1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Constant Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGObjCRuntime.h" 15 #include "CGRecordLayout.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "ConstantEmitter.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/APValue.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Attr.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/Builtins.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/Sequence.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalVariable.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 //===----------------------------------------------------------------------===// 36 // ConstantAggregateBuilder 37 //===----------------------------------------------------------------------===// 38 39 namespace { 40 class ConstExprEmitter; 41 42 struct ConstantAggregateBuilderUtils { 43 CodeGenModule &CGM; 44 45 ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {} 46 47 CharUnits getAlignment(const llvm::Constant *C) const { 48 return CharUnits::fromQuantity( 49 CGM.getDataLayout().getABITypeAlignment(C->getType())); 50 } 51 52 CharUnits getSize(llvm::Type *Ty) const { 53 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty)); 54 } 55 56 CharUnits getSize(const llvm::Constant *C) const { 57 return getSize(C->getType()); 58 } 59 60 llvm::Constant *getPadding(CharUnits PadSize) const { 61 llvm::Type *Ty = CGM.CharTy; 62 if (PadSize > CharUnits::One()) 63 Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity()); 64 return llvm::UndefValue::get(Ty); 65 } 66 67 llvm::Constant *getZeroes(CharUnits ZeroSize) const { 68 llvm::Type *Ty = llvm::ArrayType::get(CGM.CharTy, ZeroSize.getQuantity()); 69 return llvm::ConstantAggregateZero::get(Ty); 70 } 71 }; 72 73 /// Incremental builder for an llvm::Constant* holding a struct or array 74 /// constant. 75 class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils { 76 /// The elements of the constant. These two arrays must have the same size; 77 /// Offsets[i] describes the offset of Elems[i] within the constant. The 78 /// elements are kept in increasing offset order, and we ensure that there 79 /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]). 80 /// 81 /// This may contain explicit padding elements (in order to create a 82 /// natural layout), but need not. Gaps between elements are implicitly 83 /// considered to be filled with undef. 84 llvm::SmallVector<llvm::Constant*, 32> Elems; 85 llvm::SmallVector<CharUnits, 32> Offsets; 86 87 /// The size of the constant (the maximum end offset of any added element). 88 /// May be larger than the end of Elems.back() if we split the last element 89 /// and removed some trailing undefs. 90 CharUnits Size = CharUnits::Zero(); 91 92 /// This is true only if laying out Elems in order as the elements of a 93 /// non-packed LLVM struct will give the correct layout. 94 bool NaturalLayout = true; 95 96 bool split(size_t Index, CharUnits Hint); 97 Optional<size_t> splitAt(CharUnits Pos); 98 99 static llvm::Constant *buildFrom(CodeGenModule &CGM, 100 ArrayRef<llvm::Constant *> Elems, 101 ArrayRef<CharUnits> Offsets, 102 CharUnits StartOffset, CharUnits Size, 103 bool NaturalLayout, llvm::Type *DesiredTy, 104 bool AllowOversized); 105 106 public: 107 ConstantAggregateBuilder(CodeGenModule &CGM) 108 : ConstantAggregateBuilderUtils(CGM) {} 109 110 /// Update or overwrite the value starting at \p Offset with \c C. 111 /// 112 /// \param AllowOverwrite If \c true, this constant might overwrite (part of) 113 /// a constant that has already been added. This flag is only used to 114 /// detect bugs. 115 bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite); 116 117 /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits. 118 bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite); 119 120 /// Attempt to condense the value starting at \p Offset to a constant of type 121 /// \p DesiredTy. 122 void condense(CharUnits Offset, llvm::Type *DesiredTy); 123 124 /// Produce a constant representing the entire accumulated value, ideally of 125 /// the specified type. If \p AllowOversized, the constant might be larger 126 /// than implied by \p DesiredTy (eg, if there is a flexible array member). 127 /// Otherwise, the constant will be of exactly the same size as \p DesiredTy 128 /// even if we can't represent it as that type. 129 llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const { 130 return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size, 131 NaturalLayout, DesiredTy, AllowOversized); 132 } 133 }; 134 135 template<typename Container, typename Range = std::initializer_list< 136 typename Container::value_type>> 137 static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) { 138 assert(BeginOff <= EndOff && "invalid replacement range"); 139 llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals); 140 } 141 142 bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset, 143 bool AllowOverwrite) { 144 // Common case: appending to a layout. 145 if (Offset >= Size) { 146 CharUnits Align = getAlignment(C); 147 CharUnits AlignedSize = Size.alignTo(Align); 148 if (AlignedSize > Offset || Offset.alignTo(Align) != Offset) 149 NaturalLayout = false; 150 else if (AlignedSize < Offset) { 151 Elems.push_back(getPadding(Offset - Size)); 152 Offsets.push_back(Size); 153 } 154 Elems.push_back(C); 155 Offsets.push_back(Offset); 156 Size = Offset + getSize(C); 157 return true; 158 } 159 160 // Uncommon case: constant overlaps what we've already created. 161 llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset); 162 if (!FirstElemToReplace) 163 return false; 164 165 CharUnits CSize = getSize(C); 166 llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + CSize); 167 if (!LastElemToReplace) 168 return false; 169 170 assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) && 171 "unexpectedly overwriting field"); 172 173 replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C}); 174 replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset}); 175 Size = std::max(Size, Offset + CSize); 176 NaturalLayout = false; 177 return true; 178 } 179 180 bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits, 181 bool AllowOverwrite) { 182 const ASTContext &Context = CGM.getContext(); 183 const uint64_t CharWidth = CGM.getContext().getCharWidth(); 184 185 // Offset of where we want the first bit to go within the bits of the 186 // current char. 187 unsigned OffsetWithinChar = OffsetInBits % CharWidth; 188 189 // We split bit-fields up into individual bytes. Walk over the bytes and 190 // update them. 191 for (CharUnits OffsetInChars = 192 Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar); 193 /**/; ++OffsetInChars) { 194 // Number of bits we want to fill in this char. 195 unsigned WantedBits = 196 std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar); 197 198 // Get a char containing the bits we want in the right places. The other 199 // bits have unspecified values. 200 llvm::APInt BitsThisChar = Bits; 201 if (BitsThisChar.getBitWidth() < CharWidth) 202 BitsThisChar = BitsThisChar.zext(CharWidth); 203 if (CGM.getDataLayout().isBigEndian()) { 204 // Figure out how much to shift by. We may need to left-shift if we have 205 // less than one byte of Bits left. 206 int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar; 207 if (Shift > 0) 208 BitsThisChar.lshrInPlace(Shift); 209 else if (Shift < 0) 210 BitsThisChar = BitsThisChar.shl(-Shift); 211 } else { 212 BitsThisChar = BitsThisChar.shl(OffsetWithinChar); 213 } 214 if (BitsThisChar.getBitWidth() > CharWidth) 215 BitsThisChar = BitsThisChar.trunc(CharWidth); 216 217 if (WantedBits == CharWidth) { 218 // Got a full byte: just add it directly. 219 add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar), 220 OffsetInChars, AllowOverwrite); 221 } else { 222 // Partial byte: update the existing integer if there is one. If we 223 // can't split out a 1-CharUnit range to update, then we can't add 224 // these bits and fail the entire constant emission. 225 llvm::Optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars); 226 if (!FirstElemToUpdate) 227 return false; 228 llvm::Optional<size_t> LastElemToUpdate = 229 splitAt(OffsetInChars + CharUnits::One()); 230 if (!LastElemToUpdate) 231 return false; 232 assert(*LastElemToUpdate - *FirstElemToUpdate < 2 && 233 "should have at most one element covering one byte"); 234 235 // Figure out which bits we want and discard the rest. 236 llvm::APInt UpdateMask(CharWidth, 0); 237 if (CGM.getDataLayout().isBigEndian()) 238 UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits, 239 CharWidth - OffsetWithinChar); 240 else 241 UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits); 242 BitsThisChar &= UpdateMask; 243 244 if (*FirstElemToUpdate == *LastElemToUpdate || 245 Elems[*FirstElemToUpdate]->isNullValue() || 246 isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) { 247 // All existing bits are either zero or undef. 248 add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar), 249 OffsetInChars, /*AllowOverwrite*/ true); 250 } else { 251 llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate]; 252 // In order to perform a partial update, we need the existing bitwise 253 // value, which we can only extract for a constant int. 254 auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate); 255 if (!CI) 256 return false; 257 // Because this is a 1-CharUnit range, the constant occupying it must 258 // be exactly one CharUnit wide. 259 assert(CI->getBitWidth() == CharWidth && "splitAt failed"); 260 assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) && 261 "unexpectedly overwriting bitfield"); 262 BitsThisChar |= (CI->getValue() & ~UpdateMask); 263 ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar); 264 } 265 } 266 267 // Stop if we've added all the bits. 268 if (WantedBits == Bits.getBitWidth()) 269 break; 270 271 // Remove the consumed bits from Bits. 272 if (!CGM.getDataLayout().isBigEndian()) 273 Bits.lshrInPlace(WantedBits); 274 Bits = Bits.trunc(Bits.getBitWidth() - WantedBits); 275 276 // The remanining bits go at the start of the following bytes. 277 OffsetWithinChar = 0; 278 } 279 280 return true; 281 } 282 283 /// Returns a position within Elems and Offsets such that all elements 284 /// before the returned index end before Pos and all elements at or after 285 /// the returned index begin at or after Pos. Splits elements as necessary 286 /// to ensure this. Returns None if we find something we can't split. 287 Optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) { 288 if (Pos >= Size) 289 return Offsets.size(); 290 291 while (true) { 292 auto FirstAfterPos = llvm::upper_bound(Offsets, Pos); 293 if (FirstAfterPos == Offsets.begin()) 294 return 0; 295 296 // If we already have an element starting at Pos, we're done. 297 size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1; 298 if (Offsets[LastAtOrBeforePosIndex] == Pos) 299 return LastAtOrBeforePosIndex; 300 301 // We found an element starting before Pos. Check for overlap. 302 if (Offsets[LastAtOrBeforePosIndex] + 303 getSize(Elems[LastAtOrBeforePosIndex]) <= Pos) 304 return LastAtOrBeforePosIndex + 1; 305 306 // Try to decompose it into smaller constants. 307 if (!split(LastAtOrBeforePosIndex, Pos)) 308 return None; 309 } 310 } 311 312 /// Split the constant at index Index, if possible. Return true if we did. 313 /// Hint indicates the location at which we'd like to split, but may be 314 /// ignored. 315 bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) { 316 NaturalLayout = false; 317 llvm::Constant *C = Elems[Index]; 318 CharUnits Offset = Offsets[Index]; 319 320 if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) { 321 // Expand the sequence into its contained elements. 322 // FIXME: This assumes vector elements are byte-sized. 323 replace(Elems, Index, Index + 1, 324 llvm::map_range(llvm::seq(0u, CA->getNumOperands()), 325 [&](unsigned Op) { return CA->getOperand(Op); })); 326 if (isa<llvm::ArrayType>(CA->getType()) || 327 isa<llvm::VectorType>(CA->getType())) { 328 // Array or vector. 329 llvm::Type *ElemTy = 330 llvm::GetElementPtrInst::getTypeAtIndex(CA->getType(), (uint64_t)0); 331 CharUnits ElemSize = getSize(ElemTy); 332 replace( 333 Offsets, Index, Index + 1, 334 llvm::map_range(llvm::seq(0u, CA->getNumOperands()), 335 [&](unsigned Op) { return Offset + Op * ElemSize; })); 336 } else { 337 // Must be a struct. 338 auto *ST = cast<llvm::StructType>(CA->getType()); 339 const llvm::StructLayout *Layout = 340 CGM.getDataLayout().getStructLayout(ST); 341 replace(Offsets, Index, Index + 1, 342 llvm::map_range( 343 llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) { 344 return Offset + CharUnits::fromQuantity( 345 Layout->getElementOffset(Op)); 346 })); 347 } 348 return true; 349 } 350 351 if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) { 352 // Expand the sequence into its contained elements. 353 // FIXME: This assumes vector elements are byte-sized. 354 // FIXME: If possible, split into two ConstantDataSequentials at Hint. 355 CharUnits ElemSize = getSize(CDS->getElementType()); 356 replace(Elems, Index, Index + 1, 357 llvm::map_range(llvm::seq(0u, CDS->getNumElements()), 358 [&](unsigned Elem) { 359 return CDS->getElementAsConstant(Elem); 360 })); 361 replace(Offsets, Index, Index + 1, 362 llvm::map_range( 363 llvm::seq(0u, CDS->getNumElements()), 364 [&](unsigned Elem) { return Offset + Elem * ElemSize; })); 365 return true; 366 } 367 368 if (isa<llvm::ConstantAggregateZero>(C)) { 369 // Split into two zeros at the hinted offset. 370 CharUnits ElemSize = getSize(C); 371 assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split"); 372 replace(Elems, Index, Index + 1, 373 {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)}); 374 replace(Offsets, Index, Index + 1, {Offset, Hint}); 375 return true; 376 } 377 378 if (isa<llvm::UndefValue>(C)) { 379 // Drop undef; it doesn't contribute to the final layout. 380 replace(Elems, Index, Index + 1, {}); 381 replace(Offsets, Index, Index + 1, {}); 382 return true; 383 } 384 385 // FIXME: We could split a ConstantInt if the need ever arose. 386 // We don't need to do this to handle bit-fields because we always eagerly 387 // split them into 1-byte chunks. 388 389 return false; 390 } 391 392 static llvm::Constant * 393 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType, 394 llvm::Type *CommonElementType, unsigned ArrayBound, 395 SmallVectorImpl<llvm::Constant *> &Elements, 396 llvm::Constant *Filler); 397 398 llvm::Constant *ConstantAggregateBuilder::buildFrom( 399 CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems, 400 ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size, 401 bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) { 402 ConstantAggregateBuilderUtils Utils(CGM); 403 404 if (Elems.empty()) 405 return llvm::UndefValue::get(DesiredTy); 406 407 auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; }; 408 409 // If we want an array type, see if all the elements are the same type and 410 // appropriately spaced. 411 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) { 412 assert(!AllowOversized && "oversized array emission not supported"); 413 414 bool CanEmitArray = true; 415 llvm::Type *CommonType = Elems[0]->getType(); 416 llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType); 417 CharUnits ElemSize = Utils.getSize(ATy->getElementType()); 418 SmallVector<llvm::Constant*, 32> ArrayElements; 419 for (size_t I = 0; I != Elems.size(); ++I) { 420 // Skip zeroes; we'll use a zero value as our array filler. 421 if (Elems[I]->isNullValue()) 422 continue; 423 424 // All remaining elements must be the same type. 425 if (Elems[I]->getType() != CommonType || 426 Offset(I) % ElemSize != 0) { 427 CanEmitArray = false; 428 break; 429 } 430 ArrayElements.resize(Offset(I) / ElemSize + 1, Filler); 431 ArrayElements.back() = Elems[I]; 432 } 433 434 if (CanEmitArray) { 435 return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(), 436 ArrayElements, Filler); 437 } 438 439 // Can't emit as an array, carry on to emit as a struct. 440 } 441 442 // The size of the constant we plan to generate. This is usually just 443 // the size of the initialized type, but in AllowOversized mode (i.e. 444 // flexible array init), it can be larger. 445 CharUnits DesiredSize = Utils.getSize(DesiredTy); 446 if (Size > DesiredSize) { 447 assert(AllowOversized && "Elems are oversized"); 448 DesiredSize = Size; 449 } 450 451 // The natural alignment of an unpacked LLVM struct with the given elements. 452 CharUnits Align = CharUnits::One(); 453 for (llvm::Constant *C : Elems) 454 Align = std::max(Align, Utils.getAlignment(C)); 455 456 // The natural size of an unpacked LLVM struct with the given elements. 457 CharUnits AlignedSize = Size.alignTo(Align); 458 459 bool Packed = false; 460 ArrayRef<llvm::Constant*> UnpackedElems = Elems; 461 llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage; 462 if (DesiredSize < AlignedSize || DesiredSize.alignTo(Align) != DesiredSize) { 463 // The natural layout would be too big; force use of a packed layout. 464 NaturalLayout = false; 465 Packed = true; 466 } else if (DesiredSize > AlignedSize) { 467 // The natural layout would be too small. Add padding to fix it. (This 468 // is ignored if we choose a packed layout.) 469 UnpackedElemStorage.assign(Elems.begin(), Elems.end()); 470 UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size)); 471 UnpackedElems = UnpackedElemStorage; 472 } 473 474 // If we don't have a natural layout, insert padding as necessary. 475 // As we go, double-check to see if we can actually just emit Elems 476 // as a non-packed struct and do so opportunistically if possible. 477 llvm::SmallVector<llvm::Constant*, 32> PackedElems; 478 if (!NaturalLayout) { 479 CharUnits SizeSoFar = CharUnits::Zero(); 480 for (size_t I = 0; I != Elems.size(); ++I) { 481 CharUnits Align = Utils.getAlignment(Elems[I]); 482 CharUnits NaturalOffset = SizeSoFar.alignTo(Align); 483 CharUnits DesiredOffset = Offset(I); 484 assert(DesiredOffset >= SizeSoFar && "elements out of order"); 485 486 if (DesiredOffset != NaturalOffset) 487 Packed = true; 488 if (DesiredOffset != SizeSoFar) 489 PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar)); 490 PackedElems.push_back(Elems[I]); 491 SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]); 492 } 493 // If we're using the packed layout, pad it out to the desired size if 494 // necessary. 495 if (Packed) { 496 assert(SizeSoFar <= DesiredSize && 497 "requested size is too small for contents"); 498 if (SizeSoFar < DesiredSize) 499 PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar)); 500 } 501 } 502 503 llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements( 504 CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed); 505 506 // Pick the type to use. If the type is layout identical to the desired 507 // type then use it, otherwise use whatever the builder produced for us. 508 if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) { 509 if (DesiredSTy->isLayoutIdentical(STy)) 510 STy = DesiredSTy; 511 } 512 513 return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems); 514 } 515 516 void ConstantAggregateBuilder::condense(CharUnits Offset, 517 llvm::Type *DesiredTy) { 518 CharUnits Size = getSize(DesiredTy); 519 520 llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset); 521 if (!FirstElemToReplace) 522 return; 523 size_t First = *FirstElemToReplace; 524 525 llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + Size); 526 if (!LastElemToReplace) 527 return; 528 size_t Last = *LastElemToReplace; 529 530 size_t Length = Last - First; 531 if (Length == 0) 532 return; 533 534 if (Length == 1 && Offsets[First] == Offset && 535 getSize(Elems[First]) == Size) { 536 // Re-wrap single element structs if necessary. Otherwise, leave any single 537 // element constant of the right size alone even if it has the wrong type. 538 auto *STy = dyn_cast<llvm::StructType>(DesiredTy); 539 if (STy && STy->getNumElements() == 1 && 540 STy->getElementType(0) == Elems[First]->getType()) 541 Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]); 542 return; 543 } 544 545 llvm::Constant *Replacement = buildFrom( 546 CGM, makeArrayRef(Elems).slice(First, Length), 547 makeArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy), 548 /*known to have natural layout=*/false, DesiredTy, false); 549 replace(Elems, First, Last, {Replacement}); 550 replace(Offsets, First, Last, {Offset}); 551 } 552 553 //===----------------------------------------------------------------------===// 554 // ConstStructBuilder 555 //===----------------------------------------------------------------------===// 556 557 class ConstStructBuilder { 558 CodeGenModule &CGM; 559 ConstantEmitter &Emitter; 560 ConstantAggregateBuilder &Builder; 561 CharUnits StartOffset; 562 563 public: 564 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 565 InitListExpr *ILE, QualType StructTy); 566 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 567 const APValue &Value, QualType ValTy); 568 static bool UpdateStruct(ConstantEmitter &Emitter, 569 ConstantAggregateBuilder &Const, CharUnits Offset, 570 InitListExpr *Updater); 571 572 private: 573 ConstStructBuilder(ConstantEmitter &Emitter, 574 ConstantAggregateBuilder &Builder, CharUnits StartOffset) 575 : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder), 576 StartOffset(StartOffset) {} 577 578 bool AppendField(const FieldDecl *Field, uint64_t FieldOffset, 579 llvm::Constant *InitExpr, bool AllowOverwrite = false); 580 581 bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst, 582 bool AllowOverwrite = false); 583 584 bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, 585 llvm::ConstantInt *InitExpr, bool AllowOverwrite = false); 586 587 bool Build(InitListExpr *ILE, bool AllowOverwrite); 588 bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase, 589 const CXXRecordDecl *VTableClass, CharUnits BaseOffset); 590 llvm::Constant *Finalize(QualType Ty); 591 }; 592 593 bool ConstStructBuilder::AppendField( 594 const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst, 595 bool AllowOverwrite) { 596 const ASTContext &Context = CGM.getContext(); 597 598 CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset); 599 600 return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite); 601 } 602 603 bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars, 604 llvm::Constant *InitCst, 605 bool AllowOverwrite) { 606 return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite); 607 } 608 609 bool ConstStructBuilder::AppendBitField( 610 const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI, 611 bool AllowOverwrite) { 612 const CGRecordLayout &RL = 613 CGM.getTypes().getCGRecordLayout(Field->getParent()); 614 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field); 615 llvm::APInt FieldValue = CI->getValue(); 616 617 // Promote the size of FieldValue if necessary 618 // FIXME: This should never occur, but currently it can because initializer 619 // constants are cast to bool, and because clang is not enforcing bitfield 620 // width limits. 621 if (Info.Size > FieldValue.getBitWidth()) 622 FieldValue = FieldValue.zext(Info.Size); 623 624 // Truncate the size of FieldValue to the bit field size. 625 if (Info.Size < FieldValue.getBitWidth()) 626 FieldValue = FieldValue.trunc(Info.Size); 627 628 return Builder.addBits(FieldValue, 629 CGM.getContext().toBits(StartOffset) + FieldOffset, 630 AllowOverwrite); 631 } 632 633 static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter, 634 ConstantAggregateBuilder &Const, 635 CharUnits Offset, QualType Type, 636 InitListExpr *Updater) { 637 if (Type->isRecordType()) 638 return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater); 639 640 auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type); 641 if (!CAT) 642 return false; 643 QualType ElemType = CAT->getElementType(); 644 CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType); 645 llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType); 646 647 llvm::Constant *FillC = nullptr; 648 if (Expr *Filler = Updater->getArrayFiller()) { 649 if (!isa<NoInitExpr>(Filler)) { 650 FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType); 651 if (!FillC) 652 return false; 653 } 654 } 655 656 unsigned NumElementsToUpdate = 657 FillC ? CAT->getSize().getZExtValue() : Updater->getNumInits(); 658 for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) { 659 Expr *Init = nullptr; 660 if (I < Updater->getNumInits()) 661 Init = Updater->getInit(I); 662 663 if (!Init && FillC) { 664 if (!Const.add(FillC, Offset, true)) 665 return false; 666 } else if (!Init || isa<NoInitExpr>(Init)) { 667 continue; 668 } else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) { 669 if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType, 670 ChildILE)) 671 return false; 672 // Attempt to reduce the array element to a single constant if necessary. 673 Const.condense(Offset, ElemTy); 674 } else { 675 llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType); 676 if (!Const.add(Val, Offset, true)) 677 return false; 678 } 679 } 680 681 return true; 682 } 683 684 bool ConstStructBuilder::Build(InitListExpr *ILE, bool AllowOverwrite) { 685 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); 686 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 687 688 unsigned FieldNo = -1; 689 unsigned ElementNo = 0; 690 691 // Bail out if we have base classes. We could support these, but they only 692 // arise in C++1z where we will have already constant folded most interesting 693 // cases. FIXME: There are still a few more cases we can handle this way. 694 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 695 if (CXXRD->getNumBases()) 696 return false; 697 698 for (FieldDecl *Field : RD->fields()) { 699 ++FieldNo; 700 701 // If this is a union, skip all the fields that aren't being initialized. 702 if (RD->isUnion() && 703 !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field)) 704 continue; 705 706 // Don't emit anonymous bitfields or zero-sized fields. 707 if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext())) 708 continue; 709 710 // Get the initializer. A struct can include fields without initializers, 711 // we just use explicit null values for them. 712 Expr *Init = nullptr; 713 if (ElementNo < ILE->getNumInits()) 714 Init = ILE->getInit(ElementNo++); 715 if (Init && isa<NoInitExpr>(Init)) 716 continue; 717 718 // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr 719 // represents additional overwriting of our current constant value, and not 720 // a new constant to emit independently. 721 if (AllowOverwrite && 722 (Field->getType()->isArrayType() || Field->getType()->isRecordType())) { 723 if (auto *SubILE = dyn_cast<InitListExpr>(Init)) { 724 CharUnits Offset = CGM.getContext().toCharUnitsFromBits( 725 Layout.getFieldOffset(FieldNo)); 726 if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset, 727 Field->getType(), SubILE)) 728 return false; 729 // If we split apart the field's value, try to collapse it down to a 730 // single value now. 731 Builder.condense(StartOffset + Offset, 732 CGM.getTypes().ConvertTypeForMem(Field->getType())); 733 continue; 734 } 735 } 736 737 llvm::Constant *EltInit = 738 Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType()) 739 : Emitter.emitNullForMemory(Field->getType()); 740 if (!EltInit) 741 return false; 742 743 if (!Field->isBitField()) { 744 // Handle non-bitfield members. 745 if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit, 746 AllowOverwrite)) 747 return false; 748 // After emitting a non-empty field with [[no_unique_address]], we may 749 // need to overwrite its tail padding. 750 if (Field->hasAttr<NoUniqueAddressAttr>()) 751 AllowOverwrite = true; 752 } else { 753 // Otherwise we have a bitfield. 754 if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) { 755 if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI, 756 AllowOverwrite)) 757 return false; 758 } else { 759 // We are trying to initialize a bitfield with a non-trivial constant, 760 // this must require run-time code. 761 return false; 762 } 763 } 764 } 765 766 return true; 767 } 768 769 namespace { 770 struct BaseInfo { 771 BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index) 772 : Decl(Decl), Offset(Offset), Index(Index) { 773 } 774 775 const CXXRecordDecl *Decl; 776 CharUnits Offset; 777 unsigned Index; 778 779 bool operator<(const BaseInfo &O) const { return Offset < O.Offset; } 780 }; 781 } 782 783 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD, 784 bool IsPrimaryBase, 785 const CXXRecordDecl *VTableClass, 786 CharUnits Offset) { 787 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 788 789 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 790 // Add a vtable pointer, if we need one and it hasn't already been added. 791 if (Layout.hasOwnVFPtr()) { 792 llvm::Constant *VTableAddressPoint = 793 CGM.getCXXABI().getVTableAddressPointForConstExpr( 794 BaseSubobject(CD, Offset), VTableClass); 795 if (!AppendBytes(Offset, VTableAddressPoint)) 796 return false; 797 } 798 799 // Accumulate and sort bases, in order to visit them in address order, which 800 // may not be the same as declaration order. 801 SmallVector<BaseInfo, 8> Bases; 802 Bases.reserve(CD->getNumBases()); 803 unsigned BaseNo = 0; 804 for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(), 805 BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) { 806 assert(!Base->isVirtual() && "should not have virtual bases here"); 807 const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl(); 808 CharUnits BaseOffset = Layout.getBaseClassOffset(BD); 809 Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo)); 810 } 811 llvm::stable_sort(Bases); 812 813 for (unsigned I = 0, N = Bases.size(); I != N; ++I) { 814 BaseInfo &Base = Bases[I]; 815 816 bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl; 817 Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase, 818 VTableClass, Offset + Base.Offset); 819 } 820 } 821 822 unsigned FieldNo = 0; 823 uint64_t OffsetBits = CGM.getContext().toBits(Offset); 824 825 bool AllowOverwrite = false; 826 for (RecordDecl::field_iterator Field = RD->field_begin(), 827 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 828 // If this is a union, skip all the fields that aren't being initialized. 829 if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field)) 830 continue; 831 832 // Don't emit anonymous bitfields or zero-sized fields. 833 if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext())) 834 continue; 835 836 // Emit the value of the initializer. 837 const APValue &FieldValue = 838 RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo); 839 llvm::Constant *EltInit = 840 Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType()); 841 if (!EltInit) 842 return false; 843 844 if (!Field->isBitField()) { 845 // Handle non-bitfield members. 846 if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 847 EltInit, AllowOverwrite)) 848 return false; 849 // After emitting a non-empty field with [[no_unique_address]], we may 850 // need to overwrite its tail padding. 851 if (Field->hasAttr<NoUniqueAddressAttr>()) 852 AllowOverwrite = true; 853 } else { 854 // Otherwise we have a bitfield. 855 if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 856 cast<llvm::ConstantInt>(EltInit), AllowOverwrite)) 857 return false; 858 } 859 } 860 861 return true; 862 } 863 864 llvm::Constant *ConstStructBuilder::Finalize(QualType Type) { 865 Type = Type.getNonReferenceType(); 866 RecordDecl *RD = Type->castAs<RecordType>()->getDecl(); 867 llvm::Type *ValTy = CGM.getTypes().ConvertType(Type); 868 return Builder.build(ValTy, RD->hasFlexibleArrayMember()); 869 } 870 871 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 872 InitListExpr *ILE, 873 QualType ValTy) { 874 ConstantAggregateBuilder Const(Emitter.CGM); 875 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero()); 876 877 if (!Builder.Build(ILE, /*AllowOverwrite*/false)) 878 return nullptr; 879 880 return Builder.Finalize(ValTy); 881 } 882 883 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 884 const APValue &Val, 885 QualType ValTy) { 886 ConstantAggregateBuilder Const(Emitter.CGM); 887 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero()); 888 889 const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl(); 890 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); 891 if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero())) 892 return nullptr; 893 894 return Builder.Finalize(ValTy); 895 } 896 897 bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter, 898 ConstantAggregateBuilder &Const, 899 CharUnits Offset, InitListExpr *Updater) { 900 return ConstStructBuilder(Emitter, Const, Offset) 901 .Build(Updater, /*AllowOverwrite*/ true); 902 } 903 904 //===----------------------------------------------------------------------===// 905 // ConstExprEmitter 906 //===----------------------------------------------------------------------===// 907 908 static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM, 909 CodeGenFunction *CGF, 910 const CompoundLiteralExpr *E) { 911 CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType()); 912 if (llvm::GlobalVariable *Addr = 913 CGM.getAddrOfConstantCompoundLiteralIfEmitted(E)) 914 return ConstantAddress(Addr, Addr->getValueType(), Align); 915 916 LangAS addressSpace = E->getType().getAddressSpace(); 917 918 ConstantEmitter emitter(CGM, CGF); 919 llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(), 920 addressSpace, E->getType()); 921 if (!C) { 922 assert(!E->isFileScope() && 923 "file-scope compound literal did not have constant initializer!"); 924 return ConstantAddress::invalid(); 925 } 926 927 auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), 928 CGM.isTypeConstant(E->getType(), true), 929 llvm::GlobalValue::InternalLinkage, 930 C, ".compoundliteral", nullptr, 931 llvm::GlobalVariable::NotThreadLocal, 932 CGM.getContext().getTargetAddressSpace(addressSpace)); 933 emitter.finalize(GV); 934 GV->setAlignment(Align.getAsAlign()); 935 CGM.setAddrOfConstantCompoundLiteral(E, GV); 936 return ConstantAddress(GV, GV->getValueType(), Align); 937 } 938 939 static llvm::Constant * 940 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType, 941 llvm::Type *CommonElementType, unsigned ArrayBound, 942 SmallVectorImpl<llvm::Constant *> &Elements, 943 llvm::Constant *Filler) { 944 // Figure out how long the initial prefix of non-zero elements is. 945 unsigned NonzeroLength = ArrayBound; 946 if (Elements.size() < NonzeroLength && Filler->isNullValue()) 947 NonzeroLength = Elements.size(); 948 if (NonzeroLength == Elements.size()) { 949 while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue()) 950 --NonzeroLength; 951 } 952 953 if (NonzeroLength == 0) 954 return llvm::ConstantAggregateZero::get(DesiredType); 955 956 // Add a zeroinitializer array filler if we have lots of trailing zeroes. 957 unsigned TrailingZeroes = ArrayBound - NonzeroLength; 958 if (TrailingZeroes >= 8) { 959 assert(Elements.size() >= NonzeroLength && 960 "missing initializer for non-zero element"); 961 962 // If all the elements had the same type up to the trailing zeroes, emit a 963 // struct of two arrays (the nonzero data and the zeroinitializer). 964 if (CommonElementType && NonzeroLength >= 8) { 965 llvm::Constant *Initial = llvm::ConstantArray::get( 966 llvm::ArrayType::get(CommonElementType, NonzeroLength), 967 makeArrayRef(Elements).take_front(NonzeroLength)); 968 Elements.resize(2); 969 Elements[0] = Initial; 970 } else { 971 Elements.resize(NonzeroLength + 1); 972 } 973 974 auto *FillerType = 975 CommonElementType ? CommonElementType : DesiredType->getElementType(); 976 FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes); 977 Elements.back() = llvm::ConstantAggregateZero::get(FillerType); 978 CommonElementType = nullptr; 979 } else if (Elements.size() != ArrayBound) { 980 // Otherwise pad to the right size with the filler if necessary. 981 Elements.resize(ArrayBound, Filler); 982 if (Filler->getType() != CommonElementType) 983 CommonElementType = nullptr; 984 } 985 986 // If all elements have the same type, just emit an array constant. 987 if (CommonElementType) 988 return llvm::ConstantArray::get( 989 llvm::ArrayType::get(CommonElementType, ArrayBound), Elements); 990 991 // We have mixed types. Use a packed struct. 992 llvm::SmallVector<llvm::Type *, 16> Types; 993 Types.reserve(Elements.size()); 994 for (llvm::Constant *Elt : Elements) 995 Types.push_back(Elt->getType()); 996 llvm::StructType *SType = 997 llvm::StructType::get(CGM.getLLVMContext(), Types, true); 998 return llvm::ConstantStruct::get(SType, Elements); 999 } 1000 1001 // This class only needs to handle arrays, structs and unions. Outside C++11 1002 // mode, we don't currently constant fold those types. All other types are 1003 // handled by constant folding. 1004 // 1005 // Constant folding is currently missing support for a few features supported 1006 // here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr. 1007 class ConstExprEmitter : 1008 public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> { 1009 CodeGenModule &CGM; 1010 ConstantEmitter &Emitter; 1011 llvm::LLVMContext &VMContext; 1012 public: 1013 ConstExprEmitter(ConstantEmitter &emitter) 1014 : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) { 1015 } 1016 1017 //===--------------------------------------------------------------------===// 1018 // Visitor Methods 1019 //===--------------------------------------------------------------------===// 1020 1021 llvm::Constant *VisitStmt(Stmt *S, QualType T) { 1022 return nullptr; 1023 } 1024 1025 llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) { 1026 if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(CE)) 1027 return Result; 1028 return Visit(CE->getSubExpr(), T); 1029 } 1030 1031 llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) { 1032 return Visit(PE->getSubExpr(), T); 1033 } 1034 1035 llvm::Constant * 1036 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE, 1037 QualType T) { 1038 return Visit(PE->getReplacement(), T); 1039 } 1040 1041 llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE, 1042 QualType T) { 1043 return Visit(GE->getResultExpr(), T); 1044 } 1045 1046 llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) { 1047 return Visit(CE->getChosenSubExpr(), T); 1048 } 1049 1050 llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) { 1051 return Visit(E->getInitializer(), T); 1052 } 1053 1054 llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) { 1055 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 1056 CGM.EmitExplicitCastExprType(ECE, Emitter.CGF); 1057 Expr *subExpr = E->getSubExpr(); 1058 1059 switch (E->getCastKind()) { 1060 case CK_ToUnion: { 1061 // GCC cast to union extension 1062 assert(E->getType()->isUnionType() && 1063 "Destination type is not union type!"); 1064 1065 auto field = E->getTargetUnionField(); 1066 1067 auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType()); 1068 if (!C) return nullptr; 1069 1070 auto destTy = ConvertType(destType); 1071 if (C->getType() == destTy) return C; 1072 1073 // Build a struct with the union sub-element as the first member, 1074 // and padded to the appropriate size. 1075 SmallVector<llvm::Constant*, 2> Elts; 1076 SmallVector<llvm::Type*, 2> Types; 1077 Elts.push_back(C); 1078 Types.push_back(C->getType()); 1079 unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType()); 1080 unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy); 1081 1082 assert(CurSize <= TotalSize && "Union size mismatch!"); 1083 if (unsigned NumPadBytes = TotalSize - CurSize) { 1084 llvm::Type *Ty = CGM.CharTy; 1085 if (NumPadBytes > 1) 1086 Ty = llvm::ArrayType::get(Ty, NumPadBytes); 1087 1088 Elts.push_back(llvm::UndefValue::get(Ty)); 1089 Types.push_back(Ty); 1090 } 1091 1092 llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false); 1093 return llvm::ConstantStruct::get(STy, Elts); 1094 } 1095 1096 case CK_AddressSpaceConversion: { 1097 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 1098 if (!C) return nullptr; 1099 LangAS destAS = E->getType()->getPointeeType().getAddressSpace(); 1100 LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace(); 1101 llvm::Type *destTy = ConvertType(E->getType()); 1102 return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS, 1103 destAS, destTy); 1104 } 1105 1106 case CK_LValueToRValue: { 1107 // We don't really support doing lvalue-to-rvalue conversions here; any 1108 // interesting conversions should be done in Evaluate(). But as a 1109 // special case, allow compound literals to support the gcc extension 1110 // allowing "struct x {int x;} x = (struct x) {};". 1111 if (auto *E = dyn_cast<CompoundLiteralExpr>(subExpr->IgnoreParens())) 1112 return Visit(E->getInitializer(), destType); 1113 return nullptr; 1114 } 1115 1116 case CK_AtomicToNonAtomic: 1117 case CK_NonAtomicToAtomic: 1118 case CK_NoOp: 1119 case CK_ConstructorConversion: 1120 return Visit(subExpr, destType); 1121 1122 case CK_IntToOCLSampler: 1123 llvm_unreachable("global sampler variables are not generated"); 1124 1125 case CK_Dependent: llvm_unreachable("saw dependent cast!"); 1126 1127 case CK_BuiltinFnToFnPtr: 1128 llvm_unreachable("builtin functions are handled elsewhere"); 1129 1130 case CK_ReinterpretMemberPointer: 1131 case CK_DerivedToBaseMemberPointer: 1132 case CK_BaseToDerivedMemberPointer: { 1133 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 1134 if (!C) return nullptr; 1135 return CGM.getCXXABI().EmitMemberPointerConversion(E, C); 1136 } 1137 1138 // These will never be supported. 1139 case CK_ObjCObjectLValueCast: 1140 case CK_ARCProduceObject: 1141 case CK_ARCConsumeObject: 1142 case CK_ARCReclaimReturnedObject: 1143 case CK_ARCExtendBlockObject: 1144 case CK_CopyAndAutoreleaseBlockObject: 1145 return nullptr; 1146 1147 // These don't need to be handled here because Evaluate knows how to 1148 // evaluate them in the cases where they can be folded. 1149 case CK_BitCast: 1150 case CK_ToVoid: 1151 case CK_Dynamic: 1152 case CK_LValueBitCast: 1153 case CK_LValueToRValueBitCast: 1154 case CK_NullToMemberPointer: 1155 case CK_UserDefinedConversion: 1156 case CK_CPointerToObjCPointerCast: 1157 case CK_BlockPointerToObjCPointerCast: 1158 case CK_AnyPointerToBlockPointerCast: 1159 case CK_ArrayToPointerDecay: 1160 case CK_FunctionToPointerDecay: 1161 case CK_BaseToDerived: 1162 case CK_DerivedToBase: 1163 case CK_UncheckedDerivedToBase: 1164 case CK_MemberPointerToBoolean: 1165 case CK_VectorSplat: 1166 case CK_FloatingRealToComplex: 1167 case CK_FloatingComplexToReal: 1168 case CK_FloatingComplexToBoolean: 1169 case CK_FloatingComplexCast: 1170 case CK_FloatingComplexToIntegralComplex: 1171 case CK_IntegralRealToComplex: 1172 case CK_IntegralComplexToReal: 1173 case CK_IntegralComplexToBoolean: 1174 case CK_IntegralComplexCast: 1175 case CK_IntegralComplexToFloatingComplex: 1176 case CK_PointerToIntegral: 1177 case CK_PointerToBoolean: 1178 case CK_NullToPointer: 1179 case CK_IntegralCast: 1180 case CK_BooleanToSignedIntegral: 1181 case CK_IntegralToPointer: 1182 case CK_IntegralToBoolean: 1183 case CK_IntegralToFloating: 1184 case CK_FloatingToIntegral: 1185 case CK_FloatingToBoolean: 1186 case CK_FloatingCast: 1187 case CK_FloatingToFixedPoint: 1188 case CK_FixedPointToFloating: 1189 case CK_FixedPointCast: 1190 case CK_FixedPointToBoolean: 1191 case CK_FixedPointToIntegral: 1192 case CK_IntegralToFixedPoint: 1193 case CK_ZeroToOCLOpaqueType: 1194 case CK_MatrixCast: 1195 return nullptr; 1196 } 1197 llvm_unreachable("Invalid CastKind"); 1198 } 1199 1200 llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) { 1201 // No need for a DefaultInitExprScope: we don't handle 'this' in a 1202 // constant expression. 1203 return Visit(DIE->getExpr(), T); 1204 } 1205 1206 llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) { 1207 return Visit(E->getSubExpr(), T); 1208 } 1209 1210 llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E, 1211 QualType T) { 1212 return Visit(E->getSubExpr(), T); 1213 } 1214 1215 llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) { 1216 auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType()); 1217 assert(CAT && "can't emit array init for non-constant-bound array"); 1218 unsigned NumInitElements = ILE->getNumInits(); 1219 unsigned NumElements = CAT->getSize().getZExtValue(); 1220 1221 // Initialising an array requires us to automatically 1222 // initialise any elements that have not been initialised explicitly 1223 unsigned NumInitableElts = std::min(NumInitElements, NumElements); 1224 1225 QualType EltType = CAT->getElementType(); 1226 1227 // Initialize remaining array elements. 1228 llvm::Constant *fillC = nullptr; 1229 if (Expr *filler = ILE->getArrayFiller()) { 1230 fillC = Emitter.tryEmitAbstractForMemory(filler, EltType); 1231 if (!fillC) 1232 return nullptr; 1233 } 1234 1235 // Copy initializer elements. 1236 SmallVector<llvm::Constant*, 16> Elts; 1237 if (fillC && fillC->isNullValue()) 1238 Elts.reserve(NumInitableElts + 1); 1239 else 1240 Elts.reserve(NumElements); 1241 1242 llvm::Type *CommonElementType = nullptr; 1243 for (unsigned i = 0; i < NumInitableElts; ++i) { 1244 Expr *Init = ILE->getInit(i); 1245 llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType); 1246 if (!C) 1247 return nullptr; 1248 if (i == 0) 1249 CommonElementType = C->getType(); 1250 else if (C->getType() != CommonElementType) 1251 CommonElementType = nullptr; 1252 Elts.push_back(C); 1253 } 1254 1255 llvm::ArrayType *Desired = 1256 cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType())); 1257 return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts, 1258 fillC); 1259 } 1260 1261 llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) { 1262 return ConstStructBuilder::BuildStruct(Emitter, ILE, T); 1263 } 1264 1265 llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E, 1266 QualType T) { 1267 return CGM.EmitNullConstant(T); 1268 } 1269 1270 llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) { 1271 if (ILE->isTransparent()) 1272 return Visit(ILE->getInit(0), T); 1273 1274 if (ILE->getType()->isArrayType()) 1275 return EmitArrayInitialization(ILE, T); 1276 1277 if (ILE->getType()->isRecordType()) 1278 return EmitRecordInitialization(ILE, T); 1279 1280 return nullptr; 1281 } 1282 1283 llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E, 1284 QualType destType) { 1285 auto C = Visit(E->getBase(), destType); 1286 if (!C) 1287 return nullptr; 1288 1289 ConstantAggregateBuilder Const(CGM); 1290 Const.add(C, CharUnits::Zero(), false); 1291 1292 if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType, 1293 E->getUpdater())) 1294 return nullptr; 1295 1296 llvm::Type *ValTy = CGM.getTypes().ConvertType(destType); 1297 bool HasFlexibleArray = false; 1298 if (auto *RT = destType->getAs<RecordType>()) 1299 HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember(); 1300 return Const.build(ValTy, HasFlexibleArray); 1301 } 1302 1303 llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) { 1304 if (!E->getConstructor()->isTrivial()) 1305 return nullptr; 1306 1307 // Only default and copy/move constructors can be trivial. 1308 if (E->getNumArgs()) { 1309 assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 1310 assert(E->getConstructor()->isCopyOrMoveConstructor() && 1311 "trivial ctor has argument but isn't a copy/move ctor"); 1312 1313 Expr *Arg = E->getArg(0); 1314 assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) && 1315 "argument to copy ctor is of wrong type"); 1316 1317 return Visit(Arg, Ty); 1318 } 1319 1320 return CGM.EmitNullConstant(Ty); 1321 } 1322 1323 llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) { 1324 // This is a string literal initializing an array in an initializer. 1325 return CGM.GetConstantArrayFromStringLiteral(E); 1326 } 1327 1328 llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) { 1329 // This must be an @encode initializing an array in a static initializer. 1330 // Don't emit it as the address of the string, emit the string data itself 1331 // as an inline array. 1332 std::string Str; 1333 CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1334 const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T); 1335 1336 // Resize the string to the right size, adding zeros at the end, or 1337 // truncating as needed. 1338 Str.resize(CAT->getSize().getZExtValue(), '\0'); 1339 return llvm::ConstantDataArray::getString(VMContext, Str, false); 1340 } 1341 1342 llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) { 1343 return Visit(E->getSubExpr(), T); 1344 } 1345 1346 // Utility methods 1347 llvm::Type *ConvertType(QualType T) { 1348 return CGM.getTypes().ConvertType(T); 1349 } 1350 }; 1351 1352 } // end anonymous namespace. 1353 1354 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C, 1355 AbstractState saved) { 1356 Abstract = saved.OldValue; 1357 1358 assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() && 1359 "created a placeholder while doing an abstract emission?"); 1360 1361 // No validation necessary for now. 1362 // No cleanup to do for now. 1363 return C; 1364 } 1365 1366 llvm::Constant * 1367 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) { 1368 auto state = pushAbstract(); 1369 auto C = tryEmitPrivateForVarInit(D); 1370 return validateAndPopAbstract(C, state); 1371 } 1372 1373 llvm::Constant * 1374 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) { 1375 auto state = pushAbstract(); 1376 auto C = tryEmitPrivate(E, destType); 1377 return validateAndPopAbstract(C, state); 1378 } 1379 1380 llvm::Constant * 1381 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) { 1382 auto state = pushAbstract(); 1383 auto C = tryEmitPrivate(value, destType); 1384 return validateAndPopAbstract(C, state); 1385 } 1386 1387 llvm::Constant *ConstantEmitter::tryEmitConstantExpr(const ConstantExpr *CE) { 1388 if (!CE->hasAPValueResult()) 1389 return nullptr; 1390 const Expr *Inner = CE->getSubExpr()->IgnoreImplicit(); 1391 QualType RetType; 1392 if (auto *Call = dyn_cast<CallExpr>(Inner)) 1393 RetType = Call->getCallReturnType(CGM.getContext()); 1394 else if (auto *Ctor = dyn_cast<CXXConstructExpr>(Inner)) 1395 RetType = Ctor->getType(); 1396 llvm::Constant *Res = 1397 emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), RetType); 1398 return Res; 1399 } 1400 1401 llvm::Constant * 1402 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) { 1403 auto state = pushAbstract(); 1404 auto C = tryEmitPrivate(E, destType); 1405 C = validateAndPopAbstract(C, state); 1406 if (!C) { 1407 CGM.Error(E->getExprLoc(), 1408 "internal error: could not emit constant value \"abstractly\""); 1409 C = CGM.EmitNullConstant(destType); 1410 } 1411 return C; 1412 } 1413 1414 llvm::Constant * 1415 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value, 1416 QualType destType) { 1417 auto state = pushAbstract(); 1418 auto C = tryEmitPrivate(value, destType); 1419 C = validateAndPopAbstract(C, state); 1420 if (!C) { 1421 CGM.Error(loc, 1422 "internal error: could not emit constant value \"abstractly\""); 1423 C = CGM.EmitNullConstant(destType); 1424 } 1425 return C; 1426 } 1427 1428 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) { 1429 initializeNonAbstract(D.getType().getAddressSpace()); 1430 return markIfFailed(tryEmitPrivateForVarInit(D)); 1431 } 1432 1433 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E, 1434 LangAS destAddrSpace, 1435 QualType destType) { 1436 initializeNonAbstract(destAddrSpace); 1437 return markIfFailed(tryEmitPrivateForMemory(E, destType)); 1438 } 1439 1440 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value, 1441 LangAS destAddrSpace, 1442 QualType destType) { 1443 initializeNonAbstract(destAddrSpace); 1444 auto C = tryEmitPrivateForMemory(value, destType); 1445 assert(C && "couldn't emit constant value non-abstractly?"); 1446 return C; 1447 } 1448 1449 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() { 1450 assert(!Abstract && "cannot get current address for abstract constant"); 1451 1452 1453 1454 // Make an obviously ill-formed global that should blow up compilation 1455 // if it survives. 1456 auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true, 1457 llvm::GlobalValue::PrivateLinkage, 1458 /*init*/ nullptr, 1459 /*name*/ "", 1460 /*before*/ nullptr, 1461 llvm::GlobalVariable::NotThreadLocal, 1462 CGM.getContext().getTargetAddressSpace(DestAddressSpace)); 1463 1464 PlaceholderAddresses.push_back(std::make_pair(nullptr, global)); 1465 1466 return global; 1467 } 1468 1469 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal, 1470 llvm::GlobalValue *placeholder) { 1471 assert(!PlaceholderAddresses.empty()); 1472 assert(PlaceholderAddresses.back().first == nullptr); 1473 assert(PlaceholderAddresses.back().second == placeholder); 1474 PlaceholderAddresses.back().first = signal; 1475 } 1476 1477 namespace { 1478 struct ReplacePlaceholders { 1479 CodeGenModule &CGM; 1480 1481 /// The base address of the global. 1482 llvm::Constant *Base; 1483 llvm::Type *BaseValueTy = nullptr; 1484 1485 /// The placeholder addresses that were registered during emission. 1486 llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses; 1487 1488 /// The locations of the placeholder signals. 1489 llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations; 1490 1491 /// The current index stack. We use a simple unsigned stack because 1492 /// we assume that placeholders will be relatively sparse in the 1493 /// initializer, but we cache the index values we find just in case. 1494 llvm::SmallVector<unsigned, 8> Indices; 1495 llvm::SmallVector<llvm::Constant*, 8> IndexValues; 1496 1497 ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base, 1498 ArrayRef<std::pair<llvm::Constant*, 1499 llvm::GlobalVariable*>> addresses) 1500 : CGM(CGM), Base(base), 1501 PlaceholderAddresses(addresses.begin(), addresses.end()) { 1502 } 1503 1504 void replaceInInitializer(llvm::Constant *init) { 1505 // Remember the type of the top-most initializer. 1506 BaseValueTy = init->getType(); 1507 1508 // Initialize the stack. 1509 Indices.push_back(0); 1510 IndexValues.push_back(nullptr); 1511 1512 // Recurse into the initializer. 1513 findLocations(init); 1514 1515 // Check invariants. 1516 assert(IndexValues.size() == Indices.size() && "mismatch"); 1517 assert(Indices.size() == 1 && "didn't pop all indices"); 1518 1519 // Do the replacement; this basically invalidates 'init'. 1520 assert(Locations.size() == PlaceholderAddresses.size() && 1521 "missed a placeholder?"); 1522 1523 // We're iterating over a hashtable, so this would be a source of 1524 // non-determinism in compiler output *except* that we're just 1525 // messing around with llvm::Constant structures, which never itself 1526 // does anything that should be visible in compiler output. 1527 for (auto &entry : Locations) { 1528 assert(entry.first->getParent() == nullptr && "not a placeholder!"); 1529 entry.first->replaceAllUsesWith(entry.second); 1530 entry.first->eraseFromParent(); 1531 } 1532 } 1533 1534 private: 1535 void findLocations(llvm::Constant *init) { 1536 // Recurse into aggregates. 1537 if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) { 1538 for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) { 1539 Indices.push_back(i); 1540 IndexValues.push_back(nullptr); 1541 1542 findLocations(agg->getOperand(i)); 1543 1544 IndexValues.pop_back(); 1545 Indices.pop_back(); 1546 } 1547 return; 1548 } 1549 1550 // Otherwise, check for registered constants. 1551 while (true) { 1552 auto it = PlaceholderAddresses.find(init); 1553 if (it != PlaceholderAddresses.end()) { 1554 setLocation(it->second); 1555 break; 1556 } 1557 1558 // Look through bitcasts or other expressions. 1559 if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) { 1560 init = expr->getOperand(0); 1561 } else { 1562 break; 1563 } 1564 } 1565 } 1566 1567 void setLocation(llvm::GlobalVariable *placeholder) { 1568 assert(Locations.find(placeholder) == Locations.end() && 1569 "already found location for placeholder!"); 1570 1571 // Lazily fill in IndexValues with the values from Indices. 1572 // We do this in reverse because we should always have a strict 1573 // prefix of indices from the start. 1574 assert(Indices.size() == IndexValues.size()); 1575 for (size_t i = Indices.size() - 1; i != size_t(-1); --i) { 1576 if (IndexValues[i]) { 1577 #ifndef NDEBUG 1578 for (size_t j = 0; j != i + 1; ++j) { 1579 assert(IndexValues[j] && 1580 isa<llvm::ConstantInt>(IndexValues[j]) && 1581 cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue() 1582 == Indices[j]); 1583 } 1584 #endif 1585 break; 1586 } 1587 1588 IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]); 1589 } 1590 1591 // Form a GEP and then bitcast to the placeholder type so that the 1592 // replacement will succeed. 1593 llvm::Constant *location = 1594 llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy, 1595 Base, IndexValues); 1596 location = llvm::ConstantExpr::getBitCast(location, 1597 placeholder->getType()); 1598 1599 Locations.insert({placeholder, location}); 1600 } 1601 }; 1602 } 1603 1604 void ConstantEmitter::finalize(llvm::GlobalVariable *global) { 1605 assert(InitializedNonAbstract && 1606 "finalizing emitter that was used for abstract emission?"); 1607 assert(!Finalized && "finalizing emitter multiple times"); 1608 assert(global->getInitializer()); 1609 1610 // Note that we might also be Failed. 1611 Finalized = true; 1612 1613 if (!PlaceholderAddresses.empty()) { 1614 ReplacePlaceholders(CGM, global, PlaceholderAddresses) 1615 .replaceInInitializer(global->getInitializer()); 1616 PlaceholderAddresses.clear(); // satisfy 1617 } 1618 } 1619 1620 ConstantEmitter::~ConstantEmitter() { 1621 assert((!InitializedNonAbstract || Finalized || Failed) && 1622 "not finalized after being initialized for non-abstract emission"); 1623 assert(PlaceholderAddresses.empty() && "unhandled placeholders"); 1624 } 1625 1626 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) { 1627 if (auto AT = type->getAs<AtomicType>()) { 1628 return CGM.getContext().getQualifiedType(AT->getValueType(), 1629 type.getQualifiers()); 1630 } 1631 return type; 1632 } 1633 1634 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) { 1635 // Make a quick check if variable can be default NULL initialized 1636 // and avoid going through rest of code which may do, for c++11, 1637 // initialization of memory to all NULLs. 1638 if (!D.hasLocalStorage()) { 1639 QualType Ty = CGM.getContext().getBaseElementType(D.getType()); 1640 if (Ty->isRecordType()) 1641 if (const CXXConstructExpr *E = 1642 dyn_cast_or_null<CXXConstructExpr>(D.getInit())) { 1643 const CXXConstructorDecl *CD = E->getConstructor(); 1644 if (CD->isTrivial() && CD->isDefaultConstructor()) 1645 return CGM.EmitNullConstant(D.getType()); 1646 } 1647 } 1648 InConstantContext = D.hasConstantInitialization(); 1649 1650 QualType destType = D.getType(); 1651 1652 // Try to emit the initializer. Note that this can allow some things that 1653 // are not allowed by tryEmitPrivateForMemory alone. 1654 if (auto value = D.evaluateValue()) { 1655 return tryEmitPrivateForMemory(*value, destType); 1656 } 1657 1658 // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a 1659 // reference is a constant expression, and the reference binds to a temporary, 1660 // then constant initialization is performed. ConstExprEmitter will 1661 // incorrectly emit a prvalue constant in this case, and the calling code 1662 // interprets that as the (pointer) value of the reference, rather than the 1663 // desired value of the referee. 1664 if (destType->isReferenceType()) 1665 return nullptr; 1666 1667 const Expr *E = D.getInit(); 1668 assert(E && "No initializer to emit"); 1669 1670 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1671 auto C = 1672 ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType); 1673 return (C ? emitForMemory(C, destType) : nullptr); 1674 } 1675 1676 llvm::Constant * 1677 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) { 1678 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1679 auto C = tryEmitAbstract(E, nonMemoryDestType); 1680 return (C ? emitForMemory(C, destType) : nullptr); 1681 } 1682 1683 llvm::Constant * 1684 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value, 1685 QualType destType) { 1686 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1687 auto C = tryEmitAbstract(value, nonMemoryDestType); 1688 return (C ? emitForMemory(C, destType) : nullptr); 1689 } 1690 1691 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E, 1692 QualType destType) { 1693 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1694 llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType); 1695 return (C ? emitForMemory(C, destType) : nullptr); 1696 } 1697 1698 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value, 1699 QualType destType) { 1700 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1701 auto C = tryEmitPrivate(value, nonMemoryDestType); 1702 return (C ? emitForMemory(C, destType) : nullptr); 1703 } 1704 1705 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM, 1706 llvm::Constant *C, 1707 QualType destType) { 1708 // For an _Atomic-qualified constant, we may need to add tail padding. 1709 if (auto AT = destType->getAs<AtomicType>()) { 1710 QualType destValueType = AT->getValueType(); 1711 C = emitForMemory(CGM, C, destValueType); 1712 1713 uint64_t innerSize = CGM.getContext().getTypeSize(destValueType); 1714 uint64_t outerSize = CGM.getContext().getTypeSize(destType); 1715 if (innerSize == outerSize) 1716 return C; 1717 1718 assert(innerSize < outerSize && "emitted over-large constant for atomic"); 1719 llvm::Constant *elts[] = { 1720 C, 1721 llvm::ConstantAggregateZero::get( 1722 llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8)) 1723 }; 1724 return llvm::ConstantStruct::getAnon(elts); 1725 } 1726 1727 // Zero-extend bool. 1728 if (C->getType()->isIntegerTy(1)) { 1729 llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType); 1730 return llvm::ConstantExpr::getZExt(C, boolTy); 1731 } 1732 1733 return C; 1734 } 1735 1736 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E, 1737 QualType destType) { 1738 assert(!destType->isVoidType() && "can't emit a void constant"); 1739 1740 Expr::EvalResult Result; 1741 1742 bool Success = false; 1743 1744 if (destType->isReferenceType()) 1745 Success = E->EvaluateAsLValue(Result, CGM.getContext()); 1746 else 1747 Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext); 1748 1749 llvm::Constant *C; 1750 if (Success && !Result.HasSideEffects) 1751 C = tryEmitPrivate(Result.Val, destType); 1752 else 1753 C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType); 1754 1755 return C; 1756 } 1757 1758 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) { 1759 return getTargetCodeGenInfo().getNullPointer(*this, T, QT); 1760 } 1761 1762 namespace { 1763 /// A struct which can be used to peephole certain kinds of finalization 1764 /// that normally happen during l-value emission. 1765 struct ConstantLValue { 1766 llvm::Constant *Value; 1767 bool HasOffsetApplied; 1768 1769 /*implicit*/ ConstantLValue(llvm::Constant *value, 1770 bool hasOffsetApplied = false) 1771 : Value(value), HasOffsetApplied(hasOffsetApplied) {} 1772 1773 /*implicit*/ ConstantLValue(ConstantAddress address) 1774 : ConstantLValue(address.getPointer()) {} 1775 }; 1776 1777 /// A helper class for emitting constant l-values. 1778 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter, 1779 ConstantLValue> { 1780 CodeGenModule &CGM; 1781 ConstantEmitter &Emitter; 1782 const APValue &Value; 1783 QualType DestType; 1784 1785 // Befriend StmtVisitorBase so that we don't have to expose Visit*. 1786 friend StmtVisitorBase; 1787 1788 public: 1789 ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value, 1790 QualType destType) 1791 : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {} 1792 1793 llvm::Constant *tryEmit(); 1794 1795 private: 1796 llvm::Constant *tryEmitAbsolute(llvm::Type *destTy); 1797 ConstantLValue tryEmitBase(const APValue::LValueBase &base); 1798 1799 ConstantLValue VisitStmt(const Stmt *S) { return nullptr; } 1800 ConstantLValue VisitConstantExpr(const ConstantExpr *E); 1801 ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); 1802 ConstantLValue VisitStringLiteral(const StringLiteral *E); 1803 ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E); 1804 ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E); 1805 ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E); 1806 ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E); 1807 ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E); 1808 ConstantLValue VisitCallExpr(const CallExpr *E); 1809 ConstantLValue VisitBlockExpr(const BlockExpr *E); 1810 ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E); 1811 ConstantLValue VisitMaterializeTemporaryExpr( 1812 const MaterializeTemporaryExpr *E); 1813 1814 bool hasNonZeroOffset() const { 1815 return !Value.getLValueOffset().isZero(); 1816 } 1817 1818 /// Return the value offset. 1819 llvm::Constant *getOffset() { 1820 return llvm::ConstantInt::get(CGM.Int64Ty, 1821 Value.getLValueOffset().getQuantity()); 1822 } 1823 1824 /// Apply the value offset to the given constant. 1825 llvm::Constant *applyOffset(llvm::Constant *C) { 1826 if (!hasNonZeroOffset()) 1827 return C; 1828 1829 llvm::Type *origPtrTy = C->getType(); 1830 unsigned AS = origPtrTy->getPointerAddressSpace(); 1831 llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS); 1832 C = llvm::ConstantExpr::getBitCast(C, charPtrTy); 1833 C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset()); 1834 C = llvm::ConstantExpr::getPointerCast(C, origPtrTy); 1835 return C; 1836 } 1837 }; 1838 1839 } 1840 1841 llvm::Constant *ConstantLValueEmitter::tryEmit() { 1842 const APValue::LValueBase &base = Value.getLValueBase(); 1843 1844 // The destination type should be a pointer or reference 1845 // type, but it might also be a cast thereof. 1846 // 1847 // FIXME: the chain of casts required should be reflected in the APValue. 1848 // We need this in order to correctly handle things like a ptrtoint of a 1849 // non-zero null pointer and addrspace casts that aren't trivially 1850 // represented in LLVM IR. 1851 auto destTy = CGM.getTypes().ConvertTypeForMem(DestType); 1852 assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy)); 1853 1854 // If there's no base at all, this is a null or absolute pointer, 1855 // possibly cast back to an integer type. 1856 if (!base) { 1857 return tryEmitAbsolute(destTy); 1858 } 1859 1860 // Otherwise, try to emit the base. 1861 ConstantLValue result = tryEmitBase(base); 1862 1863 // If that failed, we're done. 1864 llvm::Constant *value = result.Value; 1865 if (!value) return nullptr; 1866 1867 // Apply the offset if necessary and not already done. 1868 if (!result.HasOffsetApplied) { 1869 value = applyOffset(value); 1870 } 1871 1872 // Convert to the appropriate type; this could be an lvalue for 1873 // an integer. FIXME: performAddrSpaceCast 1874 if (isa<llvm::PointerType>(destTy)) 1875 return llvm::ConstantExpr::getPointerCast(value, destTy); 1876 1877 return llvm::ConstantExpr::getPtrToInt(value, destTy); 1878 } 1879 1880 /// Try to emit an absolute l-value, such as a null pointer or an integer 1881 /// bitcast to pointer type. 1882 llvm::Constant * 1883 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) { 1884 // If we're producing a pointer, this is easy. 1885 auto destPtrTy = cast<llvm::PointerType>(destTy); 1886 if (Value.isNullPointer()) { 1887 // FIXME: integer offsets from non-zero null pointers. 1888 return CGM.getNullPointer(destPtrTy, DestType); 1889 } 1890 1891 // Convert the integer to a pointer-sized integer before converting it 1892 // to a pointer. 1893 // FIXME: signedness depends on the original integer type. 1894 auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy); 1895 llvm::Constant *C; 1896 C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy, 1897 /*isSigned*/ false); 1898 C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy); 1899 return C; 1900 } 1901 1902 ConstantLValue 1903 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) { 1904 // Handle values. 1905 if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) { 1906 // The constant always points to the canonical declaration. We want to look 1907 // at properties of the most recent declaration at the point of emission. 1908 D = cast<ValueDecl>(D->getMostRecentDecl()); 1909 1910 if (D->hasAttr<WeakRefAttr>()) 1911 return CGM.GetWeakRefReference(D).getPointer(); 1912 1913 if (auto FD = dyn_cast<FunctionDecl>(D)) 1914 return CGM.GetAddrOfFunction(FD); 1915 1916 if (auto VD = dyn_cast<VarDecl>(D)) { 1917 // We can never refer to a variable with local storage. 1918 if (!VD->hasLocalStorage()) { 1919 if (VD->isFileVarDecl() || VD->hasExternalStorage()) 1920 return CGM.GetAddrOfGlobalVar(VD); 1921 1922 if (VD->isLocalVarDecl()) { 1923 return CGM.getOrCreateStaticVarDecl( 1924 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)); 1925 } 1926 } 1927 } 1928 1929 if (auto *GD = dyn_cast<MSGuidDecl>(D)) 1930 return CGM.GetAddrOfMSGuidDecl(GD); 1931 1932 if (auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D)) 1933 return CGM.GetAddrOfUnnamedGlobalConstantDecl(GCD); 1934 1935 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) 1936 return CGM.GetAddrOfTemplateParamObject(TPO); 1937 1938 return nullptr; 1939 } 1940 1941 // Handle typeid(T). 1942 if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>()) { 1943 llvm::Type *StdTypeInfoPtrTy = 1944 CGM.getTypes().ConvertType(base.getTypeInfoType())->getPointerTo(); 1945 llvm::Constant *TypeInfo = 1946 CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0)); 1947 if (TypeInfo->getType() != StdTypeInfoPtrTy) 1948 TypeInfo = llvm::ConstantExpr::getBitCast(TypeInfo, StdTypeInfoPtrTy); 1949 return TypeInfo; 1950 } 1951 1952 // Otherwise, it must be an expression. 1953 return Visit(base.get<const Expr*>()); 1954 } 1955 1956 ConstantLValue 1957 ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) { 1958 if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(E)) 1959 return Result; 1960 return Visit(E->getSubExpr()); 1961 } 1962 1963 ConstantLValue 1964 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 1965 return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E); 1966 } 1967 1968 ConstantLValue 1969 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) { 1970 return CGM.GetAddrOfConstantStringFromLiteral(E); 1971 } 1972 1973 ConstantLValue 1974 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 1975 return CGM.GetAddrOfConstantStringFromObjCEncode(E); 1976 } 1977 1978 static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S, 1979 QualType T, 1980 CodeGenModule &CGM) { 1981 auto C = CGM.getObjCRuntime().GenerateConstantString(S); 1982 return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(T)); 1983 } 1984 1985 ConstantLValue 1986 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 1987 return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM); 1988 } 1989 1990 ConstantLValue 1991 ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 1992 assert(E->isExpressibleAsConstantInitializer() && 1993 "this boxed expression can't be emitted as a compile-time constant"); 1994 auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts()); 1995 return emitConstantObjCStringLiteral(SL, E->getType(), CGM); 1996 } 1997 1998 ConstantLValue 1999 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) { 2000 return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName()); 2001 } 2002 2003 ConstantLValue 2004 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) { 2005 assert(Emitter.CGF && "Invalid address of label expression outside function"); 2006 llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel()); 2007 Ptr = llvm::ConstantExpr::getBitCast(Ptr, 2008 CGM.getTypes().ConvertType(E->getType())); 2009 return Ptr; 2010 } 2011 2012 ConstantLValue 2013 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) { 2014 unsigned builtin = E->getBuiltinCallee(); 2015 if (builtin == Builtin::BI__builtin_function_start) 2016 return CGM.GetFunctionStart( 2017 E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext())); 2018 if (builtin != Builtin::BI__builtin___CFStringMakeConstantString && 2019 builtin != Builtin::BI__builtin___NSStringMakeConstantString) 2020 return nullptr; 2021 2022 auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts()); 2023 if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) { 2024 return CGM.getObjCRuntime().GenerateConstantString(literal); 2025 } else { 2026 // FIXME: need to deal with UCN conversion issues. 2027 return CGM.GetAddrOfConstantCFString(literal); 2028 } 2029 } 2030 2031 ConstantLValue 2032 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) { 2033 StringRef functionName; 2034 if (auto CGF = Emitter.CGF) 2035 functionName = CGF->CurFn->getName(); 2036 else 2037 functionName = "global"; 2038 2039 return CGM.GetAddrOfGlobalBlock(E, functionName); 2040 } 2041 2042 ConstantLValue 2043 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { 2044 QualType T; 2045 if (E->isTypeOperand()) 2046 T = E->getTypeOperand(CGM.getContext()); 2047 else 2048 T = E->getExprOperand()->getType(); 2049 return CGM.GetAddrOfRTTIDescriptor(T); 2050 } 2051 2052 ConstantLValue 2053 ConstantLValueEmitter::VisitMaterializeTemporaryExpr( 2054 const MaterializeTemporaryExpr *E) { 2055 assert(E->getStorageDuration() == SD_Static); 2056 SmallVector<const Expr *, 2> CommaLHSs; 2057 SmallVector<SubobjectAdjustment, 2> Adjustments; 2058 const Expr *Inner = 2059 E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 2060 return CGM.GetAddrOfGlobalTemporary(E, Inner); 2061 } 2062 2063 llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value, 2064 QualType DestType) { 2065 switch (Value.getKind()) { 2066 case APValue::None: 2067 case APValue::Indeterminate: 2068 // Out-of-lifetime and indeterminate values can be modeled as 'undef'. 2069 return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType)); 2070 case APValue::LValue: 2071 return ConstantLValueEmitter(*this, Value, DestType).tryEmit(); 2072 case APValue::Int: 2073 return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt()); 2074 case APValue::FixedPoint: 2075 return llvm::ConstantInt::get(CGM.getLLVMContext(), 2076 Value.getFixedPoint().getValue()); 2077 case APValue::ComplexInt: { 2078 llvm::Constant *Complex[2]; 2079 2080 Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(), 2081 Value.getComplexIntReal()); 2082 Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(), 2083 Value.getComplexIntImag()); 2084 2085 // FIXME: the target may want to specify that this is packed. 2086 llvm::StructType *STy = 2087 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 2088 return llvm::ConstantStruct::get(STy, Complex); 2089 } 2090 case APValue::Float: { 2091 const llvm::APFloat &Init = Value.getFloat(); 2092 if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() && 2093 !CGM.getContext().getLangOpts().NativeHalfType && 2094 CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 2095 return llvm::ConstantInt::get(CGM.getLLVMContext(), 2096 Init.bitcastToAPInt()); 2097 else 2098 return llvm::ConstantFP::get(CGM.getLLVMContext(), Init); 2099 } 2100 case APValue::ComplexFloat: { 2101 llvm::Constant *Complex[2]; 2102 2103 Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(), 2104 Value.getComplexFloatReal()); 2105 Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(), 2106 Value.getComplexFloatImag()); 2107 2108 // FIXME: the target may want to specify that this is packed. 2109 llvm::StructType *STy = 2110 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 2111 return llvm::ConstantStruct::get(STy, Complex); 2112 } 2113 case APValue::Vector: { 2114 unsigned NumElts = Value.getVectorLength(); 2115 SmallVector<llvm::Constant *, 4> Inits(NumElts); 2116 2117 for (unsigned I = 0; I != NumElts; ++I) { 2118 const APValue &Elt = Value.getVectorElt(I); 2119 if (Elt.isInt()) 2120 Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt()); 2121 else if (Elt.isFloat()) 2122 Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat()); 2123 else 2124 llvm_unreachable("unsupported vector element type"); 2125 } 2126 return llvm::ConstantVector::get(Inits); 2127 } 2128 case APValue::AddrLabelDiff: { 2129 const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS(); 2130 const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS(); 2131 llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType()); 2132 llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType()); 2133 if (!LHS || !RHS) return nullptr; 2134 2135 // Compute difference 2136 llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType); 2137 LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy); 2138 RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy); 2139 llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS); 2140 2141 // LLVM is a bit sensitive about the exact format of the 2142 // address-of-label difference; make sure to truncate after 2143 // the subtraction. 2144 return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType); 2145 } 2146 case APValue::Struct: 2147 case APValue::Union: 2148 return ConstStructBuilder::BuildStruct(*this, Value, DestType); 2149 case APValue::Array: { 2150 const ArrayType *ArrayTy = CGM.getContext().getAsArrayType(DestType); 2151 unsigned NumElements = Value.getArraySize(); 2152 unsigned NumInitElts = Value.getArrayInitializedElts(); 2153 2154 // Emit array filler, if there is one. 2155 llvm::Constant *Filler = nullptr; 2156 if (Value.hasArrayFiller()) { 2157 Filler = tryEmitAbstractForMemory(Value.getArrayFiller(), 2158 ArrayTy->getElementType()); 2159 if (!Filler) 2160 return nullptr; 2161 } 2162 2163 // Emit initializer elements. 2164 SmallVector<llvm::Constant*, 16> Elts; 2165 if (Filler && Filler->isNullValue()) 2166 Elts.reserve(NumInitElts + 1); 2167 else 2168 Elts.reserve(NumElements); 2169 2170 llvm::Type *CommonElementType = nullptr; 2171 for (unsigned I = 0; I < NumInitElts; ++I) { 2172 llvm::Constant *C = tryEmitPrivateForMemory( 2173 Value.getArrayInitializedElt(I), ArrayTy->getElementType()); 2174 if (!C) return nullptr; 2175 2176 if (I == 0) 2177 CommonElementType = C->getType(); 2178 else if (C->getType() != CommonElementType) 2179 CommonElementType = nullptr; 2180 Elts.push_back(C); 2181 } 2182 2183 llvm::ArrayType *Desired = 2184 cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType)); 2185 return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts, 2186 Filler); 2187 } 2188 case APValue::MemberPointer: 2189 return CGM.getCXXABI().EmitMemberPointer(Value, DestType); 2190 } 2191 llvm_unreachable("Unknown APValue kind"); 2192 } 2193 2194 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted( 2195 const CompoundLiteralExpr *E) { 2196 return EmittedCompoundLiterals.lookup(E); 2197 } 2198 2199 void CodeGenModule::setAddrOfConstantCompoundLiteral( 2200 const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) { 2201 bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second; 2202 (void)Ok; 2203 assert(Ok && "CLE has already been emitted!"); 2204 } 2205 2206 ConstantAddress 2207 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) { 2208 assert(E->isFileScope() && "not a file-scope compound literal expr"); 2209 return tryEmitGlobalCompoundLiteral(*this, nullptr, E); 2210 } 2211 2212 llvm::Constant * 2213 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) { 2214 // Member pointer constants always have a very particular form. 2215 const MemberPointerType *type = cast<MemberPointerType>(uo->getType()); 2216 const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl(); 2217 2218 // A member function pointer. 2219 if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl)) 2220 return getCXXABI().EmitMemberFunctionPointer(method); 2221 2222 // Otherwise, a member data pointer. 2223 uint64_t fieldOffset = getContext().getFieldOffset(decl); 2224 CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset); 2225 return getCXXABI().EmitMemberDataPointer(type, chars); 2226 } 2227 2228 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2229 llvm::Type *baseType, 2230 const CXXRecordDecl *base); 2231 2232 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM, 2233 const RecordDecl *record, 2234 bool asCompleteObject) { 2235 const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record); 2236 llvm::StructType *structure = 2237 (asCompleteObject ? layout.getLLVMType() 2238 : layout.getBaseSubobjectLLVMType()); 2239 2240 unsigned numElements = structure->getNumElements(); 2241 std::vector<llvm::Constant *> elements(numElements); 2242 2243 auto CXXR = dyn_cast<CXXRecordDecl>(record); 2244 // Fill in all the bases. 2245 if (CXXR) { 2246 for (const auto &I : CXXR->bases()) { 2247 if (I.isVirtual()) { 2248 // Ignore virtual bases; if we're laying out for a complete 2249 // object, we'll lay these out later. 2250 continue; 2251 } 2252 2253 const CXXRecordDecl *base = 2254 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2255 2256 // Ignore empty bases. 2257 if (base->isEmpty() || 2258 CGM.getContext().getASTRecordLayout(base).getNonVirtualSize() 2259 .isZero()) 2260 continue; 2261 2262 unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base); 2263 llvm::Type *baseType = structure->getElementType(fieldIndex); 2264 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2265 } 2266 } 2267 2268 // Fill in all the fields. 2269 for (const auto *Field : record->fields()) { 2270 // Fill in non-bitfields. (Bitfields always use a zero pattern, which we 2271 // will fill in later.) 2272 if (!Field->isBitField() && !Field->isZeroSize(CGM.getContext())) { 2273 unsigned fieldIndex = layout.getLLVMFieldNo(Field); 2274 elements[fieldIndex] = CGM.EmitNullConstant(Field->getType()); 2275 } 2276 2277 // For unions, stop after the first named field. 2278 if (record->isUnion()) { 2279 if (Field->getIdentifier()) 2280 break; 2281 if (const auto *FieldRD = Field->getType()->getAsRecordDecl()) 2282 if (FieldRD->findFirstNamedDataMember()) 2283 break; 2284 } 2285 } 2286 2287 // Fill in the virtual bases, if we're working with the complete object. 2288 if (CXXR && asCompleteObject) { 2289 for (const auto &I : CXXR->vbases()) { 2290 const CXXRecordDecl *base = 2291 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2292 2293 // Ignore empty bases. 2294 if (base->isEmpty()) 2295 continue; 2296 2297 unsigned fieldIndex = layout.getVirtualBaseIndex(base); 2298 2299 // We might have already laid this field out. 2300 if (elements[fieldIndex]) continue; 2301 2302 llvm::Type *baseType = structure->getElementType(fieldIndex); 2303 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2304 } 2305 } 2306 2307 // Now go through all other fields and zero them out. 2308 for (unsigned i = 0; i != numElements; ++i) { 2309 if (!elements[i]) 2310 elements[i] = llvm::Constant::getNullValue(structure->getElementType(i)); 2311 } 2312 2313 return llvm::ConstantStruct::get(structure, elements); 2314 } 2315 2316 /// Emit the null constant for a base subobject. 2317 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2318 llvm::Type *baseType, 2319 const CXXRecordDecl *base) { 2320 const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base); 2321 2322 // Just zero out bases that don't have any pointer to data members. 2323 if (baseLayout.isZeroInitializableAsBase()) 2324 return llvm::Constant::getNullValue(baseType); 2325 2326 // Otherwise, we can just use its null constant. 2327 return EmitNullConstant(CGM, base, /*asCompleteObject=*/false); 2328 } 2329 2330 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM, 2331 QualType T) { 2332 return emitForMemory(CGM, CGM.EmitNullConstant(T), T); 2333 } 2334 2335 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { 2336 if (T->getAs<PointerType>()) 2337 return getNullPointer( 2338 cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T); 2339 2340 if (getTypes().isZeroInitializable(T)) 2341 return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); 2342 2343 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { 2344 llvm::ArrayType *ATy = 2345 cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T)); 2346 2347 QualType ElementTy = CAT->getElementType(); 2348 2349 llvm::Constant *Element = 2350 ConstantEmitter::emitNullForMemory(*this, ElementTy); 2351 unsigned NumElements = CAT->getSize().getZExtValue(); 2352 SmallVector<llvm::Constant *, 8> Array(NumElements, Element); 2353 return llvm::ConstantArray::get(ATy, Array); 2354 } 2355 2356 if (const RecordType *RT = T->getAs<RecordType>()) 2357 return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true); 2358 2359 assert(T->isMemberDataPointerType() && 2360 "Should only see pointers to data members here!"); 2361 2362 return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>()); 2363 } 2364 2365 llvm::Constant * 2366 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) { 2367 return ::EmitNullConstant(*this, Record, false); 2368 } 2369