1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Constant Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGCXXABI.h"
15 #include "CGObjCRuntime.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenModule.h"
18 #include "ConstantEmitter.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/APValue.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/Builtins.h"
25 #include "llvm/ADT/Sequence.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalVariable.h"
31 using namespace clang;
32 using namespace CodeGen;
33 
34 //===----------------------------------------------------------------------===//
35 //                            ConstantAggregateBuilder
36 //===----------------------------------------------------------------------===//
37 
38 namespace {
39 class ConstExprEmitter;
40 
41 struct ConstantAggregateBuilderUtils {
42   CodeGenModule &CGM;
43 
44   ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {}
45 
46   CharUnits getAlignment(const llvm::Constant *C) const {
47     return CharUnits::fromQuantity(
48         CGM.getDataLayout().getABITypeAlignment(C->getType()));
49   }
50 
51   CharUnits getSize(llvm::Type *Ty) const {
52     return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty));
53   }
54 
55   CharUnits getSize(const llvm::Constant *C) const {
56     return getSize(C->getType());
57   }
58 
59   llvm::Constant *getPadding(CharUnits PadSize) const {
60     llvm::Type *Ty = CGM.Int8Ty;
61     if (PadSize > CharUnits::One())
62       Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
63     return llvm::UndefValue::get(Ty);
64   }
65 
66   llvm::Constant *getZeroes(CharUnits ZeroSize) const {
67     llvm::Type *Ty = llvm::ArrayType::get(CGM.Int8Ty, ZeroSize.getQuantity());
68     return llvm::ConstantAggregateZero::get(Ty);
69   }
70 };
71 
72 /// Incremental builder for an llvm::Constant* holding a struct or array
73 /// constant.
74 class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils {
75   /// The elements of the constant. These two arrays must have the same size;
76   /// Offsets[i] describes the offset of Elems[i] within the constant. The
77   /// elements are kept in increasing offset order, and we ensure that there
78   /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]).
79   ///
80   /// This may contain explicit padding elements (in order to create a
81   /// natural layout), but need not. Gaps between elements are implicitly
82   /// considered to be filled with undef.
83   llvm::SmallVector<llvm::Constant*, 32> Elems;
84   llvm::SmallVector<CharUnits, 32> Offsets;
85 
86   /// The size of the constant (the maximum end offset of any added element).
87   /// May be larger than the end of Elems.back() if we split the last element
88   /// and removed some trailing undefs.
89   CharUnits Size = CharUnits::Zero();
90 
91   /// This is true only if laying out Elems in order as the elements of a
92   /// non-packed LLVM struct will give the correct layout.
93   bool NaturalLayout = true;
94 
95   bool split(size_t Index, CharUnits Hint);
96   Optional<size_t> splitAt(CharUnits Pos);
97 
98   static llvm::Constant *buildFrom(CodeGenModule &CGM,
99                                    ArrayRef<llvm::Constant *> Elems,
100                                    ArrayRef<CharUnits> Offsets,
101                                    CharUnits StartOffset, CharUnits Size,
102                                    bool NaturalLayout, llvm::Type *DesiredTy,
103                                    bool AllowOversized);
104 
105 public:
106   ConstantAggregateBuilder(CodeGenModule &CGM)
107       : ConstantAggregateBuilderUtils(CGM) {}
108 
109   /// Update or overwrite the value starting at \p Offset with \c C.
110   ///
111   /// \param AllowOverwrite If \c true, this constant might overwrite (part of)
112   ///        a constant that has already been added. This flag is only used to
113   ///        detect bugs.
114   bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite);
115 
116   /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits.
117   bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite);
118 
119   /// Attempt to condense the value starting at \p Offset to a constant of type
120   /// \p DesiredTy.
121   void condense(CharUnits Offset, llvm::Type *DesiredTy);
122 
123   /// Produce a constant representing the entire accumulated value, ideally of
124   /// the specified type. If \p AllowOversized, the constant might be larger
125   /// than implied by \p DesiredTy (eg, if there is a flexible array member).
126   /// Otherwise, the constant will be of exactly the same size as \p DesiredTy
127   /// even if we can't represent it as that type.
128   llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const {
129     return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size,
130                      NaturalLayout, DesiredTy, AllowOversized);
131   }
132 };
133 
134 template<typename Container, typename Range = std::initializer_list<
135                                  typename Container::value_type>>
136 static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) {
137   assert(BeginOff <= EndOff && "invalid replacement range");
138   llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals);
139 }
140 
141 bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset,
142                           bool AllowOverwrite) {
143   // Common case: appending to a layout.
144   if (Offset >= Size) {
145     CharUnits Align = getAlignment(C);
146     CharUnits AlignedSize = Size.alignTo(Align);
147     if (AlignedSize > Offset || Offset.alignTo(Align) != Offset)
148       NaturalLayout = false;
149     else if (AlignedSize < Offset) {
150       Elems.push_back(getPadding(Offset - Size));
151       Offsets.push_back(Size);
152     }
153     Elems.push_back(C);
154     Offsets.push_back(Offset);
155     Size = Offset + getSize(C);
156     return true;
157   }
158 
159   // Uncommon case: constant overlaps what we've already created.
160   llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
161   if (!FirstElemToReplace)
162     return false;
163 
164   CharUnits CSize = getSize(C);
165   llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + CSize);
166   if (!LastElemToReplace)
167     return false;
168 
169   assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) &&
170          "unexpectedly overwriting field");
171 
172   replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C});
173   replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset});
174   Size = std::max(Size, Offset + CSize);
175   NaturalLayout = false;
176   return true;
177 }
178 
179 bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits,
180                               bool AllowOverwrite) {
181   const ASTContext &Context = CGM.getContext();
182   const uint64_t CharWidth = CGM.getContext().getCharWidth();
183 
184   // Offset of where we want the first bit to go within the bits of the
185   // current char.
186   unsigned OffsetWithinChar = OffsetInBits % CharWidth;
187 
188   // We split bit-fields up into individual bytes. Walk over the bytes and
189   // update them.
190   for (CharUnits OffsetInChars =
191            Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar);
192        /**/; ++OffsetInChars) {
193     // Number of bits we want to fill in this char.
194     unsigned WantedBits =
195         std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar);
196 
197     // Get a char containing the bits we want in the right places. The other
198     // bits have unspecified values.
199     llvm::APInt BitsThisChar = Bits;
200     if (BitsThisChar.getBitWidth() < CharWidth)
201       BitsThisChar = BitsThisChar.zext(CharWidth);
202     if (CGM.getDataLayout().isBigEndian()) {
203       // Figure out how much to shift by. We may need to left-shift if we have
204       // less than one byte of Bits left.
205       int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar;
206       if (Shift > 0)
207         BitsThisChar.lshrInPlace(Shift);
208       else if (Shift < 0)
209         BitsThisChar = BitsThisChar.shl(-Shift);
210     } else {
211       BitsThisChar = BitsThisChar.shl(OffsetWithinChar);
212     }
213     if (BitsThisChar.getBitWidth() > CharWidth)
214       BitsThisChar = BitsThisChar.trunc(CharWidth);
215 
216     if (WantedBits == CharWidth) {
217       // Got a full byte: just add it directly.
218       add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
219           OffsetInChars, AllowOverwrite);
220     } else {
221       // Partial byte: update the existing integer if there is one. If we
222       // can't split out a 1-CharUnit range to update, then we can't add
223       // these bits and fail the entire constant emission.
224       llvm::Optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars);
225       if (!FirstElemToUpdate)
226         return false;
227       llvm::Optional<size_t> LastElemToUpdate =
228           splitAt(OffsetInChars + CharUnits::One());
229       if (!LastElemToUpdate)
230         return false;
231       assert(*LastElemToUpdate - *FirstElemToUpdate < 2 &&
232              "should have at most one element covering one byte");
233 
234       // Figure out which bits we want and discard the rest.
235       llvm::APInt UpdateMask(CharWidth, 0);
236       if (CGM.getDataLayout().isBigEndian())
237         UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits,
238                            CharWidth - OffsetWithinChar);
239       else
240         UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits);
241       BitsThisChar &= UpdateMask;
242 
243       if (*FirstElemToUpdate == *LastElemToUpdate ||
244           Elems[*FirstElemToUpdate]->isNullValue() ||
245           isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) {
246         // All existing bits are either zero or undef.
247         add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
248             OffsetInChars, /*AllowOverwrite*/ true);
249       } else {
250         llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate];
251         // In order to perform a partial update, we need the existing bitwise
252         // value, which we can only extract for a constant int.
253         auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate);
254         if (!CI)
255           return false;
256         // Because this is a 1-CharUnit range, the constant occupying it must
257         // be exactly one CharUnit wide.
258         assert(CI->getBitWidth() == CharWidth && "splitAt failed");
259         assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) &&
260                "unexpectedly overwriting bitfield");
261         BitsThisChar |= (CI->getValue() & ~UpdateMask);
262         ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar);
263       }
264     }
265 
266     // Stop if we've added all the bits.
267     if (WantedBits == Bits.getBitWidth())
268       break;
269 
270     // Remove the consumed bits from Bits.
271     if (!CGM.getDataLayout().isBigEndian())
272       Bits.lshrInPlace(WantedBits);
273     Bits = Bits.trunc(Bits.getBitWidth() - WantedBits);
274 
275     // The remanining bits go at the start of the following bytes.
276     OffsetWithinChar = 0;
277   }
278 
279   return true;
280 }
281 
282 /// Returns a position within Elems and Offsets such that all elements
283 /// before the returned index end before Pos and all elements at or after
284 /// the returned index begin at or after Pos. Splits elements as necessary
285 /// to ensure this. Returns None if we find something we can't split.
286 Optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) {
287   if (Pos >= Size)
288     return Offsets.size();
289 
290   while (true) {
291     auto FirstAfterPos = std::upper_bound(Offsets.begin(), Offsets.end(), Pos);
292     if (FirstAfterPos == Offsets.begin())
293       return 0;
294 
295     // If we already have an element starting at Pos, we're done.
296     size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1;
297     if (Offsets[LastAtOrBeforePosIndex] == Pos)
298       return LastAtOrBeforePosIndex;
299 
300     // We found an element starting before Pos. Check for overlap.
301     if (Offsets[LastAtOrBeforePosIndex] +
302         getSize(Elems[LastAtOrBeforePosIndex]) <= Pos)
303       return LastAtOrBeforePosIndex + 1;
304 
305     // Try to decompose it into smaller constants.
306     if (!split(LastAtOrBeforePosIndex, Pos))
307       return None;
308   }
309 }
310 
311 /// Split the constant at index Index, if possible. Return true if we did.
312 /// Hint indicates the location at which we'd like to split, but may be
313 /// ignored.
314 bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
315   NaturalLayout = false;
316   llvm::Constant *C = Elems[Index];
317   CharUnits Offset = Offsets[Index];
318 
319   if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) {
320     replace(Elems, Index, Index + 1,
321             llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
322                             [&](unsigned Op) { return CA->getOperand(Op); }));
323     if (auto *Seq = dyn_cast<llvm::SequentialType>(CA->getType())) {
324       // Array or vector.
325       CharUnits ElemSize = getSize(Seq->getElementType());
326       replace(
327           Offsets, Index, Index + 1,
328           llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
329                           [&](unsigned Op) { return Offset + Op * ElemSize; }));
330     } else {
331       // Must be a struct.
332       auto *ST = cast<llvm::StructType>(CA->getType());
333       const llvm::StructLayout *Layout =
334           CGM.getDataLayout().getStructLayout(ST);
335       replace(Offsets, Index, Index + 1,
336               llvm::map_range(
337                   llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) {
338                     return Offset + CharUnits::fromQuantity(
339                                         Layout->getElementOffset(Op));
340                   }));
341     }
342     return true;
343   }
344 
345   if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) {
346     // FIXME: If possible, split into two ConstantDataSequentials at Hint.
347     CharUnits ElemSize = getSize(CDS->getElementType());
348     replace(Elems, Index, Index + 1,
349             llvm::map_range(llvm::seq(0u, CDS->getNumElements()),
350                             [&](unsigned Elem) {
351                               return CDS->getElementAsConstant(Elem);
352                             }));
353     replace(Offsets, Index, Index + 1,
354             llvm::map_range(
355                 llvm::seq(0u, CDS->getNumElements()),
356                 [&](unsigned Elem) { return Offset + Elem * ElemSize; }));
357     return true;
358   }
359 
360   if (isa<llvm::ConstantAggregateZero>(C)) {
361     CharUnits ElemSize = getSize(C);
362     assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split");
363     replace(Elems, Index, Index + 1,
364             {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)});
365     replace(Offsets, Index, Index + 1, {Offset, Hint});
366     return true;
367   }
368 
369   if (isa<llvm::UndefValue>(C)) {
370     replace(Elems, Index, Index + 1, {});
371     replace(Offsets, Index, Index + 1, {});
372     return true;
373   }
374 
375   // FIXME: We could split a ConstantInt if the need ever arose.
376   // We don't need to do this to handle bit-fields because we always eagerly
377   // split them into 1-byte chunks.
378 
379   return false;
380 }
381 
382 static llvm::Constant *
383 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
384                   llvm::Type *CommonElementType, unsigned ArrayBound,
385                   SmallVectorImpl<llvm::Constant *> &Elements,
386                   llvm::Constant *Filler);
387 
388 llvm::Constant *ConstantAggregateBuilder::buildFrom(
389     CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems,
390     ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size,
391     bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) {
392   ConstantAggregateBuilderUtils Utils(CGM);
393 
394   if (Elems.empty())
395     return llvm::UndefValue::get(DesiredTy);
396 
397   auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; };
398 
399   // If we want an array type, see if all the elements are the same type and
400   // appropriately spaced.
401   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) {
402     assert(!AllowOversized && "oversized array emission not supported");
403 
404     bool CanEmitArray = true;
405     llvm::Type *CommonType = Elems[0]->getType();
406     llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType);
407     CharUnits ElemSize = Utils.getSize(ATy->getElementType());
408     SmallVector<llvm::Constant*, 32> ArrayElements;
409     for (size_t I = 0; I != Elems.size(); ++I) {
410       // Skip zeroes; we'll use a zero value as our array filler.
411       if (Elems[I]->isNullValue())
412         continue;
413 
414       // All remaining elements must be the same type.
415       if (Elems[I]->getType() != CommonType ||
416           Offset(I) % ElemSize != 0) {
417         CanEmitArray = false;
418         break;
419       }
420       ArrayElements.resize(Offset(I) / ElemSize + 1, Filler);
421       ArrayElements.back() = Elems[I];
422     }
423 
424     if (CanEmitArray) {
425       return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(),
426                                ArrayElements, Filler);
427     }
428 
429     // Can't emit as an array, carry on to emit as a struct.
430   }
431 
432   CharUnits DesiredSize = Utils.getSize(DesiredTy);
433   CharUnits Align = CharUnits::One();
434   for (llvm::Constant *C : Elems)
435     Align = std::max(Align, Utils.getAlignment(C));
436   CharUnits AlignedSize = Size.alignTo(Align);
437 
438   bool Packed = false;
439   ArrayRef<llvm::Constant*> UnpackedElems = Elems;
440   llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage;
441   if ((DesiredSize < AlignedSize && !AllowOversized) ||
442       DesiredSize.alignTo(Align) != DesiredSize) {
443     // The natural layout would be the wrong size; force use of a packed layout.
444     NaturalLayout = false;
445     Packed = true;
446   } else if (DesiredSize > AlignedSize) {
447     // The constant would be too small. Add padding to fix it.
448     UnpackedElemStorage.assign(Elems.begin(), Elems.end());
449     UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size));
450     UnpackedElems = UnpackedElemStorage;
451   }
452 
453   // If we don't have a natural layout, insert padding as necessary.
454   // As we go, double-check to see if we can actually just emit Elems
455   // as a non-packed struct and do so opportunistically if possible.
456   llvm::SmallVector<llvm::Constant*, 32> PackedElems;
457   if (!NaturalLayout) {
458     CharUnits SizeSoFar = CharUnits::Zero();
459     for (size_t I = 0; I != Elems.size(); ++I) {
460       CharUnits Align = Utils.getAlignment(Elems[I]);
461       CharUnits NaturalOffset = SizeSoFar.alignTo(Align);
462       CharUnits DesiredOffset = Offset(I);
463       assert(DesiredOffset >= SizeSoFar && "elements out of order");
464 
465       if (DesiredOffset != NaturalOffset)
466         Packed = true;
467       if (DesiredOffset != SizeSoFar)
468         PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar));
469       PackedElems.push_back(Elems[I]);
470       SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]);
471     }
472     // If we're using the packed layout, pad it out to the desired size if
473     // necessary.
474     if (Packed) {
475       assert((SizeSoFar <= DesiredSize || AllowOversized) &&
476              "requested size is too small for contents");
477       if (SizeSoFar < DesiredSize)
478         PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar));
479     }
480   }
481 
482   llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements(
483       CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed);
484 
485   // Pick the type to use.  If the type is layout identical to the desired
486   // type then use it, otherwise use whatever the builder produced for us.
487   if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) {
488     if (DesiredSTy->isLayoutIdentical(STy))
489       STy = DesiredSTy;
490   }
491 
492   return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems);
493 }
494 
495 void ConstantAggregateBuilder::condense(CharUnits Offset,
496                                         llvm::Type *DesiredTy) {
497   CharUnits Size = getSize(DesiredTy);
498 
499   llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
500   if (!FirstElemToReplace)
501     return;
502   size_t First = *FirstElemToReplace;
503 
504   llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + Size);
505   if (!LastElemToReplace)
506     return;
507   size_t Last = *LastElemToReplace;
508 
509   size_t Length = Last - First;
510   if (Length == 0)
511     return;
512 
513   if (Length == 1 && Offsets[First] == Offset &&
514       getSize(Elems[First]) == Size) {
515     // Re-wrap single element structs if necessary. Otherwise, leave any single
516     // element constant of the right size alone even if it has the wrong type.
517     auto *STy = dyn_cast<llvm::StructType>(DesiredTy);
518     if (STy && STy->getNumElements() == 1 &&
519         STy->getElementType(0) == Elems[First]->getType())
520       Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]);
521     return;
522   }
523 
524   llvm::Constant *Replacement = buildFrom(
525       CGM, makeArrayRef(Elems).slice(First, Length),
526       makeArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy),
527       /*known to have natural layout=*/false, DesiredTy, false);
528   replace(Elems, First, Last, {Replacement});
529   replace(Offsets, First, Last, {Offset});
530 }
531 
532 //===----------------------------------------------------------------------===//
533 //                            ConstStructBuilder
534 //===----------------------------------------------------------------------===//
535 
536 class ConstStructBuilder {
537   CodeGenModule &CGM;
538   ConstantEmitter &Emitter;
539   ConstantAggregateBuilder &Builder;
540   CharUnits StartOffset;
541 
542 public:
543   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
544                                      InitListExpr *ILE, QualType StructTy);
545   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
546                                      const APValue &Value, QualType ValTy);
547   static bool UpdateStruct(ConstantEmitter &Emitter,
548                            ConstantAggregateBuilder &Const, CharUnits Offset,
549                            InitListExpr *Updater);
550 
551 private:
552   ConstStructBuilder(ConstantEmitter &Emitter,
553                      ConstantAggregateBuilder &Builder, CharUnits StartOffset)
554       : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder),
555         StartOffset(StartOffset) {}
556 
557   bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
558                    llvm::Constant *InitExpr, bool AllowOverwrite = false);
559 
560   bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst,
561                    bool AllowOverwrite = false);
562 
563   bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
564                       llvm::ConstantInt *InitExpr, bool AllowOverwrite = false);
565 
566   bool Build(InitListExpr *ILE, bool AllowOverwrite);
567   bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
568              const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
569   llvm::Constant *Finalize(QualType Ty);
570 };
571 
572 bool ConstStructBuilder::AppendField(
573     const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst,
574     bool AllowOverwrite) {
575   const ASTContext &Context = CGM.getContext();
576 
577   CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
578 
579   return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite);
580 }
581 
582 bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars,
583                                      llvm::Constant *InitCst,
584                                      bool AllowOverwrite) {
585   return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite);
586 }
587 
588 bool ConstStructBuilder::AppendBitField(
589     const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI,
590     bool AllowOverwrite) {
591   uint64_t FieldSize = Field->getBitWidthValue(CGM.getContext());
592   llvm::APInt FieldValue = CI->getValue();
593 
594   // Promote the size of FieldValue if necessary
595   // FIXME: This should never occur, but currently it can because initializer
596   // constants are cast to bool, and because clang is not enforcing bitfield
597   // width limits.
598   if (FieldSize > FieldValue.getBitWidth())
599     FieldValue = FieldValue.zext(FieldSize);
600 
601   // Truncate the size of FieldValue to the bit field size.
602   if (FieldSize < FieldValue.getBitWidth())
603     FieldValue = FieldValue.trunc(FieldSize);
604 
605   return Builder.addBits(FieldValue,
606                          CGM.getContext().toBits(StartOffset) + FieldOffset,
607                          AllowOverwrite);
608 }
609 
610 static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter,
611                                       ConstantAggregateBuilder &Const,
612                                       CharUnits Offset, QualType Type,
613                                       InitListExpr *Updater) {
614   if (Type->isRecordType())
615     return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater);
616 
617   auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type);
618   if (!CAT)
619     return false;
620   QualType ElemType = CAT->getElementType();
621   CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType);
622   llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType);
623 
624   llvm::Constant *FillC = nullptr;
625   if (Expr *Filler = Updater->getArrayFiller()) {
626     if (!isa<NoInitExpr>(Filler)) {
627       FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType);
628       if (!FillC)
629         return false;
630     }
631   }
632 
633   unsigned NumElementsToUpdate =
634       FillC ? CAT->getSize().getZExtValue() : Updater->getNumInits();
635   for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) {
636     Expr *Init = nullptr;
637     if (I < Updater->getNumInits())
638       Init = Updater->getInit(I);
639 
640     if (!Init && FillC) {
641       if (!Const.add(FillC, Offset, true))
642         return false;
643     } else if (!Init || isa<NoInitExpr>(Init)) {
644       continue;
645     } else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) {
646       if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType,
647                                      ChildILE))
648         return false;
649       // Attempt to reduce the array element to a single constant if necessary.
650       Const.condense(Offset, ElemTy);
651     } else {
652       llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType);
653       if (!Const.add(Val, Offset, true))
654         return false;
655     }
656   }
657 
658   return true;
659 }
660 
661 bool ConstStructBuilder::Build(InitListExpr *ILE, bool AllowOverwrite) {
662   RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
663   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
664 
665   unsigned FieldNo = -1;
666   unsigned ElementNo = 0;
667 
668   // Bail out if we have base classes. We could support these, but they only
669   // arise in C++1z where we will have already constant folded most interesting
670   // cases. FIXME: There are still a few more cases we can handle this way.
671   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
672     if (CXXRD->getNumBases())
673       return false;
674 
675   for (FieldDecl *Field : RD->fields()) {
676     ++FieldNo;
677 
678     // If this is a union, skip all the fields that aren't being initialized.
679     if (RD->isUnion() &&
680         !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field))
681       continue;
682 
683     // Don't emit anonymous bitfields or zero-sized fields.
684     if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
685       continue;
686 
687     // Get the initializer.  A struct can include fields without initializers,
688     // we just use explicit null values for them.
689     Expr *Init = nullptr;
690     if (ElementNo < ILE->getNumInits())
691       Init = ILE->getInit(ElementNo++);
692     if (Init && isa<NoInitExpr>(Init))
693       continue;
694 
695     // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr
696     // represents additional overwriting of our current constant value, and not
697     // a new constant to emit independently.
698     if (AllowOverwrite &&
699         (Field->getType()->isArrayType() || Field->getType()->isRecordType())) {
700       if (auto *SubILE = dyn_cast<InitListExpr>(Init)) {
701         CharUnits Offset = CGM.getContext().toCharUnitsFromBits(
702             Layout.getFieldOffset(FieldNo));
703         if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset,
704                                        Field->getType(), SubILE))
705           return false;
706         // If we split apart the field's value, try to collapse it down to a
707         // single value now.
708         Builder.condense(StartOffset + Offset,
709                          CGM.getTypes().ConvertTypeForMem(Field->getType()));
710         continue;
711       }
712     }
713 
714     llvm::Constant *EltInit =
715         Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType())
716              : Emitter.emitNullForMemory(Field->getType());
717     if (!EltInit)
718       return false;
719 
720     if (!Field->isBitField()) {
721       // Handle non-bitfield members.
722       if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit,
723                        AllowOverwrite))
724         return false;
725       // After emitting a non-empty field with [[no_unique_address]], we may
726       // need to overwrite its tail padding.
727       if (Field->hasAttr<NoUniqueAddressAttr>())
728         AllowOverwrite = true;
729     } else {
730       // Otherwise we have a bitfield.
731       if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) {
732         if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI,
733                             AllowOverwrite))
734           return false;
735       } else {
736         // We are trying to initialize a bitfield with a non-trivial constant,
737         // this must require run-time code.
738         return false;
739       }
740     }
741   }
742 
743   return true;
744 }
745 
746 namespace {
747 struct BaseInfo {
748   BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
749     : Decl(Decl), Offset(Offset), Index(Index) {
750   }
751 
752   const CXXRecordDecl *Decl;
753   CharUnits Offset;
754   unsigned Index;
755 
756   bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
757 };
758 }
759 
760 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
761                                bool IsPrimaryBase,
762                                const CXXRecordDecl *VTableClass,
763                                CharUnits Offset) {
764   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
765 
766   if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
767     // Add a vtable pointer, if we need one and it hasn't already been added.
768     if (CD->isDynamicClass() && !IsPrimaryBase) {
769       llvm::Constant *VTableAddressPoint =
770           CGM.getCXXABI().getVTableAddressPointForConstExpr(
771               BaseSubobject(CD, Offset), VTableClass);
772       if (!AppendBytes(Offset, VTableAddressPoint))
773         return false;
774     }
775 
776     // Accumulate and sort bases, in order to visit them in address order, which
777     // may not be the same as declaration order.
778     SmallVector<BaseInfo, 8> Bases;
779     Bases.reserve(CD->getNumBases());
780     unsigned BaseNo = 0;
781     for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
782          BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
783       assert(!Base->isVirtual() && "should not have virtual bases here");
784       const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
785       CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
786       Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
787     }
788     llvm::stable_sort(Bases);
789 
790     for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
791       BaseInfo &Base = Bases[I];
792 
793       bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
794       Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
795             VTableClass, Offset + Base.Offset);
796     }
797   }
798 
799   unsigned FieldNo = 0;
800   uint64_t OffsetBits = CGM.getContext().toBits(Offset);
801 
802   bool AllowOverwrite = false;
803   for (RecordDecl::field_iterator Field = RD->field_begin(),
804        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
805     // If this is a union, skip all the fields that aren't being initialized.
806     if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field))
807       continue;
808 
809     // Don't emit anonymous bitfields or zero-sized fields.
810     if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
811       continue;
812 
813     // Emit the value of the initializer.
814     const APValue &FieldValue =
815       RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
816     llvm::Constant *EltInit =
817       Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
818     if (!EltInit)
819       return false;
820 
821     if (!Field->isBitField()) {
822       // Handle non-bitfield members.
823       if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
824                        EltInit, AllowOverwrite))
825         return false;
826       // After emitting a non-empty field with [[no_unique_address]], we may
827       // need to overwrite its tail padding.
828       if (Field->hasAttr<NoUniqueAddressAttr>())
829         AllowOverwrite = true;
830     } else {
831       // Otherwise we have a bitfield.
832       if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
833                           cast<llvm::ConstantInt>(EltInit), AllowOverwrite))
834         return false;
835     }
836   }
837 
838   return true;
839 }
840 
841 llvm::Constant *ConstStructBuilder::Finalize(QualType Type) {
842   RecordDecl *RD = Type->getAs<RecordType>()->getDecl();
843   llvm::Type *ValTy = CGM.getTypes().ConvertType(Type);
844   return Builder.build(ValTy, RD->hasFlexibleArrayMember());
845 }
846 
847 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
848                                                 InitListExpr *ILE,
849                                                 QualType ValTy) {
850   ConstantAggregateBuilder Const(Emitter.CGM);
851   ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
852 
853   if (!Builder.Build(ILE, /*AllowOverwrite*/false))
854     return nullptr;
855 
856   return Builder.Finalize(ValTy);
857 }
858 
859 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
860                                                 const APValue &Val,
861                                                 QualType ValTy) {
862   ConstantAggregateBuilder Const(Emitter.CGM);
863   ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
864 
865   const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
866   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
867   if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero()))
868     return nullptr;
869 
870   return Builder.Finalize(ValTy);
871 }
872 
873 bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter,
874                                       ConstantAggregateBuilder &Const,
875                                       CharUnits Offset, InitListExpr *Updater) {
876   return ConstStructBuilder(Emitter, Const, Offset)
877       .Build(Updater, /*AllowOverwrite*/ true);
878 }
879 
880 //===----------------------------------------------------------------------===//
881 //                             ConstExprEmitter
882 //===----------------------------------------------------------------------===//
883 
884 static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM,
885                                                     CodeGenFunction *CGF,
886                                               const CompoundLiteralExpr *E) {
887   CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType());
888   if (llvm::GlobalVariable *Addr =
889           CGM.getAddrOfConstantCompoundLiteralIfEmitted(E))
890     return ConstantAddress(Addr, Align);
891 
892   LangAS addressSpace = E->getType().getAddressSpace();
893 
894   ConstantEmitter emitter(CGM, CGF);
895   llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
896                                                     addressSpace, E->getType());
897   if (!C) {
898     assert(!E->isFileScope() &&
899            "file-scope compound literal did not have constant initializer!");
900     return ConstantAddress::invalid();
901   }
902 
903   auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
904                                      CGM.isTypeConstant(E->getType(), true),
905                                      llvm::GlobalValue::InternalLinkage,
906                                      C, ".compoundliteral", nullptr,
907                                      llvm::GlobalVariable::NotThreadLocal,
908                     CGM.getContext().getTargetAddressSpace(addressSpace));
909   emitter.finalize(GV);
910   GV->setAlignment(Align.getQuantity());
911   CGM.setAddrOfConstantCompoundLiteral(E, GV);
912   return ConstantAddress(GV, Align);
913 }
914 
915 static llvm::Constant *
916 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
917                   llvm::Type *CommonElementType, unsigned ArrayBound,
918                   SmallVectorImpl<llvm::Constant *> &Elements,
919                   llvm::Constant *Filler) {
920   // Figure out how long the initial prefix of non-zero elements is.
921   unsigned NonzeroLength = ArrayBound;
922   if (Elements.size() < NonzeroLength && Filler->isNullValue())
923     NonzeroLength = Elements.size();
924   if (NonzeroLength == Elements.size()) {
925     while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue())
926       --NonzeroLength;
927   }
928 
929   if (NonzeroLength == 0)
930     return llvm::ConstantAggregateZero::get(DesiredType);
931 
932   // Add a zeroinitializer array filler if we have lots of trailing zeroes.
933   unsigned TrailingZeroes = ArrayBound - NonzeroLength;
934   if (TrailingZeroes >= 8) {
935     assert(Elements.size() >= NonzeroLength &&
936            "missing initializer for non-zero element");
937 
938     // If all the elements had the same type up to the trailing zeroes, emit a
939     // struct of two arrays (the nonzero data and the zeroinitializer).
940     if (CommonElementType && NonzeroLength >= 8) {
941       llvm::Constant *Initial = llvm::ConstantArray::get(
942           llvm::ArrayType::get(CommonElementType, NonzeroLength),
943           makeArrayRef(Elements).take_front(NonzeroLength));
944       Elements.resize(2);
945       Elements[0] = Initial;
946     } else {
947       Elements.resize(NonzeroLength + 1);
948     }
949 
950     auto *FillerType =
951         CommonElementType ? CommonElementType : DesiredType->getElementType();
952     FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes);
953     Elements.back() = llvm::ConstantAggregateZero::get(FillerType);
954     CommonElementType = nullptr;
955   } else if (Elements.size() != ArrayBound) {
956     // Otherwise pad to the right size with the filler if necessary.
957     Elements.resize(ArrayBound, Filler);
958     if (Filler->getType() != CommonElementType)
959       CommonElementType = nullptr;
960   }
961 
962   // If all elements have the same type, just emit an array constant.
963   if (CommonElementType)
964     return llvm::ConstantArray::get(
965         llvm::ArrayType::get(CommonElementType, ArrayBound), Elements);
966 
967   // We have mixed types. Use a packed struct.
968   llvm::SmallVector<llvm::Type *, 16> Types;
969   Types.reserve(Elements.size());
970   for (llvm::Constant *Elt : Elements)
971     Types.push_back(Elt->getType());
972   llvm::StructType *SType =
973       llvm::StructType::get(CGM.getLLVMContext(), Types, true);
974   return llvm::ConstantStruct::get(SType, Elements);
975 }
976 
977 // This class only needs to handle arrays, structs and unions. Outside C++11
978 // mode, we don't currently constant fold those types.  All other types are
979 // handled by constant folding.
980 //
981 // Constant folding is currently missing support for a few features supported
982 // here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr.
983 class ConstExprEmitter :
984   public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> {
985   CodeGenModule &CGM;
986   ConstantEmitter &Emitter;
987   llvm::LLVMContext &VMContext;
988 public:
989   ConstExprEmitter(ConstantEmitter &emitter)
990     : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
991   }
992 
993   //===--------------------------------------------------------------------===//
994   //                            Visitor Methods
995   //===--------------------------------------------------------------------===//
996 
997   llvm::Constant *VisitStmt(Stmt *S, QualType T) {
998     return nullptr;
999   }
1000 
1001   llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) {
1002     return Visit(CE->getSubExpr(), T);
1003   }
1004 
1005   llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) {
1006     return Visit(PE->getSubExpr(), T);
1007   }
1008 
1009   llvm::Constant *
1010   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE,
1011                                     QualType T) {
1012     return Visit(PE->getReplacement(), T);
1013   }
1014 
1015   llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE,
1016                                             QualType T) {
1017     return Visit(GE->getResultExpr(), T);
1018   }
1019 
1020   llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) {
1021     return Visit(CE->getChosenSubExpr(), T);
1022   }
1023 
1024   llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) {
1025     return Visit(E->getInitializer(), T);
1026   }
1027 
1028   llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) {
1029     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
1030       CGM.EmitExplicitCastExprType(ECE, Emitter.CGF);
1031     Expr *subExpr = E->getSubExpr();
1032 
1033     switch (E->getCastKind()) {
1034     case CK_ToUnion: {
1035       // GCC cast to union extension
1036       assert(E->getType()->isUnionType() &&
1037              "Destination type is not union type!");
1038 
1039       auto field = E->getTargetUnionField();
1040 
1041       auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
1042       if (!C) return nullptr;
1043 
1044       auto destTy = ConvertType(destType);
1045       if (C->getType() == destTy) return C;
1046 
1047       // Build a struct with the union sub-element as the first member,
1048       // and padded to the appropriate size.
1049       SmallVector<llvm::Constant*, 2> Elts;
1050       SmallVector<llvm::Type*, 2> Types;
1051       Elts.push_back(C);
1052       Types.push_back(C->getType());
1053       unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
1054       unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy);
1055 
1056       assert(CurSize <= TotalSize && "Union size mismatch!");
1057       if (unsigned NumPadBytes = TotalSize - CurSize) {
1058         llvm::Type *Ty = CGM.Int8Ty;
1059         if (NumPadBytes > 1)
1060           Ty = llvm::ArrayType::get(Ty, NumPadBytes);
1061 
1062         Elts.push_back(llvm::UndefValue::get(Ty));
1063         Types.push_back(Ty);
1064       }
1065 
1066       llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false);
1067       return llvm::ConstantStruct::get(STy, Elts);
1068     }
1069 
1070     case CK_AddressSpaceConversion: {
1071       auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1072       if (!C) return nullptr;
1073       LangAS destAS = E->getType()->getPointeeType().getAddressSpace();
1074       LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
1075       llvm::Type *destTy = ConvertType(E->getType());
1076       return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS,
1077                                                              destAS, destTy);
1078     }
1079 
1080     case CK_LValueToRValue:
1081     case CK_AtomicToNonAtomic:
1082     case CK_NonAtomicToAtomic:
1083     case CK_NoOp:
1084     case CK_ConstructorConversion:
1085       return Visit(subExpr, destType);
1086 
1087     case CK_IntToOCLSampler:
1088       llvm_unreachable("global sampler variables are not generated");
1089 
1090     case CK_Dependent: llvm_unreachable("saw dependent cast!");
1091 
1092     case CK_BuiltinFnToFnPtr:
1093       llvm_unreachable("builtin functions are handled elsewhere");
1094 
1095     case CK_ReinterpretMemberPointer:
1096     case CK_DerivedToBaseMemberPointer:
1097     case CK_BaseToDerivedMemberPointer: {
1098       auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1099       if (!C) return nullptr;
1100       return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
1101     }
1102 
1103     // These will never be supported.
1104     case CK_ObjCObjectLValueCast:
1105     case CK_ARCProduceObject:
1106     case CK_ARCConsumeObject:
1107     case CK_ARCReclaimReturnedObject:
1108     case CK_ARCExtendBlockObject:
1109     case CK_CopyAndAutoreleaseBlockObject:
1110       return nullptr;
1111 
1112     // These don't need to be handled here because Evaluate knows how to
1113     // evaluate them in the cases where they can be folded.
1114     case CK_BitCast:
1115     case CK_ToVoid:
1116     case CK_Dynamic:
1117     case CK_LValueBitCast:
1118     case CK_NullToMemberPointer:
1119     case CK_UserDefinedConversion:
1120     case CK_CPointerToObjCPointerCast:
1121     case CK_BlockPointerToObjCPointerCast:
1122     case CK_AnyPointerToBlockPointerCast:
1123     case CK_ArrayToPointerDecay:
1124     case CK_FunctionToPointerDecay:
1125     case CK_BaseToDerived:
1126     case CK_DerivedToBase:
1127     case CK_UncheckedDerivedToBase:
1128     case CK_MemberPointerToBoolean:
1129     case CK_VectorSplat:
1130     case CK_FloatingRealToComplex:
1131     case CK_FloatingComplexToReal:
1132     case CK_FloatingComplexToBoolean:
1133     case CK_FloatingComplexCast:
1134     case CK_FloatingComplexToIntegralComplex:
1135     case CK_IntegralRealToComplex:
1136     case CK_IntegralComplexToReal:
1137     case CK_IntegralComplexToBoolean:
1138     case CK_IntegralComplexCast:
1139     case CK_IntegralComplexToFloatingComplex:
1140     case CK_PointerToIntegral:
1141     case CK_PointerToBoolean:
1142     case CK_NullToPointer:
1143     case CK_IntegralCast:
1144     case CK_BooleanToSignedIntegral:
1145     case CK_IntegralToPointer:
1146     case CK_IntegralToBoolean:
1147     case CK_IntegralToFloating:
1148     case CK_FloatingToIntegral:
1149     case CK_FloatingToBoolean:
1150     case CK_FloatingCast:
1151     case CK_FixedPointCast:
1152     case CK_FixedPointToBoolean:
1153     case CK_FixedPointToIntegral:
1154     case CK_IntegralToFixedPoint:
1155     case CK_ZeroToOCLOpaqueType:
1156       return nullptr;
1157     }
1158     llvm_unreachable("Invalid CastKind");
1159   }
1160 
1161   llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) {
1162     // No need for a DefaultInitExprScope: we don't handle 'this' in a
1163     // constant expression.
1164     return Visit(DIE->getExpr(), T);
1165   }
1166 
1167   llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) {
1168     if (!E->cleanupsHaveSideEffects())
1169       return Visit(E->getSubExpr(), T);
1170     return nullptr;
1171   }
1172 
1173   llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E,
1174                                                 QualType T) {
1175     return Visit(E->GetTemporaryExpr(), T);
1176   }
1177 
1178   llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) {
1179     auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType());
1180     assert(CAT && "can't emit array init for non-constant-bound array");
1181     unsigned NumInitElements = ILE->getNumInits();
1182     unsigned NumElements = CAT->getSize().getZExtValue();
1183 
1184     // Initialising an array requires us to automatically
1185     // initialise any elements that have not been initialised explicitly
1186     unsigned NumInitableElts = std::min(NumInitElements, NumElements);
1187 
1188     QualType EltType = CAT->getElementType();
1189 
1190     // Initialize remaining array elements.
1191     llvm::Constant *fillC = nullptr;
1192     if (Expr *filler = ILE->getArrayFiller()) {
1193       fillC = Emitter.tryEmitAbstractForMemory(filler, EltType);
1194       if (!fillC)
1195         return nullptr;
1196     }
1197 
1198     // Copy initializer elements.
1199     SmallVector<llvm::Constant*, 16> Elts;
1200     if (fillC && fillC->isNullValue())
1201       Elts.reserve(NumInitableElts + 1);
1202     else
1203       Elts.reserve(NumElements);
1204 
1205     llvm::Type *CommonElementType = nullptr;
1206     for (unsigned i = 0; i < NumInitableElts; ++i) {
1207       Expr *Init = ILE->getInit(i);
1208       llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType);
1209       if (!C)
1210         return nullptr;
1211       if (i == 0)
1212         CommonElementType = C->getType();
1213       else if (C->getType() != CommonElementType)
1214         CommonElementType = nullptr;
1215       Elts.push_back(C);
1216     }
1217 
1218     llvm::ArrayType *Desired =
1219         cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType()));
1220     return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
1221                              fillC);
1222   }
1223 
1224   llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) {
1225     return ConstStructBuilder::BuildStruct(Emitter, ILE, T);
1226   }
1227 
1228   llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E,
1229                                              QualType T) {
1230     return CGM.EmitNullConstant(T);
1231   }
1232 
1233   llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) {
1234     if (ILE->isTransparent())
1235       return Visit(ILE->getInit(0), T);
1236 
1237     if (ILE->getType()->isArrayType())
1238       return EmitArrayInitialization(ILE, T);
1239 
1240     if (ILE->getType()->isRecordType())
1241       return EmitRecordInitialization(ILE, T);
1242 
1243     return nullptr;
1244   }
1245 
1246   llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E,
1247                                                 QualType destType) {
1248     auto C = Visit(E->getBase(), destType);
1249     if (!C)
1250       return nullptr;
1251 
1252     ConstantAggregateBuilder Const(CGM);
1253     Const.add(C, CharUnits::Zero(), false);
1254 
1255     if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType,
1256                                    E->getUpdater()))
1257       return nullptr;
1258 
1259     llvm::Type *ValTy = CGM.getTypes().ConvertType(destType);
1260     bool HasFlexibleArray = false;
1261     if (auto *RT = destType->getAs<RecordType>())
1262       HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember();
1263     return Const.build(ValTy, HasFlexibleArray);
1264   }
1265 
1266   llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) {
1267     if (!E->getConstructor()->isTrivial())
1268       return nullptr;
1269 
1270     // FIXME: We should not have to call getBaseElementType here.
1271     const RecordType *RT =
1272       CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>();
1273     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1274 
1275     // If the class doesn't have a trivial destructor, we can't emit it as a
1276     // constant expr.
1277     if (!RD->hasTrivialDestructor())
1278       return nullptr;
1279 
1280     // Only copy and default constructors can be trivial.
1281 
1282 
1283     if (E->getNumArgs()) {
1284       assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
1285       assert(E->getConstructor()->isCopyOrMoveConstructor() &&
1286              "trivial ctor has argument but isn't a copy/move ctor");
1287 
1288       Expr *Arg = E->getArg(0);
1289       assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
1290              "argument to copy ctor is of wrong type");
1291 
1292       return Visit(Arg, Ty);
1293     }
1294 
1295     return CGM.EmitNullConstant(Ty);
1296   }
1297 
1298   llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) {
1299     // This is a string literal initializing an array in an initializer.
1300     return CGM.GetConstantArrayFromStringLiteral(E);
1301   }
1302 
1303   llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) {
1304     // This must be an @encode initializing an array in a static initializer.
1305     // Don't emit it as the address of the string, emit the string data itself
1306     // as an inline array.
1307     std::string Str;
1308     CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1309     const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T);
1310 
1311     // Resize the string to the right size, adding zeros at the end, or
1312     // truncating as needed.
1313     Str.resize(CAT->getSize().getZExtValue(), '\0');
1314     return llvm::ConstantDataArray::getString(VMContext, Str, false);
1315   }
1316 
1317   llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
1318     return Visit(E->getSubExpr(), T);
1319   }
1320 
1321   // Utility methods
1322   llvm::Type *ConvertType(QualType T) {
1323     return CGM.getTypes().ConvertType(T);
1324   }
1325 };
1326 
1327 }  // end anonymous namespace.
1328 
1329 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
1330                                                         AbstractState saved) {
1331   Abstract = saved.OldValue;
1332 
1333   assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
1334          "created a placeholder while doing an abstract emission?");
1335 
1336   // No validation necessary for now.
1337   // No cleanup to do for now.
1338   return C;
1339 }
1340 
1341 llvm::Constant *
1342 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) {
1343   auto state = pushAbstract();
1344   auto C = tryEmitPrivateForVarInit(D);
1345   return validateAndPopAbstract(C, state);
1346 }
1347 
1348 llvm::Constant *
1349 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) {
1350   auto state = pushAbstract();
1351   auto C = tryEmitPrivate(E, destType);
1352   return validateAndPopAbstract(C, state);
1353 }
1354 
1355 llvm::Constant *
1356 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) {
1357   auto state = pushAbstract();
1358   auto C = tryEmitPrivate(value, destType);
1359   return validateAndPopAbstract(C, state);
1360 }
1361 
1362 llvm::Constant *
1363 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) {
1364   auto state = pushAbstract();
1365   auto C = tryEmitPrivate(E, destType);
1366   C = validateAndPopAbstract(C, state);
1367   if (!C) {
1368     CGM.Error(E->getExprLoc(),
1369               "internal error: could not emit constant value \"abstractly\"");
1370     C = CGM.EmitNullConstant(destType);
1371   }
1372   return C;
1373 }
1374 
1375 llvm::Constant *
1376 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value,
1377                               QualType destType) {
1378   auto state = pushAbstract();
1379   auto C = tryEmitPrivate(value, destType);
1380   C = validateAndPopAbstract(C, state);
1381   if (!C) {
1382     CGM.Error(loc,
1383               "internal error: could not emit constant value \"abstractly\"");
1384     C = CGM.EmitNullConstant(destType);
1385   }
1386   return C;
1387 }
1388 
1389 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) {
1390   initializeNonAbstract(D.getType().getAddressSpace());
1391   return markIfFailed(tryEmitPrivateForVarInit(D));
1392 }
1393 
1394 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E,
1395                                                        LangAS destAddrSpace,
1396                                                        QualType destType) {
1397   initializeNonAbstract(destAddrSpace);
1398   return markIfFailed(tryEmitPrivateForMemory(E, destType));
1399 }
1400 
1401 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value,
1402                                                     LangAS destAddrSpace,
1403                                                     QualType destType) {
1404   initializeNonAbstract(destAddrSpace);
1405   auto C = tryEmitPrivateForMemory(value, destType);
1406   assert(C && "couldn't emit constant value non-abstractly?");
1407   return C;
1408 }
1409 
1410 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() {
1411   assert(!Abstract && "cannot get current address for abstract constant");
1412 
1413 
1414 
1415   // Make an obviously ill-formed global that should blow up compilation
1416   // if it survives.
1417   auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
1418                                          llvm::GlobalValue::PrivateLinkage,
1419                                          /*init*/ nullptr,
1420                                          /*name*/ "",
1421                                          /*before*/ nullptr,
1422                                          llvm::GlobalVariable::NotThreadLocal,
1423                                          CGM.getContext().getTargetAddressSpace(DestAddressSpace));
1424 
1425   PlaceholderAddresses.push_back(std::make_pair(nullptr, global));
1426 
1427   return global;
1428 }
1429 
1430 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal,
1431                                            llvm::GlobalValue *placeholder) {
1432   assert(!PlaceholderAddresses.empty());
1433   assert(PlaceholderAddresses.back().first == nullptr);
1434   assert(PlaceholderAddresses.back().second == placeholder);
1435   PlaceholderAddresses.back().first = signal;
1436 }
1437 
1438 namespace {
1439   struct ReplacePlaceholders {
1440     CodeGenModule &CGM;
1441 
1442     /// The base address of the global.
1443     llvm::Constant *Base;
1444     llvm::Type *BaseValueTy = nullptr;
1445 
1446     /// The placeholder addresses that were registered during emission.
1447     llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;
1448 
1449     /// The locations of the placeholder signals.
1450     llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;
1451 
1452     /// The current index stack.  We use a simple unsigned stack because
1453     /// we assume that placeholders will be relatively sparse in the
1454     /// initializer, but we cache the index values we find just in case.
1455     llvm::SmallVector<unsigned, 8> Indices;
1456     llvm::SmallVector<llvm::Constant*, 8> IndexValues;
1457 
1458     ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
1459                         ArrayRef<std::pair<llvm::Constant*,
1460                                            llvm::GlobalVariable*>> addresses)
1461         : CGM(CGM), Base(base),
1462           PlaceholderAddresses(addresses.begin(), addresses.end()) {
1463     }
1464 
1465     void replaceInInitializer(llvm::Constant *init) {
1466       // Remember the type of the top-most initializer.
1467       BaseValueTy = init->getType();
1468 
1469       // Initialize the stack.
1470       Indices.push_back(0);
1471       IndexValues.push_back(nullptr);
1472 
1473       // Recurse into the initializer.
1474       findLocations(init);
1475 
1476       // Check invariants.
1477       assert(IndexValues.size() == Indices.size() && "mismatch");
1478       assert(Indices.size() == 1 && "didn't pop all indices");
1479 
1480       // Do the replacement; this basically invalidates 'init'.
1481       assert(Locations.size() == PlaceholderAddresses.size() &&
1482              "missed a placeholder?");
1483 
1484       // We're iterating over a hashtable, so this would be a source of
1485       // non-determinism in compiler output *except* that we're just
1486       // messing around with llvm::Constant structures, which never itself
1487       // does anything that should be visible in compiler output.
1488       for (auto &entry : Locations) {
1489         assert(entry.first->getParent() == nullptr && "not a placeholder!");
1490         entry.first->replaceAllUsesWith(entry.second);
1491         entry.first->eraseFromParent();
1492       }
1493     }
1494 
1495   private:
1496     void findLocations(llvm::Constant *init) {
1497       // Recurse into aggregates.
1498       if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) {
1499         for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
1500           Indices.push_back(i);
1501           IndexValues.push_back(nullptr);
1502 
1503           findLocations(agg->getOperand(i));
1504 
1505           IndexValues.pop_back();
1506           Indices.pop_back();
1507         }
1508         return;
1509       }
1510 
1511       // Otherwise, check for registered constants.
1512       while (true) {
1513         auto it = PlaceholderAddresses.find(init);
1514         if (it != PlaceholderAddresses.end()) {
1515           setLocation(it->second);
1516           break;
1517         }
1518 
1519         // Look through bitcasts or other expressions.
1520         if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) {
1521           init = expr->getOperand(0);
1522         } else {
1523           break;
1524         }
1525       }
1526     }
1527 
1528     void setLocation(llvm::GlobalVariable *placeholder) {
1529       assert(Locations.find(placeholder) == Locations.end() &&
1530              "already found location for placeholder!");
1531 
1532       // Lazily fill in IndexValues with the values from Indices.
1533       // We do this in reverse because we should always have a strict
1534       // prefix of indices from the start.
1535       assert(Indices.size() == IndexValues.size());
1536       for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
1537         if (IndexValues[i]) {
1538 #ifndef NDEBUG
1539           for (size_t j = 0; j != i + 1; ++j) {
1540             assert(IndexValues[j] &&
1541                    isa<llvm::ConstantInt>(IndexValues[j]) &&
1542                    cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
1543                      == Indices[j]);
1544           }
1545 #endif
1546           break;
1547         }
1548 
1549         IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]);
1550       }
1551 
1552       // Form a GEP and then bitcast to the placeholder type so that the
1553       // replacement will succeed.
1554       llvm::Constant *location =
1555         llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy,
1556                                                      Base, IndexValues);
1557       location = llvm::ConstantExpr::getBitCast(location,
1558                                                 placeholder->getType());
1559 
1560       Locations.insert({placeholder, location});
1561     }
1562   };
1563 }
1564 
1565 void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
1566   assert(InitializedNonAbstract &&
1567          "finalizing emitter that was used for abstract emission?");
1568   assert(!Finalized && "finalizing emitter multiple times");
1569   assert(global->getInitializer());
1570 
1571   // Note that we might also be Failed.
1572   Finalized = true;
1573 
1574   if (!PlaceholderAddresses.empty()) {
1575     ReplacePlaceholders(CGM, global, PlaceholderAddresses)
1576       .replaceInInitializer(global->getInitializer());
1577     PlaceholderAddresses.clear(); // satisfy
1578   }
1579 }
1580 
1581 ConstantEmitter::~ConstantEmitter() {
1582   assert((!InitializedNonAbstract || Finalized || Failed) &&
1583          "not finalized after being initialized for non-abstract emission");
1584   assert(PlaceholderAddresses.empty() && "unhandled placeholders");
1585 }
1586 
1587 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) {
1588   if (auto AT = type->getAs<AtomicType>()) {
1589     return CGM.getContext().getQualifiedType(AT->getValueType(),
1590                                              type.getQualifiers());
1591   }
1592   return type;
1593 }
1594 
1595 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) {
1596   // Make a quick check if variable can be default NULL initialized
1597   // and avoid going through rest of code which may do, for c++11,
1598   // initialization of memory to all NULLs.
1599   if (!D.hasLocalStorage()) {
1600     QualType Ty = CGM.getContext().getBaseElementType(D.getType());
1601     if (Ty->isRecordType())
1602       if (const CXXConstructExpr *E =
1603           dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
1604         const CXXConstructorDecl *CD = E->getConstructor();
1605         if (CD->isTrivial() && CD->isDefaultConstructor())
1606           return CGM.EmitNullConstant(D.getType());
1607       }
1608     InConstantContext = true;
1609   }
1610 
1611   QualType destType = D.getType();
1612 
1613   // Try to emit the initializer.  Note that this can allow some things that
1614   // are not allowed by tryEmitPrivateForMemory alone.
1615   if (auto value = D.evaluateValue()) {
1616     return tryEmitPrivateForMemory(*value, destType);
1617   }
1618 
1619   // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a
1620   // reference is a constant expression, and the reference binds to a temporary,
1621   // then constant initialization is performed. ConstExprEmitter will
1622   // incorrectly emit a prvalue constant in this case, and the calling code
1623   // interprets that as the (pointer) value of the reference, rather than the
1624   // desired value of the referee.
1625   if (destType->isReferenceType())
1626     return nullptr;
1627 
1628   const Expr *E = D.getInit();
1629   assert(E && "No initializer to emit");
1630 
1631   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1632   auto C =
1633     ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType);
1634   return (C ? emitForMemory(C, destType) : nullptr);
1635 }
1636 
1637 llvm::Constant *
1638 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) {
1639   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1640   auto C = tryEmitAbstract(E, nonMemoryDestType);
1641   return (C ? emitForMemory(C, destType) : nullptr);
1642 }
1643 
1644 llvm::Constant *
1645 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value,
1646                                           QualType destType) {
1647   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1648   auto C = tryEmitAbstract(value, nonMemoryDestType);
1649   return (C ? emitForMemory(C, destType) : nullptr);
1650 }
1651 
1652 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E,
1653                                                          QualType destType) {
1654   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1655   llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType);
1656   return (C ? emitForMemory(C, destType) : nullptr);
1657 }
1658 
1659 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value,
1660                                                          QualType destType) {
1661   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1662   auto C = tryEmitPrivate(value, nonMemoryDestType);
1663   return (C ? emitForMemory(C, destType) : nullptr);
1664 }
1665 
1666 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM,
1667                                                llvm::Constant *C,
1668                                                QualType destType) {
1669   // For an _Atomic-qualified constant, we may need to add tail padding.
1670   if (auto AT = destType->getAs<AtomicType>()) {
1671     QualType destValueType = AT->getValueType();
1672     C = emitForMemory(CGM, C, destValueType);
1673 
1674     uint64_t innerSize = CGM.getContext().getTypeSize(destValueType);
1675     uint64_t outerSize = CGM.getContext().getTypeSize(destType);
1676     if (innerSize == outerSize)
1677       return C;
1678 
1679     assert(innerSize < outerSize && "emitted over-large constant for atomic");
1680     llvm::Constant *elts[] = {
1681       C,
1682       llvm::ConstantAggregateZero::get(
1683           llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8))
1684     };
1685     return llvm::ConstantStruct::getAnon(elts);
1686   }
1687 
1688   // Zero-extend bool.
1689   if (C->getType()->isIntegerTy(1)) {
1690     llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType);
1691     return llvm::ConstantExpr::getZExt(C, boolTy);
1692   }
1693 
1694   return C;
1695 }
1696 
1697 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E,
1698                                                 QualType destType) {
1699   Expr::EvalResult Result;
1700 
1701   bool Success = false;
1702 
1703   if (destType->isReferenceType())
1704     Success = E->EvaluateAsLValue(Result, CGM.getContext());
1705   else
1706     Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext);
1707 
1708   llvm::Constant *C;
1709   if (Success && !Result.HasSideEffects)
1710     C = tryEmitPrivate(Result.Val, destType);
1711   else
1712     C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType);
1713 
1714   return C;
1715 }
1716 
1717 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
1718   return getTargetCodeGenInfo().getNullPointer(*this, T, QT);
1719 }
1720 
1721 namespace {
1722 /// A struct which can be used to peephole certain kinds of finalization
1723 /// that normally happen during l-value emission.
1724 struct ConstantLValue {
1725   llvm::Constant *Value;
1726   bool HasOffsetApplied;
1727 
1728   /*implicit*/ ConstantLValue(llvm::Constant *value,
1729                               bool hasOffsetApplied = false)
1730     : Value(value), HasOffsetApplied(false) {}
1731 
1732   /*implicit*/ ConstantLValue(ConstantAddress address)
1733     : ConstantLValue(address.getPointer()) {}
1734 };
1735 
1736 /// A helper class for emitting constant l-values.
1737 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
1738                                                       ConstantLValue> {
1739   CodeGenModule &CGM;
1740   ConstantEmitter &Emitter;
1741   const APValue &Value;
1742   QualType DestType;
1743 
1744   // Befriend StmtVisitorBase so that we don't have to expose Visit*.
1745   friend StmtVisitorBase;
1746 
1747 public:
1748   ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
1749                         QualType destType)
1750     : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {}
1751 
1752   llvm::Constant *tryEmit();
1753 
1754 private:
1755   llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
1756   ConstantLValue tryEmitBase(const APValue::LValueBase &base);
1757 
1758   ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
1759   ConstantLValue VisitConstantExpr(const ConstantExpr *E);
1760   ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
1761   ConstantLValue VisitStringLiteral(const StringLiteral *E);
1762   ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E);
1763   ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
1764   ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
1765   ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
1766   ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
1767   ConstantLValue VisitCallExpr(const CallExpr *E);
1768   ConstantLValue VisitBlockExpr(const BlockExpr *E);
1769   ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
1770   ConstantLValue VisitCXXUuidofExpr(const CXXUuidofExpr *E);
1771   ConstantLValue VisitMaterializeTemporaryExpr(
1772                                          const MaterializeTemporaryExpr *E);
1773 
1774   bool hasNonZeroOffset() const {
1775     return !Value.getLValueOffset().isZero();
1776   }
1777 
1778   /// Return the value offset.
1779   llvm::Constant *getOffset() {
1780     return llvm::ConstantInt::get(CGM.Int64Ty,
1781                                   Value.getLValueOffset().getQuantity());
1782   }
1783 
1784   /// Apply the value offset to the given constant.
1785   llvm::Constant *applyOffset(llvm::Constant *C) {
1786     if (!hasNonZeroOffset())
1787       return C;
1788 
1789     llvm::Type *origPtrTy = C->getType();
1790     unsigned AS = origPtrTy->getPointerAddressSpace();
1791     llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS);
1792     C = llvm::ConstantExpr::getBitCast(C, charPtrTy);
1793     C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset());
1794     C = llvm::ConstantExpr::getPointerCast(C, origPtrTy);
1795     return C;
1796   }
1797 };
1798 
1799 }
1800 
1801 llvm::Constant *ConstantLValueEmitter::tryEmit() {
1802   const APValue::LValueBase &base = Value.getLValueBase();
1803 
1804   // The destination type should be a pointer or reference
1805   // type, but it might also be a cast thereof.
1806   //
1807   // FIXME: the chain of casts required should be reflected in the APValue.
1808   // We need this in order to correctly handle things like a ptrtoint of a
1809   // non-zero null pointer and addrspace casts that aren't trivially
1810   // represented in LLVM IR.
1811   auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
1812   assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));
1813 
1814   // If there's no base at all, this is a null or absolute pointer,
1815   // possibly cast back to an integer type.
1816   if (!base) {
1817     return tryEmitAbsolute(destTy);
1818   }
1819 
1820   // Otherwise, try to emit the base.
1821   ConstantLValue result = tryEmitBase(base);
1822 
1823   // If that failed, we're done.
1824   llvm::Constant *value = result.Value;
1825   if (!value) return nullptr;
1826 
1827   // Apply the offset if necessary and not already done.
1828   if (!result.HasOffsetApplied) {
1829     value = applyOffset(value);
1830   }
1831 
1832   // Convert to the appropriate type; this could be an lvalue for
1833   // an integer.  FIXME: performAddrSpaceCast
1834   if (isa<llvm::PointerType>(destTy))
1835     return llvm::ConstantExpr::getPointerCast(value, destTy);
1836 
1837   return llvm::ConstantExpr::getPtrToInt(value, destTy);
1838 }
1839 
1840 /// Try to emit an absolute l-value, such as a null pointer or an integer
1841 /// bitcast to pointer type.
1842 llvm::Constant *
1843 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
1844   // If we're producing a pointer, this is easy.
1845   auto destPtrTy = cast<llvm::PointerType>(destTy);
1846   if (Value.isNullPointer()) {
1847     // FIXME: integer offsets from non-zero null pointers.
1848     return CGM.getNullPointer(destPtrTy, DestType);
1849   }
1850 
1851   // Convert the integer to a pointer-sized integer before converting it
1852   // to a pointer.
1853   // FIXME: signedness depends on the original integer type.
1854   auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
1855   llvm::Constant *C;
1856   C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy,
1857                                          /*isSigned*/ false);
1858   C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy);
1859   return C;
1860 }
1861 
1862 ConstantLValue
1863 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
1864   // Handle values.
1865   if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
1866     if (D->hasAttr<WeakRefAttr>())
1867       return CGM.GetWeakRefReference(D).getPointer();
1868 
1869     if (auto FD = dyn_cast<FunctionDecl>(D))
1870       return CGM.GetAddrOfFunction(FD);
1871 
1872     if (auto VD = dyn_cast<VarDecl>(D)) {
1873       // We can never refer to a variable with local storage.
1874       if (!VD->hasLocalStorage()) {
1875         if (VD->isFileVarDecl() || VD->hasExternalStorage())
1876           return CGM.GetAddrOfGlobalVar(VD);
1877 
1878         if (VD->isLocalVarDecl()) {
1879           return CGM.getOrCreateStaticVarDecl(
1880               *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false));
1881         }
1882       }
1883     }
1884 
1885     return nullptr;
1886   }
1887 
1888   // Handle typeid(T).
1889   if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>()) {
1890     llvm::Type *StdTypeInfoPtrTy =
1891         CGM.getTypes().ConvertType(base.getTypeInfoType())->getPointerTo();
1892     llvm::Constant *TypeInfo =
1893         CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0));
1894     if (TypeInfo->getType() != StdTypeInfoPtrTy)
1895       TypeInfo = llvm::ConstantExpr::getBitCast(TypeInfo, StdTypeInfoPtrTy);
1896     return TypeInfo;
1897   }
1898 
1899   // Otherwise, it must be an expression.
1900   return Visit(base.get<const Expr*>());
1901 }
1902 
1903 ConstantLValue
1904 ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) {
1905   return Visit(E->getSubExpr());
1906 }
1907 
1908 ConstantLValue
1909 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
1910   return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E);
1911 }
1912 
1913 ConstantLValue
1914 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
1915   return CGM.GetAddrOfConstantStringFromLiteral(E);
1916 }
1917 
1918 ConstantLValue
1919 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
1920   return CGM.GetAddrOfConstantStringFromObjCEncode(E);
1921 }
1922 
1923 static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S,
1924                                                     QualType T,
1925                                                     CodeGenModule &CGM) {
1926   auto C = CGM.getObjCRuntime().GenerateConstantString(S);
1927   return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(T));
1928 }
1929 
1930 ConstantLValue
1931 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
1932   return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM);
1933 }
1934 
1935 ConstantLValue
1936 ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
1937   assert(E->isExpressibleAsConstantInitializer() &&
1938          "this boxed expression can't be emitted as a compile-time constant");
1939   auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts());
1940   return emitConstantObjCStringLiteral(SL, E->getType(), CGM);
1941 }
1942 
1943 ConstantLValue
1944 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
1945   return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName());
1946 }
1947 
1948 ConstantLValue
1949 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
1950   assert(Emitter.CGF && "Invalid address of label expression outside function");
1951   llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel());
1952   Ptr = llvm::ConstantExpr::getBitCast(Ptr,
1953                                    CGM.getTypes().ConvertType(E->getType()));
1954   return Ptr;
1955 }
1956 
1957 ConstantLValue
1958 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
1959   unsigned builtin = E->getBuiltinCallee();
1960   if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
1961       builtin != Builtin::BI__builtin___NSStringMakeConstantString)
1962     return nullptr;
1963 
1964   auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts());
1965   if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
1966     return CGM.getObjCRuntime().GenerateConstantString(literal);
1967   } else {
1968     // FIXME: need to deal with UCN conversion issues.
1969     return CGM.GetAddrOfConstantCFString(literal);
1970   }
1971 }
1972 
1973 ConstantLValue
1974 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
1975   StringRef functionName;
1976   if (auto CGF = Emitter.CGF)
1977     functionName = CGF->CurFn->getName();
1978   else
1979     functionName = "global";
1980 
1981   return CGM.GetAddrOfGlobalBlock(E, functionName);
1982 }
1983 
1984 ConstantLValue
1985 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
1986   QualType T;
1987   if (E->isTypeOperand())
1988     T = E->getTypeOperand(CGM.getContext());
1989   else
1990     T = E->getExprOperand()->getType();
1991   return CGM.GetAddrOfRTTIDescriptor(T);
1992 }
1993 
1994 ConstantLValue
1995 ConstantLValueEmitter::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
1996   return CGM.GetAddrOfUuidDescriptor(E);
1997 }
1998 
1999 ConstantLValue
2000 ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
2001                                             const MaterializeTemporaryExpr *E) {
2002   assert(E->getStorageDuration() == SD_Static);
2003   SmallVector<const Expr *, 2> CommaLHSs;
2004   SmallVector<SubobjectAdjustment, 2> Adjustments;
2005   const Expr *Inner = E->GetTemporaryExpr()
2006       ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
2007   return CGM.GetAddrOfGlobalTemporary(E, Inner);
2008 }
2009 
2010 llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value,
2011                                                 QualType DestType) {
2012   switch (Value.getKind()) {
2013   case APValue::None:
2014   case APValue::Indeterminate:
2015     // Out-of-lifetime and indeterminate values can be modeled as 'undef'.
2016     return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType));
2017   case APValue::LValue:
2018     return ConstantLValueEmitter(*this, Value, DestType).tryEmit();
2019   case APValue::Int:
2020     return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt());
2021   case APValue::FixedPoint:
2022     return llvm::ConstantInt::get(CGM.getLLVMContext(),
2023                                   Value.getFixedPoint().getValue());
2024   case APValue::ComplexInt: {
2025     llvm::Constant *Complex[2];
2026 
2027     Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2028                                         Value.getComplexIntReal());
2029     Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2030                                         Value.getComplexIntImag());
2031 
2032     // FIXME: the target may want to specify that this is packed.
2033     llvm::StructType *STy =
2034         llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2035     return llvm::ConstantStruct::get(STy, Complex);
2036   }
2037   case APValue::Float: {
2038     const llvm::APFloat &Init = Value.getFloat();
2039     if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
2040         !CGM.getContext().getLangOpts().NativeHalfType &&
2041         CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics())
2042       return llvm::ConstantInt::get(CGM.getLLVMContext(),
2043                                     Init.bitcastToAPInt());
2044     else
2045       return llvm::ConstantFP::get(CGM.getLLVMContext(), Init);
2046   }
2047   case APValue::ComplexFloat: {
2048     llvm::Constant *Complex[2];
2049 
2050     Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2051                                        Value.getComplexFloatReal());
2052     Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2053                                        Value.getComplexFloatImag());
2054 
2055     // FIXME: the target may want to specify that this is packed.
2056     llvm::StructType *STy =
2057         llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2058     return llvm::ConstantStruct::get(STy, Complex);
2059   }
2060   case APValue::Vector: {
2061     unsigned NumElts = Value.getVectorLength();
2062     SmallVector<llvm::Constant *, 4> Inits(NumElts);
2063 
2064     for (unsigned I = 0; I != NumElts; ++I) {
2065       const APValue &Elt = Value.getVectorElt(I);
2066       if (Elt.isInt())
2067         Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt());
2068       else if (Elt.isFloat())
2069         Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat());
2070       else
2071         llvm_unreachable("unsupported vector element type");
2072     }
2073     return llvm::ConstantVector::get(Inits);
2074   }
2075   case APValue::AddrLabelDiff: {
2076     const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
2077     const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
2078     llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
2079     llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
2080     if (!LHS || !RHS) return nullptr;
2081 
2082     // Compute difference
2083     llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType);
2084     LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy);
2085     RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy);
2086     llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
2087 
2088     // LLVM is a bit sensitive about the exact format of the
2089     // address-of-label difference; make sure to truncate after
2090     // the subtraction.
2091     return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
2092   }
2093   case APValue::Struct:
2094   case APValue::Union:
2095     return ConstStructBuilder::BuildStruct(*this, Value, DestType);
2096   case APValue::Array: {
2097     const ConstantArrayType *CAT =
2098         CGM.getContext().getAsConstantArrayType(DestType);
2099     unsigned NumElements = Value.getArraySize();
2100     unsigned NumInitElts = Value.getArrayInitializedElts();
2101 
2102     // Emit array filler, if there is one.
2103     llvm::Constant *Filler = nullptr;
2104     if (Value.hasArrayFiller()) {
2105       Filler = tryEmitAbstractForMemory(Value.getArrayFiller(),
2106                                         CAT->getElementType());
2107       if (!Filler)
2108         return nullptr;
2109     }
2110 
2111     // Emit initializer elements.
2112     SmallVector<llvm::Constant*, 16> Elts;
2113     if (Filler && Filler->isNullValue())
2114       Elts.reserve(NumInitElts + 1);
2115     else
2116       Elts.reserve(NumElements);
2117 
2118     llvm::Type *CommonElementType = nullptr;
2119     for (unsigned I = 0; I < NumInitElts; ++I) {
2120       llvm::Constant *C = tryEmitPrivateForMemory(
2121           Value.getArrayInitializedElt(I), CAT->getElementType());
2122       if (!C) return nullptr;
2123 
2124       if (I == 0)
2125         CommonElementType = C->getType();
2126       else if (C->getType() != CommonElementType)
2127         CommonElementType = nullptr;
2128       Elts.push_back(C);
2129     }
2130 
2131     // This means that the array type is probably "IncompleteType" or some
2132     // type that is not ConstantArray.
2133     if (CAT == nullptr && CommonElementType == nullptr && !NumInitElts) {
2134       const ArrayType *AT = CGM.getContext().getAsArrayType(DestType);
2135       CommonElementType = CGM.getTypes().ConvertType(AT->getElementType());
2136       llvm::ArrayType *AType = llvm::ArrayType::get(CommonElementType,
2137                                                     NumElements);
2138       return llvm::ConstantAggregateZero::get(AType);
2139     }
2140 
2141     llvm::ArrayType *Desired =
2142         cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType));
2143     return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
2144                              Filler);
2145   }
2146   case APValue::MemberPointer:
2147     return CGM.getCXXABI().EmitMemberPointer(Value, DestType);
2148   }
2149   llvm_unreachable("Unknown APValue kind");
2150 }
2151 
2152 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted(
2153     const CompoundLiteralExpr *E) {
2154   return EmittedCompoundLiterals.lookup(E);
2155 }
2156 
2157 void CodeGenModule::setAddrOfConstantCompoundLiteral(
2158     const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
2159   bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second;
2160   (void)Ok;
2161   assert(Ok && "CLE has already been emitted!");
2162 }
2163 
2164 ConstantAddress
2165 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
2166   assert(E->isFileScope() && "not a file-scope compound literal expr");
2167   return tryEmitGlobalCompoundLiteral(*this, nullptr, E);
2168 }
2169 
2170 llvm::Constant *
2171 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
2172   // Member pointer constants always have a very particular form.
2173   const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
2174   const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
2175 
2176   // A member function pointer.
2177   if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
2178     return getCXXABI().EmitMemberFunctionPointer(method);
2179 
2180   // Otherwise, a member data pointer.
2181   uint64_t fieldOffset = getContext().getFieldOffset(decl);
2182   CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
2183   return getCXXABI().EmitMemberDataPointer(type, chars);
2184 }
2185 
2186 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2187                                                llvm::Type *baseType,
2188                                                const CXXRecordDecl *base);
2189 
2190 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
2191                                         const RecordDecl *record,
2192                                         bool asCompleteObject) {
2193   const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
2194   llvm::StructType *structure =
2195     (asCompleteObject ? layout.getLLVMType()
2196                       : layout.getBaseSubobjectLLVMType());
2197 
2198   unsigned numElements = structure->getNumElements();
2199   std::vector<llvm::Constant *> elements(numElements);
2200 
2201   auto CXXR = dyn_cast<CXXRecordDecl>(record);
2202   // Fill in all the bases.
2203   if (CXXR) {
2204     for (const auto &I : CXXR->bases()) {
2205       if (I.isVirtual()) {
2206         // Ignore virtual bases; if we're laying out for a complete
2207         // object, we'll lay these out later.
2208         continue;
2209       }
2210 
2211       const CXXRecordDecl *base =
2212         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2213 
2214       // Ignore empty bases.
2215       if (base->isEmpty() ||
2216           CGM.getContext().getASTRecordLayout(base).getNonVirtualSize()
2217               .isZero())
2218         continue;
2219 
2220       unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
2221       llvm::Type *baseType = structure->getElementType(fieldIndex);
2222       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2223     }
2224   }
2225 
2226   // Fill in all the fields.
2227   for (const auto *Field : record->fields()) {
2228     // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
2229     // will fill in later.)
2230     if (!Field->isBitField() && !Field->isZeroSize(CGM.getContext())) {
2231       unsigned fieldIndex = layout.getLLVMFieldNo(Field);
2232       elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
2233     }
2234 
2235     // For unions, stop after the first named field.
2236     if (record->isUnion()) {
2237       if (Field->getIdentifier())
2238         break;
2239       if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
2240         if (FieldRD->findFirstNamedDataMember())
2241           break;
2242     }
2243   }
2244 
2245   // Fill in the virtual bases, if we're working with the complete object.
2246   if (CXXR && asCompleteObject) {
2247     for (const auto &I : CXXR->vbases()) {
2248       const CXXRecordDecl *base =
2249         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2250 
2251       // Ignore empty bases.
2252       if (base->isEmpty())
2253         continue;
2254 
2255       unsigned fieldIndex = layout.getVirtualBaseIndex(base);
2256 
2257       // We might have already laid this field out.
2258       if (elements[fieldIndex]) continue;
2259 
2260       llvm::Type *baseType = structure->getElementType(fieldIndex);
2261       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2262     }
2263   }
2264 
2265   // Now go through all other fields and zero them out.
2266   for (unsigned i = 0; i != numElements; ++i) {
2267     if (!elements[i])
2268       elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
2269   }
2270 
2271   return llvm::ConstantStruct::get(structure, elements);
2272 }
2273 
2274 /// Emit the null constant for a base subobject.
2275 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2276                                                llvm::Type *baseType,
2277                                                const CXXRecordDecl *base) {
2278   const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
2279 
2280   // Just zero out bases that don't have any pointer to data members.
2281   if (baseLayout.isZeroInitializableAsBase())
2282     return llvm::Constant::getNullValue(baseType);
2283 
2284   // Otherwise, we can just use its null constant.
2285   return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
2286 }
2287 
2288 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM,
2289                                                    QualType T) {
2290   return emitForMemory(CGM, CGM.EmitNullConstant(T), T);
2291 }
2292 
2293 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
2294   if (T->getAs<PointerType>())
2295     return getNullPointer(
2296         cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T);
2297 
2298   if (getTypes().isZeroInitializable(T))
2299     return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
2300 
2301   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
2302     llvm::ArrayType *ATy =
2303       cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
2304 
2305     QualType ElementTy = CAT->getElementType();
2306 
2307     llvm::Constant *Element =
2308       ConstantEmitter::emitNullForMemory(*this, ElementTy);
2309     unsigned NumElements = CAT->getSize().getZExtValue();
2310     SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
2311     return llvm::ConstantArray::get(ATy, Array);
2312   }
2313 
2314   if (const RecordType *RT = T->getAs<RecordType>())
2315     return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true);
2316 
2317   assert(T->isMemberDataPointerType() &&
2318          "Should only see pointers to data members here!");
2319 
2320   return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
2321 }
2322 
2323 llvm::Constant *
2324 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
2325   return ::EmitNullConstant(*this, Record, false);
2326 }
2327