1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Constant Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGObjCRuntime.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenModule.h" 19 #include "ConstantEmitter.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/APValue.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/Builtins.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalVariable.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 //===----------------------------------------------------------------------===// 34 // ConstStructBuilder 35 //===----------------------------------------------------------------------===// 36 37 namespace { 38 class ConstExprEmitter; 39 class ConstStructBuilder { 40 CodeGenModule &CGM; 41 ConstantEmitter &Emitter; 42 43 bool Packed; 44 CharUnits NextFieldOffsetInChars; 45 CharUnits LLVMStructAlignment; 46 SmallVector<llvm::Constant *, 32> Elements; 47 public: 48 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 49 ConstExprEmitter *ExprEmitter, 50 llvm::ConstantStruct *Base, 51 InitListExpr *Updater, 52 QualType ValTy); 53 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 54 InitListExpr *ILE, QualType StructTy); 55 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 56 const APValue &Value, QualType ValTy); 57 58 private: 59 ConstStructBuilder(ConstantEmitter &emitter) 60 : CGM(emitter.CGM), Emitter(emitter), Packed(false), 61 NextFieldOffsetInChars(CharUnits::Zero()), 62 LLVMStructAlignment(CharUnits::One()) { } 63 64 void AppendField(const FieldDecl *Field, uint64_t FieldOffset, 65 llvm::Constant *InitExpr); 66 67 void AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst); 68 69 void AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, 70 llvm::ConstantInt *InitExpr); 71 72 void AppendPadding(CharUnits PadSize); 73 74 void AppendTailPadding(CharUnits RecordSize); 75 76 void ConvertStructToPacked(); 77 78 bool Build(InitListExpr *ILE); 79 bool Build(ConstExprEmitter *Emitter, llvm::ConstantStruct *Base, 80 InitListExpr *Updater); 81 bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase, 82 const CXXRecordDecl *VTableClass, CharUnits BaseOffset); 83 llvm::Constant *Finalize(QualType Ty); 84 85 CharUnits getAlignment(const llvm::Constant *C) const { 86 if (Packed) return CharUnits::One(); 87 return CharUnits::fromQuantity( 88 CGM.getDataLayout().getABITypeAlignment(C->getType())); 89 } 90 91 CharUnits getSizeInChars(const llvm::Constant *C) const { 92 return CharUnits::fromQuantity( 93 CGM.getDataLayout().getTypeAllocSize(C->getType())); 94 } 95 }; 96 97 void ConstStructBuilder:: 98 AppendField(const FieldDecl *Field, uint64_t FieldOffset, 99 llvm::Constant *InitCst) { 100 const ASTContext &Context = CGM.getContext(); 101 102 CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset); 103 104 AppendBytes(FieldOffsetInChars, InitCst); 105 } 106 107 void ConstStructBuilder:: 108 AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst) { 109 110 assert(NextFieldOffsetInChars <= FieldOffsetInChars 111 && "Field offset mismatch!"); 112 113 CharUnits FieldAlignment = getAlignment(InitCst); 114 115 // Round up the field offset to the alignment of the field type. 116 CharUnits AlignedNextFieldOffsetInChars = 117 NextFieldOffsetInChars.alignTo(FieldAlignment); 118 119 if (AlignedNextFieldOffsetInChars < FieldOffsetInChars) { 120 // We need to append padding. 121 AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars); 122 123 assert(NextFieldOffsetInChars == FieldOffsetInChars && 124 "Did not add enough padding!"); 125 126 AlignedNextFieldOffsetInChars = 127 NextFieldOffsetInChars.alignTo(FieldAlignment); 128 } 129 130 if (AlignedNextFieldOffsetInChars > FieldOffsetInChars) { 131 assert(!Packed && "Alignment is wrong even with a packed struct!"); 132 133 // Convert the struct to a packed struct. 134 ConvertStructToPacked(); 135 136 // After we pack the struct, we may need to insert padding. 137 if (NextFieldOffsetInChars < FieldOffsetInChars) { 138 // We need to append padding. 139 AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars); 140 141 assert(NextFieldOffsetInChars == FieldOffsetInChars && 142 "Did not add enough padding!"); 143 } 144 AlignedNextFieldOffsetInChars = NextFieldOffsetInChars; 145 } 146 147 // Add the field. 148 Elements.push_back(InitCst); 149 NextFieldOffsetInChars = AlignedNextFieldOffsetInChars + 150 getSizeInChars(InitCst); 151 152 if (Packed) 153 assert(LLVMStructAlignment == CharUnits::One() && 154 "Packed struct not byte-aligned!"); 155 else 156 LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment); 157 } 158 159 void ConstStructBuilder::AppendBitField(const FieldDecl *Field, 160 uint64_t FieldOffset, 161 llvm::ConstantInt *CI) { 162 const ASTContext &Context = CGM.getContext(); 163 const uint64_t CharWidth = Context.getCharWidth(); 164 uint64_t NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars); 165 if (FieldOffset > NextFieldOffsetInBits) { 166 // We need to add padding. 167 CharUnits PadSize = Context.toCharUnitsFromBits( 168 llvm::alignTo(FieldOffset - NextFieldOffsetInBits, 169 Context.getTargetInfo().getCharAlign())); 170 171 AppendPadding(PadSize); 172 } 173 174 uint64_t FieldSize = Field->getBitWidthValue(Context); 175 176 llvm::APInt FieldValue = CI->getValue(); 177 178 // Promote the size of FieldValue if necessary 179 // FIXME: This should never occur, but currently it can because initializer 180 // constants are cast to bool, and because clang is not enforcing bitfield 181 // width limits. 182 if (FieldSize > FieldValue.getBitWidth()) 183 FieldValue = FieldValue.zext(FieldSize); 184 185 // Truncate the size of FieldValue to the bit field size. 186 if (FieldSize < FieldValue.getBitWidth()) 187 FieldValue = FieldValue.trunc(FieldSize); 188 189 NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars); 190 if (FieldOffset < NextFieldOffsetInBits) { 191 // Either part of the field or the entire field can go into the previous 192 // byte. 193 assert(!Elements.empty() && "Elements can't be empty!"); 194 195 unsigned BitsInPreviousByte = NextFieldOffsetInBits - FieldOffset; 196 197 bool FitsCompletelyInPreviousByte = 198 BitsInPreviousByte >= FieldValue.getBitWidth(); 199 200 llvm::APInt Tmp = FieldValue; 201 202 if (!FitsCompletelyInPreviousByte) { 203 unsigned NewFieldWidth = FieldSize - BitsInPreviousByte; 204 205 if (CGM.getDataLayout().isBigEndian()) { 206 Tmp.lshrInPlace(NewFieldWidth); 207 Tmp = Tmp.trunc(BitsInPreviousByte); 208 209 // We want the remaining high bits. 210 FieldValue = FieldValue.trunc(NewFieldWidth); 211 } else { 212 Tmp = Tmp.trunc(BitsInPreviousByte); 213 214 // We want the remaining low bits. 215 FieldValue.lshrInPlace(BitsInPreviousByte); 216 FieldValue = FieldValue.trunc(NewFieldWidth); 217 } 218 } 219 220 Tmp = Tmp.zext(CharWidth); 221 if (CGM.getDataLayout().isBigEndian()) { 222 if (FitsCompletelyInPreviousByte) 223 Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth()); 224 } else { 225 Tmp = Tmp.shl(CharWidth - BitsInPreviousByte); 226 } 227 228 // 'or' in the bits that go into the previous byte. 229 llvm::Value *LastElt = Elements.back(); 230 if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(LastElt)) 231 Tmp |= Val->getValue(); 232 else { 233 assert(isa<llvm::UndefValue>(LastElt)); 234 // If there is an undef field that we're adding to, it can either be a 235 // scalar undef (in which case, we just replace it with our field) or it 236 // is an array. If it is an array, we have to pull one byte off the 237 // array so that the other undef bytes stay around. 238 if (!isa<llvm::IntegerType>(LastElt->getType())) { 239 // The undef padding will be a multibyte array, create a new smaller 240 // padding and then an hole for our i8 to get plopped into. 241 assert(isa<llvm::ArrayType>(LastElt->getType()) && 242 "Expected array padding of undefs"); 243 llvm::ArrayType *AT = cast<llvm::ArrayType>(LastElt->getType()); 244 assert(AT->getElementType()->isIntegerTy(CharWidth) && 245 AT->getNumElements() != 0 && 246 "Expected non-empty array padding of undefs"); 247 248 // Remove the padding array. 249 NextFieldOffsetInChars -= CharUnits::fromQuantity(AT->getNumElements()); 250 Elements.pop_back(); 251 252 // Add the padding back in two chunks. 253 AppendPadding(CharUnits::fromQuantity(AT->getNumElements()-1)); 254 AppendPadding(CharUnits::One()); 255 assert(isa<llvm::UndefValue>(Elements.back()) && 256 Elements.back()->getType()->isIntegerTy(CharWidth) && 257 "Padding addition didn't work right"); 258 } 259 } 260 261 Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp); 262 263 if (FitsCompletelyInPreviousByte) 264 return; 265 } 266 267 while (FieldValue.getBitWidth() > CharWidth) { 268 llvm::APInt Tmp; 269 270 if (CGM.getDataLayout().isBigEndian()) { 271 // We want the high bits. 272 Tmp = 273 FieldValue.lshr(FieldValue.getBitWidth() - CharWidth).trunc(CharWidth); 274 } else { 275 // We want the low bits. 276 Tmp = FieldValue.trunc(CharWidth); 277 278 FieldValue.lshrInPlace(CharWidth); 279 } 280 281 Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp)); 282 ++NextFieldOffsetInChars; 283 284 FieldValue = FieldValue.trunc(FieldValue.getBitWidth() - CharWidth); 285 } 286 287 assert(FieldValue.getBitWidth() > 0 && 288 "Should have at least one bit left!"); 289 assert(FieldValue.getBitWidth() <= CharWidth && 290 "Should not have more than a byte left!"); 291 292 if (FieldValue.getBitWidth() < CharWidth) { 293 if (CGM.getDataLayout().isBigEndian()) { 294 unsigned BitWidth = FieldValue.getBitWidth(); 295 296 FieldValue = FieldValue.zext(CharWidth) << (CharWidth - BitWidth); 297 } else 298 FieldValue = FieldValue.zext(CharWidth); 299 } 300 301 // Append the last element. 302 Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), 303 FieldValue)); 304 ++NextFieldOffsetInChars; 305 } 306 307 void ConstStructBuilder::AppendPadding(CharUnits PadSize) { 308 if (PadSize.isZero()) 309 return; 310 311 llvm::Type *Ty = CGM.Int8Ty; 312 if (PadSize > CharUnits::One()) 313 Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity()); 314 315 llvm::Constant *C = llvm::UndefValue::get(Ty); 316 Elements.push_back(C); 317 assert(getAlignment(C) == CharUnits::One() && 318 "Padding must have 1 byte alignment!"); 319 320 NextFieldOffsetInChars += getSizeInChars(C); 321 } 322 323 void ConstStructBuilder::AppendTailPadding(CharUnits RecordSize) { 324 assert(NextFieldOffsetInChars <= RecordSize && 325 "Size mismatch!"); 326 327 AppendPadding(RecordSize - NextFieldOffsetInChars); 328 } 329 330 void ConstStructBuilder::ConvertStructToPacked() { 331 SmallVector<llvm::Constant *, 16> PackedElements; 332 CharUnits ElementOffsetInChars = CharUnits::Zero(); 333 334 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 335 llvm::Constant *C = Elements[i]; 336 337 CharUnits ElementAlign = CharUnits::fromQuantity( 338 CGM.getDataLayout().getABITypeAlignment(C->getType())); 339 CharUnits AlignedElementOffsetInChars = 340 ElementOffsetInChars.alignTo(ElementAlign); 341 342 if (AlignedElementOffsetInChars > ElementOffsetInChars) { 343 // We need some padding. 344 CharUnits NumChars = 345 AlignedElementOffsetInChars - ElementOffsetInChars; 346 347 llvm::Type *Ty = CGM.Int8Ty; 348 if (NumChars > CharUnits::One()) 349 Ty = llvm::ArrayType::get(Ty, NumChars.getQuantity()); 350 351 llvm::Constant *Padding = llvm::UndefValue::get(Ty); 352 PackedElements.push_back(Padding); 353 ElementOffsetInChars += getSizeInChars(Padding); 354 } 355 356 PackedElements.push_back(C); 357 ElementOffsetInChars += getSizeInChars(C); 358 } 359 360 assert(ElementOffsetInChars == NextFieldOffsetInChars && 361 "Packing the struct changed its size!"); 362 363 Elements.swap(PackedElements); 364 LLVMStructAlignment = CharUnits::One(); 365 Packed = true; 366 } 367 368 bool ConstStructBuilder::Build(InitListExpr *ILE) { 369 RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl(); 370 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 371 372 unsigned FieldNo = 0; 373 unsigned ElementNo = 0; 374 375 // Bail out if we have base classes. We could support these, but they only 376 // arise in C++1z where we will have already constant folded most interesting 377 // cases. FIXME: There are still a few more cases we can handle this way. 378 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 379 if (CXXRD->getNumBases()) 380 return false; 381 382 for (RecordDecl::field_iterator Field = RD->field_begin(), 383 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 384 // If this is a union, skip all the fields that aren't being initialized. 385 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field) 386 continue; 387 388 // Don't emit anonymous bitfields, they just affect layout. 389 if (Field->isUnnamedBitfield()) 390 continue; 391 392 // Get the initializer. A struct can include fields without initializers, 393 // we just use explicit null values for them. 394 llvm::Constant *EltInit; 395 if (ElementNo < ILE->getNumInits()) 396 EltInit = Emitter.tryEmitPrivateForMemory(ILE->getInit(ElementNo++), 397 Field->getType()); 398 else 399 EltInit = Emitter.emitNullForMemory(Field->getType()); 400 401 if (!EltInit) 402 return false; 403 404 if (!Field->isBitField()) { 405 // Handle non-bitfield members. 406 AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit); 407 } else { 408 // Otherwise we have a bitfield. 409 if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) { 410 AppendBitField(*Field, Layout.getFieldOffset(FieldNo), CI); 411 } else { 412 // We are trying to initialize a bitfield with a non-trivial constant, 413 // this must require run-time code. 414 return false; 415 } 416 } 417 } 418 419 return true; 420 } 421 422 namespace { 423 struct BaseInfo { 424 BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index) 425 : Decl(Decl), Offset(Offset), Index(Index) { 426 } 427 428 const CXXRecordDecl *Decl; 429 CharUnits Offset; 430 unsigned Index; 431 432 bool operator<(const BaseInfo &O) const { return Offset < O.Offset; } 433 }; 434 } 435 436 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD, 437 bool IsPrimaryBase, 438 const CXXRecordDecl *VTableClass, 439 CharUnits Offset) { 440 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 441 442 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 443 // Add a vtable pointer, if we need one and it hasn't already been added. 444 if (CD->isDynamicClass() && !IsPrimaryBase) { 445 llvm::Constant *VTableAddressPoint = 446 CGM.getCXXABI().getVTableAddressPointForConstExpr( 447 BaseSubobject(CD, Offset), VTableClass); 448 AppendBytes(Offset, VTableAddressPoint); 449 } 450 451 // Accumulate and sort bases, in order to visit them in address order, which 452 // may not be the same as declaration order. 453 SmallVector<BaseInfo, 8> Bases; 454 Bases.reserve(CD->getNumBases()); 455 unsigned BaseNo = 0; 456 for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(), 457 BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) { 458 assert(!Base->isVirtual() && "should not have virtual bases here"); 459 const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl(); 460 CharUnits BaseOffset = Layout.getBaseClassOffset(BD); 461 Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo)); 462 } 463 std::stable_sort(Bases.begin(), Bases.end()); 464 465 for (unsigned I = 0, N = Bases.size(); I != N; ++I) { 466 BaseInfo &Base = Bases[I]; 467 468 bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl; 469 Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase, 470 VTableClass, Offset + Base.Offset); 471 } 472 } 473 474 unsigned FieldNo = 0; 475 uint64_t OffsetBits = CGM.getContext().toBits(Offset); 476 477 for (RecordDecl::field_iterator Field = RD->field_begin(), 478 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 479 // If this is a union, skip all the fields that aren't being initialized. 480 if (RD->isUnion() && Val.getUnionField() != *Field) 481 continue; 482 483 // Don't emit anonymous bitfields, they just affect layout. 484 if (Field->isUnnamedBitfield()) 485 continue; 486 487 // Emit the value of the initializer. 488 const APValue &FieldValue = 489 RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo); 490 llvm::Constant *EltInit = 491 Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType()); 492 if (!EltInit) 493 return false; 494 495 if (!Field->isBitField()) { 496 // Handle non-bitfield members. 497 AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, EltInit); 498 } else { 499 // Otherwise we have a bitfield. 500 AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 501 cast<llvm::ConstantInt>(EltInit)); 502 } 503 } 504 505 return true; 506 } 507 508 llvm::Constant *ConstStructBuilder::Finalize(QualType Ty) { 509 RecordDecl *RD = Ty->getAs<RecordType>()->getDecl(); 510 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 511 512 CharUnits LayoutSizeInChars = Layout.getSize(); 513 514 if (NextFieldOffsetInChars > LayoutSizeInChars) { 515 // If the struct is bigger than the size of the record type, 516 // we must have a flexible array member at the end. 517 assert(RD->hasFlexibleArrayMember() && 518 "Must have flexible array member if struct is bigger than type!"); 519 520 // No tail padding is necessary. 521 } else { 522 // Append tail padding if necessary. 523 CharUnits LLVMSizeInChars = 524 NextFieldOffsetInChars.alignTo(LLVMStructAlignment); 525 526 if (LLVMSizeInChars != LayoutSizeInChars) 527 AppendTailPadding(LayoutSizeInChars); 528 529 LLVMSizeInChars = NextFieldOffsetInChars.alignTo(LLVMStructAlignment); 530 531 // Check if we need to convert the struct to a packed struct. 532 if (NextFieldOffsetInChars <= LayoutSizeInChars && 533 LLVMSizeInChars > LayoutSizeInChars) { 534 assert(!Packed && "Size mismatch!"); 535 536 ConvertStructToPacked(); 537 assert(NextFieldOffsetInChars <= LayoutSizeInChars && 538 "Converting to packed did not help!"); 539 } 540 541 LLVMSizeInChars = NextFieldOffsetInChars.alignTo(LLVMStructAlignment); 542 543 assert(LayoutSizeInChars == LLVMSizeInChars && 544 "Tail padding mismatch!"); 545 } 546 547 // Pick the type to use. If the type is layout identical to the ConvertType 548 // type then use it, otherwise use whatever the builder produced for us. 549 llvm::StructType *STy = 550 llvm::ConstantStruct::getTypeForElements(CGM.getLLVMContext(), 551 Elements, Packed); 552 llvm::Type *ValTy = CGM.getTypes().ConvertType(Ty); 553 if (llvm::StructType *ValSTy = dyn_cast<llvm::StructType>(ValTy)) { 554 if (ValSTy->isLayoutIdentical(STy)) 555 STy = ValSTy; 556 } 557 558 llvm::Constant *Result = llvm::ConstantStruct::get(STy, Elements); 559 560 assert(NextFieldOffsetInChars.alignTo(getAlignment(Result)) == 561 getSizeInChars(Result) && 562 "Size mismatch!"); 563 564 return Result; 565 } 566 567 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 568 ConstExprEmitter *ExprEmitter, 569 llvm::ConstantStruct *Base, 570 InitListExpr *Updater, 571 QualType ValTy) { 572 ConstStructBuilder Builder(Emitter); 573 if (!Builder.Build(ExprEmitter, Base, Updater)) 574 return nullptr; 575 return Builder.Finalize(ValTy); 576 } 577 578 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 579 InitListExpr *ILE, 580 QualType ValTy) { 581 ConstStructBuilder Builder(Emitter); 582 583 if (!Builder.Build(ILE)) 584 return nullptr; 585 586 return Builder.Finalize(ValTy); 587 } 588 589 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 590 const APValue &Val, 591 QualType ValTy) { 592 ConstStructBuilder Builder(Emitter); 593 594 const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl(); 595 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); 596 if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero())) 597 return nullptr; 598 599 return Builder.Finalize(ValTy); 600 } 601 602 603 //===----------------------------------------------------------------------===// 604 // ConstExprEmitter 605 //===----------------------------------------------------------------------===// 606 607 static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM, 608 CodeGenFunction *CGF, 609 const CompoundLiteralExpr *E) { 610 CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType()); 611 if (llvm::GlobalVariable *Addr = 612 CGM.getAddrOfConstantCompoundLiteralIfEmitted(E)) 613 return ConstantAddress(Addr, Align); 614 615 LangAS addressSpace = E->getType().getAddressSpace(); 616 617 ConstantEmitter emitter(CGM, CGF); 618 llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(), 619 addressSpace, E->getType()); 620 if (!C) { 621 assert(!E->isFileScope() && 622 "file-scope compound literal did not have constant initializer!"); 623 return ConstantAddress::invalid(); 624 } 625 626 auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), 627 CGM.isTypeConstant(E->getType(), true), 628 llvm::GlobalValue::InternalLinkage, 629 C, ".compoundliteral", nullptr, 630 llvm::GlobalVariable::NotThreadLocal, 631 CGM.getContext().getTargetAddressSpace(addressSpace)); 632 emitter.finalize(GV); 633 GV->setAlignment(Align.getQuantity()); 634 CGM.setAddrOfConstantCompoundLiteral(E, GV); 635 return ConstantAddress(GV, Align); 636 } 637 638 static llvm::Constant * 639 EmitArrayConstant(llvm::ArrayType *PreferredArrayType, 640 llvm::Type *CommonElementType, unsigned ArrayBound, 641 SmallVectorImpl<llvm::Constant *> &Elements, 642 llvm::Constant *Filler) { 643 // Figure out how long the initial prefix of non-zero elements is. 644 unsigned NonzeroLength = ArrayBound; 645 if (Elements.size() < NonzeroLength && Filler->isNullValue()) 646 NonzeroLength = Elements.size(); 647 if (NonzeroLength == Elements.size()) { 648 while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue()) 649 --NonzeroLength; 650 } 651 652 if (NonzeroLength == 0) 653 return llvm::ConstantAggregateZero::get(PreferredArrayType); 654 655 // If there's not many trailing zero elements, just emit an array 656 // constant. 657 if (NonzeroLength + 8 >= ArrayBound && CommonElementType) { 658 Elements.resize(ArrayBound, Filler); 659 return llvm::ConstantArray::get( 660 llvm::ArrayType::get(CommonElementType, ArrayBound), Elements); 661 } 662 663 // Add a zeroinitializer array filler if we have trailing zeroes. 664 if (unsigned TrailingZeroes = ArrayBound - NonzeroLength) { 665 assert(Elements.size() >= NonzeroLength && 666 "missing initializer for non-zero element"); 667 Elements.resize(NonzeroLength + 1); 668 auto *FillerType = PreferredArrayType->getElementType(); 669 if (TrailingZeroes > 1) 670 FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes); 671 Elements.back() = llvm::ConstantAggregateZero::get(FillerType); 672 } 673 674 // We have mixed types. Use a packed struct. 675 llvm::SmallVector<llvm::Type *, 16> Types; 676 Types.reserve(Elements.size()); 677 for (llvm::Constant *Elt : Elements) 678 Types.push_back(Elt->getType()); 679 llvm::StructType *SType = 680 llvm::StructType::get(PreferredArrayType->getContext(), Types, true); 681 return llvm::ConstantStruct::get(SType, Elements); 682 } 683 684 /// This class only needs to handle two cases: 685 /// 1) Literals (this is used by APValue emission to emit literals). 686 /// 2) Arrays, structs and unions (outside C++11 mode, we don't currently 687 /// constant fold these types). 688 class ConstExprEmitter : 689 public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> { 690 CodeGenModule &CGM; 691 ConstantEmitter &Emitter; 692 llvm::LLVMContext &VMContext; 693 public: 694 ConstExprEmitter(ConstantEmitter &emitter) 695 : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) { 696 } 697 698 //===--------------------------------------------------------------------===// 699 // Visitor Methods 700 //===--------------------------------------------------------------------===// 701 702 llvm::Constant *VisitStmt(Stmt *S, QualType T) { 703 return nullptr; 704 } 705 706 llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) { 707 return Visit(PE->getSubExpr(), T); 708 } 709 710 llvm::Constant * 711 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE, 712 QualType T) { 713 return Visit(PE->getReplacement(), T); 714 } 715 716 llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE, 717 QualType T) { 718 return Visit(GE->getResultExpr(), T); 719 } 720 721 llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) { 722 return Visit(CE->getChosenSubExpr(), T); 723 } 724 725 llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) { 726 return Visit(E->getInitializer(), T); 727 } 728 729 llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) { 730 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 731 CGM.EmitExplicitCastExprType(ECE, Emitter.CGF); 732 Expr *subExpr = E->getSubExpr(); 733 734 switch (E->getCastKind()) { 735 case CK_ToUnion: { 736 // GCC cast to union extension 737 assert(E->getType()->isUnionType() && 738 "Destination type is not union type!"); 739 740 auto field = E->getTargetUnionField(); 741 742 auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType()); 743 if (!C) return nullptr; 744 745 auto destTy = ConvertType(destType); 746 if (C->getType() == destTy) return C; 747 748 // Build a struct with the union sub-element as the first member, 749 // and padded to the appropriate size. 750 SmallVector<llvm::Constant*, 2> Elts; 751 SmallVector<llvm::Type*, 2> Types; 752 Elts.push_back(C); 753 Types.push_back(C->getType()); 754 unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType()); 755 unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy); 756 757 assert(CurSize <= TotalSize && "Union size mismatch!"); 758 if (unsigned NumPadBytes = TotalSize - CurSize) { 759 llvm::Type *Ty = CGM.Int8Ty; 760 if (NumPadBytes > 1) 761 Ty = llvm::ArrayType::get(Ty, NumPadBytes); 762 763 Elts.push_back(llvm::UndefValue::get(Ty)); 764 Types.push_back(Ty); 765 } 766 767 llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false); 768 return llvm::ConstantStruct::get(STy, Elts); 769 } 770 771 case CK_AddressSpaceConversion: { 772 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 773 if (!C) return nullptr; 774 LangAS destAS = E->getType()->getPointeeType().getAddressSpace(); 775 LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace(); 776 llvm::Type *destTy = ConvertType(E->getType()); 777 return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS, 778 destAS, destTy); 779 } 780 781 case CK_LValueToRValue: 782 case CK_AtomicToNonAtomic: 783 case CK_NonAtomicToAtomic: 784 case CK_NoOp: 785 case CK_ConstructorConversion: 786 return Visit(subExpr, destType); 787 788 case CK_IntToOCLSampler: 789 llvm_unreachable("global sampler variables are not generated"); 790 791 case CK_Dependent: llvm_unreachable("saw dependent cast!"); 792 793 case CK_BuiltinFnToFnPtr: 794 llvm_unreachable("builtin functions are handled elsewhere"); 795 796 case CK_ReinterpretMemberPointer: 797 case CK_DerivedToBaseMemberPointer: 798 case CK_BaseToDerivedMemberPointer: { 799 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 800 if (!C) return nullptr; 801 return CGM.getCXXABI().EmitMemberPointerConversion(E, C); 802 } 803 804 // These will never be supported. 805 case CK_ObjCObjectLValueCast: 806 case CK_ARCProduceObject: 807 case CK_ARCConsumeObject: 808 case CK_ARCReclaimReturnedObject: 809 case CK_ARCExtendBlockObject: 810 case CK_CopyAndAutoreleaseBlockObject: 811 return nullptr; 812 813 // These don't need to be handled here because Evaluate knows how to 814 // evaluate them in the cases where they can be folded. 815 case CK_BitCast: 816 case CK_ToVoid: 817 case CK_Dynamic: 818 case CK_LValueBitCast: 819 case CK_NullToMemberPointer: 820 case CK_UserDefinedConversion: 821 case CK_CPointerToObjCPointerCast: 822 case CK_BlockPointerToObjCPointerCast: 823 case CK_AnyPointerToBlockPointerCast: 824 case CK_ArrayToPointerDecay: 825 case CK_FunctionToPointerDecay: 826 case CK_BaseToDerived: 827 case CK_DerivedToBase: 828 case CK_UncheckedDerivedToBase: 829 case CK_MemberPointerToBoolean: 830 case CK_VectorSplat: 831 case CK_FloatingRealToComplex: 832 case CK_FloatingComplexToReal: 833 case CK_FloatingComplexToBoolean: 834 case CK_FloatingComplexCast: 835 case CK_FloatingComplexToIntegralComplex: 836 case CK_IntegralRealToComplex: 837 case CK_IntegralComplexToReal: 838 case CK_IntegralComplexToBoolean: 839 case CK_IntegralComplexCast: 840 case CK_IntegralComplexToFloatingComplex: 841 case CK_PointerToIntegral: 842 case CK_PointerToBoolean: 843 case CK_NullToPointer: 844 case CK_IntegralCast: 845 case CK_BooleanToSignedIntegral: 846 case CK_IntegralToPointer: 847 case CK_IntegralToBoolean: 848 case CK_IntegralToFloating: 849 case CK_FloatingToIntegral: 850 case CK_FloatingToBoolean: 851 case CK_FloatingCast: 852 case CK_ZeroToOCLEvent: 853 case CK_ZeroToOCLQueue: 854 return nullptr; 855 } 856 llvm_unreachable("Invalid CastKind"); 857 } 858 859 llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE, QualType T) { 860 return Visit(DAE->getExpr(), T); 861 } 862 863 llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) { 864 // No need for a DefaultInitExprScope: we don't handle 'this' in a 865 // constant expression. 866 return Visit(DIE->getExpr(), T); 867 } 868 869 llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) { 870 if (!E->cleanupsHaveSideEffects()) 871 return Visit(E->getSubExpr(), T); 872 return nullptr; 873 } 874 875 llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E, 876 QualType T) { 877 return Visit(E->GetTemporaryExpr(), T); 878 } 879 880 llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) { 881 llvm::ArrayType *AType = 882 cast<llvm::ArrayType>(ConvertType(ILE->getType())); 883 unsigned NumInitElements = ILE->getNumInits(); 884 unsigned NumElements = AType->getNumElements(); 885 886 // Initialising an array requires us to automatically 887 // initialise any elements that have not been initialised explicitly 888 unsigned NumInitableElts = std::min(NumInitElements, NumElements); 889 890 QualType EltType = CGM.getContext().getAsArrayType(T)->getElementType(); 891 892 // Initialize remaining array elements. 893 llvm::Constant *fillC = nullptr; 894 if (Expr *filler = ILE->getArrayFiller()) { 895 fillC = Emitter.tryEmitAbstractForMemory(filler, EltType); 896 if (!fillC) 897 return nullptr; 898 } 899 900 // Copy initializer elements. 901 SmallVector<llvm::Constant*, 16> Elts; 902 if (fillC && fillC->isNullValue()) 903 Elts.reserve(NumInitableElts + 1); 904 else 905 Elts.reserve(NumElements); 906 907 llvm::Type *CommonElementType = nullptr; 908 for (unsigned i = 0; i < NumInitableElts; ++i) { 909 Expr *Init = ILE->getInit(i); 910 llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType); 911 if (!C) 912 return nullptr; 913 if (i == 0) 914 CommonElementType = C->getType(); 915 else if (C->getType() != CommonElementType) 916 CommonElementType = nullptr; 917 Elts.push_back(C); 918 } 919 920 return EmitArrayConstant(AType, CommonElementType, NumElements, Elts, 921 fillC); 922 } 923 924 llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) { 925 return ConstStructBuilder::BuildStruct(Emitter, ILE, T); 926 } 927 928 llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E, 929 QualType T) { 930 return CGM.EmitNullConstant(T); 931 } 932 933 llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) { 934 if (ILE->isTransparent()) 935 return Visit(ILE->getInit(0), T); 936 937 if (ILE->getType()->isArrayType()) 938 return EmitArrayInitialization(ILE, T); 939 940 if (ILE->getType()->isRecordType()) 941 return EmitRecordInitialization(ILE, T); 942 943 return nullptr; 944 } 945 946 llvm::Constant *EmitDesignatedInitUpdater(llvm::Constant *Base, 947 InitListExpr *Updater, 948 QualType destType) { 949 if (auto destAT = CGM.getContext().getAsArrayType(destType)) { 950 llvm::ArrayType *AType = cast<llvm::ArrayType>(ConvertType(destType)); 951 llvm::Type *ElemType = AType->getElementType(); 952 953 unsigned NumInitElements = Updater->getNumInits(); 954 unsigned NumElements = AType->getNumElements(); 955 956 std::vector<llvm::Constant *> Elts; 957 Elts.reserve(NumElements); 958 959 QualType destElemType = destAT->getElementType(); 960 961 if (auto DataArray = dyn_cast<llvm::ConstantDataArray>(Base)) 962 for (unsigned i = 0; i != NumElements; ++i) 963 Elts.push_back(DataArray->getElementAsConstant(i)); 964 else if (auto Array = dyn_cast<llvm::ConstantArray>(Base)) 965 for (unsigned i = 0; i != NumElements; ++i) 966 Elts.push_back(Array->getOperand(i)); 967 else 968 return nullptr; // FIXME: other array types not implemented 969 970 llvm::Constant *fillC = nullptr; 971 if (Expr *filler = Updater->getArrayFiller()) 972 if (!isa<NoInitExpr>(filler)) 973 fillC = Emitter.tryEmitAbstractForMemory(filler, destElemType); 974 bool RewriteType = (fillC && fillC->getType() != ElemType); 975 976 for (unsigned i = 0; i != NumElements; ++i) { 977 Expr *Init = nullptr; 978 if (i < NumInitElements) 979 Init = Updater->getInit(i); 980 981 if (!Init && fillC) 982 Elts[i] = fillC; 983 else if (!Init || isa<NoInitExpr>(Init)) 984 ; // Do nothing. 985 else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) 986 Elts[i] = EmitDesignatedInitUpdater(Elts[i], ChildILE, destElemType); 987 else 988 Elts[i] = Emitter.tryEmitPrivateForMemory(Init, destElemType); 989 990 if (!Elts[i]) 991 return nullptr; 992 RewriteType |= (Elts[i]->getType() != ElemType); 993 } 994 995 if (RewriteType) { 996 std::vector<llvm::Type *> Types; 997 Types.reserve(NumElements); 998 for (unsigned i = 0; i != NumElements; ++i) 999 Types.push_back(Elts[i]->getType()); 1000 llvm::StructType *SType = llvm::StructType::get(AType->getContext(), 1001 Types, true); 1002 return llvm::ConstantStruct::get(SType, Elts); 1003 } 1004 1005 return llvm::ConstantArray::get(AType, Elts); 1006 } 1007 1008 if (destType->isRecordType()) 1009 return ConstStructBuilder::BuildStruct(Emitter, this, 1010 dyn_cast<llvm::ConstantStruct>(Base), Updater, destType); 1011 1012 return nullptr; 1013 } 1014 1015 llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E, 1016 QualType destType) { 1017 auto C = Visit(E->getBase(), destType); 1018 if (!C) return nullptr; 1019 return EmitDesignatedInitUpdater(C, E->getUpdater(), destType); 1020 } 1021 1022 llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) { 1023 if (!E->getConstructor()->isTrivial()) 1024 return nullptr; 1025 1026 // FIXME: We should not have to call getBaseElementType here. 1027 const RecordType *RT = 1028 CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>(); 1029 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1030 1031 // If the class doesn't have a trivial destructor, we can't emit it as a 1032 // constant expr. 1033 if (!RD->hasTrivialDestructor()) 1034 return nullptr; 1035 1036 // Only copy and default constructors can be trivial. 1037 1038 1039 if (E->getNumArgs()) { 1040 assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 1041 assert(E->getConstructor()->isCopyOrMoveConstructor() && 1042 "trivial ctor has argument but isn't a copy/move ctor"); 1043 1044 Expr *Arg = E->getArg(0); 1045 assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) && 1046 "argument to copy ctor is of wrong type"); 1047 1048 return Visit(Arg, Ty); 1049 } 1050 1051 return CGM.EmitNullConstant(Ty); 1052 } 1053 1054 llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) { 1055 return CGM.GetConstantArrayFromStringLiteral(E); 1056 } 1057 1058 llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) { 1059 // This must be an @encode initializing an array in a static initializer. 1060 // Don't emit it as the address of the string, emit the string data itself 1061 // as an inline array. 1062 std::string Str; 1063 CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1064 const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T); 1065 1066 // Resize the string to the right size, adding zeros at the end, or 1067 // truncating as needed. 1068 Str.resize(CAT->getSize().getZExtValue(), '\0'); 1069 return llvm::ConstantDataArray::getString(VMContext, Str, false); 1070 } 1071 1072 llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) { 1073 return Visit(E->getSubExpr(), T); 1074 } 1075 1076 // Utility methods 1077 llvm::Type *ConvertType(QualType T) { 1078 return CGM.getTypes().ConvertType(T); 1079 } 1080 }; 1081 1082 } // end anonymous namespace. 1083 1084 bool ConstStructBuilder::Build(ConstExprEmitter *ExprEmitter, 1085 llvm::ConstantStruct *Base, 1086 InitListExpr *Updater) { 1087 assert(Base && "base expression should not be empty"); 1088 1089 QualType ExprType = Updater->getType(); 1090 RecordDecl *RD = ExprType->getAs<RecordType>()->getDecl(); 1091 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 1092 const llvm::StructLayout *BaseLayout = CGM.getDataLayout().getStructLayout( 1093 Base->getType()); 1094 unsigned FieldNo = -1; 1095 unsigned ElementNo = 0; 1096 1097 // Bail out if we have base classes. We could support these, but they only 1098 // arise in C++1z where we will have already constant folded most interesting 1099 // cases. FIXME: There are still a few more cases we can handle this way. 1100 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1101 if (CXXRD->getNumBases()) 1102 return false; 1103 1104 for (FieldDecl *Field : RD->fields()) { 1105 ++FieldNo; 1106 1107 if (RD->isUnion() && Updater->getInitializedFieldInUnion() != Field) 1108 continue; 1109 1110 // Skip anonymous bitfields. 1111 if (Field->isUnnamedBitfield()) 1112 continue; 1113 1114 llvm::Constant *EltInit = Base->getOperand(ElementNo); 1115 1116 // Bail out if the type of the ConstantStruct does not have the same layout 1117 // as the type of the InitListExpr. 1118 if (CGM.getTypes().ConvertType(Field->getType()) != EltInit->getType() || 1119 Layout.getFieldOffset(ElementNo) != 1120 BaseLayout->getElementOffsetInBits(ElementNo)) 1121 return false; 1122 1123 // Get the initializer. If we encounter an empty field or a NoInitExpr, 1124 // we use values from the base expression. 1125 Expr *Init = nullptr; 1126 if (ElementNo < Updater->getNumInits()) 1127 Init = Updater->getInit(ElementNo); 1128 1129 if (!Init || isa<NoInitExpr>(Init)) 1130 ; // Do nothing. 1131 else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) 1132 EltInit = ExprEmitter->EmitDesignatedInitUpdater(EltInit, ChildILE, 1133 Field->getType()); 1134 else 1135 EltInit = Emitter.tryEmitPrivateForMemory(Init, Field->getType()); 1136 1137 ++ElementNo; 1138 1139 if (!EltInit) 1140 return false; 1141 1142 if (!Field->isBitField()) 1143 AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit); 1144 else if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(EltInit)) 1145 AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI); 1146 else 1147 // Initializing a bitfield with a non-trivial constant? 1148 return false; 1149 } 1150 1151 return true; 1152 } 1153 1154 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C, 1155 AbstractState saved) { 1156 Abstract = saved.OldValue; 1157 1158 assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() && 1159 "created a placeholder while doing an abstract emission?"); 1160 1161 // No validation necessary for now. 1162 // No cleanup to do for now. 1163 return C; 1164 } 1165 1166 llvm::Constant * 1167 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) { 1168 auto state = pushAbstract(); 1169 auto C = tryEmitPrivateForVarInit(D); 1170 return validateAndPopAbstract(C, state); 1171 } 1172 1173 llvm::Constant * 1174 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) { 1175 auto state = pushAbstract(); 1176 auto C = tryEmitPrivate(E, destType); 1177 return validateAndPopAbstract(C, state); 1178 } 1179 1180 llvm::Constant * 1181 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) { 1182 auto state = pushAbstract(); 1183 auto C = tryEmitPrivate(value, destType); 1184 return validateAndPopAbstract(C, state); 1185 } 1186 1187 llvm::Constant * 1188 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) { 1189 auto state = pushAbstract(); 1190 auto C = tryEmitPrivate(E, destType); 1191 C = validateAndPopAbstract(C, state); 1192 if (!C) { 1193 CGM.Error(E->getExprLoc(), 1194 "internal error: could not emit constant value \"abstractly\""); 1195 C = CGM.EmitNullConstant(destType); 1196 } 1197 return C; 1198 } 1199 1200 llvm::Constant * 1201 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value, 1202 QualType destType) { 1203 auto state = pushAbstract(); 1204 auto C = tryEmitPrivate(value, destType); 1205 C = validateAndPopAbstract(C, state); 1206 if (!C) { 1207 CGM.Error(loc, 1208 "internal error: could not emit constant value \"abstractly\""); 1209 C = CGM.EmitNullConstant(destType); 1210 } 1211 return C; 1212 } 1213 1214 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) { 1215 initializeNonAbstract(D.getType().getAddressSpace()); 1216 return markIfFailed(tryEmitPrivateForVarInit(D)); 1217 } 1218 1219 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E, 1220 LangAS destAddrSpace, 1221 QualType destType) { 1222 initializeNonAbstract(destAddrSpace); 1223 return markIfFailed(tryEmitPrivateForMemory(E, destType)); 1224 } 1225 1226 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value, 1227 LangAS destAddrSpace, 1228 QualType destType) { 1229 initializeNonAbstract(destAddrSpace); 1230 auto C = tryEmitPrivateForMemory(value, destType); 1231 assert(C && "couldn't emit constant value non-abstractly?"); 1232 return C; 1233 } 1234 1235 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() { 1236 assert(!Abstract && "cannot get current address for abstract constant"); 1237 1238 1239 1240 // Make an obviously ill-formed global that should blow up compilation 1241 // if it survives. 1242 auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true, 1243 llvm::GlobalValue::PrivateLinkage, 1244 /*init*/ nullptr, 1245 /*name*/ "", 1246 /*before*/ nullptr, 1247 llvm::GlobalVariable::NotThreadLocal, 1248 CGM.getContext().getTargetAddressSpace(DestAddressSpace)); 1249 1250 PlaceholderAddresses.push_back(std::make_pair(nullptr, global)); 1251 1252 return global; 1253 } 1254 1255 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal, 1256 llvm::GlobalValue *placeholder) { 1257 assert(!PlaceholderAddresses.empty()); 1258 assert(PlaceholderAddresses.back().first == nullptr); 1259 assert(PlaceholderAddresses.back().second == placeholder); 1260 PlaceholderAddresses.back().first = signal; 1261 } 1262 1263 namespace { 1264 struct ReplacePlaceholders { 1265 CodeGenModule &CGM; 1266 1267 /// The base address of the global. 1268 llvm::Constant *Base; 1269 llvm::Type *BaseValueTy = nullptr; 1270 1271 /// The placeholder addresses that were registered during emission. 1272 llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses; 1273 1274 /// The locations of the placeholder signals. 1275 llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations; 1276 1277 /// The current index stack. We use a simple unsigned stack because 1278 /// we assume that placeholders will be relatively sparse in the 1279 /// initializer, but we cache the index values we find just in case. 1280 llvm::SmallVector<unsigned, 8> Indices; 1281 llvm::SmallVector<llvm::Constant*, 8> IndexValues; 1282 1283 ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base, 1284 ArrayRef<std::pair<llvm::Constant*, 1285 llvm::GlobalVariable*>> addresses) 1286 : CGM(CGM), Base(base), 1287 PlaceholderAddresses(addresses.begin(), addresses.end()) { 1288 } 1289 1290 void replaceInInitializer(llvm::Constant *init) { 1291 // Remember the type of the top-most initializer. 1292 BaseValueTy = init->getType(); 1293 1294 // Initialize the stack. 1295 Indices.push_back(0); 1296 IndexValues.push_back(nullptr); 1297 1298 // Recurse into the initializer. 1299 findLocations(init); 1300 1301 // Check invariants. 1302 assert(IndexValues.size() == Indices.size() && "mismatch"); 1303 assert(Indices.size() == 1 && "didn't pop all indices"); 1304 1305 // Do the replacement; this basically invalidates 'init'. 1306 assert(Locations.size() == PlaceholderAddresses.size() && 1307 "missed a placeholder?"); 1308 1309 // We're iterating over a hashtable, so this would be a source of 1310 // non-determinism in compiler output *except* that we're just 1311 // messing around with llvm::Constant structures, which never itself 1312 // does anything that should be visible in compiler output. 1313 for (auto &entry : Locations) { 1314 assert(entry.first->getParent() == nullptr && "not a placeholder!"); 1315 entry.first->replaceAllUsesWith(entry.second); 1316 entry.first->eraseFromParent(); 1317 } 1318 } 1319 1320 private: 1321 void findLocations(llvm::Constant *init) { 1322 // Recurse into aggregates. 1323 if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) { 1324 for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) { 1325 Indices.push_back(i); 1326 IndexValues.push_back(nullptr); 1327 1328 findLocations(agg->getOperand(i)); 1329 1330 IndexValues.pop_back(); 1331 Indices.pop_back(); 1332 } 1333 return; 1334 } 1335 1336 // Otherwise, check for registered constants. 1337 while (true) { 1338 auto it = PlaceholderAddresses.find(init); 1339 if (it != PlaceholderAddresses.end()) { 1340 setLocation(it->second); 1341 break; 1342 } 1343 1344 // Look through bitcasts or other expressions. 1345 if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) { 1346 init = expr->getOperand(0); 1347 } else { 1348 break; 1349 } 1350 } 1351 } 1352 1353 void setLocation(llvm::GlobalVariable *placeholder) { 1354 assert(Locations.find(placeholder) == Locations.end() && 1355 "already found location for placeholder!"); 1356 1357 // Lazily fill in IndexValues with the values from Indices. 1358 // We do this in reverse because we should always have a strict 1359 // prefix of indices from the start. 1360 assert(Indices.size() == IndexValues.size()); 1361 for (size_t i = Indices.size() - 1; i != size_t(-1); --i) { 1362 if (IndexValues[i]) { 1363 #ifndef NDEBUG 1364 for (size_t j = 0; j != i + 1; ++j) { 1365 assert(IndexValues[j] && 1366 isa<llvm::ConstantInt>(IndexValues[j]) && 1367 cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue() 1368 == Indices[j]); 1369 } 1370 #endif 1371 break; 1372 } 1373 1374 IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]); 1375 } 1376 1377 // Form a GEP and then bitcast to the placeholder type so that the 1378 // replacement will succeed. 1379 llvm::Constant *location = 1380 llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy, 1381 Base, IndexValues); 1382 location = llvm::ConstantExpr::getBitCast(location, 1383 placeholder->getType()); 1384 1385 Locations.insert({placeholder, location}); 1386 } 1387 }; 1388 } 1389 1390 void ConstantEmitter::finalize(llvm::GlobalVariable *global) { 1391 assert(InitializedNonAbstract && 1392 "finalizing emitter that was used for abstract emission?"); 1393 assert(!Finalized && "finalizing emitter multiple times"); 1394 assert(global->getInitializer()); 1395 1396 // Note that we might also be Failed. 1397 Finalized = true; 1398 1399 if (!PlaceholderAddresses.empty()) { 1400 ReplacePlaceholders(CGM, global, PlaceholderAddresses) 1401 .replaceInInitializer(global->getInitializer()); 1402 PlaceholderAddresses.clear(); // satisfy 1403 } 1404 } 1405 1406 ConstantEmitter::~ConstantEmitter() { 1407 assert((!InitializedNonAbstract || Finalized || Failed) && 1408 "not finalized after being initialized for non-abstract emission"); 1409 assert(PlaceholderAddresses.empty() && "unhandled placeholders"); 1410 } 1411 1412 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) { 1413 if (auto AT = type->getAs<AtomicType>()) { 1414 return CGM.getContext().getQualifiedType(AT->getValueType(), 1415 type.getQualifiers()); 1416 } 1417 return type; 1418 } 1419 1420 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) { 1421 // Make a quick check if variable can be default NULL initialized 1422 // and avoid going through rest of code which may do, for c++11, 1423 // initialization of memory to all NULLs. 1424 if (!D.hasLocalStorage()) { 1425 QualType Ty = CGM.getContext().getBaseElementType(D.getType()); 1426 if (Ty->isRecordType()) 1427 if (const CXXConstructExpr *E = 1428 dyn_cast_or_null<CXXConstructExpr>(D.getInit())) { 1429 const CXXConstructorDecl *CD = E->getConstructor(); 1430 if (CD->isTrivial() && CD->isDefaultConstructor()) 1431 return CGM.EmitNullConstant(D.getType()); 1432 } 1433 } 1434 1435 QualType destType = D.getType(); 1436 1437 // Try to emit the initializer. Note that this can allow some things that 1438 // are not allowed by tryEmitPrivateForMemory alone. 1439 if (auto value = D.evaluateValue()) { 1440 return tryEmitPrivateForMemory(*value, destType); 1441 } 1442 1443 // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a 1444 // reference is a constant expression, and the reference binds to a temporary, 1445 // then constant initialization is performed. ConstExprEmitter will 1446 // incorrectly emit a prvalue constant in this case, and the calling code 1447 // interprets that as the (pointer) value of the reference, rather than the 1448 // desired value of the referee. 1449 if (destType->isReferenceType()) 1450 return nullptr; 1451 1452 const Expr *E = D.getInit(); 1453 assert(E && "No initializer to emit"); 1454 1455 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1456 auto C = 1457 ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType); 1458 return (C ? emitForMemory(C, destType) : nullptr); 1459 } 1460 1461 llvm::Constant * 1462 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) { 1463 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1464 auto C = tryEmitAbstract(E, nonMemoryDestType); 1465 return (C ? emitForMemory(C, destType) : nullptr); 1466 } 1467 1468 llvm::Constant * 1469 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value, 1470 QualType destType) { 1471 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1472 auto C = tryEmitAbstract(value, nonMemoryDestType); 1473 return (C ? emitForMemory(C, destType) : nullptr); 1474 } 1475 1476 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E, 1477 QualType destType) { 1478 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1479 llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType); 1480 return (C ? emitForMemory(C, destType) : nullptr); 1481 } 1482 1483 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value, 1484 QualType destType) { 1485 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1486 auto C = tryEmitPrivate(value, nonMemoryDestType); 1487 return (C ? emitForMemory(C, destType) : nullptr); 1488 } 1489 1490 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM, 1491 llvm::Constant *C, 1492 QualType destType) { 1493 // For an _Atomic-qualified constant, we may need to add tail padding. 1494 if (auto AT = destType->getAs<AtomicType>()) { 1495 QualType destValueType = AT->getValueType(); 1496 C = emitForMemory(CGM, C, destValueType); 1497 1498 uint64_t innerSize = CGM.getContext().getTypeSize(destValueType); 1499 uint64_t outerSize = CGM.getContext().getTypeSize(destType); 1500 if (innerSize == outerSize) 1501 return C; 1502 1503 assert(innerSize < outerSize && "emitted over-large constant for atomic"); 1504 llvm::Constant *elts[] = { 1505 C, 1506 llvm::ConstantAggregateZero::get( 1507 llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8)) 1508 }; 1509 return llvm::ConstantStruct::getAnon(elts); 1510 } 1511 1512 // Zero-extend bool. 1513 if (C->getType()->isIntegerTy(1)) { 1514 llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType); 1515 return llvm::ConstantExpr::getZExt(C, boolTy); 1516 } 1517 1518 return C; 1519 } 1520 1521 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E, 1522 QualType destType) { 1523 Expr::EvalResult Result; 1524 1525 bool Success = false; 1526 1527 if (destType->isReferenceType()) 1528 Success = E->EvaluateAsLValue(Result, CGM.getContext()); 1529 else 1530 Success = E->EvaluateAsRValue(Result, CGM.getContext()); 1531 1532 llvm::Constant *C; 1533 if (Success && !Result.HasSideEffects) 1534 C = tryEmitPrivate(Result.Val, destType); 1535 else 1536 C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType); 1537 1538 return C; 1539 } 1540 1541 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) { 1542 return getTargetCodeGenInfo().getNullPointer(*this, T, QT); 1543 } 1544 1545 namespace { 1546 /// A struct which can be used to peephole certain kinds of finalization 1547 /// that normally happen during l-value emission. 1548 struct ConstantLValue { 1549 llvm::Constant *Value; 1550 bool HasOffsetApplied; 1551 1552 /*implicit*/ ConstantLValue(llvm::Constant *value, 1553 bool hasOffsetApplied = false) 1554 : Value(value), HasOffsetApplied(false) {} 1555 1556 /*implicit*/ ConstantLValue(ConstantAddress address) 1557 : ConstantLValue(address.getPointer()) {} 1558 }; 1559 1560 /// A helper class for emitting constant l-values. 1561 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter, 1562 ConstantLValue> { 1563 CodeGenModule &CGM; 1564 ConstantEmitter &Emitter; 1565 const APValue &Value; 1566 QualType DestType; 1567 1568 // Befriend StmtVisitorBase so that we don't have to expose Visit*. 1569 friend StmtVisitorBase; 1570 1571 public: 1572 ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value, 1573 QualType destType) 1574 : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {} 1575 1576 llvm::Constant *tryEmit(); 1577 1578 private: 1579 llvm::Constant *tryEmitAbsolute(llvm::Type *destTy); 1580 ConstantLValue tryEmitBase(const APValue::LValueBase &base); 1581 1582 ConstantLValue VisitStmt(const Stmt *S) { return nullptr; } 1583 ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); 1584 ConstantLValue VisitStringLiteral(const StringLiteral *E); 1585 ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E); 1586 ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E); 1587 ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E); 1588 ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E); 1589 ConstantLValue VisitCallExpr(const CallExpr *E); 1590 ConstantLValue VisitBlockExpr(const BlockExpr *E); 1591 ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E); 1592 ConstantLValue VisitCXXUuidofExpr(const CXXUuidofExpr *E); 1593 ConstantLValue VisitMaterializeTemporaryExpr( 1594 const MaterializeTemporaryExpr *E); 1595 1596 bool hasNonZeroOffset() const { 1597 return !Value.getLValueOffset().isZero(); 1598 } 1599 1600 /// Return the value offset. 1601 llvm::Constant *getOffset() { 1602 return llvm::ConstantInt::get(CGM.Int64Ty, 1603 Value.getLValueOffset().getQuantity()); 1604 } 1605 1606 /// Apply the value offset to the given constant. 1607 llvm::Constant *applyOffset(llvm::Constant *C) { 1608 if (!hasNonZeroOffset()) 1609 return C; 1610 1611 llvm::Type *origPtrTy = C->getType(); 1612 unsigned AS = origPtrTy->getPointerAddressSpace(); 1613 llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS); 1614 C = llvm::ConstantExpr::getBitCast(C, charPtrTy); 1615 C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset()); 1616 C = llvm::ConstantExpr::getPointerCast(C, origPtrTy); 1617 return C; 1618 } 1619 }; 1620 1621 } 1622 1623 llvm::Constant *ConstantLValueEmitter::tryEmit() { 1624 const APValue::LValueBase &base = Value.getLValueBase(); 1625 1626 // Certain special array initializers are represented in APValue 1627 // as l-values referring to the base expression which generates the 1628 // array. This happens with e.g. string literals. These should 1629 // probably just get their own representation kind in APValue. 1630 if (DestType->isArrayType()) { 1631 assert(!hasNonZeroOffset() && "offset on array initializer"); 1632 auto expr = const_cast<Expr*>(base.get<const Expr*>()); 1633 return ConstExprEmitter(Emitter).Visit(expr, DestType); 1634 } 1635 1636 // Otherwise, the destination type should be a pointer or reference 1637 // type, but it might also be a cast thereof. 1638 // 1639 // FIXME: the chain of casts required should be reflected in the APValue. 1640 // We need this in order to correctly handle things like a ptrtoint of a 1641 // non-zero null pointer and addrspace casts that aren't trivially 1642 // represented in LLVM IR. 1643 auto destTy = CGM.getTypes().ConvertTypeForMem(DestType); 1644 assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy)); 1645 1646 // If there's no base at all, this is a null or absolute pointer, 1647 // possibly cast back to an integer type. 1648 if (!base) { 1649 return tryEmitAbsolute(destTy); 1650 } 1651 1652 // Otherwise, try to emit the base. 1653 ConstantLValue result = tryEmitBase(base); 1654 1655 // If that failed, we're done. 1656 llvm::Constant *value = result.Value; 1657 if (!value) return nullptr; 1658 1659 // Apply the offset if necessary and not already done. 1660 if (!result.HasOffsetApplied) { 1661 value = applyOffset(value); 1662 } 1663 1664 // Convert to the appropriate type; this could be an lvalue for 1665 // an integer. FIXME: performAddrSpaceCast 1666 if (isa<llvm::PointerType>(destTy)) 1667 return llvm::ConstantExpr::getPointerCast(value, destTy); 1668 1669 return llvm::ConstantExpr::getPtrToInt(value, destTy); 1670 } 1671 1672 /// Try to emit an absolute l-value, such as a null pointer or an integer 1673 /// bitcast to pointer type. 1674 llvm::Constant * 1675 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) { 1676 auto offset = getOffset(); 1677 1678 // If we're producing a pointer, this is easy. 1679 if (auto destPtrTy = cast<llvm::PointerType>(destTy)) { 1680 if (Value.isNullPointer()) { 1681 // FIXME: integer offsets from non-zero null pointers. 1682 return CGM.getNullPointer(destPtrTy, DestType); 1683 } 1684 1685 // Convert the integer to a pointer-sized integer before converting it 1686 // to a pointer. 1687 // FIXME: signedness depends on the original integer type. 1688 auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy); 1689 llvm::Constant *C = offset; 1690 C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy, 1691 /*isSigned*/ false); 1692 C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy); 1693 return C; 1694 } 1695 1696 // Otherwise, we're basically returning an integer constant. 1697 1698 // FIXME: this does the wrong thing with ptrtoint of a null pointer, 1699 // but since we don't know the original pointer type, there's not much 1700 // we can do about it. 1701 1702 auto C = getOffset(); 1703 C = llvm::ConstantExpr::getIntegerCast(C, destTy, /*isSigned*/ false); 1704 return C; 1705 } 1706 1707 ConstantLValue 1708 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) { 1709 // Handle values. 1710 if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) { 1711 if (D->hasAttr<WeakRefAttr>()) 1712 return CGM.GetWeakRefReference(D).getPointer(); 1713 1714 if (auto FD = dyn_cast<FunctionDecl>(D)) 1715 return CGM.GetAddrOfFunction(FD); 1716 1717 if (auto VD = dyn_cast<VarDecl>(D)) { 1718 // We can never refer to a variable with local storage. 1719 if (!VD->hasLocalStorage()) { 1720 if (VD->isFileVarDecl() || VD->hasExternalStorage()) 1721 return CGM.GetAddrOfGlobalVar(VD); 1722 1723 if (VD->isLocalVarDecl()) { 1724 return CGM.getOrCreateStaticVarDecl( 1725 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)); 1726 } 1727 } 1728 } 1729 1730 return nullptr; 1731 } 1732 1733 // Otherwise, it must be an expression. 1734 return Visit(base.get<const Expr*>()); 1735 } 1736 1737 ConstantLValue 1738 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 1739 return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E); 1740 } 1741 1742 ConstantLValue 1743 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) { 1744 return CGM.GetAddrOfConstantStringFromLiteral(E); 1745 } 1746 1747 ConstantLValue 1748 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 1749 return CGM.GetAddrOfConstantStringFromObjCEncode(E); 1750 } 1751 1752 ConstantLValue 1753 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 1754 auto C = CGM.getObjCRuntime().GenerateConstantString(E->getString()); 1755 return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(E->getType())); 1756 } 1757 1758 ConstantLValue 1759 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) { 1760 if (auto CGF = Emitter.CGF) { 1761 LValue Res = CGF->EmitPredefinedLValue(E); 1762 return cast<ConstantAddress>(Res.getAddress()); 1763 } 1764 1765 auto kind = E->getIdentType(); 1766 if (kind == PredefinedExpr::PrettyFunction) { 1767 return CGM.GetAddrOfConstantCString("top level", ".tmp"); 1768 } 1769 1770 return CGM.GetAddrOfConstantCString("", ".tmp"); 1771 } 1772 1773 ConstantLValue 1774 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) { 1775 assert(Emitter.CGF && "Invalid address of label expression outside function"); 1776 llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel()); 1777 Ptr = llvm::ConstantExpr::getBitCast(Ptr, 1778 CGM.getTypes().ConvertType(E->getType())); 1779 return Ptr; 1780 } 1781 1782 ConstantLValue 1783 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) { 1784 unsigned builtin = E->getBuiltinCallee(); 1785 if (builtin != Builtin::BI__builtin___CFStringMakeConstantString && 1786 builtin != Builtin::BI__builtin___NSStringMakeConstantString) 1787 return nullptr; 1788 1789 auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts()); 1790 if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) { 1791 return CGM.getObjCRuntime().GenerateConstantString(literal); 1792 } else { 1793 // FIXME: need to deal with UCN conversion issues. 1794 return CGM.GetAddrOfConstantCFString(literal); 1795 } 1796 } 1797 1798 ConstantLValue 1799 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) { 1800 StringRef functionName; 1801 if (auto CGF = Emitter.CGF) 1802 functionName = CGF->CurFn->getName(); 1803 else 1804 functionName = "global"; 1805 1806 return CGM.GetAddrOfGlobalBlock(E, functionName); 1807 } 1808 1809 ConstantLValue 1810 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { 1811 QualType T; 1812 if (E->isTypeOperand()) 1813 T = E->getTypeOperand(CGM.getContext()); 1814 else 1815 T = E->getExprOperand()->getType(); 1816 return CGM.GetAddrOfRTTIDescriptor(T); 1817 } 1818 1819 ConstantLValue 1820 ConstantLValueEmitter::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 1821 return CGM.GetAddrOfUuidDescriptor(E); 1822 } 1823 1824 ConstantLValue 1825 ConstantLValueEmitter::VisitMaterializeTemporaryExpr( 1826 const MaterializeTemporaryExpr *E) { 1827 assert(E->getStorageDuration() == SD_Static); 1828 SmallVector<const Expr *, 2> CommaLHSs; 1829 SmallVector<SubobjectAdjustment, 2> Adjustments; 1830 const Expr *Inner = E->GetTemporaryExpr() 1831 ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 1832 return CGM.GetAddrOfGlobalTemporary(E, Inner); 1833 } 1834 1835 llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value, 1836 QualType DestType) { 1837 switch (Value.getKind()) { 1838 case APValue::Uninitialized: 1839 llvm_unreachable("Constant expressions should be initialized."); 1840 case APValue::LValue: 1841 return ConstantLValueEmitter(*this, Value, DestType).tryEmit(); 1842 case APValue::Int: 1843 return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt()); 1844 case APValue::ComplexInt: { 1845 llvm::Constant *Complex[2]; 1846 1847 Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(), 1848 Value.getComplexIntReal()); 1849 Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(), 1850 Value.getComplexIntImag()); 1851 1852 // FIXME: the target may want to specify that this is packed. 1853 llvm::StructType *STy = 1854 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 1855 return llvm::ConstantStruct::get(STy, Complex); 1856 } 1857 case APValue::Float: { 1858 const llvm::APFloat &Init = Value.getFloat(); 1859 if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() && 1860 !CGM.getContext().getLangOpts().NativeHalfType && 1861 CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1862 return llvm::ConstantInt::get(CGM.getLLVMContext(), 1863 Init.bitcastToAPInt()); 1864 else 1865 return llvm::ConstantFP::get(CGM.getLLVMContext(), Init); 1866 } 1867 case APValue::ComplexFloat: { 1868 llvm::Constant *Complex[2]; 1869 1870 Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(), 1871 Value.getComplexFloatReal()); 1872 Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(), 1873 Value.getComplexFloatImag()); 1874 1875 // FIXME: the target may want to specify that this is packed. 1876 llvm::StructType *STy = 1877 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 1878 return llvm::ConstantStruct::get(STy, Complex); 1879 } 1880 case APValue::Vector: { 1881 unsigned NumElts = Value.getVectorLength(); 1882 SmallVector<llvm::Constant *, 4> Inits(NumElts); 1883 1884 for (unsigned I = 0; I != NumElts; ++I) { 1885 const APValue &Elt = Value.getVectorElt(I); 1886 if (Elt.isInt()) 1887 Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt()); 1888 else if (Elt.isFloat()) 1889 Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat()); 1890 else 1891 llvm_unreachable("unsupported vector element type"); 1892 } 1893 return llvm::ConstantVector::get(Inits); 1894 } 1895 case APValue::AddrLabelDiff: { 1896 const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS(); 1897 const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS(); 1898 llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType()); 1899 llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType()); 1900 if (!LHS || !RHS) return nullptr; 1901 1902 // Compute difference 1903 llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType); 1904 LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy); 1905 RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy); 1906 llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS); 1907 1908 // LLVM is a bit sensitive about the exact format of the 1909 // address-of-label difference; make sure to truncate after 1910 // the subtraction. 1911 return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType); 1912 } 1913 case APValue::Struct: 1914 case APValue::Union: 1915 return ConstStructBuilder::BuildStruct(*this, Value, DestType); 1916 case APValue::Array: { 1917 const ArrayType *CAT = CGM.getContext().getAsArrayType(DestType); 1918 unsigned NumElements = Value.getArraySize(); 1919 unsigned NumInitElts = Value.getArrayInitializedElts(); 1920 1921 // Emit array filler, if there is one. 1922 llvm::Constant *Filler = nullptr; 1923 if (Value.hasArrayFiller()) { 1924 Filler = tryEmitAbstractForMemory(Value.getArrayFiller(), 1925 CAT->getElementType()); 1926 if (!Filler) 1927 return nullptr; 1928 } 1929 1930 // Emit initializer elements. 1931 llvm::Type *CommonElementType = 1932 CGM.getTypes().ConvertType(CAT->getElementType()); 1933 llvm::ArrayType *PreferredArrayType = 1934 llvm::ArrayType::get(CommonElementType, NumElements); 1935 1936 SmallVector<llvm::Constant*, 16> Elts; 1937 if (Filler && Filler->isNullValue()) 1938 Elts.reserve(NumInitElts + 1); 1939 else 1940 Elts.reserve(NumElements); 1941 1942 for (unsigned I = 0; I < NumInitElts; ++I) { 1943 llvm::Constant *C = tryEmitPrivateForMemory( 1944 Value.getArrayInitializedElt(I), CAT->getElementType()); 1945 if (!C) return nullptr; 1946 1947 if (I == 0) 1948 CommonElementType = C->getType(); 1949 else if (C->getType() != CommonElementType) 1950 CommonElementType = nullptr; 1951 Elts.push_back(C); 1952 } 1953 1954 return EmitArrayConstant(PreferredArrayType, CommonElementType, NumElements, 1955 Elts, Filler); 1956 } 1957 case APValue::MemberPointer: 1958 return CGM.getCXXABI().EmitMemberPointer(Value, DestType); 1959 } 1960 llvm_unreachable("Unknown APValue kind"); 1961 } 1962 1963 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted( 1964 const CompoundLiteralExpr *E) { 1965 return EmittedCompoundLiterals.lookup(E); 1966 } 1967 1968 void CodeGenModule::setAddrOfConstantCompoundLiteral( 1969 const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) { 1970 bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second; 1971 (void)Ok; 1972 assert(Ok && "CLE has already been emitted!"); 1973 } 1974 1975 ConstantAddress 1976 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) { 1977 assert(E->isFileScope() && "not a file-scope compound literal expr"); 1978 return tryEmitGlobalCompoundLiteral(*this, nullptr, E); 1979 } 1980 1981 llvm::Constant * 1982 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) { 1983 // Member pointer constants always have a very particular form. 1984 const MemberPointerType *type = cast<MemberPointerType>(uo->getType()); 1985 const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl(); 1986 1987 // A member function pointer. 1988 if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl)) 1989 return getCXXABI().EmitMemberFunctionPointer(method); 1990 1991 // Otherwise, a member data pointer. 1992 uint64_t fieldOffset = getContext().getFieldOffset(decl); 1993 CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset); 1994 return getCXXABI().EmitMemberDataPointer(type, chars); 1995 } 1996 1997 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 1998 llvm::Type *baseType, 1999 const CXXRecordDecl *base); 2000 2001 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM, 2002 const RecordDecl *record, 2003 bool asCompleteObject) { 2004 const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record); 2005 llvm::StructType *structure = 2006 (asCompleteObject ? layout.getLLVMType() 2007 : layout.getBaseSubobjectLLVMType()); 2008 2009 unsigned numElements = structure->getNumElements(); 2010 std::vector<llvm::Constant *> elements(numElements); 2011 2012 auto CXXR = dyn_cast<CXXRecordDecl>(record); 2013 // Fill in all the bases. 2014 if (CXXR) { 2015 for (const auto &I : CXXR->bases()) { 2016 if (I.isVirtual()) { 2017 // Ignore virtual bases; if we're laying out for a complete 2018 // object, we'll lay these out later. 2019 continue; 2020 } 2021 2022 const CXXRecordDecl *base = 2023 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2024 2025 // Ignore empty bases. 2026 if (base->isEmpty() || 2027 CGM.getContext().getASTRecordLayout(base).getNonVirtualSize() 2028 .isZero()) 2029 continue; 2030 2031 unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base); 2032 llvm::Type *baseType = structure->getElementType(fieldIndex); 2033 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2034 } 2035 } 2036 2037 // Fill in all the fields. 2038 for (const auto *Field : record->fields()) { 2039 // Fill in non-bitfields. (Bitfields always use a zero pattern, which we 2040 // will fill in later.) 2041 if (!Field->isBitField()) { 2042 unsigned fieldIndex = layout.getLLVMFieldNo(Field); 2043 elements[fieldIndex] = CGM.EmitNullConstant(Field->getType()); 2044 } 2045 2046 // For unions, stop after the first named field. 2047 if (record->isUnion()) { 2048 if (Field->getIdentifier()) 2049 break; 2050 if (const auto *FieldRD = 2051 dyn_cast_or_null<RecordDecl>(Field->getType()->getAsTagDecl())) 2052 if (FieldRD->findFirstNamedDataMember()) 2053 break; 2054 } 2055 } 2056 2057 // Fill in the virtual bases, if we're working with the complete object. 2058 if (CXXR && asCompleteObject) { 2059 for (const auto &I : CXXR->vbases()) { 2060 const CXXRecordDecl *base = 2061 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2062 2063 // Ignore empty bases. 2064 if (base->isEmpty()) 2065 continue; 2066 2067 unsigned fieldIndex = layout.getVirtualBaseIndex(base); 2068 2069 // We might have already laid this field out. 2070 if (elements[fieldIndex]) continue; 2071 2072 llvm::Type *baseType = structure->getElementType(fieldIndex); 2073 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2074 } 2075 } 2076 2077 // Now go through all other fields and zero them out. 2078 for (unsigned i = 0; i != numElements; ++i) { 2079 if (!elements[i]) 2080 elements[i] = llvm::Constant::getNullValue(structure->getElementType(i)); 2081 } 2082 2083 return llvm::ConstantStruct::get(structure, elements); 2084 } 2085 2086 /// Emit the null constant for a base subobject. 2087 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2088 llvm::Type *baseType, 2089 const CXXRecordDecl *base) { 2090 const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base); 2091 2092 // Just zero out bases that don't have any pointer to data members. 2093 if (baseLayout.isZeroInitializableAsBase()) 2094 return llvm::Constant::getNullValue(baseType); 2095 2096 // Otherwise, we can just use its null constant. 2097 return EmitNullConstant(CGM, base, /*asCompleteObject=*/false); 2098 } 2099 2100 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM, 2101 QualType T) { 2102 return emitForMemory(CGM, CGM.EmitNullConstant(T), T); 2103 } 2104 2105 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { 2106 if (T->getAs<PointerType>()) 2107 return getNullPointer( 2108 cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T); 2109 2110 if (getTypes().isZeroInitializable(T)) 2111 return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); 2112 2113 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { 2114 llvm::ArrayType *ATy = 2115 cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T)); 2116 2117 QualType ElementTy = CAT->getElementType(); 2118 2119 llvm::Constant *Element = 2120 ConstantEmitter::emitNullForMemory(*this, ElementTy); 2121 unsigned NumElements = CAT->getSize().getZExtValue(); 2122 SmallVector<llvm::Constant *, 8> Array(NumElements, Element); 2123 return llvm::ConstantArray::get(ATy, Array); 2124 } 2125 2126 if (const RecordType *RT = T->getAs<RecordType>()) 2127 return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true); 2128 2129 assert(T->isMemberDataPointerType() && 2130 "Should only see pointers to data members here!"); 2131 2132 return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>()); 2133 } 2134 2135 llvm::Constant * 2136 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) { 2137 return ::EmitNullConstant(*this, Record, false); 2138 } 2139