1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Constant Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGCXXABI.h" 15 #include "CGObjCRuntime.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenModule.h" 18 #include "ConstantEmitter.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/APValue.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtVisitor.h" 24 #include "clang/Basic/Builtins.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/GlobalVariable.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 //===----------------------------------------------------------------------===// 33 // ConstStructBuilder 34 //===----------------------------------------------------------------------===// 35 36 namespace { 37 class ConstExprEmitter; 38 class ConstStructBuilder { 39 CodeGenModule &CGM; 40 ConstantEmitter &Emitter; 41 42 bool Packed; 43 CharUnits NextFieldOffsetInChars; 44 CharUnits LLVMStructAlignment; 45 SmallVector<llvm::Constant *, 32> Elements; 46 public: 47 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 48 ConstExprEmitter *ExprEmitter, 49 llvm::Constant *Base, 50 InitListExpr *Updater, 51 QualType ValTy); 52 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 53 InitListExpr *ILE, QualType StructTy); 54 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 55 const APValue &Value, QualType ValTy); 56 57 private: 58 ConstStructBuilder(ConstantEmitter &emitter) 59 : CGM(emitter.CGM), Emitter(emitter), Packed(false), 60 NextFieldOffsetInChars(CharUnits::Zero()), 61 LLVMStructAlignment(CharUnits::One()) { } 62 63 void AppendField(const FieldDecl *Field, uint64_t FieldOffset, 64 llvm::Constant *InitExpr); 65 66 void AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst); 67 68 void AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, 69 llvm::ConstantInt *InitExpr); 70 71 void AppendPadding(CharUnits PadSize); 72 73 void AppendTailPadding(CharUnits RecordSize); 74 75 void ConvertStructToPacked(); 76 77 bool Build(InitListExpr *ILE); 78 bool Build(ConstExprEmitter *Emitter, llvm::Constant *Base, 79 InitListExpr *Updater); 80 bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase, 81 const CXXRecordDecl *VTableClass, CharUnits BaseOffset); 82 llvm::Constant *Finalize(QualType Ty); 83 84 CharUnits getAlignment(const llvm::Constant *C) const { 85 if (Packed) return CharUnits::One(); 86 return CharUnits::fromQuantity( 87 CGM.getDataLayout().getABITypeAlignment(C->getType())); 88 } 89 90 CharUnits getSizeInChars(const llvm::Constant *C) const { 91 return CharUnits::fromQuantity( 92 CGM.getDataLayout().getTypeAllocSize(C->getType())); 93 } 94 }; 95 96 void ConstStructBuilder:: 97 AppendField(const FieldDecl *Field, uint64_t FieldOffset, 98 llvm::Constant *InitCst) { 99 const ASTContext &Context = CGM.getContext(); 100 101 CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset); 102 103 AppendBytes(FieldOffsetInChars, InitCst); 104 } 105 106 void ConstStructBuilder:: 107 AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst) { 108 109 assert(NextFieldOffsetInChars <= FieldOffsetInChars 110 && "Field offset mismatch!"); 111 112 CharUnits FieldAlignment = getAlignment(InitCst); 113 114 // Round up the field offset to the alignment of the field type. 115 CharUnits AlignedNextFieldOffsetInChars = 116 NextFieldOffsetInChars.alignTo(FieldAlignment); 117 118 if (AlignedNextFieldOffsetInChars < FieldOffsetInChars) { 119 // We need to append padding. 120 AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars); 121 122 assert(NextFieldOffsetInChars == FieldOffsetInChars && 123 "Did not add enough padding!"); 124 125 AlignedNextFieldOffsetInChars = 126 NextFieldOffsetInChars.alignTo(FieldAlignment); 127 } 128 129 if (AlignedNextFieldOffsetInChars > FieldOffsetInChars) { 130 assert(!Packed && "Alignment is wrong even with a packed struct!"); 131 132 // Convert the struct to a packed struct. 133 ConvertStructToPacked(); 134 135 // After we pack the struct, we may need to insert padding. 136 if (NextFieldOffsetInChars < FieldOffsetInChars) { 137 // We need to append padding. 138 AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars); 139 140 assert(NextFieldOffsetInChars == FieldOffsetInChars && 141 "Did not add enough padding!"); 142 } 143 AlignedNextFieldOffsetInChars = NextFieldOffsetInChars; 144 } 145 146 // Add the field. 147 Elements.push_back(InitCst); 148 NextFieldOffsetInChars = AlignedNextFieldOffsetInChars + 149 getSizeInChars(InitCst); 150 151 if (Packed) 152 assert(LLVMStructAlignment == CharUnits::One() && 153 "Packed struct not byte-aligned!"); 154 else 155 LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment); 156 } 157 158 void ConstStructBuilder::AppendBitField(const FieldDecl *Field, 159 uint64_t FieldOffset, 160 llvm::ConstantInt *CI) { 161 const ASTContext &Context = CGM.getContext(); 162 const uint64_t CharWidth = Context.getCharWidth(); 163 uint64_t NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars); 164 if (FieldOffset > NextFieldOffsetInBits) { 165 // We need to add padding. 166 CharUnits PadSize = Context.toCharUnitsFromBits( 167 llvm::alignTo(FieldOffset - NextFieldOffsetInBits, 168 Context.getTargetInfo().getCharAlign())); 169 170 AppendPadding(PadSize); 171 } 172 173 uint64_t FieldSize = Field->getBitWidthValue(Context); 174 175 llvm::APInt FieldValue = CI->getValue(); 176 177 // Promote the size of FieldValue if necessary 178 // FIXME: This should never occur, but currently it can because initializer 179 // constants are cast to bool, and because clang is not enforcing bitfield 180 // width limits. 181 if (FieldSize > FieldValue.getBitWidth()) 182 FieldValue = FieldValue.zext(FieldSize); 183 184 // Truncate the size of FieldValue to the bit field size. 185 if (FieldSize < FieldValue.getBitWidth()) 186 FieldValue = FieldValue.trunc(FieldSize); 187 188 NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars); 189 if (FieldOffset < NextFieldOffsetInBits) { 190 // Either part of the field or the entire field can go into the previous 191 // byte. 192 assert(!Elements.empty() && "Elements can't be empty!"); 193 194 unsigned BitsInPreviousByte = NextFieldOffsetInBits - FieldOffset; 195 196 bool FitsCompletelyInPreviousByte = 197 BitsInPreviousByte >= FieldValue.getBitWidth(); 198 199 llvm::APInt Tmp = FieldValue; 200 201 if (!FitsCompletelyInPreviousByte) { 202 unsigned NewFieldWidth = FieldSize - BitsInPreviousByte; 203 204 if (CGM.getDataLayout().isBigEndian()) { 205 Tmp.lshrInPlace(NewFieldWidth); 206 Tmp = Tmp.trunc(BitsInPreviousByte); 207 208 // We want the remaining high bits. 209 FieldValue = FieldValue.trunc(NewFieldWidth); 210 } else { 211 Tmp = Tmp.trunc(BitsInPreviousByte); 212 213 // We want the remaining low bits. 214 FieldValue.lshrInPlace(BitsInPreviousByte); 215 FieldValue = FieldValue.trunc(NewFieldWidth); 216 } 217 } 218 219 Tmp = Tmp.zext(CharWidth); 220 if (CGM.getDataLayout().isBigEndian()) { 221 if (FitsCompletelyInPreviousByte) 222 Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth()); 223 } else { 224 Tmp = Tmp.shl(CharWidth - BitsInPreviousByte); 225 } 226 227 // 'or' in the bits that go into the previous byte. 228 llvm::Value *LastElt = Elements.back(); 229 if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(LastElt)) 230 Tmp |= Val->getValue(); 231 else { 232 assert(isa<llvm::UndefValue>(LastElt)); 233 // If there is an undef field that we're adding to, it can either be a 234 // scalar undef (in which case, we just replace it with our field) or it 235 // is an array. If it is an array, we have to pull one byte off the 236 // array so that the other undef bytes stay around. 237 if (!isa<llvm::IntegerType>(LastElt->getType())) { 238 // The undef padding will be a multibyte array, create a new smaller 239 // padding and then an hole for our i8 to get plopped into. 240 assert(isa<llvm::ArrayType>(LastElt->getType()) && 241 "Expected array padding of undefs"); 242 llvm::ArrayType *AT = cast<llvm::ArrayType>(LastElt->getType()); 243 assert(AT->getElementType()->isIntegerTy(CharWidth) && 244 AT->getNumElements() != 0 && 245 "Expected non-empty array padding of undefs"); 246 247 // Remove the padding array. 248 NextFieldOffsetInChars -= CharUnits::fromQuantity(AT->getNumElements()); 249 Elements.pop_back(); 250 251 // Add the padding back in two chunks. 252 AppendPadding(CharUnits::fromQuantity(AT->getNumElements()-1)); 253 AppendPadding(CharUnits::One()); 254 assert(isa<llvm::UndefValue>(Elements.back()) && 255 Elements.back()->getType()->isIntegerTy(CharWidth) && 256 "Padding addition didn't work right"); 257 } 258 } 259 260 Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp); 261 262 if (FitsCompletelyInPreviousByte) 263 return; 264 } 265 266 while (FieldValue.getBitWidth() > CharWidth) { 267 llvm::APInt Tmp; 268 269 if (CGM.getDataLayout().isBigEndian()) { 270 // We want the high bits. 271 Tmp = 272 FieldValue.lshr(FieldValue.getBitWidth() - CharWidth).trunc(CharWidth); 273 } else { 274 // We want the low bits. 275 Tmp = FieldValue.trunc(CharWidth); 276 277 FieldValue.lshrInPlace(CharWidth); 278 } 279 280 Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp)); 281 ++NextFieldOffsetInChars; 282 283 FieldValue = FieldValue.trunc(FieldValue.getBitWidth() - CharWidth); 284 } 285 286 assert(FieldValue.getBitWidth() > 0 && 287 "Should have at least one bit left!"); 288 assert(FieldValue.getBitWidth() <= CharWidth && 289 "Should not have more than a byte left!"); 290 291 if (FieldValue.getBitWidth() < CharWidth) { 292 if (CGM.getDataLayout().isBigEndian()) { 293 unsigned BitWidth = FieldValue.getBitWidth(); 294 295 FieldValue = FieldValue.zext(CharWidth) << (CharWidth - BitWidth); 296 } else 297 FieldValue = FieldValue.zext(CharWidth); 298 } 299 300 // Append the last element. 301 Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), 302 FieldValue)); 303 ++NextFieldOffsetInChars; 304 } 305 306 void ConstStructBuilder::AppendPadding(CharUnits PadSize) { 307 if (PadSize.isZero()) 308 return; 309 310 llvm::Type *Ty = CGM.Int8Ty; 311 if (PadSize > CharUnits::One()) 312 Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity()); 313 314 llvm::Constant *C = llvm::UndefValue::get(Ty); 315 Elements.push_back(C); 316 assert(getAlignment(C) == CharUnits::One() && 317 "Padding must have 1 byte alignment!"); 318 319 NextFieldOffsetInChars += getSizeInChars(C); 320 } 321 322 void ConstStructBuilder::AppendTailPadding(CharUnits RecordSize) { 323 assert(NextFieldOffsetInChars <= RecordSize && 324 "Size mismatch!"); 325 326 AppendPadding(RecordSize - NextFieldOffsetInChars); 327 } 328 329 void ConstStructBuilder::ConvertStructToPacked() { 330 SmallVector<llvm::Constant *, 16> PackedElements; 331 CharUnits ElementOffsetInChars = CharUnits::Zero(); 332 333 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 334 llvm::Constant *C = Elements[i]; 335 336 CharUnits ElementAlign = CharUnits::fromQuantity( 337 CGM.getDataLayout().getABITypeAlignment(C->getType())); 338 CharUnits AlignedElementOffsetInChars = 339 ElementOffsetInChars.alignTo(ElementAlign); 340 341 if (AlignedElementOffsetInChars > ElementOffsetInChars) { 342 // We need some padding. 343 CharUnits NumChars = 344 AlignedElementOffsetInChars - ElementOffsetInChars; 345 346 llvm::Type *Ty = CGM.Int8Ty; 347 if (NumChars > CharUnits::One()) 348 Ty = llvm::ArrayType::get(Ty, NumChars.getQuantity()); 349 350 llvm::Constant *Padding = llvm::UndefValue::get(Ty); 351 PackedElements.push_back(Padding); 352 ElementOffsetInChars += getSizeInChars(Padding); 353 } 354 355 PackedElements.push_back(C); 356 ElementOffsetInChars += getSizeInChars(C); 357 } 358 359 assert(ElementOffsetInChars == NextFieldOffsetInChars && 360 "Packing the struct changed its size!"); 361 362 Elements.swap(PackedElements); 363 LLVMStructAlignment = CharUnits::One(); 364 Packed = true; 365 } 366 367 bool ConstStructBuilder::Build(InitListExpr *ILE) { 368 RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl(); 369 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 370 371 unsigned FieldNo = 0; 372 unsigned ElementNo = 0; 373 374 // Bail out if we have base classes. We could support these, but they only 375 // arise in C++1z where we will have already constant folded most interesting 376 // cases. FIXME: There are still a few more cases we can handle this way. 377 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 378 if (CXXRD->getNumBases()) 379 return false; 380 381 for (RecordDecl::field_iterator Field = RD->field_begin(), 382 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 383 // If this is a union, skip all the fields that aren't being initialized. 384 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field) 385 continue; 386 387 // Don't emit anonymous bitfields, they just affect layout. 388 if (Field->isUnnamedBitfield()) 389 continue; 390 391 // Get the initializer. A struct can include fields without initializers, 392 // we just use explicit null values for them. 393 llvm::Constant *EltInit; 394 if (ElementNo < ILE->getNumInits()) 395 EltInit = Emitter.tryEmitPrivateForMemory(ILE->getInit(ElementNo++), 396 Field->getType()); 397 else 398 EltInit = Emitter.emitNullForMemory(Field->getType()); 399 400 if (!EltInit) 401 return false; 402 403 if (!Field->isBitField()) { 404 // Handle non-bitfield members. 405 AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit); 406 } else { 407 // Otherwise we have a bitfield. 408 if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) { 409 AppendBitField(*Field, Layout.getFieldOffset(FieldNo), CI); 410 } else { 411 // We are trying to initialize a bitfield with a non-trivial constant, 412 // this must require run-time code. 413 return false; 414 } 415 } 416 } 417 418 return true; 419 } 420 421 namespace { 422 struct BaseInfo { 423 BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index) 424 : Decl(Decl), Offset(Offset), Index(Index) { 425 } 426 427 const CXXRecordDecl *Decl; 428 CharUnits Offset; 429 unsigned Index; 430 431 bool operator<(const BaseInfo &O) const { return Offset < O.Offset; } 432 }; 433 } 434 435 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD, 436 bool IsPrimaryBase, 437 const CXXRecordDecl *VTableClass, 438 CharUnits Offset) { 439 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 440 441 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 442 // Add a vtable pointer, if we need one and it hasn't already been added. 443 if (CD->isDynamicClass() && !IsPrimaryBase) { 444 llvm::Constant *VTableAddressPoint = 445 CGM.getCXXABI().getVTableAddressPointForConstExpr( 446 BaseSubobject(CD, Offset), VTableClass); 447 AppendBytes(Offset, VTableAddressPoint); 448 } 449 450 // Accumulate and sort bases, in order to visit them in address order, which 451 // may not be the same as declaration order. 452 SmallVector<BaseInfo, 8> Bases; 453 Bases.reserve(CD->getNumBases()); 454 unsigned BaseNo = 0; 455 for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(), 456 BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) { 457 assert(!Base->isVirtual() && "should not have virtual bases here"); 458 const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl(); 459 CharUnits BaseOffset = Layout.getBaseClassOffset(BD); 460 Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo)); 461 } 462 std::stable_sort(Bases.begin(), Bases.end()); 463 464 for (unsigned I = 0, N = Bases.size(); I != N; ++I) { 465 BaseInfo &Base = Bases[I]; 466 467 bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl; 468 Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase, 469 VTableClass, Offset + Base.Offset); 470 } 471 } 472 473 unsigned FieldNo = 0; 474 uint64_t OffsetBits = CGM.getContext().toBits(Offset); 475 476 for (RecordDecl::field_iterator Field = RD->field_begin(), 477 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 478 // If this is a union, skip all the fields that aren't being initialized. 479 if (RD->isUnion() && Val.getUnionField() != *Field) 480 continue; 481 482 // Don't emit anonymous bitfields, they just affect layout. 483 if (Field->isUnnamedBitfield()) 484 continue; 485 486 // Emit the value of the initializer. 487 const APValue &FieldValue = 488 RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo); 489 llvm::Constant *EltInit = 490 Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType()); 491 if (!EltInit) 492 return false; 493 494 if (!Field->isBitField()) { 495 // Handle non-bitfield members. 496 AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, EltInit); 497 } else { 498 // Otherwise we have a bitfield. 499 AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 500 cast<llvm::ConstantInt>(EltInit)); 501 } 502 } 503 504 return true; 505 } 506 507 llvm::Constant *ConstStructBuilder::Finalize(QualType Ty) { 508 RecordDecl *RD = Ty->getAs<RecordType>()->getDecl(); 509 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 510 511 CharUnits LayoutSizeInChars = Layout.getSize(); 512 513 if (NextFieldOffsetInChars > LayoutSizeInChars) { 514 // If the struct is bigger than the size of the record type, 515 // we must have a flexible array member at the end. 516 assert(RD->hasFlexibleArrayMember() && 517 "Must have flexible array member if struct is bigger than type!"); 518 519 // No tail padding is necessary. 520 } else { 521 // Append tail padding if necessary. 522 CharUnits LLVMSizeInChars = 523 NextFieldOffsetInChars.alignTo(LLVMStructAlignment); 524 525 if (LLVMSizeInChars != LayoutSizeInChars) 526 AppendTailPadding(LayoutSizeInChars); 527 528 LLVMSizeInChars = NextFieldOffsetInChars.alignTo(LLVMStructAlignment); 529 530 // Check if we need to convert the struct to a packed struct. 531 if (NextFieldOffsetInChars <= LayoutSizeInChars && 532 LLVMSizeInChars > LayoutSizeInChars) { 533 assert(!Packed && "Size mismatch!"); 534 535 ConvertStructToPacked(); 536 assert(NextFieldOffsetInChars <= LayoutSizeInChars && 537 "Converting to packed did not help!"); 538 } 539 540 LLVMSizeInChars = NextFieldOffsetInChars.alignTo(LLVMStructAlignment); 541 542 assert(LayoutSizeInChars == LLVMSizeInChars && 543 "Tail padding mismatch!"); 544 } 545 546 // Pick the type to use. If the type is layout identical to the ConvertType 547 // type then use it, otherwise use whatever the builder produced for us. 548 llvm::StructType *STy = 549 llvm::ConstantStruct::getTypeForElements(CGM.getLLVMContext(), 550 Elements, Packed); 551 llvm::Type *ValTy = CGM.getTypes().ConvertType(Ty); 552 if (llvm::StructType *ValSTy = dyn_cast<llvm::StructType>(ValTy)) { 553 if (ValSTy->isLayoutIdentical(STy)) 554 STy = ValSTy; 555 } 556 557 llvm::Constant *Result = llvm::ConstantStruct::get(STy, Elements); 558 559 assert(NextFieldOffsetInChars.alignTo(getAlignment(Result)) == 560 getSizeInChars(Result) && 561 "Size mismatch!"); 562 563 return Result; 564 } 565 566 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 567 ConstExprEmitter *ExprEmitter, 568 llvm::Constant *Base, 569 InitListExpr *Updater, 570 QualType ValTy) { 571 ConstStructBuilder Builder(Emitter); 572 if (!Builder.Build(ExprEmitter, Base, Updater)) 573 return nullptr; 574 return Builder.Finalize(ValTy); 575 } 576 577 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 578 InitListExpr *ILE, 579 QualType ValTy) { 580 ConstStructBuilder Builder(Emitter); 581 582 if (!Builder.Build(ILE)) 583 return nullptr; 584 585 return Builder.Finalize(ValTy); 586 } 587 588 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 589 const APValue &Val, 590 QualType ValTy) { 591 ConstStructBuilder Builder(Emitter); 592 593 const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl(); 594 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); 595 if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero())) 596 return nullptr; 597 598 return Builder.Finalize(ValTy); 599 } 600 601 602 //===----------------------------------------------------------------------===// 603 // ConstExprEmitter 604 //===----------------------------------------------------------------------===// 605 606 static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM, 607 CodeGenFunction *CGF, 608 const CompoundLiteralExpr *E) { 609 CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType()); 610 if (llvm::GlobalVariable *Addr = 611 CGM.getAddrOfConstantCompoundLiteralIfEmitted(E)) 612 return ConstantAddress(Addr, Align); 613 614 LangAS addressSpace = E->getType().getAddressSpace(); 615 616 ConstantEmitter emitter(CGM, CGF); 617 llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(), 618 addressSpace, E->getType()); 619 if (!C) { 620 assert(!E->isFileScope() && 621 "file-scope compound literal did not have constant initializer!"); 622 return ConstantAddress::invalid(); 623 } 624 625 auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), 626 CGM.isTypeConstant(E->getType(), true), 627 llvm::GlobalValue::InternalLinkage, 628 C, ".compoundliteral", nullptr, 629 llvm::GlobalVariable::NotThreadLocal, 630 CGM.getContext().getTargetAddressSpace(addressSpace)); 631 emitter.finalize(GV); 632 GV->setAlignment(Align.getQuantity()); 633 CGM.setAddrOfConstantCompoundLiteral(E, GV); 634 return ConstantAddress(GV, Align); 635 } 636 637 static llvm::Constant * 638 EmitArrayConstant(CodeGenModule &CGM, const ConstantArrayType *DestType, 639 llvm::Type *CommonElementType, unsigned ArrayBound, 640 SmallVectorImpl<llvm::Constant *> &Elements, 641 llvm::Constant *Filler) { 642 // Figure out how long the initial prefix of non-zero elements is. 643 unsigned NonzeroLength = ArrayBound; 644 if (Elements.size() < NonzeroLength && Filler->isNullValue()) 645 NonzeroLength = Elements.size(); 646 if (NonzeroLength == Elements.size()) { 647 while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue()) 648 --NonzeroLength; 649 } 650 651 if (NonzeroLength == 0) { 652 return llvm::ConstantAggregateZero::get( 653 CGM.getTypes().ConvertType(QualType(DestType, 0))); 654 } 655 656 // Add a zeroinitializer array filler if we have lots of trailing zeroes. 657 unsigned TrailingZeroes = ArrayBound - NonzeroLength; 658 if (TrailingZeroes >= 8) { 659 assert(Elements.size() >= NonzeroLength && 660 "missing initializer for non-zero element"); 661 662 // If all the elements had the same type up to the trailing zeroes, emit a 663 // struct of two arrays (the nonzero data and the zeroinitializer). 664 if (CommonElementType && NonzeroLength >= 8) { 665 llvm::Constant *Initial = llvm::ConstantArray::get( 666 llvm::ArrayType::get(CommonElementType, NonzeroLength), 667 makeArrayRef(Elements).take_front(NonzeroLength)); 668 Elements.resize(2); 669 Elements[0] = Initial; 670 } else { 671 Elements.resize(NonzeroLength + 1); 672 } 673 674 auto *FillerType = 675 CommonElementType 676 ? CommonElementType 677 : CGM.getTypes().ConvertType(DestType->getElementType()); 678 FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes); 679 Elements.back() = llvm::ConstantAggregateZero::get(FillerType); 680 CommonElementType = nullptr; 681 } else if (Elements.size() != ArrayBound) { 682 // Otherwise pad to the right size with the filler if necessary. 683 Elements.resize(ArrayBound, Filler); 684 if (Filler->getType() != CommonElementType) 685 CommonElementType = nullptr; 686 } 687 688 // If all elements have the same type, just emit an array constant. 689 if (CommonElementType) 690 return llvm::ConstantArray::get( 691 llvm::ArrayType::get(CommonElementType, ArrayBound), Elements); 692 693 // We have mixed types. Use a packed struct. 694 llvm::SmallVector<llvm::Type *, 16> Types; 695 Types.reserve(Elements.size()); 696 for (llvm::Constant *Elt : Elements) 697 Types.push_back(Elt->getType()); 698 llvm::StructType *SType = 699 llvm::StructType::get(CGM.getLLVMContext(), Types, true); 700 return llvm::ConstantStruct::get(SType, Elements); 701 } 702 703 /// This class only needs to handle two cases: 704 /// 1) Literals (this is used by APValue emission to emit literals). 705 /// 2) Arrays, structs and unions (outside C++11 mode, we don't currently 706 /// constant fold these types). 707 class ConstExprEmitter : 708 public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> { 709 CodeGenModule &CGM; 710 ConstantEmitter &Emitter; 711 llvm::LLVMContext &VMContext; 712 public: 713 ConstExprEmitter(ConstantEmitter &emitter) 714 : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) { 715 } 716 717 //===--------------------------------------------------------------------===// 718 // Visitor Methods 719 //===--------------------------------------------------------------------===// 720 721 llvm::Constant *VisitStmt(Stmt *S, QualType T) { 722 return nullptr; 723 } 724 725 llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) { 726 return Visit(CE->getSubExpr(), T); 727 } 728 729 llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) { 730 return Visit(PE->getSubExpr(), T); 731 } 732 733 llvm::Constant * 734 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE, 735 QualType T) { 736 return Visit(PE->getReplacement(), T); 737 } 738 739 llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE, 740 QualType T) { 741 return Visit(GE->getResultExpr(), T); 742 } 743 744 llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) { 745 return Visit(CE->getChosenSubExpr(), T); 746 } 747 748 llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) { 749 return Visit(E->getInitializer(), T); 750 } 751 752 llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) { 753 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 754 CGM.EmitExplicitCastExprType(ECE, Emitter.CGF); 755 Expr *subExpr = E->getSubExpr(); 756 757 switch (E->getCastKind()) { 758 case CK_ToUnion: { 759 // GCC cast to union extension 760 assert(E->getType()->isUnionType() && 761 "Destination type is not union type!"); 762 763 auto field = E->getTargetUnionField(); 764 765 auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType()); 766 if (!C) return nullptr; 767 768 auto destTy = ConvertType(destType); 769 if (C->getType() == destTy) return C; 770 771 // Build a struct with the union sub-element as the first member, 772 // and padded to the appropriate size. 773 SmallVector<llvm::Constant*, 2> Elts; 774 SmallVector<llvm::Type*, 2> Types; 775 Elts.push_back(C); 776 Types.push_back(C->getType()); 777 unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType()); 778 unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy); 779 780 assert(CurSize <= TotalSize && "Union size mismatch!"); 781 if (unsigned NumPadBytes = TotalSize - CurSize) { 782 llvm::Type *Ty = CGM.Int8Ty; 783 if (NumPadBytes > 1) 784 Ty = llvm::ArrayType::get(Ty, NumPadBytes); 785 786 Elts.push_back(llvm::UndefValue::get(Ty)); 787 Types.push_back(Ty); 788 } 789 790 llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false); 791 return llvm::ConstantStruct::get(STy, Elts); 792 } 793 794 case CK_AddressSpaceConversion: { 795 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 796 if (!C) return nullptr; 797 LangAS destAS = E->getType()->getPointeeType().getAddressSpace(); 798 LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace(); 799 llvm::Type *destTy = ConvertType(E->getType()); 800 return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS, 801 destAS, destTy); 802 } 803 804 case CK_LValueToRValue: 805 case CK_AtomicToNonAtomic: 806 case CK_NonAtomicToAtomic: 807 case CK_NoOp: 808 case CK_ConstructorConversion: 809 return Visit(subExpr, destType); 810 811 case CK_IntToOCLSampler: 812 llvm_unreachable("global sampler variables are not generated"); 813 814 case CK_Dependent: llvm_unreachable("saw dependent cast!"); 815 816 case CK_BuiltinFnToFnPtr: 817 llvm_unreachable("builtin functions are handled elsewhere"); 818 819 case CK_ReinterpretMemberPointer: 820 case CK_DerivedToBaseMemberPointer: 821 case CK_BaseToDerivedMemberPointer: { 822 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 823 if (!C) return nullptr; 824 return CGM.getCXXABI().EmitMemberPointerConversion(E, C); 825 } 826 827 // These will never be supported. 828 case CK_ObjCObjectLValueCast: 829 case CK_ARCProduceObject: 830 case CK_ARCConsumeObject: 831 case CK_ARCReclaimReturnedObject: 832 case CK_ARCExtendBlockObject: 833 case CK_CopyAndAutoreleaseBlockObject: 834 return nullptr; 835 836 // These don't need to be handled here because Evaluate knows how to 837 // evaluate them in the cases where they can be folded. 838 case CK_BitCast: 839 case CK_ToVoid: 840 case CK_Dynamic: 841 case CK_LValueBitCast: 842 case CK_NullToMemberPointer: 843 case CK_UserDefinedConversion: 844 case CK_CPointerToObjCPointerCast: 845 case CK_BlockPointerToObjCPointerCast: 846 case CK_AnyPointerToBlockPointerCast: 847 case CK_ArrayToPointerDecay: 848 case CK_FunctionToPointerDecay: 849 case CK_BaseToDerived: 850 case CK_DerivedToBase: 851 case CK_UncheckedDerivedToBase: 852 case CK_MemberPointerToBoolean: 853 case CK_VectorSplat: 854 case CK_FloatingRealToComplex: 855 case CK_FloatingComplexToReal: 856 case CK_FloatingComplexToBoolean: 857 case CK_FloatingComplexCast: 858 case CK_FloatingComplexToIntegralComplex: 859 case CK_IntegralRealToComplex: 860 case CK_IntegralComplexToReal: 861 case CK_IntegralComplexToBoolean: 862 case CK_IntegralComplexCast: 863 case CK_IntegralComplexToFloatingComplex: 864 case CK_PointerToIntegral: 865 case CK_PointerToBoolean: 866 case CK_NullToPointer: 867 case CK_IntegralCast: 868 case CK_BooleanToSignedIntegral: 869 case CK_IntegralToPointer: 870 case CK_IntegralToBoolean: 871 case CK_IntegralToFloating: 872 case CK_FloatingToIntegral: 873 case CK_FloatingToBoolean: 874 case CK_FloatingCast: 875 case CK_FixedPointCast: 876 case CK_FixedPointToBoolean: 877 case CK_ZeroToOCLOpaqueType: 878 return nullptr; 879 } 880 llvm_unreachable("Invalid CastKind"); 881 } 882 883 llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE, QualType T) { 884 return Visit(DAE->getExpr(), T); 885 } 886 887 llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) { 888 // No need for a DefaultInitExprScope: we don't handle 'this' in a 889 // constant expression. 890 return Visit(DIE->getExpr(), T); 891 } 892 893 llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) { 894 if (!E->cleanupsHaveSideEffects()) 895 return Visit(E->getSubExpr(), T); 896 return nullptr; 897 } 898 899 llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E, 900 QualType T) { 901 return Visit(E->GetTemporaryExpr(), T); 902 } 903 904 llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) { 905 auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType()); 906 assert(CAT && "can't emit array init for non-constant-bound array"); 907 unsigned NumInitElements = ILE->getNumInits(); 908 unsigned NumElements = CAT->getSize().getZExtValue(); 909 910 // Initialising an array requires us to automatically 911 // initialise any elements that have not been initialised explicitly 912 unsigned NumInitableElts = std::min(NumInitElements, NumElements); 913 914 QualType EltType = CAT->getElementType(); 915 916 // Initialize remaining array elements. 917 llvm::Constant *fillC = nullptr; 918 if (Expr *filler = ILE->getArrayFiller()) { 919 fillC = Emitter.tryEmitAbstractForMemory(filler, EltType); 920 if (!fillC) 921 return nullptr; 922 } 923 924 // Copy initializer elements. 925 SmallVector<llvm::Constant*, 16> Elts; 926 if (fillC && fillC->isNullValue()) 927 Elts.reserve(NumInitableElts + 1); 928 else 929 Elts.reserve(NumElements); 930 931 llvm::Type *CommonElementType = nullptr; 932 for (unsigned i = 0; i < NumInitableElts; ++i) { 933 Expr *Init = ILE->getInit(i); 934 llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType); 935 if (!C) 936 return nullptr; 937 if (i == 0) 938 CommonElementType = C->getType(); 939 else if (C->getType() != CommonElementType) 940 CommonElementType = nullptr; 941 Elts.push_back(C); 942 } 943 944 return EmitArrayConstant(CGM, CAT, CommonElementType, NumElements, Elts, 945 fillC); 946 } 947 948 llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) { 949 return ConstStructBuilder::BuildStruct(Emitter, ILE, T); 950 } 951 952 llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E, 953 QualType T) { 954 return CGM.EmitNullConstant(T); 955 } 956 957 llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) { 958 if (ILE->isTransparent()) 959 return Visit(ILE->getInit(0), T); 960 961 if (ILE->getType()->isArrayType()) 962 return EmitArrayInitialization(ILE, T); 963 964 if (ILE->getType()->isRecordType()) 965 return EmitRecordInitialization(ILE, T); 966 967 return nullptr; 968 } 969 970 llvm::Constant *EmitDesignatedInitUpdater(llvm::Constant *Base, 971 InitListExpr *Updater, 972 QualType destType) { 973 if (auto destAT = CGM.getContext().getAsArrayType(destType)) { 974 llvm::ArrayType *AType = cast<llvm::ArrayType>(ConvertType(destType)); 975 llvm::Type *ElemType = AType->getElementType(); 976 977 unsigned NumInitElements = Updater->getNumInits(); 978 unsigned NumElements = AType->getNumElements(); 979 980 std::vector<llvm::Constant *> Elts; 981 Elts.reserve(NumElements); 982 983 QualType destElemType = destAT->getElementType(); 984 985 if (auto DataArray = dyn_cast<llvm::ConstantDataArray>(Base)) 986 for (unsigned i = 0; i != NumElements; ++i) 987 Elts.push_back(DataArray->getElementAsConstant(i)); 988 else if (auto Array = dyn_cast<llvm::ConstantArray>(Base)) 989 for (unsigned i = 0; i != NumElements; ++i) 990 Elts.push_back(Array->getOperand(i)); 991 else 992 return nullptr; // FIXME: other array types not implemented 993 994 llvm::Constant *fillC = nullptr; 995 if (Expr *filler = Updater->getArrayFiller()) 996 if (!isa<NoInitExpr>(filler)) 997 fillC = Emitter.tryEmitAbstractForMemory(filler, destElemType); 998 bool RewriteType = (fillC && fillC->getType() != ElemType); 999 1000 for (unsigned i = 0; i != NumElements; ++i) { 1001 Expr *Init = nullptr; 1002 if (i < NumInitElements) 1003 Init = Updater->getInit(i); 1004 1005 if (!Init && fillC) 1006 Elts[i] = fillC; 1007 else if (!Init || isa<NoInitExpr>(Init)) 1008 ; // Do nothing. 1009 else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) 1010 Elts[i] = EmitDesignatedInitUpdater(Elts[i], ChildILE, destElemType); 1011 else 1012 Elts[i] = Emitter.tryEmitPrivateForMemory(Init, destElemType); 1013 1014 if (!Elts[i]) 1015 return nullptr; 1016 RewriteType |= (Elts[i]->getType() != ElemType); 1017 } 1018 1019 if (RewriteType) { 1020 std::vector<llvm::Type *> Types; 1021 Types.reserve(NumElements); 1022 for (unsigned i = 0; i != NumElements; ++i) 1023 Types.push_back(Elts[i]->getType()); 1024 llvm::StructType *SType = llvm::StructType::get(AType->getContext(), 1025 Types, true); 1026 return llvm::ConstantStruct::get(SType, Elts); 1027 } 1028 1029 return llvm::ConstantArray::get(AType, Elts); 1030 } 1031 1032 if (destType->isRecordType()) 1033 return ConstStructBuilder::BuildStruct(Emitter, this, Base, Updater, 1034 destType); 1035 1036 return nullptr; 1037 } 1038 1039 llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E, 1040 QualType destType) { 1041 auto C = Visit(E->getBase(), destType); 1042 if (!C) return nullptr; 1043 return EmitDesignatedInitUpdater(C, E->getUpdater(), destType); 1044 } 1045 1046 llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) { 1047 if (!E->getConstructor()->isTrivial()) 1048 return nullptr; 1049 1050 // FIXME: We should not have to call getBaseElementType here. 1051 const RecordType *RT = 1052 CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>(); 1053 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1054 1055 // If the class doesn't have a trivial destructor, we can't emit it as a 1056 // constant expr. 1057 if (!RD->hasTrivialDestructor()) 1058 return nullptr; 1059 1060 // Only copy and default constructors can be trivial. 1061 1062 1063 if (E->getNumArgs()) { 1064 assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 1065 assert(E->getConstructor()->isCopyOrMoveConstructor() && 1066 "trivial ctor has argument but isn't a copy/move ctor"); 1067 1068 Expr *Arg = E->getArg(0); 1069 assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) && 1070 "argument to copy ctor is of wrong type"); 1071 1072 return Visit(Arg, Ty); 1073 } 1074 1075 return CGM.EmitNullConstant(Ty); 1076 } 1077 1078 llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) { 1079 return CGM.GetConstantArrayFromStringLiteral(E); 1080 } 1081 1082 llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) { 1083 // This must be an @encode initializing an array in a static initializer. 1084 // Don't emit it as the address of the string, emit the string data itself 1085 // as an inline array. 1086 std::string Str; 1087 CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1088 const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T); 1089 1090 // Resize the string to the right size, adding zeros at the end, or 1091 // truncating as needed. 1092 Str.resize(CAT->getSize().getZExtValue(), '\0'); 1093 return llvm::ConstantDataArray::getString(VMContext, Str, false); 1094 } 1095 1096 llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) { 1097 return Visit(E->getSubExpr(), T); 1098 } 1099 1100 // Utility methods 1101 llvm::Type *ConvertType(QualType T) { 1102 return CGM.getTypes().ConvertType(T); 1103 } 1104 }; 1105 1106 } // end anonymous namespace. 1107 1108 bool ConstStructBuilder::Build(ConstExprEmitter *ExprEmitter, 1109 llvm::Constant *Base, 1110 InitListExpr *Updater) { 1111 assert(Base && "base expression should not be empty"); 1112 1113 QualType ExprType = Updater->getType(); 1114 RecordDecl *RD = ExprType->getAs<RecordType>()->getDecl(); 1115 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 1116 const llvm::StructLayout *BaseLayout = CGM.getDataLayout().getStructLayout( 1117 cast<llvm::StructType>(Base->getType())); 1118 unsigned FieldNo = -1; 1119 unsigned ElementNo = 0; 1120 1121 // Bail out if we have base classes. We could support these, but they only 1122 // arise in C++1z where we will have already constant folded most interesting 1123 // cases. FIXME: There are still a few more cases we can handle this way. 1124 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1125 if (CXXRD->getNumBases()) 1126 return false; 1127 1128 for (FieldDecl *Field : RD->fields()) { 1129 ++FieldNo; 1130 1131 if (RD->isUnion() && Updater->getInitializedFieldInUnion() != Field) 1132 continue; 1133 1134 // Skip anonymous bitfields. 1135 if (Field->isUnnamedBitfield()) 1136 continue; 1137 1138 llvm::Constant *EltInit = Base->getAggregateElement(ElementNo); 1139 1140 // Bail out if the type of the ConstantStruct does not have the same layout 1141 // as the type of the InitListExpr. 1142 if (CGM.getTypes().ConvertType(Field->getType()) != EltInit->getType() || 1143 Layout.getFieldOffset(ElementNo) != 1144 BaseLayout->getElementOffsetInBits(ElementNo)) 1145 return false; 1146 1147 // Get the initializer. If we encounter an empty field or a NoInitExpr, 1148 // we use values from the base expression. 1149 Expr *Init = nullptr; 1150 if (ElementNo < Updater->getNumInits()) 1151 Init = Updater->getInit(ElementNo); 1152 1153 if (!Init || isa<NoInitExpr>(Init)) 1154 ; // Do nothing. 1155 else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) 1156 EltInit = ExprEmitter->EmitDesignatedInitUpdater(EltInit, ChildILE, 1157 Field->getType()); 1158 else 1159 EltInit = Emitter.tryEmitPrivateForMemory(Init, Field->getType()); 1160 1161 ++ElementNo; 1162 1163 if (!EltInit) 1164 return false; 1165 1166 if (!Field->isBitField()) 1167 AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit); 1168 else if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(EltInit)) 1169 AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI); 1170 else 1171 // Initializing a bitfield with a non-trivial constant? 1172 return false; 1173 } 1174 1175 return true; 1176 } 1177 1178 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C, 1179 AbstractState saved) { 1180 Abstract = saved.OldValue; 1181 1182 assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() && 1183 "created a placeholder while doing an abstract emission?"); 1184 1185 // No validation necessary for now. 1186 // No cleanup to do for now. 1187 return C; 1188 } 1189 1190 llvm::Constant * 1191 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) { 1192 auto state = pushAbstract(); 1193 auto C = tryEmitPrivateForVarInit(D); 1194 return validateAndPopAbstract(C, state); 1195 } 1196 1197 llvm::Constant * 1198 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) { 1199 auto state = pushAbstract(); 1200 auto C = tryEmitPrivate(E, destType); 1201 return validateAndPopAbstract(C, state); 1202 } 1203 1204 llvm::Constant * 1205 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) { 1206 auto state = pushAbstract(); 1207 auto C = tryEmitPrivate(value, destType); 1208 return validateAndPopAbstract(C, state); 1209 } 1210 1211 llvm::Constant * 1212 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) { 1213 auto state = pushAbstract(); 1214 auto C = tryEmitPrivate(E, destType); 1215 C = validateAndPopAbstract(C, state); 1216 if (!C) { 1217 CGM.Error(E->getExprLoc(), 1218 "internal error: could not emit constant value \"abstractly\""); 1219 C = CGM.EmitNullConstant(destType); 1220 } 1221 return C; 1222 } 1223 1224 llvm::Constant * 1225 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value, 1226 QualType destType) { 1227 auto state = pushAbstract(); 1228 auto C = tryEmitPrivate(value, destType); 1229 C = validateAndPopAbstract(C, state); 1230 if (!C) { 1231 CGM.Error(loc, 1232 "internal error: could not emit constant value \"abstractly\""); 1233 C = CGM.EmitNullConstant(destType); 1234 } 1235 return C; 1236 } 1237 1238 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) { 1239 initializeNonAbstract(D.getType().getAddressSpace()); 1240 return markIfFailed(tryEmitPrivateForVarInit(D)); 1241 } 1242 1243 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E, 1244 LangAS destAddrSpace, 1245 QualType destType) { 1246 initializeNonAbstract(destAddrSpace); 1247 return markIfFailed(tryEmitPrivateForMemory(E, destType)); 1248 } 1249 1250 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value, 1251 LangAS destAddrSpace, 1252 QualType destType) { 1253 initializeNonAbstract(destAddrSpace); 1254 auto C = tryEmitPrivateForMemory(value, destType); 1255 assert(C && "couldn't emit constant value non-abstractly?"); 1256 return C; 1257 } 1258 1259 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() { 1260 assert(!Abstract && "cannot get current address for abstract constant"); 1261 1262 1263 1264 // Make an obviously ill-formed global that should blow up compilation 1265 // if it survives. 1266 auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true, 1267 llvm::GlobalValue::PrivateLinkage, 1268 /*init*/ nullptr, 1269 /*name*/ "", 1270 /*before*/ nullptr, 1271 llvm::GlobalVariable::NotThreadLocal, 1272 CGM.getContext().getTargetAddressSpace(DestAddressSpace)); 1273 1274 PlaceholderAddresses.push_back(std::make_pair(nullptr, global)); 1275 1276 return global; 1277 } 1278 1279 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal, 1280 llvm::GlobalValue *placeholder) { 1281 assert(!PlaceholderAddresses.empty()); 1282 assert(PlaceholderAddresses.back().first == nullptr); 1283 assert(PlaceholderAddresses.back().second == placeholder); 1284 PlaceholderAddresses.back().first = signal; 1285 } 1286 1287 namespace { 1288 struct ReplacePlaceholders { 1289 CodeGenModule &CGM; 1290 1291 /// The base address of the global. 1292 llvm::Constant *Base; 1293 llvm::Type *BaseValueTy = nullptr; 1294 1295 /// The placeholder addresses that were registered during emission. 1296 llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses; 1297 1298 /// The locations of the placeholder signals. 1299 llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations; 1300 1301 /// The current index stack. We use a simple unsigned stack because 1302 /// we assume that placeholders will be relatively sparse in the 1303 /// initializer, but we cache the index values we find just in case. 1304 llvm::SmallVector<unsigned, 8> Indices; 1305 llvm::SmallVector<llvm::Constant*, 8> IndexValues; 1306 1307 ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base, 1308 ArrayRef<std::pair<llvm::Constant*, 1309 llvm::GlobalVariable*>> addresses) 1310 : CGM(CGM), Base(base), 1311 PlaceholderAddresses(addresses.begin(), addresses.end()) { 1312 } 1313 1314 void replaceInInitializer(llvm::Constant *init) { 1315 // Remember the type of the top-most initializer. 1316 BaseValueTy = init->getType(); 1317 1318 // Initialize the stack. 1319 Indices.push_back(0); 1320 IndexValues.push_back(nullptr); 1321 1322 // Recurse into the initializer. 1323 findLocations(init); 1324 1325 // Check invariants. 1326 assert(IndexValues.size() == Indices.size() && "mismatch"); 1327 assert(Indices.size() == 1 && "didn't pop all indices"); 1328 1329 // Do the replacement; this basically invalidates 'init'. 1330 assert(Locations.size() == PlaceholderAddresses.size() && 1331 "missed a placeholder?"); 1332 1333 // We're iterating over a hashtable, so this would be a source of 1334 // non-determinism in compiler output *except* that we're just 1335 // messing around with llvm::Constant structures, which never itself 1336 // does anything that should be visible in compiler output. 1337 for (auto &entry : Locations) { 1338 assert(entry.first->getParent() == nullptr && "not a placeholder!"); 1339 entry.first->replaceAllUsesWith(entry.second); 1340 entry.first->eraseFromParent(); 1341 } 1342 } 1343 1344 private: 1345 void findLocations(llvm::Constant *init) { 1346 // Recurse into aggregates. 1347 if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) { 1348 for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) { 1349 Indices.push_back(i); 1350 IndexValues.push_back(nullptr); 1351 1352 findLocations(agg->getOperand(i)); 1353 1354 IndexValues.pop_back(); 1355 Indices.pop_back(); 1356 } 1357 return; 1358 } 1359 1360 // Otherwise, check for registered constants. 1361 while (true) { 1362 auto it = PlaceholderAddresses.find(init); 1363 if (it != PlaceholderAddresses.end()) { 1364 setLocation(it->second); 1365 break; 1366 } 1367 1368 // Look through bitcasts or other expressions. 1369 if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) { 1370 init = expr->getOperand(0); 1371 } else { 1372 break; 1373 } 1374 } 1375 } 1376 1377 void setLocation(llvm::GlobalVariable *placeholder) { 1378 assert(Locations.find(placeholder) == Locations.end() && 1379 "already found location for placeholder!"); 1380 1381 // Lazily fill in IndexValues with the values from Indices. 1382 // We do this in reverse because we should always have a strict 1383 // prefix of indices from the start. 1384 assert(Indices.size() == IndexValues.size()); 1385 for (size_t i = Indices.size() - 1; i != size_t(-1); --i) { 1386 if (IndexValues[i]) { 1387 #ifndef NDEBUG 1388 for (size_t j = 0; j != i + 1; ++j) { 1389 assert(IndexValues[j] && 1390 isa<llvm::ConstantInt>(IndexValues[j]) && 1391 cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue() 1392 == Indices[j]); 1393 } 1394 #endif 1395 break; 1396 } 1397 1398 IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]); 1399 } 1400 1401 // Form a GEP and then bitcast to the placeholder type so that the 1402 // replacement will succeed. 1403 llvm::Constant *location = 1404 llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy, 1405 Base, IndexValues); 1406 location = llvm::ConstantExpr::getBitCast(location, 1407 placeholder->getType()); 1408 1409 Locations.insert({placeholder, location}); 1410 } 1411 }; 1412 } 1413 1414 void ConstantEmitter::finalize(llvm::GlobalVariable *global) { 1415 assert(InitializedNonAbstract && 1416 "finalizing emitter that was used for abstract emission?"); 1417 assert(!Finalized && "finalizing emitter multiple times"); 1418 assert(global->getInitializer()); 1419 1420 // Note that we might also be Failed. 1421 Finalized = true; 1422 1423 if (!PlaceholderAddresses.empty()) { 1424 ReplacePlaceholders(CGM, global, PlaceholderAddresses) 1425 .replaceInInitializer(global->getInitializer()); 1426 PlaceholderAddresses.clear(); // satisfy 1427 } 1428 } 1429 1430 ConstantEmitter::~ConstantEmitter() { 1431 assert((!InitializedNonAbstract || Finalized || Failed) && 1432 "not finalized after being initialized for non-abstract emission"); 1433 assert(PlaceholderAddresses.empty() && "unhandled placeholders"); 1434 } 1435 1436 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) { 1437 if (auto AT = type->getAs<AtomicType>()) { 1438 return CGM.getContext().getQualifiedType(AT->getValueType(), 1439 type.getQualifiers()); 1440 } 1441 return type; 1442 } 1443 1444 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) { 1445 // Make a quick check if variable can be default NULL initialized 1446 // and avoid going through rest of code which may do, for c++11, 1447 // initialization of memory to all NULLs. 1448 if (!D.hasLocalStorage()) { 1449 QualType Ty = CGM.getContext().getBaseElementType(D.getType()); 1450 if (Ty->isRecordType()) 1451 if (const CXXConstructExpr *E = 1452 dyn_cast_or_null<CXXConstructExpr>(D.getInit())) { 1453 const CXXConstructorDecl *CD = E->getConstructor(); 1454 if (CD->isTrivial() && CD->isDefaultConstructor()) 1455 return CGM.EmitNullConstant(D.getType()); 1456 } 1457 InConstantContext = true; 1458 } 1459 1460 QualType destType = D.getType(); 1461 1462 // Try to emit the initializer. Note that this can allow some things that 1463 // are not allowed by tryEmitPrivateForMemory alone. 1464 if (auto value = D.evaluateValue()) { 1465 return tryEmitPrivateForMemory(*value, destType); 1466 } 1467 1468 // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a 1469 // reference is a constant expression, and the reference binds to a temporary, 1470 // then constant initialization is performed. ConstExprEmitter will 1471 // incorrectly emit a prvalue constant in this case, and the calling code 1472 // interprets that as the (pointer) value of the reference, rather than the 1473 // desired value of the referee. 1474 if (destType->isReferenceType()) 1475 return nullptr; 1476 1477 const Expr *E = D.getInit(); 1478 assert(E && "No initializer to emit"); 1479 1480 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1481 auto C = 1482 ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType); 1483 return (C ? emitForMemory(C, destType) : nullptr); 1484 } 1485 1486 llvm::Constant * 1487 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) { 1488 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1489 auto C = tryEmitAbstract(E, nonMemoryDestType); 1490 return (C ? emitForMemory(C, destType) : nullptr); 1491 } 1492 1493 llvm::Constant * 1494 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value, 1495 QualType destType) { 1496 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1497 auto C = tryEmitAbstract(value, nonMemoryDestType); 1498 return (C ? emitForMemory(C, destType) : nullptr); 1499 } 1500 1501 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E, 1502 QualType destType) { 1503 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1504 llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType); 1505 return (C ? emitForMemory(C, destType) : nullptr); 1506 } 1507 1508 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value, 1509 QualType destType) { 1510 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1511 auto C = tryEmitPrivate(value, nonMemoryDestType); 1512 return (C ? emitForMemory(C, destType) : nullptr); 1513 } 1514 1515 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM, 1516 llvm::Constant *C, 1517 QualType destType) { 1518 // For an _Atomic-qualified constant, we may need to add tail padding. 1519 if (auto AT = destType->getAs<AtomicType>()) { 1520 QualType destValueType = AT->getValueType(); 1521 C = emitForMemory(CGM, C, destValueType); 1522 1523 uint64_t innerSize = CGM.getContext().getTypeSize(destValueType); 1524 uint64_t outerSize = CGM.getContext().getTypeSize(destType); 1525 if (innerSize == outerSize) 1526 return C; 1527 1528 assert(innerSize < outerSize && "emitted over-large constant for atomic"); 1529 llvm::Constant *elts[] = { 1530 C, 1531 llvm::ConstantAggregateZero::get( 1532 llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8)) 1533 }; 1534 return llvm::ConstantStruct::getAnon(elts); 1535 } 1536 1537 // Zero-extend bool. 1538 if (C->getType()->isIntegerTy(1)) { 1539 llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType); 1540 return llvm::ConstantExpr::getZExt(C, boolTy); 1541 } 1542 1543 return C; 1544 } 1545 1546 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E, 1547 QualType destType) { 1548 Expr::EvalResult Result; 1549 1550 bool Success = false; 1551 1552 if (destType->isReferenceType()) 1553 Success = E->EvaluateAsLValue(Result, CGM.getContext()); 1554 else 1555 Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext); 1556 1557 llvm::Constant *C; 1558 if (Success && !Result.HasSideEffects) 1559 C = tryEmitPrivate(Result.Val, destType); 1560 else 1561 C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType); 1562 1563 return C; 1564 } 1565 1566 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) { 1567 return getTargetCodeGenInfo().getNullPointer(*this, T, QT); 1568 } 1569 1570 namespace { 1571 /// A struct which can be used to peephole certain kinds of finalization 1572 /// that normally happen during l-value emission. 1573 struct ConstantLValue { 1574 llvm::Constant *Value; 1575 bool HasOffsetApplied; 1576 1577 /*implicit*/ ConstantLValue(llvm::Constant *value, 1578 bool hasOffsetApplied = false) 1579 : Value(value), HasOffsetApplied(false) {} 1580 1581 /*implicit*/ ConstantLValue(ConstantAddress address) 1582 : ConstantLValue(address.getPointer()) {} 1583 }; 1584 1585 /// A helper class for emitting constant l-values. 1586 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter, 1587 ConstantLValue> { 1588 CodeGenModule &CGM; 1589 ConstantEmitter &Emitter; 1590 const APValue &Value; 1591 QualType DestType; 1592 1593 // Befriend StmtVisitorBase so that we don't have to expose Visit*. 1594 friend StmtVisitorBase; 1595 1596 public: 1597 ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value, 1598 QualType destType) 1599 : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {} 1600 1601 llvm::Constant *tryEmit(); 1602 1603 private: 1604 llvm::Constant *tryEmitAbsolute(llvm::Type *destTy); 1605 ConstantLValue tryEmitBase(const APValue::LValueBase &base); 1606 1607 ConstantLValue VisitStmt(const Stmt *S) { return nullptr; } 1608 ConstantLValue VisitConstantExpr(const ConstantExpr *E); 1609 ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); 1610 ConstantLValue VisitStringLiteral(const StringLiteral *E); 1611 ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E); 1612 ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E); 1613 ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E); 1614 ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E); 1615 ConstantLValue VisitCallExpr(const CallExpr *E); 1616 ConstantLValue VisitBlockExpr(const BlockExpr *E); 1617 ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E); 1618 ConstantLValue VisitCXXUuidofExpr(const CXXUuidofExpr *E); 1619 ConstantLValue VisitMaterializeTemporaryExpr( 1620 const MaterializeTemporaryExpr *E); 1621 1622 bool hasNonZeroOffset() const { 1623 return !Value.getLValueOffset().isZero(); 1624 } 1625 1626 /// Return the value offset. 1627 llvm::Constant *getOffset() { 1628 return llvm::ConstantInt::get(CGM.Int64Ty, 1629 Value.getLValueOffset().getQuantity()); 1630 } 1631 1632 /// Apply the value offset to the given constant. 1633 llvm::Constant *applyOffset(llvm::Constant *C) { 1634 if (!hasNonZeroOffset()) 1635 return C; 1636 1637 llvm::Type *origPtrTy = C->getType(); 1638 unsigned AS = origPtrTy->getPointerAddressSpace(); 1639 llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS); 1640 C = llvm::ConstantExpr::getBitCast(C, charPtrTy); 1641 C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset()); 1642 C = llvm::ConstantExpr::getPointerCast(C, origPtrTy); 1643 return C; 1644 } 1645 }; 1646 1647 } 1648 1649 llvm::Constant *ConstantLValueEmitter::tryEmit() { 1650 const APValue::LValueBase &base = Value.getLValueBase(); 1651 1652 // Certain special array initializers are represented in APValue 1653 // as l-values referring to the base expression which generates the 1654 // array. This happens with e.g. string literals. These should 1655 // probably just get their own representation kind in APValue. 1656 if (DestType->isArrayType()) { 1657 assert(!hasNonZeroOffset() && "offset on array initializer"); 1658 auto expr = const_cast<Expr*>(base.get<const Expr*>()); 1659 return ConstExprEmitter(Emitter).Visit(expr, DestType); 1660 } 1661 1662 // Otherwise, the destination type should be a pointer or reference 1663 // type, but it might also be a cast thereof. 1664 // 1665 // FIXME: the chain of casts required should be reflected in the APValue. 1666 // We need this in order to correctly handle things like a ptrtoint of a 1667 // non-zero null pointer and addrspace casts that aren't trivially 1668 // represented in LLVM IR. 1669 auto destTy = CGM.getTypes().ConvertTypeForMem(DestType); 1670 assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy)); 1671 1672 // If there's no base at all, this is a null or absolute pointer, 1673 // possibly cast back to an integer type. 1674 if (!base) { 1675 return tryEmitAbsolute(destTy); 1676 } 1677 1678 // Otherwise, try to emit the base. 1679 ConstantLValue result = tryEmitBase(base); 1680 1681 // If that failed, we're done. 1682 llvm::Constant *value = result.Value; 1683 if (!value) return nullptr; 1684 1685 // Apply the offset if necessary and not already done. 1686 if (!result.HasOffsetApplied) { 1687 value = applyOffset(value); 1688 } 1689 1690 // Convert to the appropriate type; this could be an lvalue for 1691 // an integer. FIXME: performAddrSpaceCast 1692 if (isa<llvm::PointerType>(destTy)) 1693 return llvm::ConstantExpr::getPointerCast(value, destTy); 1694 1695 return llvm::ConstantExpr::getPtrToInt(value, destTy); 1696 } 1697 1698 /// Try to emit an absolute l-value, such as a null pointer or an integer 1699 /// bitcast to pointer type. 1700 llvm::Constant * 1701 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) { 1702 auto offset = getOffset(); 1703 1704 // If we're producing a pointer, this is easy. 1705 if (auto destPtrTy = cast<llvm::PointerType>(destTy)) { 1706 if (Value.isNullPointer()) { 1707 // FIXME: integer offsets from non-zero null pointers. 1708 return CGM.getNullPointer(destPtrTy, DestType); 1709 } 1710 1711 // Convert the integer to a pointer-sized integer before converting it 1712 // to a pointer. 1713 // FIXME: signedness depends on the original integer type. 1714 auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy); 1715 llvm::Constant *C = offset; 1716 C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy, 1717 /*isSigned*/ false); 1718 C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy); 1719 return C; 1720 } 1721 1722 // Otherwise, we're basically returning an integer constant. 1723 1724 // FIXME: this does the wrong thing with ptrtoint of a null pointer, 1725 // but since we don't know the original pointer type, there's not much 1726 // we can do about it. 1727 1728 auto C = getOffset(); 1729 C = llvm::ConstantExpr::getIntegerCast(C, destTy, /*isSigned*/ false); 1730 return C; 1731 } 1732 1733 ConstantLValue 1734 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) { 1735 // Handle values. 1736 if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) { 1737 if (D->hasAttr<WeakRefAttr>()) 1738 return CGM.GetWeakRefReference(D).getPointer(); 1739 1740 if (auto FD = dyn_cast<FunctionDecl>(D)) 1741 return CGM.GetAddrOfFunction(FD); 1742 1743 if (auto VD = dyn_cast<VarDecl>(D)) { 1744 // We can never refer to a variable with local storage. 1745 if (!VD->hasLocalStorage()) { 1746 if (VD->isFileVarDecl() || VD->hasExternalStorage()) 1747 return CGM.GetAddrOfGlobalVar(VD); 1748 1749 if (VD->isLocalVarDecl()) { 1750 return CGM.getOrCreateStaticVarDecl( 1751 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)); 1752 } 1753 } 1754 } 1755 1756 return nullptr; 1757 } 1758 1759 // Otherwise, it must be an expression. 1760 return Visit(base.get<const Expr*>()); 1761 } 1762 1763 ConstantLValue 1764 ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) { 1765 return Visit(E->getSubExpr()); 1766 } 1767 1768 ConstantLValue 1769 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 1770 return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E); 1771 } 1772 1773 ConstantLValue 1774 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) { 1775 return CGM.GetAddrOfConstantStringFromLiteral(E); 1776 } 1777 1778 ConstantLValue 1779 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 1780 return CGM.GetAddrOfConstantStringFromObjCEncode(E); 1781 } 1782 1783 ConstantLValue 1784 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 1785 auto C = CGM.getObjCRuntime().GenerateConstantString(E->getString()); 1786 return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(E->getType())); 1787 } 1788 1789 ConstantLValue 1790 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) { 1791 return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName()); 1792 } 1793 1794 ConstantLValue 1795 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) { 1796 assert(Emitter.CGF && "Invalid address of label expression outside function"); 1797 llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel()); 1798 Ptr = llvm::ConstantExpr::getBitCast(Ptr, 1799 CGM.getTypes().ConvertType(E->getType())); 1800 return Ptr; 1801 } 1802 1803 ConstantLValue 1804 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) { 1805 unsigned builtin = E->getBuiltinCallee(); 1806 if (builtin != Builtin::BI__builtin___CFStringMakeConstantString && 1807 builtin != Builtin::BI__builtin___NSStringMakeConstantString) 1808 return nullptr; 1809 1810 auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts()); 1811 if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) { 1812 return CGM.getObjCRuntime().GenerateConstantString(literal); 1813 } else { 1814 // FIXME: need to deal with UCN conversion issues. 1815 return CGM.GetAddrOfConstantCFString(literal); 1816 } 1817 } 1818 1819 ConstantLValue 1820 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) { 1821 StringRef functionName; 1822 if (auto CGF = Emitter.CGF) 1823 functionName = CGF->CurFn->getName(); 1824 else 1825 functionName = "global"; 1826 1827 return CGM.GetAddrOfGlobalBlock(E, functionName); 1828 } 1829 1830 ConstantLValue 1831 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { 1832 QualType T; 1833 if (E->isTypeOperand()) 1834 T = E->getTypeOperand(CGM.getContext()); 1835 else 1836 T = E->getExprOperand()->getType(); 1837 return CGM.GetAddrOfRTTIDescriptor(T); 1838 } 1839 1840 ConstantLValue 1841 ConstantLValueEmitter::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 1842 return CGM.GetAddrOfUuidDescriptor(E); 1843 } 1844 1845 ConstantLValue 1846 ConstantLValueEmitter::VisitMaterializeTemporaryExpr( 1847 const MaterializeTemporaryExpr *E) { 1848 assert(E->getStorageDuration() == SD_Static); 1849 SmallVector<const Expr *, 2> CommaLHSs; 1850 SmallVector<SubobjectAdjustment, 2> Adjustments; 1851 const Expr *Inner = E->GetTemporaryExpr() 1852 ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 1853 return CGM.GetAddrOfGlobalTemporary(E, Inner); 1854 } 1855 1856 llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value, 1857 QualType DestType) { 1858 switch (Value.getKind()) { 1859 case APValue::Uninitialized: 1860 llvm_unreachable("Constant expressions should be initialized."); 1861 case APValue::LValue: 1862 return ConstantLValueEmitter(*this, Value, DestType).tryEmit(); 1863 case APValue::Int: 1864 return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt()); 1865 case APValue::FixedPoint: 1866 return llvm::ConstantInt::get(CGM.getLLVMContext(), 1867 Value.getFixedPoint().getValue()); 1868 case APValue::ComplexInt: { 1869 llvm::Constant *Complex[2]; 1870 1871 Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(), 1872 Value.getComplexIntReal()); 1873 Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(), 1874 Value.getComplexIntImag()); 1875 1876 // FIXME: the target may want to specify that this is packed. 1877 llvm::StructType *STy = 1878 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 1879 return llvm::ConstantStruct::get(STy, Complex); 1880 } 1881 case APValue::Float: { 1882 const llvm::APFloat &Init = Value.getFloat(); 1883 if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() && 1884 !CGM.getContext().getLangOpts().NativeHalfType && 1885 CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1886 return llvm::ConstantInt::get(CGM.getLLVMContext(), 1887 Init.bitcastToAPInt()); 1888 else 1889 return llvm::ConstantFP::get(CGM.getLLVMContext(), Init); 1890 } 1891 case APValue::ComplexFloat: { 1892 llvm::Constant *Complex[2]; 1893 1894 Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(), 1895 Value.getComplexFloatReal()); 1896 Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(), 1897 Value.getComplexFloatImag()); 1898 1899 // FIXME: the target may want to specify that this is packed. 1900 llvm::StructType *STy = 1901 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 1902 return llvm::ConstantStruct::get(STy, Complex); 1903 } 1904 case APValue::Vector: { 1905 unsigned NumElts = Value.getVectorLength(); 1906 SmallVector<llvm::Constant *, 4> Inits(NumElts); 1907 1908 for (unsigned I = 0; I != NumElts; ++I) { 1909 const APValue &Elt = Value.getVectorElt(I); 1910 if (Elt.isInt()) 1911 Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt()); 1912 else if (Elt.isFloat()) 1913 Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat()); 1914 else 1915 llvm_unreachable("unsupported vector element type"); 1916 } 1917 return llvm::ConstantVector::get(Inits); 1918 } 1919 case APValue::AddrLabelDiff: { 1920 const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS(); 1921 const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS(); 1922 llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType()); 1923 llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType()); 1924 if (!LHS || !RHS) return nullptr; 1925 1926 // Compute difference 1927 llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType); 1928 LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy); 1929 RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy); 1930 llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS); 1931 1932 // LLVM is a bit sensitive about the exact format of the 1933 // address-of-label difference; make sure to truncate after 1934 // the subtraction. 1935 return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType); 1936 } 1937 case APValue::Struct: 1938 case APValue::Union: 1939 return ConstStructBuilder::BuildStruct(*this, Value, DestType); 1940 case APValue::Array: { 1941 const ConstantArrayType *CAT = 1942 CGM.getContext().getAsConstantArrayType(DestType); 1943 unsigned NumElements = Value.getArraySize(); 1944 unsigned NumInitElts = Value.getArrayInitializedElts(); 1945 1946 // Emit array filler, if there is one. 1947 llvm::Constant *Filler = nullptr; 1948 if (Value.hasArrayFiller()) { 1949 Filler = tryEmitAbstractForMemory(Value.getArrayFiller(), 1950 CAT->getElementType()); 1951 if (!Filler) 1952 return nullptr; 1953 } 1954 1955 // Emit initializer elements. 1956 SmallVector<llvm::Constant*, 16> Elts; 1957 if (Filler && Filler->isNullValue()) 1958 Elts.reserve(NumInitElts + 1); 1959 else 1960 Elts.reserve(NumElements); 1961 1962 llvm::Type *CommonElementType = nullptr; 1963 for (unsigned I = 0; I < NumInitElts; ++I) { 1964 llvm::Constant *C = tryEmitPrivateForMemory( 1965 Value.getArrayInitializedElt(I), CAT->getElementType()); 1966 if (!C) return nullptr; 1967 1968 if (I == 0) 1969 CommonElementType = C->getType(); 1970 else if (C->getType() != CommonElementType) 1971 CommonElementType = nullptr; 1972 Elts.push_back(C); 1973 } 1974 1975 // This means that the array type is probably "IncompleteType" or some 1976 // type that is not ConstantArray. 1977 if (CAT == nullptr && CommonElementType == nullptr && !NumInitElts) { 1978 const ArrayType *AT = CGM.getContext().getAsArrayType(DestType); 1979 CommonElementType = CGM.getTypes().ConvertType(AT->getElementType()); 1980 llvm::ArrayType *AType = llvm::ArrayType::get(CommonElementType, 1981 NumElements); 1982 return llvm::ConstantAggregateZero::get(AType); 1983 } 1984 1985 return EmitArrayConstant(CGM, CAT, CommonElementType, NumElements, Elts, 1986 Filler); 1987 } 1988 case APValue::MemberPointer: 1989 return CGM.getCXXABI().EmitMemberPointer(Value, DestType); 1990 } 1991 llvm_unreachable("Unknown APValue kind"); 1992 } 1993 1994 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted( 1995 const CompoundLiteralExpr *E) { 1996 return EmittedCompoundLiterals.lookup(E); 1997 } 1998 1999 void CodeGenModule::setAddrOfConstantCompoundLiteral( 2000 const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) { 2001 bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second; 2002 (void)Ok; 2003 assert(Ok && "CLE has already been emitted!"); 2004 } 2005 2006 ConstantAddress 2007 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) { 2008 assert(E->isFileScope() && "not a file-scope compound literal expr"); 2009 return tryEmitGlobalCompoundLiteral(*this, nullptr, E); 2010 } 2011 2012 llvm::Constant * 2013 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) { 2014 // Member pointer constants always have a very particular form. 2015 const MemberPointerType *type = cast<MemberPointerType>(uo->getType()); 2016 const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl(); 2017 2018 // A member function pointer. 2019 if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl)) 2020 return getCXXABI().EmitMemberFunctionPointer(method); 2021 2022 // Otherwise, a member data pointer. 2023 uint64_t fieldOffset = getContext().getFieldOffset(decl); 2024 CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset); 2025 return getCXXABI().EmitMemberDataPointer(type, chars); 2026 } 2027 2028 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2029 llvm::Type *baseType, 2030 const CXXRecordDecl *base); 2031 2032 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM, 2033 const RecordDecl *record, 2034 bool asCompleteObject) { 2035 const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record); 2036 llvm::StructType *structure = 2037 (asCompleteObject ? layout.getLLVMType() 2038 : layout.getBaseSubobjectLLVMType()); 2039 2040 unsigned numElements = structure->getNumElements(); 2041 std::vector<llvm::Constant *> elements(numElements); 2042 2043 auto CXXR = dyn_cast<CXXRecordDecl>(record); 2044 // Fill in all the bases. 2045 if (CXXR) { 2046 for (const auto &I : CXXR->bases()) { 2047 if (I.isVirtual()) { 2048 // Ignore virtual bases; if we're laying out for a complete 2049 // object, we'll lay these out later. 2050 continue; 2051 } 2052 2053 const CXXRecordDecl *base = 2054 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2055 2056 // Ignore empty bases. 2057 if (base->isEmpty() || 2058 CGM.getContext().getASTRecordLayout(base).getNonVirtualSize() 2059 .isZero()) 2060 continue; 2061 2062 unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base); 2063 llvm::Type *baseType = structure->getElementType(fieldIndex); 2064 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2065 } 2066 } 2067 2068 // Fill in all the fields. 2069 for (const auto *Field : record->fields()) { 2070 // Fill in non-bitfields. (Bitfields always use a zero pattern, which we 2071 // will fill in later.) 2072 if (!Field->isBitField()) { 2073 unsigned fieldIndex = layout.getLLVMFieldNo(Field); 2074 elements[fieldIndex] = CGM.EmitNullConstant(Field->getType()); 2075 } 2076 2077 // For unions, stop after the first named field. 2078 if (record->isUnion()) { 2079 if (Field->getIdentifier()) 2080 break; 2081 if (const auto *FieldRD = Field->getType()->getAsRecordDecl()) 2082 if (FieldRD->findFirstNamedDataMember()) 2083 break; 2084 } 2085 } 2086 2087 // Fill in the virtual bases, if we're working with the complete object. 2088 if (CXXR && asCompleteObject) { 2089 for (const auto &I : CXXR->vbases()) { 2090 const CXXRecordDecl *base = 2091 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2092 2093 // Ignore empty bases. 2094 if (base->isEmpty()) 2095 continue; 2096 2097 unsigned fieldIndex = layout.getVirtualBaseIndex(base); 2098 2099 // We might have already laid this field out. 2100 if (elements[fieldIndex]) continue; 2101 2102 llvm::Type *baseType = structure->getElementType(fieldIndex); 2103 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2104 } 2105 } 2106 2107 // Now go through all other fields and zero them out. 2108 for (unsigned i = 0; i != numElements; ++i) { 2109 if (!elements[i]) 2110 elements[i] = llvm::Constant::getNullValue(structure->getElementType(i)); 2111 } 2112 2113 return llvm::ConstantStruct::get(structure, elements); 2114 } 2115 2116 /// Emit the null constant for a base subobject. 2117 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2118 llvm::Type *baseType, 2119 const CXXRecordDecl *base) { 2120 const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base); 2121 2122 // Just zero out bases that don't have any pointer to data members. 2123 if (baseLayout.isZeroInitializableAsBase()) 2124 return llvm::Constant::getNullValue(baseType); 2125 2126 // Otherwise, we can just use its null constant. 2127 return EmitNullConstant(CGM, base, /*asCompleteObject=*/false); 2128 } 2129 2130 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM, 2131 QualType T) { 2132 return emitForMemory(CGM, CGM.EmitNullConstant(T), T); 2133 } 2134 2135 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { 2136 if (T->getAs<PointerType>()) 2137 return getNullPointer( 2138 cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T); 2139 2140 if (getTypes().isZeroInitializable(T)) 2141 return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); 2142 2143 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { 2144 llvm::ArrayType *ATy = 2145 cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T)); 2146 2147 QualType ElementTy = CAT->getElementType(); 2148 2149 llvm::Constant *Element = 2150 ConstantEmitter::emitNullForMemory(*this, ElementTy); 2151 unsigned NumElements = CAT->getSize().getZExtValue(); 2152 SmallVector<llvm::Constant *, 8> Array(NumElements, Element); 2153 return llvm::ConstantArray::get(ATy, Array); 2154 } 2155 2156 if (const RecordType *RT = T->getAs<RecordType>()) 2157 return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true); 2158 2159 assert(T->isMemberDataPointerType() && 2160 "Should only see pointers to data members here!"); 2161 2162 return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>()); 2163 } 2164 2165 llvm::Constant * 2166 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) { 2167 return ::EmitNullConstant(*this, Record, false); 2168 } 2169