1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Constant Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGObjCRuntime.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenModule.h"
19 #include "ConstantEmitter.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/APValue.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/Builtins.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GlobalVariable.h"
30 using namespace clang;
31 using namespace CodeGen;
32 
33 //===----------------------------------------------------------------------===//
34 //                            ConstStructBuilder
35 //===----------------------------------------------------------------------===//
36 
37 namespace {
38 class ConstExprEmitter;
39 class ConstStructBuilder {
40   CodeGenModule &CGM;
41   ConstantEmitter &Emitter;
42 
43   bool Packed;
44   CharUnits NextFieldOffsetInChars;
45   CharUnits LLVMStructAlignment;
46   SmallVector<llvm::Constant *, 32> Elements;
47 public:
48   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
49                                      ConstExprEmitter *ExprEmitter,
50                                      llvm::ConstantStruct *Base,
51                                      InitListExpr *Updater,
52                                      QualType ValTy);
53   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
54                                      InitListExpr *ILE, QualType StructTy);
55   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
56                                      const APValue &Value, QualType ValTy);
57 
58 private:
59   ConstStructBuilder(ConstantEmitter &emitter)
60     : CGM(emitter.CGM), Emitter(emitter), Packed(false),
61     NextFieldOffsetInChars(CharUnits::Zero()),
62     LLVMStructAlignment(CharUnits::One()) { }
63 
64   void AppendField(const FieldDecl *Field, uint64_t FieldOffset,
65                    llvm::Constant *InitExpr);
66 
67   void AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst);
68 
69   void AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
70                       llvm::ConstantInt *InitExpr);
71 
72   void AppendPadding(CharUnits PadSize);
73 
74   void AppendTailPadding(CharUnits RecordSize);
75 
76   void ConvertStructToPacked();
77 
78   bool Build(InitListExpr *ILE);
79   bool Build(ConstExprEmitter *Emitter, llvm::ConstantStruct *Base,
80              InitListExpr *Updater);
81   bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
82              const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
83   llvm::Constant *Finalize(QualType Ty);
84 
85   CharUnits getAlignment(const llvm::Constant *C) const {
86     if (Packed)  return CharUnits::One();
87     return CharUnits::fromQuantity(
88         CGM.getDataLayout().getABITypeAlignment(C->getType()));
89   }
90 
91   CharUnits getSizeInChars(const llvm::Constant *C) const {
92     return CharUnits::fromQuantity(
93         CGM.getDataLayout().getTypeAllocSize(C->getType()));
94   }
95 };
96 
97 void ConstStructBuilder::
98 AppendField(const FieldDecl *Field, uint64_t FieldOffset,
99             llvm::Constant *InitCst) {
100   const ASTContext &Context = CGM.getContext();
101 
102   CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
103 
104   AppendBytes(FieldOffsetInChars, InitCst);
105 }
106 
107 void ConstStructBuilder::
108 AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst) {
109 
110   assert(NextFieldOffsetInChars <= FieldOffsetInChars
111          && "Field offset mismatch!");
112 
113   CharUnits FieldAlignment = getAlignment(InitCst);
114 
115   // Round up the field offset to the alignment of the field type.
116   CharUnits AlignedNextFieldOffsetInChars =
117       NextFieldOffsetInChars.alignTo(FieldAlignment);
118 
119   if (AlignedNextFieldOffsetInChars < FieldOffsetInChars) {
120     // We need to append padding.
121     AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars);
122 
123     assert(NextFieldOffsetInChars == FieldOffsetInChars &&
124            "Did not add enough padding!");
125 
126     AlignedNextFieldOffsetInChars =
127         NextFieldOffsetInChars.alignTo(FieldAlignment);
128   }
129 
130   if (AlignedNextFieldOffsetInChars > FieldOffsetInChars) {
131     assert(!Packed && "Alignment is wrong even with a packed struct!");
132 
133     // Convert the struct to a packed struct.
134     ConvertStructToPacked();
135 
136     // After we pack the struct, we may need to insert padding.
137     if (NextFieldOffsetInChars < FieldOffsetInChars) {
138       // We need to append padding.
139       AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars);
140 
141       assert(NextFieldOffsetInChars == FieldOffsetInChars &&
142              "Did not add enough padding!");
143     }
144     AlignedNextFieldOffsetInChars = NextFieldOffsetInChars;
145   }
146 
147   // Add the field.
148   Elements.push_back(InitCst);
149   NextFieldOffsetInChars = AlignedNextFieldOffsetInChars +
150                            getSizeInChars(InitCst);
151 
152   if (Packed)
153     assert(LLVMStructAlignment == CharUnits::One() &&
154            "Packed struct not byte-aligned!");
155   else
156     LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment);
157 }
158 
159 void ConstStructBuilder::AppendBitField(const FieldDecl *Field,
160                                         uint64_t FieldOffset,
161                                         llvm::ConstantInt *CI) {
162   const ASTContext &Context = CGM.getContext();
163   const uint64_t CharWidth = Context.getCharWidth();
164   uint64_t NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
165   if (FieldOffset > NextFieldOffsetInBits) {
166     // We need to add padding.
167     CharUnits PadSize = Context.toCharUnitsFromBits(
168         llvm::alignTo(FieldOffset - NextFieldOffsetInBits,
169                       Context.getTargetInfo().getCharAlign()));
170 
171     AppendPadding(PadSize);
172   }
173 
174   uint64_t FieldSize = Field->getBitWidthValue(Context);
175 
176   llvm::APInt FieldValue = CI->getValue();
177 
178   // Promote the size of FieldValue if necessary
179   // FIXME: This should never occur, but currently it can because initializer
180   // constants are cast to bool, and because clang is not enforcing bitfield
181   // width limits.
182   if (FieldSize > FieldValue.getBitWidth())
183     FieldValue = FieldValue.zext(FieldSize);
184 
185   // Truncate the size of FieldValue to the bit field size.
186   if (FieldSize < FieldValue.getBitWidth())
187     FieldValue = FieldValue.trunc(FieldSize);
188 
189   NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
190   if (FieldOffset < NextFieldOffsetInBits) {
191     // Either part of the field or the entire field can go into the previous
192     // byte.
193     assert(!Elements.empty() && "Elements can't be empty!");
194 
195     unsigned BitsInPreviousByte = NextFieldOffsetInBits - FieldOffset;
196 
197     bool FitsCompletelyInPreviousByte =
198       BitsInPreviousByte >= FieldValue.getBitWidth();
199 
200     llvm::APInt Tmp = FieldValue;
201 
202     if (!FitsCompletelyInPreviousByte) {
203       unsigned NewFieldWidth = FieldSize - BitsInPreviousByte;
204 
205       if (CGM.getDataLayout().isBigEndian()) {
206         Tmp.lshrInPlace(NewFieldWidth);
207         Tmp = Tmp.trunc(BitsInPreviousByte);
208 
209         // We want the remaining high bits.
210         FieldValue = FieldValue.trunc(NewFieldWidth);
211       } else {
212         Tmp = Tmp.trunc(BitsInPreviousByte);
213 
214         // We want the remaining low bits.
215         FieldValue.lshrInPlace(BitsInPreviousByte);
216         FieldValue = FieldValue.trunc(NewFieldWidth);
217       }
218     }
219 
220     Tmp = Tmp.zext(CharWidth);
221     if (CGM.getDataLayout().isBigEndian()) {
222       if (FitsCompletelyInPreviousByte)
223         Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth());
224     } else {
225       Tmp = Tmp.shl(CharWidth - BitsInPreviousByte);
226     }
227 
228     // 'or' in the bits that go into the previous byte.
229     llvm::Value *LastElt = Elements.back();
230     if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(LastElt))
231       Tmp |= Val->getValue();
232     else {
233       assert(isa<llvm::UndefValue>(LastElt));
234       // If there is an undef field that we're adding to, it can either be a
235       // scalar undef (in which case, we just replace it with our field) or it
236       // is an array.  If it is an array, we have to pull one byte off the
237       // array so that the other undef bytes stay around.
238       if (!isa<llvm::IntegerType>(LastElt->getType())) {
239         // The undef padding will be a multibyte array, create a new smaller
240         // padding and then an hole for our i8 to get plopped into.
241         assert(isa<llvm::ArrayType>(LastElt->getType()) &&
242                "Expected array padding of undefs");
243         llvm::ArrayType *AT = cast<llvm::ArrayType>(LastElt->getType());
244         assert(AT->getElementType()->isIntegerTy(CharWidth) &&
245                AT->getNumElements() != 0 &&
246                "Expected non-empty array padding of undefs");
247 
248         // Remove the padding array.
249         NextFieldOffsetInChars -= CharUnits::fromQuantity(AT->getNumElements());
250         Elements.pop_back();
251 
252         // Add the padding back in two chunks.
253         AppendPadding(CharUnits::fromQuantity(AT->getNumElements()-1));
254         AppendPadding(CharUnits::One());
255         assert(isa<llvm::UndefValue>(Elements.back()) &&
256                Elements.back()->getType()->isIntegerTy(CharWidth) &&
257                "Padding addition didn't work right");
258       }
259     }
260 
261     Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp);
262 
263     if (FitsCompletelyInPreviousByte)
264       return;
265   }
266 
267   while (FieldValue.getBitWidth() > CharWidth) {
268     llvm::APInt Tmp;
269 
270     if (CGM.getDataLayout().isBigEndian()) {
271       // We want the high bits.
272       Tmp =
273         FieldValue.lshr(FieldValue.getBitWidth() - CharWidth).trunc(CharWidth);
274     } else {
275       // We want the low bits.
276       Tmp = FieldValue.trunc(CharWidth);
277 
278       FieldValue.lshrInPlace(CharWidth);
279     }
280 
281     Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp));
282     ++NextFieldOffsetInChars;
283 
284     FieldValue = FieldValue.trunc(FieldValue.getBitWidth() - CharWidth);
285   }
286 
287   assert(FieldValue.getBitWidth() > 0 &&
288          "Should have at least one bit left!");
289   assert(FieldValue.getBitWidth() <= CharWidth &&
290          "Should not have more than a byte left!");
291 
292   if (FieldValue.getBitWidth() < CharWidth) {
293     if (CGM.getDataLayout().isBigEndian()) {
294       unsigned BitWidth = FieldValue.getBitWidth();
295 
296       FieldValue = FieldValue.zext(CharWidth) << (CharWidth - BitWidth);
297     } else
298       FieldValue = FieldValue.zext(CharWidth);
299   }
300 
301   // Append the last element.
302   Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(),
303                                             FieldValue));
304   ++NextFieldOffsetInChars;
305 }
306 
307 void ConstStructBuilder::AppendPadding(CharUnits PadSize) {
308   if (PadSize.isZero())
309     return;
310 
311   llvm::Type *Ty = CGM.Int8Ty;
312   if (PadSize > CharUnits::One())
313     Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
314 
315   llvm::Constant *C = llvm::UndefValue::get(Ty);
316   Elements.push_back(C);
317   assert(getAlignment(C) == CharUnits::One() &&
318          "Padding must have 1 byte alignment!");
319 
320   NextFieldOffsetInChars += getSizeInChars(C);
321 }
322 
323 void ConstStructBuilder::AppendTailPadding(CharUnits RecordSize) {
324   assert(NextFieldOffsetInChars <= RecordSize &&
325          "Size mismatch!");
326 
327   AppendPadding(RecordSize - NextFieldOffsetInChars);
328 }
329 
330 void ConstStructBuilder::ConvertStructToPacked() {
331   SmallVector<llvm::Constant *, 16> PackedElements;
332   CharUnits ElementOffsetInChars = CharUnits::Zero();
333 
334   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
335     llvm::Constant *C = Elements[i];
336 
337     CharUnits ElementAlign = CharUnits::fromQuantity(
338       CGM.getDataLayout().getABITypeAlignment(C->getType()));
339     CharUnits AlignedElementOffsetInChars =
340         ElementOffsetInChars.alignTo(ElementAlign);
341 
342     if (AlignedElementOffsetInChars > ElementOffsetInChars) {
343       // We need some padding.
344       CharUnits NumChars =
345         AlignedElementOffsetInChars - ElementOffsetInChars;
346 
347       llvm::Type *Ty = CGM.Int8Ty;
348       if (NumChars > CharUnits::One())
349         Ty = llvm::ArrayType::get(Ty, NumChars.getQuantity());
350 
351       llvm::Constant *Padding = llvm::UndefValue::get(Ty);
352       PackedElements.push_back(Padding);
353       ElementOffsetInChars += getSizeInChars(Padding);
354     }
355 
356     PackedElements.push_back(C);
357     ElementOffsetInChars += getSizeInChars(C);
358   }
359 
360   assert(ElementOffsetInChars == NextFieldOffsetInChars &&
361          "Packing the struct changed its size!");
362 
363   Elements.swap(PackedElements);
364   LLVMStructAlignment = CharUnits::One();
365   Packed = true;
366 }
367 
368 bool ConstStructBuilder::Build(InitListExpr *ILE) {
369   RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
370   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
371 
372   unsigned FieldNo = 0;
373   unsigned ElementNo = 0;
374 
375   // Bail out if we have base classes. We could support these, but they only
376   // arise in C++1z where we will have already constant folded most interesting
377   // cases. FIXME: There are still a few more cases we can handle this way.
378   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
379     if (CXXRD->getNumBases())
380       return false;
381 
382   for (RecordDecl::field_iterator Field = RD->field_begin(),
383        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
384     // If this is a union, skip all the fields that aren't being initialized.
385     if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field)
386       continue;
387 
388     // Don't emit anonymous bitfields, they just affect layout.
389     if (Field->isUnnamedBitfield())
390       continue;
391 
392     // Get the initializer.  A struct can include fields without initializers,
393     // we just use explicit null values for them.
394     llvm::Constant *EltInit;
395     if (ElementNo < ILE->getNumInits())
396       EltInit = Emitter.tryEmitPrivateForMemory(ILE->getInit(ElementNo++),
397                                                 Field->getType());
398     else
399       EltInit = Emitter.emitNullForMemory(Field->getType());
400 
401     if (!EltInit)
402       return false;
403 
404     if (!Field->isBitField()) {
405       // Handle non-bitfield members.
406       AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit);
407     } else {
408       // Otherwise we have a bitfield.
409       if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) {
410         AppendBitField(*Field, Layout.getFieldOffset(FieldNo), CI);
411       } else {
412         // We are trying to initialize a bitfield with a non-trivial constant,
413         // this must require run-time code.
414         return false;
415       }
416     }
417   }
418 
419   return true;
420 }
421 
422 namespace {
423 struct BaseInfo {
424   BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
425     : Decl(Decl), Offset(Offset), Index(Index) {
426   }
427 
428   const CXXRecordDecl *Decl;
429   CharUnits Offset;
430   unsigned Index;
431 
432   bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
433 };
434 }
435 
436 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
437                                bool IsPrimaryBase,
438                                const CXXRecordDecl *VTableClass,
439                                CharUnits Offset) {
440   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
441 
442   if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
443     // Add a vtable pointer, if we need one and it hasn't already been added.
444     if (CD->isDynamicClass() && !IsPrimaryBase) {
445       llvm::Constant *VTableAddressPoint =
446           CGM.getCXXABI().getVTableAddressPointForConstExpr(
447               BaseSubobject(CD, Offset), VTableClass);
448       AppendBytes(Offset, VTableAddressPoint);
449     }
450 
451     // Accumulate and sort bases, in order to visit them in address order, which
452     // may not be the same as declaration order.
453     SmallVector<BaseInfo, 8> Bases;
454     Bases.reserve(CD->getNumBases());
455     unsigned BaseNo = 0;
456     for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
457          BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
458       assert(!Base->isVirtual() && "should not have virtual bases here");
459       const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
460       CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
461       Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
462     }
463     std::stable_sort(Bases.begin(), Bases.end());
464 
465     for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
466       BaseInfo &Base = Bases[I];
467 
468       bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
469       Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
470             VTableClass, Offset + Base.Offset);
471     }
472   }
473 
474   unsigned FieldNo = 0;
475   uint64_t OffsetBits = CGM.getContext().toBits(Offset);
476 
477   for (RecordDecl::field_iterator Field = RD->field_begin(),
478        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
479     // If this is a union, skip all the fields that aren't being initialized.
480     if (RD->isUnion() && Val.getUnionField() != *Field)
481       continue;
482 
483     // Don't emit anonymous bitfields, they just affect layout.
484     if (Field->isUnnamedBitfield())
485       continue;
486 
487     // Emit the value of the initializer.
488     const APValue &FieldValue =
489       RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
490     llvm::Constant *EltInit =
491       Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
492     if (!EltInit)
493       return false;
494 
495     if (!Field->isBitField()) {
496       // Handle non-bitfield members.
497       AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, EltInit);
498     } else {
499       // Otherwise we have a bitfield.
500       AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
501                      cast<llvm::ConstantInt>(EltInit));
502     }
503   }
504 
505   return true;
506 }
507 
508 llvm::Constant *ConstStructBuilder::Finalize(QualType Ty) {
509   RecordDecl *RD = Ty->getAs<RecordType>()->getDecl();
510   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
511 
512   CharUnits LayoutSizeInChars = Layout.getSize();
513 
514   if (NextFieldOffsetInChars > LayoutSizeInChars) {
515     // If the struct is bigger than the size of the record type,
516     // we must have a flexible array member at the end.
517     assert(RD->hasFlexibleArrayMember() &&
518            "Must have flexible array member if struct is bigger than type!");
519 
520     // No tail padding is necessary.
521   } else {
522     // Append tail padding if necessary.
523     CharUnits LLVMSizeInChars =
524         NextFieldOffsetInChars.alignTo(LLVMStructAlignment);
525 
526     if (LLVMSizeInChars != LayoutSizeInChars)
527       AppendTailPadding(LayoutSizeInChars);
528 
529     LLVMSizeInChars = NextFieldOffsetInChars.alignTo(LLVMStructAlignment);
530 
531     // Check if we need to convert the struct to a packed struct.
532     if (NextFieldOffsetInChars <= LayoutSizeInChars &&
533         LLVMSizeInChars > LayoutSizeInChars) {
534       assert(!Packed && "Size mismatch!");
535 
536       ConvertStructToPacked();
537       assert(NextFieldOffsetInChars <= LayoutSizeInChars &&
538              "Converting to packed did not help!");
539     }
540 
541     LLVMSizeInChars = NextFieldOffsetInChars.alignTo(LLVMStructAlignment);
542 
543     assert(LayoutSizeInChars == LLVMSizeInChars &&
544            "Tail padding mismatch!");
545   }
546 
547   // Pick the type to use.  If the type is layout identical to the ConvertType
548   // type then use it, otherwise use whatever the builder produced for us.
549   llvm::StructType *STy =
550       llvm::ConstantStruct::getTypeForElements(CGM.getLLVMContext(),
551                                                Elements, Packed);
552   llvm::Type *ValTy = CGM.getTypes().ConvertType(Ty);
553   if (llvm::StructType *ValSTy = dyn_cast<llvm::StructType>(ValTy)) {
554     if (ValSTy->isLayoutIdentical(STy))
555       STy = ValSTy;
556   }
557 
558   llvm::Constant *Result = llvm::ConstantStruct::get(STy, Elements);
559 
560   assert(NextFieldOffsetInChars.alignTo(getAlignment(Result)) ==
561              getSizeInChars(Result) &&
562          "Size mismatch!");
563 
564   return Result;
565 }
566 
567 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
568                                                 ConstExprEmitter *ExprEmitter,
569                                                 llvm::ConstantStruct *Base,
570                                                 InitListExpr *Updater,
571                                                 QualType ValTy) {
572   ConstStructBuilder Builder(Emitter);
573   if (!Builder.Build(ExprEmitter, Base, Updater))
574     return nullptr;
575   return Builder.Finalize(ValTy);
576 }
577 
578 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
579                                                 InitListExpr *ILE,
580                                                 QualType ValTy) {
581   ConstStructBuilder Builder(Emitter);
582 
583   if (!Builder.Build(ILE))
584     return nullptr;
585 
586   return Builder.Finalize(ValTy);
587 }
588 
589 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
590                                                 const APValue &Val,
591                                                 QualType ValTy) {
592   ConstStructBuilder Builder(Emitter);
593 
594   const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
595   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
596   if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero()))
597     return nullptr;
598 
599   return Builder.Finalize(ValTy);
600 }
601 
602 
603 //===----------------------------------------------------------------------===//
604 //                             ConstExprEmitter
605 //===----------------------------------------------------------------------===//
606 
607 static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM,
608                                                     CodeGenFunction *CGF,
609                                               const CompoundLiteralExpr *E) {
610   CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType());
611   if (llvm::GlobalVariable *Addr =
612           CGM.getAddrOfConstantCompoundLiteralIfEmitted(E))
613     return ConstantAddress(Addr, Align);
614 
615   LangAS addressSpace = E->getType().getAddressSpace();
616 
617   ConstantEmitter emitter(CGM, CGF);
618   llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
619                                                     addressSpace, E->getType());
620   if (!C) {
621     assert(!E->isFileScope() &&
622            "file-scope compound literal did not have constant initializer!");
623     return ConstantAddress::invalid();
624   }
625 
626   auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
627                                      CGM.isTypeConstant(E->getType(), true),
628                                      llvm::GlobalValue::InternalLinkage,
629                                      C, ".compoundliteral", nullptr,
630                                      llvm::GlobalVariable::NotThreadLocal,
631                     CGM.getContext().getTargetAddressSpace(addressSpace));
632   emitter.finalize(GV);
633   GV->setAlignment(Align.getQuantity());
634   CGM.setAddrOfConstantCompoundLiteral(E, GV);
635   return ConstantAddress(GV, Align);
636 }
637 
638 static llvm::Constant *
639 EmitArrayConstant(CodeGenModule &CGM, const ConstantArrayType *DestType,
640                   llvm::Type *CommonElementType, unsigned ArrayBound,
641                   SmallVectorImpl<llvm::Constant *> &Elements,
642                   llvm::Constant *Filler) {
643   // Figure out how long the initial prefix of non-zero elements is.
644   unsigned NonzeroLength = ArrayBound;
645   if (Elements.size() < NonzeroLength && Filler->isNullValue())
646     NonzeroLength = Elements.size();
647   if (NonzeroLength == Elements.size()) {
648     while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue())
649       --NonzeroLength;
650   }
651 
652   if (NonzeroLength == 0) {
653     return llvm::ConstantAggregateZero::get(
654         CGM.getTypes().ConvertType(QualType(DestType, 0)));
655   }
656 
657   // Add a zeroinitializer array filler if we have lots of trailing zeroes.
658   unsigned TrailingZeroes = ArrayBound - NonzeroLength;
659   if (TrailingZeroes >= 8) {
660     assert(Elements.size() >= NonzeroLength &&
661            "missing initializer for non-zero element");
662     Elements.resize(NonzeroLength + 1);
663     auto *FillerType =
664         CommonElementType
665             ? CommonElementType
666             : CGM.getTypes().ConvertType(DestType->getElementType());
667     FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes);
668     Elements.back() = llvm::ConstantAggregateZero::get(FillerType);
669     CommonElementType = nullptr;
670   } else if (Elements.size() != ArrayBound) {
671     // Otherwise pad to the right size with the filler if necessary.
672     Elements.resize(ArrayBound, Filler);
673     if (Filler->getType() != CommonElementType)
674       CommonElementType = nullptr;
675   }
676 
677   // If all elements have the same type, just emit an array constant.
678   if (CommonElementType)
679     return llvm::ConstantArray::get(
680         llvm::ArrayType::get(CommonElementType, ArrayBound), Elements);
681 
682   // We have mixed types. Use a packed struct.
683   llvm::SmallVector<llvm::Type *, 16> Types;
684   Types.reserve(Elements.size());
685   for (llvm::Constant *Elt : Elements)
686     Types.push_back(Elt->getType());
687   llvm::StructType *SType =
688       llvm::StructType::get(CGM.getLLVMContext(), Types, true);
689   return llvm::ConstantStruct::get(SType, Elements);
690 }
691 
692 /// This class only needs to handle two cases:
693 /// 1) Literals (this is used by APValue emission to emit literals).
694 /// 2) Arrays, structs and unions (outside C++11 mode, we don't currently
695 ///    constant fold these types).
696 class ConstExprEmitter :
697   public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> {
698   CodeGenModule &CGM;
699   ConstantEmitter &Emitter;
700   llvm::LLVMContext &VMContext;
701 public:
702   ConstExprEmitter(ConstantEmitter &emitter)
703     : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
704   }
705 
706   //===--------------------------------------------------------------------===//
707   //                            Visitor Methods
708   //===--------------------------------------------------------------------===//
709 
710   llvm::Constant *VisitStmt(Stmt *S, QualType T) {
711     return nullptr;
712   }
713 
714   llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) {
715     return Visit(PE->getSubExpr(), T);
716   }
717 
718   llvm::Constant *
719   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE,
720                                     QualType T) {
721     return Visit(PE->getReplacement(), T);
722   }
723 
724   llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE,
725                                             QualType T) {
726     return Visit(GE->getResultExpr(), T);
727   }
728 
729   llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) {
730     return Visit(CE->getChosenSubExpr(), T);
731   }
732 
733   llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) {
734     return Visit(E->getInitializer(), T);
735   }
736 
737   llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) {
738     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
739       CGM.EmitExplicitCastExprType(ECE, Emitter.CGF);
740     Expr *subExpr = E->getSubExpr();
741 
742     switch (E->getCastKind()) {
743     case CK_ToUnion: {
744       // GCC cast to union extension
745       assert(E->getType()->isUnionType() &&
746              "Destination type is not union type!");
747 
748       auto field = E->getTargetUnionField();
749 
750       auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
751       if (!C) return nullptr;
752 
753       auto destTy = ConvertType(destType);
754       if (C->getType() == destTy) return C;
755 
756       // Build a struct with the union sub-element as the first member,
757       // and padded to the appropriate size.
758       SmallVector<llvm::Constant*, 2> Elts;
759       SmallVector<llvm::Type*, 2> Types;
760       Elts.push_back(C);
761       Types.push_back(C->getType());
762       unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
763       unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy);
764 
765       assert(CurSize <= TotalSize && "Union size mismatch!");
766       if (unsigned NumPadBytes = TotalSize - CurSize) {
767         llvm::Type *Ty = CGM.Int8Ty;
768         if (NumPadBytes > 1)
769           Ty = llvm::ArrayType::get(Ty, NumPadBytes);
770 
771         Elts.push_back(llvm::UndefValue::get(Ty));
772         Types.push_back(Ty);
773       }
774 
775       llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false);
776       return llvm::ConstantStruct::get(STy, Elts);
777     }
778 
779     case CK_AddressSpaceConversion: {
780       auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
781       if (!C) return nullptr;
782       LangAS destAS = E->getType()->getPointeeType().getAddressSpace();
783       LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
784       llvm::Type *destTy = ConvertType(E->getType());
785       return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS,
786                                                              destAS, destTy);
787     }
788 
789     case CK_LValueToRValue:
790     case CK_AtomicToNonAtomic:
791     case CK_NonAtomicToAtomic:
792     case CK_NoOp:
793     case CK_ConstructorConversion:
794       return Visit(subExpr, destType);
795 
796     case CK_IntToOCLSampler:
797       llvm_unreachable("global sampler variables are not generated");
798 
799     case CK_Dependent: llvm_unreachable("saw dependent cast!");
800 
801     case CK_BuiltinFnToFnPtr:
802       llvm_unreachable("builtin functions are handled elsewhere");
803 
804     case CK_ReinterpretMemberPointer:
805     case CK_DerivedToBaseMemberPointer:
806     case CK_BaseToDerivedMemberPointer: {
807       auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
808       if (!C) return nullptr;
809       return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
810     }
811 
812     // These will never be supported.
813     case CK_ObjCObjectLValueCast:
814     case CK_ARCProduceObject:
815     case CK_ARCConsumeObject:
816     case CK_ARCReclaimReturnedObject:
817     case CK_ARCExtendBlockObject:
818     case CK_CopyAndAutoreleaseBlockObject:
819       return nullptr;
820 
821     // These don't need to be handled here because Evaluate knows how to
822     // evaluate them in the cases where they can be folded.
823     case CK_BitCast:
824     case CK_ToVoid:
825     case CK_Dynamic:
826     case CK_LValueBitCast:
827     case CK_NullToMemberPointer:
828     case CK_UserDefinedConversion:
829     case CK_CPointerToObjCPointerCast:
830     case CK_BlockPointerToObjCPointerCast:
831     case CK_AnyPointerToBlockPointerCast:
832     case CK_ArrayToPointerDecay:
833     case CK_FunctionToPointerDecay:
834     case CK_BaseToDerived:
835     case CK_DerivedToBase:
836     case CK_UncheckedDerivedToBase:
837     case CK_MemberPointerToBoolean:
838     case CK_VectorSplat:
839     case CK_FloatingRealToComplex:
840     case CK_FloatingComplexToReal:
841     case CK_FloatingComplexToBoolean:
842     case CK_FloatingComplexCast:
843     case CK_FloatingComplexToIntegralComplex:
844     case CK_IntegralRealToComplex:
845     case CK_IntegralComplexToReal:
846     case CK_IntegralComplexToBoolean:
847     case CK_IntegralComplexCast:
848     case CK_IntegralComplexToFloatingComplex:
849     case CK_PointerToIntegral:
850     case CK_PointerToBoolean:
851     case CK_NullToPointer:
852     case CK_IntegralCast:
853     case CK_BooleanToSignedIntegral:
854     case CK_IntegralToPointer:
855     case CK_IntegralToBoolean:
856     case CK_IntegralToFloating:
857     case CK_FloatingToIntegral:
858     case CK_FloatingToBoolean:
859     case CK_FloatingCast:
860     case CK_ZeroToOCLEvent:
861     case CK_ZeroToOCLQueue:
862       return nullptr;
863     }
864     llvm_unreachable("Invalid CastKind");
865   }
866 
867   llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE, QualType T) {
868     return Visit(DAE->getExpr(), T);
869   }
870 
871   llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) {
872     // No need for a DefaultInitExprScope: we don't handle 'this' in a
873     // constant expression.
874     return Visit(DIE->getExpr(), T);
875   }
876 
877   llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) {
878     if (!E->cleanupsHaveSideEffects())
879       return Visit(E->getSubExpr(), T);
880     return nullptr;
881   }
882 
883   llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E,
884                                                 QualType T) {
885     return Visit(E->GetTemporaryExpr(), T);
886   }
887 
888   llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) {
889     auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType());
890     assert(CAT && "can't emit array init for non-constant-bound array");
891     unsigned NumInitElements = ILE->getNumInits();
892     unsigned NumElements = CAT->getSize().getZExtValue();
893 
894     // Initialising an array requires us to automatically
895     // initialise any elements that have not been initialised explicitly
896     unsigned NumInitableElts = std::min(NumInitElements, NumElements);
897 
898     QualType EltType = CAT->getElementType();
899 
900     // Initialize remaining array elements.
901     llvm::Constant *fillC = nullptr;
902     if (Expr *filler = ILE->getArrayFiller()) {
903       fillC = Emitter.tryEmitAbstractForMemory(filler, EltType);
904       if (!fillC)
905         return nullptr;
906     }
907 
908     // Copy initializer elements.
909     SmallVector<llvm::Constant*, 16> Elts;
910     if (fillC && fillC->isNullValue())
911       Elts.reserve(NumInitableElts + 1);
912     else
913       Elts.reserve(NumElements);
914 
915     llvm::Type *CommonElementType = nullptr;
916     for (unsigned i = 0; i < NumInitableElts; ++i) {
917       Expr *Init = ILE->getInit(i);
918       llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType);
919       if (!C)
920         return nullptr;
921       if (i == 0)
922         CommonElementType = C->getType();
923       else if (C->getType() != CommonElementType)
924         CommonElementType = nullptr;
925       Elts.push_back(C);
926     }
927 
928     return EmitArrayConstant(CGM, CAT, CommonElementType, NumElements, Elts,
929                              fillC);
930   }
931 
932   llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) {
933     return ConstStructBuilder::BuildStruct(Emitter, ILE, T);
934   }
935 
936   llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E,
937                                              QualType T) {
938     return CGM.EmitNullConstant(T);
939   }
940 
941   llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) {
942     if (ILE->isTransparent())
943       return Visit(ILE->getInit(0), T);
944 
945     if (ILE->getType()->isArrayType())
946       return EmitArrayInitialization(ILE, T);
947 
948     if (ILE->getType()->isRecordType())
949       return EmitRecordInitialization(ILE, T);
950 
951     return nullptr;
952   }
953 
954   llvm::Constant *EmitDesignatedInitUpdater(llvm::Constant *Base,
955                                             InitListExpr *Updater,
956                                             QualType destType) {
957     if (auto destAT = CGM.getContext().getAsArrayType(destType)) {
958       llvm::ArrayType *AType = cast<llvm::ArrayType>(ConvertType(destType));
959       llvm::Type *ElemType = AType->getElementType();
960 
961       unsigned NumInitElements = Updater->getNumInits();
962       unsigned NumElements = AType->getNumElements();
963 
964       std::vector<llvm::Constant *> Elts;
965       Elts.reserve(NumElements);
966 
967       QualType destElemType = destAT->getElementType();
968 
969       if (auto DataArray = dyn_cast<llvm::ConstantDataArray>(Base))
970         for (unsigned i = 0; i != NumElements; ++i)
971           Elts.push_back(DataArray->getElementAsConstant(i));
972       else if (auto Array = dyn_cast<llvm::ConstantArray>(Base))
973         for (unsigned i = 0; i != NumElements; ++i)
974           Elts.push_back(Array->getOperand(i));
975       else
976         return nullptr; // FIXME: other array types not implemented
977 
978       llvm::Constant *fillC = nullptr;
979       if (Expr *filler = Updater->getArrayFiller())
980         if (!isa<NoInitExpr>(filler))
981           fillC = Emitter.tryEmitAbstractForMemory(filler, destElemType);
982       bool RewriteType = (fillC && fillC->getType() != ElemType);
983 
984       for (unsigned i = 0; i != NumElements; ++i) {
985         Expr *Init = nullptr;
986         if (i < NumInitElements)
987           Init = Updater->getInit(i);
988 
989         if (!Init && fillC)
990           Elts[i] = fillC;
991         else if (!Init || isa<NoInitExpr>(Init))
992           ; // Do nothing.
993         else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init))
994           Elts[i] = EmitDesignatedInitUpdater(Elts[i], ChildILE, destElemType);
995         else
996           Elts[i] = Emitter.tryEmitPrivateForMemory(Init, destElemType);
997 
998        if (!Elts[i])
999           return nullptr;
1000         RewriteType |= (Elts[i]->getType() != ElemType);
1001       }
1002 
1003       if (RewriteType) {
1004         std::vector<llvm::Type *> Types;
1005         Types.reserve(NumElements);
1006         for (unsigned i = 0; i != NumElements; ++i)
1007           Types.push_back(Elts[i]->getType());
1008         llvm::StructType *SType = llvm::StructType::get(AType->getContext(),
1009                                                         Types, true);
1010         return llvm::ConstantStruct::get(SType, Elts);
1011       }
1012 
1013       return llvm::ConstantArray::get(AType, Elts);
1014     }
1015 
1016     if (destType->isRecordType())
1017       return ConstStructBuilder::BuildStruct(Emitter, this,
1018                  dyn_cast<llvm::ConstantStruct>(Base), Updater, destType);
1019 
1020     return nullptr;
1021   }
1022 
1023   llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E,
1024                                                 QualType destType) {
1025     auto C = Visit(E->getBase(), destType);
1026     if (!C) return nullptr;
1027     return EmitDesignatedInitUpdater(C, E->getUpdater(), destType);
1028   }
1029 
1030   llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) {
1031     if (!E->getConstructor()->isTrivial())
1032       return nullptr;
1033 
1034     // FIXME: We should not have to call getBaseElementType here.
1035     const RecordType *RT =
1036       CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>();
1037     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1038 
1039     // If the class doesn't have a trivial destructor, we can't emit it as a
1040     // constant expr.
1041     if (!RD->hasTrivialDestructor())
1042       return nullptr;
1043 
1044     // Only copy and default constructors can be trivial.
1045 
1046 
1047     if (E->getNumArgs()) {
1048       assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
1049       assert(E->getConstructor()->isCopyOrMoveConstructor() &&
1050              "trivial ctor has argument but isn't a copy/move ctor");
1051 
1052       Expr *Arg = E->getArg(0);
1053       assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
1054              "argument to copy ctor is of wrong type");
1055 
1056       return Visit(Arg, Ty);
1057     }
1058 
1059     return CGM.EmitNullConstant(Ty);
1060   }
1061 
1062   llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) {
1063     return CGM.GetConstantArrayFromStringLiteral(E);
1064   }
1065 
1066   llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) {
1067     // This must be an @encode initializing an array in a static initializer.
1068     // Don't emit it as the address of the string, emit the string data itself
1069     // as an inline array.
1070     std::string Str;
1071     CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1072     const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T);
1073 
1074     // Resize the string to the right size, adding zeros at the end, or
1075     // truncating as needed.
1076     Str.resize(CAT->getSize().getZExtValue(), '\0');
1077     return llvm::ConstantDataArray::getString(VMContext, Str, false);
1078   }
1079 
1080   llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
1081     return Visit(E->getSubExpr(), T);
1082   }
1083 
1084   // Utility methods
1085   llvm::Type *ConvertType(QualType T) {
1086     return CGM.getTypes().ConvertType(T);
1087   }
1088 };
1089 
1090 }  // end anonymous namespace.
1091 
1092 bool ConstStructBuilder::Build(ConstExprEmitter *ExprEmitter,
1093                                llvm::ConstantStruct *Base,
1094                                InitListExpr *Updater) {
1095   assert(Base && "base expression should not be empty");
1096 
1097   QualType ExprType = Updater->getType();
1098   RecordDecl *RD = ExprType->getAs<RecordType>()->getDecl();
1099   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
1100   const llvm::StructLayout *BaseLayout = CGM.getDataLayout().getStructLayout(
1101                                            Base->getType());
1102   unsigned FieldNo = -1;
1103   unsigned ElementNo = 0;
1104 
1105   // Bail out if we have base classes. We could support these, but they only
1106   // arise in C++1z where we will have already constant folded most interesting
1107   // cases. FIXME: There are still a few more cases we can handle this way.
1108   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1109     if (CXXRD->getNumBases())
1110       return false;
1111 
1112   for (FieldDecl *Field : RD->fields()) {
1113     ++FieldNo;
1114 
1115     if (RD->isUnion() && Updater->getInitializedFieldInUnion() != Field)
1116       continue;
1117 
1118     // Skip anonymous bitfields.
1119     if (Field->isUnnamedBitfield())
1120       continue;
1121 
1122     llvm::Constant *EltInit = Base->getOperand(ElementNo);
1123 
1124     // Bail out if the type of the ConstantStruct does not have the same layout
1125     // as the type of the InitListExpr.
1126     if (CGM.getTypes().ConvertType(Field->getType()) != EltInit->getType() ||
1127         Layout.getFieldOffset(ElementNo) !=
1128           BaseLayout->getElementOffsetInBits(ElementNo))
1129       return false;
1130 
1131     // Get the initializer. If we encounter an empty field or a NoInitExpr,
1132     // we use values from the base expression.
1133     Expr *Init = nullptr;
1134     if (ElementNo < Updater->getNumInits())
1135       Init = Updater->getInit(ElementNo);
1136 
1137     if (!Init || isa<NoInitExpr>(Init))
1138       ; // Do nothing.
1139     else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init))
1140       EltInit = ExprEmitter->EmitDesignatedInitUpdater(EltInit, ChildILE,
1141                                                        Field->getType());
1142     else
1143       EltInit = Emitter.tryEmitPrivateForMemory(Init, Field->getType());
1144 
1145     ++ElementNo;
1146 
1147     if (!EltInit)
1148       return false;
1149 
1150     if (!Field->isBitField())
1151       AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit);
1152     else if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(EltInit))
1153       AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI);
1154     else
1155       // Initializing a bitfield with a non-trivial constant?
1156       return false;
1157   }
1158 
1159   return true;
1160 }
1161 
1162 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
1163                                                         AbstractState saved) {
1164   Abstract = saved.OldValue;
1165 
1166   assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
1167          "created a placeholder while doing an abstract emission?");
1168 
1169   // No validation necessary for now.
1170   // No cleanup to do for now.
1171   return C;
1172 }
1173 
1174 llvm::Constant *
1175 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) {
1176   auto state = pushAbstract();
1177   auto C = tryEmitPrivateForVarInit(D);
1178   return validateAndPopAbstract(C, state);
1179 }
1180 
1181 llvm::Constant *
1182 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) {
1183   auto state = pushAbstract();
1184   auto C = tryEmitPrivate(E, destType);
1185   return validateAndPopAbstract(C, state);
1186 }
1187 
1188 llvm::Constant *
1189 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) {
1190   auto state = pushAbstract();
1191   auto C = tryEmitPrivate(value, destType);
1192   return validateAndPopAbstract(C, state);
1193 }
1194 
1195 llvm::Constant *
1196 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) {
1197   auto state = pushAbstract();
1198   auto C = tryEmitPrivate(E, destType);
1199   C = validateAndPopAbstract(C, state);
1200   if (!C) {
1201     CGM.Error(E->getExprLoc(),
1202               "internal error: could not emit constant value \"abstractly\"");
1203     C = CGM.EmitNullConstant(destType);
1204   }
1205   return C;
1206 }
1207 
1208 llvm::Constant *
1209 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value,
1210                               QualType destType) {
1211   auto state = pushAbstract();
1212   auto C = tryEmitPrivate(value, destType);
1213   C = validateAndPopAbstract(C, state);
1214   if (!C) {
1215     CGM.Error(loc,
1216               "internal error: could not emit constant value \"abstractly\"");
1217     C = CGM.EmitNullConstant(destType);
1218   }
1219   return C;
1220 }
1221 
1222 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) {
1223   initializeNonAbstract(D.getType().getAddressSpace());
1224   return markIfFailed(tryEmitPrivateForVarInit(D));
1225 }
1226 
1227 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E,
1228                                                        LangAS destAddrSpace,
1229                                                        QualType destType) {
1230   initializeNonAbstract(destAddrSpace);
1231   return markIfFailed(tryEmitPrivateForMemory(E, destType));
1232 }
1233 
1234 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value,
1235                                                     LangAS destAddrSpace,
1236                                                     QualType destType) {
1237   initializeNonAbstract(destAddrSpace);
1238   auto C = tryEmitPrivateForMemory(value, destType);
1239   assert(C && "couldn't emit constant value non-abstractly?");
1240   return C;
1241 }
1242 
1243 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() {
1244   assert(!Abstract && "cannot get current address for abstract constant");
1245 
1246 
1247 
1248   // Make an obviously ill-formed global that should blow up compilation
1249   // if it survives.
1250   auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
1251                                          llvm::GlobalValue::PrivateLinkage,
1252                                          /*init*/ nullptr,
1253                                          /*name*/ "",
1254                                          /*before*/ nullptr,
1255                                          llvm::GlobalVariable::NotThreadLocal,
1256                                          CGM.getContext().getTargetAddressSpace(DestAddressSpace));
1257 
1258   PlaceholderAddresses.push_back(std::make_pair(nullptr, global));
1259 
1260   return global;
1261 }
1262 
1263 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal,
1264                                            llvm::GlobalValue *placeholder) {
1265   assert(!PlaceholderAddresses.empty());
1266   assert(PlaceholderAddresses.back().first == nullptr);
1267   assert(PlaceholderAddresses.back().second == placeholder);
1268   PlaceholderAddresses.back().first = signal;
1269 }
1270 
1271 namespace {
1272   struct ReplacePlaceholders {
1273     CodeGenModule &CGM;
1274 
1275     /// The base address of the global.
1276     llvm::Constant *Base;
1277     llvm::Type *BaseValueTy = nullptr;
1278 
1279     /// The placeholder addresses that were registered during emission.
1280     llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;
1281 
1282     /// The locations of the placeholder signals.
1283     llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;
1284 
1285     /// The current index stack.  We use a simple unsigned stack because
1286     /// we assume that placeholders will be relatively sparse in the
1287     /// initializer, but we cache the index values we find just in case.
1288     llvm::SmallVector<unsigned, 8> Indices;
1289     llvm::SmallVector<llvm::Constant*, 8> IndexValues;
1290 
1291     ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
1292                         ArrayRef<std::pair<llvm::Constant*,
1293                                            llvm::GlobalVariable*>> addresses)
1294         : CGM(CGM), Base(base),
1295           PlaceholderAddresses(addresses.begin(), addresses.end()) {
1296     }
1297 
1298     void replaceInInitializer(llvm::Constant *init) {
1299       // Remember the type of the top-most initializer.
1300       BaseValueTy = init->getType();
1301 
1302       // Initialize the stack.
1303       Indices.push_back(0);
1304       IndexValues.push_back(nullptr);
1305 
1306       // Recurse into the initializer.
1307       findLocations(init);
1308 
1309       // Check invariants.
1310       assert(IndexValues.size() == Indices.size() && "mismatch");
1311       assert(Indices.size() == 1 && "didn't pop all indices");
1312 
1313       // Do the replacement; this basically invalidates 'init'.
1314       assert(Locations.size() == PlaceholderAddresses.size() &&
1315              "missed a placeholder?");
1316 
1317       // We're iterating over a hashtable, so this would be a source of
1318       // non-determinism in compiler output *except* that we're just
1319       // messing around with llvm::Constant structures, which never itself
1320       // does anything that should be visible in compiler output.
1321       for (auto &entry : Locations) {
1322         assert(entry.first->getParent() == nullptr && "not a placeholder!");
1323         entry.first->replaceAllUsesWith(entry.second);
1324         entry.first->eraseFromParent();
1325       }
1326     }
1327 
1328   private:
1329     void findLocations(llvm::Constant *init) {
1330       // Recurse into aggregates.
1331       if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) {
1332         for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
1333           Indices.push_back(i);
1334           IndexValues.push_back(nullptr);
1335 
1336           findLocations(agg->getOperand(i));
1337 
1338           IndexValues.pop_back();
1339           Indices.pop_back();
1340         }
1341         return;
1342       }
1343 
1344       // Otherwise, check for registered constants.
1345       while (true) {
1346         auto it = PlaceholderAddresses.find(init);
1347         if (it != PlaceholderAddresses.end()) {
1348           setLocation(it->second);
1349           break;
1350         }
1351 
1352         // Look through bitcasts or other expressions.
1353         if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) {
1354           init = expr->getOperand(0);
1355         } else {
1356           break;
1357         }
1358       }
1359     }
1360 
1361     void setLocation(llvm::GlobalVariable *placeholder) {
1362       assert(Locations.find(placeholder) == Locations.end() &&
1363              "already found location for placeholder!");
1364 
1365       // Lazily fill in IndexValues with the values from Indices.
1366       // We do this in reverse because we should always have a strict
1367       // prefix of indices from the start.
1368       assert(Indices.size() == IndexValues.size());
1369       for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
1370         if (IndexValues[i]) {
1371 #ifndef NDEBUG
1372           for (size_t j = 0; j != i + 1; ++j) {
1373             assert(IndexValues[j] &&
1374                    isa<llvm::ConstantInt>(IndexValues[j]) &&
1375                    cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
1376                      == Indices[j]);
1377           }
1378 #endif
1379           break;
1380         }
1381 
1382         IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]);
1383       }
1384 
1385       // Form a GEP and then bitcast to the placeholder type so that the
1386       // replacement will succeed.
1387       llvm::Constant *location =
1388         llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy,
1389                                                      Base, IndexValues);
1390       location = llvm::ConstantExpr::getBitCast(location,
1391                                                 placeholder->getType());
1392 
1393       Locations.insert({placeholder, location});
1394     }
1395   };
1396 }
1397 
1398 void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
1399   assert(InitializedNonAbstract &&
1400          "finalizing emitter that was used for abstract emission?");
1401   assert(!Finalized && "finalizing emitter multiple times");
1402   assert(global->getInitializer());
1403 
1404   // Note that we might also be Failed.
1405   Finalized = true;
1406 
1407   if (!PlaceholderAddresses.empty()) {
1408     ReplacePlaceholders(CGM, global, PlaceholderAddresses)
1409       .replaceInInitializer(global->getInitializer());
1410     PlaceholderAddresses.clear(); // satisfy
1411   }
1412 }
1413 
1414 ConstantEmitter::~ConstantEmitter() {
1415   assert((!InitializedNonAbstract || Finalized || Failed) &&
1416          "not finalized after being initialized for non-abstract emission");
1417   assert(PlaceholderAddresses.empty() && "unhandled placeholders");
1418 }
1419 
1420 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) {
1421   if (auto AT = type->getAs<AtomicType>()) {
1422     return CGM.getContext().getQualifiedType(AT->getValueType(),
1423                                              type.getQualifiers());
1424   }
1425   return type;
1426 }
1427 
1428 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) {
1429   // Make a quick check if variable can be default NULL initialized
1430   // and avoid going through rest of code which may do, for c++11,
1431   // initialization of memory to all NULLs.
1432   if (!D.hasLocalStorage()) {
1433     QualType Ty = CGM.getContext().getBaseElementType(D.getType());
1434     if (Ty->isRecordType())
1435       if (const CXXConstructExpr *E =
1436           dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
1437         const CXXConstructorDecl *CD = E->getConstructor();
1438         if (CD->isTrivial() && CD->isDefaultConstructor())
1439           return CGM.EmitNullConstant(D.getType());
1440       }
1441   }
1442 
1443   QualType destType = D.getType();
1444 
1445   // Try to emit the initializer.  Note that this can allow some things that
1446   // are not allowed by tryEmitPrivateForMemory alone.
1447   if (auto value = D.evaluateValue()) {
1448     return tryEmitPrivateForMemory(*value, destType);
1449   }
1450 
1451   // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a
1452   // reference is a constant expression, and the reference binds to a temporary,
1453   // then constant initialization is performed. ConstExprEmitter will
1454   // incorrectly emit a prvalue constant in this case, and the calling code
1455   // interprets that as the (pointer) value of the reference, rather than the
1456   // desired value of the referee.
1457   if (destType->isReferenceType())
1458     return nullptr;
1459 
1460   const Expr *E = D.getInit();
1461   assert(E && "No initializer to emit");
1462 
1463   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1464   auto C =
1465     ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType);
1466   return (C ? emitForMemory(C, destType) : nullptr);
1467 }
1468 
1469 llvm::Constant *
1470 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) {
1471   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1472   auto C = tryEmitAbstract(E, nonMemoryDestType);
1473   return (C ? emitForMemory(C, destType) : nullptr);
1474 }
1475 
1476 llvm::Constant *
1477 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value,
1478                                           QualType destType) {
1479   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1480   auto C = tryEmitAbstract(value, nonMemoryDestType);
1481   return (C ? emitForMemory(C, destType) : nullptr);
1482 }
1483 
1484 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E,
1485                                                          QualType destType) {
1486   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1487   llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType);
1488   return (C ? emitForMemory(C, destType) : nullptr);
1489 }
1490 
1491 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value,
1492                                                          QualType destType) {
1493   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1494   auto C = tryEmitPrivate(value, nonMemoryDestType);
1495   return (C ? emitForMemory(C, destType) : nullptr);
1496 }
1497 
1498 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM,
1499                                                llvm::Constant *C,
1500                                                QualType destType) {
1501   // For an _Atomic-qualified constant, we may need to add tail padding.
1502   if (auto AT = destType->getAs<AtomicType>()) {
1503     QualType destValueType = AT->getValueType();
1504     C = emitForMemory(CGM, C, destValueType);
1505 
1506     uint64_t innerSize = CGM.getContext().getTypeSize(destValueType);
1507     uint64_t outerSize = CGM.getContext().getTypeSize(destType);
1508     if (innerSize == outerSize)
1509       return C;
1510 
1511     assert(innerSize < outerSize && "emitted over-large constant for atomic");
1512     llvm::Constant *elts[] = {
1513       C,
1514       llvm::ConstantAggregateZero::get(
1515           llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8))
1516     };
1517     return llvm::ConstantStruct::getAnon(elts);
1518   }
1519 
1520   // Zero-extend bool.
1521   if (C->getType()->isIntegerTy(1)) {
1522     llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType);
1523     return llvm::ConstantExpr::getZExt(C, boolTy);
1524   }
1525 
1526   return C;
1527 }
1528 
1529 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E,
1530                                                 QualType destType) {
1531   Expr::EvalResult Result;
1532 
1533   bool Success = false;
1534 
1535   if (destType->isReferenceType())
1536     Success = E->EvaluateAsLValue(Result, CGM.getContext());
1537   else
1538     Success = E->EvaluateAsRValue(Result, CGM.getContext());
1539 
1540   llvm::Constant *C;
1541   if (Success && !Result.HasSideEffects)
1542     C = tryEmitPrivate(Result.Val, destType);
1543   else
1544     C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType);
1545 
1546   return C;
1547 }
1548 
1549 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
1550   return getTargetCodeGenInfo().getNullPointer(*this, T, QT);
1551 }
1552 
1553 namespace {
1554 /// A struct which can be used to peephole certain kinds of finalization
1555 /// that normally happen during l-value emission.
1556 struct ConstantLValue {
1557   llvm::Constant *Value;
1558   bool HasOffsetApplied;
1559 
1560   /*implicit*/ ConstantLValue(llvm::Constant *value,
1561                               bool hasOffsetApplied = false)
1562     : Value(value), HasOffsetApplied(false) {}
1563 
1564   /*implicit*/ ConstantLValue(ConstantAddress address)
1565     : ConstantLValue(address.getPointer()) {}
1566 };
1567 
1568 /// A helper class for emitting constant l-values.
1569 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
1570                                                       ConstantLValue> {
1571   CodeGenModule &CGM;
1572   ConstantEmitter &Emitter;
1573   const APValue &Value;
1574   QualType DestType;
1575 
1576   // Befriend StmtVisitorBase so that we don't have to expose Visit*.
1577   friend StmtVisitorBase;
1578 
1579 public:
1580   ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
1581                         QualType destType)
1582     : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {}
1583 
1584   llvm::Constant *tryEmit();
1585 
1586 private:
1587   llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
1588   ConstantLValue tryEmitBase(const APValue::LValueBase &base);
1589 
1590   ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
1591   ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
1592   ConstantLValue VisitStringLiteral(const StringLiteral *E);
1593   ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
1594   ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
1595   ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
1596   ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
1597   ConstantLValue VisitCallExpr(const CallExpr *E);
1598   ConstantLValue VisitBlockExpr(const BlockExpr *E);
1599   ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
1600   ConstantLValue VisitCXXUuidofExpr(const CXXUuidofExpr *E);
1601   ConstantLValue VisitMaterializeTemporaryExpr(
1602                                          const MaterializeTemporaryExpr *E);
1603 
1604   bool hasNonZeroOffset() const {
1605     return !Value.getLValueOffset().isZero();
1606   }
1607 
1608   /// Return the value offset.
1609   llvm::Constant *getOffset() {
1610     return llvm::ConstantInt::get(CGM.Int64Ty,
1611                                   Value.getLValueOffset().getQuantity());
1612   }
1613 
1614   /// Apply the value offset to the given constant.
1615   llvm::Constant *applyOffset(llvm::Constant *C) {
1616     if (!hasNonZeroOffset())
1617       return C;
1618 
1619     llvm::Type *origPtrTy = C->getType();
1620     unsigned AS = origPtrTy->getPointerAddressSpace();
1621     llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS);
1622     C = llvm::ConstantExpr::getBitCast(C, charPtrTy);
1623     C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset());
1624     C = llvm::ConstantExpr::getPointerCast(C, origPtrTy);
1625     return C;
1626   }
1627 };
1628 
1629 }
1630 
1631 llvm::Constant *ConstantLValueEmitter::tryEmit() {
1632   const APValue::LValueBase &base = Value.getLValueBase();
1633 
1634   // Certain special array initializers are represented in APValue
1635   // as l-values referring to the base expression which generates the
1636   // array.  This happens with e.g. string literals.  These should
1637   // probably just get their own representation kind in APValue.
1638   if (DestType->isArrayType()) {
1639     assert(!hasNonZeroOffset() && "offset on array initializer");
1640     auto expr = const_cast<Expr*>(base.get<const Expr*>());
1641     return ConstExprEmitter(Emitter).Visit(expr, DestType);
1642   }
1643 
1644   // Otherwise, the destination type should be a pointer or reference
1645   // type, but it might also be a cast thereof.
1646   //
1647   // FIXME: the chain of casts required should be reflected in the APValue.
1648   // We need this in order to correctly handle things like a ptrtoint of a
1649   // non-zero null pointer and addrspace casts that aren't trivially
1650   // represented in LLVM IR.
1651   auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
1652   assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));
1653 
1654   // If there's no base at all, this is a null or absolute pointer,
1655   // possibly cast back to an integer type.
1656   if (!base) {
1657     return tryEmitAbsolute(destTy);
1658   }
1659 
1660   // Otherwise, try to emit the base.
1661   ConstantLValue result = tryEmitBase(base);
1662 
1663   // If that failed, we're done.
1664   llvm::Constant *value = result.Value;
1665   if (!value) return nullptr;
1666 
1667   // Apply the offset if necessary and not already done.
1668   if (!result.HasOffsetApplied) {
1669     value = applyOffset(value);
1670   }
1671 
1672   // Convert to the appropriate type; this could be an lvalue for
1673   // an integer.  FIXME: performAddrSpaceCast
1674   if (isa<llvm::PointerType>(destTy))
1675     return llvm::ConstantExpr::getPointerCast(value, destTy);
1676 
1677   return llvm::ConstantExpr::getPtrToInt(value, destTy);
1678 }
1679 
1680 /// Try to emit an absolute l-value, such as a null pointer or an integer
1681 /// bitcast to pointer type.
1682 llvm::Constant *
1683 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
1684   auto offset = getOffset();
1685 
1686   // If we're producing a pointer, this is easy.
1687   if (auto destPtrTy = cast<llvm::PointerType>(destTy)) {
1688     if (Value.isNullPointer()) {
1689       // FIXME: integer offsets from non-zero null pointers.
1690       return CGM.getNullPointer(destPtrTy, DestType);
1691     }
1692 
1693     // Convert the integer to a pointer-sized integer before converting it
1694     // to a pointer.
1695     // FIXME: signedness depends on the original integer type.
1696     auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
1697     llvm::Constant *C = offset;
1698     C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy,
1699                                            /*isSigned*/ false);
1700     C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy);
1701     return C;
1702   }
1703 
1704   // Otherwise, we're basically returning an integer constant.
1705 
1706   // FIXME: this does the wrong thing with ptrtoint of a null pointer,
1707   // but since we don't know the original pointer type, there's not much
1708   // we can do about it.
1709 
1710   auto C = getOffset();
1711   C = llvm::ConstantExpr::getIntegerCast(C, destTy, /*isSigned*/ false);
1712   return C;
1713 }
1714 
1715 ConstantLValue
1716 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
1717   // Handle values.
1718   if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
1719     if (D->hasAttr<WeakRefAttr>())
1720       return CGM.GetWeakRefReference(D).getPointer();
1721 
1722     if (auto FD = dyn_cast<FunctionDecl>(D))
1723       return CGM.GetAddrOfFunction(FD);
1724 
1725     if (auto VD = dyn_cast<VarDecl>(D)) {
1726       // We can never refer to a variable with local storage.
1727       if (!VD->hasLocalStorage()) {
1728         if (VD->isFileVarDecl() || VD->hasExternalStorage())
1729           return CGM.GetAddrOfGlobalVar(VD);
1730 
1731         if (VD->isLocalVarDecl()) {
1732           return CGM.getOrCreateStaticVarDecl(
1733               *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false));
1734         }
1735       }
1736     }
1737 
1738     return nullptr;
1739   }
1740 
1741   // Otherwise, it must be an expression.
1742   return Visit(base.get<const Expr*>());
1743 }
1744 
1745 ConstantLValue
1746 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
1747   return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E);
1748 }
1749 
1750 ConstantLValue
1751 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
1752   return CGM.GetAddrOfConstantStringFromLiteral(E);
1753 }
1754 
1755 ConstantLValue
1756 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
1757   return CGM.GetAddrOfConstantStringFromObjCEncode(E);
1758 }
1759 
1760 ConstantLValue
1761 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
1762   auto C = CGM.getObjCRuntime().GenerateConstantString(E->getString());
1763   return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(E->getType()));
1764 }
1765 
1766 ConstantLValue
1767 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
1768   if (auto CGF = Emitter.CGF) {
1769     LValue Res = CGF->EmitPredefinedLValue(E);
1770     return cast<ConstantAddress>(Res.getAddress());
1771   }
1772 
1773   auto kind = E->getIdentType();
1774   if (kind == PredefinedExpr::PrettyFunction) {
1775     return CGM.GetAddrOfConstantCString("top level", ".tmp");
1776   }
1777 
1778   return CGM.GetAddrOfConstantCString("", ".tmp");
1779 }
1780 
1781 ConstantLValue
1782 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
1783   assert(Emitter.CGF && "Invalid address of label expression outside function");
1784   llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel());
1785   Ptr = llvm::ConstantExpr::getBitCast(Ptr,
1786                                    CGM.getTypes().ConvertType(E->getType()));
1787   return Ptr;
1788 }
1789 
1790 ConstantLValue
1791 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
1792   unsigned builtin = E->getBuiltinCallee();
1793   if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
1794       builtin != Builtin::BI__builtin___NSStringMakeConstantString)
1795     return nullptr;
1796 
1797   auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts());
1798   if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
1799     return CGM.getObjCRuntime().GenerateConstantString(literal);
1800   } else {
1801     // FIXME: need to deal with UCN conversion issues.
1802     return CGM.GetAddrOfConstantCFString(literal);
1803   }
1804 }
1805 
1806 ConstantLValue
1807 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
1808   StringRef functionName;
1809   if (auto CGF = Emitter.CGF)
1810     functionName = CGF->CurFn->getName();
1811   else
1812     functionName = "global";
1813 
1814   return CGM.GetAddrOfGlobalBlock(E, functionName);
1815 }
1816 
1817 ConstantLValue
1818 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
1819   QualType T;
1820   if (E->isTypeOperand())
1821     T = E->getTypeOperand(CGM.getContext());
1822   else
1823     T = E->getExprOperand()->getType();
1824   return CGM.GetAddrOfRTTIDescriptor(T);
1825 }
1826 
1827 ConstantLValue
1828 ConstantLValueEmitter::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
1829   return CGM.GetAddrOfUuidDescriptor(E);
1830 }
1831 
1832 ConstantLValue
1833 ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
1834                                             const MaterializeTemporaryExpr *E) {
1835   assert(E->getStorageDuration() == SD_Static);
1836   SmallVector<const Expr *, 2> CommaLHSs;
1837   SmallVector<SubobjectAdjustment, 2> Adjustments;
1838   const Expr *Inner = E->GetTemporaryExpr()
1839       ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
1840   return CGM.GetAddrOfGlobalTemporary(E, Inner);
1841 }
1842 
1843 llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value,
1844                                                 QualType DestType) {
1845   switch (Value.getKind()) {
1846   case APValue::Uninitialized:
1847     llvm_unreachable("Constant expressions should be initialized.");
1848   case APValue::LValue:
1849     return ConstantLValueEmitter(*this, Value, DestType).tryEmit();
1850   case APValue::Int:
1851     return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt());
1852   case APValue::ComplexInt: {
1853     llvm::Constant *Complex[2];
1854 
1855     Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(),
1856                                         Value.getComplexIntReal());
1857     Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(),
1858                                         Value.getComplexIntImag());
1859 
1860     // FIXME: the target may want to specify that this is packed.
1861     llvm::StructType *STy =
1862         llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
1863     return llvm::ConstantStruct::get(STy, Complex);
1864   }
1865   case APValue::Float: {
1866     const llvm::APFloat &Init = Value.getFloat();
1867     if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
1868         !CGM.getContext().getLangOpts().NativeHalfType &&
1869         CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1870       return llvm::ConstantInt::get(CGM.getLLVMContext(),
1871                                     Init.bitcastToAPInt());
1872     else
1873       return llvm::ConstantFP::get(CGM.getLLVMContext(), Init);
1874   }
1875   case APValue::ComplexFloat: {
1876     llvm::Constant *Complex[2];
1877 
1878     Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(),
1879                                        Value.getComplexFloatReal());
1880     Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(),
1881                                        Value.getComplexFloatImag());
1882 
1883     // FIXME: the target may want to specify that this is packed.
1884     llvm::StructType *STy =
1885         llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
1886     return llvm::ConstantStruct::get(STy, Complex);
1887   }
1888   case APValue::Vector: {
1889     unsigned NumElts = Value.getVectorLength();
1890     SmallVector<llvm::Constant *, 4> Inits(NumElts);
1891 
1892     for (unsigned I = 0; I != NumElts; ++I) {
1893       const APValue &Elt = Value.getVectorElt(I);
1894       if (Elt.isInt())
1895         Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt());
1896       else if (Elt.isFloat())
1897         Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat());
1898       else
1899         llvm_unreachable("unsupported vector element type");
1900     }
1901     return llvm::ConstantVector::get(Inits);
1902   }
1903   case APValue::AddrLabelDiff: {
1904     const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
1905     const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
1906     llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
1907     llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
1908     if (!LHS || !RHS) return nullptr;
1909 
1910     // Compute difference
1911     llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType);
1912     LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy);
1913     RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy);
1914     llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
1915 
1916     // LLVM is a bit sensitive about the exact format of the
1917     // address-of-label difference; make sure to truncate after
1918     // the subtraction.
1919     return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
1920   }
1921   case APValue::Struct:
1922   case APValue::Union:
1923     return ConstStructBuilder::BuildStruct(*this, Value, DestType);
1924   case APValue::Array: {
1925     const ConstantArrayType *CAT =
1926         CGM.getContext().getAsConstantArrayType(DestType);
1927     unsigned NumElements = Value.getArraySize();
1928     unsigned NumInitElts = Value.getArrayInitializedElts();
1929 
1930     // Emit array filler, if there is one.
1931     llvm::Constant *Filler = nullptr;
1932     if (Value.hasArrayFiller()) {
1933       Filler = tryEmitAbstractForMemory(Value.getArrayFiller(),
1934                                         CAT->getElementType());
1935       if (!Filler)
1936         return nullptr;
1937     }
1938 
1939     // Emit initializer elements.
1940     SmallVector<llvm::Constant*, 16> Elts;
1941     if (Filler && Filler->isNullValue())
1942       Elts.reserve(NumInitElts + 1);
1943     else
1944       Elts.reserve(NumElements);
1945 
1946     llvm::Type *CommonElementType = nullptr;
1947     for (unsigned I = 0; I < NumInitElts; ++I) {
1948       llvm::Constant *C = tryEmitPrivateForMemory(
1949           Value.getArrayInitializedElt(I), CAT->getElementType());
1950       if (!C) return nullptr;
1951 
1952       if (I == 0)
1953         CommonElementType = C->getType();
1954       else if (C->getType() != CommonElementType)
1955         CommonElementType = nullptr;
1956       Elts.push_back(C);
1957     }
1958 
1959     return EmitArrayConstant(CGM, CAT, CommonElementType, NumElements, Elts,
1960                              Filler);
1961   }
1962   case APValue::MemberPointer:
1963     return CGM.getCXXABI().EmitMemberPointer(Value, DestType);
1964   }
1965   llvm_unreachable("Unknown APValue kind");
1966 }
1967 
1968 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted(
1969     const CompoundLiteralExpr *E) {
1970   return EmittedCompoundLiterals.lookup(E);
1971 }
1972 
1973 void CodeGenModule::setAddrOfConstantCompoundLiteral(
1974     const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
1975   bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second;
1976   (void)Ok;
1977   assert(Ok && "CLE has already been emitted!");
1978 }
1979 
1980 ConstantAddress
1981 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
1982   assert(E->isFileScope() && "not a file-scope compound literal expr");
1983   return tryEmitGlobalCompoundLiteral(*this, nullptr, E);
1984 }
1985 
1986 llvm::Constant *
1987 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
1988   // Member pointer constants always have a very particular form.
1989   const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
1990   const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
1991 
1992   // A member function pointer.
1993   if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
1994     return getCXXABI().EmitMemberFunctionPointer(method);
1995 
1996   // Otherwise, a member data pointer.
1997   uint64_t fieldOffset = getContext().getFieldOffset(decl);
1998   CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
1999   return getCXXABI().EmitMemberDataPointer(type, chars);
2000 }
2001 
2002 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2003                                                llvm::Type *baseType,
2004                                                const CXXRecordDecl *base);
2005 
2006 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
2007                                         const RecordDecl *record,
2008                                         bool asCompleteObject) {
2009   const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
2010   llvm::StructType *structure =
2011     (asCompleteObject ? layout.getLLVMType()
2012                       : layout.getBaseSubobjectLLVMType());
2013 
2014   unsigned numElements = structure->getNumElements();
2015   std::vector<llvm::Constant *> elements(numElements);
2016 
2017   auto CXXR = dyn_cast<CXXRecordDecl>(record);
2018   // Fill in all the bases.
2019   if (CXXR) {
2020     for (const auto &I : CXXR->bases()) {
2021       if (I.isVirtual()) {
2022         // Ignore virtual bases; if we're laying out for a complete
2023         // object, we'll lay these out later.
2024         continue;
2025       }
2026 
2027       const CXXRecordDecl *base =
2028         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2029 
2030       // Ignore empty bases.
2031       if (base->isEmpty() ||
2032           CGM.getContext().getASTRecordLayout(base).getNonVirtualSize()
2033               .isZero())
2034         continue;
2035 
2036       unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
2037       llvm::Type *baseType = structure->getElementType(fieldIndex);
2038       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2039     }
2040   }
2041 
2042   // Fill in all the fields.
2043   for (const auto *Field : record->fields()) {
2044     // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
2045     // will fill in later.)
2046     if (!Field->isBitField()) {
2047       unsigned fieldIndex = layout.getLLVMFieldNo(Field);
2048       elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
2049     }
2050 
2051     // For unions, stop after the first named field.
2052     if (record->isUnion()) {
2053       if (Field->getIdentifier())
2054         break;
2055       if (const auto *FieldRD =
2056               dyn_cast_or_null<RecordDecl>(Field->getType()->getAsTagDecl()))
2057         if (FieldRD->findFirstNamedDataMember())
2058           break;
2059     }
2060   }
2061 
2062   // Fill in the virtual bases, if we're working with the complete object.
2063   if (CXXR && asCompleteObject) {
2064     for (const auto &I : CXXR->vbases()) {
2065       const CXXRecordDecl *base =
2066         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2067 
2068       // Ignore empty bases.
2069       if (base->isEmpty())
2070         continue;
2071 
2072       unsigned fieldIndex = layout.getVirtualBaseIndex(base);
2073 
2074       // We might have already laid this field out.
2075       if (elements[fieldIndex]) continue;
2076 
2077       llvm::Type *baseType = structure->getElementType(fieldIndex);
2078       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2079     }
2080   }
2081 
2082   // Now go through all other fields and zero them out.
2083   for (unsigned i = 0; i != numElements; ++i) {
2084     if (!elements[i])
2085       elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
2086   }
2087 
2088   return llvm::ConstantStruct::get(structure, elements);
2089 }
2090 
2091 /// Emit the null constant for a base subobject.
2092 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2093                                                llvm::Type *baseType,
2094                                                const CXXRecordDecl *base) {
2095   const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
2096 
2097   // Just zero out bases that don't have any pointer to data members.
2098   if (baseLayout.isZeroInitializableAsBase())
2099     return llvm::Constant::getNullValue(baseType);
2100 
2101   // Otherwise, we can just use its null constant.
2102   return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
2103 }
2104 
2105 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM,
2106                                                    QualType T) {
2107   return emitForMemory(CGM, CGM.EmitNullConstant(T), T);
2108 }
2109 
2110 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
2111   if (T->getAs<PointerType>())
2112     return getNullPointer(
2113         cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T);
2114 
2115   if (getTypes().isZeroInitializable(T))
2116     return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
2117 
2118   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
2119     llvm::ArrayType *ATy =
2120       cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
2121 
2122     QualType ElementTy = CAT->getElementType();
2123 
2124     llvm::Constant *Element =
2125       ConstantEmitter::emitNullForMemory(*this, ElementTy);
2126     unsigned NumElements = CAT->getSize().getZExtValue();
2127     SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
2128     return llvm::ConstantArray::get(ATy, Array);
2129   }
2130 
2131   if (const RecordType *RT = T->getAs<RecordType>())
2132     return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true);
2133 
2134   assert(T->isMemberDataPointerType() &&
2135          "Should only see pointers to data members here!");
2136 
2137   return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
2138 }
2139 
2140 llvm::Constant *
2141 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
2142   return ::EmitNullConstant(*this, Record, false);
2143 }
2144