1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Constant Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGObjCRuntime.h" 15 #include "CGRecordLayout.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "ConstantEmitter.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/APValue.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Attr.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/Builtins.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/Sequence.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalVariable.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 //===----------------------------------------------------------------------===// 36 // ConstantAggregateBuilder 37 //===----------------------------------------------------------------------===// 38 39 namespace { 40 class ConstExprEmitter; 41 42 struct ConstantAggregateBuilderUtils { 43 CodeGenModule &CGM; 44 45 ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {} 46 47 CharUnits getAlignment(const llvm::Constant *C) const { 48 return CharUnits::fromQuantity( 49 CGM.getDataLayout().getABITypeAlignment(C->getType())); 50 } 51 52 CharUnits getSize(llvm::Type *Ty) const { 53 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty)); 54 } 55 56 CharUnits getSize(const llvm::Constant *C) const { 57 return getSize(C->getType()); 58 } 59 60 llvm::Constant *getPadding(CharUnits PadSize) const { 61 llvm::Type *Ty = CGM.Int8Ty; 62 if (PadSize > CharUnits::One()) 63 Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity()); 64 return llvm::UndefValue::get(Ty); 65 } 66 67 llvm::Constant *getZeroes(CharUnits ZeroSize) const { 68 llvm::Type *Ty = llvm::ArrayType::get(CGM.Int8Ty, ZeroSize.getQuantity()); 69 return llvm::ConstantAggregateZero::get(Ty); 70 } 71 }; 72 73 /// Incremental builder for an llvm::Constant* holding a struct or array 74 /// constant. 75 class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils { 76 /// The elements of the constant. These two arrays must have the same size; 77 /// Offsets[i] describes the offset of Elems[i] within the constant. The 78 /// elements are kept in increasing offset order, and we ensure that there 79 /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]). 80 /// 81 /// This may contain explicit padding elements (in order to create a 82 /// natural layout), but need not. Gaps between elements are implicitly 83 /// considered to be filled with undef. 84 llvm::SmallVector<llvm::Constant*, 32> Elems; 85 llvm::SmallVector<CharUnits, 32> Offsets; 86 87 /// The size of the constant (the maximum end offset of any added element). 88 /// May be larger than the end of Elems.back() if we split the last element 89 /// and removed some trailing undefs. 90 CharUnits Size = CharUnits::Zero(); 91 92 /// This is true only if laying out Elems in order as the elements of a 93 /// non-packed LLVM struct will give the correct layout. 94 bool NaturalLayout = true; 95 96 bool split(size_t Index, CharUnits Hint); 97 Optional<size_t> splitAt(CharUnits Pos); 98 99 static llvm::Constant *buildFrom(CodeGenModule &CGM, 100 ArrayRef<llvm::Constant *> Elems, 101 ArrayRef<CharUnits> Offsets, 102 CharUnits StartOffset, CharUnits Size, 103 bool NaturalLayout, llvm::Type *DesiredTy, 104 bool AllowOversized); 105 106 public: 107 ConstantAggregateBuilder(CodeGenModule &CGM) 108 : ConstantAggregateBuilderUtils(CGM) {} 109 110 /// Update or overwrite the value starting at \p Offset with \c C. 111 /// 112 /// \param AllowOverwrite If \c true, this constant might overwrite (part of) 113 /// a constant that has already been added. This flag is only used to 114 /// detect bugs. 115 bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite); 116 117 /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits. 118 bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite); 119 120 /// Attempt to condense the value starting at \p Offset to a constant of type 121 /// \p DesiredTy. 122 void condense(CharUnits Offset, llvm::Type *DesiredTy); 123 124 /// Produce a constant representing the entire accumulated value, ideally of 125 /// the specified type. If \p AllowOversized, the constant might be larger 126 /// than implied by \p DesiredTy (eg, if there is a flexible array member). 127 /// Otherwise, the constant will be of exactly the same size as \p DesiredTy 128 /// even if we can't represent it as that type. 129 llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const { 130 return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size, 131 NaturalLayout, DesiredTy, AllowOversized); 132 } 133 }; 134 135 template<typename Container, typename Range = std::initializer_list< 136 typename Container::value_type>> 137 static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) { 138 assert(BeginOff <= EndOff && "invalid replacement range"); 139 llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals); 140 } 141 142 bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset, 143 bool AllowOverwrite) { 144 // Common case: appending to a layout. 145 if (Offset >= Size) { 146 CharUnits Align = getAlignment(C); 147 CharUnits AlignedSize = Size.alignTo(Align); 148 if (AlignedSize > Offset || Offset.alignTo(Align) != Offset) 149 NaturalLayout = false; 150 else if (AlignedSize < Offset) { 151 Elems.push_back(getPadding(Offset - Size)); 152 Offsets.push_back(Size); 153 } 154 Elems.push_back(C); 155 Offsets.push_back(Offset); 156 Size = Offset + getSize(C); 157 return true; 158 } 159 160 // Uncommon case: constant overlaps what we've already created. 161 llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset); 162 if (!FirstElemToReplace) 163 return false; 164 165 CharUnits CSize = getSize(C); 166 llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + CSize); 167 if (!LastElemToReplace) 168 return false; 169 170 assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) && 171 "unexpectedly overwriting field"); 172 173 replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C}); 174 replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset}); 175 Size = std::max(Size, Offset + CSize); 176 NaturalLayout = false; 177 return true; 178 } 179 180 bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits, 181 bool AllowOverwrite) { 182 const ASTContext &Context = CGM.getContext(); 183 const uint64_t CharWidth = CGM.getContext().getCharWidth(); 184 185 // Offset of where we want the first bit to go within the bits of the 186 // current char. 187 unsigned OffsetWithinChar = OffsetInBits % CharWidth; 188 189 // We split bit-fields up into individual bytes. Walk over the bytes and 190 // update them. 191 for (CharUnits OffsetInChars = 192 Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar); 193 /**/; ++OffsetInChars) { 194 // Number of bits we want to fill in this char. 195 unsigned WantedBits = 196 std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar); 197 198 // Get a char containing the bits we want in the right places. The other 199 // bits have unspecified values. 200 llvm::APInt BitsThisChar = Bits; 201 if (BitsThisChar.getBitWidth() < CharWidth) 202 BitsThisChar = BitsThisChar.zext(CharWidth); 203 if (CGM.getDataLayout().isBigEndian()) { 204 // Figure out how much to shift by. We may need to left-shift if we have 205 // less than one byte of Bits left. 206 int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar; 207 if (Shift > 0) 208 BitsThisChar.lshrInPlace(Shift); 209 else if (Shift < 0) 210 BitsThisChar = BitsThisChar.shl(-Shift); 211 } else { 212 BitsThisChar = BitsThisChar.shl(OffsetWithinChar); 213 } 214 if (BitsThisChar.getBitWidth() > CharWidth) 215 BitsThisChar = BitsThisChar.trunc(CharWidth); 216 217 if (WantedBits == CharWidth) { 218 // Got a full byte: just add it directly. 219 add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar), 220 OffsetInChars, AllowOverwrite); 221 } else { 222 // Partial byte: update the existing integer if there is one. If we 223 // can't split out a 1-CharUnit range to update, then we can't add 224 // these bits and fail the entire constant emission. 225 llvm::Optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars); 226 if (!FirstElemToUpdate) 227 return false; 228 llvm::Optional<size_t> LastElemToUpdate = 229 splitAt(OffsetInChars + CharUnits::One()); 230 if (!LastElemToUpdate) 231 return false; 232 assert(*LastElemToUpdate - *FirstElemToUpdate < 2 && 233 "should have at most one element covering one byte"); 234 235 // Figure out which bits we want and discard the rest. 236 llvm::APInt UpdateMask(CharWidth, 0); 237 if (CGM.getDataLayout().isBigEndian()) 238 UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits, 239 CharWidth - OffsetWithinChar); 240 else 241 UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits); 242 BitsThisChar &= UpdateMask; 243 244 if (*FirstElemToUpdate == *LastElemToUpdate || 245 Elems[*FirstElemToUpdate]->isNullValue() || 246 isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) { 247 // All existing bits are either zero or undef. 248 add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar), 249 OffsetInChars, /*AllowOverwrite*/ true); 250 } else { 251 llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate]; 252 // In order to perform a partial update, we need the existing bitwise 253 // value, which we can only extract for a constant int. 254 auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate); 255 if (!CI) 256 return false; 257 // Because this is a 1-CharUnit range, the constant occupying it must 258 // be exactly one CharUnit wide. 259 assert(CI->getBitWidth() == CharWidth && "splitAt failed"); 260 assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) && 261 "unexpectedly overwriting bitfield"); 262 BitsThisChar |= (CI->getValue() & ~UpdateMask); 263 ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar); 264 } 265 } 266 267 // Stop if we've added all the bits. 268 if (WantedBits == Bits.getBitWidth()) 269 break; 270 271 // Remove the consumed bits from Bits. 272 if (!CGM.getDataLayout().isBigEndian()) 273 Bits.lshrInPlace(WantedBits); 274 Bits = Bits.trunc(Bits.getBitWidth() - WantedBits); 275 276 // The remanining bits go at the start of the following bytes. 277 OffsetWithinChar = 0; 278 } 279 280 return true; 281 } 282 283 /// Returns a position within Elems and Offsets such that all elements 284 /// before the returned index end before Pos and all elements at or after 285 /// the returned index begin at or after Pos. Splits elements as necessary 286 /// to ensure this. Returns None if we find something we can't split. 287 Optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) { 288 if (Pos >= Size) 289 return Offsets.size(); 290 291 while (true) { 292 auto FirstAfterPos = llvm::upper_bound(Offsets, Pos); 293 if (FirstAfterPos == Offsets.begin()) 294 return 0; 295 296 // If we already have an element starting at Pos, we're done. 297 size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1; 298 if (Offsets[LastAtOrBeforePosIndex] == Pos) 299 return LastAtOrBeforePosIndex; 300 301 // We found an element starting before Pos. Check for overlap. 302 if (Offsets[LastAtOrBeforePosIndex] + 303 getSize(Elems[LastAtOrBeforePosIndex]) <= Pos) 304 return LastAtOrBeforePosIndex + 1; 305 306 // Try to decompose it into smaller constants. 307 if (!split(LastAtOrBeforePosIndex, Pos)) 308 return None; 309 } 310 } 311 312 /// Split the constant at index Index, if possible. Return true if we did. 313 /// Hint indicates the location at which we'd like to split, but may be 314 /// ignored. 315 bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) { 316 NaturalLayout = false; 317 llvm::Constant *C = Elems[Index]; 318 CharUnits Offset = Offsets[Index]; 319 320 if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) { 321 // Expand the sequence into its contained elements. 322 // FIXME: This assumes vector elements are byte-sized. 323 replace(Elems, Index, Index + 1, 324 llvm::map_range(llvm::seq(0u, CA->getNumOperands()), 325 [&](unsigned Op) { return CA->getOperand(Op); })); 326 if (isa<llvm::ArrayType>(CA->getType()) || 327 isa<llvm::VectorType>(CA->getType())) { 328 // Array or vector. 329 llvm::Type *ElemTy = 330 llvm::GetElementPtrInst::getTypeAtIndex(CA->getType(), (uint64_t)0); 331 CharUnits ElemSize = getSize(ElemTy); 332 replace( 333 Offsets, Index, Index + 1, 334 llvm::map_range(llvm::seq(0u, CA->getNumOperands()), 335 [&](unsigned Op) { return Offset + Op * ElemSize; })); 336 } else { 337 // Must be a struct. 338 auto *ST = cast<llvm::StructType>(CA->getType()); 339 const llvm::StructLayout *Layout = 340 CGM.getDataLayout().getStructLayout(ST); 341 replace(Offsets, Index, Index + 1, 342 llvm::map_range( 343 llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) { 344 return Offset + CharUnits::fromQuantity( 345 Layout->getElementOffset(Op)); 346 })); 347 } 348 return true; 349 } 350 351 if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) { 352 // Expand the sequence into its contained elements. 353 // FIXME: This assumes vector elements are byte-sized. 354 // FIXME: If possible, split into two ConstantDataSequentials at Hint. 355 CharUnits ElemSize = getSize(CDS->getElementType()); 356 replace(Elems, Index, Index + 1, 357 llvm::map_range(llvm::seq(0u, CDS->getNumElements()), 358 [&](unsigned Elem) { 359 return CDS->getElementAsConstant(Elem); 360 })); 361 replace(Offsets, Index, Index + 1, 362 llvm::map_range( 363 llvm::seq(0u, CDS->getNumElements()), 364 [&](unsigned Elem) { return Offset + Elem * ElemSize; })); 365 return true; 366 } 367 368 if (isa<llvm::ConstantAggregateZero>(C)) { 369 // Split into two zeros at the hinted offset. 370 CharUnits ElemSize = getSize(C); 371 assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split"); 372 replace(Elems, Index, Index + 1, 373 {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)}); 374 replace(Offsets, Index, Index + 1, {Offset, Hint}); 375 return true; 376 } 377 378 if (isa<llvm::UndefValue>(C)) { 379 // Drop undef; it doesn't contribute to the final layout. 380 replace(Elems, Index, Index + 1, {}); 381 replace(Offsets, Index, Index + 1, {}); 382 return true; 383 } 384 385 // FIXME: We could split a ConstantInt if the need ever arose. 386 // We don't need to do this to handle bit-fields because we always eagerly 387 // split them into 1-byte chunks. 388 389 return false; 390 } 391 392 static llvm::Constant * 393 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType, 394 llvm::Type *CommonElementType, unsigned ArrayBound, 395 SmallVectorImpl<llvm::Constant *> &Elements, 396 llvm::Constant *Filler); 397 398 llvm::Constant *ConstantAggregateBuilder::buildFrom( 399 CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems, 400 ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size, 401 bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) { 402 ConstantAggregateBuilderUtils Utils(CGM); 403 404 if (Elems.empty()) 405 return llvm::UndefValue::get(DesiredTy); 406 407 auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; }; 408 409 // If we want an array type, see if all the elements are the same type and 410 // appropriately spaced. 411 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) { 412 assert(!AllowOversized && "oversized array emission not supported"); 413 414 bool CanEmitArray = true; 415 llvm::Type *CommonType = Elems[0]->getType(); 416 llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType); 417 CharUnits ElemSize = Utils.getSize(ATy->getElementType()); 418 SmallVector<llvm::Constant*, 32> ArrayElements; 419 for (size_t I = 0; I != Elems.size(); ++I) { 420 // Skip zeroes; we'll use a zero value as our array filler. 421 if (Elems[I]->isNullValue()) 422 continue; 423 424 // All remaining elements must be the same type. 425 if (Elems[I]->getType() != CommonType || 426 Offset(I) % ElemSize != 0) { 427 CanEmitArray = false; 428 break; 429 } 430 ArrayElements.resize(Offset(I) / ElemSize + 1, Filler); 431 ArrayElements.back() = Elems[I]; 432 } 433 434 if (CanEmitArray) { 435 return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(), 436 ArrayElements, Filler); 437 } 438 439 // Can't emit as an array, carry on to emit as a struct. 440 } 441 442 CharUnits DesiredSize = Utils.getSize(DesiredTy); 443 CharUnits Align = CharUnits::One(); 444 for (llvm::Constant *C : Elems) 445 Align = std::max(Align, Utils.getAlignment(C)); 446 CharUnits AlignedSize = Size.alignTo(Align); 447 448 bool Packed = false; 449 ArrayRef<llvm::Constant*> UnpackedElems = Elems; 450 llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage; 451 if ((DesiredSize < AlignedSize && !AllowOversized) || 452 DesiredSize.alignTo(Align) != DesiredSize) { 453 // The natural layout would be the wrong size; force use of a packed layout. 454 NaturalLayout = false; 455 Packed = true; 456 } else if (DesiredSize > AlignedSize) { 457 // The constant would be too small. Add padding to fix it. 458 UnpackedElemStorage.assign(Elems.begin(), Elems.end()); 459 UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size)); 460 UnpackedElems = UnpackedElemStorage; 461 } 462 463 // If we don't have a natural layout, insert padding as necessary. 464 // As we go, double-check to see if we can actually just emit Elems 465 // as a non-packed struct and do so opportunistically if possible. 466 llvm::SmallVector<llvm::Constant*, 32> PackedElems; 467 if (!NaturalLayout) { 468 CharUnits SizeSoFar = CharUnits::Zero(); 469 for (size_t I = 0; I != Elems.size(); ++I) { 470 CharUnits Align = Utils.getAlignment(Elems[I]); 471 CharUnits NaturalOffset = SizeSoFar.alignTo(Align); 472 CharUnits DesiredOffset = Offset(I); 473 assert(DesiredOffset >= SizeSoFar && "elements out of order"); 474 475 if (DesiredOffset != NaturalOffset) 476 Packed = true; 477 if (DesiredOffset != SizeSoFar) 478 PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar)); 479 PackedElems.push_back(Elems[I]); 480 SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]); 481 } 482 // If we're using the packed layout, pad it out to the desired size if 483 // necessary. 484 if (Packed) { 485 assert((SizeSoFar <= DesiredSize || AllowOversized) && 486 "requested size is too small for contents"); 487 if (SizeSoFar < DesiredSize) 488 PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar)); 489 } 490 } 491 492 llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements( 493 CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed); 494 495 // Pick the type to use. If the type is layout identical to the desired 496 // type then use it, otherwise use whatever the builder produced for us. 497 if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) { 498 if (DesiredSTy->isLayoutIdentical(STy)) 499 STy = DesiredSTy; 500 } 501 502 return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems); 503 } 504 505 void ConstantAggregateBuilder::condense(CharUnits Offset, 506 llvm::Type *DesiredTy) { 507 CharUnits Size = getSize(DesiredTy); 508 509 llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset); 510 if (!FirstElemToReplace) 511 return; 512 size_t First = *FirstElemToReplace; 513 514 llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + Size); 515 if (!LastElemToReplace) 516 return; 517 size_t Last = *LastElemToReplace; 518 519 size_t Length = Last - First; 520 if (Length == 0) 521 return; 522 523 if (Length == 1 && Offsets[First] == Offset && 524 getSize(Elems[First]) == Size) { 525 // Re-wrap single element structs if necessary. Otherwise, leave any single 526 // element constant of the right size alone even if it has the wrong type. 527 auto *STy = dyn_cast<llvm::StructType>(DesiredTy); 528 if (STy && STy->getNumElements() == 1 && 529 STy->getElementType(0) == Elems[First]->getType()) 530 Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]); 531 return; 532 } 533 534 llvm::Constant *Replacement = buildFrom( 535 CGM, makeArrayRef(Elems).slice(First, Length), 536 makeArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy), 537 /*known to have natural layout=*/false, DesiredTy, false); 538 replace(Elems, First, Last, {Replacement}); 539 replace(Offsets, First, Last, {Offset}); 540 } 541 542 //===----------------------------------------------------------------------===// 543 // ConstStructBuilder 544 //===----------------------------------------------------------------------===// 545 546 class ConstStructBuilder { 547 CodeGenModule &CGM; 548 ConstantEmitter &Emitter; 549 ConstantAggregateBuilder &Builder; 550 CharUnits StartOffset; 551 552 public: 553 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 554 InitListExpr *ILE, QualType StructTy); 555 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 556 const APValue &Value, QualType ValTy); 557 static bool UpdateStruct(ConstantEmitter &Emitter, 558 ConstantAggregateBuilder &Const, CharUnits Offset, 559 InitListExpr *Updater); 560 561 private: 562 ConstStructBuilder(ConstantEmitter &Emitter, 563 ConstantAggregateBuilder &Builder, CharUnits StartOffset) 564 : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder), 565 StartOffset(StartOffset) {} 566 567 bool AppendField(const FieldDecl *Field, uint64_t FieldOffset, 568 llvm::Constant *InitExpr, bool AllowOverwrite = false); 569 570 bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst, 571 bool AllowOverwrite = false); 572 573 bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, 574 llvm::ConstantInt *InitExpr, bool AllowOverwrite = false); 575 576 bool Build(InitListExpr *ILE, bool AllowOverwrite); 577 bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase, 578 const CXXRecordDecl *VTableClass, CharUnits BaseOffset); 579 llvm::Constant *Finalize(QualType Ty); 580 }; 581 582 bool ConstStructBuilder::AppendField( 583 const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst, 584 bool AllowOverwrite) { 585 const ASTContext &Context = CGM.getContext(); 586 587 CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset); 588 589 return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite); 590 } 591 592 bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars, 593 llvm::Constant *InitCst, 594 bool AllowOverwrite) { 595 return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite); 596 } 597 598 bool ConstStructBuilder::AppendBitField( 599 const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI, 600 bool AllowOverwrite) { 601 const CGRecordLayout &RL = 602 CGM.getTypes().getCGRecordLayout(Field->getParent()); 603 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field); 604 llvm::APInt FieldValue = CI->getValue(); 605 606 // Promote the size of FieldValue if necessary 607 // FIXME: This should never occur, but currently it can because initializer 608 // constants are cast to bool, and because clang is not enforcing bitfield 609 // width limits. 610 if (Info.Size > FieldValue.getBitWidth()) 611 FieldValue = FieldValue.zext(Info.Size); 612 613 // Truncate the size of FieldValue to the bit field size. 614 if (Info.Size < FieldValue.getBitWidth()) 615 FieldValue = FieldValue.trunc(Info.Size); 616 617 return Builder.addBits(FieldValue, 618 CGM.getContext().toBits(StartOffset) + FieldOffset, 619 AllowOverwrite); 620 } 621 622 static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter, 623 ConstantAggregateBuilder &Const, 624 CharUnits Offset, QualType Type, 625 InitListExpr *Updater) { 626 if (Type->isRecordType()) 627 return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater); 628 629 auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type); 630 if (!CAT) 631 return false; 632 QualType ElemType = CAT->getElementType(); 633 CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType); 634 llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType); 635 636 llvm::Constant *FillC = nullptr; 637 if (Expr *Filler = Updater->getArrayFiller()) { 638 if (!isa<NoInitExpr>(Filler)) { 639 FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType); 640 if (!FillC) 641 return false; 642 } 643 } 644 645 unsigned NumElementsToUpdate = 646 FillC ? CAT->getSize().getZExtValue() : Updater->getNumInits(); 647 for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) { 648 Expr *Init = nullptr; 649 if (I < Updater->getNumInits()) 650 Init = Updater->getInit(I); 651 652 if (!Init && FillC) { 653 if (!Const.add(FillC, Offset, true)) 654 return false; 655 } else if (!Init || isa<NoInitExpr>(Init)) { 656 continue; 657 } else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) { 658 if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType, 659 ChildILE)) 660 return false; 661 // Attempt to reduce the array element to a single constant if necessary. 662 Const.condense(Offset, ElemTy); 663 } else { 664 llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType); 665 if (!Const.add(Val, Offset, true)) 666 return false; 667 } 668 } 669 670 return true; 671 } 672 673 bool ConstStructBuilder::Build(InitListExpr *ILE, bool AllowOverwrite) { 674 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); 675 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 676 677 unsigned FieldNo = -1; 678 unsigned ElementNo = 0; 679 680 // Bail out if we have base classes. We could support these, but they only 681 // arise in C++1z where we will have already constant folded most interesting 682 // cases. FIXME: There are still a few more cases we can handle this way. 683 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 684 if (CXXRD->getNumBases()) 685 return false; 686 687 for (FieldDecl *Field : RD->fields()) { 688 ++FieldNo; 689 690 // If this is a union, skip all the fields that aren't being initialized. 691 if (RD->isUnion() && 692 !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field)) 693 continue; 694 695 // Don't emit anonymous bitfields or zero-sized fields. 696 if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext())) 697 continue; 698 699 // Get the initializer. A struct can include fields without initializers, 700 // we just use explicit null values for them. 701 Expr *Init = nullptr; 702 if (ElementNo < ILE->getNumInits()) 703 Init = ILE->getInit(ElementNo++); 704 if (Init && isa<NoInitExpr>(Init)) 705 continue; 706 707 // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr 708 // represents additional overwriting of our current constant value, and not 709 // a new constant to emit independently. 710 if (AllowOverwrite && 711 (Field->getType()->isArrayType() || Field->getType()->isRecordType())) { 712 if (auto *SubILE = dyn_cast<InitListExpr>(Init)) { 713 CharUnits Offset = CGM.getContext().toCharUnitsFromBits( 714 Layout.getFieldOffset(FieldNo)); 715 if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset, 716 Field->getType(), SubILE)) 717 return false; 718 // If we split apart the field's value, try to collapse it down to a 719 // single value now. 720 Builder.condense(StartOffset + Offset, 721 CGM.getTypes().ConvertTypeForMem(Field->getType())); 722 continue; 723 } 724 } 725 726 llvm::Constant *EltInit = 727 Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType()) 728 : Emitter.emitNullForMemory(Field->getType()); 729 if (!EltInit) 730 return false; 731 732 if (!Field->isBitField()) { 733 // Handle non-bitfield members. 734 if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit, 735 AllowOverwrite)) 736 return false; 737 // After emitting a non-empty field with [[no_unique_address]], we may 738 // need to overwrite its tail padding. 739 if (Field->hasAttr<NoUniqueAddressAttr>()) 740 AllowOverwrite = true; 741 } else { 742 // Otherwise we have a bitfield. 743 if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) { 744 if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI, 745 AllowOverwrite)) 746 return false; 747 } else { 748 // We are trying to initialize a bitfield with a non-trivial constant, 749 // this must require run-time code. 750 return false; 751 } 752 } 753 } 754 755 return true; 756 } 757 758 namespace { 759 struct BaseInfo { 760 BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index) 761 : Decl(Decl), Offset(Offset), Index(Index) { 762 } 763 764 const CXXRecordDecl *Decl; 765 CharUnits Offset; 766 unsigned Index; 767 768 bool operator<(const BaseInfo &O) const { return Offset < O.Offset; } 769 }; 770 } 771 772 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD, 773 bool IsPrimaryBase, 774 const CXXRecordDecl *VTableClass, 775 CharUnits Offset) { 776 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 777 778 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 779 // Add a vtable pointer, if we need one and it hasn't already been added. 780 if (CD->isDynamicClass() && !IsPrimaryBase) { 781 llvm::Constant *VTableAddressPoint = 782 CGM.getCXXABI().getVTableAddressPointForConstExpr( 783 BaseSubobject(CD, Offset), VTableClass); 784 if (!AppendBytes(Offset, VTableAddressPoint)) 785 return false; 786 } 787 788 // Accumulate and sort bases, in order to visit them in address order, which 789 // may not be the same as declaration order. 790 SmallVector<BaseInfo, 8> Bases; 791 Bases.reserve(CD->getNumBases()); 792 unsigned BaseNo = 0; 793 for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(), 794 BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) { 795 assert(!Base->isVirtual() && "should not have virtual bases here"); 796 const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl(); 797 CharUnits BaseOffset = Layout.getBaseClassOffset(BD); 798 Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo)); 799 } 800 llvm::stable_sort(Bases); 801 802 for (unsigned I = 0, N = Bases.size(); I != N; ++I) { 803 BaseInfo &Base = Bases[I]; 804 805 bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl; 806 Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase, 807 VTableClass, Offset + Base.Offset); 808 } 809 } 810 811 unsigned FieldNo = 0; 812 uint64_t OffsetBits = CGM.getContext().toBits(Offset); 813 814 bool AllowOverwrite = false; 815 for (RecordDecl::field_iterator Field = RD->field_begin(), 816 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 817 // If this is a union, skip all the fields that aren't being initialized. 818 if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field)) 819 continue; 820 821 // Don't emit anonymous bitfields or zero-sized fields. 822 if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext())) 823 continue; 824 825 // Emit the value of the initializer. 826 const APValue &FieldValue = 827 RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo); 828 llvm::Constant *EltInit = 829 Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType()); 830 if (!EltInit) 831 return false; 832 833 if (!Field->isBitField()) { 834 // Handle non-bitfield members. 835 if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 836 EltInit, AllowOverwrite)) 837 return false; 838 // After emitting a non-empty field with [[no_unique_address]], we may 839 // need to overwrite its tail padding. 840 if (Field->hasAttr<NoUniqueAddressAttr>()) 841 AllowOverwrite = true; 842 } else { 843 // Otherwise we have a bitfield. 844 if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 845 cast<llvm::ConstantInt>(EltInit), AllowOverwrite)) 846 return false; 847 } 848 } 849 850 return true; 851 } 852 853 llvm::Constant *ConstStructBuilder::Finalize(QualType Type) { 854 RecordDecl *RD = Type->castAs<RecordType>()->getDecl(); 855 llvm::Type *ValTy = CGM.getTypes().ConvertType(Type); 856 return Builder.build(ValTy, RD->hasFlexibleArrayMember()); 857 } 858 859 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 860 InitListExpr *ILE, 861 QualType ValTy) { 862 ConstantAggregateBuilder Const(Emitter.CGM); 863 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero()); 864 865 if (!Builder.Build(ILE, /*AllowOverwrite*/false)) 866 return nullptr; 867 868 return Builder.Finalize(ValTy); 869 } 870 871 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 872 const APValue &Val, 873 QualType ValTy) { 874 ConstantAggregateBuilder Const(Emitter.CGM); 875 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero()); 876 877 const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl(); 878 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); 879 if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero())) 880 return nullptr; 881 882 return Builder.Finalize(ValTy); 883 } 884 885 bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter, 886 ConstantAggregateBuilder &Const, 887 CharUnits Offset, InitListExpr *Updater) { 888 return ConstStructBuilder(Emitter, Const, Offset) 889 .Build(Updater, /*AllowOverwrite*/ true); 890 } 891 892 //===----------------------------------------------------------------------===// 893 // ConstExprEmitter 894 //===----------------------------------------------------------------------===// 895 896 static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM, 897 CodeGenFunction *CGF, 898 const CompoundLiteralExpr *E) { 899 CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType()); 900 if (llvm::GlobalVariable *Addr = 901 CGM.getAddrOfConstantCompoundLiteralIfEmitted(E)) 902 return ConstantAddress(Addr, Align); 903 904 LangAS addressSpace = E->getType().getAddressSpace(); 905 906 ConstantEmitter emitter(CGM, CGF); 907 llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(), 908 addressSpace, E->getType()); 909 if (!C) { 910 assert(!E->isFileScope() && 911 "file-scope compound literal did not have constant initializer!"); 912 return ConstantAddress::invalid(); 913 } 914 915 auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), 916 CGM.isTypeConstant(E->getType(), true), 917 llvm::GlobalValue::InternalLinkage, 918 C, ".compoundliteral", nullptr, 919 llvm::GlobalVariable::NotThreadLocal, 920 CGM.getContext().getTargetAddressSpace(addressSpace)); 921 emitter.finalize(GV); 922 GV->setAlignment(Align.getAsAlign()); 923 CGM.setAddrOfConstantCompoundLiteral(E, GV); 924 return ConstantAddress(GV, Align); 925 } 926 927 static llvm::Constant * 928 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType, 929 llvm::Type *CommonElementType, unsigned ArrayBound, 930 SmallVectorImpl<llvm::Constant *> &Elements, 931 llvm::Constant *Filler) { 932 // Figure out how long the initial prefix of non-zero elements is. 933 unsigned NonzeroLength = ArrayBound; 934 if (Elements.size() < NonzeroLength && Filler->isNullValue()) 935 NonzeroLength = Elements.size(); 936 if (NonzeroLength == Elements.size()) { 937 while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue()) 938 --NonzeroLength; 939 } 940 941 if (NonzeroLength == 0) 942 return llvm::ConstantAggregateZero::get(DesiredType); 943 944 // Add a zeroinitializer array filler if we have lots of trailing zeroes. 945 unsigned TrailingZeroes = ArrayBound - NonzeroLength; 946 if (TrailingZeroes >= 8) { 947 assert(Elements.size() >= NonzeroLength && 948 "missing initializer for non-zero element"); 949 950 // If all the elements had the same type up to the trailing zeroes, emit a 951 // struct of two arrays (the nonzero data and the zeroinitializer). 952 if (CommonElementType && NonzeroLength >= 8) { 953 llvm::Constant *Initial = llvm::ConstantArray::get( 954 llvm::ArrayType::get(CommonElementType, NonzeroLength), 955 makeArrayRef(Elements).take_front(NonzeroLength)); 956 Elements.resize(2); 957 Elements[0] = Initial; 958 } else { 959 Elements.resize(NonzeroLength + 1); 960 } 961 962 auto *FillerType = 963 CommonElementType ? CommonElementType : DesiredType->getElementType(); 964 FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes); 965 Elements.back() = llvm::ConstantAggregateZero::get(FillerType); 966 CommonElementType = nullptr; 967 } else if (Elements.size() != ArrayBound) { 968 // Otherwise pad to the right size with the filler if necessary. 969 Elements.resize(ArrayBound, Filler); 970 if (Filler->getType() != CommonElementType) 971 CommonElementType = nullptr; 972 } 973 974 // If all elements have the same type, just emit an array constant. 975 if (CommonElementType) 976 return llvm::ConstantArray::get( 977 llvm::ArrayType::get(CommonElementType, ArrayBound), Elements); 978 979 // We have mixed types. Use a packed struct. 980 llvm::SmallVector<llvm::Type *, 16> Types; 981 Types.reserve(Elements.size()); 982 for (llvm::Constant *Elt : Elements) 983 Types.push_back(Elt->getType()); 984 llvm::StructType *SType = 985 llvm::StructType::get(CGM.getLLVMContext(), Types, true); 986 return llvm::ConstantStruct::get(SType, Elements); 987 } 988 989 // This class only needs to handle arrays, structs and unions. Outside C++11 990 // mode, we don't currently constant fold those types. All other types are 991 // handled by constant folding. 992 // 993 // Constant folding is currently missing support for a few features supported 994 // here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr. 995 class ConstExprEmitter : 996 public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> { 997 CodeGenModule &CGM; 998 ConstantEmitter &Emitter; 999 llvm::LLVMContext &VMContext; 1000 public: 1001 ConstExprEmitter(ConstantEmitter &emitter) 1002 : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) { 1003 } 1004 1005 //===--------------------------------------------------------------------===// 1006 // Visitor Methods 1007 //===--------------------------------------------------------------------===// 1008 1009 llvm::Constant *VisitStmt(Stmt *S, QualType T) { 1010 return nullptr; 1011 } 1012 1013 llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) { 1014 return Visit(CE->getSubExpr(), T); 1015 } 1016 1017 llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) { 1018 return Visit(PE->getSubExpr(), T); 1019 } 1020 1021 llvm::Constant * 1022 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE, 1023 QualType T) { 1024 return Visit(PE->getReplacement(), T); 1025 } 1026 1027 llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE, 1028 QualType T) { 1029 return Visit(GE->getResultExpr(), T); 1030 } 1031 1032 llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) { 1033 return Visit(CE->getChosenSubExpr(), T); 1034 } 1035 1036 llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) { 1037 return Visit(E->getInitializer(), T); 1038 } 1039 1040 llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) { 1041 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 1042 CGM.EmitExplicitCastExprType(ECE, Emitter.CGF); 1043 Expr *subExpr = E->getSubExpr(); 1044 1045 switch (E->getCastKind()) { 1046 case CK_ToUnion: { 1047 // GCC cast to union extension 1048 assert(E->getType()->isUnionType() && 1049 "Destination type is not union type!"); 1050 1051 auto field = E->getTargetUnionField(); 1052 1053 auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType()); 1054 if (!C) return nullptr; 1055 1056 auto destTy = ConvertType(destType); 1057 if (C->getType() == destTy) return C; 1058 1059 // Build a struct with the union sub-element as the first member, 1060 // and padded to the appropriate size. 1061 SmallVector<llvm::Constant*, 2> Elts; 1062 SmallVector<llvm::Type*, 2> Types; 1063 Elts.push_back(C); 1064 Types.push_back(C->getType()); 1065 unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType()); 1066 unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy); 1067 1068 assert(CurSize <= TotalSize && "Union size mismatch!"); 1069 if (unsigned NumPadBytes = TotalSize - CurSize) { 1070 llvm::Type *Ty = CGM.Int8Ty; 1071 if (NumPadBytes > 1) 1072 Ty = llvm::ArrayType::get(Ty, NumPadBytes); 1073 1074 Elts.push_back(llvm::UndefValue::get(Ty)); 1075 Types.push_back(Ty); 1076 } 1077 1078 llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false); 1079 return llvm::ConstantStruct::get(STy, Elts); 1080 } 1081 1082 case CK_AddressSpaceConversion: { 1083 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 1084 if (!C) return nullptr; 1085 LangAS destAS = E->getType()->getPointeeType().getAddressSpace(); 1086 LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace(); 1087 llvm::Type *destTy = ConvertType(E->getType()); 1088 return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS, 1089 destAS, destTy); 1090 } 1091 1092 case CK_LValueToRValue: 1093 case CK_AtomicToNonAtomic: 1094 case CK_NonAtomicToAtomic: 1095 case CK_NoOp: 1096 case CK_ConstructorConversion: 1097 return Visit(subExpr, destType); 1098 1099 case CK_IntToOCLSampler: 1100 llvm_unreachable("global sampler variables are not generated"); 1101 1102 case CK_Dependent: llvm_unreachable("saw dependent cast!"); 1103 1104 case CK_BuiltinFnToFnPtr: 1105 llvm_unreachable("builtin functions are handled elsewhere"); 1106 1107 case CK_ReinterpretMemberPointer: 1108 case CK_DerivedToBaseMemberPointer: 1109 case CK_BaseToDerivedMemberPointer: { 1110 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 1111 if (!C) return nullptr; 1112 return CGM.getCXXABI().EmitMemberPointerConversion(E, C); 1113 } 1114 1115 // These will never be supported. 1116 case CK_ObjCObjectLValueCast: 1117 case CK_ARCProduceObject: 1118 case CK_ARCConsumeObject: 1119 case CK_ARCReclaimReturnedObject: 1120 case CK_ARCExtendBlockObject: 1121 case CK_CopyAndAutoreleaseBlockObject: 1122 return nullptr; 1123 1124 // These don't need to be handled here because Evaluate knows how to 1125 // evaluate them in the cases where they can be folded. 1126 case CK_BitCast: 1127 case CK_ToVoid: 1128 case CK_Dynamic: 1129 case CK_LValueBitCast: 1130 case CK_LValueToRValueBitCast: 1131 case CK_NullToMemberPointer: 1132 case CK_UserDefinedConversion: 1133 case CK_CPointerToObjCPointerCast: 1134 case CK_BlockPointerToObjCPointerCast: 1135 case CK_AnyPointerToBlockPointerCast: 1136 case CK_ArrayToPointerDecay: 1137 case CK_FunctionToPointerDecay: 1138 case CK_BaseToDerived: 1139 case CK_DerivedToBase: 1140 case CK_UncheckedDerivedToBase: 1141 case CK_MemberPointerToBoolean: 1142 case CK_VectorSplat: 1143 case CK_FloatingRealToComplex: 1144 case CK_FloatingComplexToReal: 1145 case CK_FloatingComplexToBoolean: 1146 case CK_FloatingComplexCast: 1147 case CK_FloatingComplexToIntegralComplex: 1148 case CK_IntegralRealToComplex: 1149 case CK_IntegralComplexToReal: 1150 case CK_IntegralComplexToBoolean: 1151 case CK_IntegralComplexCast: 1152 case CK_IntegralComplexToFloatingComplex: 1153 case CK_PointerToIntegral: 1154 case CK_PointerToBoolean: 1155 case CK_NullToPointer: 1156 case CK_IntegralCast: 1157 case CK_BooleanToSignedIntegral: 1158 case CK_IntegralToPointer: 1159 case CK_IntegralToBoolean: 1160 case CK_IntegralToFloating: 1161 case CK_FloatingToIntegral: 1162 case CK_FloatingToBoolean: 1163 case CK_FloatingCast: 1164 case CK_FixedPointCast: 1165 case CK_FixedPointToBoolean: 1166 case CK_FixedPointToIntegral: 1167 case CK_IntegralToFixedPoint: 1168 case CK_ZeroToOCLOpaqueType: 1169 return nullptr; 1170 } 1171 llvm_unreachable("Invalid CastKind"); 1172 } 1173 1174 llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) { 1175 // No need for a DefaultInitExprScope: we don't handle 'this' in a 1176 // constant expression. 1177 return Visit(DIE->getExpr(), T); 1178 } 1179 1180 llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) { 1181 return Visit(E->getSubExpr(), T); 1182 } 1183 1184 llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E, 1185 QualType T) { 1186 return Visit(E->getSubExpr(), T); 1187 } 1188 1189 llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) { 1190 auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType()); 1191 assert(CAT && "can't emit array init for non-constant-bound array"); 1192 unsigned NumInitElements = ILE->getNumInits(); 1193 unsigned NumElements = CAT->getSize().getZExtValue(); 1194 1195 // Initialising an array requires us to automatically 1196 // initialise any elements that have not been initialised explicitly 1197 unsigned NumInitableElts = std::min(NumInitElements, NumElements); 1198 1199 QualType EltType = CAT->getElementType(); 1200 1201 // Initialize remaining array elements. 1202 llvm::Constant *fillC = nullptr; 1203 if (Expr *filler = ILE->getArrayFiller()) { 1204 fillC = Emitter.tryEmitAbstractForMemory(filler, EltType); 1205 if (!fillC) 1206 return nullptr; 1207 } 1208 1209 // Copy initializer elements. 1210 SmallVector<llvm::Constant*, 16> Elts; 1211 if (fillC && fillC->isNullValue()) 1212 Elts.reserve(NumInitableElts + 1); 1213 else 1214 Elts.reserve(NumElements); 1215 1216 llvm::Type *CommonElementType = nullptr; 1217 for (unsigned i = 0; i < NumInitableElts; ++i) { 1218 Expr *Init = ILE->getInit(i); 1219 llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType); 1220 if (!C) 1221 return nullptr; 1222 if (i == 0) 1223 CommonElementType = C->getType(); 1224 else if (C->getType() != CommonElementType) 1225 CommonElementType = nullptr; 1226 Elts.push_back(C); 1227 } 1228 1229 llvm::ArrayType *Desired = 1230 cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType())); 1231 return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts, 1232 fillC); 1233 } 1234 1235 llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) { 1236 return ConstStructBuilder::BuildStruct(Emitter, ILE, T); 1237 } 1238 1239 llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E, 1240 QualType T) { 1241 return CGM.EmitNullConstant(T); 1242 } 1243 1244 llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) { 1245 if (ILE->isTransparent()) 1246 return Visit(ILE->getInit(0), T); 1247 1248 if (ILE->getType()->isArrayType()) 1249 return EmitArrayInitialization(ILE, T); 1250 1251 if (ILE->getType()->isRecordType()) 1252 return EmitRecordInitialization(ILE, T); 1253 1254 return nullptr; 1255 } 1256 1257 llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E, 1258 QualType destType) { 1259 auto C = Visit(E->getBase(), destType); 1260 if (!C) 1261 return nullptr; 1262 1263 ConstantAggregateBuilder Const(CGM); 1264 Const.add(C, CharUnits::Zero(), false); 1265 1266 if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType, 1267 E->getUpdater())) 1268 return nullptr; 1269 1270 llvm::Type *ValTy = CGM.getTypes().ConvertType(destType); 1271 bool HasFlexibleArray = false; 1272 if (auto *RT = destType->getAs<RecordType>()) 1273 HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember(); 1274 return Const.build(ValTy, HasFlexibleArray); 1275 } 1276 1277 llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) { 1278 if (!E->getConstructor()->isTrivial()) 1279 return nullptr; 1280 1281 // Only default and copy/move constructors can be trivial. 1282 if (E->getNumArgs()) { 1283 assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 1284 assert(E->getConstructor()->isCopyOrMoveConstructor() && 1285 "trivial ctor has argument but isn't a copy/move ctor"); 1286 1287 Expr *Arg = E->getArg(0); 1288 assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) && 1289 "argument to copy ctor is of wrong type"); 1290 1291 return Visit(Arg, Ty); 1292 } 1293 1294 return CGM.EmitNullConstant(Ty); 1295 } 1296 1297 llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) { 1298 // This is a string literal initializing an array in an initializer. 1299 return CGM.GetConstantArrayFromStringLiteral(E); 1300 } 1301 1302 llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) { 1303 // This must be an @encode initializing an array in a static initializer. 1304 // Don't emit it as the address of the string, emit the string data itself 1305 // as an inline array. 1306 std::string Str; 1307 CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1308 const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T); 1309 1310 // Resize the string to the right size, adding zeros at the end, or 1311 // truncating as needed. 1312 Str.resize(CAT->getSize().getZExtValue(), '\0'); 1313 return llvm::ConstantDataArray::getString(VMContext, Str, false); 1314 } 1315 1316 llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) { 1317 return Visit(E->getSubExpr(), T); 1318 } 1319 1320 // Utility methods 1321 llvm::Type *ConvertType(QualType T) { 1322 return CGM.getTypes().ConvertType(T); 1323 } 1324 }; 1325 1326 } // end anonymous namespace. 1327 1328 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C, 1329 AbstractState saved) { 1330 Abstract = saved.OldValue; 1331 1332 assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() && 1333 "created a placeholder while doing an abstract emission?"); 1334 1335 // No validation necessary for now. 1336 // No cleanup to do for now. 1337 return C; 1338 } 1339 1340 llvm::Constant * 1341 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) { 1342 auto state = pushAbstract(); 1343 auto C = tryEmitPrivateForVarInit(D); 1344 return validateAndPopAbstract(C, state); 1345 } 1346 1347 llvm::Constant * 1348 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) { 1349 auto state = pushAbstract(); 1350 auto C = tryEmitPrivate(E, destType); 1351 return validateAndPopAbstract(C, state); 1352 } 1353 1354 llvm::Constant * 1355 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) { 1356 auto state = pushAbstract(); 1357 auto C = tryEmitPrivate(value, destType); 1358 return validateAndPopAbstract(C, state); 1359 } 1360 1361 llvm::Constant * 1362 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) { 1363 auto state = pushAbstract(); 1364 auto C = tryEmitPrivate(E, destType); 1365 C = validateAndPopAbstract(C, state); 1366 if (!C) { 1367 CGM.Error(E->getExprLoc(), 1368 "internal error: could not emit constant value \"abstractly\""); 1369 C = CGM.EmitNullConstant(destType); 1370 } 1371 return C; 1372 } 1373 1374 llvm::Constant * 1375 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value, 1376 QualType destType) { 1377 auto state = pushAbstract(); 1378 auto C = tryEmitPrivate(value, destType); 1379 C = validateAndPopAbstract(C, state); 1380 if (!C) { 1381 CGM.Error(loc, 1382 "internal error: could not emit constant value \"abstractly\""); 1383 C = CGM.EmitNullConstant(destType); 1384 } 1385 return C; 1386 } 1387 1388 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) { 1389 initializeNonAbstract(D.getType().getAddressSpace()); 1390 return markIfFailed(tryEmitPrivateForVarInit(D)); 1391 } 1392 1393 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E, 1394 LangAS destAddrSpace, 1395 QualType destType) { 1396 initializeNonAbstract(destAddrSpace); 1397 return markIfFailed(tryEmitPrivateForMemory(E, destType)); 1398 } 1399 1400 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value, 1401 LangAS destAddrSpace, 1402 QualType destType) { 1403 initializeNonAbstract(destAddrSpace); 1404 auto C = tryEmitPrivateForMemory(value, destType); 1405 assert(C && "couldn't emit constant value non-abstractly?"); 1406 return C; 1407 } 1408 1409 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() { 1410 assert(!Abstract && "cannot get current address for abstract constant"); 1411 1412 1413 1414 // Make an obviously ill-formed global that should blow up compilation 1415 // if it survives. 1416 auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true, 1417 llvm::GlobalValue::PrivateLinkage, 1418 /*init*/ nullptr, 1419 /*name*/ "", 1420 /*before*/ nullptr, 1421 llvm::GlobalVariable::NotThreadLocal, 1422 CGM.getContext().getTargetAddressSpace(DestAddressSpace)); 1423 1424 PlaceholderAddresses.push_back(std::make_pair(nullptr, global)); 1425 1426 return global; 1427 } 1428 1429 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal, 1430 llvm::GlobalValue *placeholder) { 1431 assert(!PlaceholderAddresses.empty()); 1432 assert(PlaceholderAddresses.back().first == nullptr); 1433 assert(PlaceholderAddresses.back().second == placeholder); 1434 PlaceholderAddresses.back().first = signal; 1435 } 1436 1437 namespace { 1438 struct ReplacePlaceholders { 1439 CodeGenModule &CGM; 1440 1441 /// The base address of the global. 1442 llvm::Constant *Base; 1443 llvm::Type *BaseValueTy = nullptr; 1444 1445 /// The placeholder addresses that were registered during emission. 1446 llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses; 1447 1448 /// The locations of the placeholder signals. 1449 llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations; 1450 1451 /// The current index stack. We use a simple unsigned stack because 1452 /// we assume that placeholders will be relatively sparse in the 1453 /// initializer, but we cache the index values we find just in case. 1454 llvm::SmallVector<unsigned, 8> Indices; 1455 llvm::SmallVector<llvm::Constant*, 8> IndexValues; 1456 1457 ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base, 1458 ArrayRef<std::pair<llvm::Constant*, 1459 llvm::GlobalVariable*>> addresses) 1460 : CGM(CGM), Base(base), 1461 PlaceholderAddresses(addresses.begin(), addresses.end()) { 1462 } 1463 1464 void replaceInInitializer(llvm::Constant *init) { 1465 // Remember the type of the top-most initializer. 1466 BaseValueTy = init->getType(); 1467 1468 // Initialize the stack. 1469 Indices.push_back(0); 1470 IndexValues.push_back(nullptr); 1471 1472 // Recurse into the initializer. 1473 findLocations(init); 1474 1475 // Check invariants. 1476 assert(IndexValues.size() == Indices.size() && "mismatch"); 1477 assert(Indices.size() == 1 && "didn't pop all indices"); 1478 1479 // Do the replacement; this basically invalidates 'init'. 1480 assert(Locations.size() == PlaceholderAddresses.size() && 1481 "missed a placeholder?"); 1482 1483 // We're iterating over a hashtable, so this would be a source of 1484 // non-determinism in compiler output *except* that we're just 1485 // messing around with llvm::Constant structures, which never itself 1486 // does anything that should be visible in compiler output. 1487 for (auto &entry : Locations) { 1488 assert(entry.first->getParent() == nullptr && "not a placeholder!"); 1489 entry.first->replaceAllUsesWith(entry.second); 1490 entry.first->eraseFromParent(); 1491 } 1492 } 1493 1494 private: 1495 void findLocations(llvm::Constant *init) { 1496 // Recurse into aggregates. 1497 if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) { 1498 for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) { 1499 Indices.push_back(i); 1500 IndexValues.push_back(nullptr); 1501 1502 findLocations(agg->getOperand(i)); 1503 1504 IndexValues.pop_back(); 1505 Indices.pop_back(); 1506 } 1507 return; 1508 } 1509 1510 // Otherwise, check for registered constants. 1511 while (true) { 1512 auto it = PlaceholderAddresses.find(init); 1513 if (it != PlaceholderAddresses.end()) { 1514 setLocation(it->second); 1515 break; 1516 } 1517 1518 // Look through bitcasts or other expressions. 1519 if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) { 1520 init = expr->getOperand(0); 1521 } else { 1522 break; 1523 } 1524 } 1525 } 1526 1527 void setLocation(llvm::GlobalVariable *placeholder) { 1528 assert(Locations.find(placeholder) == Locations.end() && 1529 "already found location for placeholder!"); 1530 1531 // Lazily fill in IndexValues with the values from Indices. 1532 // We do this in reverse because we should always have a strict 1533 // prefix of indices from the start. 1534 assert(Indices.size() == IndexValues.size()); 1535 for (size_t i = Indices.size() - 1; i != size_t(-1); --i) { 1536 if (IndexValues[i]) { 1537 #ifndef NDEBUG 1538 for (size_t j = 0; j != i + 1; ++j) { 1539 assert(IndexValues[j] && 1540 isa<llvm::ConstantInt>(IndexValues[j]) && 1541 cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue() 1542 == Indices[j]); 1543 } 1544 #endif 1545 break; 1546 } 1547 1548 IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]); 1549 } 1550 1551 // Form a GEP and then bitcast to the placeholder type so that the 1552 // replacement will succeed. 1553 llvm::Constant *location = 1554 llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy, 1555 Base, IndexValues); 1556 location = llvm::ConstantExpr::getBitCast(location, 1557 placeholder->getType()); 1558 1559 Locations.insert({placeholder, location}); 1560 } 1561 }; 1562 } 1563 1564 void ConstantEmitter::finalize(llvm::GlobalVariable *global) { 1565 assert(InitializedNonAbstract && 1566 "finalizing emitter that was used for abstract emission?"); 1567 assert(!Finalized && "finalizing emitter multiple times"); 1568 assert(global->getInitializer()); 1569 1570 // Note that we might also be Failed. 1571 Finalized = true; 1572 1573 if (!PlaceholderAddresses.empty()) { 1574 ReplacePlaceholders(CGM, global, PlaceholderAddresses) 1575 .replaceInInitializer(global->getInitializer()); 1576 PlaceholderAddresses.clear(); // satisfy 1577 } 1578 } 1579 1580 ConstantEmitter::~ConstantEmitter() { 1581 assert((!InitializedNonAbstract || Finalized || Failed) && 1582 "not finalized after being initialized for non-abstract emission"); 1583 assert(PlaceholderAddresses.empty() && "unhandled placeholders"); 1584 } 1585 1586 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) { 1587 if (auto AT = type->getAs<AtomicType>()) { 1588 return CGM.getContext().getQualifiedType(AT->getValueType(), 1589 type.getQualifiers()); 1590 } 1591 return type; 1592 } 1593 1594 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) { 1595 // Make a quick check if variable can be default NULL initialized 1596 // and avoid going through rest of code which may do, for c++11, 1597 // initialization of memory to all NULLs. 1598 if (!D.hasLocalStorage()) { 1599 QualType Ty = CGM.getContext().getBaseElementType(D.getType()); 1600 if (Ty->isRecordType()) 1601 if (const CXXConstructExpr *E = 1602 dyn_cast_or_null<CXXConstructExpr>(D.getInit())) { 1603 const CXXConstructorDecl *CD = E->getConstructor(); 1604 if (CD->isTrivial() && CD->isDefaultConstructor()) 1605 return CGM.EmitNullConstant(D.getType()); 1606 } 1607 InConstantContext = true; 1608 } 1609 1610 QualType destType = D.getType(); 1611 1612 // Try to emit the initializer. Note that this can allow some things that 1613 // are not allowed by tryEmitPrivateForMemory alone. 1614 if (auto value = D.evaluateValue()) { 1615 return tryEmitPrivateForMemory(*value, destType); 1616 } 1617 1618 // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a 1619 // reference is a constant expression, and the reference binds to a temporary, 1620 // then constant initialization is performed. ConstExprEmitter will 1621 // incorrectly emit a prvalue constant in this case, and the calling code 1622 // interprets that as the (pointer) value of the reference, rather than the 1623 // desired value of the referee. 1624 if (destType->isReferenceType()) 1625 return nullptr; 1626 1627 const Expr *E = D.getInit(); 1628 assert(E && "No initializer to emit"); 1629 1630 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1631 auto C = 1632 ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType); 1633 return (C ? emitForMemory(C, destType) : nullptr); 1634 } 1635 1636 llvm::Constant * 1637 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) { 1638 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1639 auto C = tryEmitAbstract(E, nonMemoryDestType); 1640 return (C ? emitForMemory(C, destType) : nullptr); 1641 } 1642 1643 llvm::Constant * 1644 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value, 1645 QualType destType) { 1646 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1647 auto C = tryEmitAbstract(value, nonMemoryDestType); 1648 return (C ? emitForMemory(C, destType) : nullptr); 1649 } 1650 1651 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E, 1652 QualType destType) { 1653 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1654 llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType); 1655 return (C ? emitForMemory(C, destType) : nullptr); 1656 } 1657 1658 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value, 1659 QualType destType) { 1660 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1661 auto C = tryEmitPrivate(value, nonMemoryDestType); 1662 return (C ? emitForMemory(C, destType) : nullptr); 1663 } 1664 1665 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM, 1666 llvm::Constant *C, 1667 QualType destType) { 1668 // For an _Atomic-qualified constant, we may need to add tail padding. 1669 if (auto AT = destType->getAs<AtomicType>()) { 1670 QualType destValueType = AT->getValueType(); 1671 C = emitForMemory(CGM, C, destValueType); 1672 1673 uint64_t innerSize = CGM.getContext().getTypeSize(destValueType); 1674 uint64_t outerSize = CGM.getContext().getTypeSize(destType); 1675 if (innerSize == outerSize) 1676 return C; 1677 1678 assert(innerSize < outerSize && "emitted over-large constant for atomic"); 1679 llvm::Constant *elts[] = { 1680 C, 1681 llvm::ConstantAggregateZero::get( 1682 llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8)) 1683 }; 1684 return llvm::ConstantStruct::getAnon(elts); 1685 } 1686 1687 // Zero-extend bool. 1688 if (C->getType()->isIntegerTy(1)) { 1689 llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType); 1690 return llvm::ConstantExpr::getZExt(C, boolTy); 1691 } 1692 1693 return C; 1694 } 1695 1696 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E, 1697 QualType destType) { 1698 Expr::EvalResult Result; 1699 1700 bool Success = false; 1701 1702 if (destType->isReferenceType()) 1703 Success = E->EvaluateAsLValue(Result, CGM.getContext()); 1704 else 1705 Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext); 1706 1707 llvm::Constant *C; 1708 if (Success && !Result.HasSideEffects) 1709 C = tryEmitPrivate(Result.Val, destType); 1710 else 1711 C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType); 1712 1713 return C; 1714 } 1715 1716 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) { 1717 return getTargetCodeGenInfo().getNullPointer(*this, T, QT); 1718 } 1719 1720 namespace { 1721 /// A struct which can be used to peephole certain kinds of finalization 1722 /// that normally happen during l-value emission. 1723 struct ConstantLValue { 1724 llvm::Constant *Value; 1725 bool HasOffsetApplied; 1726 1727 /*implicit*/ ConstantLValue(llvm::Constant *value, 1728 bool hasOffsetApplied = false) 1729 : Value(value), HasOffsetApplied(hasOffsetApplied) {} 1730 1731 /*implicit*/ ConstantLValue(ConstantAddress address) 1732 : ConstantLValue(address.getPointer()) {} 1733 }; 1734 1735 /// A helper class for emitting constant l-values. 1736 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter, 1737 ConstantLValue> { 1738 CodeGenModule &CGM; 1739 ConstantEmitter &Emitter; 1740 const APValue &Value; 1741 QualType DestType; 1742 1743 // Befriend StmtVisitorBase so that we don't have to expose Visit*. 1744 friend StmtVisitorBase; 1745 1746 public: 1747 ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value, 1748 QualType destType) 1749 : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {} 1750 1751 llvm::Constant *tryEmit(); 1752 1753 private: 1754 llvm::Constant *tryEmitAbsolute(llvm::Type *destTy); 1755 ConstantLValue tryEmitBase(const APValue::LValueBase &base); 1756 1757 ConstantLValue VisitStmt(const Stmt *S) { return nullptr; } 1758 ConstantLValue VisitConstantExpr(const ConstantExpr *E); 1759 ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); 1760 ConstantLValue VisitStringLiteral(const StringLiteral *E); 1761 ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E); 1762 ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E); 1763 ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E); 1764 ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E); 1765 ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E); 1766 ConstantLValue VisitCallExpr(const CallExpr *E); 1767 ConstantLValue VisitBlockExpr(const BlockExpr *E); 1768 ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E); 1769 ConstantLValue VisitCXXUuidofExpr(const CXXUuidofExpr *E); 1770 ConstantLValue VisitMaterializeTemporaryExpr( 1771 const MaterializeTemporaryExpr *E); 1772 1773 bool hasNonZeroOffset() const { 1774 return !Value.getLValueOffset().isZero(); 1775 } 1776 1777 /// Return the value offset. 1778 llvm::Constant *getOffset() { 1779 return llvm::ConstantInt::get(CGM.Int64Ty, 1780 Value.getLValueOffset().getQuantity()); 1781 } 1782 1783 /// Apply the value offset to the given constant. 1784 llvm::Constant *applyOffset(llvm::Constant *C) { 1785 if (!hasNonZeroOffset()) 1786 return C; 1787 1788 llvm::Type *origPtrTy = C->getType(); 1789 unsigned AS = origPtrTy->getPointerAddressSpace(); 1790 llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS); 1791 C = llvm::ConstantExpr::getBitCast(C, charPtrTy); 1792 C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset()); 1793 C = llvm::ConstantExpr::getPointerCast(C, origPtrTy); 1794 return C; 1795 } 1796 }; 1797 1798 } 1799 1800 llvm::Constant *ConstantLValueEmitter::tryEmit() { 1801 const APValue::LValueBase &base = Value.getLValueBase(); 1802 1803 // The destination type should be a pointer or reference 1804 // type, but it might also be a cast thereof. 1805 // 1806 // FIXME: the chain of casts required should be reflected in the APValue. 1807 // We need this in order to correctly handle things like a ptrtoint of a 1808 // non-zero null pointer and addrspace casts that aren't trivially 1809 // represented in LLVM IR. 1810 auto destTy = CGM.getTypes().ConvertTypeForMem(DestType); 1811 assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy)); 1812 1813 // If there's no base at all, this is a null or absolute pointer, 1814 // possibly cast back to an integer type. 1815 if (!base) { 1816 return tryEmitAbsolute(destTy); 1817 } 1818 1819 // Otherwise, try to emit the base. 1820 ConstantLValue result = tryEmitBase(base); 1821 1822 // If that failed, we're done. 1823 llvm::Constant *value = result.Value; 1824 if (!value) return nullptr; 1825 1826 // Apply the offset if necessary and not already done. 1827 if (!result.HasOffsetApplied) { 1828 value = applyOffset(value); 1829 } 1830 1831 // Convert to the appropriate type; this could be an lvalue for 1832 // an integer. FIXME: performAddrSpaceCast 1833 if (isa<llvm::PointerType>(destTy)) 1834 return llvm::ConstantExpr::getPointerCast(value, destTy); 1835 1836 return llvm::ConstantExpr::getPtrToInt(value, destTy); 1837 } 1838 1839 /// Try to emit an absolute l-value, such as a null pointer or an integer 1840 /// bitcast to pointer type. 1841 llvm::Constant * 1842 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) { 1843 // If we're producing a pointer, this is easy. 1844 auto destPtrTy = cast<llvm::PointerType>(destTy); 1845 if (Value.isNullPointer()) { 1846 // FIXME: integer offsets from non-zero null pointers. 1847 return CGM.getNullPointer(destPtrTy, DestType); 1848 } 1849 1850 // Convert the integer to a pointer-sized integer before converting it 1851 // to a pointer. 1852 // FIXME: signedness depends on the original integer type. 1853 auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy); 1854 llvm::Constant *C; 1855 C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy, 1856 /*isSigned*/ false); 1857 C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy); 1858 return C; 1859 } 1860 1861 ConstantLValue 1862 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) { 1863 // Handle values. 1864 if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) { 1865 if (D->hasAttr<WeakRefAttr>()) 1866 return CGM.GetWeakRefReference(D).getPointer(); 1867 1868 if (auto FD = dyn_cast<FunctionDecl>(D)) 1869 return CGM.GetAddrOfFunction(FD); 1870 1871 if (auto VD = dyn_cast<VarDecl>(D)) { 1872 // We can never refer to a variable with local storage. 1873 if (!VD->hasLocalStorage()) { 1874 if (VD->isFileVarDecl() || VD->hasExternalStorage()) 1875 return CGM.GetAddrOfGlobalVar(VD); 1876 1877 if (VD->isLocalVarDecl()) { 1878 return CGM.getOrCreateStaticVarDecl( 1879 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)); 1880 } 1881 } 1882 } 1883 1884 return nullptr; 1885 } 1886 1887 // Handle typeid(T). 1888 if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>()) { 1889 llvm::Type *StdTypeInfoPtrTy = 1890 CGM.getTypes().ConvertType(base.getTypeInfoType())->getPointerTo(); 1891 llvm::Constant *TypeInfo = 1892 CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0)); 1893 if (TypeInfo->getType() != StdTypeInfoPtrTy) 1894 TypeInfo = llvm::ConstantExpr::getBitCast(TypeInfo, StdTypeInfoPtrTy); 1895 return TypeInfo; 1896 } 1897 1898 // Otherwise, it must be an expression. 1899 return Visit(base.get<const Expr*>()); 1900 } 1901 1902 ConstantLValue 1903 ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) { 1904 return Visit(E->getSubExpr()); 1905 } 1906 1907 ConstantLValue 1908 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 1909 return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E); 1910 } 1911 1912 ConstantLValue 1913 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) { 1914 return CGM.GetAddrOfConstantStringFromLiteral(E); 1915 } 1916 1917 ConstantLValue 1918 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 1919 return CGM.GetAddrOfConstantStringFromObjCEncode(E); 1920 } 1921 1922 static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S, 1923 QualType T, 1924 CodeGenModule &CGM) { 1925 auto C = CGM.getObjCRuntime().GenerateConstantString(S); 1926 return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(T)); 1927 } 1928 1929 ConstantLValue 1930 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 1931 return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM); 1932 } 1933 1934 ConstantLValue 1935 ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 1936 assert(E->isExpressibleAsConstantInitializer() && 1937 "this boxed expression can't be emitted as a compile-time constant"); 1938 auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts()); 1939 return emitConstantObjCStringLiteral(SL, E->getType(), CGM); 1940 } 1941 1942 ConstantLValue 1943 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) { 1944 return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName()); 1945 } 1946 1947 ConstantLValue 1948 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) { 1949 assert(Emitter.CGF && "Invalid address of label expression outside function"); 1950 llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel()); 1951 Ptr = llvm::ConstantExpr::getBitCast(Ptr, 1952 CGM.getTypes().ConvertType(E->getType())); 1953 return Ptr; 1954 } 1955 1956 ConstantLValue 1957 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) { 1958 unsigned builtin = E->getBuiltinCallee(); 1959 if (builtin != Builtin::BI__builtin___CFStringMakeConstantString && 1960 builtin != Builtin::BI__builtin___NSStringMakeConstantString) 1961 return nullptr; 1962 1963 auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts()); 1964 if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) { 1965 return CGM.getObjCRuntime().GenerateConstantString(literal); 1966 } else { 1967 // FIXME: need to deal with UCN conversion issues. 1968 return CGM.GetAddrOfConstantCFString(literal); 1969 } 1970 } 1971 1972 ConstantLValue 1973 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) { 1974 StringRef functionName; 1975 if (auto CGF = Emitter.CGF) 1976 functionName = CGF->CurFn->getName(); 1977 else 1978 functionName = "global"; 1979 1980 return CGM.GetAddrOfGlobalBlock(E, functionName); 1981 } 1982 1983 ConstantLValue 1984 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { 1985 QualType T; 1986 if (E->isTypeOperand()) 1987 T = E->getTypeOperand(CGM.getContext()); 1988 else 1989 T = E->getExprOperand()->getType(); 1990 return CGM.GetAddrOfRTTIDescriptor(T); 1991 } 1992 1993 ConstantLValue 1994 ConstantLValueEmitter::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 1995 return CGM.GetAddrOfUuidDescriptor(E); 1996 } 1997 1998 ConstantLValue 1999 ConstantLValueEmitter::VisitMaterializeTemporaryExpr( 2000 const MaterializeTemporaryExpr *E) { 2001 assert(E->getStorageDuration() == SD_Static); 2002 SmallVector<const Expr *, 2> CommaLHSs; 2003 SmallVector<SubobjectAdjustment, 2> Adjustments; 2004 const Expr *Inner = 2005 E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 2006 return CGM.GetAddrOfGlobalTemporary(E, Inner); 2007 } 2008 2009 llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value, 2010 QualType DestType) { 2011 switch (Value.getKind()) { 2012 case APValue::None: 2013 case APValue::Indeterminate: 2014 // Out-of-lifetime and indeterminate values can be modeled as 'undef'. 2015 return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType)); 2016 case APValue::LValue: 2017 return ConstantLValueEmitter(*this, Value, DestType).tryEmit(); 2018 case APValue::Int: 2019 return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt()); 2020 case APValue::FixedPoint: 2021 return llvm::ConstantInt::get(CGM.getLLVMContext(), 2022 Value.getFixedPoint().getValue()); 2023 case APValue::ComplexInt: { 2024 llvm::Constant *Complex[2]; 2025 2026 Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(), 2027 Value.getComplexIntReal()); 2028 Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(), 2029 Value.getComplexIntImag()); 2030 2031 // FIXME: the target may want to specify that this is packed. 2032 llvm::StructType *STy = 2033 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 2034 return llvm::ConstantStruct::get(STy, Complex); 2035 } 2036 case APValue::Float: { 2037 const llvm::APFloat &Init = Value.getFloat(); 2038 if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() && 2039 !CGM.getContext().getLangOpts().NativeHalfType && 2040 CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 2041 return llvm::ConstantInt::get(CGM.getLLVMContext(), 2042 Init.bitcastToAPInt()); 2043 else 2044 return llvm::ConstantFP::get(CGM.getLLVMContext(), Init); 2045 } 2046 case APValue::ComplexFloat: { 2047 llvm::Constant *Complex[2]; 2048 2049 Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(), 2050 Value.getComplexFloatReal()); 2051 Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(), 2052 Value.getComplexFloatImag()); 2053 2054 // FIXME: the target may want to specify that this is packed. 2055 llvm::StructType *STy = 2056 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 2057 return llvm::ConstantStruct::get(STy, Complex); 2058 } 2059 case APValue::Vector: { 2060 unsigned NumElts = Value.getVectorLength(); 2061 SmallVector<llvm::Constant *, 4> Inits(NumElts); 2062 2063 for (unsigned I = 0; I != NumElts; ++I) { 2064 const APValue &Elt = Value.getVectorElt(I); 2065 if (Elt.isInt()) 2066 Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt()); 2067 else if (Elt.isFloat()) 2068 Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat()); 2069 else 2070 llvm_unreachable("unsupported vector element type"); 2071 } 2072 return llvm::ConstantVector::get(Inits); 2073 } 2074 case APValue::AddrLabelDiff: { 2075 const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS(); 2076 const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS(); 2077 llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType()); 2078 llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType()); 2079 if (!LHS || !RHS) return nullptr; 2080 2081 // Compute difference 2082 llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType); 2083 LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy); 2084 RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy); 2085 llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS); 2086 2087 // LLVM is a bit sensitive about the exact format of the 2088 // address-of-label difference; make sure to truncate after 2089 // the subtraction. 2090 return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType); 2091 } 2092 case APValue::Struct: 2093 case APValue::Union: 2094 return ConstStructBuilder::BuildStruct(*this, Value, DestType); 2095 case APValue::Array: { 2096 const ConstantArrayType *CAT = 2097 CGM.getContext().getAsConstantArrayType(DestType); 2098 unsigned NumElements = Value.getArraySize(); 2099 unsigned NumInitElts = Value.getArrayInitializedElts(); 2100 2101 // Emit array filler, if there is one. 2102 llvm::Constant *Filler = nullptr; 2103 if (Value.hasArrayFiller()) { 2104 Filler = tryEmitAbstractForMemory(Value.getArrayFiller(), 2105 CAT->getElementType()); 2106 if (!Filler) 2107 return nullptr; 2108 } 2109 2110 // Emit initializer elements. 2111 SmallVector<llvm::Constant*, 16> Elts; 2112 if (Filler && Filler->isNullValue()) 2113 Elts.reserve(NumInitElts + 1); 2114 else 2115 Elts.reserve(NumElements); 2116 2117 llvm::Type *CommonElementType = nullptr; 2118 for (unsigned I = 0; I < NumInitElts; ++I) { 2119 llvm::Constant *C = tryEmitPrivateForMemory( 2120 Value.getArrayInitializedElt(I), CAT->getElementType()); 2121 if (!C) return nullptr; 2122 2123 if (I == 0) 2124 CommonElementType = C->getType(); 2125 else if (C->getType() != CommonElementType) 2126 CommonElementType = nullptr; 2127 Elts.push_back(C); 2128 } 2129 2130 // This means that the array type is probably "IncompleteType" or some 2131 // type that is not ConstantArray. 2132 if (CAT == nullptr && CommonElementType == nullptr && !NumInitElts) { 2133 const ArrayType *AT = CGM.getContext().getAsArrayType(DestType); 2134 CommonElementType = CGM.getTypes().ConvertType(AT->getElementType()); 2135 llvm::ArrayType *AType = llvm::ArrayType::get(CommonElementType, 2136 NumElements); 2137 return llvm::ConstantAggregateZero::get(AType); 2138 } 2139 2140 llvm::ArrayType *Desired = 2141 cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType)); 2142 return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts, 2143 Filler); 2144 } 2145 case APValue::MemberPointer: 2146 return CGM.getCXXABI().EmitMemberPointer(Value, DestType); 2147 } 2148 llvm_unreachable("Unknown APValue kind"); 2149 } 2150 2151 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted( 2152 const CompoundLiteralExpr *E) { 2153 return EmittedCompoundLiterals.lookup(E); 2154 } 2155 2156 void CodeGenModule::setAddrOfConstantCompoundLiteral( 2157 const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) { 2158 bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second; 2159 (void)Ok; 2160 assert(Ok && "CLE has already been emitted!"); 2161 } 2162 2163 ConstantAddress 2164 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) { 2165 assert(E->isFileScope() && "not a file-scope compound literal expr"); 2166 return tryEmitGlobalCompoundLiteral(*this, nullptr, E); 2167 } 2168 2169 llvm::Constant * 2170 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) { 2171 // Member pointer constants always have a very particular form. 2172 const MemberPointerType *type = cast<MemberPointerType>(uo->getType()); 2173 const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl(); 2174 2175 // A member function pointer. 2176 if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl)) 2177 return getCXXABI().EmitMemberFunctionPointer(method); 2178 2179 // Otherwise, a member data pointer. 2180 uint64_t fieldOffset = getContext().getFieldOffset(decl); 2181 CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset); 2182 return getCXXABI().EmitMemberDataPointer(type, chars); 2183 } 2184 2185 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2186 llvm::Type *baseType, 2187 const CXXRecordDecl *base); 2188 2189 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM, 2190 const RecordDecl *record, 2191 bool asCompleteObject) { 2192 const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record); 2193 llvm::StructType *structure = 2194 (asCompleteObject ? layout.getLLVMType() 2195 : layout.getBaseSubobjectLLVMType()); 2196 2197 unsigned numElements = structure->getNumElements(); 2198 std::vector<llvm::Constant *> elements(numElements); 2199 2200 auto CXXR = dyn_cast<CXXRecordDecl>(record); 2201 // Fill in all the bases. 2202 if (CXXR) { 2203 for (const auto &I : CXXR->bases()) { 2204 if (I.isVirtual()) { 2205 // Ignore virtual bases; if we're laying out for a complete 2206 // object, we'll lay these out later. 2207 continue; 2208 } 2209 2210 const CXXRecordDecl *base = 2211 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2212 2213 // Ignore empty bases. 2214 if (base->isEmpty() || 2215 CGM.getContext().getASTRecordLayout(base).getNonVirtualSize() 2216 .isZero()) 2217 continue; 2218 2219 unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base); 2220 llvm::Type *baseType = structure->getElementType(fieldIndex); 2221 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2222 } 2223 } 2224 2225 // Fill in all the fields. 2226 for (const auto *Field : record->fields()) { 2227 // Fill in non-bitfields. (Bitfields always use a zero pattern, which we 2228 // will fill in later.) 2229 if (!Field->isBitField() && !Field->isZeroSize(CGM.getContext())) { 2230 unsigned fieldIndex = layout.getLLVMFieldNo(Field); 2231 elements[fieldIndex] = CGM.EmitNullConstant(Field->getType()); 2232 } 2233 2234 // For unions, stop after the first named field. 2235 if (record->isUnion()) { 2236 if (Field->getIdentifier()) 2237 break; 2238 if (const auto *FieldRD = Field->getType()->getAsRecordDecl()) 2239 if (FieldRD->findFirstNamedDataMember()) 2240 break; 2241 } 2242 } 2243 2244 // Fill in the virtual bases, if we're working with the complete object. 2245 if (CXXR && asCompleteObject) { 2246 for (const auto &I : CXXR->vbases()) { 2247 const CXXRecordDecl *base = 2248 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2249 2250 // Ignore empty bases. 2251 if (base->isEmpty()) 2252 continue; 2253 2254 unsigned fieldIndex = layout.getVirtualBaseIndex(base); 2255 2256 // We might have already laid this field out. 2257 if (elements[fieldIndex]) continue; 2258 2259 llvm::Type *baseType = structure->getElementType(fieldIndex); 2260 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2261 } 2262 } 2263 2264 // Now go through all other fields and zero them out. 2265 for (unsigned i = 0; i != numElements; ++i) { 2266 if (!elements[i]) 2267 elements[i] = llvm::Constant::getNullValue(structure->getElementType(i)); 2268 } 2269 2270 return llvm::ConstantStruct::get(structure, elements); 2271 } 2272 2273 /// Emit the null constant for a base subobject. 2274 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2275 llvm::Type *baseType, 2276 const CXXRecordDecl *base) { 2277 const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base); 2278 2279 // Just zero out bases that don't have any pointer to data members. 2280 if (baseLayout.isZeroInitializableAsBase()) 2281 return llvm::Constant::getNullValue(baseType); 2282 2283 // Otherwise, we can just use its null constant. 2284 return EmitNullConstant(CGM, base, /*asCompleteObject=*/false); 2285 } 2286 2287 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM, 2288 QualType T) { 2289 return emitForMemory(CGM, CGM.EmitNullConstant(T), T); 2290 } 2291 2292 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { 2293 if (T->getAs<PointerType>()) 2294 return getNullPointer( 2295 cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T); 2296 2297 if (getTypes().isZeroInitializable(T)) 2298 return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); 2299 2300 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { 2301 llvm::ArrayType *ATy = 2302 cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T)); 2303 2304 QualType ElementTy = CAT->getElementType(); 2305 2306 llvm::Constant *Element = 2307 ConstantEmitter::emitNullForMemory(*this, ElementTy); 2308 unsigned NumElements = CAT->getSize().getZExtValue(); 2309 SmallVector<llvm::Constant *, 8> Array(NumElements, Element); 2310 return llvm::ConstantArray::get(ATy, Array); 2311 } 2312 2313 if (const RecordType *RT = T->getAs<RecordType>()) 2314 return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true); 2315 2316 assert(T->isMemberDataPointerType() && 2317 "Should only see pointers to data members here!"); 2318 2319 return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>()); 2320 } 2321 2322 llvm::Constant * 2323 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) { 2324 return ::EmitNullConstant(*this, Record, false); 2325 } 2326