1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Constant Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCXXABI.h"
17 #include "CGObjCRuntime.h"
18 #include "CGRecordLayout.h"
19 #include "clang/AST/APValue.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "clang/Basic/Builtins.h"
24 #include "llvm/Constants.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/Target/TargetData.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 //===----------------------------------------------------------------------===//
32 //                            ConstStructBuilder
33 //===----------------------------------------------------------------------===//
34 
35 namespace {
36 class ConstStructBuilder {
37   CodeGenModule &CGM;
38   CodeGenFunction *CGF;
39 
40   bool Packed;
41   CharUnits NextFieldOffsetInChars;
42   CharUnits LLVMStructAlignment;
43   std::vector<llvm::Constant *> Elements;
44 public:
45   static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF,
46                                      InitListExpr *ILE);
47 
48 private:
49   ConstStructBuilder(CodeGenModule &CGM, CodeGenFunction *CGF)
50     : CGM(CGM), CGF(CGF), Packed(false),
51     NextFieldOffsetInChars(CharUnits::Zero()),
52     LLVMStructAlignment(CharUnits::One()) { }
53 
54   bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
55                    llvm::Constant *InitExpr);
56 
57   void AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
58                       llvm::ConstantInt *InitExpr);
59 
60   void AppendPadding(CharUnits PadSize);
61 
62   void AppendTailPadding(CharUnits RecordSize);
63 
64   void ConvertStructToPacked();
65 
66   bool Build(InitListExpr *ILE);
67 
68   CharUnits getAlignment(const llvm::Constant *C) const {
69     if (Packed)  return CharUnits::One();
70     return CharUnits::fromQuantity(
71         CGM.getTargetData().getABITypeAlignment(C->getType()));
72   }
73 
74   CharUnits getSizeInChars(const llvm::Constant *C) const {
75     return CharUnits::fromQuantity(
76         CGM.getTargetData().getTypeAllocSize(C->getType()));
77   }
78 };
79 
80 bool ConstStructBuilder::
81 AppendField(const FieldDecl *Field, uint64_t FieldOffset,
82             llvm::Constant *InitCst) {
83 
84   const ASTContext &Context = CGM.getContext();
85 
86   CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
87 
88   assert(NextFieldOffsetInChars <= FieldOffsetInChars
89          && "Field offset mismatch!");
90 
91   CharUnits FieldAlignment = getAlignment(InitCst);
92 
93   // Round up the field offset to the alignment of the field type.
94   CharUnits AlignedNextFieldOffsetInChars =
95     NextFieldOffsetInChars.RoundUpToAlignment(FieldAlignment);
96 
97   if (AlignedNextFieldOffsetInChars > FieldOffsetInChars) {
98     assert(!Packed && "Alignment is wrong even with a packed struct!");
99 
100     // Convert the struct to a packed struct.
101     ConvertStructToPacked();
102 
103     AlignedNextFieldOffsetInChars = NextFieldOffsetInChars;
104   }
105 
106   if (AlignedNextFieldOffsetInChars < FieldOffsetInChars) {
107     // We need to append padding.
108     AppendPadding(
109         FieldOffsetInChars - NextFieldOffsetInChars);
110 
111     assert(NextFieldOffsetInChars == FieldOffsetInChars &&
112            "Did not add enough padding!");
113 
114     AlignedNextFieldOffsetInChars = NextFieldOffsetInChars;
115   }
116 
117   // Add the field.
118   Elements.push_back(InitCst);
119   NextFieldOffsetInChars = AlignedNextFieldOffsetInChars +
120                            getSizeInChars(InitCst);
121 
122   if (Packed)
123     assert(LLVMStructAlignment == CharUnits::One() &&
124            "Packed struct not byte-aligned!");
125   else
126     LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment);
127 
128   return true;
129 }
130 
131 void ConstStructBuilder::AppendBitField(const FieldDecl *Field,
132                                         uint64_t FieldOffset,
133                                         llvm::ConstantInt *CI) {
134   const ASTContext &Context = CGM.getContext();
135   const uint64_t CharWidth = Context.getCharWidth();
136   uint64_t NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
137   if (FieldOffset > NextFieldOffsetInBits) {
138     // We need to add padding.
139     CharUnits PadSize = Context.toCharUnitsFromBits(
140       llvm::RoundUpToAlignment(FieldOffset - NextFieldOffsetInBits,
141                                Context.getTargetInfo().getCharAlign()));
142 
143     AppendPadding(PadSize);
144   }
145 
146   uint64_t FieldSize = Field->getBitWidthValue(Context);
147 
148   llvm::APInt FieldValue = CI->getValue();
149 
150   // Promote the size of FieldValue if necessary
151   // FIXME: This should never occur, but currently it can because initializer
152   // constants are cast to bool, and because clang is not enforcing bitfield
153   // width limits.
154   if (FieldSize > FieldValue.getBitWidth())
155     FieldValue = FieldValue.zext(FieldSize);
156 
157   // Truncate the size of FieldValue to the bit field size.
158   if (FieldSize < FieldValue.getBitWidth())
159     FieldValue = FieldValue.trunc(FieldSize);
160 
161   NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
162   if (FieldOffset < NextFieldOffsetInBits) {
163     // Either part of the field or the entire field can go into the previous
164     // byte.
165     assert(!Elements.empty() && "Elements can't be empty!");
166 
167     unsigned BitsInPreviousByte = NextFieldOffsetInBits - FieldOffset;
168 
169     bool FitsCompletelyInPreviousByte =
170       BitsInPreviousByte >= FieldValue.getBitWidth();
171 
172     llvm::APInt Tmp = FieldValue;
173 
174     if (!FitsCompletelyInPreviousByte) {
175       unsigned NewFieldWidth = FieldSize - BitsInPreviousByte;
176 
177       if (CGM.getTargetData().isBigEndian()) {
178         Tmp = Tmp.lshr(NewFieldWidth);
179         Tmp = Tmp.trunc(BitsInPreviousByte);
180 
181         // We want the remaining high bits.
182         FieldValue = FieldValue.trunc(NewFieldWidth);
183       } else {
184         Tmp = Tmp.trunc(BitsInPreviousByte);
185 
186         // We want the remaining low bits.
187         FieldValue = FieldValue.lshr(BitsInPreviousByte);
188         FieldValue = FieldValue.trunc(NewFieldWidth);
189       }
190     }
191 
192     Tmp = Tmp.zext(CharWidth);
193     if (CGM.getTargetData().isBigEndian()) {
194       if (FitsCompletelyInPreviousByte)
195         Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth());
196     } else {
197       Tmp = Tmp.shl(CharWidth - BitsInPreviousByte);
198     }
199 
200     // 'or' in the bits that go into the previous byte.
201     llvm::Value *LastElt = Elements.back();
202     if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(LastElt))
203       Tmp |= Val->getValue();
204     else {
205       assert(isa<llvm::UndefValue>(LastElt));
206       // If there is an undef field that we're adding to, it can either be a
207       // scalar undef (in which case, we just replace it with our field) or it
208       // is an array.  If it is an array, we have to pull one byte off the
209       // array so that the other undef bytes stay around.
210       if (!isa<llvm::IntegerType>(LastElt->getType())) {
211         // The undef padding will be a multibyte array, create a new smaller
212         // padding and then an hole for our i8 to get plopped into.
213         assert(isa<llvm::ArrayType>(LastElt->getType()) &&
214                "Expected array padding of undefs");
215         llvm::ArrayType *AT = cast<llvm::ArrayType>(LastElt->getType());
216         assert(AT->getElementType()->isIntegerTy(CharWidth) &&
217                AT->getNumElements() != 0 &&
218                "Expected non-empty array padding of undefs");
219 
220         // Remove the padding array.
221         NextFieldOffsetInChars -= CharUnits::fromQuantity(AT->getNumElements());
222         Elements.pop_back();
223 
224         // Add the padding back in two chunks.
225         AppendPadding(CharUnits::fromQuantity(AT->getNumElements()-1));
226         AppendPadding(CharUnits::One());
227         assert(isa<llvm::UndefValue>(Elements.back()) &&
228                Elements.back()->getType()->isIntegerTy(CharWidth) &&
229                "Padding addition didn't work right");
230       }
231     }
232 
233     Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp);
234 
235     if (FitsCompletelyInPreviousByte)
236       return;
237   }
238 
239   while (FieldValue.getBitWidth() > CharWidth) {
240     llvm::APInt Tmp;
241 
242     if (CGM.getTargetData().isBigEndian()) {
243       // We want the high bits.
244       Tmp =
245         FieldValue.lshr(FieldValue.getBitWidth() - CharWidth).trunc(CharWidth);
246     } else {
247       // We want the low bits.
248       Tmp = FieldValue.trunc(CharWidth);
249 
250       FieldValue = FieldValue.lshr(CharWidth);
251     }
252 
253     Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp));
254     ++NextFieldOffsetInChars;
255 
256     FieldValue = FieldValue.trunc(FieldValue.getBitWidth() - CharWidth);
257   }
258 
259   assert(FieldValue.getBitWidth() > 0 &&
260          "Should have at least one bit left!");
261   assert(FieldValue.getBitWidth() <= CharWidth &&
262          "Should not have more than a byte left!");
263 
264   if (FieldValue.getBitWidth() < CharWidth) {
265     if (CGM.getTargetData().isBigEndian()) {
266       unsigned BitWidth = FieldValue.getBitWidth();
267 
268       FieldValue = FieldValue.zext(CharWidth) << (CharWidth - BitWidth);
269     } else
270       FieldValue = FieldValue.zext(CharWidth);
271   }
272 
273   // Append the last element.
274   Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(),
275                                             FieldValue));
276   ++NextFieldOffsetInChars;
277 }
278 
279 void ConstStructBuilder::AppendPadding(CharUnits PadSize) {
280   if (PadSize.isZero())
281     return;
282 
283   llvm::Type *Ty = llvm::Type::getInt8Ty(CGM.getLLVMContext());
284   if (PadSize > CharUnits::One())
285     Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
286 
287   llvm::Constant *C = llvm::UndefValue::get(Ty);
288   Elements.push_back(C);
289   assert(getAlignment(C) == CharUnits::One() &&
290          "Padding must have 1 byte alignment!");
291 
292   NextFieldOffsetInChars += getSizeInChars(C);
293 }
294 
295 void ConstStructBuilder::AppendTailPadding(CharUnits RecordSize) {
296   assert(NextFieldOffsetInChars <= RecordSize &&
297          "Size mismatch!");
298 
299   AppendPadding(RecordSize - NextFieldOffsetInChars);
300 }
301 
302 void ConstStructBuilder::ConvertStructToPacked() {
303   std::vector<llvm::Constant *> PackedElements;
304   CharUnits ElementOffsetInChars = CharUnits::Zero();
305 
306   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
307     llvm::Constant *C = Elements[i];
308 
309     CharUnits ElementAlign = CharUnits::fromQuantity(
310       CGM.getTargetData().getABITypeAlignment(C->getType()));
311     CharUnits AlignedElementOffsetInChars =
312       ElementOffsetInChars.RoundUpToAlignment(ElementAlign);
313 
314     if (AlignedElementOffsetInChars > ElementOffsetInChars) {
315       // We need some padding.
316       CharUnits NumChars =
317         AlignedElementOffsetInChars - ElementOffsetInChars;
318 
319       llvm::Type *Ty = llvm::Type::getInt8Ty(CGM.getLLVMContext());
320       if (NumChars > CharUnits::One())
321         Ty = llvm::ArrayType::get(Ty, NumChars.getQuantity());
322 
323       llvm::Constant *Padding = llvm::UndefValue::get(Ty);
324       PackedElements.push_back(Padding);
325       ElementOffsetInChars += getSizeInChars(Padding);
326     }
327 
328     PackedElements.push_back(C);
329     ElementOffsetInChars += getSizeInChars(C);
330   }
331 
332   assert(ElementOffsetInChars == NextFieldOffsetInChars &&
333          "Packing the struct changed its size!");
334 
335   Elements = PackedElements;
336   LLVMStructAlignment = CharUnits::One();
337   Packed = true;
338 }
339 
340 bool ConstStructBuilder::Build(InitListExpr *ILE) {
341   RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
342   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
343 
344   unsigned FieldNo = 0;
345   unsigned ElementNo = 0;
346   const FieldDecl *LastFD = 0;
347   bool IsMsStruct = RD->hasAttr<MsStructAttr>();
348 
349   for (RecordDecl::field_iterator Field = RD->field_begin(),
350        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
351     if (IsMsStruct) {
352       // Zero-length bitfields following non-bitfield members are
353       // ignored:
354       if (CGM.getContext().ZeroBitfieldFollowsNonBitfield((*Field), LastFD)) {
355         --FieldNo;
356         continue;
357       }
358       LastFD = (*Field);
359     }
360 
361     // If this is a union, skip all the fields that aren't being initialized.
362     if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field)
363       continue;
364 
365     // Don't emit anonymous bitfields, they just affect layout.
366     if (Field->isUnnamedBitfield()) {
367       LastFD = (*Field);
368       continue;
369     }
370 
371     // Get the initializer.  A struct can include fields without initializers,
372     // we just use explicit null values for them.
373     llvm::Constant *EltInit;
374     if (ElementNo < ILE->getNumInits())
375       EltInit = CGM.EmitConstantExpr(ILE->getInit(ElementNo++),
376                                      Field->getType(), CGF);
377     else
378       EltInit = CGM.EmitNullConstant(Field->getType());
379 
380     if (!EltInit)
381       return false;
382 
383     if (!Field->isBitField()) {
384       // Handle non-bitfield members.
385       if (!AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit))
386         return false;
387     } else {
388       // Otherwise we have a bitfield.
389       AppendBitField(*Field, Layout.getFieldOffset(FieldNo),
390                      cast<llvm::ConstantInt>(EltInit));
391     }
392   }
393 
394   CharUnits LayoutSizeInChars = Layout.getSize();
395 
396   if (NextFieldOffsetInChars > LayoutSizeInChars) {
397     // If the struct is bigger than the size of the record type,
398     // we must have a flexible array member at the end.
399     assert(RD->hasFlexibleArrayMember() &&
400            "Must have flexible array member if struct is bigger than type!");
401 
402     // No tail padding is necessary.
403     return true;
404   }
405 
406   CharUnits LLVMSizeInChars =
407     NextFieldOffsetInChars.RoundUpToAlignment(LLVMStructAlignment);
408 
409   // Check if we need to convert the struct to a packed struct.
410   if (NextFieldOffsetInChars <= LayoutSizeInChars &&
411       LLVMSizeInChars > LayoutSizeInChars) {
412     assert(!Packed && "Size mismatch!");
413 
414     ConvertStructToPacked();
415     assert(NextFieldOffsetInChars <= LayoutSizeInChars &&
416            "Converting to packed did not help!");
417   }
418 
419   // Append tail padding if necessary.
420   AppendTailPadding(LayoutSizeInChars);
421 
422   assert(LayoutSizeInChars == NextFieldOffsetInChars &&
423          "Tail padding mismatch!");
424 
425   return true;
426 }
427 
428 llvm::Constant *ConstStructBuilder::
429   BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF, InitListExpr *ILE) {
430   ConstStructBuilder Builder(CGM, CGF);
431 
432   if (!Builder.Build(ILE))
433     return 0;
434 
435   // Pick the type to use.  If the type is layout identical to the ConvertType
436   // type then use it, otherwise use whatever the builder produced for us.
437   llvm::StructType *STy =
438       llvm::ConstantStruct::getTypeForElements(CGM.getLLVMContext(),
439                                                Builder.Elements,Builder.Packed);
440   llvm::Type *ILETy = CGM.getTypes().ConvertType(ILE->getType());
441   if (llvm::StructType *ILESTy = dyn_cast<llvm::StructType>(ILETy)) {
442     if (ILESTy->isLayoutIdentical(STy))
443       STy = ILESTy;
444   }
445 
446   llvm::Constant *Result =
447     llvm::ConstantStruct::get(STy, Builder.Elements);
448 
449   assert(Builder.NextFieldOffsetInChars.RoundUpToAlignment(
450            Builder.getAlignment(Result)) ==
451          Builder.getSizeInChars(Result) && "Size mismatch!");
452 
453   return Result;
454 }
455 
456 
457 //===----------------------------------------------------------------------===//
458 //                             ConstExprEmitter
459 //===----------------------------------------------------------------------===//
460 
461 class ConstExprEmitter :
462   public StmtVisitor<ConstExprEmitter, llvm::Constant*> {
463   CodeGenModule &CGM;
464   CodeGenFunction *CGF;
465   llvm::LLVMContext &VMContext;
466 public:
467   ConstExprEmitter(CodeGenModule &cgm, CodeGenFunction *cgf)
468     : CGM(cgm), CGF(cgf), VMContext(cgm.getLLVMContext()) {
469   }
470 
471   //===--------------------------------------------------------------------===//
472   //                            Visitor Methods
473   //===--------------------------------------------------------------------===//
474 
475   llvm::Constant *VisitStmt(Stmt *S) {
476     return 0;
477   }
478 
479   llvm::Constant *VisitParenExpr(ParenExpr *PE) {
480     return Visit(PE->getSubExpr());
481   }
482 
483   llvm::Constant *
484   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
485     return Visit(PE->getReplacement());
486   }
487 
488   llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
489     return Visit(GE->getResultExpr());
490   }
491 
492   llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
493     return Visit(E->getInitializer());
494   }
495 
496   llvm::Constant *VisitUnaryAddrOf(UnaryOperator *E) {
497     if (E->getType()->isMemberPointerType())
498       return CGM.getMemberPointerConstant(E);
499 
500     return 0;
501   }
502 
503   llvm::Constant *VisitCastExpr(CastExpr* E) {
504     Expr *subExpr = E->getSubExpr();
505     llvm::Constant *C = CGM.EmitConstantExpr(subExpr, subExpr->getType(), CGF);
506     if (!C) return 0;
507 
508     llvm::Type *destType = ConvertType(E->getType());
509 
510     switch (E->getCastKind()) {
511     case CK_ToUnion: {
512       // GCC cast to union extension
513       assert(E->getType()->isUnionType() &&
514              "Destination type is not union type!");
515 
516       // Build a struct with the union sub-element as the first member,
517       // and padded to the appropriate size
518       std::vector<llvm::Constant*> Elts;
519       std::vector<llvm::Type*> Types;
520       Elts.push_back(C);
521       Types.push_back(C->getType());
522       unsigned CurSize = CGM.getTargetData().getTypeAllocSize(C->getType());
523       unsigned TotalSize = CGM.getTargetData().getTypeAllocSize(destType);
524 
525       assert(CurSize <= TotalSize && "Union size mismatch!");
526       if (unsigned NumPadBytes = TotalSize - CurSize) {
527         llvm::Type *Ty = llvm::Type::getInt8Ty(VMContext);
528         if (NumPadBytes > 1)
529           Ty = llvm::ArrayType::get(Ty, NumPadBytes);
530 
531         Elts.push_back(llvm::UndefValue::get(Ty));
532         Types.push_back(Ty);
533       }
534 
535       llvm::StructType* STy =
536         llvm::StructType::get(C->getType()->getContext(), Types, false);
537       return llvm::ConstantStruct::get(STy, Elts);
538     }
539     case CK_NullToMemberPointer: {
540       const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
541       return CGM.getCXXABI().EmitNullMemberPointer(MPT);
542     }
543 
544     case CK_DerivedToBaseMemberPointer:
545     case CK_BaseToDerivedMemberPointer:
546       return CGM.getCXXABI().EmitMemberPointerConversion(C, E);
547 
548     case CK_LValueToRValue:
549     case CK_NoOp:
550       return C;
551 
552     case CK_Dependent: llvm_unreachable("saw dependent cast!");
553 
554     // These will never be supported.
555     case CK_ObjCObjectLValueCast:
556     case CK_ToVoid:
557     case CK_Dynamic:
558     case CK_ARCProduceObject:
559     case CK_ARCConsumeObject:
560     case CK_ARCReclaimReturnedObject:
561     case CK_ARCExtendBlockObject:
562     case CK_LValueBitCast:
563       return 0;
564 
565     // These might need to be supported for constexpr.
566     case CK_UserDefinedConversion:
567     case CK_ConstructorConversion:
568       return 0;
569 
570     // These don't need to be handled here because Evaluate knows how to
571     // evaluate all scalar expressions which can be constant-evaluated.
572     case CK_CPointerToObjCPointerCast:
573     case CK_BlockPointerToObjCPointerCast:
574     case CK_AnyPointerToBlockPointerCast:
575     case CK_BitCast:
576     case CK_ArrayToPointerDecay:
577     case CK_FunctionToPointerDecay:
578     case CK_BaseToDerived:
579     case CK_DerivedToBase:
580     case CK_UncheckedDerivedToBase:
581     case CK_MemberPointerToBoolean:
582     case CK_VectorSplat:
583     case CK_FloatingRealToComplex:
584     case CK_FloatingComplexToReal:
585     case CK_FloatingComplexToBoolean:
586     case CK_FloatingComplexCast:
587     case CK_FloatingComplexToIntegralComplex:
588     case CK_IntegralRealToComplex:
589     case CK_IntegralComplexToReal:
590     case CK_IntegralComplexToBoolean:
591     case CK_IntegralComplexCast:
592     case CK_IntegralComplexToFloatingComplex:
593     case CK_PointerToIntegral:
594     case CK_PointerToBoolean:
595     case CK_NullToPointer:
596     case CK_IntegralCast:
597     case CK_IntegralToPointer:
598     case CK_IntegralToBoolean:
599     case CK_IntegralToFloating:
600     case CK_FloatingToIntegral:
601     case CK_FloatingToBoolean:
602     case CK_FloatingCast:
603       return 0;
604     }
605     llvm_unreachable("Invalid CastKind");
606   }
607 
608   llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
609     return Visit(DAE->getExpr());
610   }
611 
612   llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E) {
613     return Visit(E->GetTemporaryExpr());
614   }
615 
616   llvm::Constant *EmitArrayInitialization(InitListExpr *ILE) {
617     unsigned NumInitElements = ILE->getNumInits();
618     if (NumInitElements == 1 && ILE->getType() == ILE->getInit(0)->getType() &&
619         (isa<StringLiteral>(ILE->getInit(0)) ||
620          isa<ObjCEncodeExpr>(ILE->getInit(0))))
621       return Visit(ILE->getInit(0));
622 
623     std::vector<llvm::Constant*> Elts;
624     llvm::ArrayType *AType =
625         cast<llvm::ArrayType>(ConvertType(ILE->getType()));
626     llvm::Type *ElemTy = AType->getElementType();
627     unsigned NumElements = AType->getNumElements();
628 
629     // Initialising an array requires us to automatically
630     // initialise any elements that have not been initialised explicitly
631     unsigned NumInitableElts = std::min(NumInitElements, NumElements);
632 
633     // Copy initializer elements.
634     unsigned i = 0;
635     bool RewriteType = false;
636     for (; i < NumInitableElts; ++i) {
637       Expr *Init = ILE->getInit(i);
638       llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF);
639       if (!C)
640         return 0;
641       RewriteType |= (C->getType() != ElemTy);
642       Elts.push_back(C);
643     }
644 
645     // Initialize remaining array elements.
646     // FIXME: This doesn't handle member pointers correctly!
647     llvm::Constant *fillC;
648     if (Expr *filler = ILE->getArrayFiller())
649       fillC = CGM.EmitConstantExpr(filler, filler->getType(), CGF);
650     else
651       fillC = llvm::Constant::getNullValue(ElemTy);
652     if (!fillC)
653       return 0;
654     RewriteType |= (fillC->getType() != ElemTy);
655     for (; i < NumElements; ++i)
656       Elts.push_back(fillC);
657 
658     if (RewriteType) {
659       // FIXME: Try to avoid packing the array
660       std::vector<llvm::Type*> Types;
661       for (unsigned i = 0; i < Elts.size(); ++i)
662         Types.push_back(Elts[i]->getType());
663       llvm::StructType *SType = llvm::StructType::get(AType->getContext(),
664                                                             Types, true);
665       return llvm::ConstantStruct::get(SType, Elts);
666     }
667 
668     return llvm::ConstantArray::get(AType, Elts);
669   }
670 
671   llvm::Constant *EmitStructInitialization(InitListExpr *ILE) {
672     return ConstStructBuilder::BuildStruct(CGM, CGF, ILE);
673   }
674 
675   llvm::Constant *EmitUnionInitialization(InitListExpr *ILE) {
676     return ConstStructBuilder::BuildStruct(CGM, CGF, ILE);
677   }
678 
679   llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E) {
680     return CGM.EmitNullConstant(E->getType());
681   }
682 
683   llvm::Constant *VisitInitListExpr(InitListExpr *ILE) {
684     if (ILE->getType()->isAnyComplexType() && ILE->getNumInits() == 2) {
685       // Complex type with element initializers
686       Expr *Real = ILE->getInit(0);
687       Expr *Imag = ILE->getInit(1);
688       llvm::Constant *Complex[2];
689       Complex[0] = CGM.EmitConstantExpr(Real, Real->getType(), CGF);
690       if (!Complex[0])
691         return 0;
692       Complex[1] = CGM.EmitConstantExpr(Imag, Imag->getType(), CGF);
693       if (!Complex[1])
694         return 0;
695       llvm::StructType *STy =
696           cast<llvm::StructType>(ConvertType(ILE->getType()));
697       return llvm::ConstantStruct::get(STy, Complex);
698     }
699 
700     if (ILE->getType()->isScalarType()) {
701       // We have a scalar in braces. Just use the first element.
702       if (ILE->getNumInits() > 0) {
703         Expr *Init = ILE->getInit(0);
704         return CGM.EmitConstantExpr(Init, Init->getType(), CGF);
705       }
706       return CGM.EmitNullConstant(ILE->getType());
707     }
708 
709     if (ILE->getType()->isArrayType())
710       return EmitArrayInitialization(ILE);
711 
712     if (ILE->getType()->isRecordType())
713       return EmitStructInitialization(ILE);
714 
715     if (ILE->getType()->isUnionType())
716       return EmitUnionInitialization(ILE);
717 
718     // If ILE was a constant vector, we would have handled it already.
719     if (ILE->getType()->isVectorType())
720       return 0;
721 
722     llvm_unreachable("Unable to handle InitListExpr");
723   }
724 
725   llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E) {
726     if (!E->getConstructor()->isTrivial())
727       return 0;
728 
729     QualType Ty = E->getType();
730 
731     // FIXME: We should not have to call getBaseElementType here.
732     const RecordType *RT =
733       CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>();
734     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
735 
736     // If the class doesn't have a trivial destructor, we can't emit it as a
737     // constant expr.
738     if (!RD->hasTrivialDestructor())
739       return 0;
740 
741     // Only copy and default constructors can be trivial.
742 
743 
744     if (E->getNumArgs()) {
745       assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
746       assert(E->getConstructor()->isCopyOrMoveConstructor() &&
747              "trivial ctor has argument but isn't a copy/move ctor");
748 
749       Expr *Arg = E->getArg(0);
750       assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
751              "argument to copy ctor is of wrong type");
752 
753       return Visit(Arg);
754     }
755 
756     return CGM.EmitNullConstant(Ty);
757   }
758 
759   llvm::Constant *VisitStringLiteral(StringLiteral *E) {
760     return CGM.GetConstantArrayFromStringLiteral(E);
761   }
762 
763   llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E) {
764     // This must be an @encode initializing an array in a static initializer.
765     // Don't emit it as the address of the string, emit the string data itself
766     // as an inline array.
767     std::string Str;
768     CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
769     const ConstantArrayType *CAT = cast<ConstantArrayType>(E->getType());
770 
771     // Resize the string to the right size, adding zeros at the end, or
772     // truncating as needed.
773     Str.resize(CAT->getSize().getZExtValue(), '\0');
774     return llvm::ConstantArray::get(VMContext, Str, false);
775   }
776 
777   llvm::Constant *VisitUnaryExtension(const UnaryOperator *E) {
778     return Visit(E->getSubExpr());
779   }
780 
781   // Utility methods
782   llvm::Type *ConvertType(QualType T) {
783     return CGM.getTypes().ConvertType(T);
784   }
785 
786 public:
787   llvm::Constant *EmitLValue(APValue::LValueBase LVBase) {
788     if (const ValueDecl *Decl = LVBase.dyn_cast<const ValueDecl*>()) {
789       if (Decl->hasAttr<WeakRefAttr>())
790         return CGM.GetWeakRefReference(Decl);
791       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
792         return CGM.GetAddrOfFunction(FD);
793       if (const VarDecl* VD = dyn_cast<VarDecl>(Decl)) {
794         // We can never refer to a variable with local storage.
795         if (!VD->hasLocalStorage()) {
796           if (VD->isFileVarDecl() || VD->hasExternalStorage())
797             return CGM.GetAddrOfGlobalVar(VD);
798           else if (VD->isLocalVarDecl()) {
799             assert(CGF && "Can't access static local vars without CGF");
800             return CGF->GetAddrOfStaticLocalVar(VD);
801           }
802         }
803       }
804       return 0;
805     }
806 
807     Expr *E = const_cast<Expr*>(LVBase.get<const Expr*>());
808     switch (E->getStmtClass()) {
809     default: break;
810     case Expr::CompoundLiteralExprClass: {
811       // Note that due to the nature of compound literals, this is guaranteed
812       // to be the only use of the variable, so we just generate it here.
813       CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
814       llvm::Constant* C = CGM.EmitConstantExpr(CLE->getInitializer(),
815                                                CLE->getType(), CGF);
816       // FIXME: "Leaked" on failure.
817       if (C)
818         C = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
819                                      E->getType().isConstant(CGM.getContext()),
820                                      llvm::GlobalValue::InternalLinkage,
821                                      C, ".compoundliteral", 0, false,
822                           CGM.getContext().getTargetAddressSpace(E->getType()));
823       return C;
824     }
825     case Expr::StringLiteralClass:
826       return CGM.GetAddrOfConstantStringFromLiteral(cast<StringLiteral>(E));
827     case Expr::ObjCEncodeExprClass:
828       return CGM.GetAddrOfConstantStringFromObjCEncode(cast<ObjCEncodeExpr>(E));
829     case Expr::ObjCStringLiteralClass: {
830       ObjCStringLiteral* SL = cast<ObjCStringLiteral>(E);
831       llvm::Constant *C =
832           CGM.getObjCRuntime().GenerateConstantString(SL->getString());
833       return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
834     }
835     case Expr::PredefinedExprClass: {
836       unsigned Type = cast<PredefinedExpr>(E)->getIdentType();
837       if (CGF) {
838         LValue Res = CGF->EmitPredefinedLValue(cast<PredefinedExpr>(E));
839         return cast<llvm::Constant>(Res.getAddress());
840       } else if (Type == PredefinedExpr::PrettyFunction) {
841         return CGM.GetAddrOfConstantCString("top level", ".tmp");
842       }
843 
844       return CGM.GetAddrOfConstantCString("", ".tmp");
845     }
846     case Expr::AddrLabelExprClass: {
847       assert(CGF && "Invalid address of label expression outside function.");
848       llvm::Constant *Ptr =
849         CGF->GetAddrOfLabel(cast<AddrLabelExpr>(E)->getLabel());
850       return llvm::ConstantExpr::getBitCast(Ptr, ConvertType(E->getType()));
851     }
852     case Expr::CallExprClass: {
853       CallExpr* CE = cast<CallExpr>(E);
854       unsigned builtin = CE->isBuiltinCall();
855       if (builtin !=
856             Builtin::BI__builtin___CFStringMakeConstantString &&
857           builtin !=
858             Builtin::BI__builtin___NSStringMakeConstantString)
859         break;
860       const Expr *Arg = CE->getArg(0)->IgnoreParenCasts();
861       const StringLiteral *Literal = cast<StringLiteral>(Arg);
862       if (builtin ==
863             Builtin::BI__builtin___NSStringMakeConstantString) {
864         return CGM.getObjCRuntime().GenerateConstantString(Literal);
865       }
866       // FIXME: need to deal with UCN conversion issues.
867       return CGM.GetAddrOfConstantCFString(Literal);
868     }
869     case Expr::BlockExprClass: {
870       std::string FunctionName;
871       if (CGF)
872         FunctionName = CGF->CurFn->getName();
873       else
874         FunctionName = "global";
875 
876       return CGM.GetAddrOfGlobalBlock(cast<BlockExpr>(E), FunctionName.c_str());
877     }
878     case Expr::CXXTypeidExprClass: {
879       CXXTypeidExpr *Typeid = cast<CXXTypeidExpr>(E);
880       QualType T;
881       if (Typeid->isTypeOperand())
882         T = Typeid->getTypeOperand();
883       else
884         T = Typeid->getExprOperand()->getType();
885       return CGM.GetAddrOfRTTIDescriptor(T);
886     }
887     }
888 
889     return 0;
890   }
891 };
892 
893 }  // end anonymous namespace.
894 
895 llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E,
896                                                 QualType DestType,
897                                                 CodeGenFunction *CGF) {
898   Expr::EvalResult Result;
899 
900   bool Success = false;
901 
902   if (DestType->isReferenceType())
903     Success = E->EvaluateAsLValue(Result, Context);
904   else
905     Success = E->EvaluateAsRValue(Result, Context);
906 
907   if (Success && !Result.HasSideEffects) {
908     switch (Result.Val.getKind()) {
909     case APValue::Uninitialized:
910       llvm_unreachable("Constant expressions should be initialized.");
911     case APValue::LValue: {
912       llvm::Type *DestTy = getTypes().ConvertTypeForMem(DestType);
913       llvm::Constant *Offset =
914         llvm::ConstantInt::get(llvm::Type::getInt64Ty(VMContext),
915                                Result.Val.getLValueOffset().getQuantity());
916 
917       llvm::Constant *C;
918       if (APValue::LValueBase LVBase = Result.Val.getLValueBase()) {
919         C = ConstExprEmitter(*this, CGF).EmitLValue(LVBase);
920 
921         // Apply offset if necessary.
922         if (!Offset->isNullValue()) {
923           llvm::Type *Type = llvm::Type::getInt8PtrTy(VMContext);
924           llvm::Constant *Casted = llvm::ConstantExpr::getBitCast(C, Type);
925           Casted = llvm::ConstantExpr::getGetElementPtr(Casted, Offset);
926           C = llvm::ConstantExpr::getBitCast(Casted, C->getType());
927         }
928 
929         // Convert to the appropriate type; this could be an lvalue for
930         // an integer.
931         if (isa<llvm::PointerType>(DestTy))
932           return llvm::ConstantExpr::getBitCast(C, DestTy);
933 
934         return llvm::ConstantExpr::getPtrToInt(C, DestTy);
935       } else {
936         C = Offset;
937 
938         // Convert to the appropriate type; this could be an lvalue for
939         // an integer.
940         if (isa<llvm::PointerType>(DestTy))
941           return llvm::ConstantExpr::getIntToPtr(C, DestTy);
942 
943         // If the types don't match this should only be a truncate.
944         if (C->getType() != DestTy)
945           return llvm::ConstantExpr::getTrunc(C, DestTy);
946 
947         return C;
948       }
949     }
950     case APValue::Int: {
951       llvm::Constant *C = llvm::ConstantInt::get(VMContext,
952                                                  Result.Val.getInt());
953 
954       if (C->getType()->isIntegerTy(1)) {
955         llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType());
956         C = llvm::ConstantExpr::getZExt(C, BoolTy);
957       }
958       return C;
959     }
960     case APValue::ComplexInt: {
961       llvm::Constant *Complex[2];
962 
963       Complex[0] = llvm::ConstantInt::get(VMContext,
964                                           Result.Val.getComplexIntReal());
965       Complex[1] = llvm::ConstantInt::get(VMContext,
966                                           Result.Val.getComplexIntImag());
967 
968       // FIXME: the target may want to specify that this is packed.
969       llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(),
970                                                     Complex[1]->getType(),
971                                                     NULL);
972       return llvm::ConstantStruct::get(STy, Complex);
973     }
974     case APValue::Float: {
975       const llvm::APFloat &Init = Result.Val.getFloat();
976       if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf)
977         return llvm::ConstantInt::get(VMContext, Init.bitcastToAPInt());
978       else
979         return llvm::ConstantFP::get(VMContext, Init);
980     }
981     case APValue::ComplexFloat: {
982       llvm::Constant *Complex[2];
983 
984       Complex[0] = llvm::ConstantFP::get(VMContext,
985                                          Result.Val.getComplexFloatReal());
986       Complex[1] = llvm::ConstantFP::get(VMContext,
987                                          Result.Val.getComplexFloatImag());
988 
989       // FIXME: the target may want to specify that this is packed.
990       llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(),
991                                                     Complex[1]->getType(),
992                                                     NULL);
993       return llvm::ConstantStruct::get(STy, Complex);
994     }
995     case APValue::Vector: {
996       SmallVector<llvm::Constant *, 4> Inits;
997       unsigned NumElts = Result.Val.getVectorLength();
998 
999       if (Context.getLangOptions().AltiVec &&
1000           isa<CastExpr>(E) &&
1001           cast<CastExpr>(E)->getCastKind() == CK_VectorSplat) {
1002         // AltiVec vector initialization with a single literal
1003         APValue &Elt = Result.Val.getVectorElt(0);
1004 
1005         llvm::Constant* InitValue = Elt.isInt()
1006           ? cast<llvm::Constant>
1007               (llvm::ConstantInt::get(VMContext, Elt.getInt()))
1008           : cast<llvm::Constant>
1009               (llvm::ConstantFP::get(VMContext, Elt.getFloat()));
1010 
1011         for (unsigned i = 0; i != NumElts; ++i)
1012           Inits.push_back(InitValue);
1013 
1014       } else {
1015         for (unsigned i = 0; i != NumElts; ++i) {
1016           APValue &Elt = Result.Val.getVectorElt(i);
1017           if (Elt.isInt())
1018             Inits.push_back(llvm::ConstantInt::get(VMContext, Elt.getInt()));
1019           else
1020             Inits.push_back(llvm::ConstantFP::get(VMContext, Elt.getFloat()));
1021         }
1022       }
1023       return llvm::ConstantVector::get(Inits);
1024     }
1025     case APValue::AddrLabelDiff: {
1026       const AddrLabelExpr *LHSExpr = Result.Val.getAddrLabelDiffLHS();
1027       const AddrLabelExpr *RHSExpr = Result.Val.getAddrLabelDiffRHS();
1028       llvm::Constant *LHS = EmitConstantExpr(LHSExpr, LHSExpr->getType(), CGF);
1029       llvm::Constant *RHS = EmitConstantExpr(RHSExpr, RHSExpr->getType(), CGF);
1030 
1031       // Compute difference
1032       llvm::Type *ResultType = getTypes().ConvertType(E->getType());
1033       LHS = llvm::ConstantExpr::getPtrToInt(LHS, IntPtrTy);
1034       RHS = llvm::ConstantExpr::getPtrToInt(RHS, IntPtrTy);
1035       llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
1036 
1037       // LLVM is a bit sensitive about the exact format of the
1038       // address-of-label difference; make sure to truncate after
1039       // the subtraction.
1040       return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
1041     }
1042     case APValue::Array:
1043     case APValue::Struct:
1044     case APValue::Union:
1045     case APValue::MemberPointer:
1046       break;
1047     }
1048   }
1049 
1050   llvm::Constant* C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E));
1051   if (C && C->getType()->isIntegerTy(1)) {
1052     llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType());
1053     C = llvm::ConstantExpr::getZExt(C, BoolTy);
1054   }
1055   return C;
1056 }
1057 
1058 llvm::Constant *
1059 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
1060   assert(E->isFileScope() && "not a file-scope compound literal expr");
1061   return ConstExprEmitter(*this, 0).EmitLValue(E);
1062 }
1063 
1064 static uint64_t getFieldOffset(ASTContext &C, const FieldDecl *field) {
1065   const ASTRecordLayout &layout = C.getASTRecordLayout(field->getParent());
1066   return layout.getFieldOffset(field->getFieldIndex());
1067 }
1068 
1069 llvm::Constant *
1070 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
1071   // Member pointer constants always have a very particular form.
1072   const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
1073   const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
1074 
1075   // A member function pointer.
1076   if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
1077     return getCXXABI().EmitMemberPointer(method);
1078 
1079   // Otherwise, a member data pointer.
1080   uint64_t fieldOffset;
1081   if (const FieldDecl *field = dyn_cast<FieldDecl>(decl))
1082     fieldOffset = getFieldOffset(getContext(), field);
1083   else {
1084     const IndirectFieldDecl *ifield = cast<IndirectFieldDecl>(decl);
1085 
1086     fieldOffset = 0;
1087     for (IndirectFieldDecl::chain_iterator ci = ifield->chain_begin(),
1088            ce = ifield->chain_end(); ci != ce; ++ci)
1089       fieldOffset += getFieldOffset(getContext(), cast<FieldDecl>(*ci));
1090   }
1091 
1092   CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
1093   return getCXXABI().EmitMemberDataPointer(type, chars);
1094 }
1095 
1096 static void
1097 FillInNullDataMemberPointers(CodeGenModule &CGM, QualType T,
1098                              std::vector<llvm::Constant *> &Elements,
1099                              uint64_t StartOffset) {
1100   assert(StartOffset % CGM.getContext().getCharWidth() == 0 &&
1101          "StartOffset not byte aligned!");
1102 
1103   if (CGM.getTypes().isZeroInitializable(T))
1104     return;
1105 
1106   if (const ConstantArrayType *CAT =
1107         CGM.getContext().getAsConstantArrayType(T)) {
1108     QualType ElementTy = CAT->getElementType();
1109     uint64_t ElementSize = CGM.getContext().getTypeSize(ElementTy);
1110 
1111     for (uint64_t I = 0, E = CAT->getSize().getZExtValue(); I != E; ++I) {
1112       FillInNullDataMemberPointers(CGM, ElementTy, Elements,
1113                                    StartOffset + I * ElementSize);
1114     }
1115   } else if (const RecordType *RT = T->getAs<RecordType>()) {
1116     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1117     const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
1118 
1119     // Go through all bases and fill in any null pointer to data members.
1120     for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1121          E = RD->bases_end(); I != E; ++I) {
1122       if (I->isVirtual()) {
1123         // Ignore virtual bases.
1124         continue;
1125       }
1126 
1127       const CXXRecordDecl *BaseDecl =
1128       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
1129 
1130       // Ignore empty bases.
1131       if (BaseDecl->isEmpty())
1132         continue;
1133 
1134       // Ignore bases that don't have any pointer to data members.
1135       if (CGM.getTypes().isZeroInitializable(BaseDecl))
1136         continue;
1137 
1138       uint64_t BaseOffset = Layout.getBaseClassOffsetInBits(BaseDecl);
1139       FillInNullDataMemberPointers(CGM, I->getType(),
1140                                    Elements, StartOffset + BaseOffset);
1141     }
1142 
1143     // Visit all fields.
1144     unsigned FieldNo = 0;
1145     for (RecordDecl::field_iterator I = RD->field_begin(),
1146          E = RD->field_end(); I != E; ++I, ++FieldNo) {
1147       QualType FieldType = I->getType();
1148 
1149       if (CGM.getTypes().isZeroInitializable(FieldType))
1150         continue;
1151 
1152       uint64_t FieldOffset = StartOffset + Layout.getFieldOffset(FieldNo);
1153       FillInNullDataMemberPointers(CGM, FieldType, Elements, FieldOffset);
1154     }
1155   } else {
1156     assert(T->isMemberPointerType() && "Should only see member pointers here!");
1157     assert(!T->getAs<MemberPointerType>()->getPointeeType()->isFunctionType() &&
1158            "Should only see pointers to data members here!");
1159 
1160     CharUnits StartIndex = CGM.getContext().toCharUnitsFromBits(StartOffset);
1161     CharUnits EndIndex = StartIndex + CGM.getContext().getTypeSizeInChars(T);
1162 
1163     // FIXME: hardcodes Itanium member pointer representation!
1164     llvm::Constant *NegativeOne =
1165       llvm::ConstantInt::get(llvm::Type::getInt8Ty(CGM.getLLVMContext()),
1166                              -1ULL, /*isSigned*/true);
1167 
1168     // Fill in the null data member pointer.
1169     for (CharUnits I = StartIndex; I != EndIndex; ++I)
1170       Elements[I.getQuantity()] = NegativeOne;
1171   }
1172 }
1173 
1174 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
1175                                                llvm::Type *baseType,
1176                                                const CXXRecordDecl *base);
1177 
1178 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
1179                                         const CXXRecordDecl *record,
1180                                         bool asCompleteObject) {
1181   const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
1182   llvm::StructType *structure =
1183     (asCompleteObject ? layout.getLLVMType()
1184                       : layout.getBaseSubobjectLLVMType());
1185 
1186   unsigned numElements = structure->getNumElements();
1187   std::vector<llvm::Constant *> elements(numElements);
1188 
1189   // Fill in all the bases.
1190   for (CXXRecordDecl::base_class_const_iterator
1191          I = record->bases_begin(), E = record->bases_end(); I != E; ++I) {
1192     if (I->isVirtual()) {
1193       // Ignore virtual bases; if we're laying out for a complete
1194       // object, we'll lay these out later.
1195       continue;
1196     }
1197 
1198     const CXXRecordDecl *base =
1199       cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1200 
1201     // Ignore empty bases.
1202     if (base->isEmpty())
1203       continue;
1204 
1205     unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
1206     llvm::Type *baseType = structure->getElementType(fieldIndex);
1207     elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
1208   }
1209 
1210   // Fill in all the fields.
1211   for (RecordDecl::field_iterator I = record->field_begin(),
1212          E = record->field_end(); I != E; ++I) {
1213     const FieldDecl *field = *I;
1214 
1215     // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
1216     // will fill in later.)
1217     if (!field->isBitField()) {
1218       unsigned fieldIndex = layout.getLLVMFieldNo(field);
1219       elements[fieldIndex] = CGM.EmitNullConstant(field->getType());
1220     }
1221 
1222     // For unions, stop after the first named field.
1223     if (record->isUnion() && field->getDeclName())
1224       break;
1225   }
1226 
1227   // Fill in the virtual bases, if we're working with the complete object.
1228   if (asCompleteObject) {
1229     for (CXXRecordDecl::base_class_const_iterator
1230            I = record->vbases_begin(), E = record->vbases_end(); I != E; ++I) {
1231       const CXXRecordDecl *base =
1232         cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1233 
1234       // Ignore empty bases.
1235       if (base->isEmpty())
1236         continue;
1237 
1238       unsigned fieldIndex = layout.getVirtualBaseIndex(base);
1239 
1240       // We might have already laid this field out.
1241       if (elements[fieldIndex]) continue;
1242 
1243       llvm::Type *baseType = structure->getElementType(fieldIndex);
1244       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
1245     }
1246   }
1247 
1248   // Now go through all other fields and zero them out.
1249   for (unsigned i = 0; i != numElements; ++i) {
1250     if (!elements[i])
1251       elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
1252   }
1253 
1254   return llvm::ConstantStruct::get(structure, elements);
1255 }
1256 
1257 /// Emit the null constant for a base subobject.
1258 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
1259                                                llvm::Type *baseType,
1260                                                const CXXRecordDecl *base) {
1261   const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
1262 
1263   // Just zero out bases that don't have any pointer to data members.
1264   if (baseLayout.isZeroInitializableAsBase())
1265     return llvm::Constant::getNullValue(baseType);
1266 
1267   // If the base type is a struct, we can just use its null constant.
1268   if (isa<llvm::StructType>(baseType)) {
1269     return EmitNullConstant(CGM, base, /*complete*/ false);
1270   }
1271 
1272   // Otherwise, some bases are represented as arrays of i8 if the size
1273   // of the base is smaller than its corresponding LLVM type.  Figure
1274   // out how many elements this base array has.
1275   llvm::ArrayType *baseArrayType = cast<llvm::ArrayType>(baseType);
1276   unsigned numBaseElements = baseArrayType->getNumElements();
1277 
1278   // Fill in null data member pointers.
1279   std::vector<llvm::Constant *> baseElements(numBaseElements);
1280   FillInNullDataMemberPointers(CGM, CGM.getContext().getTypeDeclType(base),
1281                                baseElements, 0);
1282 
1283   // Now go through all other elements and zero them out.
1284   if (numBaseElements) {
1285     llvm::Type *i8 = llvm::Type::getInt8Ty(CGM.getLLVMContext());
1286     llvm::Constant *i8_zero = llvm::Constant::getNullValue(i8);
1287     for (unsigned i = 0; i != numBaseElements; ++i) {
1288       if (!baseElements[i])
1289         baseElements[i] = i8_zero;
1290     }
1291   }
1292 
1293   return llvm::ConstantArray::get(baseArrayType, baseElements);
1294 }
1295 
1296 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
1297   if (getTypes().isZeroInitializable(T))
1298     return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
1299 
1300   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
1301 
1302     QualType ElementTy = CAT->getElementType();
1303 
1304     llvm::Constant *Element = EmitNullConstant(ElementTy);
1305     unsigned NumElements = CAT->getSize().getZExtValue();
1306     std::vector<llvm::Constant *> Array(NumElements);
1307     for (unsigned i = 0; i != NumElements; ++i)
1308       Array[i] = Element;
1309 
1310     llvm::ArrayType *ATy =
1311       cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
1312     return llvm::ConstantArray::get(ATy, Array);
1313   }
1314 
1315   if (const RecordType *RT = T->getAs<RecordType>()) {
1316     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1317     return ::EmitNullConstant(*this, RD, /*complete object*/ true);
1318   }
1319 
1320   assert(T->isMemberPointerType() && "Should only see member pointers here!");
1321   assert(!T->getAs<MemberPointerType>()->getPointeeType()->isFunctionType() &&
1322          "Should only see pointers to data members here!");
1323 
1324   // Itanium C++ ABI 2.3:
1325   //   A NULL pointer is represented as -1.
1326   return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
1327 }
1328 
1329 llvm::Constant *
1330 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
1331   return ::EmitNullConstant(*this, Record, false);
1332 }
1333