1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Constant Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGCXXABI.h" 15 #include "CGObjCRuntime.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenModule.h" 18 #include "ConstantEmitter.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/APValue.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtVisitor.h" 24 #include "clang/Basic/Builtins.h" 25 #include "llvm/ADT/Sequence.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalVariable.h" 31 using namespace clang; 32 using namespace CodeGen; 33 34 //===----------------------------------------------------------------------===// 35 // ConstantAggregateBuilder 36 //===----------------------------------------------------------------------===// 37 38 namespace { 39 class ConstExprEmitter; 40 41 struct ConstantAggregateBuilderUtils { 42 CodeGenModule &CGM; 43 44 ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {} 45 46 CharUnits getAlignment(const llvm::Constant *C) const { 47 return CharUnits::fromQuantity( 48 CGM.getDataLayout().getABITypeAlignment(C->getType())); 49 } 50 51 CharUnits getSize(llvm::Type *Ty) const { 52 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty)); 53 } 54 55 CharUnits getSize(const llvm::Constant *C) const { 56 return getSize(C->getType()); 57 } 58 59 llvm::Constant *getPadding(CharUnits PadSize) const { 60 llvm::Type *Ty = CGM.Int8Ty; 61 if (PadSize > CharUnits::One()) 62 Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity()); 63 return llvm::UndefValue::get(Ty); 64 } 65 66 llvm::Constant *getZeroes(CharUnits ZeroSize) const { 67 llvm::Type *Ty = llvm::ArrayType::get(CGM.Int8Ty, ZeroSize.getQuantity()); 68 return llvm::ConstantAggregateZero::get(Ty); 69 } 70 }; 71 72 /// Incremental builder for an llvm::Constant* holding a struct or array 73 /// constant. 74 class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils { 75 /// The elements of the constant. These two arrays must have the same size; 76 /// Offsets[i] describes the offset of Elems[i] within the constant. The 77 /// elements are kept in increasing offset order, and we ensure that there 78 /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]). 79 /// 80 /// This may contain explicit padding elements (in order to create a 81 /// natural layout), but need not. Gaps between elements are implicitly 82 /// considered to be filled with undef. 83 llvm::SmallVector<llvm::Constant*, 32> Elems; 84 llvm::SmallVector<CharUnits, 32> Offsets; 85 86 /// The size of the constant (the maximum end offset of any added element). 87 /// May be larger than the end of Elems.back() if we split the last element 88 /// and removed some trailing undefs. 89 CharUnits Size = CharUnits::Zero(); 90 91 /// This is true only if laying out Elems in order as the elements of a 92 /// non-packed LLVM struct will give the correct layout. 93 bool NaturalLayout = true; 94 95 bool split(size_t Index, CharUnits Hint); 96 Optional<size_t> splitAt(CharUnits Pos); 97 98 static llvm::Constant *buildFrom(CodeGenModule &CGM, 99 ArrayRef<llvm::Constant *> Elems, 100 ArrayRef<CharUnits> Offsets, 101 CharUnits StartOffset, CharUnits Size, 102 bool NaturalLayout, llvm::Type *DesiredTy, 103 bool AllowOversized); 104 105 public: 106 ConstantAggregateBuilder(CodeGenModule &CGM) 107 : ConstantAggregateBuilderUtils(CGM) {} 108 109 /// Update or overwrite the value starting at \p Offset with \c C. 110 /// 111 /// \param AllowOverwrite If \c true, this constant might overwrite (part of) 112 /// a constant that has already been added. This flag is only used to 113 /// detect bugs. 114 bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite); 115 116 /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits. 117 bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite); 118 119 /// Attempt to condense the value starting at \p Offset to a constant of type 120 /// \p DesiredTy. 121 void condense(CharUnits Offset, llvm::Type *DesiredTy); 122 123 /// Produce a constant representing the entire accumulated value, ideally of 124 /// the specified type. If \p AllowOversized, the constant might be larger 125 /// than implied by \p DesiredTy (eg, if there is a flexible array member). 126 /// Otherwise, the constant will be of exactly the same size as \p DesiredTy 127 /// even if we can't represent it as that type. 128 llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const { 129 return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size, 130 NaturalLayout, DesiredTy, AllowOversized); 131 } 132 }; 133 134 template<typename Container, typename Range = std::initializer_list< 135 typename Container::value_type>> 136 static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) { 137 assert(BeginOff <= EndOff && "invalid replacement range"); 138 llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals); 139 } 140 141 bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset, 142 bool AllowOverwrite) { 143 // Common case: appending to a layout. 144 if (Offset >= Size) { 145 CharUnits Align = getAlignment(C); 146 CharUnits AlignedSize = Size.alignTo(Align); 147 if (AlignedSize > Offset || Offset.alignTo(Align) != Offset) 148 NaturalLayout = false; 149 else if (AlignedSize < Offset) { 150 Elems.push_back(getPadding(Offset - Size)); 151 Offsets.push_back(Size); 152 } 153 Elems.push_back(C); 154 Offsets.push_back(Offset); 155 Size = Offset + getSize(C); 156 return true; 157 } 158 159 // Uncommon case: constant overlaps what we've already created. 160 llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset); 161 if (!FirstElemToReplace) 162 return false; 163 164 CharUnits CSize = getSize(C); 165 llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + CSize); 166 if (!LastElemToReplace) 167 return false; 168 169 assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) && 170 "unexpectedly overwriting field"); 171 172 replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C}); 173 replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset}); 174 Size = std::max(Size, Offset + CSize); 175 NaturalLayout = false; 176 return true; 177 } 178 179 bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits, 180 bool AllowOverwrite) { 181 const ASTContext &Context = CGM.getContext(); 182 const uint64_t CharWidth = CGM.getContext().getCharWidth(); 183 184 // Offset of where we want the first bit to go within the bits of the 185 // current char. 186 unsigned OffsetWithinChar = OffsetInBits % CharWidth; 187 188 // We split bit-fields up into individual bytes. Walk over the bytes and 189 // update them. 190 for (CharUnits OffsetInChars = Context.toCharUnitsFromBits(OffsetInBits); 191 /**/; ++OffsetInChars) { 192 // Number of bits we want to fill in this char. 193 unsigned WantedBits = 194 std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar); 195 196 // Get a char containing the bits we want in the right places. The other 197 // bits have unspecified values. 198 llvm::APInt BitsThisChar = Bits; 199 if (BitsThisChar.getBitWidth() < CharWidth) 200 BitsThisChar = BitsThisChar.zext(CharWidth); 201 if (CGM.getDataLayout().isBigEndian()) { 202 // Figure out how much to shift by. We may need to left-shift if we have 203 // less than one byte of Bits left. 204 int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar; 205 if (Shift > 0) 206 BitsThisChar.lshrInPlace(Shift); 207 else if (Shift < 0) 208 BitsThisChar = BitsThisChar.shl(-Shift); 209 } else { 210 BitsThisChar = BitsThisChar.shl(OffsetWithinChar); 211 } 212 if (BitsThisChar.getBitWidth() > CharWidth) 213 BitsThisChar = BitsThisChar.trunc(CharWidth); 214 215 if (WantedBits == CharWidth) { 216 // Got a full byte: just add it directly. 217 add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar), 218 OffsetInChars, AllowOverwrite); 219 } else { 220 // Partial byte: update the existing integer if there is one. If we 221 // can't split out a 1-CharUnit range to update, then we can't add 222 // these bits and fail the entire constant emission. 223 llvm::Optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars); 224 if (!FirstElemToUpdate) 225 return false; 226 llvm::Optional<size_t> LastElemToUpdate = 227 splitAt(OffsetInChars + CharUnits::One()); 228 if (!LastElemToUpdate) 229 return false; 230 assert(*LastElemToUpdate - *FirstElemToUpdate < 2 && 231 "should have at most one element covering one byte"); 232 233 // Figure out which bits we want and discard the rest. 234 llvm::APInt UpdateMask(CharWidth, 0); 235 if (CGM.getDataLayout().isBigEndian()) 236 UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits, 237 CharWidth - OffsetWithinChar); 238 else 239 UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits); 240 BitsThisChar &= UpdateMask; 241 242 if (*FirstElemToUpdate == *LastElemToUpdate || 243 Elems[*FirstElemToUpdate]->isNullValue() || 244 isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) { 245 // All existing bits are either zero or undef. 246 add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar), 247 OffsetInChars, /*AllowOverwrite*/ true); 248 } else { 249 llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate]; 250 // In order to perform a partial update, we need the existing bitwise 251 // value, which we can only extract for a constant int. 252 auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate); 253 if (!CI) 254 return false; 255 // Because this is a 1-CharUnit range, the constant occupying it must 256 // be exactly one CharUnit wide. 257 assert(CI->getBitWidth() == CharWidth && "splitAt failed"); 258 assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) && 259 "unexpectedly overwriting bitfield"); 260 BitsThisChar |= (CI->getValue() & ~UpdateMask); 261 ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar); 262 } 263 } 264 265 // Stop if we've added all the bits. 266 if (WantedBits == Bits.getBitWidth()) 267 break; 268 269 // Remove the consumed bits from Bits. 270 if (!CGM.getDataLayout().isBigEndian()) 271 Bits.lshrInPlace(WantedBits); 272 Bits = Bits.trunc(Bits.getBitWidth() - WantedBits); 273 274 // The remanining bits go at the start of the following bytes. 275 OffsetWithinChar = 0; 276 } 277 278 return true; 279 } 280 281 /// Returns a position within Elems and Offsets such that all elements 282 /// before the returned index end before Pos and all elements at or after 283 /// the returned index begin at or after Pos. Splits elements as necessary 284 /// to ensure this. Returns None if we find something we can't split. 285 Optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) { 286 if (Pos >= Size) 287 return Offsets.size(); 288 289 while (true) { 290 auto FirstAfterPos = std::upper_bound(Offsets.begin(), Offsets.end(), Pos); 291 if (FirstAfterPos == Offsets.begin()) 292 return 0; 293 294 // If we already have an element starting at Pos, we're done. 295 size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1; 296 if (Offsets[LastAtOrBeforePosIndex] == Pos) 297 return LastAtOrBeforePosIndex; 298 299 // We found an element starting before Pos. Check for overlap. 300 if (Offsets[LastAtOrBeforePosIndex] + 301 getSize(Elems[LastAtOrBeforePosIndex]) <= Pos) 302 return LastAtOrBeforePosIndex + 1; 303 304 // Try to decompose it into smaller constants. 305 if (!split(LastAtOrBeforePosIndex, Pos)) 306 return None; 307 } 308 } 309 310 /// Split the constant at index Index, if possible. Return true if we did. 311 /// Hint indicates the location at which we'd like to split, but may be 312 /// ignored. 313 bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) { 314 NaturalLayout = false; 315 llvm::Constant *C = Elems[Index]; 316 CharUnits Offset = Offsets[Index]; 317 318 if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) { 319 replace(Elems, Index, Index + 1, 320 llvm::map_range(llvm::seq(0u, CA->getNumOperands()), 321 [&](unsigned Op) { return CA->getOperand(Op); })); 322 if (auto *Seq = dyn_cast<llvm::SequentialType>(CA->getType())) { 323 // Array or vector. 324 CharUnits ElemSize = getSize(Seq->getElementType()); 325 replace( 326 Offsets, Index, Index + 1, 327 llvm::map_range(llvm::seq(0u, CA->getNumOperands()), 328 [&](unsigned Op) { return Offset + Op * ElemSize; })); 329 } else { 330 // Must be a struct. 331 auto *ST = cast<llvm::StructType>(CA->getType()); 332 const llvm::StructLayout *Layout = 333 CGM.getDataLayout().getStructLayout(ST); 334 replace(Offsets, Index, Index + 1, 335 llvm::map_range( 336 llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) { 337 return Offset + CharUnits::fromQuantity( 338 Layout->getElementOffset(Op)); 339 })); 340 } 341 return true; 342 } 343 344 if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) { 345 // FIXME: If possible, split into two ConstantDataSequentials at Hint. 346 CharUnits ElemSize = getSize(CDS->getElementType()); 347 replace(Elems, Index, Index + 1, 348 llvm::map_range(llvm::seq(0u, CDS->getNumElements()), 349 [&](unsigned Elem) { 350 return CDS->getElementAsConstant(Elem); 351 })); 352 replace(Offsets, Index, Index + 1, 353 llvm::map_range( 354 llvm::seq(0u, CDS->getNumElements()), 355 [&](unsigned Elem) { return Offset + Elem * ElemSize; })); 356 return true; 357 } 358 359 if (isa<llvm::ConstantAggregateZero>(C)) { 360 CharUnits ElemSize = getSize(C); 361 assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split"); 362 replace(Elems, Index, Index + 1, 363 {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)}); 364 replace(Offsets, Index, Index + 1, {Offset, Hint}); 365 return true; 366 } 367 368 if (isa<llvm::UndefValue>(C)) { 369 replace(Elems, Index, Index + 1, {}); 370 replace(Offsets, Index, Index + 1, {}); 371 return true; 372 } 373 374 // FIXME: We could split a ConstantInt if the need ever arose. 375 // We don't need to do this to handle bit-fields because we always eagerly 376 // split them into 1-byte chunks. 377 378 return false; 379 } 380 381 static llvm::Constant * 382 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType, 383 llvm::Type *CommonElementType, unsigned ArrayBound, 384 SmallVectorImpl<llvm::Constant *> &Elements, 385 llvm::Constant *Filler); 386 387 llvm::Constant *ConstantAggregateBuilder::buildFrom( 388 CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems, 389 ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size, 390 bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) { 391 ConstantAggregateBuilderUtils Utils(CGM); 392 393 if (Elems.empty()) 394 return llvm::UndefValue::get(DesiredTy); 395 396 auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; }; 397 398 // If we want an array type, see if all the elements are the same type and 399 // appropriately spaced. 400 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) { 401 assert(!AllowOversized && "oversized array emission not supported"); 402 403 bool CanEmitArray = true; 404 llvm::Type *CommonType = Elems[0]->getType(); 405 llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType); 406 CharUnits ElemSize = Utils.getSize(ATy->getElementType()); 407 SmallVector<llvm::Constant*, 32> ArrayElements; 408 for (size_t I = 0; I != Elems.size(); ++I) { 409 // Skip zeroes; we'll use a zero value as our array filler. 410 if (Elems[I]->isNullValue()) 411 continue; 412 413 // All remaining elements must be the same type. 414 if (Elems[I]->getType() != CommonType || 415 Offset(I) % ElemSize != 0) { 416 CanEmitArray = false; 417 break; 418 } 419 ArrayElements.resize(Offset(I) / ElemSize + 1, Filler); 420 ArrayElements.back() = Elems[I]; 421 } 422 423 if (CanEmitArray) { 424 return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(), 425 ArrayElements, Filler); 426 } 427 428 // Can't emit as an array, carry on to emit as a struct. 429 } 430 431 CharUnits DesiredSize = Utils.getSize(DesiredTy); 432 CharUnits Align = CharUnits::One(); 433 for (llvm::Constant *C : Elems) 434 Align = std::max(Align, Utils.getAlignment(C)); 435 CharUnits AlignedSize = Size.alignTo(Align); 436 437 bool Packed = false; 438 ArrayRef<llvm::Constant*> UnpackedElems = Elems; 439 llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage; 440 if ((DesiredSize < AlignedSize && !AllowOversized) || 441 DesiredSize.alignTo(Align) != DesiredSize) { 442 // The natural layout would be the wrong size; force use of a packed layout. 443 NaturalLayout = false; 444 Packed = true; 445 } else if (DesiredSize > AlignedSize) { 446 // The constant would be too small. Add padding to fix it. 447 UnpackedElemStorage.assign(Elems.begin(), Elems.end()); 448 UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size)); 449 UnpackedElems = UnpackedElemStorage; 450 } 451 452 // If we don't have a natural layout, insert padding as necessary. 453 // As we go, double-check to see if we can actually just emit Elems 454 // as a non-packed struct and do so opportunistically if possible. 455 llvm::SmallVector<llvm::Constant*, 32> PackedElems; 456 if (!NaturalLayout) { 457 CharUnits SizeSoFar = CharUnits::Zero(); 458 for (size_t I = 0; I != Elems.size(); ++I) { 459 CharUnits Align = Utils.getAlignment(Elems[I]); 460 CharUnits NaturalOffset = SizeSoFar.alignTo(Align); 461 CharUnits DesiredOffset = Offset(I); 462 assert(DesiredOffset >= SizeSoFar && "elements out of order"); 463 464 if (DesiredOffset != NaturalOffset) 465 Packed = true; 466 if (DesiredOffset != SizeSoFar) 467 PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar)); 468 PackedElems.push_back(Elems[I]); 469 SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]); 470 } 471 // If we're using the packed layout, pad it out to the desired size if 472 // necessary. 473 if (Packed) { 474 assert((SizeSoFar <= DesiredSize || AllowOversized) && 475 "requested size is too small for contents"); 476 if (SizeSoFar < DesiredSize) 477 PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar)); 478 } 479 } 480 481 llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements( 482 CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed); 483 484 // Pick the type to use. If the type is layout identical to the desired 485 // type then use it, otherwise use whatever the builder produced for us. 486 if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) { 487 if (DesiredSTy->isLayoutIdentical(STy)) 488 STy = DesiredSTy; 489 } 490 491 return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems); 492 } 493 494 void ConstantAggregateBuilder::condense(CharUnits Offset, 495 llvm::Type *DesiredTy) { 496 CharUnits Size = getSize(DesiredTy); 497 498 llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset); 499 if (!FirstElemToReplace) 500 return; 501 size_t First = *FirstElemToReplace; 502 503 llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + Size); 504 if (!LastElemToReplace) 505 return; 506 size_t Last = *LastElemToReplace; 507 508 size_t Length = Last - First; 509 if (Length == 0) 510 return; 511 512 if (Length == 1 && Offsets[First] == Offset && 513 getSize(Elems[First]) == Size) { 514 // Re-wrap single element structs if necessary. Otherwise, leave any single 515 // element constant of the right size alone even if it has the wrong type. 516 auto *STy = dyn_cast<llvm::StructType>(DesiredTy); 517 if (STy && STy->getNumElements() == 1 && 518 STy->getElementType(0) == Elems[First]->getType()) 519 Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]); 520 return; 521 } 522 523 llvm::Constant *Replacement = buildFrom( 524 CGM, makeArrayRef(Elems).slice(First, Length), 525 makeArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy), 526 /*known to have natural layout=*/false, DesiredTy, false); 527 replace(Elems, First, Last, {Replacement}); 528 replace(Offsets, First, Last, {Offset}); 529 } 530 531 //===----------------------------------------------------------------------===// 532 // ConstStructBuilder 533 //===----------------------------------------------------------------------===// 534 535 class ConstStructBuilder { 536 CodeGenModule &CGM; 537 ConstantEmitter &Emitter; 538 ConstantAggregateBuilder &Builder; 539 CharUnits StartOffset; 540 541 public: 542 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 543 InitListExpr *ILE, QualType StructTy); 544 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 545 const APValue &Value, QualType ValTy); 546 static bool UpdateStruct(ConstantEmitter &Emitter, 547 ConstantAggregateBuilder &Const, CharUnits Offset, 548 InitListExpr *Updater); 549 550 private: 551 ConstStructBuilder(ConstantEmitter &Emitter, 552 ConstantAggregateBuilder &Builder, CharUnits StartOffset) 553 : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder), 554 StartOffset(StartOffset) {} 555 556 bool AppendField(const FieldDecl *Field, uint64_t FieldOffset, 557 llvm::Constant *InitExpr, bool AllowOverwrite = false); 558 559 bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst, 560 bool AllowOverwrite = false); 561 562 bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, 563 llvm::ConstantInt *InitExpr, bool AllowOverwrite = false); 564 565 bool Build(InitListExpr *ILE, bool AllowOverwrite); 566 bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase, 567 const CXXRecordDecl *VTableClass, CharUnits BaseOffset); 568 llvm::Constant *Finalize(QualType Ty); 569 }; 570 571 bool ConstStructBuilder::AppendField( 572 const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst, 573 bool AllowOverwrite) { 574 const ASTContext &Context = CGM.getContext(); 575 576 CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset); 577 578 return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite); 579 } 580 581 bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars, 582 llvm::Constant *InitCst, 583 bool AllowOverwrite) { 584 return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite); 585 } 586 587 bool ConstStructBuilder::AppendBitField( 588 const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI, 589 bool AllowOverwrite) { 590 uint64_t FieldSize = Field->getBitWidthValue(CGM.getContext()); 591 llvm::APInt FieldValue = CI->getValue(); 592 593 // Promote the size of FieldValue if necessary 594 // FIXME: This should never occur, but currently it can because initializer 595 // constants are cast to bool, and because clang is not enforcing bitfield 596 // width limits. 597 if (FieldSize > FieldValue.getBitWidth()) 598 FieldValue = FieldValue.zext(FieldSize); 599 600 // Truncate the size of FieldValue to the bit field size. 601 if (FieldSize < FieldValue.getBitWidth()) 602 FieldValue = FieldValue.trunc(FieldSize); 603 604 return Builder.addBits(FieldValue, 605 CGM.getContext().toBits(StartOffset) + FieldOffset, 606 AllowOverwrite); 607 } 608 609 static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter, 610 ConstantAggregateBuilder &Const, 611 CharUnits Offset, QualType Type, 612 InitListExpr *Updater) { 613 if (Type->isRecordType()) 614 return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater); 615 616 auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type); 617 if (!CAT) 618 return false; 619 QualType ElemType = CAT->getElementType(); 620 CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType); 621 llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType); 622 623 llvm::Constant *FillC = nullptr; 624 if (Expr *Filler = Updater->getArrayFiller()) { 625 if (!isa<NoInitExpr>(Filler)) { 626 FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType); 627 if (!FillC) 628 return false; 629 } 630 } 631 632 unsigned NumElementsToUpdate = 633 FillC ? CAT->getSize().getZExtValue() : Updater->getNumInits(); 634 for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) { 635 Expr *Init = nullptr; 636 if (I < Updater->getNumInits()) 637 Init = Updater->getInit(I); 638 639 if (!Init && FillC) { 640 if (!Const.add(FillC, Offset, true)) 641 return false; 642 } else if (!Init || isa<NoInitExpr>(Init)) { 643 continue; 644 } else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) { 645 if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType, 646 ChildILE)) 647 return false; 648 // Attempt to reduce the array element to a single constant if necessary. 649 Const.condense(Offset, ElemTy); 650 } else { 651 llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType); 652 if (!Const.add(Val, Offset, true)) 653 return false; 654 } 655 } 656 657 return true; 658 } 659 660 bool ConstStructBuilder::Build(InitListExpr *ILE, bool AllowOverwrite) { 661 RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl(); 662 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 663 664 unsigned FieldNo = -1; 665 unsigned ElementNo = 0; 666 667 // Bail out if we have base classes. We could support these, but they only 668 // arise in C++1z where we will have already constant folded most interesting 669 // cases. FIXME: There are still a few more cases we can handle this way. 670 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 671 if (CXXRD->getNumBases()) 672 return false; 673 674 for (FieldDecl *Field : RD->fields()) { 675 ++FieldNo; 676 677 // If this is a union, skip all the fields that aren't being initialized. 678 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field) 679 continue; 680 681 // Don't emit anonymous bitfields, they just affect layout. 682 if (Field->isUnnamedBitfield()) 683 continue; 684 685 // Get the initializer. A struct can include fields without initializers, 686 // we just use explicit null values for them. 687 Expr *Init = nullptr; 688 if (ElementNo < ILE->getNumInits()) 689 Init = ILE->getInit(ElementNo++); 690 if (Init && isa<NoInitExpr>(Init)) 691 continue; 692 693 // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr 694 // represents additional overwriting of our current constant value, and not 695 // a new constant to emit independently. 696 if (AllowOverwrite && 697 (Field->getType()->isArrayType() || Field->getType()->isRecordType())) { 698 if (auto *SubILE = dyn_cast<InitListExpr>(Init)) { 699 CharUnits Offset = CGM.getContext().toCharUnitsFromBits( 700 Layout.getFieldOffset(FieldNo)); 701 if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset, 702 Field->getType(), SubILE)) 703 return false; 704 // If we split apart the field's value, try to collapse it down to a 705 // single value now. 706 Builder.condense(StartOffset + Offset, 707 CGM.getTypes().ConvertTypeForMem(Field->getType())); 708 continue; 709 } 710 } 711 712 llvm::Constant *EltInit = 713 Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType()) 714 : Emitter.emitNullForMemory(Field->getType()); 715 if (!EltInit) 716 return false; 717 718 if (!Field->isBitField()) { 719 // Handle non-bitfield members. 720 if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit, 721 AllowOverwrite)) 722 return false; 723 } else { 724 // Otherwise we have a bitfield. 725 if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) { 726 if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI, 727 AllowOverwrite)) 728 return false; 729 } else { 730 // We are trying to initialize a bitfield with a non-trivial constant, 731 // this must require run-time code. 732 return false; 733 } 734 } 735 } 736 737 return true; 738 } 739 740 namespace { 741 struct BaseInfo { 742 BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index) 743 : Decl(Decl), Offset(Offset), Index(Index) { 744 } 745 746 const CXXRecordDecl *Decl; 747 CharUnits Offset; 748 unsigned Index; 749 750 bool operator<(const BaseInfo &O) const { return Offset < O.Offset; } 751 }; 752 } 753 754 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD, 755 bool IsPrimaryBase, 756 const CXXRecordDecl *VTableClass, 757 CharUnits Offset) { 758 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 759 760 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 761 // Add a vtable pointer, if we need one and it hasn't already been added. 762 if (CD->isDynamicClass() && !IsPrimaryBase) { 763 llvm::Constant *VTableAddressPoint = 764 CGM.getCXXABI().getVTableAddressPointForConstExpr( 765 BaseSubobject(CD, Offset), VTableClass); 766 if (!AppendBytes(Offset, VTableAddressPoint)) 767 return false; 768 } 769 770 // Accumulate and sort bases, in order to visit them in address order, which 771 // may not be the same as declaration order. 772 SmallVector<BaseInfo, 8> Bases; 773 Bases.reserve(CD->getNumBases()); 774 unsigned BaseNo = 0; 775 for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(), 776 BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) { 777 assert(!Base->isVirtual() && "should not have virtual bases here"); 778 const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl(); 779 CharUnits BaseOffset = Layout.getBaseClassOffset(BD); 780 Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo)); 781 } 782 llvm::stable_sort(Bases); 783 784 for (unsigned I = 0, N = Bases.size(); I != N; ++I) { 785 BaseInfo &Base = Bases[I]; 786 787 bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl; 788 Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase, 789 VTableClass, Offset + Base.Offset); 790 } 791 } 792 793 unsigned FieldNo = 0; 794 uint64_t OffsetBits = CGM.getContext().toBits(Offset); 795 796 for (RecordDecl::field_iterator Field = RD->field_begin(), 797 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 798 // If this is a union, skip all the fields that aren't being initialized. 799 if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field)) 800 continue; 801 802 // Don't emit anonymous bitfields, they just affect layout. 803 if (Field->isUnnamedBitfield()) 804 continue; 805 806 // Emit the value of the initializer. 807 const APValue &FieldValue = 808 RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo); 809 llvm::Constant *EltInit = 810 Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType()); 811 if (!EltInit) 812 return false; 813 814 if (!Field->isBitField()) { 815 // Handle non-bitfield members. 816 if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 817 EltInit)) 818 return false; 819 } else { 820 // Otherwise we have a bitfield. 821 if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 822 cast<llvm::ConstantInt>(EltInit))) 823 return false; 824 } 825 } 826 827 return true; 828 } 829 830 llvm::Constant *ConstStructBuilder::Finalize(QualType Type) { 831 RecordDecl *RD = Type->getAs<RecordType>()->getDecl(); 832 llvm::Type *ValTy = CGM.getTypes().ConvertType(Type); 833 return Builder.build(ValTy, RD->hasFlexibleArrayMember()); 834 } 835 836 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 837 InitListExpr *ILE, 838 QualType ValTy) { 839 ConstantAggregateBuilder Const(Emitter.CGM); 840 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero()); 841 842 if (!Builder.Build(ILE, /*AllowOverwrite*/false)) 843 return nullptr; 844 845 return Builder.Finalize(ValTy); 846 } 847 848 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 849 const APValue &Val, 850 QualType ValTy) { 851 ConstantAggregateBuilder Const(Emitter.CGM); 852 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero()); 853 854 const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl(); 855 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); 856 if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero())) 857 return nullptr; 858 859 return Builder.Finalize(ValTy); 860 } 861 862 bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter, 863 ConstantAggregateBuilder &Const, 864 CharUnits Offset, InitListExpr *Updater) { 865 return ConstStructBuilder(Emitter, Const, Offset) 866 .Build(Updater, /*AllowOverwrite*/ true); 867 } 868 869 //===----------------------------------------------------------------------===// 870 // ConstExprEmitter 871 //===----------------------------------------------------------------------===// 872 873 static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM, 874 CodeGenFunction *CGF, 875 const CompoundLiteralExpr *E) { 876 CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType()); 877 if (llvm::GlobalVariable *Addr = 878 CGM.getAddrOfConstantCompoundLiteralIfEmitted(E)) 879 return ConstantAddress(Addr, Align); 880 881 LangAS addressSpace = E->getType().getAddressSpace(); 882 883 ConstantEmitter emitter(CGM, CGF); 884 llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(), 885 addressSpace, E->getType()); 886 if (!C) { 887 assert(!E->isFileScope() && 888 "file-scope compound literal did not have constant initializer!"); 889 return ConstantAddress::invalid(); 890 } 891 892 auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), 893 CGM.isTypeConstant(E->getType(), true), 894 llvm::GlobalValue::InternalLinkage, 895 C, ".compoundliteral", nullptr, 896 llvm::GlobalVariable::NotThreadLocal, 897 CGM.getContext().getTargetAddressSpace(addressSpace)); 898 emitter.finalize(GV); 899 GV->setAlignment(Align.getQuantity()); 900 CGM.setAddrOfConstantCompoundLiteral(E, GV); 901 return ConstantAddress(GV, Align); 902 } 903 904 static llvm::Constant * 905 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType, 906 llvm::Type *CommonElementType, unsigned ArrayBound, 907 SmallVectorImpl<llvm::Constant *> &Elements, 908 llvm::Constant *Filler) { 909 // Figure out how long the initial prefix of non-zero elements is. 910 unsigned NonzeroLength = ArrayBound; 911 if (Elements.size() < NonzeroLength && Filler->isNullValue()) 912 NonzeroLength = Elements.size(); 913 if (NonzeroLength == Elements.size()) { 914 while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue()) 915 --NonzeroLength; 916 } 917 918 if (NonzeroLength == 0) 919 return llvm::ConstantAggregateZero::get(DesiredType); 920 921 // Add a zeroinitializer array filler if we have lots of trailing zeroes. 922 unsigned TrailingZeroes = ArrayBound - NonzeroLength; 923 if (TrailingZeroes >= 8) { 924 assert(Elements.size() >= NonzeroLength && 925 "missing initializer for non-zero element"); 926 927 // If all the elements had the same type up to the trailing zeroes, emit a 928 // struct of two arrays (the nonzero data and the zeroinitializer). 929 if (CommonElementType && NonzeroLength >= 8) { 930 llvm::Constant *Initial = llvm::ConstantArray::get( 931 llvm::ArrayType::get(CommonElementType, NonzeroLength), 932 makeArrayRef(Elements).take_front(NonzeroLength)); 933 Elements.resize(2); 934 Elements[0] = Initial; 935 } else { 936 Elements.resize(NonzeroLength + 1); 937 } 938 939 auto *FillerType = 940 CommonElementType ? CommonElementType : DesiredType->getElementType(); 941 FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes); 942 Elements.back() = llvm::ConstantAggregateZero::get(FillerType); 943 CommonElementType = nullptr; 944 } else if (Elements.size() != ArrayBound) { 945 // Otherwise pad to the right size with the filler if necessary. 946 Elements.resize(ArrayBound, Filler); 947 if (Filler->getType() != CommonElementType) 948 CommonElementType = nullptr; 949 } 950 951 // If all elements have the same type, just emit an array constant. 952 if (CommonElementType) 953 return llvm::ConstantArray::get( 954 llvm::ArrayType::get(CommonElementType, ArrayBound), Elements); 955 956 // We have mixed types. Use a packed struct. 957 llvm::SmallVector<llvm::Type *, 16> Types; 958 Types.reserve(Elements.size()); 959 for (llvm::Constant *Elt : Elements) 960 Types.push_back(Elt->getType()); 961 llvm::StructType *SType = 962 llvm::StructType::get(CGM.getLLVMContext(), Types, true); 963 return llvm::ConstantStruct::get(SType, Elements); 964 } 965 966 // This class only needs to handle arrays, structs and unions. Outside C++11 967 // mode, we don't currently constant fold those types. All other types are 968 // handled by constant folding. 969 // 970 // Constant folding is currently missing support for a few features supported 971 // here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr. 972 class ConstExprEmitter : 973 public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> { 974 CodeGenModule &CGM; 975 ConstantEmitter &Emitter; 976 llvm::LLVMContext &VMContext; 977 public: 978 ConstExprEmitter(ConstantEmitter &emitter) 979 : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) { 980 } 981 982 //===--------------------------------------------------------------------===// 983 // Visitor Methods 984 //===--------------------------------------------------------------------===// 985 986 llvm::Constant *VisitStmt(Stmt *S, QualType T) { 987 return nullptr; 988 } 989 990 llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) { 991 return Visit(CE->getSubExpr(), T); 992 } 993 994 llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) { 995 return Visit(PE->getSubExpr(), T); 996 } 997 998 llvm::Constant * 999 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE, 1000 QualType T) { 1001 return Visit(PE->getReplacement(), T); 1002 } 1003 1004 llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE, 1005 QualType T) { 1006 return Visit(GE->getResultExpr(), T); 1007 } 1008 1009 llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) { 1010 return Visit(CE->getChosenSubExpr(), T); 1011 } 1012 1013 llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) { 1014 return Visit(E->getInitializer(), T); 1015 } 1016 1017 llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) { 1018 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 1019 CGM.EmitExplicitCastExprType(ECE, Emitter.CGF); 1020 Expr *subExpr = E->getSubExpr(); 1021 1022 switch (E->getCastKind()) { 1023 case CK_ToUnion: { 1024 // GCC cast to union extension 1025 assert(E->getType()->isUnionType() && 1026 "Destination type is not union type!"); 1027 1028 auto field = E->getTargetUnionField(); 1029 1030 auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType()); 1031 if (!C) return nullptr; 1032 1033 auto destTy = ConvertType(destType); 1034 if (C->getType() == destTy) return C; 1035 1036 // Build a struct with the union sub-element as the first member, 1037 // and padded to the appropriate size. 1038 SmallVector<llvm::Constant*, 2> Elts; 1039 SmallVector<llvm::Type*, 2> Types; 1040 Elts.push_back(C); 1041 Types.push_back(C->getType()); 1042 unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType()); 1043 unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy); 1044 1045 assert(CurSize <= TotalSize && "Union size mismatch!"); 1046 if (unsigned NumPadBytes = TotalSize - CurSize) { 1047 llvm::Type *Ty = CGM.Int8Ty; 1048 if (NumPadBytes > 1) 1049 Ty = llvm::ArrayType::get(Ty, NumPadBytes); 1050 1051 Elts.push_back(llvm::UndefValue::get(Ty)); 1052 Types.push_back(Ty); 1053 } 1054 1055 llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false); 1056 return llvm::ConstantStruct::get(STy, Elts); 1057 } 1058 1059 case CK_AddressSpaceConversion: { 1060 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 1061 if (!C) return nullptr; 1062 LangAS destAS = E->getType()->getPointeeType().getAddressSpace(); 1063 LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace(); 1064 llvm::Type *destTy = ConvertType(E->getType()); 1065 return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS, 1066 destAS, destTy); 1067 } 1068 1069 case CK_LValueToRValue: 1070 case CK_AtomicToNonAtomic: 1071 case CK_NonAtomicToAtomic: 1072 case CK_NoOp: 1073 case CK_ConstructorConversion: 1074 return Visit(subExpr, destType); 1075 1076 case CK_IntToOCLSampler: 1077 llvm_unreachable("global sampler variables are not generated"); 1078 1079 case CK_Dependent: llvm_unreachable("saw dependent cast!"); 1080 1081 case CK_BuiltinFnToFnPtr: 1082 llvm_unreachable("builtin functions are handled elsewhere"); 1083 1084 case CK_ReinterpretMemberPointer: 1085 case CK_DerivedToBaseMemberPointer: 1086 case CK_BaseToDerivedMemberPointer: { 1087 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 1088 if (!C) return nullptr; 1089 return CGM.getCXXABI().EmitMemberPointerConversion(E, C); 1090 } 1091 1092 // These will never be supported. 1093 case CK_ObjCObjectLValueCast: 1094 case CK_ARCProduceObject: 1095 case CK_ARCConsumeObject: 1096 case CK_ARCReclaimReturnedObject: 1097 case CK_ARCExtendBlockObject: 1098 case CK_CopyAndAutoreleaseBlockObject: 1099 return nullptr; 1100 1101 // These don't need to be handled here because Evaluate knows how to 1102 // evaluate them in the cases where they can be folded. 1103 case CK_BitCast: 1104 case CK_ToVoid: 1105 case CK_Dynamic: 1106 case CK_LValueBitCast: 1107 case CK_NullToMemberPointer: 1108 case CK_UserDefinedConversion: 1109 case CK_CPointerToObjCPointerCast: 1110 case CK_BlockPointerToObjCPointerCast: 1111 case CK_AnyPointerToBlockPointerCast: 1112 case CK_ArrayToPointerDecay: 1113 case CK_FunctionToPointerDecay: 1114 case CK_BaseToDerived: 1115 case CK_DerivedToBase: 1116 case CK_UncheckedDerivedToBase: 1117 case CK_MemberPointerToBoolean: 1118 case CK_VectorSplat: 1119 case CK_FloatingRealToComplex: 1120 case CK_FloatingComplexToReal: 1121 case CK_FloatingComplexToBoolean: 1122 case CK_FloatingComplexCast: 1123 case CK_FloatingComplexToIntegralComplex: 1124 case CK_IntegralRealToComplex: 1125 case CK_IntegralComplexToReal: 1126 case CK_IntegralComplexToBoolean: 1127 case CK_IntegralComplexCast: 1128 case CK_IntegralComplexToFloatingComplex: 1129 case CK_PointerToIntegral: 1130 case CK_PointerToBoolean: 1131 case CK_NullToPointer: 1132 case CK_IntegralCast: 1133 case CK_BooleanToSignedIntegral: 1134 case CK_IntegralToPointer: 1135 case CK_IntegralToBoolean: 1136 case CK_IntegralToFloating: 1137 case CK_FloatingToIntegral: 1138 case CK_FloatingToBoolean: 1139 case CK_FloatingCast: 1140 case CK_FixedPointCast: 1141 case CK_FixedPointToBoolean: 1142 case CK_FixedPointToIntegral: 1143 case CK_IntegralToFixedPoint: 1144 case CK_ZeroToOCLOpaqueType: 1145 return nullptr; 1146 } 1147 llvm_unreachable("Invalid CastKind"); 1148 } 1149 1150 llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) { 1151 // No need for a DefaultInitExprScope: we don't handle 'this' in a 1152 // constant expression. 1153 return Visit(DIE->getExpr(), T); 1154 } 1155 1156 llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) { 1157 if (!E->cleanupsHaveSideEffects()) 1158 return Visit(E->getSubExpr(), T); 1159 return nullptr; 1160 } 1161 1162 llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E, 1163 QualType T) { 1164 return Visit(E->GetTemporaryExpr(), T); 1165 } 1166 1167 llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) { 1168 auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType()); 1169 assert(CAT && "can't emit array init for non-constant-bound array"); 1170 unsigned NumInitElements = ILE->getNumInits(); 1171 unsigned NumElements = CAT->getSize().getZExtValue(); 1172 1173 // Initialising an array requires us to automatically 1174 // initialise any elements that have not been initialised explicitly 1175 unsigned NumInitableElts = std::min(NumInitElements, NumElements); 1176 1177 QualType EltType = CAT->getElementType(); 1178 1179 // Initialize remaining array elements. 1180 llvm::Constant *fillC = nullptr; 1181 if (Expr *filler = ILE->getArrayFiller()) { 1182 fillC = Emitter.tryEmitAbstractForMemory(filler, EltType); 1183 if (!fillC) 1184 return nullptr; 1185 } 1186 1187 // Copy initializer elements. 1188 SmallVector<llvm::Constant*, 16> Elts; 1189 if (fillC && fillC->isNullValue()) 1190 Elts.reserve(NumInitableElts + 1); 1191 else 1192 Elts.reserve(NumElements); 1193 1194 llvm::Type *CommonElementType = nullptr; 1195 for (unsigned i = 0; i < NumInitableElts; ++i) { 1196 Expr *Init = ILE->getInit(i); 1197 llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType); 1198 if (!C) 1199 return nullptr; 1200 if (i == 0) 1201 CommonElementType = C->getType(); 1202 else if (C->getType() != CommonElementType) 1203 CommonElementType = nullptr; 1204 Elts.push_back(C); 1205 } 1206 1207 llvm::ArrayType *Desired = 1208 cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType())); 1209 return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts, 1210 fillC); 1211 } 1212 1213 llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) { 1214 return ConstStructBuilder::BuildStruct(Emitter, ILE, T); 1215 } 1216 1217 llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E, 1218 QualType T) { 1219 return CGM.EmitNullConstant(T); 1220 } 1221 1222 llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) { 1223 if (ILE->isTransparent()) 1224 return Visit(ILE->getInit(0), T); 1225 1226 if (ILE->getType()->isArrayType()) 1227 return EmitArrayInitialization(ILE, T); 1228 1229 if (ILE->getType()->isRecordType()) 1230 return EmitRecordInitialization(ILE, T); 1231 1232 return nullptr; 1233 } 1234 1235 llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E, 1236 QualType destType) { 1237 auto C = Visit(E->getBase(), destType); 1238 if (!C) 1239 return nullptr; 1240 1241 ConstantAggregateBuilder Const(CGM); 1242 Const.add(C, CharUnits::Zero(), false); 1243 1244 if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType, 1245 E->getUpdater())) 1246 return nullptr; 1247 1248 llvm::Type *ValTy = CGM.getTypes().ConvertType(destType); 1249 bool HasFlexibleArray = false; 1250 if (auto *RT = destType->getAs<RecordType>()) 1251 HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember(); 1252 return Const.build(ValTy, HasFlexibleArray); 1253 } 1254 1255 llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) { 1256 if (!E->getConstructor()->isTrivial()) 1257 return nullptr; 1258 1259 // FIXME: We should not have to call getBaseElementType here. 1260 const RecordType *RT = 1261 CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>(); 1262 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1263 1264 // If the class doesn't have a trivial destructor, we can't emit it as a 1265 // constant expr. 1266 if (!RD->hasTrivialDestructor()) 1267 return nullptr; 1268 1269 // Only copy and default constructors can be trivial. 1270 1271 1272 if (E->getNumArgs()) { 1273 assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 1274 assert(E->getConstructor()->isCopyOrMoveConstructor() && 1275 "trivial ctor has argument but isn't a copy/move ctor"); 1276 1277 Expr *Arg = E->getArg(0); 1278 assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) && 1279 "argument to copy ctor is of wrong type"); 1280 1281 return Visit(Arg, Ty); 1282 } 1283 1284 return CGM.EmitNullConstant(Ty); 1285 } 1286 1287 llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) { 1288 // This is a string literal initializing an array in an initializer. 1289 return CGM.GetConstantArrayFromStringLiteral(E); 1290 } 1291 1292 llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) { 1293 // This must be an @encode initializing an array in a static initializer. 1294 // Don't emit it as the address of the string, emit the string data itself 1295 // as an inline array. 1296 std::string Str; 1297 CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1298 const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T); 1299 1300 // Resize the string to the right size, adding zeros at the end, or 1301 // truncating as needed. 1302 Str.resize(CAT->getSize().getZExtValue(), '\0'); 1303 return llvm::ConstantDataArray::getString(VMContext, Str, false); 1304 } 1305 1306 llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) { 1307 return Visit(E->getSubExpr(), T); 1308 } 1309 1310 // Utility methods 1311 llvm::Type *ConvertType(QualType T) { 1312 return CGM.getTypes().ConvertType(T); 1313 } 1314 }; 1315 1316 } // end anonymous namespace. 1317 1318 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C, 1319 AbstractState saved) { 1320 Abstract = saved.OldValue; 1321 1322 assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() && 1323 "created a placeholder while doing an abstract emission?"); 1324 1325 // No validation necessary for now. 1326 // No cleanup to do for now. 1327 return C; 1328 } 1329 1330 llvm::Constant * 1331 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) { 1332 auto state = pushAbstract(); 1333 auto C = tryEmitPrivateForVarInit(D); 1334 return validateAndPopAbstract(C, state); 1335 } 1336 1337 llvm::Constant * 1338 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) { 1339 auto state = pushAbstract(); 1340 auto C = tryEmitPrivate(E, destType); 1341 return validateAndPopAbstract(C, state); 1342 } 1343 1344 llvm::Constant * 1345 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) { 1346 auto state = pushAbstract(); 1347 auto C = tryEmitPrivate(value, destType); 1348 return validateAndPopAbstract(C, state); 1349 } 1350 1351 llvm::Constant * 1352 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) { 1353 auto state = pushAbstract(); 1354 auto C = tryEmitPrivate(E, destType); 1355 C = validateAndPopAbstract(C, state); 1356 if (!C) { 1357 CGM.Error(E->getExprLoc(), 1358 "internal error: could not emit constant value \"abstractly\""); 1359 C = CGM.EmitNullConstant(destType); 1360 } 1361 return C; 1362 } 1363 1364 llvm::Constant * 1365 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value, 1366 QualType destType) { 1367 auto state = pushAbstract(); 1368 auto C = tryEmitPrivate(value, destType); 1369 C = validateAndPopAbstract(C, state); 1370 if (!C) { 1371 CGM.Error(loc, 1372 "internal error: could not emit constant value \"abstractly\""); 1373 C = CGM.EmitNullConstant(destType); 1374 } 1375 return C; 1376 } 1377 1378 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) { 1379 initializeNonAbstract(D.getType().getAddressSpace()); 1380 return markIfFailed(tryEmitPrivateForVarInit(D)); 1381 } 1382 1383 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E, 1384 LangAS destAddrSpace, 1385 QualType destType) { 1386 initializeNonAbstract(destAddrSpace); 1387 return markIfFailed(tryEmitPrivateForMemory(E, destType)); 1388 } 1389 1390 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value, 1391 LangAS destAddrSpace, 1392 QualType destType) { 1393 initializeNonAbstract(destAddrSpace); 1394 auto C = tryEmitPrivateForMemory(value, destType); 1395 assert(C && "couldn't emit constant value non-abstractly?"); 1396 return C; 1397 } 1398 1399 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() { 1400 assert(!Abstract && "cannot get current address for abstract constant"); 1401 1402 1403 1404 // Make an obviously ill-formed global that should blow up compilation 1405 // if it survives. 1406 auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true, 1407 llvm::GlobalValue::PrivateLinkage, 1408 /*init*/ nullptr, 1409 /*name*/ "", 1410 /*before*/ nullptr, 1411 llvm::GlobalVariable::NotThreadLocal, 1412 CGM.getContext().getTargetAddressSpace(DestAddressSpace)); 1413 1414 PlaceholderAddresses.push_back(std::make_pair(nullptr, global)); 1415 1416 return global; 1417 } 1418 1419 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal, 1420 llvm::GlobalValue *placeholder) { 1421 assert(!PlaceholderAddresses.empty()); 1422 assert(PlaceholderAddresses.back().first == nullptr); 1423 assert(PlaceholderAddresses.back().second == placeholder); 1424 PlaceholderAddresses.back().first = signal; 1425 } 1426 1427 namespace { 1428 struct ReplacePlaceholders { 1429 CodeGenModule &CGM; 1430 1431 /// The base address of the global. 1432 llvm::Constant *Base; 1433 llvm::Type *BaseValueTy = nullptr; 1434 1435 /// The placeholder addresses that were registered during emission. 1436 llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses; 1437 1438 /// The locations of the placeholder signals. 1439 llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations; 1440 1441 /// The current index stack. We use a simple unsigned stack because 1442 /// we assume that placeholders will be relatively sparse in the 1443 /// initializer, but we cache the index values we find just in case. 1444 llvm::SmallVector<unsigned, 8> Indices; 1445 llvm::SmallVector<llvm::Constant*, 8> IndexValues; 1446 1447 ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base, 1448 ArrayRef<std::pair<llvm::Constant*, 1449 llvm::GlobalVariable*>> addresses) 1450 : CGM(CGM), Base(base), 1451 PlaceholderAddresses(addresses.begin(), addresses.end()) { 1452 } 1453 1454 void replaceInInitializer(llvm::Constant *init) { 1455 // Remember the type of the top-most initializer. 1456 BaseValueTy = init->getType(); 1457 1458 // Initialize the stack. 1459 Indices.push_back(0); 1460 IndexValues.push_back(nullptr); 1461 1462 // Recurse into the initializer. 1463 findLocations(init); 1464 1465 // Check invariants. 1466 assert(IndexValues.size() == Indices.size() && "mismatch"); 1467 assert(Indices.size() == 1 && "didn't pop all indices"); 1468 1469 // Do the replacement; this basically invalidates 'init'. 1470 assert(Locations.size() == PlaceholderAddresses.size() && 1471 "missed a placeholder?"); 1472 1473 // We're iterating over a hashtable, so this would be a source of 1474 // non-determinism in compiler output *except* that we're just 1475 // messing around with llvm::Constant structures, which never itself 1476 // does anything that should be visible in compiler output. 1477 for (auto &entry : Locations) { 1478 assert(entry.first->getParent() == nullptr && "not a placeholder!"); 1479 entry.first->replaceAllUsesWith(entry.second); 1480 entry.first->eraseFromParent(); 1481 } 1482 } 1483 1484 private: 1485 void findLocations(llvm::Constant *init) { 1486 // Recurse into aggregates. 1487 if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) { 1488 for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) { 1489 Indices.push_back(i); 1490 IndexValues.push_back(nullptr); 1491 1492 findLocations(agg->getOperand(i)); 1493 1494 IndexValues.pop_back(); 1495 Indices.pop_back(); 1496 } 1497 return; 1498 } 1499 1500 // Otherwise, check for registered constants. 1501 while (true) { 1502 auto it = PlaceholderAddresses.find(init); 1503 if (it != PlaceholderAddresses.end()) { 1504 setLocation(it->second); 1505 break; 1506 } 1507 1508 // Look through bitcasts or other expressions. 1509 if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) { 1510 init = expr->getOperand(0); 1511 } else { 1512 break; 1513 } 1514 } 1515 } 1516 1517 void setLocation(llvm::GlobalVariable *placeholder) { 1518 assert(Locations.find(placeholder) == Locations.end() && 1519 "already found location for placeholder!"); 1520 1521 // Lazily fill in IndexValues with the values from Indices. 1522 // We do this in reverse because we should always have a strict 1523 // prefix of indices from the start. 1524 assert(Indices.size() == IndexValues.size()); 1525 for (size_t i = Indices.size() - 1; i != size_t(-1); --i) { 1526 if (IndexValues[i]) { 1527 #ifndef NDEBUG 1528 for (size_t j = 0; j != i + 1; ++j) { 1529 assert(IndexValues[j] && 1530 isa<llvm::ConstantInt>(IndexValues[j]) && 1531 cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue() 1532 == Indices[j]); 1533 } 1534 #endif 1535 break; 1536 } 1537 1538 IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]); 1539 } 1540 1541 // Form a GEP and then bitcast to the placeholder type so that the 1542 // replacement will succeed. 1543 llvm::Constant *location = 1544 llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy, 1545 Base, IndexValues); 1546 location = llvm::ConstantExpr::getBitCast(location, 1547 placeholder->getType()); 1548 1549 Locations.insert({placeholder, location}); 1550 } 1551 }; 1552 } 1553 1554 void ConstantEmitter::finalize(llvm::GlobalVariable *global) { 1555 assert(InitializedNonAbstract && 1556 "finalizing emitter that was used for abstract emission?"); 1557 assert(!Finalized && "finalizing emitter multiple times"); 1558 assert(global->getInitializer()); 1559 1560 // Note that we might also be Failed. 1561 Finalized = true; 1562 1563 if (!PlaceholderAddresses.empty()) { 1564 ReplacePlaceholders(CGM, global, PlaceholderAddresses) 1565 .replaceInInitializer(global->getInitializer()); 1566 PlaceholderAddresses.clear(); // satisfy 1567 } 1568 } 1569 1570 ConstantEmitter::~ConstantEmitter() { 1571 assert((!InitializedNonAbstract || Finalized || Failed) && 1572 "not finalized after being initialized for non-abstract emission"); 1573 assert(PlaceholderAddresses.empty() && "unhandled placeholders"); 1574 } 1575 1576 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) { 1577 if (auto AT = type->getAs<AtomicType>()) { 1578 return CGM.getContext().getQualifiedType(AT->getValueType(), 1579 type.getQualifiers()); 1580 } 1581 return type; 1582 } 1583 1584 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) { 1585 // Make a quick check if variable can be default NULL initialized 1586 // and avoid going through rest of code which may do, for c++11, 1587 // initialization of memory to all NULLs. 1588 if (!D.hasLocalStorage()) { 1589 QualType Ty = CGM.getContext().getBaseElementType(D.getType()); 1590 if (Ty->isRecordType()) 1591 if (const CXXConstructExpr *E = 1592 dyn_cast_or_null<CXXConstructExpr>(D.getInit())) { 1593 const CXXConstructorDecl *CD = E->getConstructor(); 1594 if (CD->isTrivial() && CD->isDefaultConstructor()) 1595 return CGM.EmitNullConstant(D.getType()); 1596 } 1597 InConstantContext = true; 1598 } 1599 1600 QualType destType = D.getType(); 1601 1602 // Try to emit the initializer. Note that this can allow some things that 1603 // are not allowed by tryEmitPrivateForMemory alone. 1604 if (auto value = D.evaluateValue()) { 1605 return tryEmitPrivateForMemory(*value, destType); 1606 } 1607 1608 // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a 1609 // reference is a constant expression, and the reference binds to a temporary, 1610 // then constant initialization is performed. ConstExprEmitter will 1611 // incorrectly emit a prvalue constant in this case, and the calling code 1612 // interprets that as the (pointer) value of the reference, rather than the 1613 // desired value of the referee. 1614 if (destType->isReferenceType()) 1615 return nullptr; 1616 1617 const Expr *E = D.getInit(); 1618 assert(E && "No initializer to emit"); 1619 1620 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1621 auto C = 1622 ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType); 1623 return (C ? emitForMemory(C, destType) : nullptr); 1624 } 1625 1626 llvm::Constant * 1627 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) { 1628 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1629 auto C = tryEmitAbstract(E, nonMemoryDestType); 1630 return (C ? emitForMemory(C, destType) : nullptr); 1631 } 1632 1633 llvm::Constant * 1634 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value, 1635 QualType destType) { 1636 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1637 auto C = tryEmitAbstract(value, nonMemoryDestType); 1638 return (C ? emitForMemory(C, destType) : nullptr); 1639 } 1640 1641 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E, 1642 QualType destType) { 1643 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1644 llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType); 1645 return (C ? emitForMemory(C, destType) : nullptr); 1646 } 1647 1648 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value, 1649 QualType destType) { 1650 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1651 auto C = tryEmitPrivate(value, nonMemoryDestType); 1652 return (C ? emitForMemory(C, destType) : nullptr); 1653 } 1654 1655 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM, 1656 llvm::Constant *C, 1657 QualType destType) { 1658 // For an _Atomic-qualified constant, we may need to add tail padding. 1659 if (auto AT = destType->getAs<AtomicType>()) { 1660 QualType destValueType = AT->getValueType(); 1661 C = emitForMemory(CGM, C, destValueType); 1662 1663 uint64_t innerSize = CGM.getContext().getTypeSize(destValueType); 1664 uint64_t outerSize = CGM.getContext().getTypeSize(destType); 1665 if (innerSize == outerSize) 1666 return C; 1667 1668 assert(innerSize < outerSize && "emitted over-large constant for atomic"); 1669 llvm::Constant *elts[] = { 1670 C, 1671 llvm::ConstantAggregateZero::get( 1672 llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8)) 1673 }; 1674 return llvm::ConstantStruct::getAnon(elts); 1675 } 1676 1677 // Zero-extend bool. 1678 if (C->getType()->isIntegerTy(1)) { 1679 llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType); 1680 return llvm::ConstantExpr::getZExt(C, boolTy); 1681 } 1682 1683 return C; 1684 } 1685 1686 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E, 1687 QualType destType) { 1688 Expr::EvalResult Result; 1689 1690 bool Success = false; 1691 1692 if (destType->isReferenceType()) 1693 Success = E->EvaluateAsLValue(Result, CGM.getContext()); 1694 else 1695 Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext); 1696 1697 llvm::Constant *C; 1698 if (Success && !Result.HasSideEffects) 1699 C = tryEmitPrivate(Result.Val, destType); 1700 else 1701 C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType); 1702 1703 return C; 1704 } 1705 1706 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) { 1707 return getTargetCodeGenInfo().getNullPointer(*this, T, QT); 1708 } 1709 1710 namespace { 1711 /// A struct which can be used to peephole certain kinds of finalization 1712 /// that normally happen during l-value emission. 1713 struct ConstantLValue { 1714 llvm::Constant *Value; 1715 bool HasOffsetApplied; 1716 1717 /*implicit*/ ConstantLValue(llvm::Constant *value, 1718 bool hasOffsetApplied = false) 1719 : Value(value), HasOffsetApplied(false) {} 1720 1721 /*implicit*/ ConstantLValue(ConstantAddress address) 1722 : ConstantLValue(address.getPointer()) {} 1723 }; 1724 1725 /// A helper class for emitting constant l-values. 1726 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter, 1727 ConstantLValue> { 1728 CodeGenModule &CGM; 1729 ConstantEmitter &Emitter; 1730 const APValue &Value; 1731 QualType DestType; 1732 1733 // Befriend StmtVisitorBase so that we don't have to expose Visit*. 1734 friend StmtVisitorBase; 1735 1736 public: 1737 ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value, 1738 QualType destType) 1739 : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {} 1740 1741 llvm::Constant *tryEmit(); 1742 1743 private: 1744 llvm::Constant *tryEmitAbsolute(llvm::Type *destTy); 1745 ConstantLValue tryEmitBase(const APValue::LValueBase &base); 1746 1747 ConstantLValue VisitStmt(const Stmt *S) { return nullptr; } 1748 ConstantLValue VisitConstantExpr(const ConstantExpr *E); 1749 ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); 1750 ConstantLValue VisitStringLiteral(const StringLiteral *E); 1751 ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E); 1752 ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E); 1753 ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E); 1754 ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E); 1755 ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E); 1756 ConstantLValue VisitCallExpr(const CallExpr *E); 1757 ConstantLValue VisitBlockExpr(const BlockExpr *E); 1758 ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E); 1759 ConstantLValue VisitCXXUuidofExpr(const CXXUuidofExpr *E); 1760 ConstantLValue VisitMaterializeTemporaryExpr( 1761 const MaterializeTemporaryExpr *E); 1762 1763 bool hasNonZeroOffset() const { 1764 return !Value.getLValueOffset().isZero(); 1765 } 1766 1767 /// Return the value offset. 1768 llvm::Constant *getOffset() { 1769 return llvm::ConstantInt::get(CGM.Int64Ty, 1770 Value.getLValueOffset().getQuantity()); 1771 } 1772 1773 /// Apply the value offset to the given constant. 1774 llvm::Constant *applyOffset(llvm::Constant *C) { 1775 if (!hasNonZeroOffset()) 1776 return C; 1777 1778 llvm::Type *origPtrTy = C->getType(); 1779 unsigned AS = origPtrTy->getPointerAddressSpace(); 1780 llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS); 1781 C = llvm::ConstantExpr::getBitCast(C, charPtrTy); 1782 C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset()); 1783 C = llvm::ConstantExpr::getPointerCast(C, origPtrTy); 1784 return C; 1785 } 1786 }; 1787 1788 } 1789 1790 llvm::Constant *ConstantLValueEmitter::tryEmit() { 1791 const APValue::LValueBase &base = Value.getLValueBase(); 1792 1793 // The destination type should be a pointer or reference 1794 // type, but it might also be a cast thereof. 1795 // 1796 // FIXME: the chain of casts required should be reflected in the APValue. 1797 // We need this in order to correctly handle things like a ptrtoint of a 1798 // non-zero null pointer and addrspace casts that aren't trivially 1799 // represented in LLVM IR. 1800 auto destTy = CGM.getTypes().ConvertTypeForMem(DestType); 1801 assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy)); 1802 1803 // If there's no base at all, this is a null or absolute pointer, 1804 // possibly cast back to an integer type. 1805 if (!base) { 1806 return tryEmitAbsolute(destTy); 1807 } 1808 1809 // Otherwise, try to emit the base. 1810 ConstantLValue result = tryEmitBase(base); 1811 1812 // If that failed, we're done. 1813 llvm::Constant *value = result.Value; 1814 if (!value) return nullptr; 1815 1816 // Apply the offset if necessary and not already done. 1817 if (!result.HasOffsetApplied) { 1818 value = applyOffset(value); 1819 } 1820 1821 // Convert to the appropriate type; this could be an lvalue for 1822 // an integer. FIXME: performAddrSpaceCast 1823 if (isa<llvm::PointerType>(destTy)) 1824 return llvm::ConstantExpr::getPointerCast(value, destTy); 1825 1826 return llvm::ConstantExpr::getPtrToInt(value, destTy); 1827 } 1828 1829 /// Try to emit an absolute l-value, such as a null pointer or an integer 1830 /// bitcast to pointer type. 1831 llvm::Constant * 1832 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) { 1833 // If we're producing a pointer, this is easy. 1834 auto destPtrTy = cast<llvm::PointerType>(destTy); 1835 if (Value.isNullPointer()) { 1836 // FIXME: integer offsets from non-zero null pointers. 1837 return CGM.getNullPointer(destPtrTy, DestType); 1838 } 1839 1840 // Convert the integer to a pointer-sized integer before converting it 1841 // to a pointer. 1842 // FIXME: signedness depends on the original integer type. 1843 auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy); 1844 llvm::Constant *C; 1845 C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy, 1846 /*isSigned*/ false); 1847 C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy); 1848 return C; 1849 } 1850 1851 ConstantLValue 1852 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) { 1853 // Handle values. 1854 if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) { 1855 if (D->hasAttr<WeakRefAttr>()) 1856 return CGM.GetWeakRefReference(D).getPointer(); 1857 1858 if (auto FD = dyn_cast<FunctionDecl>(D)) 1859 return CGM.GetAddrOfFunction(FD); 1860 1861 if (auto VD = dyn_cast<VarDecl>(D)) { 1862 // We can never refer to a variable with local storage. 1863 if (!VD->hasLocalStorage()) { 1864 if (VD->isFileVarDecl() || VD->hasExternalStorage()) 1865 return CGM.GetAddrOfGlobalVar(VD); 1866 1867 if (VD->isLocalVarDecl()) { 1868 return CGM.getOrCreateStaticVarDecl( 1869 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)); 1870 } 1871 } 1872 } 1873 1874 return nullptr; 1875 } 1876 1877 // Handle typeid(T). 1878 if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>()) { 1879 llvm::Type *StdTypeInfoPtrTy = 1880 CGM.getTypes().ConvertType(base.getTypeInfoType())->getPointerTo(); 1881 llvm::Constant *TypeInfo = 1882 CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0)); 1883 if (TypeInfo->getType() != StdTypeInfoPtrTy) 1884 TypeInfo = llvm::ConstantExpr::getBitCast(TypeInfo, StdTypeInfoPtrTy); 1885 return TypeInfo; 1886 } 1887 1888 // Otherwise, it must be an expression. 1889 return Visit(base.get<const Expr*>()); 1890 } 1891 1892 ConstantLValue 1893 ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) { 1894 return Visit(E->getSubExpr()); 1895 } 1896 1897 ConstantLValue 1898 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 1899 return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E); 1900 } 1901 1902 ConstantLValue 1903 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) { 1904 return CGM.GetAddrOfConstantStringFromLiteral(E); 1905 } 1906 1907 ConstantLValue 1908 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 1909 return CGM.GetAddrOfConstantStringFromObjCEncode(E); 1910 } 1911 1912 static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S, 1913 QualType T, 1914 CodeGenModule &CGM) { 1915 auto C = CGM.getObjCRuntime().GenerateConstantString(S); 1916 return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(T)); 1917 } 1918 1919 ConstantLValue 1920 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 1921 return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM); 1922 } 1923 1924 ConstantLValue 1925 ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 1926 assert(E->isExpressibleAsConstantInitializer() && 1927 "this boxed expression can't be emitted as a compile-time constant"); 1928 auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts()); 1929 return emitConstantObjCStringLiteral(SL, E->getType(), CGM); 1930 } 1931 1932 ConstantLValue 1933 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) { 1934 return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName()); 1935 } 1936 1937 ConstantLValue 1938 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) { 1939 assert(Emitter.CGF && "Invalid address of label expression outside function"); 1940 llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel()); 1941 Ptr = llvm::ConstantExpr::getBitCast(Ptr, 1942 CGM.getTypes().ConvertType(E->getType())); 1943 return Ptr; 1944 } 1945 1946 ConstantLValue 1947 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) { 1948 unsigned builtin = E->getBuiltinCallee(); 1949 if (builtin != Builtin::BI__builtin___CFStringMakeConstantString && 1950 builtin != Builtin::BI__builtin___NSStringMakeConstantString) 1951 return nullptr; 1952 1953 auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts()); 1954 if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) { 1955 return CGM.getObjCRuntime().GenerateConstantString(literal); 1956 } else { 1957 // FIXME: need to deal with UCN conversion issues. 1958 return CGM.GetAddrOfConstantCFString(literal); 1959 } 1960 } 1961 1962 ConstantLValue 1963 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) { 1964 StringRef functionName; 1965 if (auto CGF = Emitter.CGF) 1966 functionName = CGF->CurFn->getName(); 1967 else 1968 functionName = "global"; 1969 1970 return CGM.GetAddrOfGlobalBlock(E, functionName); 1971 } 1972 1973 ConstantLValue 1974 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { 1975 QualType T; 1976 if (E->isTypeOperand()) 1977 T = E->getTypeOperand(CGM.getContext()); 1978 else 1979 T = E->getExprOperand()->getType(); 1980 return CGM.GetAddrOfRTTIDescriptor(T); 1981 } 1982 1983 ConstantLValue 1984 ConstantLValueEmitter::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 1985 return CGM.GetAddrOfUuidDescriptor(E); 1986 } 1987 1988 ConstantLValue 1989 ConstantLValueEmitter::VisitMaterializeTemporaryExpr( 1990 const MaterializeTemporaryExpr *E) { 1991 assert(E->getStorageDuration() == SD_Static); 1992 SmallVector<const Expr *, 2> CommaLHSs; 1993 SmallVector<SubobjectAdjustment, 2> Adjustments; 1994 const Expr *Inner = E->GetTemporaryExpr() 1995 ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 1996 return CGM.GetAddrOfGlobalTemporary(E, Inner); 1997 } 1998 1999 llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value, 2000 QualType DestType) { 2001 switch (Value.getKind()) { 2002 case APValue::None: 2003 case APValue::Indeterminate: 2004 // Out-of-lifetime and indeterminate values can be modeled as 'undef'. 2005 return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType)); 2006 case APValue::LValue: 2007 return ConstantLValueEmitter(*this, Value, DestType).tryEmit(); 2008 case APValue::Int: 2009 return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt()); 2010 case APValue::FixedPoint: 2011 return llvm::ConstantInt::get(CGM.getLLVMContext(), 2012 Value.getFixedPoint().getValue()); 2013 case APValue::ComplexInt: { 2014 llvm::Constant *Complex[2]; 2015 2016 Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(), 2017 Value.getComplexIntReal()); 2018 Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(), 2019 Value.getComplexIntImag()); 2020 2021 // FIXME: the target may want to specify that this is packed. 2022 llvm::StructType *STy = 2023 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 2024 return llvm::ConstantStruct::get(STy, Complex); 2025 } 2026 case APValue::Float: { 2027 const llvm::APFloat &Init = Value.getFloat(); 2028 if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() && 2029 !CGM.getContext().getLangOpts().NativeHalfType && 2030 CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 2031 return llvm::ConstantInt::get(CGM.getLLVMContext(), 2032 Init.bitcastToAPInt()); 2033 else 2034 return llvm::ConstantFP::get(CGM.getLLVMContext(), Init); 2035 } 2036 case APValue::ComplexFloat: { 2037 llvm::Constant *Complex[2]; 2038 2039 Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(), 2040 Value.getComplexFloatReal()); 2041 Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(), 2042 Value.getComplexFloatImag()); 2043 2044 // FIXME: the target may want to specify that this is packed. 2045 llvm::StructType *STy = 2046 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 2047 return llvm::ConstantStruct::get(STy, Complex); 2048 } 2049 case APValue::Vector: { 2050 unsigned NumElts = Value.getVectorLength(); 2051 SmallVector<llvm::Constant *, 4> Inits(NumElts); 2052 2053 for (unsigned I = 0; I != NumElts; ++I) { 2054 const APValue &Elt = Value.getVectorElt(I); 2055 if (Elt.isInt()) 2056 Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt()); 2057 else if (Elt.isFloat()) 2058 Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat()); 2059 else 2060 llvm_unreachable("unsupported vector element type"); 2061 } 2062 return llvm::ConstantVector::get(Inits); 2063 } 2064 case APValue::AddrLabelDiff: { 2065 const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS(); 2066 const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS(); 2067 llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType()); 2068 llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType()); 2069 if (!LHS || !RHS) return nullptr; 2070 2071 // Compute difference 2072 llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType); 2073 LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy); 2074 RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy); 2075 llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS); 2076 2077 // LLVM is a bit sensitive about the exact format of the 2078 // address-of-label difference; make sure to truncate after 2079 // the subtraction. 2080 return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType); 2081 } 2082 case APValue::Struct: 2083 case APValue::Union: 2084 return ConstStructBuilder::BuildStruct(*this, Value, DestType); 2085 case APValue::Array: { 2086 const ConstantArrayType *CAT = 2087 CGM.getContext().getAsConstantArrayType(DestType); 2088 unsigned NumElements = Value.getArraySize(); 2089 unsigned NumInitElts = Value.getArrayInitializedElts(); 2090 2091 // Emit array filler, if there is one. 2092 llvm::Constant *Filler = nullptr; 2093 if (Value.hasArrayFiller()) { 2094 Filler = tryEmitAbstractForMemory(Value.getArrayFiller(), 2095 CAT->getElementType()); 2096 if (!Filler) 2097 return nullptr; 2098 } 2099 2100 // Emit initializer elements. 2101 SmallVector<llvm::Constant*, 16> Elts; 2102 if (Filler && Filler->isNullValue()) 2103 Elts.reserve(NumInitElts + 1); 2104 else 2105 Elts.reserve(NumElements); 2106 2107 llvm::Type *CommonElementType = nullptr; 2108 for (unsigned I = 0; I < NumInitElts; ++I) { 2109 llvm::Constant *C = tryEmitPrivateForMemory( 2110 Value.getArrayInitializedElt(I), CAT->getElementType()); 2111 if (!C) return nullptr; 2112 2113 if (I == 0) 2114 CommonElementType = C->getType(); 2115 else if (C->getType() != CommonElementType) 2116 CommonElementType = nullptr; 2117 Elts.push_back(C); 2118 } 2119 2120 // This means that the array type is probably "IncompleteType" or some 2121 // type that is not ConstantArray. 2122 if (CAT == nullptr && CommonElementType == nullptr && !NumInitElts) { 2123 const ArrayType *AT = CGM.getContext().getAsArrayType(DestType); 2124 CommonElementType = CGM.getTypes().ConvertType(AT->getElementType()); 2125 llvm::ArrayType *AType = llvm::ArrayType::get(CommonElementType, 2126 NumElements); 2127 return llvm::ConstantAggregateZero::get(AType); 2128 } 2129 2130 llvm::ArrayType *Desired = 2131 cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType)); 2132 return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts, 2133 Filler); 2134 } 2135 case APValue::MemberPointer: 2136 return CGM.getCXXABI().EmitMemberPointer(Value, DestType); 2137 } 2138 llvm_unreachable("Unknown APValue kind"); 2139 } 2140 2141 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted( 2142 const CompoundLiteralExpr *E) { 2143 return EmittedCompoundLiterals.lookup(E); 2144 } 2145 2146 void CodeGenModule::setAddrOfConstantCompoundLiteral( 2147 const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) { 2148 bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second; 2149 (void)Ok; 2150 assert(Ok && "CLE has already been emitted!"); 2151 } 2152 2153 ConstantAddress 2154 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) { 2155 assert(E->isFileScope() && "not a file-scope compound literal expr"); 2156 return tryEmitGlobalCompoundLiteral(*this, nullptr, E); 2157 } 2158 2159 llvm::Constant * 2160 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) { 2161 // Member pointer constants always have a very particular form. 2162 const MemberPointerType *type = cast<MemberPointerType>(uo->getType()); 2163 const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl(); 2164 2165 // A member function pointer. 2166 if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl)) 2167 return getCXXABI().EmitMemberFunctionPointer(method); 2168 2169 // Otherwise, a member data pointer. 2170 uint64_t fieldOffset = getContext().getFieldOffset(decl); 2171 CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset); 2172 return getCXXABI().EmitMemberDataPointer(type, chars); 2173 } 2174 2175 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2176 llvm::Type *baseType, 2177 const CXXRecordDecl *base); 2178 2179 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM, 2180 const RecordDecl *record, 2181 bool asCompleteObject) { 2182 const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record); 2183 llvm::StructType *structure = 2184 (asCompleteObject ? layout.getLLVMType() 2185 : layout.getBaseSubobjectLLVMType()); 2186 2187 unsigned numElements = structure->getNumElements(); 2188 std::vector<llvm::Constant *> elements(numElements); 2189 2190 auto CXXR = dyn_cast<CXXRecordDecl>(record); 2191 // Fill in all the bases. 2192 if (CXXR) { 2193 for (const auto &I : CXXR->bases()) { 2194 if (I.isVirtual()) { 2195 // Ignore virtual bases; if we're laying out for a complete 2196 // object, we'll lay these out later. 2197 continue; 2198 } 2199 2200 const CXXRecordDecl *base = 2201 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2202 2203 // Ignore empty bases. 2204 if (base->isEmpty() || 2205 CGM.getContext().getASTRecordLayout(base).getNonVirtualSize() 2206 .isZero()) 2207 continue; 2208 2209 unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base); 2210 llvm::Type *baseType = structure->getElementType(fieldIndex); 2211 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2212 } 2213 } 2214 2215 // Fill in all the fields. 2216 for (const auto *Field : record->fields()) { 2217 // Fill in non-bitfields. (Bitfields always use a zero pattern, which we 2218 // will fill in later.) 2219 if (!Field->isBitField()) { 2220 unsigned fieldIndex = layout.getLLVMFieldNo(Field); 2221 elements[fieldIndex] = CGM.EmitNullConstant(Field->getType()); 2222 } 2223 2224 // For unions, stop after the first named field. 2225 if (record->isUnion()) { 2226 if (Field->getIdentifier()) 2227 break; 2228 if (const auto *FieldRD = Field->getType()->getAsRecordDecl()) 2229 if (FieldRD->findFirstNamedDataMember()) 2230 break; 2231 } 2232 } 2233 2234 // Fill in the virtual bases, if we're working with the complete object. 2235 if (CXXR && asCompleteObject) { 2236 for (const auto &I : CXXR->vbases()) { 2237 const CXXRecordDecl *base = 2238 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2239 2240 // Ignore empty bases. 2241 if (base->isEmpty()) 2242 continue; 2243 2244 unsigned fieldIndex = layout.getVirtualBaseIndex(base); 2245 2246 // We might have already laid this field out. 2247 if (elements[fieldIndex]) continue; 2248 2249 llvm::Type *baseType = structure->getElementType(fieldIndex); 2250 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2251 } 2252 } 2253 2254 // Now go through all other fields and zero them out. 2255 for (unsigned i = 0; i != numElements; ++i) { 2256 if (!elements[i]) 2257 elements[i] = llvm::Constant::getNullValue(structure->getElementType(i)); 2258 } 2259 2260 return llvm::ConstantStruct::get(structure, elements); 2261 } 2262 2263 /// Emit the null constant for a base subobject. 2264 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2265 llvm::Type *baseType, 2266 const CXXRecordDecl *base) { 2267 const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base); 2268 2269 // Just zero out bases that don't have any pointer to data members. 2270 if (baseLayout.isZeroInitializableAsBase()) 2271 return llvm::Constant::getNullValue(baseType); 2272 2273 // Otherwise, we can just use its null constant. 2274 return EmitNullConstant(CGM, base, /*asCompleteObject=*/false); 2275 } 2276 2277 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM, 2278 QualType T) { 2279 return emitForMemory(CGM, CGM.EmitNullConstant(T), T); 2280 } 2281 2282 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { 2283 if (T->getAs<PointerType>()) 2284 return getNullPointer( 2285 cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T); 2286 2287 if (getTypes().isZeroInitializable(T)) 2288 return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); 2289 2290 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { 2291 llvm::ArrayType *ATy = 2292 cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T)); 2293 2294 QualType ElementTy = CAT->getElementType(); 2295 2296 llvm::Constant *Element = 2297 ConstantEmitter::emitNullForMemory(*this, ElementTy); 2298 unsigned NumElements = CAT->getSize().getZExtValue(); 2299 SmallVector<llvm::Constant *, 8> Array(NumElements, Element); 2300 return llvm::ConstantArray::get(ATy, Array); 2301 } 2302 2303 if (const RecordType *RT = T->getAs<RecordType>()) 2304 return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true); 2305 2306 assert(T->isMemberDataPointerType() && 2307 "Should only see pointers to data members here!"); 2308 2309 return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>()); 2310 } 2311 2312 llvm::Constant * 2313 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) { 2314 return ::EmitNullConstant(*this, Record, false); 2315 } 2316