1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Constant Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGObjCRuntime.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenModule.h" 19 #include "ConstantEmitter.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/APValue.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/Builtins.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalVariable.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 //===----------------------------------------------------------------------===// 34 // ConstStructBuilder 35 //===----------------------------------------------------------------------===// 36 37 namespace { 38 class ConstExprEmitter; 39 class ConstStructBuilder { 40 CodeGenModule &CGM; 41 ConstantEmitter &Emitter; 42 43 bool Packed; 44 CharUnits NextFieldOffsetInChars; 45 CharUnits LLVMStructAlignment; 46 SmallVector<llvm::Constant *, 32> Elements; 47 public: 48 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 49 ConstExprEmitter *ExprEmitter, 50 llvm::ConstantStruct *Base, 51 InitListExpr *Updater, 52 QualType ValTy); 53 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 54 InitListExpr *ILE, QualType StructTy); 55 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 56 const APValue &Value, QualType ValTy); 57 58 private: 59 ConstStructBuilder(ConstantEmitter &emitter) 60 : CGM(emitter.CGM), Emitter(emitter), Packed(false), 61 NextFieldOffsetInChars(CharUnits::Zero()), 62 LLVMStructAlignment(CharUnits::One()) { } 63 64 void AppendField(const FieldDecl *Field, uint64_t FieldOffset, 65 llvm::Constant *InitExpr); 66 67 void AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst); 68 69 void AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, 70 llvm::ConstantInt *InitExpr); 71 72 void AppendPadding(CharUnits PadSize); 73 74 void AppendTailPadding(CharUnits RecordSize); 75 76 void ConvertStructToPacked(); 77 78 bool Build(InitListExpr *ILE); 79 bool Build(ConstExprEmitter *Emitter, llvm::ConstantStruct *Base, 80 InitListExpr *Updater); 81 bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase, 82 const CXXRecordDecl *VTableClass, CharUnits BaseOffset); 83 llvm::Constant *Finalize(QualType Ty); 84 85 CharUnits getAlignment(const llvm::Constant *C) const { 86 if (Packed) return CharUnits::One(); 87 return CharUnits::fromQuantity( 88 CGM.getDataLayout().getABITypeAlignment(C->getType())); 89 } 90 91 CharUnits getSizeInChars(const llvm::Constant *C) const { 92 return CharUnits::fromQuantity( 93 CGM.getDataLayout().getTypeAllocSize(C->getType())); 94 } 95 }; 96 97 void ConstStructBuilder:: 98 AppendField(const FieldDecl *Field, uint64_t FieldOffset, 99 llvm::Constant *InitCst) { 100 const ASTContext &Context = CGM.getContext(); 101 102 CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset); 103 104 AppendBytes(FieldOffsetInChars, InitCst); 105 } 106 107 void ConstStructBuilder:: 108 AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst) { 109 110 assert(NextFieldOffsetInChars <= FieldOffsetInChars 111 && "Field offset mismatch!"); 112 113 CharUnits FieldAlignment = getAlignment(InitCst); 114 115 // Round up the field offset to the alignment of the field type. 116 CharUnits AlignedNextFieldOffsetInChars = 117 NextFieldOffsetInChars.alignTo(FieldAlignment); 118 119 if (AlignedNextFieldOffsetInChars < FieldOffsetInChars) { 120 // We need to append padding. 121 AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars); 122 123 assert(NextFieldOffsetInChars == FieldOffsetInChars && 124 "Did not add enough padding!"); 125 126 AlignedNextFieldOffsetInChars = 127 NextFieldOffsetInChars.alignTo(FieldAlignment); 128 } 129 130 if (AlignedNextFieldOffsetInChars > FieldOffsetInChars) { 131 assert(!Packed && "Alignment is wrong even with a packed struct!"); 132 133 // Convert the struct to a packed struct. 134 ConvertStructToPacked(); 135 136 // After we pack the struct, we may need to insert padding. 137 if (NextFieldOffsetInChars < FieldOffsetInChars) { 138 // We need to append padding. 139 AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars); 140 141 assert(NextFieldOffsetInChars == FieldOffsetInChars && 142 "Did not add enough padding!"); 143 } 144 AlignedNextFieldOffsetInChars = NextFieldOffsetInChars; 145 } 146 147 // Add the field. 148 Elements.push_back(InitCst); 149 NextFieldOffsetInChars = AlignedNextFieldOffsetInChars + 150 getSizeInChars(InitCst); 151 152 if (Packed) 153 assert(LLVMStructAlignment == CharUnits::One() && 154 "Packed struct not byte-aligned!"); 155 else 156 LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment); 157 } 158 159 void ConstStructBuilder::AppendBitField(const FieldDecl *Field, 160 uint64_t FieldOffset, 161 llvm::ConstantInt *CI) { 162 const ASTContext &Context = CGM.getContext(); 163 const uint64_t CharWidth = Context.getCharWidth(); 164 uint64_t NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars); 165 if (FieldOffset > NextFieldOffsetInBits) { 166 // We need to add padding. 167 CharUnits PadSize = Context.toCharUnitsFromBits( 168 llvm::alignTo(FieldOffset - NextFieldOffsetInBits, 169 Context.getTargetInfo().getCharAlign())); 170 171 AppendPadding(PadSize); 172 } 173 174 uint64_t FieldSize = Field->getBitWidthValue(Context); 175 176 llvm::APInt FieldValue = CI->getValue(); 177 178 // Promote the size of FieldValue if necessary 179 // FIXME: This should never occur, but currently it can because initializer 180 // constants are cast to bool, and because clang is not enforcing bitfield 181 // width limits. 182 if (FieldSize > FieldValue.getBitWidth()) 183 FieldValue = FieldValue.zext(FieldSize); 184 185 // Truncate the size of FieldValue to the bit field size. 186 if (FieldSize < FieldValue.getBitWidth()) 187 FieldValue = FieldValue.trunc(FieldSize); 188 189 NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars); 190 if (FieldOffset < NextFieldOffsetInBits) { 191 // Either part of the field or the entire field can go into the previous 192 // byte. 193 assert(!Elements.empty() && "Elements can't be empty!"); 194 195 unsigned BitsInPreviousByte = NextFieldOffsetInBits - FieldOffset; 196 197 bool FitsCompletelyInPreviousByte = 198 BitsInPreviousByte >= FieldValue.getBitWidth(); 199 200 llvm::APInt Tmp = FieldValue; 201 202 if (!FitsCompletelyInPreviousByte) { 203 unsigned NewFieldWidth = FieldSize - BitsInPreviousByte; 204 205 if (CGM.getDataLayout().isBigEndian()) { 206 Tmp.lshrInPlace(NewFieldWidth); 207 Tmp = Tmp.trunc(BitsInPreviousByte); 208 209 // We want the remaining high bits. 210 FieldValue = FieldValue.trunc(NewFieldWidth); 211 } else { 212 Tmp = Tmp.trunc(BitsInPreviousByte); 213 214 // We want the remaining low bits. 215 FieldValue.lshrInPlace(BitsInPreviousByte); 216 FieldValue = FieldValue.trunc(NewFieldWidth); 217 } 218 } 219 220 Tmp = Tmp.zext(CharWidth); 221 if (CGM.getDataLayout().isBigEndian()) { 222 if (FitsCompletelyInPreviousByte) 223 Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth()); 224 } else { 225 Tmp = Tmp.shl(CharWidth - BitsInPreviousByte); 226 } 227 228 // 'or' in the bits that go into the previous byte. 229 llvm::Value *LastElt = Elements.back(); 230 if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(LastElt)) 231 Tmp |= Val->getValue(); 232 else { 233 assert(isa<llvm::UndefValue>(LastElt)); 234 // If there is an undef field that we're adding to, it can either be a 235 // scalar undef (in which case, we just replace it with our field) or it 236 // is an array. If it is an array, we have to pull one byte off the 237 // array so that the other undef bytes stay around. 238 if (!isa<llvm::IntegerType>(LastElt->getType())) { 239 // The undef padding will be a multibyte array, create a new smaller 240 // padding and then an hole for our i8 to get plopped into. 241 assert(isa<llvm::ArrayType>(LastElt->getType()) && 242 "Expected array padding of undefs"); 243 llvm::ArrayType *AT = cast<llvm::ArrayType>(LastElt->getType()); 244 assert(AT->getElementType()->isIntegerTy(CharWidth) && 245 AT->getNumElements() != 0 && 246 "Expected non-empty array padding of undefs"); 247 248 // Remove the padding array. 249 NextFieldOffsetInChars -= CharUnits::fromQuantity(AT->getNumElements()); 250 Elements.pop_back(); 251 252 // Add the padding back in two chunks. 253 AppendPadding(CharUnits::fromQuantity(AT->getNumElements()-1)); 254 AppendPadding(CharUnits::One()); 255 assert(isa<llvm::UndefValue>(Elements.back()) && 256 Elements.back()->getType()->isIntegerTy(CharWidth) && 257 "Padding addition didn't work right"); 258 } 259 } 260 261 Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp); 262 263 if (FitsCompletelyInPreviousByte) 264 return; 265 } 266 267 while (FieldValue.getBitWidth() > CharWidth) { 268 llvm::APInt Tmp; 269 270 if (CGM.getDataLayout().isBigEndian()) { 271 // We want the high bits. 272 Tmp = 273 FieldValue.lshr(FieldValue.getBitWidth() - CharWidth).trunc(CharWidth); 274 } else { 275 // We want the low bits. 276 Tmp = FieldValue.trunc(CharWidth); 277 278 FieldValue.lshrInPlace(CharWidth); 279 } 280 281 Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp)); 282 ++NextFieldOffsetInChars; 283 284 FieldValue = FieldValue.trunc(FieldValue.getBitWidth() - CharWidth); 285 } 286 287 assert(FieldValue.getBitWidth() > 0 && 288 "Should have at least one bit left!"); 289 assert(FieldValue.getBitWidth() <= CharWidth && 290 "Should not have more than a byte left!"); 291 292 if (FieldValue.getBitWidth() < CharWidth) { 293 if (CGM.getDataLayout().isBigEndian()) { 294 unsigned BitWidth = FieldValue.getBitWidth(); 295 296 FieldValue = FieldValue.zext(CharWidth) << (CharWidth - BitWidth); 297 } else 298 FieldValue = FieldValue.zext(CharWidth); 299 } 300 301 // Append the last element. 302 Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), 303 FieldValue)); 304 ++NextFieldOffsetInChars; 305 } 306 307 void ConstStructBuilder::AppendPadding(CharUnits PadSize) { 308 if (PadSize.isZero()) 309 return; 310 311 llvm::Type *Ty = CGM.Int8Ty; 312 if (PadSize > CharUnits::One()) 313 Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity()); 314 315 llvm::Constant *C = llvm::UndefValue::get(Ty); 316 Elements.push_back(C); 317 assert(getAlignment(C) == CharUnits::One() && 318 "Padding must have 1 byte alignment!"); 319 320 NextFieldOffsetInChars += getSizeInChars(C); 321 } 322 323 void ConstStructBuilder::AppendTailPadding(CharUnits RecordSize) { 324 assert(NextFieldOffsetInChars <= RecordSize && 325 "Size mismatch!"); 326 327 AppendPadding(RecordSize - NextFieldOffsetInChars); 328 } 329 330 void ConstStructBuilder::ConvertStructToPacked() { 331 SmallVector<llvm::Constant *, 16> PackedElements; 332 CharUnits ElementOffsetInChars = CharUnits::Zero(); 333 334 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 335 llvm::Constant *C = Elements[i]; 336 337 CharUnits ElementAlign = CharUnits::fromQuantity( 338 CGM.getDataLayout().getABITypeAlignment(C->getType())); 339 CharUnits AlignedElementOffsetInChars = 340 ElementOffsetInChars.alignTo(ElementAlign); 341 342 if (AlignedElementOffsetInChars > ElementOffsetInChars) { 343 // We need some padding. 344 CharUnits NumChars = 345 AlignedElementOffsetInChars - ElementOffsetInChars; 346 347 llvm::Type *Ty = CGM.Int8Ty; 348 if (NumChars > CharUnits::One()) 349 Ty = llvm::ArrayType::get(Ty, NumChars.getQuantity()); 350 351 llvm::Constant *Padding = llvm::UndefValue::get(Ty); 352 PackedElements.push_back(Padding); 353 ElementOffsetInChars += getSizeInChars(Padding); 354 } 355 356 PackedElements.push_back(C); 357 ElementOffsetInChars += getSizeInChars(C); 358 } 359 360 assert(ElementOffsetInChars == NextFieldOffsetInChars && 361 "Packing the struct changed its size!"); 362 363 Elements.swap(PackedElements); 364 LLVMStructAlignment = CharUnits::One(); 365 Packed = true; 366 } 367 368 bool ConstStructBuilder::Build(InitListExpr *ILE) { 369 RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl(); 370 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 371 372 unsigned FieldNo = 0; 373 unsigned ElementNo = 0; 374 375 // Bail out if we have base classes. We could support these, but they only 376 // arise in C++1z where we will have already constant folded most interesting 377 // cases. FIXME: There are still a few more cases we can handle this way. 378 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 379 if (CXXRD->getNumBases()) 380 return false; 381 382 for (RecordDecl::field_iterator Field = RD->field_begin(), 383 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 384 // If this is a union, skip all the fields that aren't being initialized. 385 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field) 386 continue; 387 388 // Don't emit anonymous bitfields, they just affect layout. 389 if (Field->isUnnamedBitfield()) 390 continue; 391 392 // Get the initializer. A struct can include fields without initializers, 393 // we just use explicit null values for them. 394 llvm::Constant *EltInit; 395 if (ElementNo < ILE->getNumInits()) 396 EltInit = Emitter.tryEmitPrivateForMemory(ILE->getInit(ElementNo++), 397 Field->getType()); 398 else 399 EltInit = Emitter.emitNullForMemory(Field->getType()); 400 401 if (!EltInit) 402 return false; 403 404 if (!Field->isBitField()) { 405 // Handle non-bitfield members. 406 AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit); 407 } else { 408 // Otherwise we have a bitfield. 409 if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) { 410 AppendBitField(*Field, Layout.getFieldOffset(FieldNo), CI); 411 } else { 412 // We are trying to initialize a bitfield with a non-trivial constant, 413 // this must require run-time code. 414 return false; 415 } 416 } 417 } 418 419 return true; 420 } 421 422 namespace { 423 struct BaseInfo { 424 BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index) 425 : Decl(Decl), Offset(Offset), Index(Index) { 426 } 427 428 const CXXRecordDecl *Decl; 429 CharUnits Offset; 430 unsigned Index; 431 432 bool operator<(const BaseInfo &O) const { return Offset < O.Offset; } 433 }; 434 } 435 436 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD, 437 bool IsPrimaryBase, 438 const CXXRecordDecl *VTableClass, 439 CharUnits Offset) { 440 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 441 442 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 443 // Add a vtable pointer, if we need one and it hasn't already been added. 444 if (CD->isDynamicClass() && !IsPrimaryBase) { 445 llvm::Constant *VTableAddressPoint = 446 CGM.getCXXABI().getVTableAddressPointForConstExpr( 447 BaseSubobject(CD, Offset), VTableClass); 448 AppendBytes(Offset, VTableAddressPoint); 449 } 450 451 // Accumulate and sort bases, in order to visit them in address order, which 452 // may not be the same as declaration order. 453 SmallVector<BaseInfo, 8> Bases; 454 Bases.reserve(CD->getNumBases()); 455 unsigned BaseNo = 0; 456 for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(), 457 BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) { 458 assert(!Base->isVirtual() && "should not have virtual bases here"); 459 const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl(); 460 CharUnits BaseOffset = Layout.getBaseClassOffset(BD); 461 Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo)); 462 } 463 std::stable_sort(Bases.begin(), Bases.end()); 464 465 for (unsigned I = 0, N = Bases.size(); I != N; ++I) { 466 BaseInfo &Base = Bases[I]; 467 468 bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl; 469 Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase, 470 VTableClass, Offset + Base.Offset); 471 } 472 } 473 474 unsigned FieldNo = 0; 475 uint64_t OffsetBits = CGM.getContext().toBits(Offset); 476 477 for (RecordDecl::field_iterator Field = RD->field_begin(), 478 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 479 // If this is a union, skip all the fields that aren't being initialized. 480 if (RD->isUnion() && Val.getUnionField() != *Field) 481 continue; 482 483 // Don't emit anonymous bitfields, they just affect layout. 484 if (Field->isUnnamedBitfield()) 485 continue; 486 487 // Emit the value of the initializer. 488 const APValue &FieldValue = 489 RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo); 490 llvm::Constant *EltInit = 491 Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType()); 492 if (!EltInit) 493 return false; 494 495 if (!Field->isBitField()) { 496 // Handle non-bitfield members. 497 AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, EltInit); 498 } else { 499 // Otherwise we have a bitfield. 500 AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 501 cast<llvm::ConstantInt>(EltInit)); 502 } 503 } 504 505 return true; 506 } 507 508 llvm::Constant *ConstStructBuilder::Finalize(QualType Ty) { 509 RecordDecl *RD = Ty->getAs<RecordType>()->getDecl(); 510 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 511 512 CharUnits LayoutSizeInChars = Layout.getSize(); 513 514 if (NextFieldOffsetInChars > LayoutSizeInChars) { 515 // If the struct is bigger than the size of the record type, 516 // we must have a flexible array member at the end. 517 assert(RD->hasFlexibleArrayMember() && 518 "Must have flexible array member if struct is bigger than type!"); 519 520 // No tail padding is necessary. 521 } else { 522 // Append tail padding if necessary. 523 CharUnits LLVMSizeInChars = 524 NextFieldOffsetInChars.alignTo(LLVMStructAlignment); 525 526 if (LLVMSizeInChars != LayoutSizeInChars) 527 AppendTailPadding(LayoutSizeInChars); 528 529 LLVMSizeInChars = NextFieldOffsetInChars.alignTo(LLVMStructAlignment); 530 531 // Check if we need to convert the struct to a packed struct. 532 if (NextFieldOffsetInChars <= LayoutSizeInChars && 533 LLVMSizeInChars > LayoutSizeInChars) { 534 assert(!Packed && "Size mismatch!"); 535 536 ConvertStructToPacked(); 537 assert(NextFieldOffsetInChars <= LayoutSizeInChars && 538 "Converting to packed did not help!"); 539 } 540 541 LLVMSizeInChars = NextFieldOffsetInChars.alignTo(LLVMStructAlignment); 542 543 assert(LayoutSizeInChars == LLVMSizeInChars && 544 "Tail padding mismatch!"); 545 } 546 547 // Pick the type to use. If the type is layout identical to the ConvertType 548 // type then use it, otherwise use whatever the builder produced for us. 549 llvm::StructType *STy = 550 llvm::ConstantStruct::getTypeForElements(CGM.getLLVMContext(), 551 Elements, Packed); 552 llvm::Type *ValTy = CGM.getTypes().ConvertType(Ty); 553 if (llvm::StructType *ValSTy = dyn_cast<llvm::StructType>(ValTy)) { 554 if (ValSTy->isLayoutIdentical(STy)) 555 STy = ValSTy; 556 } 557 558 llvm::Constant *Result = llvm::ConstantStruct::get(STy, Elements); 559 560 assert(NextFieldOffsetInChars.alignTo(getAlignment(Result)) == 561 getSizeInChars(Result) && 562 "Size mismatch!"); 563 564 return Result; 565 } 566 567 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 568 ConstExprEmitter *ExprEmitter, 569 llvm::ConstantStruct *Base, 570 InitListExpr *Updater, 571 QualType ValTy) { 572 ConstStructBuilder Builder(Emitter); 573 if (!Builder.Build(ExprEmitter, Base, Updater)) 574 return nullptr; 575 return Builder.Finalize(ValTy); 576 } 577 578 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 579 InitListExpr *ILE, 580 QualType ValTy) { 581 ConstStructBuilder Builder(Emitter); 582 583 if (!Builder.Build(ILE)) 584 return nullptr; 585 586 return Builder.Finalize(ValTy); 587 } 588 589 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 590 const APValue &Val, 591 QualType ValTy) { 592 ConstStructBuilder Builder(Emitter); 593 594 const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl(); 595 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); 596 if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero())) 597 return nullptr; 598 599 return Builder.Finalize(ValTy); 600 } 601 602 603 //===----------------------------------------------------------------------===// 604 // ConstExprEmitter 605 //===----------------------------------------------------------------------===// 606 607 static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM, 608 CodeGenFunction *CGF, 609 const CompoundLiteralExpr *E) { 610 CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType()); 611 if (llvm::GlobalVariable *Addr = 612 CGM.getAddrOfConstantCompoundLiteralIfEmitted(E)) 613 return ConstantAddress(Addr, Align); 614 615 LangAS addressSpace = E->getType().getAddressSpace(); 616 617 ConstantEmitter emitter(CGM, CGF); 618 llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(), 619 addressSpace, E->getType()); 620 if (!C) { 621 assert(!E->isFileScope() && 622 "file-scope compound literal did not have constant initializer!"); 623 return ConstantAddress::invalid(); 624 } 625 626 auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), 627 CGM.isTypeConstant(E->getType(), true), 628 llvm::GlobalValue::InternalLinkage, 629 C, ".compoundliteral", nullptr, 630 llvm::GlobalVariable::NotThreadLocal, 631 CGM.getContext().getTargetAddressSpace(addressSpace)); 632 emitter.finalize(GV); 633 GV->setAlignment(Align.getQuantity()); 634 CGM.setAddrOfConstantCompoundLiteral(E, GV); 635 return ConstantAddress(GV, Align); 636 } 637 638 static llvm::Constant * 639 EmitArrayConstant(CodeGenModule &CGM, const ConstantArrayType *DestType, 640 llvm::Type *CommonElementType, unsigned ArrayBound, 641 SmallVectorImpl<llvm::Constant *> &Elements, 642 llvm::Constant *Filler) { 643 // Figure out how long the initial prefix of non-zero elements is. 644 unsigned NonzeroLength = ArrayBound; 645 if (Elements.size() < NonzeroLength && Filler->isNullValue()) 646 NonzeroLength = Elements.size(); 647 if (NonzeroLength == Elements.size()) { 648 while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue()) 649 --NonzeroLength; 650 } 651 652 if (NonzeroLength == 0) { 653 return llvm::ConstantAggregateZero::get( 654 CGM.getTypes().ConvertType(QualType(DestType, 0))); 655 } 656 657 // Add a zeroinitializer array filler if we have lots of trailing zeroes. 658 unsigned TrailingZeroes = ArrayBound - NonzeroLength; 659 if (TrailingZeroes >= 8) { 660 assert(Elements.size() >= NonzeroLength && 661 "missing initializer for non-zero element"); 662 Elements.resize(NonzeroLength + 1); 663 auto *FillerType = 664 CommonElementType 665 ? CommonElementType 666 : CGM.getTypes().ConvertType(DestType->getElementType()); 667 FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes); 668 Elements.back() = llvm::ConstantAggregateZero::get(FillerType); 669 CommonElementType = nullptr; 670 } else if (Elements.size() != ArrayBound) { 671 // Otherwise pad to the right size with the filler if necessary. 672 Elements.resize(ArrayBound, Filler); 673 if (Filler->getType() != CommonElementType) 674 CommonElementType = nullptr; 675 } 676 677 // If all elements have the same type, just emit an array constant. 678 if (CommonElementType) 679 return llvm::ConstantArray::get( 680 llvm::ArrayType::get(CommonElementType, ArrayBound), Elements); 681 682 // We have mixed types. Use a packed struct. 683 llvm::SmallVector<llvm::Type *, 16> Types; 684 Types.reserve(Elements.size()); 685 for (llvm::Constant *Elt : Elements) 686 Types.push_back(Elt->getType()); 687 llvm::StructType *SType = 688 llvm::StructType::get(CGM.getLLVMContext(), Types, true); 689 return llvm::ConstantStruct::get(SType, Elements); 690 } 691 692 /// This class only needs to handle two cases: 693 /// 1) Literals (this is used by APValue emission to emit literals). 694 /// 2) Arrays, structs and unions (outside C++11 mode, we don't currently 695 /// constant fold these types). 696 class ConstExprEmitter : 697 public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> { 698 CodeGenModule &CGM; 699 ConstantEmitter &Emitter; 700 llvm::LLVMContext &VMContext; 701 public: 702 ConstExprEmitter(ConstantEmitter &emitter) 703 : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) { 704 } 705 706 //===--------------------------------------------------------------------===// 707 // Visitor Methods 708 //===--------------------------------------------------------------------===// 709 710 llvm::Constant *VisitStmt(Stmt *S, QualType T) { 711 return nullptr; 712 } 713 714 llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) { 715 return Visit(PE->getSubExpr(), T); 716 } 717 718 llvm::Constant * 719 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE, 720 QualType T) { 721 return Visit(PE->getReplacement(), T); 722 } 723 724 llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE, 725 QualType T) { 726 return Visit(GE->getResultExpr(), T); 727 } 728 729 llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) { 730 return Visit(CE->getChosenSubExpr(), T); 731 } 732 733 llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) { 734 return Visit(E->getInitializer(), T); 735 } 736 737 llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) { 738 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 739 CGM.EmitExplicitCastExprType(ECE, Emitter.CGF); 740 Expr *subExpr = E->getSubExpr(); 741 742 switch (E->getCastKind()) { 743 case CK_ToUnion: { 744 // GCC cast to union extension 745 assert(E->getType()->isUnionType() && 746 "Destination type is not union type!"); 747 748 auto field = E->getTargetUnionField(); 749 750 auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType()); 751 if (!C) return nullptr; 752 753 auto destTy = ConvertType(destType); 754 if (C->getType() == destTy) return C; 755 756 // Build a struct with the union sub-element as the first member, 757 // and padded to the appropriate size. 758 SmallVector<llvm::Constant*, 2> Elts; 759 SmallVector<llvm::Type*, 2> Types; 760 Elts.push_back(C); 761 Types.push_back(C->getType()); 762 unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType()); 763 unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy); 764 765 assert(CurSize <= TotalSize && "Union size mismatch!"); 766 if (unsigned NumPadBytes = TotalSize - CurSize) { 767 llvm::Type *Ty = CGM.Int8Ty; 768 if (NumPadBytes > 1) 769 Ty = llvm::ArrayType::get(Ty, NumPadBytes); 770 771 Elts.push_back(llvm::UndefValue::get(Ty)); 772 Types.push_back(Ty); 773 } 774 775 llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false); 776 return llvm::ConstantStruct::get(STy, Elts); 777 } 778 779 case CK_AddressSpaceConversion: { 780 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 781 if (!C) return nullptr; 782 LangAS destAS = E->getType()->getPointeeType().getAddressSpace(); 783 LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace(); 784 llvm::Type *destTy = ConvertType(E->getType()); 785 return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS, 786 destAS, destTy); 787 } 788 789 case CK_LValueToRValue: 790 case CK_AtomicToNonAtomic: 791 case CK_NonAtomicToAtomic: 792 case CK_NoOp: 793 case CK_ConstructorConversion: 794 return Visit(subExpr, destType); 795 796 case CK_IntToOCLSampler: 797 llvm_unreachable("global sampler variables are not generated"); 798 799 case CK_Dependent: llvm_unreachable("saw dependent cast!"); 800 801 case CK_BuiltinFnToFnPtr: 802 llvm_unreachable("builtin functions are handled elsewhere"); 803 804 case CK_ReinterpretMemberPointer: 805 case CK_DerivedToBaseMemberPointer: 806 case CK_BaseToDerivedMemberPointer: { 807 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 808 if (!C) return nullptr; 809 return CGM.getCXXABI().EmitMemberPointerConversion(E, C); 810 } 811 812 // These will never be supported. 813 case CK_ObjCObjectLValueCast: 814 case CK_ARCProduceObject: 815 case CK_ARCConsumeObject: 816 case CK_ARCReclaimReturnedObject: 817 case CK_ARCExtendBlockObject: 818 case CK_CopyAndAutoreleaseBlockObject: 819 return nullptr; 820 821 // These don't need to be handled here because Evaluate knows how to 822 // evaluate them in the cases where they can be folded. 823 case CK_BitCast: 824 case CK_ToVoid: 825 case CK_Dynamic: 826 case CK_LValueBitCast: 827 case CK_NullToMemberPointer: 828 case CK_UserDefinedConversion: 829 case CK_CPointerToObjCPointerCast: 830 case CK_BlockPointerToObjCPointerCast: 831 case CK_AnyPointerToBlockPointerCast: 832 case CK_ArrayToPointerDecay: 833 case CK_FunctionToPointerDecay: 834 case CK_BaseToDerived: 835 case CK_DerivedToBase: 836 case CK_UncheckedDerivedToBase: 837 case CK_MemberPointerToBoolean: 838 case CK_VectorSplat: 839 case CK_FloatingRealToComplex: 840 case CK_FloatingComplexToReal: 841 case CK_FloatingComplexToBoolean: 842 case CK_FloatingComplexCast: 843 case CK_FloatingComplexToIntegralComplex: 844 case CK_IntegralRealToComplex: 845 case CK_IntegralComplexToReal: 846 case CK_IntegralComplexToBoolean: 847 case CK_IntegralComplexCast: 848 case CK_IntegralComplexToFloatingComplex: 849 case CK_PointerToIntegral: 850 case CK_PointerToBoolean: 851 case CK_NullToPointer: 852 case CK_IntegralCast: 853 case CK_BooleanToSignedIntegral: 854 case CK_IntegralToPointer: 855 case CK_IntegralToBoolean: 856 case CK_IntegralToFloating: 857 case CK_FloatingToIntegral: 858 case CK_FloatingToBoolean: 859 case CK_FloatingCast: 860 case CK_ZeroToOCLEvent: 861 case CK_ZeroToOCLQueue: 862 return nullptr; 863 } 864 llvm_unreachable("Invalid CastKind"); 865 } 866 867 llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE, QualType T) { 868 return Visit(DAE->getExpr(), T); 869 } 870 871 llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) { 872 // No need for a DefaultInitExprScope: we don't handle 'this' in a 873 // constant expression. 874 return Visit(DIE->getExpr(), T); 875 } 876 877 llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) { 878 if (!E->cleanupsHaveSideEffects()) 879 return Visit(E->getSubExpr(), T); 880 return nullptr; 881 } 882 883 llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E, 884 QualType T) { 885 return Visit(E->GetTemporaryExpr(), T); 886 } 887 888 llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) { 889 auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType()); 890 assert(CAT && "can't emit array init for non-constant-bound array"); 891 unsigned NumInitElements = ILE->getNumInits(); 892 unsigned NumElements = CAT->getSize().getZExtValue(); 893 894 // Initialising an array requires us to automatically 895 // initialise any elements that have not been initialised explicitly 896 unsigned NumInitableElts = std::min(NumInitElements, NumElements); 897 898 QualType EltType = CAT->getElementType(); 899 900 // Initialize remaining array elements. 901 llvm::Constant *fillC = nullptr; 902 if (Expr *filler = ILE->getArrayFiller()) { 903 fillC = Emitter.tryEmitAbstractForMemory(filler, EltType); 904 if (!fillC) 905 return nullptr; 906 } 907 908 // Copy initializer elements. 909 SmallVector<llvm::Constant*, 16> Elts; 910 if (fillC && fillC->isNullValue()) 911 Elts.reserve(NumInitableElts + 1); 912 else 913 Elts.reserve(NumElements); 914 915 llvm::Type *CommonElementType = nullptr; 916 for (unsigned i = 0; i < NumInitableElts; ++i) { 917 Expr *Init = ILE->getInit(i); 918 llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType); 919 if (!C) 920 return nullptr; 921 if (i == 0) 922 CommonElementType = C->getType(); 923 else if (C->getType() != CommonElementType) 924 CommonElementType = nullptr; 925 Elts.push_back(C); 926 } 927 928 return EmitArrayConstant(CGM, CAT, CommonElementType, NumElements, Elts, 929 fillC); 930 } 931 932 llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) { 933 return ConstStructBuilder::BuildStruct(Emitter, ILE, T); 934 } 935 936 llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E, 937 QualType T) { 938 return CGM.EmitNullConstant(T); 939 } 940 941 llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) { 942 if (ILE->isTransparent()) 943 return Visit(ILE->getInit(0), T); 944 945 if (ILE->getType()->isArrayType()) 946 return EmitArrayInitialization(ILE, T); 947 948 if (ILE->getType()->isRecordType()) 949 return EmitRecordInitialization(ILE, T); 950 951 return nullptr; 952 } 953 954 llvm::Constant *EmitDesignatedInitUpdater(llvm::Constant *Base, 955 InitListExpr *Updater, 956 QualType destType) { 957 if (auto destAT = CGM.getContext().getAsArrayType(destType)) { 958 llvm::ArrayType *AType = cast<llvm::ArrayType>(ConvertType(destType)); 959 llvm::Type *ElemType = AType->getElementType(); 960 961 unsigned NumInitElements = Updater->getNumInits(); 962 unsigned NumElements = AType->getNumElements(); 963 964 std::vector<llvm::Constant *> Elts; 965 Elts.reserve(NumElements); 966 967 QualType destElemType = destAT->getElementType(); 968 969 if (auto DataArray = dyn_cast<llvm::ConstantDataArray>(Base)) 970 for (unsigned i = 0; i != NumElements; ++i) 971 Elts.push_back(DataArray->getElementAsConstant(i)); 972 else if (auto Array = dyn_cast<llvm::ConstantArray>(Base)) 973 for (unsigned i = 0; i != NumElements; ++i) 974 Elts.push_back(Array->getOperand(i)); 975 else 976 return nullptr; // FIXME: other array types not implemented 977 978 llvm::Constant *fillC = nullptr; 979 if (Expr *filler = Updater->getArrayFiller()) 980 if (!isa<NoInitExpr>(filler)) 981 fillC = Emitter.tryEmitAbstractForMemory(filler, destElemType); 982 bool RewriteType = (fillC && fillC->getType() != ElemType); 983 984 for (unsigned i = 0; i != NumElements; ++i) { 985 Expr *Init = nullptr; 986 if (i < NumInitElements) 987 Init = Updater->getInit(i); 988 989 if (!Init && fillC) 990 Elts[i] = fillC; 991 else if (!Init || isa<NoInitExpr>(Init)) 992 ; // Do nothing. 993 else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) 994 Elts[i] = EmitDesignatedInitUpdater(Elts[i], ChildILE, destElemType); 995 else 996 Elts[i] = Emitter.tryEmitPrivateForMemory(Init, destElemType); 997 998 if (!Elts[i]) 999 return nullptr; 1000 RewriteType |= (Elts[i]->getType() != ElemType); 1001 } 1002 1003 if (RewriteType) { 1004 std::vector<llvm::Type *> Types; 1005 Types.reserve(NumElements); 1006 for (unsigned i = 0; i != NumElements; ++i) 1007 Types.push_back(Elts[i]->getType()); 1008 llvm::StructType *SType = llvm::StructType::get(AType->getContext(), 1009 Types, true); 1010 return llvm::ConstantStruct::get(SType, Elts); 1011 } 1012 1013 return llvm::ConstantArray::get(AType, Elts); 1014 } 1015 1016 if (destType->isRecordType()) 1017 return ConstStructBuilder::BuildStruct(Emitter, this, 1018 dyn_cast<llvm::ConstantStruct>(Base), Updater, destType); 1019 1020 return nullptr; 1021 } 1022 1023 llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E, 1024 QualType destType) { 1025 auto C = Visit(E->getBase(), destType); 1026 if (!C) return nullptr; 1027 return EmitDesignatedInitUpdater(C, E->getUpdater(), destType); 1028 } 1029 1030 llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) { 1031 if (!E->getConstructor()->isTrivial()) 1032 return nullptr; 1033 1034 // FIXME: We should not have to call getBaseElementType here. 1035 const RecordType *RT = 1036 CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>(); 1037 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1038 1039 // If the class doesn't have a trivial destructor, we can't emit it as a 1040 // constant expr. 1041 if (!RD->hasTrivialDestructor()) 1042 return nullptr; 1043 1044 // Only copy and default constructors can be trivial. 1045 1046 1047 if (E->getNumArgs()) { 1048 assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 1049 assert(E->getConstructor()->isCopyOrMoveConstructor() && 1050 "trivial ctor has argument but isn't a copy/move ctor"); 1051 1052 Expr *Arg = E->getArg(0); 1053 assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) && 1054 "argument to copy ctor is of wrong type"); 1055 1056 return Visit(Arg, Ty); 1057 } 1058 1059 return CGM.EmitNullConstant(Ty); 1060 } 1061 1062 llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) { 1063 return CGM.GetConstantArrayFromStringLiteral(E); 1064 } 1065 1066 llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) { 1067 // This must be an @encode initializing an array in a static initializer. 1068 // Don't emit it as the address of the string, emit the string data itself 1069 // as an inline array. 1070 std::string Str; 1071 CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1072 const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T); 1073 1074 // Resize the string to the right size, adding zeros at the end, or 1075 // truncating as needed. 1076 Str.resize(CAT->getSize().getZExtValue(), '\0'); 1077 return llvm::ConstantDataArray::getString(VMContext, Str, false); 1078 } 1079 1080 llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) { 1081 return Visit(E->getSubExpr(), T); 1082 } 1083 1084 // Utility methods 1085 llvm::Type *ConvertType(QualType T) { 1086 return CGM.getTypes().ConvertType(T); 1087 } 1088 }; 1089 1090 } // end anonymous namespace. 1091 1092 bool ConstStructBuilder::Build(ConstExprEmitter *ExprEmitter, 1093 llvm::ConstantStruct *Base, 1094 InitListExpr *Updater) { 1095 assert(Base && "base expression should not be empty"); 1096 1097 QualType ExprType = Updater->getType(); 1098 RecordDecl *RD = ExprType->getAs<RecordType>()->getDecl(); 1099 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 1100 const llvm::StructLayout *BaseLayout = CGM.getDataLayout().getStructLayout( 1101 Base->getType()); 1102 unsigned FieldNo = -1; 1103 unsigned ElementNo = 0; 1104 1105 // Bail out if we have base classes. We could support these, but they only 1106 // arise in C++1z where we will have already constant folded most interesting 1107 // cases. FIXME: There are still a few more cases we can handle this way. 1108 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1109 if (CXXRD->getNumBases()) 1110 return false; 1111 1112 for (FieldDecl *Field : RD->fields()) { 1113 ++FieldNo; 1114 1115 if (RD->isUnion() && Updater->getInitializedFieldInUnion() != Field) 1116 continue; 1117 1118 // Skip anonymous bitfields. 1119 if (Field->isUnnamedBitfield()) 1120 continue; 1121 1122 llvm::Constant *EltInit = Base->getOperand(ElementNo); 1123 1124 // Bail out if the type of the ConstantStruct does not have the same layout 1125 // as the type of the InitListExpr. 1126 if (CGM.getTypes().ConvertType(Field->getType()) != EltInit->getType() || 1127 Layout.getFieldOffset(ElementNo) != 1128 BaseLayout->getElementOffsetInBits(ElementNo)) 1129 return false; 1130 1131 // Get the initializer. If we encounter an empty field or a NoInitExpr, 1132 // we use values from the base expression. 1133 Expr *Init = nullptr; 1134 if (ElementNo < Updater->getNumInits()) 1135 Init = Updater->getInit(ElementNo); 1136 1137 if (!Init || isa<NoInitExpr>(Init)) 1138 ; // Do nothing. 1139 else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) 1140 EltInit = ExprEmitter->EmitDesignatedInitUpdater(EltInit, ChildILE, 1141 Field->getType()); 1142 else 1143 EltInit = Emitter.tryEmitPrivateForMemory(Init, Field->getType()); 1144 1145 ++ElementNo; 1146 1147 if (!EltInit) 1148 return false; 1149 1150 if (!Field->isBitField()) 1151 AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit); 1152 else if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(EltInit)) 1153 AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI); 1154 else 1155 // Initializing a bitfield with a non-trivial constant? 1156 return false; 1157 } 1158 1159 return true; 1160 } 1161 1162 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C, 1163 AbstractState saved) { 1164 Abstract = saved.OldValue; 1165 1166 assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() && 1167 "created a placeholder while doing an abstract emission?"); 1168 1169 // No validation necessary for now. 1170 // No cleanup to do for now. 1171 return C; 1172 } 1173 1174 llvm::Constant * 1175 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) { 1176 auto state = pushAbstract(); 1177 auto C = tryEmitPrivateForVarInit(D); 1178 return validateAndPopAbstract(C, state); 1179 } 1180 1181 llvm::Constant * 1182 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) { 1183 auto state = pushAbstract(); 1184 auto C = tryEmitPrivate(E, destType); 1185 return validateAndPopAbstract(C, state); 1186 } 1187 1188 llvm::Constant * 1189 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) { 1190 auto state = pushAbstract(); 1191 auto C = tryEmitPrivate(value, destType); 1192 return validateAndPopAbstract(C, state); 1193 } 1194 1195 llvm::Constant * 1196 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) { 1197 auto state = pushAbstract(); 1198 auto C = tryEmitPrivate(E, destType); 1199 C = validateAndPopAbstract(C, state); 1200 if (!C) { 1201 CGM.Error(E->getExprLoc(), 1202 "internal error: could not emit constant value \"abstractly\""); 1203 C = CGM.EmitNullConstant(destType); 1204 } 1205 return C; 1206 } 1207 1208 llvm::Constant * 1209 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value, 1210 QualType destType) { 1211 auto state = pushAbstract(); 1212 auto C = tryEmitPrivate(value, destType); 1213 C = validateAndPopAbstract(C, state); 1214 if (!C) { 1215 CGM.Error(loc, 1216 "internal error: could not emit constant value \"abstractly\""); 1217 C = CGM.EmitNullConstant(destType); 1218 } 1219 return C; 1220 } 1221 1222 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) { 1223 initializeNonAbstract(D.getType().getAddressSpace()); 1224 return markIfFailed(tryEmitPrivateForVarInit(D)); 1225 } 1226 1227 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E, 1228 LangAS destAddrSpace, 1229 QualType destType) { 1230 initializeNonAbstract(destAddrSpace); 1231 return markIfFailed(tryEmitPrivateForMemory(E, destType)); 1232 } 1233 1234 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value, 1235 LangAS destAddrSpace, 1236 QualType destType) { 1237 initializeNonAbstract(destAddrSpace); 1238 auto C = tryEmitPrivateForMemory(value, destType); 1239 assert(C && "couldn't emit constant value non-abstractly?"); 1240 return C; 1241 } 1242 1243 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() { 1244 assert(!Abstract && "cannot get current address for abstract constant"); 1245 1246 1247 1248 // Make an obviously ill-formed global that should blow up compilation 1249 // if it survives. 1250 auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true, 1251 llvm::GlobalValue::PrivateLinkage, 1252 /*init*/ nullptr, 1253 /*name*/ "", 1254 /*before*/ nullptr, 1255 llvm::GlobalVariable::NotThreadLocal, 1256 CGM.getContext().getTargetAddressSpace(DestAddressSpace)); 1257 1258 PlaceholderAddresses.push_back(std::make_pair(nullptr, global)); 1259 1260 return global; 1261 } 1262 1263 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal, 1264 llvm::GlobalValue *placeholder) { 1265 assert(!PlaceholderAddresses.empty()); 1266 assert(PlaceholderAddresses.back().first == nullptr); 1267 assert(PlaceholderAddresses.back().second == placeholder); 1268 PlaceholderAddresses.back().first = signal; 1269 } 1270 1271 namespace { 1272 struct ReplacePlaceholders { 1273 CodeGenModule &CGM; 1274 1275 /// The base address of the global. 1276 llvm::Constant *Base; 1277 llvm::Type *BaseValueTy = nullptr; 1278 1279 /// The placeholder addresses that were registered during emission. 1280 llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses; 1281 1282 /// The locations of the placeholder signals. 1283 llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations; 1284 1285 /// The current index stack. We use a simple unsigned stack because 1286 /// we assume that placeholders will be relatively sparse in the 1287 /// initializer, but we cache the index values we find just in case. 1288 llvm::SmallVector<unsigned, 8> Indices; 1289 llvm::SmallVector<llvm::Constant*, 8> IndexValues; 1290 1291 ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base, 1292 ArrayRef<std::pair<llvm::Constant*, 1293 llvm::GlobalVariable*>> addresses) 1294 : CGM(CGM), Base(base), 1295 PlaceholderAddresses(addresses.begin(), addresses.end()) { 1296 } 1297 1298 void replaceInInitializer(llvm::Constant *init) { 1299 // Remember the type of the top-most initializer. 1300 BaseValueTy = init->getType(); 1301 1302 // Initialize the stack. 1303 Indices.push_back(0); 1304 IndexValues.push_back(nullptr); 1305 1306 // Recurse into the initializer. 1307 findLocations(init); 1308 1309 // Check invariants. 1310 assert(IndexValues.size() == Indices.size() && "mismatch"); 1311 assert(Indices.size() == 1 && "didn't pop all indices"); 1312 1313 // Do the replacement; this basically invalidates 'init'. 1314 assert(Locations.size() == PlaceholderAddresses.size() && 1315 "missed a placeholder?"); 1316 1317 // We're iterating over a hashtable, so this would be a source of 1318 // non-determinism in compiler output *except* that we're just 1319 // messing around with llvm::Constant structures, which never itself 1320 // does anything that should be visible in compiler output. 1321 for (auto &entry : Locations) { 1322 assert(entry.first->getParent() == nullptr && "not a placeholder!"); 1323 entry.first->replaceAllUsesWith(entry.second); 1324 entry.first->eraseFromParent(); 1325 } 1326 } 1327 1328 private: 1329 void findLocations(llvm::Constant *init) { 1330 // Recurse into aggregates. 1331 if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) { 1332 for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) { 1333 Indices.push_back(i); 1334 IndexValues.push_back(nullptr); 1335 1336 findLocations(agg->getOperand(i)); 1337 1338 IndexValues.pop_back(); 1339 Indices.pop_back(); 1340 } 1341 return; 1342 } 1343 1344 // Otherwise, check for registered constants. 1345 while (true) { 1346 auto it = PlaceholderAddresses.find(init); 1347 if (it != PlaceholderAddresses.end()) { 1348 setLocation(it->second); 1349 break; 1350 } 1351 1352 // Look through bitcasts or other expressions. 1353 if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) { 1354 init = expr->getOperand(0); 1355 } else { 1356 break; 1357 } 1358 } 1359 } 1360 1361 void setLocation(llvm::GlobalVariable *placeholder) { 1362 assert(Locations.find(placeholder) == Locations.end() && 1363 "already found location for placeholder!"); 1364 1365 // Lazily fill in IndexValues with the values from Indices. 1366 // We do this in reverse because we should always have a strict 1367 // prefix of indices from the start. 1368 assert(Indices.size() == IndexValues.size()); 1369 for (size_t i = Indices.size() - 1; i != size_t(-1); --i) { 1370 if (IndexValues[i]) { 1371 #ifndef NDEBUG 1372 for (size_t j = 0; j != i + 1; ++j) { 1373 assert(IndexValues[j] && 1374 isa<llvm::ConstantInt>(IndexValues[j]) && 1375 cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue() 1376 == Indices[j]); 1377 } 1378 #endif 1379 break; 1380 } 1381 1382 IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]); 1383 } 1384 1385 // Form a GEP and then bitcast to the placeholder type so that the 1386 // replacement will succeed. 1387 llvm::Constant *location = 1388 llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy, 1389 Base, IndexValues); 1390 location = llvm::ConstantExpr::getBitCast(location, 1391 placeholder->getType()); 1392 1393 Locations.insert({placeholder, location}); 1394 } 1395 }; 1396 } 1397 1398 void ConstantEmitter::finalize(llvm::GlobalVariable *global) { 1399 assert(InitializedNonAbstract && 1400 "finalizing emitter that was used for abstract emission?"); 1401 assert(!Finalized && "finalizing emitter multiple times"); 1402 assert(global->getInitializer()); 1403 1404 // Note that we might also be Failed. 1405 Finalized = true; 1406 1407 if (!PlaceholderAddresses.empty()) { 1408 ReplacePlaceholders(CGM, global, PlaceholderAddresses) 1409 .replaceInInitializer(global->getInitializer()); 1410 PlaceholderAddresses.clear(); // satisfy 1411 } 1412 } 1413 1414 ConstantEmitter::~ConstantEmitter() { 1415 assert((!InitializedNonAbstract || Finalized || Failed) && 1416 "not finalized after being initialized for non-abstract emission"); 1417 assert(PlaceholderAddresses.empty() && "unhandled placeholders"); 1418 } 1419 1420 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) { 1421 if (auto AT = type->getAs<AtomicType>()) { 1422 return CGM.getContext().getQualifiedType(AT->getValueType(), 1423 type.getQualifiers()); 1424 } 1425 return type; 1426 } 1427 1428 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) { 1429 // Make a quick check if variable can be default NULL initialized 1430 // and avoid going through rest of code which may do, for c++11, 1431 // initialization of memory to all NULLs. 1432 if (!D.hasLocalStorage()) { 1433 QualType Ty = CGM.getContext().getBaseElementType(D.getType()); 1434 if (Ty->isRecordType()) 1435 if (const CXXConstructExpr *E = 1436 dyn_cast_or_null<CXXConstructExpr>(D.getInit())) { 1437 const CXXConstructorDecl *CD = E->getConstructor(); 1438 if (CD->isTrivial() && CD->isDefaultConstructor()) 1439 return CGM.EmitNullConstant(D.getType()); 1440 } 1441 } 1442 1443 QualType destType = D.getType(); 1444 1445 // Try to emit the initializer. Note that this can allow some things that 1446 // are not allowed by tryEmitPrivateForMemory alone. 1447 if (auto value = D.evaluateValue()) { 1448 return tryEmitPrivateForMemory(*value, destType); 1449 } 1450 1451 // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a 1452 // reference is a constant expression, and the reference binds to a temporary, 1453 // then constant initialization is performed. ConstExprEmitter will 1454 // incorrectly emit a prvalue constant in this case, and the calling code 1455 // interprets that as the (pointer) value of the reference, rather than the 1456 // desired value of the referee. 1457 if (destType->isReferenceType()) 1458 return nullptr; 1459 1460 const Expr *E = D.getInit(); 1461 assert(E && "No initializer to emit"); 1462 1463 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1464 auto C = 1465 ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType); 1466 return (C ? emitForMemory(C, destType) : nullptr); 1467 } 1468 1469 llvm::Constant * 1470 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) { 1471 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1472 auto C = tryEmitAbstract(E, nonMemoryDestType); 1473 return (C ? emitForMemory(C, destType) : nullptr); 1474 } 1475 1476 llvm::Constant * 1477 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value, 1478 QualType destType) { 1479 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1480 auto C = tryEmitAbstract(value, nonMemoryDestType); 1481 return (C ? emitForMemory(C, destType) : nullptr); 1482 } 1483 1484 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E, 1485 QualType destType) { 1486 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1487 llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType); 1488 return (C ? emitForMemory(C, destType) : nullptr); 1489 } 1490 1491 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value, 1492 QualType destType) { 1493 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1494 auto C = tryEmitPrivate(value, nonMemoryDestType); 1495 return (C ? emitForMemory(C, destType) : nullptr); 1496 } 1497 1498 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM, 1499 llvm::Constant *C, 1500 QualType destType) { 1501 // For an _Atomic-qualified constant, we may need to add tail padding. 1502 if (auto AT = destType->getAs<AtomicType>()) { 1503 QualType destValueType = AT->getValueType(); 1504 C = emitForMemory(CGM, C, destValueType); 1505 1506 uint64_t innerSize = CGM.getContext().getTypeSize(destValueType); 1507 uint64_t outerSize = CGM.getContext().getTypeSize(destType); 1508 if (innerSize == outerSize) 1509 return C; 1510 1511 assert(innerSize < outerSize && "emitted over-large constant for atomic"); 1512 llvm::Constant *elts[] = { 1513 C, 1514 llvm::ConstantAggregateZero::get( 1515 llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8)) 1516 }; 1517 return llvm::ConstantStruct::getAnon(elts); 1518 } 1519 1520 // Zero-extend bool. 1521 if (C->getType()->isIntegerTy(1)) { 1522 llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType); 1523 return llvm::ConstantExpr::getZExt(C, boolTy); 1524 } 1525 1526 return C; 1527 } 1528 1529 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E, 1530 QualType destType) { 1531 Expr::EvalResult Result; 1532 1533 bool Success = false; 1534 1535 if (destType->isReferenceType()) 1536 Success = E->EvaluateAsLValue(Result, CGM.getContext()); 1537 else 1538 Success = E->EvaluateAsRValue(Result, CGM.getContext()); 1539 1540 llvm::Constant *C; 1541 if (Success && !Result.HasSideEffects) 1542 C = tryEmitPrivate(Result.Val, destType); 1543 else 1544 C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType); 1545 1546 return C; 1547 } 1548 1549 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) { 1550 return getTargetCodeGenInfo().getNullPointer(*this, T, QT); 1551 } 1552 1553 namespace { 1554 /// A struct which can be used to peephole certain kinds of finalization 1555 /// that normally happen during l-value emission. 1556 struct ConstantLValue { 1557 llvm::Constant *Value; 1558 bool HasOffsetApplied; 1559 1560 /*implicit*/ ConstantLValue(llvm::Constant *value, 1561 bool hasOffsetApplied = false) 1562 : Value(value), HasOffsetApplied(false) {} 1563 1564 /*implicit*/ ConstantLValue(ConstantAddress address) 1565 : ConstantLValue(address.getPointer()) {} 1566 }; 1567 1568 /// A helper class for emitting constant l-values. 1569 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter, 1570 ConstantLValue> { 1571 CodeGenModule &CGM; 1572 ConstantEmitter &Emitter; 1573 const APValue &Value; 1574 QualType DestType; 1575 1576 // Befriend StmtVisitorBase so that we don't have to expose Visit*. 1577 friend StmtVisitorBase; 1578 1579 public: 1580 ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value, 1581 QualType destType) 1582 : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {} 1583 1584 llvm::Constant *tryEmit(); 1585 1586 private: 1587 llvm::Constant *tryEmitAbsolute(llvm::Type *destTy); 1588 ConstantLValue tryEmitBase(const APValue::LValueBase &base); 1589 1590 ConstantLValue VisitStmt(const Stmt *S) { return nullptr; } 1591 ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); 1592 ConstantLValue VisitStringLiteral(const StringLiteral *E); 1593 ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E); 1594 ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E); 1595 ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E); 1596 ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E); 1597 ConstantLValue VisitCallExpr(const CallExpr *E); 1598 ConstantLValue VisitBlockExpr(const BlockExpr *E); 1599 ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E); 1600 ConstantLValue VisitCXXUuidofExpr(const CXXUuidofExpr *E); 1601 ConstantLValue VisitMaterializeTemporaryExpr( 1602 const MaterializeTemporaryExpr *E); 1603 1604 bool hasNonZeroOffset() const { 1605 return !Value.getLValueOffset().isZero(); 1606 } 1607 1608 /// Return the value offset. 1609 llvm::Constant *getOffset() { 1610 return llvm::ConstantInt::get(CGM.Int64Ty, 1611 Value.getLValueOffset().getQuantity()); 1612 } 1613 1614 /// Apply the value offset to the given constant. 1615 llvm::Constant *applyOffset(llvm::Constant *C) { 1616 if (!hasNonZeroOffset()) 1617 return C; 1618 1619 llvm::Type *origPtrTy = C->getType(); 1620 unsigned AS = origPtrTy->getPointerAddressSpace(); 1621 llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS); 1622 C = llvm::ConstantExpr::getBitCast(C, charPtrTy); 1623 C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset()); 1624 C = llvm::ConstantExpr::getPointerCast(C, origPtrTy); 1625 return C; 1626 } 1627 }; 1628 1629 } 1630 1631 llvm::Constant *ConstantLValueEmitter::tryEmit() { 1632 const APValue::LValueBase &base = Value.getLValueBase(); 1633 1634 // Certain special array initializers are represented in APValue 1635 // as l-values referring to the base expression which generates the 1636 // array. This happens with e.g. string literals. These should 1637 // probably just get their own representation kind in APValue. 1638 if (DestType->isArrayType()) { 1639 assert(!hasNonZeroOffset() && "offset on array initializer"); 1640 auto expr = const_cast<Expr*>(base.get<const Expr*>()); 1641 return ConstExprEmitter(Emitter).Visit(expr, DestType); 1642 } 1643 1644 // Otherwise, the destination type should be a pointer or reference 1645 // type, but it might also be a cast thereof. 1646 // 1647 // FIXME: the chain of casts required should be reflected in the APValue. 1648 // We need this in order to correctly handle things like a ptrtoint of a 1649 // non-zero null pointer and addrspace casts that aren't trivially 1650 // represented in LLVM IR. 1651 auto destTy = CGM.getTypes().ConvertTypeForMem(DestType); 1652 assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy)); 1653 1654 // If there's no base at all, this is a null or absolute pointer, 1655 // possibly cast back to an integer type. 1656 if (!base) { 1657 return tryEmitAbsolute(destTy); 1658 } 1659 1660 // Otherwise, try to emit the base. 1661 ConstantLValue result = tryEmitBase(base); 1662 1663 // If that failed, we're done. 1664 llvm::Constant *value = result.Value; 1665 if (!value) return nullptr; 1666 1667 // Apply the offset if necessary and not already done. 1668 if (!result.HasOffsetApplied) { 1669 value = applyOffset(value); 1670 } 1671 1672 // Convert to the appropriate type; this could be an lvalue for 1673 // an integer. FIXME: performAddrSpaceCast 1674 if (isa<llvm::PointerType>(destTy)) 1675 return llvm::ConstantExpr::getPointerCast(value, destTy); 1676 1677 return llvm::ConstantExpr::getPtrToInt(value, destTy); 1678 } 1679 1680 /// Try to emit an absolute l-value, such as a null pointer or an integer 1681 /// bitcast to pointer type. 1682 llvm::Constant * 1683 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) { 1684 auto offset = getOffset(); 1685 1686 // If we're producing a pointer, this is easy. 1687 if (auto destPtrTy = cast<llvm::PointerType>(destTy)) { 1688 if (Value.isNullPointer()) { 1689 // FIXME: integer offsets from non-zero null pointers. 1690 return CGM.getNullPointer(destPtrTy, DestType); 1691 } 1692 1693 // Convert the integer to a pointer-sized integer before converting it 1694 // to a pointer. 1695 // FIXME: signedness depends on the original integer type. 1696 auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy); 1697 llvm::Constant *C = offset; 1698 C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy, 1699 /*isSigned*/ false); 1700 C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy); 1701 return C; 1702 } 1703 1704 // Otherwise, we're basically returning an integer constant. 1705 1706 // FIXME: this does the wrong thing with ptrtoint of a null pointer, 1707 // but since we don't know the original pointer type, there's not much 1708 // we can do about it. 1709 1710 auto C = getOffset(); 1711 C = llvm::ConstantExpr::getIntegerCast(C, destTy, /*isSigned*/ false); 1712 return C; 1713 } 1714 1715 ConstantLValue 1716 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) { 1717 // Handle values. 1718 if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) { 1719 if (D->hasAttr<WeakRefAttr>()) 1720 return CGM.GetWeakRefReference(D).getPointer(); 1721 1722 if (auto FD = dyn_cast<FunctionDecl>(D)) 1723 return CGM.GetAddrOfFunction(FD); 1724 1725 if (auto VD = dyn_cast<VarDecl>(D)) { 1726 // We can never refer to a variable with local storage. 1727 if (!VD->hasLocalStorage()) { 1728 if (VD->isFileVarDecl() || VD->hasExternalStorage()) 1729 return CGM.GetAddrOfGlobalVar(VD); 1730 1731 if (VD->isLocalVarDecl()) { 1732 return CGM.getOrCreateStaticVarDecl( 1733 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)); 1734 } 1735 } 1736 } 1737 1738 return nullptr; 1739 } 1740 1741 // Otherwise, it must be an expression. 1742 return Visit(base.get<const Expr*>()); 1743 } 1744 1745 ConstantLValue 1746 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 1747 return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E); 1748 } 1749 1750 ConstantLValue 1751 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) { 1752 return CGM.GetAddrOfConstantStringFromLiteral(E); 1753 } 1754 1755 ConstantLValue 1756 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 1757 return CGM.GetAddrOfConstantStringFromObjCEncode(E); 1758 } 1759 1760 ConstantLValue 1761 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 1762 auto C = CGM.getObjCRuntime().GenerateConstantString(E->getString()); 1763 return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(E->getType())); 1764 } 1765 1766 ConstantLValue 1767 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) { 1768 if (auto CGF = Emitter.CGF) { 1769 LValue Res = CGF->EmitPredefinedLValue(E); 1770 return cast<ConstantAddress>(Res.getAddress()); 1771 } 1772 1773 auto kind = E->getIdentType(); 1774 if (kind == PredefinedExpr::PrettyFunction) { 1775 return CGM.GetAddrOfConstantCString("top level", ".tmp"); 1776 } 1777 1778 return CGM.GetAddrOfConstantCString("", ".tmp"); 1779 } 1780 1781 ConstantLValue 1782 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) { 1783 assert(Emitter.CGF && "Invalid address of label expression outside function"); 1784 llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel()); 1785 Ptr = llvm::ConstantExpr::getBitCast(Ptr, 1786 CGM.getTypes().ConvertType(E->getType())); 1787 return Ptr; 1788 } 1789 1790 ConstantLValue 1791 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) { 1792 unsigned builtin = E->getBuiltinCallee(); 1793 if (builtin != Builtin::BI__builtin___CFStringMakeConstantString && 1794 builtin != Builtin::BI__builtin___NSStringMakeConstantString) 1795 return nullptr; 1796 1797 auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts()); 1798 if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) { 1799 return CGM.getObjCRuntime().GenerateConstantString(literal); 1800 } else { 1801 // FIXME: need to deal with UCN conversion issues. 1802 return CGM.GetAddrOfConstantCFString(literal); 1803 } 1804 } 1805 1806 ConstantLValue 1807 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) { 1808 StringRef functionName; 1809 if (auto CGF = Emitter.CGF) 1810 functionName = CGF->CurFn->getName(); 1811 else 1812 functionName = "global"; 1813 1814 return CGM.GetAddrOfGlobalBlock(E, functionName); 1815 } 1816 1817 ConstantLValue 1818 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { 1819 QualType T; 1820 if (E->isTypeOperand()) 1821 T = E->getTypeOperand(CGM.getContext()); 1822 else 1823 T = E->getExprOperand()->getType(); 1824 return CGM.GetAddrOfRTTIDescriptor(T); 1825 } 1826 1827 ConstantLValue 1828 ConstantLValueEmitter::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 1829 return CGM.GetAddrOfUuidDescriptor(E); 1830 } 1831 1832 ConstantLValue 1833 ConstantLValueEmitter::VisitMaterializeTemporaryExpr( 1834 const MaterializeTemporaryExpr *E) { 1835 assert(E->getStorageDuration() == SD_Static); 1836 SmallVector<const Expr *, 2> CommaLHSs; 1837 SmallVector<SubobjectAdjustment, 2> Adjustments; 1838 const Expr *Inner = E->GetTemporaryExpr() 1839 ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 1840 return CGM.GetAddrOfGlobalTemporary(E, Inner); 1841 } 1842 1843 llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value, 1844 QualType DestType) { 1845 switch (Value.getKind()) { 1846 case APValue::Uninitialized: 1847 llvm_unreachable("Constant expressions should be initialized."); 1848 case APValue::LValue: 1849 return ConstantLValueEmitter(*this, Value, DestType).tryEmit(); 1850 case APValue::Int: 1851 return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt()); 1852 case APValue::ComplexInt: { 1853 llvm::Constant *Complex[2]; 1854 1855 Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(), 1856 Value.getComplexIntReal()); 1857 Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(), 1858 Value.getComplexIntImag()); 1859 1860 // FIXME: the target may want to specify that this is packed. 1861 llvm::StructType *STy = 1862 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 1863 return llvm::ConstantStruct::get(STy, Complex); 1864 } 1865 case APValue::Float: { 1866 const llvm::APFloat &Init = Value.getFloat(); 1867 if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() && 1868 !CGM.getContext().getLangOpts().NativeHalfType && 1869 CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1870 return llvm::ConstantInt::get(CGM.getLLVMContext(), 1871 Init.bitcastToAPInt()); 1872 else 1873 return llvm::ConstantFP::get(CGM.getLLVMContext(), Init); 1874 } 1875 case APValue::ComplexFloat: { 1876 llvm::Constant *Complex[2]; 1877 1878 Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(), 1879 Value.getComplexFloatReal()); 1880 Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(), 1881 Value.getComplexFloatImag()); 1882 1883 // FIXME: the target may want to specify that this is packed. 1884 llvm::StructType *STy = 1885 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 1886 return llvm::ConstantStruct::get(STy, Complex); 1887 } 1888 case APValue::Vector: { 1889 unsigned NumElts = Value.getVectorLength(); 1890 SmallVector<llvm::Constant *, 4> Inits(NumElts); 1891 1892 for (unsigned I = 0; I != NumElts; ++I) { 1893 const APValue &Elt = Value.getVectorElt(I); 1894 if (Elt.isInt()) 1895 Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt()); 1896 else if (Elt.isFloat()) 1897 Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat()); 1898 else 1899 llvm_unreachable("unsupported vector element type"); 1900 } 1901 return llvm::ConstantVector::get(Inits); 1902 } 1903 case APValue::AddrLabelDiff: { 1904 const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS(); 1905 const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS(); 1906 llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType()); 1907 llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType()); 1908 if (!LHS || !RHS) return nullptr; 1909 1910 // Compute difference 1911 llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType); 1912 LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy); 1913 RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy); 1914 llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS); 1915 1916 // LLVM is a bit sensitive about the exact format of the 1917 // address-of-label difference; make sure to truncate after 1918 // the subtraction. 1919 return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType); 1920 } 1921 case APValue::Struct: 1922 case APValue::Union: 1923 return ConstStructBuilder::BuildStruct(*this, Value, DestType); 1924 case APValue::Array: { 1925 const ConstantArrayType *CAT = 1926 CGM.getContext().getAsConstantArrayType(DestType); 1927 unsigned NumElements = Value.getArraySize(); 1928 unsigned NumInitElts = Value.getArrayInitializedElts(); 1929 1930 // Emit array filler, if there is one. 1931 llvm::Constant *Filler = nullptr; 1932 if (Value.hasArrayFiller()) { 1933 Filler = tryEmitAbstractForMemory(Value.getArrayFiller(), 1934 CAT->getElementType()); 1935 if (!Filler) 1936 return nullptr; 1937 } 1938 1939 // Emit initializer elements. 1940 SmallVector<llvm::Constant*, 16> Elts; 1941 if (Filler && Filler->isNullValue()) 1942 Elts.reserve(NumInitElts + 1); 1943 else 1944 Elts.reserve(NumElements); 1945 1946 llvm::Type *CommonElementType = nullptr; 1947 for (unsigned I = 0; I < NumInitElts; ++I) { 1948 llvm::Constant *C = tryEmitPrivateForMemory( 1949 Value.getArrayInitializedElt(I), CAT->getElementType()); 1950 if (!C) return nullptr; 1951 1952 if (I == 0) 1953 CommonElementType = C->getType(); 1954 else if (C->getType() != CommonElementType) 1955 CommonElementType = nullptr; 1956 Elts.push_back(C); 1957 } 1958 1959 return EmitArrayConstant(CGM, CAT, CommonElementType, NumElements, Elts, 1960 Filler); 1961 } 1962 case APValue::MemberPointer: 1963 return CGM.getCXXABI().EmitMemberPointer(Value, DestType); 1964 } 1965 llvm_unreachable("Unknown APValue kind"); 1966 } 1967 1968 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted( 1969 const CompoundLiteralExpr *E) { 1970 return EmittedCompoundLiterals.lookup(E); 1971 } 1972 1973 void CodeGenModule::setAddrOfConstantCompoundLiteral( 1974 const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) { 1975 bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second; 1976 (void)Ok; 1977 assert(Ok && "CLE has already been emitted!"); 1978 } 1979 1980 ConstantAddress 1981 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) { 1982 assert(E->isFileScope() && "not a file-scope compound literal expr"); 1983 return tryEmitGlobalCompoundLiteral(*this, nullptr, E); 1984 } 1985 1986 llvm::Constant * 1987 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) { 1988 // Member pointer constants always have a very particular form. 1989 const MemberPointerType *type = cast<MemberPointerType>(uo->getType()); 1990 const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl(); 1991 1992 // A member function pointer. 1993 if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl)) 1994 return getCXXABI().EmitMemberFunctionPointer(method); 1995 1996 // Otherwise, a member data pointer. 1997 uint64_t fieldOffset = getContext().getFieldOffset(decl); 1998 CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset); 1999 return getCXXABI().EmitMemberDataPointer(type, chars); 2000 } 2001 2002 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2003 llvm::Type *baseType, 2004 const CXXRecordDecl *base); 2005 2006 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM, 2007 const RecordDecl *record, 2008 bool asCompleteObject) { 2009 const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record); 2010 llvm::StructType *structure = 2011 (asCompleteObject ? layout.getLLVMType() 2012 : layout.getBaseSubobjectLLVMType()); 2013 2014 unsigned numElements = structure->getNumElements(); 2015 std::vector<llvm::Constant *> elements(numElements); 2016 2017 auto CXXR = dyn_cast<CXXRecordDecl>(record); 2018 // Fill in all the bases. 2019 if (CXXR) { 2020 for (const auto &I : CXXR->bases()) { 2021 if (I.isVirtual()) { 2022 // Ignore virtual bases; if we're laying out for a complete 2023 // object, we'll lay these out later. 2024 continue; 2025 } 2026 2027 const CXXRecordDecl *base = 2028 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2029 2030 // Ignore empty bases. 2031 if (base->isEmpty() || 2032 CGM.getContext().getASTRecordLayout(base).getNonVirtualSize() 2033 .isZero()) 2034 continue; 2035 2036 unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base); 2037 llvm::Type *baseType = structure->getElementType(fieldIndex); 2038 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2039 } 2040 } 2041 2042 // Fill in all the fields. 2043 for (const auto *Field : record->fields()) { 2044 // Fill in non-bitfields. (Bitfields always use a zero pattern, which we 2045 // will fill in later.) 2046 if (!Field->isBitField()) { 2047 unsigned fieldIndex = layout.getLLVMFieldNo(Field); 2048 elements[fieldIndex] = CGM.EmitNullConstant(Field->getType()); 2049 } 2050 2051 // For unions, stop after the first named field. 2052 if (record->isUnion()) { 2053 if (Field->getIdentifier()) 2054 break; 2055 if (const auto *FieldRD = 2056 dyn_cast_or_null<RecordDecl>(Field->getType()->getAsTagDecl())) 2057 if (FieldRD->findFirstNamedDataMember()) 2058 break; 2059 } 2060 } 2061 2062 // Fill in the virtual bases, if we're working with the complete object. 2063 if (CXXR && asCompleteObject) { 2064 for (const auto &I : CXXR->vbases()) { 2065 const CXXRecordDecl *base = 2066 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2067 2068 // Ignore empty bases. 2069 if (base->isEmpty()) 2070 continue; 2071 2072 unsigned fieldIndex = layout.getVirtualBaseIndex(base); 2073 2074 // We might have already laid this field out. 2075 if (elements[fieldIndex]) continue; 2076 2077 llvm::Type *baseType = structure->getElementType(fieldIndex); 2078 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2079 } 2080 } 2081 2082 // Now go through all other fields and zero them out. 2083 for (unsigned i = 0; i != numElements; ++i) { 2084 if (!elements[i]) 2085 elements[i] = llvm::Constant::getNullValue(structure->getElementType(i)); 2086 } 2087 2088 return llvm::ConstantStruct::get(structure, elements); 2089 } 2090 2091 /// Emit the null constant for a base subobject. 2092 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2093 llvm::Type *baseType, 2094 const CXXRecordDecl *base) { 2095 const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base); 2096 2097 // Just zero out bases that don't have any pointer to data members. 2098 if (baseLayout.isZeroInitializableAsBase()) 2099 return llvm::Constant::getNullValue(baseType); 2100 2101 // Otherwise, we can just use its null constant. 2102 return EmitNullConstant(CGM, base, /*asCompleteObject=*/false); 2103 } 2104 2105 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM, 2106 QualType T) { 2107 return emitForMemory(CGM, CGM.EmitNullConstant(T), T); 2108 } 2109 2110 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { 2111 if (T->getAs<PointerType>()) 2112 return getNullPointer( 2113 cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T); 2114 2115 if (getTypes().isZeroInitializable(T)) 2116 return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); 2117 2118 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { 2119 llvm::ArrayType *ATy = 2120 cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T)); 2121 2122 QualType ElementTy = CAT->getElementType(); 2123 2124 llvm::Constant *Element = 2125 ConstantEmitter::emitNullForMemory(*this, ElementTy); 2126 unsigned NumElements = CAT->getSize().getZExtValue(); 2127 SmallVector<llvm::Constant *, 8> Array(NumElements, Element); 2128 return llvm::ConstantArray::get(ATy, Array); 2129 } 2130 2131 if (const RecordType *RT = T->getAs<RecordType>()) 2132 return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true); 2133 2134 assert(T->isMemberDataPointerType() && 2135 "Should only see pointers to data members here!"); 2136 2137 return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>()); 2138 } 2139 2140 llvm::Constant * 2141 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) { 2142 return ::EmitNullConstant(*this, Record, false); 2143 } 2144