSTy; 556 } 557 558 llvm::Constant *Result = llvm::ConstantStruct::get(STy, Elements); 559 560 assert(NextFieldOffsetInChars.alignTo(getAlignment(Result)) == 561 getSizeInChars(Result) && 562 "Size mismatch!"); 563 564 return Result; 565 } 566 567 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 568 ConstExprEmitter *ExprEmitter, 569 llvm::ConstantStruct *Base, 570 InitListExpr *Updater, 571 QualType ValTy) { 572 ConstStructBuilder Builder(Emitter); 573 if (!Builder.Build(ExprEmitter, Base, Updater)) 574 return nullptr; 575 return Builder.Finalize(ValTy); 576 } 577 578 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 579 InitListExpr *ILE, 580 QualType ValTy) { 581 ConstStructBuilder Builder(Emitter); 582 583 if (!Builder.Build(ILE)) 584 return nullptr; 585 586 return Builder.Finalize(ValTy); 587 } 588 589 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 590 const APValue &Val, 591 QualType ValTy) { 592 ConstStructBuilder Builder(Emitter); 593 594 const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl(); 595 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); 596 if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero())) 597 return nullptr; 598 599 return Builder.Finalize(ValTy); 600 } 601 602 603 //===----------------------------------------------------------------------===// 604 // ConstExprEmitter 605 //===----------------------------------------------------------------------===// 606 607 static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM, 608 CodeGenFunction *CGF, 609 const CompoundLiteralExpr *E) { 610 CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType()); 611 if (llvm::GlobalVariable *Addr = 612 CGM.getAddrOfConstantCompoundLiteralIfEmitted(E)) 613 return ConstantAddress(Addr, Align); 614 615 LangAS addressSpace = E->getType().getAddressSpace(); 616 617 ConstantEmitter emitter(CGM, CGF); 618 llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(), 619 addressSpace, E->getType()); 620 if (!C) { 621 assert(!E->isFileScope() && 622 "file-scope compound literal did not have constant initializer!"); 623 return ConstantAddress::invalid(); 624 } 625 626 auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), 627 CGM.isTypeConstant(E->getType(), true), 628 llvm::GlobalValue::InternalLinkage, 629 C, ".compoundliteral", nullptr, 630 llvm::GlobalVariable::NotThreadLocal, 631 CGM.getContext().getTargetAddressSpace(addressSpace)); 632 emitter.finalize(GV); 633 GV->setAlignment(Align.getQuantity()); 634 CGM.setAddrOfConstantCompoundLiteral(E, GV); 635 return ConstantAddress(GV, Align); 636 } 637 638 /// This class only needs to handle two cases: 639 /// 1) Literals (this is used by APValue emission to emit literals). 640 /// 2) Arrays, structs and unions (outside C++11 mode, we don't currently 641 /// constant fold these types). 642 class ConstExprEmitter : 643 public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> { 644 CodeGenModule &CGM; 645 ConstantEmitter &Emitter; 646 llvm::LLVMContext &VMContext; 647 public: 648 ConstExprEmitter(ConstantEmitter &emitter) 649 : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) { 650 } 651 652 //===--------------------------------------------------------------------===// 653 // Visitor Methods 654 //===--------------------------------------------------------------------===// 655 656 llvm::Constant *VisitStmt(Stmt *S, QualType T) { 657 return nullptr; 658 } 659 660 llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) { 661 return Visit(PE->getSubExpr(), T); 662 } 663 664 llvm::Constant * 665 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE, 666 QualType T) { 667 return Visit(PE->getReplacement(), T); 668 } 669 670 llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE, 671 QualType T) { 672 return Visit(GE->getResultExpr(), T); 673 } 674 675 llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) { 676 return Visit(CE->getChosenSubExpr(), T); 677 } 678 679 llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) { 680 return Visit(E->getInitializer(), T); 681 } 682 683 llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) { 684 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 685 CGM.EmitExplicitCastExprType(ECE, Emitter.CGF); 686 Expr *subExpr = E->getSubExpr(); 687 688 switch (E->getCastKind()) { 689 case CK_ToUnion: { 690 // GCC cast to union extension 691 assert(E->getType()->isUnionType() && 692 "Destination type is not union type!"); 693 694 auto field = E->getTargetUnionField(); 695 696 auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType()); 697 if (!C) return nullptr; 698 699 auto destTy = ConvertType(destType); 700 if (C->getType() == destTy) return C; 701 702 // Build a struct with the union sub-element as the first member, 703 // and padded to the appropriate size. 704 SmallVector<llvm::Constant*, 2> Elts; 705 SmallVector<llvm::Type*, 2> Types; 706 Elts.push_back(C); 707 Types.push_back(C->getType()); 708 unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType()); 709 unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy); 710 711 assert(CurSize <= TotalSize && "Union size mismatch!"); 712 if (unsigned NumPadBytes = TotalSize - CurSize) { 713 llvm::Type *Ty = CGM.Int8Ty; 714 if (NumPadBytes > 1) 715 Ty = llvm::ArrayType::get(Ty, NumPadBytes); 716 717 Elts.push_back(llvm::UndefValue::get(Ty)); 718 Types.push_back(Ty); 719 } 720 721 llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false); 722 return llvm::ConstantStruct::get(STy, Elts); 723 } 724 725 case CK_AddressSpaceConversion: { 726 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 727 if (!C) return nullptr; 728 LangAS destAS = E->getType()->getPointeeType().getAddressSpace(); 729 LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace(); 730 llvm::Type *destTy = ConvertType(E->getType()); 731 return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS, 732 destAS, destTy); 733 } 734 735 case CK_LValueToRValue: 736 case CK_AtomicToNonAtomic: 737 case CK_NonAtomicToAtomic: 738 case CK_NoOp: 739 case CK_ConstructorConversion: 740 return Visit(subExpr, destType); 741 742 case CK_IntToOCLSampler: 743 llvm_unreachable("global sampler variables are not generated"); 744 745 case CK_Dependent: llvm_unreachable("saw dependent cast!"); 746 747 case CK_BuiltinFnToFnPtr: 748 llvm_unreachable("builtin functions are handled elsewhere"); 749 750 case CK_ReinterpretMemberPointer: 751 case CK_DerivedToBaseMemberPointer: 752 case CK_BaseToDerivedMemberPointer: { 753 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 754 if (!C) return nullptr; 755 return CGM.getCXXABI().EmitMemberPointerConversion(E, C); 756 } 757 758 // These will never be supported. 759 case CK_ObjCObjectLValueCast: 760 case CK_ARCProduceObject: 761 case CK_ARCConsumeObject: 762 case CK_ARCReclaimReturnedObject: 763 case CK_ARCExtendBlockObject: 764 case CK_CopyAndAutoreleaseBlockObject: 765 return nullptr; 766 767 // These don't need to be handled here because Evaluate knows how to 768 // evaluate them in the cases where they can be folded. 769 case CK_BitCast: 770 case CK_ToVoid: 771 case CK_Dynamic: 772 case CK_LValueBitCast: 773 case CK_NullToMemberPointer: 774 case CK_UserDefinedConversion: 775 case CK_CPointerToObjCPointerCast: 776 case CK_BlockPointerToObjCPointerCast: 777 case CK_AnyPointerToBlockPointerCast: 778 case CK_ArrayToPointerDecay: 779 case CK_FunctionToPointerDecay: 780 case CK_BaseToDerived: 781 case CK_DerivedToBase: 782 case CK_UncheckedDerivedToBase: 783 case CK_MemberPointerToBoolean: 784 case CK_VectorSplat: 785 case CK_FloatingRealToComplex: 786 case CK_FloatingComplexToReal: 787 case CK_FloatingComplexToBoolean: 788 case CK_FloatingComplexCast: 789 case CK_FloatingComplexToIntegralComplex: 790 case CK_IntegralRealToComplex: 791 case CK_IntegralComplexToReal: 792 case CK_IntegralComplexToBoolean: 793 case CK_IntegralComplexCast: 794 case CK_IntegralComplexToFloatingComplex: 795 case CK_PointerToIntegral: 796 case CK_PointerToBoolean: 797 case CK_NullToPointer: 798 case CK_IntegralCast: 799 case CK_BooleanToSignedIntegral: 800 case CK_IntegralToPointer: 801 case CK_IntegralToBoolean: 802 case CK_IntegralToFloating: 803 case CK_FloatingToIntegral: 804 case CK_FloatingToBoolean: 805 case CK_FloatingCast: 806 case CK_ZeroToOCLEvent: 807 case CK_ZeroToOCLQueue: 808 return nullptr; 809 } 810 llvm_unreachable("Invalid CastKind"); 811 } 812 813 llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE, QualType T) { 814 return Visit(DAE->getExpr(), T); 815 } 816 817 llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) { 818 // No need for a DefaultInitExprScope: we don't handle 'this' in a 819 // constant expression. 820 return Visit(DIE->getExpr(), T); 821 } 822 823 llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) { 824 if (!E->cleanupsHaveSideEffects()) 825 return Visit(E->getSubExpr(), T); 826 return nullptr; 827 } 828 829 llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E, 830 QualType T) { 831 return Visit(E->GetTemporaryExpr(), T); 832 } 833 834 llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) { 835 llvm::ArrayType *AType = 836 cast<llvm::ArrayType>(ConvertType(ILE->getType())); 837 llvm::Type *ElemTy = AType->getElementType(); 838 unsigned NumInitElements = ILE->getNumInits(); 839 unsigned NumElements = AType->getNumElements(); 840 841 // Initialising an array requires us to automatically 842 // initialise any elements that have not been initialised explicitly 843 unsigned NumInitableElts = std::min(NumInitElements, NumElements); 844 845 QualType EltType = CGM.getContext().getAsArrayType(T)->getElementType(); 846 847 // Initialize remaining array elements. 848 llvm::Constant *fillC; 849 if (Expr *filler = ILE->getArrayFiller()) 850 fillC = Emitter.tryEmitAbstractForMemory(filler, EltType); 851 else 852 fillC = Emitter.emitNullForMemory(EltType); 853 if (!fillC) 854 return nullptr; 855 856 // Try to use a ConstantAggregateZero if we can. 857 if (fillC->isNullValue() && !NumInitableElts) 858 return llvm::ConstantAggregateZero::get(AType); 859 860 // Copy initializer elements. 861 SmallVector<llvm::Constant*, 16> Elts; 862 Elts.reserve(std::max(NumInitableElts, NumElements)); 863 864 bool RewriteType = false; 865 bool AllNullValues = true; 866 for (unsigned i = 0; i < NumInitableElts; ++i) { 867 Expr *Init = ILE->getInit(i); 868 llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType); 869 if (!C) 870 return nullptr; 871 RewriteType |= (C->getType() != ElemTy); 872 Elts.push_back(C); 873 if (AllNullValues && !C->isNullValue()) 874 AllNullValues = false; 875 } 876 877 // If all initializer elements are "zero," then avoid storing NumElements 878 // instances of the zero representation. 879 if (AllNullValues) 880 return llvm::ConstantAggregateZero::get(AType); 881 882 RewriteType |= (fillC->getType() != ElemTy); 883 Elts.resize(NumElements, fillC); 884 885 if (RewriteType) { 886 // FIXME: Try to avoid packing the array 887 std::vector<llvm::Type*> Types; 888 Types.reserve(Elts.size()); 889 for (unsigned i = 0, e = Elts.size(); i < e; ++i) 890 Types.push_back(Elts[i]->getType()); 891 llvm::StructType *SType = llvm::StructType::get(AType->getContext(), 892 Types, true); 893 return llvm::ConstantStruct::get(SType, Elts); 894 } 895 896 return llvm::ConstantArray::get(AType, Elts); 897 } 898 899 llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) { 900 return ConstStructBuilder::BuildStruct(Emitter, ILE, T); 901 } 902 903 llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E, 904 QualType T) { 905 return CGM.EmitNullConstant(T); 906 } 907 908 llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) { 909 if (ILE->isTransparent()) 910 return Visit(ILE->getInit(0), T); 911 912 if (ILE->getType()->isArrayType()) 913 return EmitArrayInitialization(ILE, T); 914 915 if (ILE->getType()->isRecordType()) 916 return EmitRecordInitialization(ILE, T); 917 918 return nullptr; 919 } 920 921 llvm::Constant *EmitDesignatedInitUpdater(llvm::Constant *Base, 922 InitListExpr *Updater, 923 QualType destType) { 924 if (auto destAT = CGM.getContext().getAsArrayType(destType)) { 925 llvm::ArrayType *AType = cast<llvm::ArrayType>(ConvertType(destType)); 926 llvm::Type *ElemType = AType->getElementType(); 927 928 unsigned NumInitElements = Updater->getNumInits(); 929 unsigned NumElements = AType->getNumElements(); 930 931 std::vector<llvm::Constant *> Elts; 932 Elts.reserve(NumElements); 933 934 QualType destElemType = destAT->getElementType(); 935 936 if (auto DataArray = dyn_cast<llvm::ConstantDataArray>(Base)) 937 for (unsigned i = 0; i != NumElements; ++i) 938 Elts.push_back(DataArray->getElementAsConstant(i)); 939 else if (auto Array = dyn_cast<llvm::ConstantArray>(Base)) 940 for (unsigned i = 0; i != NumElements; ++i) 941 Elts.push_back(Array->getOperand(i)); 942 else 943 return nullptr; // FIXME: other array types not implemented 944 945 llvm::Constant *fillC = nullptr; 946 if (Expr *filler = Updater->getArrayFiller()) 947 if (!isa<NoInitExpr>(filler)) 948 fillC = Emitter.tryEmitAbstractForMemory(filler, destElemType); 949 bool RewriteType = (fillC && fillC->getType() != ElemType); 950 951 for (unsigned i = 0; i != NumElements; ++i) { 952 Expr *Init = nullptr; 953 if (i < NumInitElements) 954 Init = Updater->getInit(i); 955 956 if (!Init && fillC) 957 Elts[i] = fillC; 958 else if (!Init || isa<NoInitExpr>(Init)) 959 ; // Do nothing. 960 else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) 961 Elts[i] = EmitDesignatedInitUpdater(Elts[i], ChildILE, destElemType); 962 else 963 Elts[i] = Emitter.tryEmitPrivateForMemory(Init, destElemType); 964 965 if (!Elts[i]) 966 return nullptr; 967 RewriteType |= (Elts[i]->getType() != ElemType); 968 } 969 970 if (RewriteType) { 971 std::vector<llvm::Type *> Types; 972 Types.reserve(NumElements); 973 for (unsigned i = 0; i != NumElements; ++i) 974 Types.push_back(Elts[i]->getType()); 975 llvm::StructType *SType = llvm::StructType::get(AType->getContext(), 976 Types, true); 977 return llvm::ConstantStruct::get(SType, Elts); 978 } 979 980 return llvm::ConstantArray::get(AType, Elts); 981 } 982 983 if (destType->isRecordType()) 984 return ConstStructBuilder::BuildStruct(Emitter, this, 985 dyn_cast<llvm::ConstantStruct>(Base), Updater, destType); 986 987 return nullptr; 988 } 989 990 llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E, 991 QualType destType) { 992 auto C = Visit(E->getBase(), destType); 993 if (!C) return nullptr; 994 return EmitDesignatedInitUpdater(C, E->getUpdater(), destType); 995 } 996 997 llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) { 998 if (!E->getConstructor()->isTrivial()) 999 return nullptr; 1000 1001 // FIXME: We should not have to call getBaseElementType here. 1002 const RecordType *RT = 1003 CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>(); 1004 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1005 1006 // If the class doesn't have a trivial destructor, we can't emit it as a 1007 // constant expr. 1008 if (!RD->hasTrivialDestructor()) 1009 return nullptr; 1010 1011 // Only copy and default constructors can be trivial. 1012 1013 1014 if (E->getNumArgs()) { 1015 assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 1016 assert(E->getConstructor()->isCopyOrMoveConstructor() && 1017 "trivial ctor has argument but isn't a copy/move ctor"); 1018 1019 Expr *Arg = E->getArg(0); 1020 assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) && 1021 "argument to copy ctor is of wrong type"); 1022 1023 return Visit(Arg, Ty); 1024 } 1025 1026 return CGM.EmitNullConstant(Ty); 1027 } 1028 1029 llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) { 1030 return CGM.GetConstantArrayFromStringLiteral(E); 1031 } 1032 1033 llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) { 1034 // This must be an @encode initializing an array in a static initializer. 1035 // Don't emit it as the address of the string, emit the string data itself 1036 // as an inline array. 1037 std::string Str; 1038 CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1039 const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T); 1040 1041 // Resize the string to the right size, adding zeros at the end, or 1042 // truncating as needed. 1043 Str.resize(CAT->getSize().getZExtValue(), '\0'); 1044 return llvm::ConstantDataArray::getString(VMContext, Str, false); 1045 } 1046 1047 llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) { 1048 return Visit(E->getSubExpr(), T); 1049 } 1050 1051 // Utility methods 1052 llvm::Type *ConvertType(QualType T) { 1053 return CGM.getTypes().ConvertType(T); 1054 } 1055 }; 1056 1057 } // end anonymous namespace. 1058 1059 bool ConstStructBuilder::Build(ConstExprEmitter *ExprEmitter, 1060 llvm::ConstantStruct *Base, 1061 InitListExpr *Updater) { 1062 assert(Base && "base expression should not be empty"); 1063 1064 QualType ExprType = Updater->getType(); 1065 RecordDecl *RD = ExprType->getAs<RecordType>()->getDecl(); 1066 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 1067 const llvm::StructLayout *BaseLayout = CGM.getDataLayout().getStructLayout( 1068 Base->getType()); 1069 unsigned FieldNo = -1; 1070 unsigned ElementNo = 0; 1071 1072 // Bail out if we have base classes. We could support these, but they only 1073 // arise in C++1z where we will have already constant folded most interesting 1074 // cases. FIXME: There are still a few more cases we can handle this way. 1075 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1076 if (CXXRD->getNumBases()) 1077 return false; 1078 1079 for (FieldDecl *Field : RD->fields()) { 1080 ++FieldNo; 1081 1082 if (RD->isUnion() && Updater->getInitializedFieldInUnion() != Field) 1083 continue; 1084 1085 // Skip anonymous bitfields. 1086 if (Field->isUnnamedBitfield()) 1087 continue; 1088 1089 llvm::Constant *EltInit = Base->getOperand(ElementNo); 1090 1091 // Bail out if the type of the ConstantStruct does not have the same layout 1092 // as the type of the InitListExpr. 1093 if (CGM.getTypes().ConvertType(Field->getType()) != EltInit->getType() || 1094 Layout.getFieldOffset(ElementNo) != 1095 BaseLayout->getElementOffsetInBits(ElementNo)) 1096 return false; 1097 1098 // Get the initializer. If we encounter an empty field or a NoInitExpr, 1099 // we use values from the base expression. 1100 Expr *Init = nullptr; 1101 if (ElementNo < Updater->getNumInits()) 1102 Init = Updater->getInit(ElementNo); 1103 1104 if (!Init || isa<NoInitExpr>(Init)) 1105 ; // Do nothing. 1106 else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) 1107 EltInit = ExprEmitter->EmitDesignatedInitUpdater(EltInit, ChildILE, 1108 Field->getType()); 1109 else 1110 EltInit = Emitter.tryEmitPrivateForMemory(Init, Field->getType()); 1111 1112 ++ElementNo; 1113 1114 if (!EltInit) 1115 return false; 1116 1117 if (!Field->isBitField()) 1118 AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit); 1119 else if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(EltInit)) 1120 AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI); 1121 else 1122 // Initializing a bitfield with a non-trivial constant? 1123 return false; 1124 } 1125 1126 return true; 1127 } 1128 1129 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C, 1130 AbstractState saved) { 1131 Abstract = saved.OldValue; 1132 1133 assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() && 1134 "created a placeholder while doing an abstract emission?"); 1135 1136 // No validation necessary for now. 1137 // No cleanup to do for now. 1138 return C; 1139 } 1140 1141 llvm::Constant * 1142 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) { 1143 auto state = pushAbstract(); 1144 auto C = tryEmitPrivateForVarInit(D); 1145 return validateAndPopAbstract(C, state); 1146 } 1147 1148 llvm::Constant * 1149 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) { 1150 auto state = pushAbstract(); 1151 auto C = tryEmitPrivate(E, destType); 1152 return validateAndPopAbstract(C, state); 1153 } 1154 1155 llvm::Constant * 1156 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) { 1157 auto state = pushAbstract(); 1158 auto C = tryEmitPrivate(value, destType); 1159 return validateAndPopAbstract(C, state); 1160 } 1161 1162 llvm::Constant * 1163 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) { 1164 auto state = pushAbstract(); 1165 auto C = tryEmitPrivate(E, destType); 1166 C = validateAndPopAbstract(C, state); 1167 if (!C) { 1168 CGM.Error(E->getExprLoc(), 1169 "internal error: could not emit constant value \"abstractly\""); 1170 C = CGM.EmitNullConstant(destType); 1171 } 1172 return C; 1173 } 1174 1175 llvm::Constant * 1176 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value, 1177 QualType destType) { 1178 auto state = pushAbstract(); 1179 auto C = tryEmitPrivate(value, destType); 1180 C = validateAndPopAbstract(C, state); 1181 if (!C) { 1182 CGM.Error(loc, 1183 "internal error: could not emit constant value \"abstractly\""); 1184 C = CGM.EmitNullConstant(destType); 1185 } 1186 return C; 1187 } 1188 1189 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) { 1190 initializeNonAbstract(D.getType().getAddressSpace()); 1191 return markIfFailed(tryEmitPrivateForVarInit(D)); 1192 } 1193 1194 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E, 1195 LangAS destAddrSpace, 1196 QualType destType) { 1197 initializeNonAbstract(destAddrSpace); 1198 return markIfFailed(tryEmitPrivateForMemory(E, destType)); 1199 } 1200 1201 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value, 1202 LangAS destAddrSpace, 1203 QualType destType) { 1204 initializeNonAbstract(destAddrSpace); 1205 auto C = tryEmitPrivateForMemory(value, destType); 1206 assert(C && "couldn't emit constant value non-abstractly?"); 1207 return C; 1208 } 1209 1210 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() { 1211 assert(!Abstract && "cannot get current address for abstract constant"); 1212 1213 1214 1215 // Make an obviously ill-formed global that should blow up compilation 1216 // if it survives. 1217 auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true, 1218 llvm::GlobalValue::PrivateLinkage, 1219 /*init*/ nullptr, 1220 /*name*/ "", 1221 /*before*/ nullptr, 1222 llvm::GlobalVariable::NotThreadLocal, 1223 CGM.getContext().getTargetAddressSpace(DestAddressSpace)); 1224 1225 PlaceholderAddresses.push_back(std::make_pair(nullptr, global)); 1226 1227 return global; 1228 } 1229 1230 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal, 1231 llvm::GlobalValue *placeholder) { 1232 assert(!PlaceholderAddresses.empty()); 1233 assert(PlaceholderAddresses.back().first == nullptr); 1234 assert(PlaceholderAddresses.back().second == placeholder); 1235 PlaceholderAddresses.back().first = signal; 1236 } 1237 1238 namespace { 1239 struct ReplacePlaceholders { 1240 CodeGenModule &CGM; 1241 1242 /// The base address of the global. 1243 llvm::Constant *Base; 1244 llvm::Type *BaseValueTy = nullptr; 1245 1246 /// The placeholder addresses that were registered during emission. 1247 llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses; 1248 1249 /// The locations of the placeholder signals. 1250 llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations; 1251 1252 /// The current index stack. We use a simple unsigned stack because 1253 /// we assume that placeholders will be relatively sparse in the 1254 /// initializer, but we cache the index values we find just in case. 1255 llvm::SmallVector<unsigned, 8> Indices; 1256 llvm::SmallVector<llvm::Constant*, 8> IndexValues; 1257 1258 ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base, 1259 ArrayRef<std::pair<llvm::Constant*, 1260 llvm::GlobalVariable*>> addresses) 1261 : CGM(CGM), Base(base), 1262 PlaceholderAddresses(addresses.begin(), addresses.end()) { 1263 } 1264 1265 void replaceInInitializer(llvm::Constant *init) { 1266 // Remember the type of the top-most initializer. 1267 BaseValueTy = init->getType(); 1268 1269 // Initialize the stack. 1270 Indices.push_back(0); 1271 IndexValues.push_back(nullptr); 1272 1273 // Recurse into the initializer. 1274 findLocations(init); 1275 1276 // Check invariants. 1277 assert(IndexValues.size() == Indices.size() && "mismatch"); 1278 assert(Indices.size() == 1 && "didn't pop all indices"); 1279 1280 // Do the replacement; this basically invalidates 'init'. 1281 assert(Locations.size() == PlaceholderAddresses.size() && 1282 "missed a placeholder?"); 1283 1284 // We're iterating over a hashtable, so this would be a source of 1285 // non-determinism in compiler output *except* that we're just 1286 // messing around with llvm::Constant structures, which never itself 1287 // does anything that should be visible in compiler output. 1288 for (auto &entry : Locations) { 1289 assert(entry.first->getParent() == nullptr && "not a placeholder!"); 1290 entry.first->replaceAllUsesWith(entry.second); 1291 entry.first->eraseFromParent(); 1292 } 1293 } 1294 1295 private: 1296 void findLocations(llvm::Constant *init) { 1297 // Recurse into aggregates. 1298 if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) { 1299 for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) { 1300 Indices.push_back(i); 1301 IndexValues.push_back(nullptr); 1302 1303 findLocations(agg->getOperand(i)); 1304 1305 IndexValues.pop_back(); 1306 Indices.pop_back(); 1307 } 1308 return; 1309 } 1310 1311 // Otherwise, check for registered constants. 1312 while (true) { 1313 auto it = PlaceholderAddresses.find(init); 1314 if (it != PlaceholderAddresses.end()) { 1315 setLocation(it->second); 1316 break; 1317 } 1318 1319 // Look through bitcasts or other expressions. 1320 if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) { 1321 init = expr->getOperand(0); 1322 } else { 1323 break; 1324 } 1325 } 1326 } 1327 1328 void setLocation(llvm::GlobalVariable *placeholder) { 1329 assert(Locations.find(placeholder) == Locations.end() && 1330 "already found location for placeholder!"); 1331 1332 // Lazily fill in IndexValues with the values from Indices. 1333 // We do this in reverse because we should always have a strict 1334 // prefix of indices from the start. 1335 assert(Indices.size() == IndexValues.size()); 1336 for (size_t i = Indices.size() - 1; i != size_t(-1); --i) { 1337 if (IndexValues[i]) { 1338 #ifndef NDEBUG 1339 for (size_t j = 0; j != i + 1; ++j) { 1340 assert(IndexValues[j] && 1341 isa<llvm::ConstantInt>(IndexValues[j]) && 1342 cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue() 1343 == Indices[j]); 1344 } 1345 #endif 1346 break; 1347 } 1348 1349 IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]); 1350 } 1351 1352 // Form a GEP and then bitcast to the placeholder type so that the 1353 // replacement will succeed. 1354 llvm::Constant *location = 1355 llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy, 1356 Base, IndexValues); 1357 location = llvm::ConstantExpr::getBitCast(location, 1358 placeholder->getType()); 1359 1360 Locations.insert({placeholder, location}); 1361 } 1362 }; 1363 } 1364 1365 void ConstantEmitter::finalize(llvm::GlobalVariable *global) { 1366 assert(InitializedNonAbstract && 1367 "finalizing emitter that was used for abstract emission?"); 1368 assert(!Finalized && "finalizing emitter multiple times"); 1369 assert(global->getInitializer()); 1370 1371 // Note that we might also be Failed. 1372 Finalized = true; 1373 1374 if (!PlaceholderAddresses.empty()) { 1375 ReplacePlaceholders(CGM, global, PlaceholderAddresses) 1376 .replaceInInitializer(global->getInitializer()); 1377 PlaceholderAddresses.clear(); // satisfy 1378 } 1379 } 1380 1381 ConstantEmitter::~ConstantEmitter() { 1382 assert((!InitializedNonAbstract || Finalized || Failed) && 1383 "not finalized after being initialized for non-abstract emission"); 1384 assert(PlaceholderAddresses.empty() && "unhandled placeholders"); 1385 } 1386 1387 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) { 1388 if (auto AT = type->getAs<AtomicType>()) { 1389 return CGM.getContext().getQualifiedType(AT->getValueType(), 1390 type.getQualifiers()); 1391 } 1392 return type; 1393 } 1394 1395 /// Checks if the specified initializer is equivalent to zero initialization. 1396 static bool isZeroInitializer(ConstantEmitter &CE, const Expr *Init) { 1397 if (auto *E = dyn_cast_or_null<CXXConstructExpr>(Init)) { 1398 CXXConstructorDecl *CD = E->getConstructor(); 1399 return CD->isDefaultConstructor() && CD->isTrivial(); 1400 } 1401 1402 if (auto *IL = dyn_cast_or_null<InitListExpr>(Init)) { 1403 for (auto I : IL->inits()) 1404 if (!isZeroInitializer(CE, I)) 1405 return false; 1406 if (const Expr *Filler = IL->getArrayFiller()) 1407 return isZeroInitializer(CE, Filler); 1408 return true; 1409 } 1410 1411 QualType InitTy = Init->getType(); 1412 if (InitTy->isIntegralOrEnumerationType() || InitTy->isPointerType()) { 1413 Expr::EvalResult Result; 1414 if (Init->EvaluateAsRValue(Result, CE.CGM.getContext()) && 1415 !Result.hasUnacceptableSideEffect(Expr::SE_NoSideEffects)) 1416 return (Result.Val.isInt() && Result.Val.getInt().isNullValue()) || 1417 (Result.Val.isLValue() && Result.Val.isNullPointer()); 1418 } 1419 1420 return false; 1421 } 1422 1423 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) { 1424 // Make a quick check if variable can be default NULL initialized 1425 // and avoid going through rest of code which may do, for c++11, 1426 // initialization of memory to all NULLs. 1427 if (!D.hasLocalStorage() && isZeroInitializer(*this, D.getInit())) 1428 return CGM.EmitNullConstant(D.getType()); 1429 1430 QualType destType = D.getType(); 1431 1432 // Try to emit the initializer. Note that this can allow some things that 1433 // are not allowed by tryEmitPrivateForMemory alone. 1434 if (auto value = D.evaluateValue()) { 1435 return tryEmitPrivateForMemory(*value, destType); 1436 } 1437 1438 // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a 1439 // reference is a constant expression, and the reference binds to a temporary, 1440 // then constant initialization is performed. ConstExprEmitter will 1441 // incorrectly emit a prvalue constant in this case, and the calling code 1442 // interprets that as the (pointer) value of the reference, rather than the 1443 // desired value of the referee. 1444 if (destType->isReferenceType()) 1445 return nullptr; 1446 1447 const Expr *E = D.getInit(); 1448 assert(E && "No initializer to emit"); 1449 1450 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1451 auto C = 1452 ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType); 1453 return (C ? emitForMemory(C, destType) : nullptr); 1454 } 1455 1456 llvm::Constant * 1457 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) { 1458 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1459 auto C = tryEmitAbstract(E, nonMemoryDestType); 1460 return (C ? emitForMemory(C, destType) : nullptr); 1461 } 1462 1463 llvm::Constant * 1464 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value, 1465 QualType destType) { 1466 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1467 auto C = tryEmitAbstract(value, nonMemoryDestType); 1468 return (C ? emitForMemory(C, destType) : nullptr); 1469 } 1470 1471 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E, 1472 QualType destType) { 1473 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1474 llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType); 1475 return (C ? emitForMemory(C, destType) : nullptr); 1476 } 1477 1478 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value, 1479 QualType destType) { 1480 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1481 auto C = tryEmitPrivate(value, nonMemoryDestType); 1482 return (C ? emitForMemory(C, destType) : nullptr); 1483 } 1484 1485 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM, 1486 llvm::Constant *C, 1487 QualType destType) { 1488 // For an _Atomic-qualified constant, we may need to add tail padding. 1489 if (auto AT = destType->getAs<AtomicType>()) { 1490 QualType destValueType = AT->getValueType(); 1491 C = emitForMemory(CGM, C, destValueType); 1492 1493 uint64_t innerSize = CGM.getContext().getTypeSize(destValueType); 1494 uint64_t outerSize = CGM.getContext().getTypeSize(destType); 1495 if (innerSize == outerSize) 1496 return C; 1497 1498 assert(innerSize < outerSize && "emitted over-large constant for atomic"); 1499 llvm::Constant *elts[] = { 1500 C, 1501 llvm::ConstantAggregateZero::get( 1502 llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8)) 1503 }; 1504 return llvm::ConstantStruct::getAnon(elts); 1505 } 1506 1507 // Zero-extend bool. 1508 if (C->getType()->isIntegerTy(1)) { 1509 llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType); 1510 return llvm::ConstantExpr::getZExt(C, boolTy); 1511 } 1512 1513 return C; 1514 } 1515 1516 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E, 1517 QualType destType) { 1518 Expr::EvalResult Result; 1519 1520 bool Success = false; 1521 1522 if (destType->isReferenceType()) 1523 Success = E->EvaluateAsLValue(Result, CGM.getContext()); 1524 else 1525 Success = E->EvaluateAsRValue(Result, CGM.getContext()); 1526 1527 llvm::Constant *C; 1528 if (Success && !Result.HasSideEffects) 1529 C = tryEmitPrivate(Result.Val, destType); 1530 else 1531 C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType); 1532 1533 return C; 1534 } 1535 1536 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) { 1537 return getTargetCodeGenInfo().getNullPointer(*this, T, QT); 1538 } 1539 1540 namespace { 1541 /// A struct which can be used to peephole certain kinds of finalization 1542 /// that normally happen during l-value emission. 1543 struct ConstantLValue { 1544 llvm::Constant *Value; 1545 bool HasOffsetApplied; 1546 1547 /*implicit*/ ConstantLValue(llvm::Constant *value, 1548 bool hasOffsetApplied = false) 1549 : Value(value), HasOffsetApplied(false) {} 1550 1551 /*implicit*/ ConstantLValue(ConstantAddress address) 1552 : ConstantLValue(address.getPointer()) {} 1553 }; 1554 1555 /// A helper class for emitting constant l-values. 1556 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter, 1557 ConstantLValue> { 1558 CodeGenModule &CGM; 1559 ConstantEmitter &Emitter; 1560 const APValue &Value; 1561 QualType DestType; 1562 1563 // Befriend StmtVisitorBase so that we don't have to expose Visit*. 1564 friend StmtVisitorBase; 1565 1566 public: 1567 ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value, 1568 QualType destType) 1569 : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {} 1570 1571 llvm::Constant *tryEmit(); 1572 1573 private: 1574 llvm::Constant *tryEmitAbsolute(llvm::Type *destTy); 1575 ConstantLValue tryEmitBase(const APValue::LValueBase &base); 1576 1577 ConstantLValue VisitStmt(const Stmt *S) { return nullptr; } 1578 ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); 1579 ConstantLValue VisitStringLiteral(const StringLiteral *E); 1580 ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E); 1581 ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E); 1582 ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E); 1583 ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E); 1584 ConstantLValue VisitCallExpr(const CallExpr *E); 1585 ConstantLValue VisitBlockExpr(const BlockExpr *E); 1586 ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E); 1587 ConstantLValue VisitCXXUuidofExpr(const CXXUuidofExpr *E); 1588 ConstantLValue VisitMaterializeTemporaryExpr( 1589 const MaterializeTemporaryExpr *E); 1590 1591 bool hasNonZeroOffset() const { 1592 return !Value.getLValueOffset().isZero(); 1593 } 1594 1595 /// Return the value offset. 1596 llvm::Constant *getOffset() { 1597 return llvm::ConstantInt::get(CGM.Int64Ty, 1598 Value.getLValueOffset().getQuantity()); 1599 } 1600 1601 /// Apply the value offset to the given constant. 1602 llvm::Constant *applyOffset(llvm::Constant *C) { 1603 if (!hasNonZeroOffset()) 1604 return C; 1605 1606 llvm::Type *origPtrTy = C->getType(); 1607 unsigned AS = origPtrTy->getPointerAddressSpace(); 1608 llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS); 1609 C = llvm::ConstantExpr::getBitCast(C, charPtrTy); 1610 C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset()); 1611 C = llvm::ConstantExpr::getPointerCast(C, origPtrTy); 1612 return C; 1613 } 1614 }; 1615 1616 } 1617 1618 llvm::Constant *ConstantLValueEmitter::tryEmit() { 1619 const APValue::LValueBase &base = Value.getLValueBase(); 1620 1621 // Certain special array initializers are represented in APValue 1622 // as l-values referring to the base expression which generates the 1623 // array. This happens with e.g. string literals. These should 1624 // probably just get their own representation kind in APValue. 1625 if (DestType->isArrayType()) { 1626 assert(!hasNonZeroOffset() && "offset on array initializer"); 1627 auto expr = const_cast<Expr*>(base.get<const Expr*>()); 1628 return ConstExprEmitter(Emitter).Visit(expr, DestType); 1629 } 1630 1631 // Otherwise, the destination type should be a pointer or reference 1632 // type, but it might also be a cast thereof. 1633 // 1634 // FIXME: the chain of casts required should be reflected in the APValue. 1635 // We need this in order to correctly handle things like a ptrtoint of a 1636 // non-zero null pointer and addrspace casts that aren't trivially 1637 // represented in LLVM IR. 1638 auto destTy = CGM.getTypes().ConvertTypeForMem(DestType); 1639 assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy)); 1640 1641 // If there's no base at all, this is a null or absolute pointer, 1642 // possibly cast back to an integer type. 1643 if (!base) { 1644 return tryEmitAbsolute(destTy); 1645 } 1646 1647 // Otherwise, try to emit the base. 1648 ConstantLValue result = tryEmitBase(base); 1649 1650 // If that failed, we're done. 1651 llvm::Constant *value = result.Value; 1652 if (!value) return nullptr; 1653 1654 // Apply the offset if necessary and not already done. 1655 if (!result.HasOffsetApplied) { 1656 value = applyOffset(value); 1657 } 1658 1659 // Convert to the appropriate type; this could be an lvalue for 1660 // an integer. FIXME: performAddrSpaceCast 1661 if (isa<llvm::PointerType>(destTy)) 1662 return llvm::ConstantExpr::getPointerCast(value, destTy); 1663 1664 return llvm::ConstantExpr::getPtrToInt(value, destTy); 1665 } 1666 1667 /// Try to emit an absolute l-value, such as a null pointer or an integer 1668 /// bitcast to pointer type. 1669 llvm::Constant * 1670 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) { 1671 auto offset = getOffset(); 1672 1673 // If we're producing a pointer, this is easy. 1674 if (auto destPtrTy = cast<llvm::PointerType>(destTy)) { 1675 if (Value.isNullPointer()) { 1676 // FIXME: integer offsets from non-zero null pointers. 1677 return CGM.getNullPointer(destPtrTy, DestType); 1678 } 1679 1680 // Convert the integer to a pointer-sized integer before converting it 1681 // to a pointer. 1682 // FIXME: signedness depends on the original integer type. 1683 auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy); 1684 llvm::Constant *C = offset; 1685 C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy, 1686 /*isSigned*/ false); 1687 C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy); 1688 return C; 1689 } 1690 1691 // Otherwise, we're basically returning an integer constant. 1692 1693 // FIXME: this does the wrong thing with ptrtoint of a null pointer, 1694 // but since we don't know the original pointer type, there's not much 1695 // we can do about it. 1696 1697 auto C = getOffset(); 1698 C = llvm::ConstantExpr::getIntegerCast(C, destTy, /*isSigned*/ false); 1699 return C; 1700 } 1701 1702 ConstantLValue 1703 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) { 1704 // Handle values. 1705 if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) { 1706 if (D->hasAttr<WeakRefAttr>()) 1707 return CGM.GetWeakRefReference(D).getPointer(); 1708 1709 if (auto FD = dyn_cast<FunctionDecl>(D)) 1710 return CGM.GetAddrOfFunction(FD); 1711 1712 if (auto VD = dyn_cast<VarDecl>(D)) { 1713 // We can never refer to a variable with local storage. 1714 if (!VD->hasLocalStorage()) { 1715 if (VD->isFileVarDecl() || VD->hasExternalStorage()) 1716 return CGM.GetAddrOfGlobalVar(VD); 1717 1718 if (VD->isLocalVarDecl()) { 1719 return CGM.getOrCreateStaticVarDecl( 1720 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)); 1721 } 1722 } 1723 } 1724 1725 return nullptr; 1726 } 1727 1728 // Otherwise, it must be an expression. 1729 return Visit(base.get<const Expr*>()); 1730 } 1731 1732 ConstantLValue 1733 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 1734 return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E); 1735 } 1736 1737 ConstantLValue 1738 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) { 1739 return CGM.GetAddrOfConstantStringFromLiteral(E); 1740 } 1741 1742 ConstantLValue 1743 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 1744 return CGM.GetAddrOfConstantStringFromObjCEncode(E); 1745 } 1746 1747 ConstantLValue 1748 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 1749 auto C = CGM.getObjCRuntime().GenerateConstantString(E->getString()); 1750 return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(E->getType())); 1751 } 1752 1753 ConstantLValue 1754 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) { 1755 if (auto CGF = Emitter.CGF) { 1756 LValue Res = CGF->EmitPredefinedLValue(E); 1757 return cast<ConstantAddress>(Res.getAddress()); 1758 } 1759 1760 auto kind = E->getIdentType(); 1761 if (kind == PredefinedExpr::PrettyFunction) { 1762 return CGM.GetAddrOfConstantCString("top level", ".tmp"); 1763 } 1764 1765 return CGM.GetAddrOfConstantCString("", ".tmp"); 1766 } 1767 1768 ConstantLValue 1769 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) { 1770 assert(Emitter.CGF && "Invalid address of label expression outside function"); 1771 llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel()); 1772 Ptr = llvm::ConstantExpr::getBitCast(Ptr, 1773 CGM.getTypes().ConvertType(E->getType())); 1774 return Ptr; 1775 } 1776 1777 ConstantLValue 1778 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) { 1779 unsigned builtin = E->getBuiltinCallee(); 1780 if (builtin != Builtin::BI__builtin___CFStringMakeConstantString && 1781 builtin != Builtin::BI__builtin___NSStringMakeConstantString) 1782 return nullptr; 1783 1784 auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts()); 1785 if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) { 1786 return CGM.getObjCRuntime().GenerateConstantString(literal); 1787 } else { 1788 // FIXME: need to deal with UCN conversion issues. 1789 return CGM.GetAddrOfConstantCFString(literal); 1790 } 1791 } 1792 1793 ConstantLValue 1794 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) { 1795 StringRef functionName; 1796 if (auto CGF = Emitter.CGF) 1797 functionName = CGF->CurFn->getName(); 1798 else 1799 functionName = "global"; 1800 1801 return CGM.GetAddrOfGlobalBlock(E, functionName); 1802 } 1803 1804 ConstantLValue 1805 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { 1806 QualType T; 1807 if (E->isTypeOperand()) 1808 T = E->getTypeOperand(CGM.getContext()); 1809 else 1810 T = E->getExprOperand()->getType(); 1811 return CGM.GetAddrOfRTTIDescriptor(T); 1812 } 1813 1814 ConstantLValue 1815 ConstantLValueEmitter::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 1816 return CGM.GetAddrOfUuidDescriptor(E); 1817 } 1818 1819 ConstantLValue 1820 ConstantLValueEmitter::VisitMaterializeTemporaryExpr( 1821 const MaterializeTemporaryExpr *E) { 1822 assert(E->getStorageDuration() == SD_Static); 1823 SmallVector<const Expr *, 2> CommaLHSs; 1824 SmallVector<SubobjectAdjustment, 2> Adjustments; 1825 const Expr *Inner = E->GetTemporaryExpr() 1826 ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 1827 return CGM.GetAddrOfGlobalTemporary(E, Inner); 1828 } 1829 1830 llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value, 1831 QualType DestType) { 1832 switch (Value.getKind()) { 1833 case APValue::Uninitialized: 1834 llvm_unreachable("Constant expressions should be initialized."); 1835 case APValue::LValue: 1836 return ConstantLValueEmitter(*this, Value, DestType).tryEmit(); 1837 case APValue::Int: 1838 return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt()); 1839 case APValue::ComplexInt: { 1840 llvm::Constant *Complex[2]; 1841 1842 Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(), 1843 Value.getComplexIntReal()); 1844 Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(), 1845 Value.getComplexIntImag()); 1846 1847 // FIXME: the target may want to specify that this is packed. 1848 llvm::StructType *STy = 1849 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 1850 return llvm::ConstantStruct::get(STy, Complex); 1851 } 1852 case APValue::Float: { 1853 const llvm::APFloat &Init = Value.getFloat(); 1854 if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() && 1855 !CGM.getContext().getLangOpts().NativeHalfType && 1856 CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1857 return llvm::ConstantInt::get(CGM.getLLVMContext(), 1858 Init.bitcastToAPInt()); 1859 else 1860 return llvm::ConstantFP::get(CGM.getLLVMContext(), Init); 1861 } 1862 case APValue::ComplexFloat: { 1863 llvm::Constant *Complex[2]; 1864 1865 Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(), 1866 Value.getComplexFloatReal()); 1867 Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(), 1868 Value.getComplexFloatImag()); 1869 1870 // FIXME: the target may want to specify that this is packed. 1871 llvm::StructType *STy = 1872 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 1873 return llvm::ConstantStruct::get(STy, Complex); 1874 } 1875 case APValue::Vector: { 1876 unsigned NumElts = Value.getVectorLength(); 1877 SmallVector<llvm::Constant *, 4> Inits(NumElts); 1878 1879 for (unsigned I = 0; I != NumElts; ++I) { 1880 const APValue &Elt = Value.getVectorElt(I); 1881 if (Elt.isInt()) 1882 Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt()); 1883 else if (Elt.isFloat()) 1884 Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat()); 1885 else 1886 llvm_unreachable("unsupported vector element type"); 1887 } 1888 return llvm::ConstantVector::get(Inits); 1889 } 1890 case APValue::AddrLabelDiff: { 1891 const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS(); 1892 const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS(); 1893 llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType()); 1894 llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType()); 1895 if (!LHS || !RHS) return nullptr; 1896 1897 // Compute difference 1898 llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType); 1899 LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy); 1900 RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy); 1901 llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS); 1902 1903 // LLVM is a bit sensitive about the exact format of the 1904 // address-of-label difference; make sure to truncate after 1905 // the subtraction. 1906 return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType); 1907 } 1908 case APValue::Struct: 1909 case APValue::Union: 1910 return ConstStructBuilder::BuildStruct(*this, Value, DestType); 1911 case APValue::Array: { 1912 const ArrayType *CAT = CGM.getContext().getAsArrayType(DestType); 1913 unsigned NumElements = Value.getArraySize(); 1914 unsigned NumInitElts = Value.getArrayInitializedElts(); 1915 1916 // Emit array filler, if there is one. 1917 llvm::Constant *Filler = nullptr; 1918 if (Value.hasArrayFiller()) 1919 Filler = tryEmitAbstractForMemory(Value.getArrayFiller(), 1920 CAT->getElementType()); 1921 1922 // Emit initializer elements. 1923 llvm::Type *CommonElementType = 1924 CGM.getTypes().ConvertType(CAT->getElementType()); 1925 1926 // Try to use a ConstantAggregateZero if we can. 1927 if (Filler && Filler->isNullValue() && !NumInitElts) { 1928 llvm::ArrayType *AType = 1929 llvm::ArrayType::get(CommonElementType, NumElements); 1930 return llvm::ConstantAggregateZero::get(AType); 1931 } 1932 1933 SmallVector<llvm::Constant*, 16> Elts; 1934 Elts.reserve(NumElements); 1935 for (unsigned I = 0; I < NumElements; ++I) { 1936 llvm::Constant *C = Filler; 1937 if (I < NumInitElts) { 1938 C = tryEmitPrivateForMemory(Value.getArrayInitializedElt(I), 1939 CAT->getElementType()); 1940 } else if (!Filler) { 1941 assert(Value.hasArrayFiller() && 1942 "Missing filler for implicit elements of initializer"); 1943 C = tryEmitPrivateForMemory(Value.getArrayFiller(), 1944 CAT->getElementType()); 1945 } 1946 if (!C) return nullptr; 1947 1948 if (I == 0) 1949 CommonElementType = C->getType(); 1950 else if (C->getType() != CommonElementType) 1951 CommonElementType = nullptr; 1952 Elts.push_back(C); 1953 } 1954 1955 if (!CommonElementType) { 1956 // FIXME: Try to avoid packing the array 1957 std::vector<llvm::Type*> Types; 1958 Types.reserve(NumElements); 1959 for (unsigned i = 0, e = Elts.size(); i < e; ++i) 1960 Types.push_back(Elts[i]->getType()); 1961 llvm::StructType *SType = 1962 llvm::StructType::get(CGM.getLLVMContext(), Types, true); 1963 return llvm::ConstantStruct::get(SType, Elts); 1964 } 1965 1966 llvm::ArrayType *AType = 1967 llvm::ArrayType::get(CommonElementType, NumElements); 1968 return llvm::ConstantArray::get(AType, Elts); 1969 } 1970 case APValue::MemberPointer: 1971 return CGM.getCXXABI().EmitMemberPointer(Value, DestType); 1972 } 1973 llvm_unreachable("Unknown APValue kind"); 1974 } 1975 1976 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted( 1977 const CompoundLiteralExpr *E) { 1978 return EmittedCompoundLiterals.lookup(E); 1979 } 1980 1981 void CodeGenModule::setAddrOfConstantCompoundLiteral( 1982 const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) { 1983 bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second; 1984 (void)Ok; 1985 assert(Ok && "CLE has already been emitted!"); 1986 } 1987 1988 ConstantAddress 1989 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) { 1990 assert(E->isFileScope() && "not a file-scope compound literal expr"); 1991 return tryEmitGlobalCompoundLiteral(*this, nullptr, E); 1992 } 1993 1994 llvm::Constant * 1995 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) { 1996 // Member pointer constants always have a very particular form. 1997 const MemberPointerType *type = cast<MemberPointerType>(uo->getType()); 1998 const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl(); 1999 2000 // A member function pointer. 2001 if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl)) 2002 return getCXXABI().EmitMemberFunctionPointer(method); 2003 2004 // Otherwise, a member data pointer. 2005 uint64_t fieldOffset = getContext().getFieldOffset(decl); 2006 CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset); 2007 return getCXXABI().EmitMemberDataPointer(type, chars); 2008 } 2009 2010 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2011 llvm::Type *baseType, 2012 const CXXRecordDecl *base); 2013 2014 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM, 2015 const RecordDecl *record, 2016 bool asCompleteObject) { 2017 const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record); 2018 llvm::StructType *structure = 2019 (asCompleteObject ? layout.getLLVMType() 2020 : layout.getBaseSubobjectLLVMType()); 2021 2022 unsigned numElements = structure->getNumElements(); 2023 std::vector<llvm::Constant *> elements(numElements); 2024 2025 auto CXXR = dyn_cast<CXXRecordDecl>(record); 2026 // Fill in all the bases. 2027 if (CXXR) { 2028 for (const auto &I : CXXR->bases()) { 2029 if (I.isVirtual()) { 2030 // Ignore virtual bases; if we're laying out for a complete 2031 // object, we'll lay these out later. 2032 continue; 2033 } 2034 2035 const CXXRecordDecl *base = 2036 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2037 2038 // Ignore empty bases. 2039 if (base->isEmpty() || 2040 CGM.getContext().getASTRecordLayout(base).getNonVirtualSize() 2041 .isZero()) 2042 continue; 2043 2044 unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base); 2045 llvm::Type *baseType = structure->getElementType(fieldIndex); 2046 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2047 } 2048 } 2049 2050 // Fill in all the fields. 2051 for (const auto *Field : record->fields()) { 2052 // Fill in non-bitfields. (Bitfields always use a zero pattern, which we 2053 // will fill in later.) 2054 if (!Field->isBitField()) { 2055 unsigned fieldIndex = layout.getLLVMFieldNo(Field); 2056 elements[fieldIndex] = CGM.EmitNullConstant(Field->getType()); 2057 } 2058 2059 // For unions, stop after the first named field. 2060 if (record->isUnion()) { 2061 if (Field->getIdentifier()) 2062 break; 2063 if (const auto *FieldRD = 2064 dyn_cast_or_null<RecordDecl>(Field->getType()->getAsTagDecl())) 2065 if (FieldRD->findFirstNamedDataMember()) 2066 break; 2067 } 2068 } 2069 2070 // Fill in the virtual bases, if we're working with the complete object. 2071 if (CXXR && asCompleteObject) { 2072 for (const auto &I : CXXR->vbases()) { 2073 const CXXRecordDecl *base = 2074 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2075 2076 // Ignore empty bases. 2077 if (base->isEmpty()) 2078 continue; 2079 2080 unsigned fieldIndex = layout.getVirtualBaseIndex(base); 2081 2082 // We might have already laid this field out. 2083 if (elements[fieldIndex]) continue; 2084 2085 llvm::Type *baseType = structure->getElementType(fieldIndex); 2086 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2087 } 2088 } 2089 2090 // Now go through all other fields and zero them out. 2091 for (unsigned i = 0; i != numElements; ++i) { 2092 if (!elements[i]) 2093 elements[i] = llvm::Constant::getNullValue(structure->getElementType(i)); 2094 } 2095 2096 return llvm::ConstantStruct::get(structure, elements); 2097 } 2098 2099 /// Emit the null constant for a base subobject. 2100 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2101 llvm::Type *baseType, 2102 const CXXRecordDecl *base) { 2103 const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base); 2104 2105 // Just zero out bases that don't have any pointer to data members. 2106 if (baseLayout.isZeroInitializableAsBase()) 2107 return llvm::Constant::getNullValue(baseType); 2108 2109 // Otherwise, we can just use its null constant. 2110 return EmitNullConstant(CGM, base, /*asCompleteObject=*/false); 2111 } 2112 2113 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM, 2114 QualType T) { 2115 return emitForMemory(CGM, CGM.EmitNullConstant(T), T); 2116 } 2117 2118 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { 2119 if (T->getAs<PointerType>()) 2120 return getNullPointer( 2121 cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T); 2122 2123 if (getTypes().isZeroInitializable(T)) 2124 return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); 2125 2126 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { 2127 llvm::ArrayType *ATy = 2128 cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T)); 2129 2130 QualType ElementTy = CAT->getElementType(); 2131 2132 llvm::Constant *Element = 2133 ConstantEmitter::emitNullForMemory(*this, ElementTy); 2134 unsigned NumElements = CAT->getSize().getZExtValue(); 2135 SmallVector<llvm::Constant *, 8> Array(NumElements, Element); 2136 return llvm::ConstantArray::get(ATy, Array); 2137 } 2138 2139 if (const RecordType *RT = T->getAs<RecordType>()) 2140 return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true); 2141 2142 assert(T->isMemberDataPointerType() && 2143 "Should only see pointers to data members here!"); 2144 2145 return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>()); 2146 } 2147 2148 llvm::Constant * 2149 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) { 2150 return ::EmitNullConstant(*this, Record, false); 2151 } 2152